[go: up one dir, main page]

WO2023090674A1 - Non-woven fabric, method for manufacturing non-woven fabric, and article - Google Patents

Non-woven fabric, method for manufacturing non-woven fabric, and article Download PDF

Info

Publication number
WO2023090674A1
WO2023090674A1 PCT/KR2022/016364 KR2022016364W WO2023090674A1 WO 2023090674 A1 WO2023090674 A1 WO 2023090674A1 KR 2022016364 W KR2022016364 W KR 2022016364W WO 2023090674 A1 WO2023090674 A1 WO 2023090674A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
sheath
core
woven fabric
melt
Prior art date
Application number
PCT/KR2022/016364
Other languages
French (fr)
Korean (ko)
Inventor
김주연
신금식
Original Assignee
도레이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220115003A external-priority patent/KR20230073085A/en
Application filed by 도레이첨단소재 주식회사 filed Critical 도레이첨단소재 주식회사
Priority to JP2024529821A priority Critical patent/JP2024540589A/en
Priority to CN202280089301.9A priority patent/CN118556142A/en
Priority to MX2024006141A priority patent/MX2024006141A/en
Publication of WO2023090674A1 publication Critical patent/WO2023090674A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments

Definitions

  • a nonwoven fabric, a method for making the nonwoven fabric, and an article are disclosed. More specifically, a nonwoven fabric having excellent bonding properties and strength, a method for manufacturing the nonwoven fabric, and an article are disclosed.
  • Nonwoven fabrics are used for various purposes, such as for medical use, for industrial use such as protective clothing and masks, and for sanitary materials such as nappies and sanitary napkins.
  • the nonwoven fabric is typically manufactured and used as a multilayer structure in which two or more layers are bonded, and is required to have excellent strength in most applications. Therefore, many researchers are immersed in the development of multi-layered nonwoven fabrics with excellent strength.
  • One embodiment of the present invention provides a nonwoven fabric having excellent bonding properties and strength.
  • Another embodiment of the present invention provides a method for manufacturing the nonwoven fabric.
  • Another embodiment of the present invention provides an article comprising the nonwoven fabric.
  • a shear rate of 100 sec -1 and a melt viscosity measured at a temperature of 230 °C are 500 to 740 poise.
  • the nonwoven fabric includes a core-sheath-type composite fiber, and the core-sheath-type composite fiber has a melt index (MFR: measurement temperature of 230 ° C, load of 2.16 kg) measured according to ASTM D1238 of 20 to 50 g / 10 min and a core according to ASTM D1238.
  • the measured melt index (MFR: measurement temperature 230 ° C., load 2.16 kg) may include a sheath of 40 to 120 g / 10 min.
  • the melt index of the sheath may be greater than that of the core by 10 to 100 g/10 min.
  • the weight ratio of the sheath to the core may be 1 to 5:9 to 5.
  • the core portion may include a first polypropylene
  • the sheath portion may include a second polypropylene
  • the nonwoven fabric may have a toughness of 100 to 300 represented by Equation 1 below:
  • Toughness MD tensile strength ⁇ MD tensile elongation / basis weight
  • the nonwoven fabric may be a spunbond nonwoven fabric.
  • the nonwoven fabric may be made of two or more layers.
  • Another aspect of the present invention is
  • the temperature of the spinneret is maintained at 230 ⁇ 250 °C provides a method of manufacturing a nonwoven fabric.
  • the manufacturing method of the nonwoven fabric may further include a step (S50) of imparting mechanical properties to the nonwoven fabric formed in the step (S40).
  • Another aspect of the present invention is
  • An article comprising the nonwoven fabric is provided.
  • a nonwoven fabric and an article including the same according to one embodiment of the present invention have excellent bonding properties and strength.
  • FIG. 1 is a cross-sectional view of a core-sheath type composite fiber constituting a nonwoven fabric according to an embodiment of the present invention.
  • the nonwoven fabric according to one embodiment of the present invention may have a melt viscosity of 500 to 740 poise measured at a shear rate of 100 sec -1 and a temperature of 230 °C according to ASTM D4440-08.
  • the nonwoven fabric When the melt viscosity of the nonwoven fabric is within the above range, the nonwoven fabric may have excellent bonding properties and strength.
  • the melt viscosity of the nonwoven fabric when the melt viscosity of the nonwoven fabric is less than 500 poise, the strength of individual fibers constituting the nonwoven fabric is reduced, and thus the strength of the nonwoven fabric is also reduced. In addition, when the melt viscosity of the nonwoven fabric exceeds 740 poise, the bonding strength of the individual fibers constituting the nonwoven fabric is reduced, and the bonding strength between the individual fibers is weakened, thereby reducing the strength of the nonwoven fabric manufactured by laminating the individual fibers. do.
  • the melt viscosity of the non-woven fabric is the structure of the fiber constituting the non-woven fabric, the type of raw material constituting the fiber, the ratio and physical properties of the raw material, the manufacturing conditions and manufacturing method of the fiber, and the manufacturing condition and manufacturing of the non-woven fabric using the fiber method can be determined.
  • the nonwoven fabric may include core-sheath type composite fibers.
  • the core-sheath composite fiber has a melt index (MFR: measured temperature 230 ° C, load 2.16 kg) measured according to ASTM D1238 of 20 to 50 g / 10 min and a melt index measured according to ASTM D1238 (MFR: measured temperature 230 ° C) , a load of 2.16 kg) may include a sheath with a load of 40 to 120 g/10 min. If the melt index of the core and the melt index of the sheath are within the above range, respectively, the melt viscosity measured at a shear rate of 100 sec -1 and a temperature of 230 ° C according to ASTM D4440-08 is 500 to 740 poise, toughness It is possible to obtain a nonwoven fabric of 100 to 300.
  • MFR measured temperature 230 ° C, load 2.16 kg
  • the melt index of the sheath may be greater than that of the core by 10 to 100 g/10 min. If the melt index of the sheath compared to the melt index of the core is within the above range, the melt viscosity measured at a shear rate of 100 sec-1 and a temperature of 230 ° C according to ASTM D4440-08 is 500 to 740 poise, and the toughness is A nonwoven fabric of 100 to 300 can be obtained.
  • the weight ratio of the sheath to the core may be 1 to 5:9 to 5.
  • the melt viscosity measured at a shear rate of 100 sec -1 and a temperature of 230 ° C according to ASTM D4440-08 is 500 to 740 poise, and the toughness is 100 to 300.
  • a non-woven fabric can be obtained.
  • the core portion may include a first polypropylene
  • the sheath portion may include a second polypropylene
  • the first propylene-based polymer and the second propylene-based polymer may be prepared using a high stereoregularity polymerization catalyst.
  • the high stereoregularity polymerization catalyst may include a diester component catalyst, a succinate component catalyst, a metallocene catalyst, or a combination thereof.
  • FIG. 1 is a cross-sectional view of a core-sheath type composite fiber 100 constituting a nonwoven fabric according to an embodiment of the present invention.
  • a core-sheath-type composite fiber 100 may include a core portion 110 and a sheath portion 120 configured to surround the core portion 110 .
  • the nonwoven fabric may have a toughness of 100 to 300 represented by Equation 1 below:
  • Toughness MD tensile strength ⁇ MD tensile elongation / basis weight
  • the nonwoven fabric may be a spunbond nonwoven fabric.
  • the nonwoven fabric may be made of two or more layers.
  • the nonwoven fabric may be a nonwoven fabric laminate.
  • the fineness and basis weight of the nonwoven fabric may be appropriately selected depending on the purpose, and the normal fineness is 1.0 to 2.5 denier, for example, 0.7 to 2.0 denier, and the basis weight is 15 to 100 g / m 2 , For example, It may be 7-30 g/m 2 .
  • the core-sheath composite fiber may further include additives as necessary within a range not impairing the object of the present invention.
  • the additives may include known heat stabilizers, weather stabilizers, various stabilizers, antistatic agents, antiblocking agents, anticlouding agents, fillers, dyes, pigments, natural oils, synthetic oils, waxes, or combinations thereof.
