[go: up one dir, main page]

WO2023090423A1 - Transmission belt - Google Patents

Transmission belt Download PDF

Info

Publication number
WO2023090423A1
WO2023090423A1 PCT/JP2022/042864 JP2022042864W WO2023090423A1 WO 2023090423 A1 WO2023090423 A1 WO 2023090423A1 JP 2022042864 W JP2022042864 W JP 2022042864W WO 2023090423 A1 WO2023090423 A1 WO 2023090423A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
belt
rubber layer
rubber composition
transmission belt
Prior art date
Application number
PCT/JP2022/042864
Other languages
French (fr)
Japanese (ja)
Inventor
莉恵 森本
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2023507328A priority Critical patent/JP7448724B2/en
Publication of WO2023090423A1 publication Critical patent/WO2023090423A1/en
Priority to JP2024029440A priority patent/JP2024052724A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber

Definitions

  • the present invention relates to transmission belts.
  • a transmission belt is conventionally known as a means of transmitting power from the driving side to the driven side.
  • Patent Document 1 discloses an adhesive rubber layer in which a core wire extending in the belt length direction is embedded, and a compression rubber layer provided on the belt bottom side of the adhesive rubber layer,
  • a transmission belt is disclosed in which the adhesive rubber layer is composed of a highly elastic rubber composition in which short fibers are mixed and dispersed and which has an elastic modulus substantially equal to that of the compression rubber layer.
  • the power transmission belt is subjected to a high load due to large stress and distortion during use, and heat-generating parts may be arranged around it, so it tends to become hot.
  • transmission belts tend to become hot when used in areas with high temperatures. It is desired that the transmission belt has durability so that the transmission efficiency of the transmission belt does not decrease even under such circumstances.
  • the present invention is a power transmission belt comprising a compressed rubber layer and an adhesive rubber layer provided on one side in the thickness direction of the compressed rubber layer and having core wires embedded therein extending in the longitudinal direction of the belt, At least part of the rubber layer is composed of the first rubber composition, and the part composed of the first rubber composition has a modulus of 4.0 MPa or more at 50% elongation at 120°C.
  • At least part of the adhesive rubber layer is composed of the first rubber composition, and the part composed of the first rubber composition has a modulus of 4.0 MPa or more at 50% elongation at 120°C. so that the adhesive rubber layer has high durability under high load and high temperature.
  • FIG. 1 is a perspective view including a cross section of a V-ribbed belt according to an embodiment
  • FIG. FIG. 4 is a belt layout diagram for running durability tests in each example and each comparative example. 3D images showing the results of a belt model and stress-strain distribution analysis in Example 2.
  • FIG. FIG. 3 is a view corresponding to FIG. 3 in Comparative Example 1;
  • V-ribbed belt 1 transmission belt
  • a V-ribbed belt 1 (transmission belt) according to the embodiment is formed in a ring shape. As shown in FIG. 1, the inner peripheral side of the V-ribbed belt 1 contacts the pulley in the belt thickness direction.
  • the V-ribbed belt 1 includes a compression rubber layer 2.
  • a plurality of ribs 3 extending in the belt length direction are provided on the inner peripheral side of the compression rubber layer 2 .
  • each rib 3 is formed in a trapezoidal shape that becomes narrower toward the inner peripheral side in a cross-sectional view taken perpendicularly to the belt length direction.
  • the V-ribbed belt 1 also includes an adhesive rubber layer 4 provided on the outer peripheral side (one side in the thickness direction) of the compression rubber layer 2 .
  • a plurality of core wires 5 extending in the belt length direction are embedded in the adhesive rubber layer 4 .
  • the plurality of core wires 5 are arranged side by side at regular intervals in the belt width direction. Each center of the plurality of core wires 5 is positioned at the center in the thickness direction of the adhesive rubber layer 4 as shown in FIG.
  • the core wires 5 are made of resin fibers such as polyethylene terephthalate, polyethylene naphthalate, aromatic polyamide, 4,6 nylon, 6 nylon, and 6,6 nylon, for example.
  • the V-ribbed belt 1 also includes a back rubber layer 6 provided on the outer peripheral side of the adhesive rubber layer 4 .
  • Each of the layers 2, 4, and 6 described above are formed continuously over the entire belt length direction and belt width direction.
  • the adhesive rubber layer 4 has a modulus of 4.0 MPa or more at 50% elongation at 120° C., preferably 4 .3 MPa or more, it is composed of the first rubber composition.
  • the entire adhesive rubber layer 4 is made of the first rubber composition, but part of the adhesive rubber layer 4 is made of the first rubber composition as in the first to fourth modifications described later. may be composed of
  • the adhesive rubber layer 4 preferably has a durometer hardness (Shore A) of 86 or more according to JIS K 6253, preferably 89 or more. is more preferable.
  • the first rubber composition will be described below.
  • the first rubber composition contains a rubber component and a cross-linking agent for cross-linking the rubber component.
  • the rubber component preferably contains an ethylene- ⁇ -olefin elastomer from the viewpoint of ensuring high durability under high temperature and high load.
  • ethylene- ⁇ -olefin elastomers include ethylene-propylene copolymers, ethylene-propylene-diene-terpolymers, ethylene-octene copolymers, ethylene-butene copolymers, and the like. Ethylene-propylene-diene-terpolymers are preferred.
  • cross-linking agents examples include di-t-butyl peroxide, dicumyl peroxide, t-butylcumyl peroxide, 1,1-t-butylperoxy-3,3,5-trimethylcyclohexane, 2,5- Dimethyl-2,5-di-(t-butylperoxy)hexane, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-butylperoxybenzoate, t-butylperoxy-2- ethyl-hexyl carbonate, ⁇ , ⁇ '-di-(t-butylperoxy)diisopropylbenzene, 1,1-di-(t-butylperoxy)cyclohexane and the like.
  • the first rubber composition may contain compounding agents other than the rubber component and the cross-linking agent.
  • compounding agents include fillers such as carbon black, silica, calcium carbonate, and talc. and silica.
  • carbon black include furnace black, channel black, thermal black, acetylene black and the like.
  • Compounding agents other than fillers include zinc oxide, stearic acid, processing aids, anti-aging agents, hydrolysis stabilizers, paraffin-based process oils, co-crosslinking agents, and the like.
  • the first rubber composition may contain other compounding agents commonly used in rubber compositions for power transmission belts.
  • the adhesive rubber layer 4 is entirely composed of the first rubber composition, but in the first modified example, the adhesive rubber layer 4 is the first layer composed of the first rubber composition. and a second layer made of a second rubber composition. The first layer is provided directly above the compression rubber layer 2, and the second layer is provided directly above the first layer.
  • the second rubber composition differs from the first rubber composition in at least one of the types of constituent components and the content of each constituent component. Also, the second rubber composition may be such that the modulus of the second layer at 50% elongation at 120° C. is less than 4.0 MPa, unlike the first layer.
  • the adhesive rubber layer 4 tends to be more distorted on the side of the compression rubber layer 2 than on the side of the back rubber layer 6 . Therefore, if the first layer provided on the side of the compression rubber layer 2 is composed of the first rubber composition as in this modification, high durability can be obtained under high temperature and high load of the adhesive rubber layer 4. be done.
  • the types and contents of the components constituting the second rubber composition of the second layer can be freely selected from various viewpoints such as manufacturing cost. That is, according to this embodiment, the degree of freedom in selecting the second rubber composition to be used on the back rubber layer 6 side of the adhesive rubber layer 4 is increased.
  • the second rubber composition may be selected as follows. It is believed that the second layer is less strained during use than the first layer, as shown in the examples below. Therefore, the material of the second rubber composition may be selected such that the second layer has a lower elastic modulus than the first layer. By doing so, the V-ribbed belt 1 can be highly durable in the first layer, and the energy loss due to the stress caused by the bending of the V-ribbed belt 1 can be reduced in the second layer. As a result, further improvement in transmission efficiency can be obtained, and power consumption can be reduced.
  • the adhesive rubber layer 4 is greatly distorted at the portion in contact with the core wire 5 due to the difference in material between the adhesive rubber layer 4 and the core wire 5 . Further, as will be described later in Examples, the adhesive rubber layer 4 tends to be more distorted particularly on the side of the compression rubber layer 2 that mainly serves to transmit power than on the side of the back rubber layer 6 .
  • the first layer should be placed on the inner peripheral side (i.e., , compression rubber layer 2 side). In this case, in the configuration of FIG. 1, the interface between the first layer and the second layer is the center of the adhesive rubber layer 4 in the belt thickness direction.
  • the adhesive rubber layer 4 includes first portions provided along both ends in the belt width direction and second portions provided along the central portion in the belt width direction.
  • the first part is composed of the first rubber composition and the second part is composed of the second rubber composition.
  • the adhesive rubber layer 4 is likely to be greatly distorted at both ends in the belt width direction. For this reason, if the first portions provided at both ends in the width direction of the belt are made of the first rubber composition as in this modified example, the durability of the V-ribbed belt 1 under high temperature and high load can be obtained.
  • the types and contents of the components constituting the second rubber composition can be freely selected from various viewpoints such as manufacturing cost. That is, according to this embodiment, the degree of freedom in selecting the second rubber composition to be used in the central portion of the adhesive rubber layer 4 in the belt width direction is increased.
  • the second rubber composition may be used so that the second part has a lower elastic modulus than the first part for the same reason as in the first modified example.
  • the interface between the first layer and the second layer is the center of the adhesive rubber layer 4 in the belt thickness direction.
  • the power transmission belt is a V-ribbed belt, but the power transmission belt according to the present invention is not limited to this, and may be any power transmission belt such as a V-belt or toothed belt.
  • Example 1 ⁇ Manufacture of V-ribbed belt>
  • a rubber component, a cross-linking agent, a filler and other compounding agents were put into a closed kneader according to the formulation shown in Table 1 and kneaded to obtain a first composition for the uncrosslinked adhesive rubber layer 4.
  • a first composition for the uncrosslinked adhesive rubber layer 4. prepared the product.
  • each rubber composition for the compression rubber layer 2 and the back rubber layer 6 was also prepared in the same procedure.
  • Each rubber composition for forming the compression rubber layer 2, the adhesive rubber layer 4, and the back rubber layer 6 was formed into a sheet in an uncrosslinked state, and these were sequentially wound around a molding drum. At that time, the core wire 5 that has been subjected to the adhesion treatment is wound around the sheet for the adhesive rubber layer 4 from one end to the other end of the molding drum while being stretched with a constant tension so as not to loosen, and the adhesive rubber is further applied from above. A sheet for layer 4 was wound, thereby embedding core wire 5 in adhesive rubber layer 4 .
  • the molding drum around which the layers 2, 4, and 6 were wound was press-vulcanized at about 170°C for about 20 minutes to crosslink at once to form a cylindrical belt (slab).
  • the slab was then cut to belt width to produce a V-ribbed belt.
  • the number of ribs in the manufactured V-ribbed belt was three.
  • the V-ribbed belts 1 according to Examples 1 and 2 and Comparative Examples 1 and 2 obtained as described above were respectively stretched over pulleys 11 to 14 of a belt running tester 10 as shown in FIG. A sex test was performed.
  • the belt running tester 10 includes a drive pulley 11 and a driven pulley 12 which are spaced apart from each other, an idler pulley 13 which is provided between the two pulleys 11 and 12, and an idler pulley 13 which is spaced apart.
  • a tension pulley 14 is provided.
  • the tension pulley 14 is provided at a position equidistant from the drive pulley 11 and the driven pulley 12, and is directed away from the idler pulley 13 as indicated by the arrow in FIG.
  • Both the driving pulley 11 and the driven pulley 12 have a pulley diameter of 120 mm, and a V-groove is formed on the outer periphery.
  • the idler pulley 13 has a pulley diameter of 80 mm, and the tension pulley 14 has a pulley diameter of 55 mm.
  • the running durability test was performed by applying a tension of 120 kg to the V-ribbed belt 1 with the tension pulley 14 at a temperature of 120°C and rotating the drive pulley 11 at 4900 rpm.
  • Table 2 shows the physical properties of the adhesive rubber layer 4 and the running durability test results for Examples 1 and 2 and Comparative Examples 1 and 2. Specifically, the physical properties are 50% modulus at 120° C. and durometer hardness according to JIS K 6253. The results of the running durability test are the time it took for the V-ribbed belt 1 to break (breakage resistance time) and the visually confirmed breakage conditions (which part was broken, etc.) after the breakage resistance time. be.
  • the physical properties of the adhesive rubber layer 4 are such that the 50% modulus at 120° C. is 4.0 MPa (Example 1), 4.3 MPa (Example 2), 3.0 MPa (Comparative Example 1) and 3 3 MPa (Comparative Example 2) and hardnesses of 86 (Example 1), 89 (Example 2), 85 (Comparative Example 1) and 84 (Comparative Example 2).
  • the breakage resistance time is 250 hours (Example 1), 350 hours (Example 2), and less than 50 hours (Comparative Examples 1 and 2), respectively.
  • the adhesive rubber layer 4 is less likely to break and has improved durability.
  • Stress-strain distribution analysis A model of the V-ribbed belts of Example 2 and Comparative Example 1 (hereinafter referred to as a belt model) was created on a computer, and a tension pulley with a pulley diameter of 55 mm applied a tension of 120 kg to simulate the stress caused by this tension.
  • the strain distribution generated in the belt model due to the stress was calculated (hereinafter, this analysis is referred to as stress-strain distribution analysis).
  • general-purpose FEM analysis software "Abaqus" manufactured by Intermesh Japan Co., Ltd. was used.
  • Example 2 and Comparative Example 1 the adhesive rubber layer 4 of Example 2 and Comparative Example 1 as shown in Table 1 was subjected to a tensile test (JIS K6251) and a compression test (JIS K6254) was constructed by inputting the stress-strain curve obtained by performing.
  • the strain distribution was calculated by dividing the belt model into grid-shaped volume elements as shown in FIG. 3, and calculating the stress applied to each volume element and the resulting strain by the finite element method (FEM).
  • FEM finite element method
  • FIGS. 3 and 4 show a part of a 3D image showing only the adhesive rubber layer 4 in the belt model according to Example 2 and Comparative Example 1, respectively, and the magnitude of distortion (distortion value) for each volume element of the belt model. ) are displayed in grayscale, and the results of the stress-strain distribution analysis of the belt model are shown.
  • the strain value shown in FIGS. 3 and 4 is a value obtained by dividing the dimensional deformation amount (m) of each volume element deformed under stress by the size (m) of each volume element before deformation.
  • a (+) value means a volume increase (expansion) for each volume element, and a negative (-) value means a volume decrease (compression) for each volume element.
  • the strain values at both ends of the adhesive rubber layer 4 in the belt width direction are larger than at the central portion in the belt width direction.
  • the volume element with the maximum strain value was located on the innermost side of the adhesive rubber layer 4 in the belt thickness direction (compression rubber layer 2 side).
  • the distortion of the adhesive rubber layer 4 is that both ends in the belt width direction are larger than the central portion in the belt width direction, and that the inner circumference side in the belt thickness direction It can be seen that it is larger than the outer peripheral side. That is, it can be said that the durability of the adhesive rubber layer 4 can be efficiently increased by increasing the durability of at least one of the belt width direction end portions and the belt thickness direction inner peripheral side of the adhesive rubber layer 4 .
  • the maximum strain value among the total volume elements of the adhesive rubber layer 4 in each belt model was +0.35 in Example 2 and +0.42 in Comparative Example 1, and Example 2 was higher than Comparative Example 1. It can be said that the strain of the adhesive rubber layer 4 in the V-ribbed belt is smaller in Example 2 than in Comparative Example 1.
  • the minimum strain value among the total volume elements of each belt model was +2.9 ⁇ 10 ⁇ 4 in Example 2 and ⁇ 3.7 ⁇ 10 ⁇ 4 in Comparative Example 1.
  • the present invention is useful as a transmission belt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a transmission belt 1 including a compression rubber layer 2 and an adhesion rubber layer 4 provided on one side of the compression rubber layer 2 in a thickness direction and in which a core wire 5 extending in a belt length direction is buried. In the transmission belt 1, at least a portion of the adhesion rubber layer 4 is made of a first rubber composition, and the portion of the adhesion rubber layer 4 made of the first rubber composition has a modulus of 4.0 MPa or more at 50% elongation at 120°C.