  • the stabilizer may be an anti-aging agent such as 2,6-di-t-butyl-4-methylphenol (BHT); Tetrakis[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate]methane, ⁇ -(3,5-di-t-butyl-4-hydroxyphenyl)propionic acid phenolic antioxidants such as alkyl esters and 2,2'-oxamidobis[ethyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate; fatty acid metal salts such as zinc stearate, calcium stearate, and calcium 1,2-hydroxystearate; polyhydric alcohol fatty acid esters such as glycerin monostearate, glycerin distearate, pentaerythritol monostearate, pentaerythritol distearate, and pentaerythritol tristearate; or a combination thereof.
  • the filler is silica, diatomaceous earth, alumina, titanium oxide, magnesium oxide, pumice powder, pumice balun, aluminum hydroxide, magnesium hydroxide, basic magnesium carbonate, dolomite, calcium sulfate, potassium titanate, barium sulfate, calcium sulfite, talc, clay, mica , asbestos, calcium silicate, montmorillonite, bentonite, graphite, aluminum powder, molybdenum sulfide, or combinations thereof.
  • the above-described propylene-based polymer and the additives used as needed may be mixed using a known method.
  • a method for manufacturing a nonwoven fabric according to an embodiment of the present invention includes the steps of melting a polymer for forming a core and a polymer for forming a sheath with separate extruders to form a melt for forming a core and a melt for forming a sheath (S10), the respective melts is discharged through a spinneret having a composite spinning nozzle configured to form and discharge the desired fiber structure to release the composite long fibers (S20), cooling and stretching the discharged composite long fibers (S30), and and collecting the cooled and stretched composite long fibers on a collecting belt and depositing them to a predetermined thickness to form a nonwoven fabric (S40).
  • the temperature of the spinneret may be maintained at 230 to 250 ° C.
  • the melt viscosity measured at a shear rate of 100 sec -1 and a temperature of 230 ° C according to ASTM D4440-08 is 500 to 740 poise, and the toughness is 100 to 300 nonwoven fabric can be obtained, and good process stability (spinning) can be obtained even in the nonwoven fabric manufacturing process.
  • the step (S30) may be a step of cooling the composite long fibers released in the step (S20) with air for cooling and also applying tension with air for stretching to give them a predetermined fineness.
  • the method for manufacturing the nonwoven fabric may further include a step (S50) of imparting mechanical properties to the nonwoven fabric formed in the step (S40).
  • the step (S50) may be performed by a method using means such as needle punch, water jet, ultrasonic waves, etc. as the bridging treatment, embossing using a heated embossing roll, or thermal fusion by high-temperature ventilation.
  • An article according to one embodiment of the present invention includes the above-described nonwoven fabric.
  • the article may be a diaper, absorbent article, toilet article, support layer, top sheet, medical suit, protective clothing or mask.
  • a nonwoven fabric made of the core-sheath composite fiber 100 having the structure of FIG. 1 was prepared in the following manner. Specifically, the first polypropylene for forming the core and the second polypropylene for forming the sheath were melted with separate extruders to form a melt for forming the core and a melt for forming the sheath. Thereafter, each of the melts was discharged through a spinneret having a composite spinneret. Thereafter, each of the ejected melts was cooled with air for cooling, and tension was applied with air for stretching to obtain a predetermined fineness. Thereafter, the cooled and stretched composite long fibers were collected on a collecting belt and deposited to a predetermined thickness to form a nonwoven fabric. Thereafter, mechanical properties were imparted to the formed nonwoven fabric by embossing using a heated embossing roll.
  • the MFR of the first polypropylene for forming the core the MFR of the second propylene for forming the sheath, the MFR difference between the second propylene and the first propylene, and the weight ratio between the sheath and the core are shown in Table 1 below.
  • "manufacturing temperature of nonwoven fabric” means the temperature of the spinneret.
  • a nonwoven fabric made of the side-by-side composite fibers 1 having the structure of FIG. 2 was prepared in the following manner. Specifically, the first polypropylene for forming side A and the second polypropylene for forming side B were melted with separate extruders to form a melt for forming side A and a melt for forming side B. Thereafter, each of the melts was discharged through a spinneret having a composite spinneret. Thereafter, each of the ejected melts was cooled with air for cooling, and tension was applied with air for stretching to obtain a predetermined fineness. Thereafter, the cooled and stretched composite long fibers were collected on a collecting belt and deposited to a predetermined thickness to form a nonwoven fabric. Thereafter, mechanical properties were imparted to the formed nonwoven fabric by embossing using a heated embossing roll.
  • the MFR of the first polypropylene for forming the side A, the MFR of the second propylene for forming the side B, the difference between the MFR of the second propylene and the first propylene, and the weight ratio between side A and side B are shown in Table 1 below.
  • "manufacturing temperature of nonwoven fabric” means the temperature of the spinneret.
  • melt viscosity The melt viscosity of the nonwoven fabric was measured at a shear rate of 100 sec ⁇ 1 and a temperature of 230° C. according to ASTM D4440-08.
  • Tensile strength A tensile test was performed under the conditions of a specimen width of 5 cm, interval of 10 cm, and tensile speed of 500 mm / min according to the KSK 0520 method using a tensile strength elongation machine (Instron) measuring equipment, and the maximum tensile load was obtained.
  • Basis weight (weight: g/m 2 ): Measured according to ASTM D 3776-1985.
  • Toughness MD tensile strength ⁇ MD tensile elongation / basis weight
  • Example One 2 3 4 5 Melt viscosity of nonwoven fabric ( poise, 100 sec) 684 644 712 732 601 MD tensile strength of nonwoven fabric (N/5cm) 44 47 39 39 49 MD tensile elongation of nonwoven fabric (%) 51 54 48 46 57 Basic weight of nonwoven fabric (g/m 2 ) 15 15 15 15 15 Toughness of non-woven fabric 150 169 125 120 186 Process stability of non-woven fabric (radiation) Good Good Good Good Good Good Good Example 6 7 8 9 10 Melt viscosity of nonwoven fabric (poise) 684 644 667 652 697 MD tensile strength of nonwoven fabric (N/5cm) 44 47 50 43 40 MD tensile elongation of nonwoven fabric (%) 51 54 59 51 49 Basic weight of nonwoven fabric (g/m 2 ) 15 15 15 15 15 15 Toughness of non-woven fabric 150 169 197 146 131 Non-woven process stability (spinning) Good Good Good Good Good Good Good Good
  • the nonwoven fabrics prepared in Examples 1 to 10 had melt viscosity in the range of 500 to 740 poise, toughness in the range of 100 to 300, as well as MD tensile strength and MD tensile elongation. All appeared to be excellent.
  • the nonwoven fabric manufacturing process of Examples 1 to 10 was found to have excellent process stability (spinning).
  • the nonwoven fabrics prepared in Comparative Examples 1 to 11 had melt viscosity outside the range of 500 to 740 poise and toughness outside the range of 100 to 300.
  • the nonwoven fabric manufacturing process of Comparative Examples 1 to 3 was found to have poor process stability (spinning).

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

Disclosed are non-woven fabric, a method for manufacturing non-woven fabric, and an article. The disclosed non-woven fabric has a melt viscosity of 500 poise to 740 poise measured at a shear rate of 100 sec-1 and a temperature of 230 °C according to ASTM D4440-08.

Description

부직포, 부직포의 제조방법 및 물품Non-woven fabric, manufacturing method and article of non-woven fabric

부직포, 부직포의 제조방법 및 물품이 개시된다. 보다 상세하게는, 본딩성 및 강도가 모두 우수한 부직포, 부직포의 제조방법 및 물품이 개시된다.A nonwoven fabric, a method for making the nonwoven fabric, and an article are disclosed. More specifically, a nonwoven fabric having excellent bonding properties and strength, a method for manufacturing the nonwoven fabric, and an article are disclosed.

부직포는 의료용, 방호복용 및 마스크용과 같은 산업용, 및 기저기와 생리대 같은 위생재용 등 다양한 용도로 사용되고 있다.Nonwoven fabrics are used for various purposes, such as for medical use, for industrial use such as protective clothing and masks, and for sanitary materials such as nappies and sanitary napkins.