Description

伝動ベルトtransmission belt

 本発明は、伝動ベルトに関する。 The present invention relates to transmission belts.

 従来、駆動側から従動側に動力を伝達する手段として伝動ベルトが知られている。そのような伝動ベルトとして、例えば特許文献1には、ベルト長さ方向に延びる心線が埋設された接着ゴム層と、該接着ゴム層のベルト底面側に設けられた圧縮ゴム層とを備え、上記接着ゴム層が、短繊維が混入分散されて圧縮ゴム層と略同等の弾性率を有する高弾性ゴム組成物で構成された伝動ベルトが開示されている。 A transmission belt is conventionally known as a means of transmitting power from the driving side to the driven side. As such a transmission belt, for example, Patent Document 1 discloses an adhesive rubber layer in which a core wire extending in the belt length direction is embedded, and a compression rubber layer provided on the belt bottom side of the adhesive rubber layer, A transmission belt is disclosed in which the adhesive rubber layer is composed of a highly elastic rubber composition in which short fibers are mixed and dispersed and which has an elastic modulus substantially equal to that of the compression rubber layer.

特許第3721220号公報Japanese Patent No. 3721220

 ところで、伝動ベルトには、使用の際、大きな応力や歪みによる高負荷がかかり、また発熱部品が周辺に配置されている場合もあり高温になりやすい。特に、伝動ベルトは、気温の高い地域で利用する場合に高温になりやすい。このような状況下でも、伝動ベルトの伝動効率が低下しないように、伝動ベルトが耐久性を有するようにしたい。 By the way, the power transmission belt is subjected to a high load due to large stress and distortion during use, and heat-generating parts may be arranged around it, so it tends to become hot. In particular, transmission belts tend to become hot when used in areas with high temperatures. It is desired that the transmission belt has durability so that the transmission efficiency of the transmission belt does not decrease even under such circumstances.

 また、伝動ベルトでは、接着ゴム層で破損が起こりやすい。これは、接着ゴム層が、伝動のはたらきを主に担う圧縮ゴム層と、圧縮ゴム層のように弾性変形しない心線との間に存在することにより、伝動のはたらきにより生じる応力が接着ゴム層に集中し、その結果、接着ゴム層が破壊起点となりやすいためと考えられる。 Also, in transmission belts, the adhesive rubber layer is prone to damage. This is because the adhesive rubber layer exists between the compressed rubber layer that mainly performs the function of power transmission and the core wire that does not elastically deform like the compressed rubber layer, so that the stress generated by the function of power transmission is absorbed by the adhesive rubber layer. As a result, the adhesive rubber layer tends to become the starting point of fracture.

 以上のことから、本発明の課題は、伝動ベルトの接着ゴム層の高負荷及び高温の下での耐久性を向上させることである。 Based on the above, the object of the present invention is to improve the durability of the adhesive rubber layer of the transmission belt under high load and high temperature.

 本発明は、伝動ベルトであって、圧縮ゴム層と、上記圧縮ゴム層の厚さ方向一方側に設けられ、ベルト長さ方向に延びる心線が埋設された接着ゴム層とを備え、上記接着ゴム層の少なくとも一部は第1ゴム組成物で構成され、該第1ゴム組成物で構成された部分は、120℃での50%伸び時のモジュラスが4.0MPa以上である。 The present invention is a power transmission belt comprising a compressed rubber layer and an adhesive rubber layer provided on one side in the thickness direction of the compressed rubber layer and having core wires embedded therein extending in the longitudinal direction of the belt, At least part of the rubber layer is composed of the first rubber composition, and the part composed of the first rubber composition has a modulus of 4.0 MPa or more at 50% elongation at 120°C.

 本発明によれば、接着ゴム層の少なくとも一部は第1ゴム組成物で構成され、その第1ゴム組成物で構成された部分は120℃での50%伸び時のモジュラスが4.0MPa以上であるので、接着ゴム層が高負荷及び高温の下で高い耐久性を有する。 According to the present invention, at least part of the adhesive rubber layer is composed of the first rubber composition, and the part composed of the first rubber composition has a modulus of 4.0 MPa or more at 50% elongation at 120°C. so that the adhesive rubber layer has high durability under high load and high temperature.

実施形態に係るVリブドベルトの断面を含む斜視図である。1 is a perspective view including a cross section of a V-ribbed belt according to an embodiment; FIG. 各実施例及び各比較例における走行耐久性試験のベルトレイアウト図である。FIG. 4 is a belt layout diagram for running durability tests in each example and each comparative example. 実施例2におけるベルトモデル及び応力-歪み分布解析の結果を示す3D画像である。3D images showing the results of a belt model and stress-strain distribution analysis in Example 2. FIG. 比較例1における図3相当図である。FIG. 3 is a view corresponding to FIG. 3 in Comparative Example 1;

 以下、実施形態について詳細に説明する。 The embodiment will be described in detail below.

 (実施形態)
 <Vリブドベルトの構成>
 実施形態に係るVリブドベルト1(伝動ベルト)は、輪状に形成されている。なお、図1に示すように、Vリブドベルト1のベルト厚さ方向においてプーリに当接する方が内周側である。
(embodiment)
<Configuration of V-ribbed belt>
A V-ribbed belt 1 (transmission belt) according to the embodiment is formed in a ring shape. As shown in FIG. 1, the inner peripheral side of the V-ribbed belt 1 contacts the pulley in the belt thickness direction.

 Vリブドベルト1は、圧縮ゴム層2を備える。圧縮ゴム層2の内周側には、ベルト長さ方向に延びる複数のリブ3が設けられている。各リブ3は、図1に示すように、ベルト長さ方向と垂直に切断した断面視において、内周側にいくほど狭い台形状に形成されている。 The V-ribbed belt 1 includes a compression rubber layer 2. A plurality of ribs 3 extending in the belt length direction are provided on the inner peripheral side of the compression rubber layer 2 . As shown in FIG. 1, each rib 3 is formed in a trapezoidal shape that becomes narrower toward the inner peripheral side in a cross-sectional view taken perpendicularly to the belt length direction.

 また、Vリブドベルト1は、圧縮ゴム層2の外周側(厚さ方向一方側)に設けられた接着ゴム層4を備える。接着ゴム層4には、ベルト長さ方向に延びる複数の心線5が埋設されている。複数の心線5は、互いにベルト幅方向に一定の間隔をおいて並んでいる。複数の心線5の各中心は、図1に示すように、接着ゴム層4の厚さ方向中央部に位置する。複数の心線5は、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、芳香族ポリアミド、4,6ナイロン、6ナイロン、6,6ナイロン等の樹脂製の繊維により構成されている。 The V-ribbed belt 1 also includes an adhesive rubber layer 4 provided on the outer peripheral side (one side in the thickness direction) of the compression rubber layer 2 . A plurality of core wires 5 extending in the belt length direction are embedded in the adhesive rubber layer 4 . The plurality of core wires 5 are arranged side by side at regular intervals in the belt width direction. Each center of the plurality of core wires 5 is positioned at the center in the thickness direction of the adhesive rubber layer 4 as shown in FIG. The core wires 5 are made of resin fibers such as polyethylene terephthalate, polyethylene naphthalate, aromatic polyamide, 4,6 nylon, 6 nylon, and 6,6 nylon, for example.

 また、Vリブドベルト1は、接着ゴム層4の外周側に設けられた背面ゴム層6を備える。以上説明した各層2,4,6は、ベルト長さ方向及びベルト幅方向全体にわたり、連続的に形成されている。 The V-ribbed belt 1 also includes a back rubber layer 6 provided on the outer peripheral side of the adhesive rubber layer 4 . Each of the layers 2, 4, and 6 described above are formed continuously over the entire belt length direction and belt width direction.

 本発明の特徴として、接着ゴム層4は、高温及び高負荷の下で高い耐久性を有するようにするという観点から、120℃での50%伸び時のモジュラスが4.0MPa以上、好ましくは4.3MPa以上となるような、第1ゴム組成物で構成されている。本実施形態では、接着ゴム層4の全体が第1ゴム組成物で構成されているが、後述する第1~第4変形例のように、接着ゴム層4の一部が第1ゴム組成物で構成されていてもよい。 As a feature of the present invention, the adhesive rubber layer 4 has a modulus of 4.0 MPa or more at 50% elongation at 120° C., preferably 4 .3 MPa or more, it is composed of the first rubber composition. In the present embodiment, the entire adhesive rubber layer 4 is made of the first rubber composition, but part of the adhesive rubber layer 4 is made of the first rubber composition as in the first to fourth modifications described later. may be composed of

 また、接着ゴム層4は、高温及び高負荷の下で高い耐久性を有するようにするという観点から、JIS K 6253に準拠したジュロメータ硬度(ショアーA)が86以上であることが好ましく、89以上であることがより好ましい。 In addition, from the viewpoint of ensuring high durability under high temperature and high load, the adhesive rubber layer 4 preferably has a durometer hardness (Shore A) of 86 or more according to JIS K 6253, preferably 89 or more. is more preferable.

 なお、圧縮ゴム層2及び背面ゴム層6は、第1ゴム組成物で構成されていてもよく、伝動ベルト1に通常用いられるゴム組成物であれば第1ゴム組成物とは組成の異なるゴム組成物で構成されていてもよい。 The compression rubber layer 2 and the back rubber layer 6 may be composed of the first rubber composition, and if the rubber composition is normally used for the power transmission belt 1, the rubber composition is different from the first rubber composition. It may be composed of a composition.

 以下、第1ゴム組成物について説明する。 The first rubber composition will be described below.

 <第1ゴム組成物>
 第1ゴム組成物は、ゴム成分と、ゴム成分を架橋するための架橋剤とを含有する。ゴム成分は、高温及び高負荷の下で高い耐久性を有するようにするという観点から、エチレン-α-オレフィンエラストマーを含有することが好ましい。エチレン-α-オレフィンエラストマーとしては、例えば、エチレン-プロピレンコポリマー、エチレン-プロピレン-ジエン-ターポリマー、エチレン-オクテンコポリマー、エチレン-ブテンコポリマー等が挙げられ、特に、加工性及び架橋効率の観点から、エチレン-プロピレン-ジエン-ターポリマーが好ましい。
<First rubber composition>
The first rubber composition contains a rubber component and a cross-linking agent for cross-linking the rubber component. The rubber component preferably contains an ethylene-α-olefin elastomer from the viewpoint of ensuring high durability under high temperature and high load. Examples of ethylene-α-olefin elastomers include ethylene-propylene copolymers, ethylene-propylene-diene-terpolymers, ethylene-octene copolymers, ethylene-butene copolymers, and the like. Ethylene-propylene-diene-terpolymers are preferred.

 架橋剤としては、例えば、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、1,1-t-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ジ-(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシ-2-エチル-ヘキシルカーボネート、α,α’-ジ-(t-ブチルパーオキシ)ジイソプロピルベンゼン,1,1-ジ-(t-ブチルパーオキシ)シクロヘキサン等が挙げられる。 Examples of cross-linking agents include di-t-butyl peroxide, dicumyl peroxide, t-butylcumyl peroxide, 1,1-t-butylperoxy-3,3,5-trimethylcyclohexane, 2,5- Dimethyl-2,5-di-(t-butylperoxy)hexane, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-butylperoxybenzoate, t-butylperoxy-2- ethyl-hexyl carbonate, α,α'-di-(t-butylperoxy)diisopropylbenzene, 1,1-di-(t-butylperoxy)cyclohexane and the like.

 また、第1ゴム組成物は、ゴム成分及び架橋剤以外の配合剤を含有していてもよい。そのような配合剤としては、例えば、カーボンブラック、シリカ、炭酸カルシウム、タルク等の充填剤が挙げられ、特に、高温及び高負荷の下で高い耐久性を有するようにするという観点から、カーボンブラック及びシリカの少なくとも一方を含有していることが好ましい。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック等が挙げられる。また、充填剤以外の配合剤として、酸化亜鉛、ステアリン酸、加工助剤、老化防止剤、加水分解安定剤、パラフィン系プロセス油、共架橋剤等が挙げられる。第1ゴム組成物は、このほかの、伝動ベルトのゴム組成物に通常用いられる配合剤を含有していてもよい。 In addition, the first rubber composition may contain compounding agents other than the rubber component and the cross-linking agent. Examples of such compounding agents include fillers such as carbon black, silica, calcium carbonate, and talc. and silica. Examples of carbon black include furnace black, channel black, thermal black, acetylene black and the like. Compounding agents other than fillers include zinc oxide, stearic acid, processing aids, anti-aging agents, hydrolysis stabilizers, paraffin-based process oils, co-crosslinking agents, and the like. The first rubber composition may contain other compounding agents commonly used in rubber compositions for power transmission belts.

 以下、本実施形態の変形例について説明する。なお、以下の説明では、本実施形態と共通する構成の説明を省略する。 A modified example of this embodiment will be described below. In addition, in the following description, the description of the configuration common to this embodiment will be omitted.

 (実施形態の第1変形例)
 前述の実施形態では、接着ゴム層4は、全体が第1ゴム組成物で構成されているが、第1変形例では、接着ゴム層4は、第1ゴム組成物で構成された第1層と、第2ゴム組成物で構成された第2層とを含む2層構造である。第1層は、圧縮ゴム層2の直上に設けられ、第2層は、第1層の直上に設けられている。
(First modification of the embodiment)
In the above-described embodiment, the adhesive rubber layer 4 is entirely composed of the first rubber composition, but in the first modified example, the adhesive rubber layer 4 is the first layer composed of the first rubber composition. and a second layer made of a second rubber composition. The first layer is provided directly above the compression rubber layer 2, and the second layer is provided directly above the first layer.

 第2ゴム組成物は、構成成分の種類及び各構成成分の含有量の少なくとも一方が第1ゴム組成物とは異なっている。また、第2ゴム組成物は、第2層の120℃での50%伸び時のモジュラスが、第1層とは異なり4.0MPa未満となるようなものであってもよい。 The second rubber composition differs from the first rubber composition in at least one of the types of constituent components and the content of each constituent component. Also, the second rubber composition may be such that the modulus of the second layer at 50% elongation at 120° C. is less than 4.0 MPa, unlike the first layer.

 後述の実施例で示すように、接着ゴム層4は、背面ゴム層6側よりも圧縮ゴム層2側で歪みが大きくなりやすい。このため、本変形例のように、圧縮ゴム層2側に設けられた第1層を第1ゴム組成物から構成すれば、接着ゴム層4の高温及び高負荷の下で高い耐久性が得られる。その一方で、第2層の第2ゴム組成物を構成する成分の種類及び含有量は、製造コストやその他様々な観点から、自由に選択できる。すなわち、本実施例によれば、接着ゴム層4における背面ゴム層6側に使用する第2ゴム組成物の選択の自由度が高くなる。 As shown in Examples described later, the adhesive rubber layer 4 tends to be more distorted on the side of the compression rubber layer 2 than on the side of the back rubber layer 6 . Therefore, if the first layer provided on the side of the compression rubber layer 2 is composed of the first rubber composition as in this modification, high durability can be obtained under high temperature and high load of the adhesive rubber layer 4. be done. On the other hand, the types and contents of the components constituting the second rubber composition of the second layer can be freely selected from various viewpoints such as manufacturing cost. That is, according to this embodiment, the degree of freedom in selecting the second rubber composition to be used on the back rubber layer 6 side of the adhesive rubber layer 4 is increased.

 例えば、第2ゴム組成物は、以下のように選択してもよい。後述の実施例で示すように第2層は第1層よりも使用時における歪みが小さいと考えられる。このため、第2層が第1層よりも低弾性率となるように、第2ゴム組成物の材料を選択してもよい。このようにすることで、第1層でVリブドベルト1の高い耐久性が得られるとともに、第2層でVリブドベルト1の屈曲に起因する応力によるエネルギー損失を低減させることができる。その結果、さらなる伝動効率の向上が得られ、消費電力を削減できる。 For example, the second rubber composition may be selected as follows. It is believed that the second layer is less strained during use than the first layer, as shown in the examples below. Therefore, the material of the second rubber composition may be selected such that the second layer has a lower elastic modulus than the first layer. By doing so, the V-ribbed belt 1 can be highly durable in the first layer, and the energy loss due to the stress caused by the bending of the V-ribbed belt 1 can be reduced in the second layer. As a result, further improvement in transmission efficiency can be obtained, and power consumption can be reduced.