또한, 부직포는 통상적으로 2 이상의 층이 본딩된 다층 구조로 제조되어 사용되는데, 대부분의 용도에서 우수한 강도를 가질 것이 요구된다. 따라서, 많은 연구자들이 우수한 강도를 갖는 다층 구조의 부직포 개발에 몰두하고 있는 실정이다.In addition, the nonwoven fabric is typically manufactured and used as a multilayer structure in which two or more layers are bonded, and is required to have excellent strength in most applications. Therefore, many researchers are immersed in the development of multi-layered nonwoven fabrics with excellent strength.

또한, 최근 트렌드에 따라 기존 부직포의 저중량화를 추구할 경우 기존 부직포의 물성을 그대로 유지하거나 나아가 부직포의 물성을 추가로 향상시키는데 있어서는 공정상의 한계나 설비적인 한계가 있었다.In addition, when the weight reduction of the existing nonwoven fabric is pursued according to the recent trend, there are process limitations or equipment limitations in maintaining the physical properties of the existing nonwoven fabric or further improving the physical properties of the nonwoven fabric.

본 발명의 일 구현예는 본딩성 및 강도가 모두 우수한 부직포를 제공한다.One embodiment of the present invention provides a nonwoven fabric having excellent bonding properties and strength.

본 발명의 다른 구현예는 상기 부직포의 제조방법을 제공한다.Another embodiment of the present invention provides a method for manufacturing the nonwoven fabric.

본 발명의 또 다른 구현예는 상기 부직포를 포함하는 물품을 제공한다.Another embodiment of the present invention provides an article comprising the nonwoven fabric.

본 발명의 일 측면은,One aspect of the present invention,

ASTM D4440-08에 따라 100 sec-1의 전단속도 및 230℃의 온도에서 측정된 용융점도가 500~740 poise인 부직포를 제공한다.According to ASTM D4440-08, a shear rate of 100 sec -1 and a melt viscosity measured at a temperature of 230 °C are 500 to 740 poise.

상기 부직포는 심초형 복합섬유를 포함하고, 상기 심초형 복합섬유는 ASTM D1238에 따라 측정된 용융지수(MFR: 측정 온도 230℃, 하중 2.16kg)가 20~50g/10min인 심부 및 ASTM D1238에 따라 측정된 용융지수(MFR: 측정 온도 230℃, 하중 2.16kg)가 40~120g/10min인 초부를 포함할 수 있다.The nonwoven fabric includes a core-sheath-type composite fiber, and the core-sheath-type composite fiber has a melt index (MFR: measurement temperature of 230 ° C, load of 2.16 kg) measured according to ASTM D1238 of 20 to 50 g / 10 min and a core according to ASTM D1238. The measured melt index (MFR: measurement temperature 230 ° C., load 2.16 kg) may include a sheath of 40 to 120 g / 10 min.

상기 초부는 용융지수가 상기 심부보다 10~100g/10min만큼 클 수 있다.The melt index of the sheath may be greater than that of the core by 10 to 100 g/10 min.

상기 초부 대 상기 심부의 중량비는 1~5:9~5일 수 있다.The weight ratio of the sheath to the core may be 1 to 5:9 to 5.

상기 심부는 제1 폴리프로필렌을 포함하고, 상기 초부는 제2 폴리프로필렌을 포함할 수 있다.The core portion may include a first polypropylene, and the sheath portion may include a second polypropylene.

상기 부직포는 하기 수학식1로 표시되는 터프니스가 100~300일 수 있다:The nonwoven fabric may have a toughness of 100 to 300 represented by Equation 1 below:

[수학식 1][Equation 1]

터프니스 = MD 인장강도 × MD 인장신도/기본중량Toughness = MD tensile strength × MD tensile elongation / basis weight

상기 부직포는 스펀본드 부직포일 수 있다.The nonwoven fabric may be a spunbond nonwoven fabric.

상기 부직포는 2 이상의 층으로 이루어진 것일 수 있다.The nonwoven fabric may be made of two or more layers.

본 발명의 다른 측면은,Another aspect of the present invention is

심부 형성용 중합체와 초부 형성용 중합체를 각각 별개의 압출기로 용융시켜 심부 형성용 용융물 및 초부 형성용 용융물을 형성하는 단계(S10);Melting the polymer for forming the core and the polymer for forming the sheath using separate extruders to form a melt for forming the core and a melt for forming the sheath (S10);

상기 각 용융물을 복합 방사 노즐을 갖는 방사 구금을 통해 토출시켜 복합 장섬유를 방출시키는 단계(S20);Discharging each of the melts through a spinneret having a composite spinning nozzle to release composite long fibers (S20);

상기 방출된 복합 장섬유를 냉각 및 연신시키는 단계(S30); 및cooling and stretching the released composite long fibers (S30); and

상기 냉각 및 연신된 복합 장섬유를 포집 벨트상에 포집하여 미리 결정된 두께로 퇴적시켜 부직포를 형성하는 단계(S40)를 포함하고,Collecting the cooled and stretched composite long fibers on a collecting belt and depositing them to a predetermined thickness to form a nonwoven fabric (S40),

상기 단계(S20)에서 상기 방사 구금의 온도는 230~250℃로 유지되는 부직포의 제조방법을 제공한다.In the step (S20), the temperature of the spinneret is maintained at 230 ~ 250 ℃ provides a method of manufacturing a nonwoven fabric.

상기 부직포의 제조방법은 상기 단계(S40)에서 형성된 부직포에 기계적 물성을 부여하는 단계(S50)를 더 포함할 수 있다.The manufacturing method of the nonwoven fabric may further include a step (S50) of imparting mechanical properties to the nonwoven fabric formed in the step (S40).

본 발명의 또 다른 측면은,Another aspect of the present invention is

상기 부직포를 포함하는 물품을 제공한다.An article comprising the nonwoven fabric is provided.

본 발명의 일 구현예에 따른 부직포 및 이를 포함하는 물품은 본딩성 및 강도가 모두 우수한 이점을 갖는다.A nonwoven fabric and an article including the same according to one embodiment of the present invention have excellent bonding properties and strength.

도 1은 본 발명의 일 구현예에 따른 부직포를 구성하는 심초형 복합섬유의 단면도이다.1 is a cross-sectional view of a core-sheath type composite fiber constituting a nonwoven fabric according to an embodiment of the present invention.

도 2는 비교예 11에 따른 부직포를 구성하는 사이드 바이 사이드형 복합섬유의 단면도이다.2 is a cross-sectional view of side-by-side composite fibers constituting the nonwoven fabric according to Comparative Example 11.

이하, 본 발명의 일 구현예에 따른 부직포를 상세히 설명한다.Hereinafter, a nonwoven fabric according to an embodiment of the present invention will be described in detail.

본 발명의 일 구현예에 따른 부직포는 ASTM D4440-08에 따라 100 sec-1의 전단속도 및 230℃의 온도에서 측정된 용융점도가 500~740 poise일 수 있다. The nonwoven fabric according to one embodiment of the present invention may have a melt viscosity of 500 to 740 poise measured at a shear rate of 100 sec -1 and a temperature of 230 °C according to ASTM D4440-08.

상기 부직포의 용융점도가 상기 범위이내이면, 상기 부직포는 우수한 본딩성 및 강도를 가질 수 있다. When the melt viscosity of the nonwoven fabric is within the above range, the nonwoven fabric may have excellent bonding properties and strength.

또한, 상기 부직포의 용융점도가 500 poise 미만이면 상기 부직포를 구성하는 개별 섬유의 강도가 감소하여 상기 부직포의 강도도 감소하게 된다. 또한, 상기 부직포의 용융점도가 740 poise를 초과하면 상기 부직포를 구성하는 개별 섬유의 본딩성이 감소하여 개별 섬유들 간의 결합력이 약화되고, 이에 따라 개별 섬유들을 적층하여 제조된 부직포의 강도도 감소하게 된다.In addition, when the melt viscosity of the nonwoven fabric is less than 500 poise, the strength of individual fibers constituting the nonwoven fabric is reduced, and thus the strength of the nonwoven fabric is also reduced. In addition, when the melt viscosity of the nonwoven fabric exceeds 740 poise, the bonding strength of the individual fibers constituting the nonwoven fabric is reduced, and the bonding strength between the individual fibers is weakened, thereby reducing the strength of the nonwoven fabric manufactured by laminating the individual fibers. do.