 ところで、接着ゴム層4は、接着ゴム層4と心線5との材質の違いにより、心線5と接している部分で歪みが大きくなることが考えられる。また、接着ゴム層4は、後述の実施例で示すように、背面ゴム層6側よりも、伝動のはたらきを主に担う圧縮ゴム層2側で特に歪みが大きくなりやすい。以上のことを考慮すると、高温及び高負荷の下で非常に高い耐久性を有するようにするという観点から、第1層は、埋設された心線5の断面中央部よりも内周側(すなわち、圧縮ゴム層2側)全体に設けられていることが好ましい。この場合、図1の構成では、第1層及び第2層の界面は、接着ゴム層4のベルト厚さ方向中央である。 By the way, it is conceivable that the adhesive rubber layer 4 is greatly distorted at the portion in contact with the core wire 5 due to the difference in material between the adhesive rubber layer 4 and the core wire 5 . Further, as will be described later in Examples, the adhesive rubber layer 4 tends to be more distorted particularly on the side of the compression rubber layer 2 that mainly serves to transmit power than on the side of the back rubber layer 6 . Considering the above, from the viewpoint of achieving extremely high durability under high temperature and high load, the first layer should be placed on the inner peripheral side (i.e., , compression rubber layer 2 side). In this case, in the configuration of FIG. 1, the interface between the first layer and the second layer is the center of the adhesive rubber layer 4 in the belt thickness direction.

 (実施形態の第2変形例)
 第2変形例では、接着ゴム層4は、ベルト幅方向両端部に沿って設けられた第1部と、ベルト幅方向中央部に沿って設けられた第2部とを含む。第1部は第1ゴム組成物で構成され、第2部は第2ゴム組成物で構成されている。
(Second modification of the embodiment)
In the second modification, the adhesive rubber layer 4 includes first portions provided along both ends in the belt width direction and second portions provided along the central portion in the belt width direction. The first part is composed of the first rubber composition and the second part is composed of the second rubber composition.

 後述の実施例で示すように、接着ゴム層4は、ベルト幅方向両端部において歪みが大きくなりやすい。このため、本変形例のように、ベルト幅方向両端部に設けられた第1部を第1ゴム組成物から構成すれば、Vリブドベルト1の高温及び高負荷の下で耐久性が得られる。第2ゴム組成物を構成する成分の種類及び含有量は、製造コストやその他様々な観点から、自由に選択できる。すなわち、本実施例によれば、接着ゴム層4におけるベルト幅方向中央部に使用する第2ゴム組成物の選択の自由度が高くなる。例えば、前述の第1変形例と同様の理由から、第2部が第1部よりも低弾性率となるように、第2ゴム組成物を使用してもよい。 As shown in Examples described later, the adhesive rubber layer 4 is likely to be greatly distorted at both ends in the belt width direction. For this reason, if the first portions provided at both ends in the width direction of the belt are made of the first rubber composition as in this modified example, the durability of the V-ribbed belt 1 under high temperature and high load can be obtained. The types and contents of the components constituting the second rubber composition can be freely selected from various viewpoints such as manufacturing cost. That is, according to this embodiment, the degree of freedom in selecting the second rubber composition to be used in the central portion of the adhesive rubber layer 4 in the belt width direction is increased. For example, the second rubber composition may be used so that the second part has a lower elastic modulus than the first part for the same reason as in the first modified example.

 (実施形態の第3変形例)
 前述の第1変形例及び第2変形例に代えて、例えば、接着ゴム層4においてベルト幅方向両端部に沿った部分(すなわち、第2変形例の第1部に相当する部分)のみを2層構造とし、その2層のうち圧縮ゴム層2側の層(すなわち、第1変形例の第1層に相当する層)を第1ゴム組成物で構成し、これ以外の部分を第2ゴム組成物で構成してもよい。この場合、前述の第1変形例で説明したように高温及び高負荷の下で非常に高い耐久性を有するようにするという観点から、圧縮ゴム層2側の層は、埋設された心線5の断面中央部よりも内周側(すなわち、圧縮ゴム層2側)全体に設けられていることが好ましい。この場合、図1の構成では、第1層及び第2層の界面は、接着ゴム層4のベルト厚さ方向中央である。
(Third modification of the embodiment)
Instead of the above-described first and second modifications, for example, only the portions along both ends in the belt width direction in the adhesive rubber layer 4 (that is, the portions corresponding to the first portions in the second modification) are doubled. It has a layered structure, and the layer on the side of the compression rubber layer 2 (that is, the layer corresponding to the first layer in the first modification) of the two layers is composed of the first rubber composition, and the other parts are composed of the second rubber It may be composed of a composition. In this case, as described in the first modified example, the layer on the side of the compression rubber layer 2 is composed of the embedded core wires 5 from the viewpoint of achieving extremely high durability under high temperature and high load. It is preferable that it is provided on the entire inner peripheral side (that is, the compression rubber layer 2 side) of the central portion of the cross section. In this case, in the configuration of FIG. 1, the interface between the first layer and the second layer is the center of the adhesive rubber layer 4 in the belt thickness direction.

 (実施形態の第4変形例)
 前述の第1~第3変形例に代えて、例えば、接着ゴム層4においてベルト幅方向中央部に沿った部分(すなわち、第2変形例の第2部に相当する部分)のみを2層構造とし、その2層のうち背面ゴム層6側の層(すなわち、第1変形例の第2部に相当する層)を第2ゴム組成物で構成し、これ以外の部分を第1ゴム組成物で構成してもよい。
(Fourth modification of the embodiment)
Instead of the above-described first to third modifications, for example, only the portion along the belt width direction central portion of the adhesive rubber layer 4 (that is, the portion corresponding to the second portion of the second modification) has a two-layer structure. Of the two layers, the layer on the back rubber layer 6 side (that is, the layer corresponding to the second part of the first modification) is composed of the second rubber composition, and the other parts are composed of the first rubber composition may be configured with

 (その他の実施形態)
 前述の実施形態では、伝動ベルトがVリブドベルトであるが、本発明に係る伝動ベルトは、これに限定されず、Vベルト、歯付ベルト等のあらゆる伝動ベルトであってもよい。
(Other embodiments)
In the above-described embodiments, the power transmission belt is a V-ribbed belt, but the power transmission belt according to the present invention is not limited to this, and may be any power transmission belt such as a V-belt or toothed belt.

 以下、実施例1,2及び比較例1,2を説明する。 Examples 1 and 2 and Comparative Examples 1 and 2 are described below.

 <Vリブドベルトの製造>
 実施例1では、密閉型混練機に、表1に示す配合表にしたがい、ゴム成分、架橋剤、充填剤その他配合剤を投入し、混練し、未架橋の接着ゴム層4用の第1組成物を調製した。また、同様の手順で、圧縮ゴム層2用及び背面ゴム層6用の各ゴム組成物も調製した。
<Manufacture of V-ribbed belt>
In Example 1, a rubber component, a cross-linking agent, a filler and other compounding agents were put into a closed kneader according to the formulation shown in Table 1 and kneaded to obtain a first composition for the uncrosslinked adhesive rubber layer 4. prepared the product. Further, each rubber composition for the compression rubber layer 2 and the back rubber layer 6 was also prepared in the same procedure.

 圧縮ゴム層2、接着ゴム層4及び背面ゴム層6形成するための各ゴム組成物を、未架橋の状態でシート状に形成し、これらを成型ドラムに順番に巻き付けた。その際、接着ゴム層4用のシートには、接着処理を行った心線5を、弛まないよう一定張力で張りながら成型ドラムの一端部から他端部まで巻きつけ、その上からさらに接着ゴム層4用のシートを巻き付け、これにより心線5を接着ゴム層4に埋設した。 Each rubber composition for forming the compression rubber layer 2, the adhesive rubber layer 4, and the back rubber layer 6 was formed into a sheet in an uncrosslinked state, and these were sequentially wound around a molding drum. At that time, the core wire 5 that has been subjected to the adhesion treatment is wound around the sheet for the adhesive rubber layer 4 from one end to the other end of the molding drum while being stretched with a constant tension so as not to loosen, and the adhesive rubber is further applied from above. A sheet for layer 4 was wound, thereby embedding core wire 5 in adhesive rubber layer 4 .