상기 부직포의 용융점도는 상기 부직포를 구성하는 섬유의 구조, 상기 섬유를 구성하는 원료의 종류, 원료의 비율과 물성, 상기 섬유의 제조조건과 제조방법 및 상기 섬유를 이용한 상기 부직포의 제조조건과 제조방법에 의해 결정될 수 있다.The melt viscosity of the non-woven fabric is the structure of the fiber constituting the non-woven fabric, the type of raw material constituting the fiber, the ratio and physical properties of the raw material, the manufacturing conditions and manufacturing method of the fiber, and the manufacturing condition and manufacturing of the non-woven fabric using the fiber method can be determined.

상기 부직포는 심초형 복합섬유를 포함할 수 있다.The nonwoven fabric may include core-sheath type composite fibers.

상기 심초형 복합섬유는 ASTM D1238에 따라 측정된 용융지수(MFR: 측정 온도 230℃, 하중 2.16kg)가 20~50g/10min인 심부 및 ASTM D1238에 따라 측정된 용융지수(MFR: 측정 온도 230℃, 하중 2.16kg)가 40~120g/10min인 초부를 포함할 수 있다. 상기 심부의 용융지수와 상기 초부의 용융지수가 각각 상기 범위이내이면, ASTM D4440-08에 따라 100 sec-1의 전단속도 및 230℃의 온도에서 측정된 용융점도가 500~740 poise이고, 터프니스가 100~300인 부직포를 얻을 수 있다.The core-sheath composite fiber has a melt index (MFR: measured temperature 230 ° C, load 2.16 kg) measured according to ASTM D1238 of 20 to 50 g / 10 min and a melt index measured according to ASTM D1238 (MFR: measured temperature 230 ° C) , a load of 2.16 kg) may include a sheath with a load of 40 to 120 g/10 min. If the melt index of the core and the melt index of the sheath are within the above range, respectively, the melt viscosity measured at a shear rate of 100 sec -1 and a temperature of 230 ° C according to ASTM D4440-08 is 500 to 740 poise, toughness It is possible to obtain a nonwoven fabric of 100 to 300.

또한, 상기 초부는 용융지수가 상기 심부보다 10~100g/10min만큼 클 수 있다. 상기 심부의 용융지수 대비 상기 초부의 용융지수가 상기 범위이내이면, ASTM D4440-08에 따라 100 sec-1의 전단속도 및 230℃의 온도에서 측정된 용융점도가 500~740 poise이고, 터프니스가 100~300인 부직포를 얻을 수 있다.In addition, the melt index of the sheath may be greater than that of the core by 10 to 100 g/10 min. If the melt index of the sheath compared to the melt index of the core is within the above range, the melt viscosity measured at a shear rate of 100 sec-1 and a temperature of 230 ° C according to ASTM D4440-08 is 500 to 740 poise, and the toughness is A nonwoven fabric of 100 to 300 can be obtained.

상기 초부 대 상기 심부의 중량비는 1~5:9~5일 수 있다. 상기 초부 대 상기 심부의 중량비가 상기 범위이내이면, ASTM D4440-08에 따라 100 sec-1의 전단속도 및 230℃의 온도에서 측정된 용융점도가 500~740 poise이고, 터프니스가 100~300인 부직포를 얻을 수 있다.The weight ratio of the sheath to the core may be 1 to 5:9 to 5. When the weight ratio of the sheath to the core is within the above range, the melt viscosity measured at a shear rate of 100 sec -1 and a temperature of 230 ° C according to ASTM D4440-08 is 500 to 740 poise, and the toughness is 100 to 300. A non-woven fabric can be obtained.

또한, 상기 심부는 제1 폴리프로필렌을 포함하고, 상기 초부는 제2 폴리프로필렌을 포함할 수 있다.In addition, the core portion may include a first polypropylene, and the sheath portion may include a second polypropylene.

상기 제1 프로필렌계 중합체 및 상기 제2 프로필렌계 중합체는 고입체규칙성 중합 촉매를 사용하여 제조된 것일 수 있다. The first propylene-based polymer and the second propylene-based polymer may be prepared using a high stereoregularity polymerization catalyst.

상기 고입체규칙성 중합 촉매는 디에스테르 성분의 촉매, 석시네이트 성분의 촉매, 메탈로센 촉매 또는 이들의 조합을 포함할 수 있다.The high stereoregularity polymerization catalyst may include a diester component catalyst, a succinate component catalyst, a metallocene catalyst, or a combination thereof.

도 1은 본 발명의 일 구현예에 따른 부직포를 구성하는 심초형 복합섬유(100)의 단면도이다.1 is a cross-sectional view of a core-sheath type composite fiber 100 constituting a nonwoven fabric according to an embodiment of the present invention.

도 1을 참조하면, 심초형 복합섬유(100)는 심부(110) 및 이를 둘러싸도록 구성된 초부(120)를 포함할 수 있다.Referring to FIG. 1 , a core-sheath-type composite fiber 100 may include a core portion 110 and a sheath portion 120 configured to surround the core portion 110 .

상기 부직포는 하기 수학식1로 표시되는 터프니스가 100~300일 수 있다:The nonwoven fabric may have a toughness of 100 to 300 represented by Equation 1 below:

[수학식 1][Equation 1]

터프니스 = MD 인장강도 × MD 인장신도/기본중량Toughness = MD tensile strength × MD tensile elongation / basis weight

상기 부직포는 스펀본드 부직포일 수 있다.The nonwoven fabric may be a spunbond nonwoven fabric.

상기 부직포는 2 이상의 층으로 이루어질 수 있다. 예를 들어, 상기 부직포는 부직포 적층체일 수 있다.The nonwoven fabric may be made of two or more layers. For example, the nonwoven fabric may be a nonwoven fabric laminate.

상기 부직포의 섬도 및 기본 중량은 용도에 따라 적절히 선택될 수 있는데, 통상 섬도는 1.0~2.5 데니어, 예를 들어, 0.7~2.0 데니어이고, 기본 중량은 15~100 g/m2, 예를 들어, 7~30 g/m2일 수 있다.The fineness and basis weight of the nonwoven fabric may be appropriately selected depending on the purpose, and the normal fineness is 1.0 to 2.5 denier, for example, 0.7 to 2.0 denier, and the basis weight is 15 to 100 g / m 2 , For example, It may be 7-30 g/m 2 .

상기 심초형 복합섬유는 상기 제1 프로필렌계 중합체 및 상기 제2 프로필렌계 중합체 외에 본 발명의 목적을 손상시키지 않는 범위에서 필요에 따라 첨가제를 더 포함할 수 있다. 상기 첨가제는 공지된 내열안정제, 내후안정제, 각종 안정제, 대전 방지제, 안티블로킹제, 방운제(anticlouding agent), 충전제, 염료, 안료, 천연유, 합성유, 왁스 또는 이들의 조합을 포함할 수 있다.In addition to the first propylene-based polymer and the second propylene-based polymer, the core-sheath composite fiber may further include additives as necessary within a range not impairing the object of the present invention. The additives may include known heat stabilizers, weather stabilizers, various stabilizers, antistatic agents, antiblocking agents, anticlouding agents, fillers, dyes, pigments, natural oils, synthetic oils, waxes, or combinations thereof.