 最後に、各層2,4,6の積層体が巻き付けられた成型ドラムを、約170℃で約20分間プレス加硫して一度に架橋させ、筒状のベルト(スラブ)を成型した。その後、そのスラブをベルトの幅にカットし、Vリブドベルトを製造した。なお、製造したVリブドベルトのリブの数は3つであった。 Finally, the molding drum around which the layers 2, 4, and 6 were wound was press-vulcanized at about 170°C for about 20 minutes to crosslink at once to form a cylindrical belt (slab). The slab was then cut to belt width to produce a V-ribbed belt. The number of ribs in the manufactured V-ribbed belt was three.

 実施例2及び比較例1,2では、接着ゴム層4を構成するゴム組成物を、表1に示すような配合にしたことを除き、実施例1と同じようにしてVリブドベルト1を製造した。すなわち、実施例1,2及び比較例1,2に係るVリブドベルト1は、圧縮ゴム層2を構成するゴム組成物、背面ゴム層6を構成するゴム組成物など、接着ゴム層4を構成するゴム組成物を除くあらゆる構成が、互いにすべて同じである。 In Example 2 and Comparative Examples 1 and 2, the V-ribbed belt 1 was produced in the same manner as in Example 1, except that the rubber composition constituting the adhesive rubber layer 4 was formulated as shown in Table 1. . That is, in the V-ribbed belts 1 according to Examples 1 and 2 and Comparative Examples 1 and 2, the adhesive rubber layer 4 is composed of the rubber composition that constitutes the compression rubber layer 2, the rubber composition that constitutes the back rubber layer 6, and the like. All configurations, except for the rubber composition, are all identical to each other.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 <走行耐久性試験>
 以上のようにして得た実施例1,2及び比較例1,2に係るVリブドベルト1を、それぞれ、図2に示すようにベルト走行試験機10のプーリ11~14に掛け渡して、走行耐久性試験を行った。ベルト走行試験機10は、互いに間隔をおいて設けられた駆動プーリ11及び従動プーリ12と、両プーリ11,12間に設けられたアイドラプーリ13と、アイドラプーリ13と間隔をおいて設けられたテンションプーリ14とを備える。テンションプーリ14は、駆動プーリ11及び従動プーリ12からの距離が互いに等しい位置に設けられており、Vリブドベルト1にテンションを加えるために、図2の矢印で示すようにアイドラプーリ13から離れる方向に移動可能に構成されている。駆動プーリ11及び従動プーリ12は、いずれも、プーリ径が120mmであり、外周にV溝が形成されている。アイドラプーリ13のプーリ径は80mmであり、テンションプーリ14のプーリ径は55mmである。
<Running durability test>
The V-ribbed belts 1 according to Examples 1 and 2 and Comparative Examples 1 and 2 obtained as described above were respectively stretched over pulleys 11 to 14 of a belt running tester 10 as shown in FIG. A sex test was performed. The belt running tester 10 includes a drive pulley 11 and a driven pulley 12 which are spaced apart from each other, an idler pulley 13 which is provided between the two pulleys 11 and 12, and an idler pulley 13 which is spaced apart. A tension pulley 14 is provided. The tension pulley 14 is provided at a position equidistant from the drive pulley 11 and the driven pulley 12, and is directed away from the idler pulley 13 as indicated by the arrow in FIG. configured to be movable. Both the driving pulley 11 and the driven pulley 12 have a pulley diameter of 120 mm, and a V-groove is formed on the outer periphery. The idler pulley 13 has a pulley diameter of 80 mm, and the tension pulley 14 has a pulley diameter of 55 mm.

 走行耐久性試験は、120℃の温度下で、テンションプーリ14によりVリブドベルト1に対し120kg重の張力をかけるとともに、駆動プーリ11を4900rpmで回転させて行った。 The running durability test was performed by applying a tension of 120 kg to the V-ribbed belt 1 with the tension pulley 14 at a temperature of 120°C and rotating the drive pulley 11 at 4900 rpm.

 表2は、実施例1,2及び比較例1,2について、接着ゴム層4の物性及び走行耐久性試験結果を示す。具体的には、物性は、120℃における50%モジュラス及びJIS K 6253に準拠したジュロメータ硬度である。走行耐久性試験結果は、Vリブドベルト1に破損が生じるまでにかかった時間(耐破損時間)及び耐破損時間の経過時における目視により確認された破損状況(どの部位が破損していたかなど)である。 Table 2 shows the physical properties of the adhesive rubber layer 4 and the running durability test results for Examples 1 and 2 and Comparative Examples 1 and 2. Specifically, the physical properties are 50% modulus at 120° C. and durometer hardness according to JIS K 6253. The results of the running durability test are the time it took for the V-ribbed belt 1 to break (breakage resistance time) and the visually confirmed breakage conditions (which part was broken, etc.) after the breakage resistance time. be.

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 表2に示すように、接着ゴム層4の物性は、120℃における50%モジュラスが4.0MPa(実施例1)、4.3MPa(実施例2)、3.0MPa(比較例1)及び3.3MPa(比較例2)であり、硬度が86(実施例1)、89(実施例2)、85(比較例1)及び84(比較例2)であった。 As shown in Table 2, the physical properties of the adhesive rubber layer 4 are such that the 50% modulus at 120° C. is 4.0 MPa (Example 1), 4.3 MPa (Example 2), 3.0 MPa (Comparative Example 1) and 3 3 MPa (Comparative Example 2) and hardnesses of 86 (Example 1), 89 (Example 2), 85 (Comparative Example 1) and 84 (Comparative Example 2).

 また、耐破損時間は、それぞれ250時間(実施例1)、350時間(実施例2)及び50時間未満(比較例1,2)であることから、実施例1,2のように接着ゴム層4に第1ゴム組成物(120℃における50%モジュラスが4.0MPa以上)を用いることにより、接着ゴム層4が破損しにくく、耐久性が向上したことがわかる。 In addition, the breakage resistance time is 250 hours (Example 1), 350 hours (Example 2), and less than 50 hours (Comparative Examples 1 and 2), respectively. By using the first rubber composition (having a 50% modulus of 4.0 MPa or more at 120° C.) for 4, the adhesive rubber layer 4 is less likely to break and has improved durability.

 また、破損状況については、実施例1,2では接着ゴム層4の欠損はみられず圧縮ゴム層2が欠損していたのに対し、比較例1,2では接着ゴム層4が欠損してそれにより心線5が接着ゴム層4の外側にとび出し露出していた。このとからも、実施例1,2のように、接着ゴム層4に第1ゴム組成物を用いることにより、接着ゴム層4の耐久性が向上したことがわかる。 As for the state of damage, in Examples 1 and 2, the adhesive rubber layer 4 was not damaged and the compression rubber layer 2 was damaged, whereas in Comparative Examples 1 and 2, the adhesive rubber layer 4 was damaged. As a result, the core wire 5 protruded outside the adhesive rubber layer 4 and was exposed. From this, it can be seen that by using the first rubber composition for the adhesive rubber layer 4 as in Examples 1 and 2, the durability of the adhesive rubber layer 4 was improved.

 <応力-歪み分布解析>
 コンピュータ上で、実施例2及び比較例1のVリブドベルトのモデル(以下、ベルトモデルという)を作成し、これにプーリ径55mmのテンションプーリにより120kg重の張力をかけるシミュレーションを行い、この張力による応力を受けたことによりベルトモデルに生じた歪み分布を算出した(以下、この解析を応力-歪み分布解析という)。なお、このシミュレーションには、インターメッシュジャパン社製の汎用FEM解析ソフトウェア「Abaqus」を使用した。
<Stress-strain distribution analysis>
A model of the V-ribbed belts of Example 2 and Comparative Example 1 (hereinafter referred to as a belt model) was created on a computer, and a tension pulley with a pulley diameter of 55 mm applied a tension of 120 kg to simulate the stress caused by this tension. The strain distribution generated in the belt model due to the stress was calculated (hereinafter, this analysis is referred to as stress-strain distribution analysis). For this simulation, general-purpose FEM analysis software "Abaqus" manufactured by Intermesh Japan Co., Ltd. was used.

 具体的には、実施例2及び比較例1のベルトモデルは、表1に示すような実施例2及び比較例1の配合の接着ゴム層4について、引張試験(JIS K6251)及び圧縮試験(JIS K6254)を行って得た応力-歪曲線を入力して、構築した。歪み分布の算出は、ベルトモデルを図3に示すような格子状の体積要素ごとに分割し、各体積要素にかかる応力及びそれによる歪みを有限要素法(FEM)により算出した。 Specifically, in the belt models of Example 2 and Comparative Example 1, the adhesive rubber layer 4 of Example 2 and Comparative Example 1 as shown in Table 1 was subjected to a tensile test (JIS K6251) and a compression test (JIS K6254) was constructed by inputting the stress-strain curve obtained by performing. The strain distribution was calculated by dividing the belt model into grid-shaped volume elements as shown in FIG. 3, and calculating the stress applied to each volume element and the resulting strain by the finite element method (FEM).

 図3及び図4は、それぞれ実施例2及び比較例1に係る上記ベルトモデルにおける接着ゴム層4のみを表示した3D画像の一部と、ベルトモデルの体積要素ごとの歪みの大きさ(歪み値)をグレースケールで表示した、ベルトモデルの応力-歪み分布解析の結果とを示している。なお、図3及び図4に示す歪み値とは、応力を受けて変形した各体積要素の寸法変形量(m)を変形前の各体積要素の寸法(m)で割った値であり、正(+)の値は各体積要素の体積増加(膨張)を意味し、負(-)の値は各体積要素の体積減少(圧縮)を意味する。 3 and 4 show a part of a 3D image showing only the adhesive rubber layer 4 in the belt model according to Example 2 and Comparative Example 1, respectively, and the magnitude of distortion (distortion value) for each volume element of the belt model. ) are displayed in grayscale, and the results of the stress-strain distribution analysis of the belt model are shown. The strain value shown in FIGS. 3 and 4 is a value obtained by dividing the dimensional deformation amount (m) of each volume element deformed under stress by the size (m) of each volume element before deformation. A (+) value means a volume increase (expansion) for each volume element, and a negative (-) value means a volume decrease (compression) for each volume element.

 図3及び図4によれば、実施例2及び比較例1の両方で、接着ゴム層4のベルト幅方向両端部の歪み値が、ベルト幅方向中央部よりも大きい。また、実施例2及び比較例1の両方で、歪み値が最大となる体積要素は、接着ゴム層4のベルト厚さ方向の最も内周側(圧縮ゴム層2側)に位置していた。 According to FIGS. 3 and 4, in both Example 2 and Comparative Example 1, the strain values at both ends of the adhesive rubber layer 4 in the belt width direction are larger than at the central portion in the belt width direction. In both Example 2 and Comparative Example 1, the volume element with the maximum strain value was located on the innermost side of the adhesive rubber layer 4 in the belt thickness direction (compression rubber layer 2 side).

 以上のことから、接着ゴム層4の歪みは、ベルト幅方向両端部がベルト幅方向中央部よりも大きいこと及びベルト厚さ方向の内周側(特に、圧縮ゴム層2との界面付近)が外周側よりも大きいことがわかる。すなわち、接着ゴム層4のベルト幅方向両端部及びベルト厚さ方向内周側のうちの少なくとも一方で、耐久性を高くすることで、接着ゴム層4の耐久性を効率よく高くできるといえる。 From the above, the distortion of the adhesive rubber layer 4 is that both ends in the belt width direction are larger than the central portion in the belt width direction, and that the inner circumference side in the belt thickness direction It can be seen that it is larger than the outer peripheral side. That is, it can be said that the durability of the adhesive rubber layer 4 can be efficiently increased by increasing the durability of at least one of the belt width direction end portions and the belt thickness direction inner peripheral side of the adhesive rubber layer 4 .

 また、各ベルトモデルにおける接着ゴム層4の全体積要素の中で最大の歪み値は、実施例2で+0.35、比較例1で+0.42であり、実施例2の方が比較例1よりも最大の歪み値が小さく、実施例2の方が比較例1よりもVリブドベルトにおける接着ゴム層4の歪みが小さいといえる。 In addition, the maximum strain value among the total volume elements of the adhesive rubber layer 4 in each belt model was +0.35 in Example 2 and +0.42 in Comparative Example 1, and Example 2 was higher than Comparative Example 1. It can be said that the strain of the adhesive rubber layer 4 in the V-ribbed belt is smaller in Example 2 than in Comparative Example 1.

 なお、各ベルトモデルの全体積要素の中で最小の歪み値は、実施例2で+2.9×10-4、比較例1で-3.7×10-4であった。 The minimum strain value among the total volume elements of each belt model was +2.9×10 −4 in Example 2 and −3.7×10 −4 in Comparative Example 1.

 本発明は、伝動ベルトとして有用である。 The present invention is useful as a transmission belt.

1   Vリブドベルト(伝動ベルト)
2   圧縮ゴム層
3   リブ
4   接着ゴム層
5   心線
6   背面ゴム層
10  ベルト走行試験機
11  駆動プーリ
12  従動プーリ
13  アイドラプーリ
14  テンションプーリ
1 V-ribbed belt (transmission belt)
2 compression rubber layer 3 rib 4 adhesive rubber layer 5 cord 6 back rubber layer 10 belt running tester 11 drive pulley 12 driven pulley 13 idler pulley 14 tension pulley

Claims (10)