상기 안정제는 2,6-디-t-부틸-4-메틸페놀(BHT) 등의 노화 방지제; 테트라키스[메틸렌-3-(3,5-디-t-부틸-4-히드록시페닐) 프로피오네이트]메탄, β-(3,5-디-t-부틸-4-히드록시페닐)프로피온산 알킬에스테르, 2,2'-옥사미도비스[에틸-3-(3,5-디-t-부틸-4-히드록시페닐)프로피오네이트 등의 페놀계 산화 방지제; 스테아르산 아연, 스테아르산 칼슘, 1,2-히드록시스테아르산 칼슘 등의 지방산 금속염; 글리세린모노스테아레이트, 글리세린디스테아레이트, 펜타에리스리톨모노스테아레이트, 펜타에리스리톨디스테아레이트, 펜타에리스리톨트리스테아레이트 등의 다가 알코올 지방산 에스테르; 또는 이들의 조합을 포함할 수 있다.The stabilizer may be an anti-aging agent such as 2,6-di-t-butyl-4-methylphenol (BHT); Tetrakis[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate]methane, β-(3,5-di-t-butyl-4-hydroxyphenyl)propionic acid phenolic antioxidants such as alkyl esters and 2,2'-oxamidobis[ethyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate; fatty acid metal salts such as zinc stearate, calcium stearate, and calcium 1,2-hydroxystearate; polyhydric alcohol fatty acid esters such as glycerin monostearate, glycerin distearate, pentaerythritol monostearate, pentaerythritol distearate, and pentaerythritol tristearate; or a combination thereof.

상기 충전제는 실리카, 규조토, 알루미나, 산화티탄, 산화마그네슘, 경석분, 경석 밸룬, 수산화알루미늄, 수산화마그네슘, 염기성 탄산마그네슘, 백운석, 황산칼슘, 티탄산칼륨, 황산바륨, 아황산칼슘, 활석, 클레이, 운모, 석면, 규산칼슘, 몬모릴로나이트, 벤토나이트, 그래파이트, 알루미늄분, 황화몰리브덴 또는 이들의 조합을 포함할 수 있다.The filler is silica, diatomaceous earth, alumina, titanium oxide, magnesium oxide, pumice powder, pumice balun, aluminum hydroxide, magnesium hydroxide, basic magnesium carbonate, dolomite, calcium sulfate, potassium titanate, barium sulfate, calcium sulfite, talc, clay, mica , asbestos, calcium silicate, montmorillonite, bentonite, graphite, aluminum powder, molybdenum sulfide, or combinations thereof.

상술한 프로필렌계 중합체와 필요에 따라 사용되는 상기 첨가제는 공지된 방법을 이용하여 혼합할 수 있다.The above-described propylene-based polymer and the additives used as needed may be mixed using a known method.

이하, 본 발명의 일 구현예에 따른 부직포의 제조방법을 상세히 설명한다.Hereinafter, a method for manufacturing a nonwoven fabric according to an embodiment of the present invention will be described in detail.

본 발명의 일 구현예에 따른 부직포의 제조방법은 심부 형성용 중합체와 초부 형성용 중합체를 각각 별개의 압출기로 용융시켜 심부 형성용 용융물 및 초부 형성용 용융물을 형성하는 단계(S10), 상기 각 용융물을 원하는 섬유 구조를 형성하여 토출하도록 구성된 복합 방사 노즐을 갖는 방사 구금을 통해 토출시켜 복합 장섬유를 방출시키는 단계(S20), 상기 방출된 복합 장섬유를 냉각 및 연신시키는 단계(S30), 및 상기 냉각 및 연신된 복합 장섬유를 포집 벨트상에 포집하여 미리 결정된 두께로 퇴적시켜 부직포를 형성하는 단계(S40)를 포함한다.A method for manufacturing a nonwoven fabric according to an embodiment of the present invention includes the steps of melting a polymer for forming a core and a polymer for forming a sheath with separate extruders to form a melt for forming a core and a melt for forming a sheath (S10), the respective melts is discharged through a spinneret having a composite spinning nozzle configured to form and discharge the desired fiber structure to release the composite long fibers (S20), cooling and stretching the discharged composite long fibers (S30), and and collecting the cooled and stretched composite long fibers on a collecting belt and depositing them to a predetermined thickness to form a nonwoven fabric (S40).

상기 단계(S20)에서 상기 방사 구금의 온도는 230~250℃로 유지될 수 있다. 상기 단계(S20)에서 상기 방사 구금의 온도가 상기 범위이내이면, ASTM D4440-08에 따라 100 sec-1의 전단속도 및 230℃의 온도에서 측정된 용융점도가 500~740 poise이고, 터프니스가 100~300인 부직포를 얻을 수 있고, 부직포 제조공정에서도 양호한 공정 안정성(방사성)을 얻을 수 있다. In the step (S20), the temperature of the spinneret may be maintained at 230 to 250 ° C. In the step (S20), when the temperature of the spinneret is within the above range, the melt viscosity measured at a shear rate of 100 sec -1 and a temperature of 230 ° C according to ASTM D4440-08 is 500 to 740 poise, and the toughness is 100 to 300 nonwoven fabric can be obtained, and good process stability (spinning) can be obtained even in the nonwoven fabric manufacturing process.

상기 단계(S30)는 상기 단계(S20)에서 방출된 복합 장섬유를 냉각용 공기에 의해 냉각하고, 또한 연신용 공기에 의해 장력을 가하여 소정의 섬도를 갖게 하는 단계일 수 있다. The step (S30) may be a step of cooling the composite long fibers released in the step (S20) with air for cooling and also applying tension with air for stretching to give them a predetermined fineness.

또한, 상기 부직포의 제조방법은 상기 단계(S40)에서 형성된 부직포에 기계적 물성을 부여하는 단계(S50)를 더 포함할 수 있다.In addition, the method for manufacturing the nonwoven fabric may further include a step (S50) of imparting mechanical properties to the nonwoven fabric formed in the step (S40).

상기 단계(S50)는 교락 처리로서 니들 펀치, 워터 제트, 초음파 등의 수단을 이용하는 방법, 가열 엠보싱 롤을 이용하는 엠보싱 가공 또는 고온 통기에 의해 열융착하는 방법에 의해 수행될 수 있다.The step (S50) may be performed by a method using means such as needle punch, water jet, ultrasonic waves, etc. as the bridging treatment, embossing using a heated embossing roll, or thermal fusion by high-temperature ventilation.

이하, 본 발명의 일 구현예에 따른 물품을 상세히 설명한다.Hereinafter, an article according to an embodiment of the present invention will be described in detail.

본 발명의 일 구현예에 따른 물품은 상술한 부직포를 포함한다.An article according to one embodiment of the present invention includes the above-described nonwoven fabric.

상기 물품은 기저귀, 흡수용품, 배변용품, 지지층(support layer), 탑시트(top sheet), 의료복, 방호복 또는 마스크일 수 있다.The article may be a diaper, absorbent article, toilet article, support layer, top sheet, medical suit, protective clothing or mask.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These examples are intended to explain the present invention in more detail, and the scope of the present invention is not limited to these examples.

실시예 1~11 및 비교예 1~10: 부직포의 제조Examples 1 to 11 and Comparative Examples 1 to 10: Preparation of nonwoven fabric

도 1의 구조를 갖는 심초형 복합섬유(100)로 이루어진 부직포를 하기와 같은 방법으로 제조하였다. 구체적으로, 심부 형성용 제1 폴리프로필렌과 초부 형성용 제2 폴리프로필렌을 각각 별개의 압출기로 용융시켜 심부 형성용 용융물 및 초부 형성용 용융물을 형성하였다. 이후, 상기 각 용융물을 복합 방사 노즐을 갖는 방사 구금을 통해 토출시켰다. 이후, 상기 토출된 각 용융물을 냉각용 공기에 의해 냉각하고, 또한 연신용 공기에 의해 장력을 가하여 소정의 섬도를 갖게 하였다. 이후, 상기 냉각 및 연신된 복합 장섬유를 포집 벨트상에 포집하여 미리 결정된 두께로 퇴적시켜 부직포를 형성하였다. 이후, 가열 엠보싱 롤을 이용하는 엠보싱 가공에 의해 상기 형성된 부직포에 기계적 물성을 부여하였다.A nonwoven fabric made of the core-sheath composite fiber 100 having the structure of FIG. 1 was prepared in the following manner. Specifically, the first polypropylene for forming the core and the second polypropylene for forming the sheath were melted with separate extruders to form a melt for forming the core and a melt for forming the sheath. Thereafter, each of the melts was discharged through a spinneret having a composite spinneret. Thereafter, each of the ejected melts was cooled with air for cooling, and tension was applied with air for stretching to obtain a predetermined fineness. Thereafter, the cooled and stretched composite long fibers were collected on a collecting belt and deposited to a predetermined thickness to form a nonwoven fabric. Thereafter, mechanical properties were imparted to the formed nonwoven fabric by embossing using a heated embossing roll.