 伝動ベルトであって、
 圧縮ゴム層と、
 上記圧縮ゴム層の厚さ方向一方側に設けられ、ベルト長さ方向に延びる心線が埋設された接着ゴム層と
を備え、
 上記接着ゴム層の少なくとも一部は第1ゴム組成物で構成され、該第1ゴム組成物で構成された部分は、120℃での50%伸び時のモジュラスが4.0MPa以上である、伝動ベルト。
A transmission belt,
a compression rubber layer;
an adhesive rubber layer provided on one side in the thickness direction of the compression rubber layer and embedded with a core wire extending in the length direction of the belt,
At least part of the adhesive rubber layer is composed of a first rubber composition, and the portion composed of the first rubber composition has a modulus of 4.0 MPa or more at 50% elongation at 120 ° C. belt.
 請求項1に記載の伝動ベルトにおいて、
 上記接着ゴム層は、
  上記第1ゴム組成物で構成され、上記圧縮ゴム層の直上に設けられた第1層と
  構成成分の種類及び含有量の少なくとも一方が上記第1ゴム組成物とは異なる第2ゴム組成物で構成され、上記第1層の直上に設けられた第2層と
 を含む、伝動ベルト。
In the transmission belt according to claim 1,
The adhesive rubber layer is
A first layer composed of the first rubber composition and provided immediately above the compression rubber layer; and a second layer arranged immediately above said first layer.
 請求項1に記載の伝動ベルトにおいて、
 上記接着ゴム層は、
  上記第1ゴム組成物で構成され、ベルト幅方向両端部においてベルト長さ方向全体に設けられた第1部と、
  構成成分の種類及び含有量の少なくとも一方が上記第1ゴム組成物とは異なる第2ゴム組成物で構成され、ベルト幅方向中央部に沿って設けられた第2部と
 を含む、伝動ベルト。
In the transmission belt according to claim 1,
The adhesive rubber layer is
A first portion made of the first rubber composition and provided along the entire belt length direction at both ends in the belt width direction;
A power transmission belt comprising: a second portion formed of a second rubber composition different from the first rubber composition in at least one of the types and contents of constituent components, and provided along the central portion in the width direction of the belt.
 請求項1~3のいずれか1項に記載の伝動ベルトにおいて、
 上記第1ゴム組成物は、ゴム成分としてのエチレン-α-オレフィンを含有する、伝動ベルト。
In the transmission belt according to any one of claims 1 to 3,
The transmission belt, wherein the first rubber composition contains ethylene-α-olefin as a rubber component.
 請求項1~4のいずれか1項に記載の伝動ベルトにおいて、
 上記第1ゴム組成物は、充填剤として、シリカ及びカーボンブラックの少なくとも一方を含有する、伝動ベルト。
In the transmission belt according to any one of claims 1 to 4,
The transmission belt, wherein the first rubber composition contains at least one of silica and carbon black as a filler.
 請求項2に記載の伝動ベルトにおいて、
 上記第1層は、上記心線の断面中央部よりも上記圧縮ゴム層側全体に設けられている、伝動ベルト。
In the transmission belt according to claim 2,
The power transmission belt, wherein the first layer is provided on the entire compressed rubber layer side of the core wire with respect to the cross-sectional central portion thereof.
 請求項1に記載の伝動ベルトにおいて、
 上記接着ゴム層は、ベルト幅方向両端部が、ベルト長さ方向全体で2層構造となっている一方、当該ベルト幅方向両端部を除く部分がベルト長さ方向全体で1層構造となっており、
 上記接着ゴム層は、
  2層構成となった上記ベルト幅方向両端部における上記圧縮ゴム層に近い側の層は、上記第1ゴム組成物で構成されており、
  2層構成となった上記ベルト幅方向両端部における上記圧縮ゴム層から遠い側の層及び1層構造となった部分は、構成成分の種類及び含有量の少なくとも一方が上記第1ゴム組成物とは異なる第2ゴム組成物で構成されている、
 伝動ベルト。
In the transmission belt according to claim 1,
The adhesive rubber layer has a two-layer structure in the entire length direction of the belt at both ends in the width direction of the belt, and a one-layer structure in the entire length direction of the belt except for the both ends in the width direction of the belt. cage,
The adhesive rubber layer is
The layer on the side closer to the compression rubber layer at both ends in the width direction of the belt having a two-layer structure is composed of the first rubber composition,
At least one of the type and content of the constituent components of the layer on the far side from the compression rubber layer and the portion having a one-layer structure at both ends in the width direction of the belt having a two-layer structure is the first rubber composition. is composed of a different second rubber composition,
transmission belt.
 請求項7に記載の伝動ベルトにおいて、
 上記接着ゴム層において2層構成となった上記ベルト幅方向両端部における、上記圧縮ゴム層に近い側の層は、上記心線の断面中央部よりも圧縮ゴム層側全体に設けられている、
 伝動ベルト。
In the transmission belt according to claim 7,
At both ends in the width direction of the belt having a two-layer structure in the adhesive rubber layer, the layer on the side closer to the compression rubber layer is provided on the entire side of the compression rubber layer than the central portion of the cross section of the core wire.
transmission belt.
 請求項1に記載の伝動ベルトにおいて、
 上記接着ゴム層は、ベルト幅方向中央部が、ベルト長さ方向全体で2層構造となっている一方、当該ベルト幅方向中央部を除く部分がベルト長さ方向全体で1層構造となっており、
 上記接着ゴム層は、
  2層構成となった上記ベルト幅方向中央部における上記圧縮ゴム層から遠い側の層を除き、上記第1ゴム組成物で構成されており、
  2層構成となった上記ベルト幅方向中央部における上記圧縮ゴム層から遠い側の層は、構成成分の種類及び含有量の少なくとも一方が上記第1ゴム組成物とは異なる第2ゴム組成物で構成されている、
 伝動ベルト。
In the transmission belt according to claim 1,
The adhesive rubber layer has a two-layer structure in the entire belt width direction central portion, while a portion other than the belt width direction central portion has a one-layer structure in the entire belt length direction. cage,
The adhesive rubber layer is
Except for the layer on the side far from the compression rubber layer in the central portion in the width direction of the belt having a two-layer structure, the belt is made of the first rubber composition,
The layer on the far side from the compression rubber layer in the central portion in the belt width direction, which has a two-layer structure, is a second rubber composition in which at least one of the type and content of constituent components is different from the first rubber composition. It is configured,
transmission belt.
 請求項2、3、6、7、8及び9のうちいずれか1項に記載の伝動ベルトにおいて、
 上記接着ゴム層において、上記第2ゴム組成物で構成された部分は、上記第1ゴム組成物で構成された部分よりも、弾性率が低い、伝動ベルト。
In the transmission belt according to any one of claims 2, 3, 6, 7, 8 and 9,
The power transmission belt, wherein in the adhesive rubber layer, the portion made of the second rubber composition has a lower modulus of elasticity than the portion made of the first rubber composition.
PCT/JP2022/042864 2021-11-19 2022-11-18 Transmission belt WO2023090423A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023507328A JP7448724B2 (en) 2021-11-19 2022-11-18 power transmission belt
JP2024029440A JP2024052724A (en) 2021-11-19 2024-02-29 Transmission belt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-188711 2021-11-19
JP2021188711 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023090423A1 true WO2023090423A1 (en) 2023-05-25

Family

ID=86397057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042864 WO2023090423A1 (en) 2021-11-19 2022-11-18 Transmission belt

Country Status (2)

Country Link
JP (2) JP7448724B2 (en)
WO (1) WO2023090423A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491598B1 (en) * 2000-10-09 2002-12-10 The Goodyear Tire & Rubber Company Power transmission belt
US20030050143A1 (en) * 2001-03-16 2003-03-13 Gregg Michael John William Power transmission belt containing chopped carbon fibers
JP2007239821A (en) * 2006-03-07 2007-09-20 Bando Chem Ind Ltd Transmission belt
JP2017211084A (en) * 2016-05-23 2017-11-30 三ツ星ベルト株式会社 Drive belt
JP2018021664A (en) * 2016-07-22 2018-02-08 三ツ星ベルト株式会社 Transmission v-belt
JP2018141554A (en) * 2017-02-27 2018-09-13 三ツ星ベルト株式会社 Transmission belt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491598B1 (en) * 2000-10-09 2002-12-10 The Goodyear Tire & Rubber Company Power transmission belt
US20030050143A1 (en) * 2001-03-16 2003-03-13 Gregg Michael John William Power transmission belt containing chopped carbon fibers
JP2007239821A (en) * 2006-03-07 2007-09-20 Bando Chem Ind Ltd Transmission belt
JP2017211084A (en) * 2016-05-23 2017-11-30 三ツ星ベルト株式会社 Drive belt
JP2018021664A (en) * 2016-07-22 2018-02-08 三ツ星ベルト株式会社 Transmission v-belt
JP2018141554A (en) * 2017-02-27 2018-09-13 三ツ星ベルト株式会社 Transmission belt

Also Published As

Publication number Publication date
JPWO2023090423A1 (en) 2023-05-25
JP7448724B2 (en) 2024-03-12
JP2024052724A (en) 2024-04-11

Similar Documents

Publication Publication Date Title
JP6145170B2 (en) V-belt and manufacturing method thereof
JP6161711B2 (en) Flat belt and manufacturing method thereof
JP5016239B2 (en) Transmission belt
JP4133595B2 (en) Transmission belt
KR101713186B1 (en) Flat belt
JP2005126642A (en) Rubber composition for transmission belt and transmission belt
TW201815940A (en) Rubber composition and transmission belt using same
WO2018008204A1 (en) Toothed belt and production method therefor
KR20220125679A (en) V-ribbed belt
JP5060248B2 (en) Flat belt
JP7448724B2 (en) power transmission belt
JP2011064257A (en) Transmission belt
JP2009019663A (en) Power transmission belt
JP4885457B2 (en) Friction transmission belt
JP7255006B1 (en) Toothed belt and manufacturing method thereof
JP7235919B2 (en) Toothed belt and manufacturing method thereof
KR102745454B1 (en) Friction transmission belt
WO2023008332A1 (en) Toothed belt and manufacturing method therefor
JP5243834B2 (en) Power transmission belt
JP3151424B2 (en) Toothed belt
JP4966824B2 (en) Friction transmission belt
JP4951574B2 (en) Double V-ribbed belt
JP7160618B2 (en) Pentagonal belt and transmission device using it
JP2010151253A (en) Driving belt
JP7688501B2 (en) Transmission belt

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023507328

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22895704

Country of ref document: EP

Kind code of ref document: A1