또한, 상기 심부 형성용 제1 폴리프로필렌의 MFR, 상기 초부 형성용 제2 프로필렌의 MFR, 제2 프로필렌과 제1 프로필렌의 MFR차이, 및 초부와 심부의 중량비를 하기 표 1에 나타내었다. 하기 표 1에서, "부직포의 제조온도"란 방사 구금의 온도를 의미한다.In addition, the MFR of the first polypropylene for forming the core, the MFR of the second propylene for forming the sheath, the MFR difference between the second propylene and the first propylene, and the weight ratio between the sheath and the core are shown in Table 1 below. In Table 1 below, "manufacturing temperature of nonwoven fabric" means the temperature of the spinneret.

비교예 11: 부직포의 제조Comparative Example 11: Preparation of nonwoven fabric

도 2의 구조를 갖는 사이드 바이 사이드형 복합섬유(1)로 이루어진 부직포를 하기와 같은 방법으로 제조하였다. 구체적으로, 사이드 A 형성용 제1 폴리프로필렌과 사이드 B 형성용 제2 폴리프로필렌을 각각 별개의 압출기로 용융시켜 사이드 A 형성용 용융물 및 사이드 B 형성용 용융물을 형성하였다. 이후, 상기 각 용융물을 복합 방사 노즐을 갖는 방사 구금을 통해 토출시켰다. 이후, 상기 토출된 각 용융물을 냉각용 공기에 의해 냉각하고, 또한 연신용 공기에 의해 장력을 가하여 소정의 섬도를 갖게 하였다. 이후, 상기 냉각 및 연신된 복합 장섬유를 포집 벨트상에 포집하여 미리 결정된 두께로 퇴적시켜 부직포를 형성하였다. 이후, 가열 엠보싱 롤을 이용하는 엠보싱 가공에 의해 상기 형성된 부직포에 기계적 물성을 부여하였다.A nonwoven fabric made of the side-by-side composite fibers 1 having the structure of FIG. 2 was prepared in the following manner. Specifically, the first polypropylene for forming side A and the second polypropylene for forming side B were melted with separate extruders to form a melt for forming side A and a melt for forming side B. Thereafter, each of the melts was discharged through a spinneret having a composite spinneret. Thereafter, each of the ejected melts was cooled with air for cooling, and tension was applied with air for stretching to obtain a predetermined fineness. Thereafter, the cooled and stretched composite long fibers were collected on a collecting belt and deposited to a predetermined thickness to form a nonwoven fabric. Thereafter, mechanical properties were imparted to the formed nonwoven fabric by embossing using a heated embossing roll.

또한, 상기 사이드 A 형성용 제1 폴리프로필렌의 MFR, 상기 사이드 B 형성용 제2 프로필렌의 MFR, 제2 프로필렌과 제1 프로필렌의 MFR차이, 및 사이드 A와 사이드 B의 중량비를 하기 표 1에 나타내었다. 하기 표 1에서, "부직포의 제조온도"란 방사 구금의 온도를 의미한다.In addition, the MFR of the first polypropylene for forming the side A, the MFR of the second propylene for forming the side B, the difference between the MFR of the second propylene and the first propylene, and the weight ratio between side A and side B are shown in Table 1 below. was In Table 1 below, "manufacturing temperature of nonwoven fabric" means the temperature of the spinneret.

실시예Example 1One 22 33 44 55 심부 MFR(g/10min)Deep MFR (g/10min) 3535 2020 5050 3535 2020 초부 MFR(g/10min)Superpart MFR (g/10min) 8080 6565 9595 4545 120120 초부 MFR - 심부 MFR(g/10min)Superficial MFR - Deep MFR (g/10min) 4545 4545 4545 1010 100100 초부:심부 중량비Head:deep weight ratio 3:73:7 3:73:7 3:73:7 3:73:7 3:73:7 부직포의 제조온도(℃)Manufacturing temperature of nonwoven fabric (℃) 240240 240240 240240 240240 240240 실시예Example 66 77 88 99 1010 심부 MFR(g/10min)Deep MFR (g/10min) 3535 3535 3535 3535 3535 초부 MFR(g/10min)Superpart MFR (g/10min) 8080 8080 8080 8080 8080 초부 MFR - 심부 MFR(g/10min)Superficial MFR - Deep MFR (g/10min) 4545 4545 4545 4545 4545 초부:심부 중량비Head:deep weight ratio 3:73:7 1:91:9 5:55:5 3:73:7 3:73:7 부직포의 제조온도(℃)Manufacturing temperature of nonwoven fabric (℃) 240240 240240 240240 230230 250250 비교예comparative example 1One 22 33 44 55 심부 MFR(g/10min)Deep MFR (g/10min) 1515 5555 3535 3535 3535 초부 MFR(g/10min)Superpart MFR (g/10min) 8080 8080 3535 125125 4040 초부 MFR - 심부 MFR(g/10min)Superficial MFR - Deep MFR (g/10min) 6565 2525 00 9090 55 초부:심부 중량비Head:deep weight ratio 3:73:7 3:73:7 3:73:7 3:73:7 3:73:7 부직포의 제조온도(℃)Manufacturing temperature of nonwoven fabric (℃) 240240 240240 240240 240240 240240 비교예comparative example 66 77 88 99 1010 1111 심부 MFR(g/10min)Deep MFR (g/10min) 2020 3535 3535 3535 3535 3535 초부 MFR(g/10min)Superpart MFR (g/10min) 130130 8080 8080 8080 8080 8080 초부 MFR - 심부 MFR(g/10min)Superficial MFR - Deep MFR (g/10min) 110110 4545 4545 4545 4545 4545 초부:심부 중량비Head:deep weight ratio 3:73:7 0.5:9.50.5:9.5 6:46:4 3:73:7 3:73:7 3:73:7 부직포의 제조온도(℃)Manufacturing temperature of nonwoven fabric (℃) 240240 240240 240240 220220 260260 240240

평가예: 부직포의 물성 평가Evaluation Example: Evaluation of physical properties of nonwoven fabric

상기 실시예 1~11 및 비교예 1~11에서 제조된 각각의 부직포의 물성을 하기와 같은 방법으로 평가하여, 그 결과를 하기 표 2에 나타내었다.The physical properties of each of the nonwoven fabrics prepared in Examples 1 to 11 and Comparative Examples 1 to 11 were evaluated in the following manner, and the results are shown in Table 2 below.

(1) 용융점도: ASTM D4440-08에 따라 100 sec-1의 전단속도 및 230℃의 온도에서 부직포의 용융점도를 측정하였다.(1) Melt viscosity: The melt viscosity of the nonwoven fabric was measured at a shear rate of 100 sec −1 and a temperature of 230° C. according to ASTM D4440-08.

(2) 인장강도: 인장강신도기(Instron) 측정설비를 이용하여 KSK 0520법에 따라 시험편의 폭 5cm, 간격 10cm, 인장속도 500mm/min의 조건으로 인장 시험을 수행하여 최대 인장 하중을 구하였다.(2) Tensile strength: A tensile test was performed under the conditions of a specimen width of 5 cm, interval of 10 cm, and tensile speed of 500 mm / min according to the KSK 0520 method using a tensile strength elongation machine (Instron) measuring equipment, and the maximum tensile load was obtained.

(3) 인장신도: 상기 (3)의 방법으로 측정한 최대 신장시의 신도를 구하였다.(3) Tensile elongation: The elongation at maximum elongation measured by the method of (3) above was determined.

(4) 기본중량(중량: g/m2): ASTM D 3776-1985에 따라 측정하였다.(4) Basis weight (weight: g/m 2 ): Measured according to ASTM D 3776-1985.

(5) 터프니스: 상기 (2)에서 얻어진 인장 강도(N/5cm)와 상기 (3)에서 얻어진 인장신도(%)를 사용하고, 하기 수학식 1에 의해 터프니스를 구하였다.(5) Toughness: Using the tensile strength (N/5 cm) obtained in (2) above and the tensile elongation (%) obtained in (3) above, toughness was obtained by the following Equation 1.

[수학식 1][Equation 1]

터프니스 = MD 인장강도 × MD 인장신도/기본중량Toughness = MD tensile strength × MD tensile elongation / basis weight

(6) 공정 안정성(방사성): 용융방사시 필라멘트 흔들림을 육안으로 관찰하였으며, 폴리머 드립(drip)을 결점 검출기로 검출하였다. (6) Process stability (radioactivity): filament shaking during melt spinning was observed with the naked eye, and polymer drips were detected with a defect detector.

실시예Example 1One 22 33 44 55 부직포의 용융점도( poise, 100 sec)Melt viscosity of nonwoven fabric ( poise, 100 sec) 684684 644644 712712 732732 601601 부직포의 MD 인장강도(N/5cm)MD tensile strength of nonwoven fabric (N/5cm) 4444 4747 3939 3939 4949 부직포의 MD 인장신도(%)MD tensile elongation of nonwoven fabric (%) 5151 5454 4848 4646 5757 부직포의 기본중량(g/m2)Basic weight of nonwoven fabric (g/m 2 ) 1515 1515 1515 1515 1515 부직포의 터프니스Toughness of non-woven fabric 150150 169169 125125 120120 186186 부직포 공정안정성(방사성)Process stability of non-woven fabric (radiation) 양호Good 양호Good 양호Good 양호Good 양호Good 실시예Example 66 77 88 99 1010 부직포의 용융점도( poise)Melt viscosity of nonwoven fabric (poise) 684684 644644 667667 652652 697697 부직포의 MD 인장강도(N/5cm)MD tensile strength of nonwoven fabric (N/5cm) 4444 4747 5050 4343 4040 부직포의 MD 인장신도(%)MD tensile elongation of nonwoven fabric (%) 5151 5454 5959 5151 4949 부직포의 기본중량(g/m2)Basic weight of nonwoven fabric (g/m 2 ) 1515 1515 1515 1515 1515 부직포의 터프니스Toughness of non-woven fabric 150150 169169 197197 146146 131131 부직포 공정 안정성(방사성)Non-woven process stability (spinning) 양호Good 양호Good 양호Good 양호Good 양호Good 비교예comparative example 1One 22 33 44 55 부직포의 용융점도( poise)Melt viscosity of nonwoven fabric (poise) 824824 817817 821821 779779 789789 부직포의 MD 인장강도(N/5cm)MD tensile strength of nonwoven fabric (N/5cm) 3333 3131 3232 3232 3232 부직포의 MD 인장신도(%)MD tensile elongation of nonwoven fabric (%) 4040 4141 4343 3939 4242 부직포의 기본중량(g/m2)Basic weight of nonwoven fabric (g/m 2 ) 1515 1515 1515 1515 1515 부직포의 터프니스Toughness of non-woven fabric 8888 8585 9292 8383 9090 부직포 공정 안정성(방사성)Non-woven process stability (spinning) 불량error 불량error 불량error 양호Good 양호Good 비교예comparative example 66 77 88 99 1010 1111 부직포의 용융점도( poise)Melt viscosity of nonwoven fabric (poise) 796796 774774 776776 778778 815815 765765 부직포의 MD 인장강도(N/5cm)MD tensile strength of nonwoven fabric (N/5cm) 3434 3333 3131 3030 3434 3232 부직포의 MD 인장신도(%)MD tensile elongation of nonwoven fabric (%) 4040 4444 4343 3939 4242 4545 부직포의 기본중량(g/m2)Basic weight of nonwoven fabric (g/m 2 ) 1515 1515 1515 1515 1515 1515 부직포의 터프니스Toughness of non-woven fabric 8888 9494 8686 7575 9292 9393 부직포 공정 안정성(방사성)Non-woven process stability (spinning) 양호Good 양호Good 양호Good 양호Good 보통commonly 양호Good

상기 표 2를 참조하면, 실시예 1~10에서 제조된 부직포는 용융점도가 500~740 poise의 범위에 속하고, 터프니스가 100~300의 범위에 속할 뿐만 아니라 MD 인장강도 및 MD 인장신도도 모두 우수한 것으로 나타났다. 또한, 실시예 1~10의 부직포 제조공정은 공정 안정성(방사성)이 우수한 것으로 나타났다.Referring to Table 2, the nonwoven fabrics prepared in Examples 1 to 10 had melt viscosity in the range of 500 to 740 poise, toughness in the range of 100 to 300, as well as MD tensile strength and MD tensile elongation. All appeared to be excellent. In addition, the nonwoven fabric manufacturing process of Examples 1 to 10 was found to have excellent process stability (spinning).

반면에, 비교예 1~11에서 제조된 부직포는 용융점도가 500~740 poise의 범위를 벗어나고, 터프니스가 100~300의 범위를 벗어나는 것으로 나타났다. 또한, 비교예 1~3의 부직포 제조공정은 공정 안정성(방사성)이 불량한 것으로 나타났다.On the other hand, the nonwoven fabrics prepared in Comparative Examples 1 to 11 had melt viscosity outside the range of 500 to 740 poise and toughness outside the range of 100 to 300. In addition, the nonwoven fabric manufacturing process of Comparative Examples 1 to 3 was found to have poor process stability (spinning).

본 발명은 도면 및 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 구현예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다. Although the present invention has been described with reference to drawings and embodiments, these are only examples, and those skilled in the art will understand that various modifications and equivalent other implementations are possible therefrom. Therefore, the true technical scope of protection of the present invention should be determined by the technical spirit of the appended claims.

Claims (11)

ASTM D4440-08에 따라 100 sec-1의 전단속도 및 230℃의 온도에서 측정된 용융점도가 500~740 poise인 부직포.A nonwoven fabric having a melt viscosity of 500 to 740 poise measured at a shear rate of 100 sec -1 and a temperature of 230 ° C according to ASTM D4440-08. 제1항에 있어서,According to claim 1, 상기 부직포는 심초형 복합섬유를 포함하고,The nonwoven fabric includes a core-sheath type composite fiber, 상기 심초형 복합섬유는 ASTM D1238에 따라 측정된 용융지수(MFR: 측정 온도 230℃, 하중 2.16kg)가 20~50g/10min인 심부 및 ASTM D1238에 따라 측정된 용융지수(MFR: 측정 온도 230℃, 하중 2.16kg)가 40~120g/10min인 초부를 포함하는 부직포.The core-sheath composite fiber has a melt index (MFR: measured temperature 230 ° C, load 2.16 kg) measured according to ASTM D1238 of 20 to 50 g / 10 min and a melt index measured according to ASTM D1238 (MFR: measured temperature 230 ° C) , Load 2.16 kg) is a non-woven fabric including a sheath of 40 to 120 g/10 min. 제2항에 있어서,According to claim 2, 상기 초부는 용융지수가 상기 심부보다 10~100g/10min만큼 큰 부직포.The sheath is a nonwoven fabric having a melt index greater than that of the core by 10 to 100 g/10 min. 제2항에 있어서,According to claim 2, 상기 초부 대 상기 심부의 중량비는 1~5:9~5인 부직포.The weight ratio of the sheath to the core is 1 to 5:9 to 5. 제2항에 있어서,According to claim 2, 상기 심부는 제1 폴리프로필렌을 포함하고, 상기 초부는 제2 폴리프로필렌을 포함하는 부직포.The core portion includes a first polypropylene, and the sheath portion includes a second polypropylene. 제1항에 있어서,According to claim 1, 하기 수학식1로 표시되는 터프니스가 100~300인 부직포:Nonwoven fabric having a toughness of 100 to 300 represented by Equation 1 below: [수학식 1][Equation 1] 터프니스 = MD 인장강도 × MD 인장신도/기본중량Toughness = MD tensile strength × MD tensile elongation / basis weight 제1항에 있어서,According to claim 1, 상기 부직포는 스펀본드 부직포인 부직포.The nonwoven fabric is a spunbond nonwoven fabric. 제1항에 있어서,According to claim 1, 상기 부직포는 2 이상의 층으로 이루어진 부직포.The non-woven fabric is a non-woven fabric made of two or more layers. 심부 형성용 중합체와 초부 형성용 중합체를 각각 별개의 압출기로 용융시켜 심부 형성용 용융물 및 초부 형성용 용융물을 형성하는 단계(S10);Melting the polymer for forming the core and the polymer for forming the sheath using separate extruders to form a melt for forming the core and a melt for forming the sheath (S10); 상기 각 용융물을 복합 방사 노즐을 갖는 방사 구금을 통해 토출시켜 복합 장섬유를 방출시키는 단계(S20);Discharging each of the melts through a spinneret having a composite spinning nozzle to release composite long fibers (S20); 상기 방출된 복합 장섬유를 냉각 및 연신시키는 단계(S30); 및cooling and stretching the released composite long fibers (S30); and 상기 냉각 및 연신된 복합 장섬유를 포집 벨트상에 포집하여 미리 결정된 두께로 퇴적시켜 부직포를 형성하는 단계(S40)를 포함하고,Collecting the cooled and stretched composite long fibers on a collecting belt and depositing them to a predetermined thickness to form a nonwoven fabric (S40), 상기 단계(S20)에서 상기 방사 구금의 온도는 230~250℃로 유지되는 부직포의 제조방법.In the step (S20), the temperature of the spinneret is maintained at 230 ~ 250 ℃ manufacturing method of nonwoven fabric. 제9항에 있어서,According to claim 9, 상기 단계(S40)에서 형성된 부직포에 기계적 물성을 부여하는 단계(S50)를 더 포함하는 부직포의 제조방법.Method for producing a non-woven fabric further comprising the step (S50) of imparting mechanical properties to the non-woven fabric formed in the step (S40). 제1항 내지 제8항 중 어느 한 항에 따른 부직포를 포함하는 물품.An article comprising the nonwoven fabric according to any one of claims 1 to 8.
PCT/KR2022/016364 2021-11-18 2022-10-25 Non-woven fabric, method for manufacturing non-woven fabric, and article WO2023090674A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2024529821A JP2024540589A (en) 2021-11-18 2022-10-25 Nonwoven fabric, method for producing the nonwoven fabric, and article made from the nonwoven fabric
CN202280089301.9A CN118556142A (en) 2021-11-18 2022-10-25 Nonwoven fabric, method for producing nonwoven fabric, and article
MX2024006141A MX2024006141A (en) 2021-11-18 2022-10-25 Non-woven fabric, method for manufacturing non-woven fabric, and article.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0159409 2021-11-18
KR20210159409 2021-11-18
KR10-2022-0115003 2022-09-13
KR1020220115003A KR20230073085A (en) 2021-11-18 2022-09-13 Nonwoven fabric, method of preparing nonwoven fabric and article including the nonwoven fabric

Publications (1)

Publication Number Publication Date
WO2023090674A1 true WO2023090674A1 (en) 2023-05-25

Family

ID=86397219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016364 WO2023090674A1 (en) 2021-11-18 2022-10-25 Non-woven fabric, method for manufacturing non-woven fabric, and article

Country Status (3)

Country Link
JP (1) JP2024540589A (en)
MX (1) MX2024006141A (en)
WO (1) WO2023090674A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161624A (en) * 1997-08-07 1999-03-05 Daiwabo Co Ltd Hook-and-loop fastener female material excellent in peeling strength and its production
JP2001003252A (en) * 1999-06-21 2001-01-09 Mitsui Chemicals Inc Stretchable elastic net and composite elastic nonwoven fabric using the same
JP2006112025A (en) * 2002-08-08 2006-04-27 Chisso Corp Elastic nonwoven fabric and fiber product using the same
WO2006057369A1 (en) * 2004-11-26 2006-06-01 Mitsui Chemicals, Inc. Polypropylene nonwoven fabric and use thereof
KR101340201B1 (en) * 2007-03-02 2013-12-10 미쓰이 가가쿠 가부시키가이샤 Layered nonwoven fabric

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161624A (en) * 1997-08-07 1999-03-05 Daiwabo Co Ltd Hook-and-loop fastener female material excellent in peeling strength and its production
JP2001003252A (en) * 1999-06-21 2001-01-09 Mitsui Chemicals Inc Stretchable elastic net and composite elastic nonwoven fabric using the same
JP2006112025A (en) * 2002-08-08 2006-04-27 Chisso Corp Elastic nonwoven fabric and fiber product using the same
WO2006057369A1 (en) * 2004-11-26 2006-06-01 Mitsui Chemicals, Inc. Polypropylene nonwoven fabric and use thereof
KR101340201B1 (en) * 2007-03-02 2013-12-10 미쓰이 가가쿠 가부시키가이샤 Layered nonwoven fabric

Also Published As

Publication number Publication date
JP2024540589A (en) 2024-10-31
MX2024006141A (en) 2024-08-22

Similar Documents

Publication Publication Date Title
WO2019203484A1 (en) Non-woven fabric of crimped composite fiber and laminate thereof, and article including the laminate
KR100640138B1 (en) Composite nonwoven sheet material
EP2034056A1 (en) Metallocene polypropylene fibers and nonwovens with improved mechanical properties.
WO2016010297A1 (en) Environment-friendly and biodegradable non-woven fabric, and apparatus and method for producing same
KR20230073085A (en) Nonwoven fabric, method of preparing nonwoven fabric and article including the nonwoven fabric
WO2021125643A1 (en) Eco-friendly composite fiber spunbonded non-woven fabric containing plant-derived polyethylene and method for manufacturing same
WO2016010302A1 (en) Environment-friendly and biodegradable non-woven fabric, and apparatus and method for producing same
WO2019231101A1 (en) Hydroentangled nonwoven fabric mask pack sheet having layered structure and method for manufacturing same
US20120329354A1 (en) Vapor-Permeable, Substantially Water-Impermeable Multilayer Article
WO2013048077A1 (en) Polyester nonwoven fabric and method for manufacturing the same
KR100361596B1 (en) Nonwoven Fabric from Blends of Isotactic and Atactic Polyolefins
WO2023090674A1 (en) Non-woven fabric, method for manufacturing non-woven fabric, and article
KR20140065898A (en) Polypropylene spunbond nonwoven fabric having an excellent bulky property and manufacturing method thereof
KR101261690B1 (en) Spunbonded nonwoven having an excellent elastic recovering property and manufacturing method thereof
WO2023090917A1 (en) Non-woven fabric, method for manufacturing non-woven fabric, and article
WO2021006527A1 (en) Non-woven fabric of crimped composite fiber and laminate thereof, and article
WO2024262785A1 (en) Non-woven fabric, method for manufacturing non-woven fabric, and article
WO2023090916A1 (en) Non-woven fabric, method for manufacturing non-woven fabric, and article
WO2012005411A1 (en) Nonwoven fabric for cleaning and a production method for the same
KR20120033771A (en) Sheath-core structure filaments and method for manufacturing the same, spun bond nonwoven fabric and method for manufacturing the same
WO2023090914A1 (en) Composite nonwoven fabric and article
WO2022080953A1 (en) Highly absorbent composite fibre, highly absorbent non-woven fabric, and article comprising same
WO2022163980A1 (en) Elastic nonwoven fabric, method for manufacturing elastic nonwoven fabric, and product comprising elastic nonwoven fabric
WO2021133110A1 (en) Nonwoven fabric with improved mechanical strength
WO2024143803A1 (en) Biodegradable composite filtration medium for air filter, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024529821

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2401003249

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024010017

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202417045581

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 202280089301.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 112024010017

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240520

122 Ep: pct application non-entry in european phase

Ref document number: 22895882

Country of ref document: EP

Kind code of ref document: A1