[go: up one dir, main page]

WO2023065435A1 - 清洗装置及其清洗方法 - Google Patents

清洗装置及其清洗方法 Download PDF

Info

Publication number
WO2023065435A1
WO2023065435A1 PCT/CN2021/130537 CN2021130537W WO2023065435A1 WO 2023065435 A1 WO2023065435 A1 WO 2023065435A1 CN 2021130537 W CN2021130537 W CN 2021130537W WO 2023065435 A1 WO2023065435 A1 WO 2023065435A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
cooling
gas
semiconductor structure
pipeline
Prior art date
Application number
PCT/CN2021/130537
Other languages
English (en)
French (fr)
Inventor
郗宁
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Publication of WO2023065435A1 publication Critical patent/WO2023065435A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present disclosure relates to but not limited to a cleaning device and a cleaning method thereof.
  • the semiconductor structure In order to ensure the cleanliness of the surface of the semiconductor structure, the semiconductor structure often needs to be cleaned.
  • the manufacturing process of semiconductor structures is becoming increasingly complex, and semiconductor structures with high aspect ratio structures are becoming more and more important.
  • the semiconductor structure is prone to problems such as lateral bending or dimensional change, which reduces the performance and yield of the semiconductor structure.
  • the disclosure provides a cleaning device and a cleaning method thereof.
  • a cleaning device including:
  • the cleaning chamber is configured as a cooling area, a cleaning area and a heating area arranged at intervals in sequence, and the cooling area is located above the heating area;
  • a gas generator for raising the temperature of the heating zone and generating purge gas
  • the fixing component is used to fix the semiconductor structure in the cleaning area, the semiconductor structure has a first surface and a second surface oppositely arranged, and the second surface has a pattern area with a preset aspect ratio, wherein, The second surface faces the direction of the heating region;
  • a cooling component communicated with the cooling area, configured to perform a cooling process on the first surface to condense the cleaning gas entering the graphic area into a cleaning liquid;
  • the recovery component communicates with the cleaning chamber and is used for recovering the re-vaporized cleaning liquid.
  • the gas generator includes a housing having an accommodating chamber and a heating assembly, and the accommodating chamber is used to contain cleaning agent;
  • the heating component is used to raise the temperature of the heating area and heat the cleaning agent to generate the cleaning gas.
  • the housing includes a housing body having an opening and a cover covering the opening;
  • the shell body is provided with a cleaning gas pipeline and a liquid supply pipeline respectively connected with the accommodating cavity, and the clean gas pipeline and the liquid supply pipeline are located on different sides of the shell body, wherein,
  • the cleaning gas pipeline is used to dry the cleaning chamber after cleaning, and the liquid supply pipeline is used to transport the cleaning agent;
  • the cover body is provided with a gas outlet, and the cleaning gas is output from the gas outlet.
  • the projected shape of the cover on the longitudinal section includes one of a conical shape, a semi-elliptical shape and a concave shape.
  • the heating assembly includes a first chuck and a first heater, and the first chuck is disposed in the housing;
  • the first heater is arranged on the housing and connected to the first chuck for heating the first chuck.
  • the cleaning chamber is provided with a first driving member, the output shaft end of the first driving member is connected with the gas generator, and the first driving member is used to adjust the The relative spacing between the gas generator and the fixed assembly.
  • the fixing assembly includes a fixing frame and a fixing rod
  • the fixing rods are arranged on the side of the fixing frame facing the gas generator, the number of the fixing rods is multiple, and the bottom end of each of the fixing rods is provided with a mounting bracket for carrying the semiconductor structure.
  • the fixing part, a plurality of the fixing parts and the fixing frame are enclosed to form an accommodating space;
  • the first surface is disposed facing the fixing frame.
  • the cooling assembly includes a second chuck and a cooling pipeline provided on the second chuck, and the second chuck is connected to the cleaning chamber through a second driving member , the second driving member is used to drive the second chuck to abut against the first surface.
  • the cooling circuit includes a cooling loop and a cooling branch
  • the number of the cooling loops is multiple and arranged concentrically, and the cooling loops are provided with cooling inlets and cooling outlets, wherein the cooling inlets and the cooling outlets are located on different cooling loops;
  • the cooling branches are used to connect adjacent cooling loops, and the number of cooling branches between adjacent cooling loops is different.
  • the recovery assembly includes a vacuum pump and a recovery pipeline, the vacuum pump communicates with the recovery pipeline, the recovery pipeline communicates with the cleaning chamber, and the recovery pipeline is provided with First stop valve.
  • the recovery assembly further includes a purification pipeline, the purification pipeline communicates with the gas generator and the recovery pipeline respectively, and a second shut-off valve is arranged on the purification pipeline.
  • the cleaning device further includes a second heater communicating with the cleaning chamber for drying the cleaning chamber.
  • the preset aspect ratio is greater than or equal to 5.
  • the second aspect of the embodiments of the present disclosure provides a cleaning method for a cleaning device, which is applied to the cleaning device described in the first aspect, and the cleaning method includes:
  • the vaporized cleaning liquid is discharged by using a recovery component.
  • the cleaning method further includes:
  • the cleaned semiconductor structure is removed from the cleaning chamber, and the cleaning chamber is cleaned.
  • Fig. 1 is a schematic diagram of a cleaning device according to an exemplary embodiment.
  • Fig. 2 is a schematic diagram of placing a semiconductor structure in a cleaning device according to an exemplary embodiment.
  • Fig. 3 is a schematic diagram of a second chuck abutting against a semiconductor structure in a cleaning device according to an exemplary embodiment.
  • Fig. 4 is a schematic diagram of cleaning the second surface of the semiconductor structure in a cleaning device according to an exemplary embodiment.
  • Fig. 5 is a schematic diagram of cleaning particulate impurities in a cleaning device according to an exemplary embodiment.
  • Fig. 6 is a schematic diagram showing a process of discharging particulate impurities in a cleaning device according to an exemplary embodiment.
  • Fig. 7 is a schematic diagram of drying a semiconductor structure in a cleaning device according to an exemplary embodiment.
  • Fig. 8 is a schematic diagram of a semiconductor structure removed from a cleaning device according to an exemplary embodiment.
  • Fig. 9 is a schematic diagram showing three structures of the cover body in the cleaning device according to an exemplary embodiment.
  • Fig. 10 is a schematic diagram of a cooling assembly in a cleaning device according to an exemplary embodiment.
  • Fig. 11 is a schematic diagram showing a first distance, a displacement distance and an initial distance in a cleaning device according to an exemplary embodiment.
  • Fig. 12 is a flowchart of a cleaning method for a cleaning device according to an exemplary embodiment.
  • the first driver 10. The second driver;
  • cooling branch 423, cooling inlet
  • the semiconductor structure In order to ensure the cleanliness of the surface of the semiconductor structure, the semiconductor structure often needs to be cleaned.
  • the manufacturing process of semiconductor structures is becoming increasingly complex, and semiconductor structures with high aspect ratio structures are becoming more and more important.
  • the gas generator is used to raise the temperature and generate the cleaning gas.
  • the cleaning gas cleans the second surface with the pattern area on the semiconductor structure.
  • the semiconductor structure is cooled by the cooling component. Cool the first surface of the semiconductor structure to condense the cleaning gas into cleaning liquid, and then recover the re-vaporized cleaning liquid through the recovery component, so as to efficiently clean the pattern area of the semiconductor structure through the state change of the cleaning gas, effectively reducing cleaning
  • the influence of surface capillary tension on the pattern area of semiconductor structure improves the cleaning quality.
  • FIG. 1 shows a schematic diagram of a cleaning device provided according to an exemplary embodiment of the present disclosure. The device is introduced.
  • an exemplary embodiment of the present disclosure provides a cleaning device, including a cleaning chamber 1 .
  • the interior of the cleaning chamber 1 is structured as a cooling zone 11 , a cleaning zone 12 and a heating zone 13 arranged at intervals in sequence, and the cooling zone 11 is located above the heating zone 13 .
  • the cooling area 11 is located at the uppermost position in the cleaning chamber 1 , and a cooling assembly 4 may be arranged in the cooling area 11 .
  • the cleaning area 12 is located between the cooling area 11 and the heating area 13, and the semiconductor structure 6 to be cleaned may be arranged in the cleaning area 12, and the semiconductor structure 6 includes but not limited to a wafer.
  • the heating area 13 is located at the lowest position in the cleaning chamber 1 .
  • the cleaning device further includes a gas generator 2 .
  • the gas generator 2 can be arranged in the heating area 13 ; it can also be arranged outside the cleaning chamber 1 and communicate with the heating area 13 through a heat conduction pipe or the like.
  • the gas generator 2 is used to raise the temperature of the heating area 13 and generate cleaning gas such as water, acid, alkali, organic solvent vapor and the like. Wherein, after the cleaning gas is generated, it will move toward the cleaning area 12 and perform preliminary cleaning on the semiconductor structure located in the cleaning area 12 .
  • the cleaning device further includes a fixing assembly 3 .
  • the fixing component 3 is used to fix the semiconductor structure 6 in the cleaning area 12 .
  • the semiconductor structure 6 includes a first surface 61 and a second surface 62 disposed opposite to each other. There is a pattern area 63 with a preset aspect ratio on the second surface 62 of the semiconductor structure 6.
  • the cleaning device of the present disclosure can well clean the semiconductor structure 6 with a preset aspect ratio, for example, a preset depth The aspect ratio can be greater than or equal to 5. It should be noted that, as shown in FIG. 5 , the semiconductor structure 6 usually undergoes multiple process steps such as film deposition, etching, polishing, etc.
  • the functional surface of the semiconductor structure 6 such as the second surface 62 is formed with a pattern area 63 , and the above process steps may cause various particles of impurities P to accumulate in the pattern area 63 .
  • the second surface 62 of the semiconductor structure 6 is arranged toward the heating region 13 , and the particulate impurities P in the pattern region 63 are cleaned by the cleaning gas generated by the gas generator 2 .
  • the cleaning device further includes a cooling assembly 4 .
  • the cooling assembly 4 is used for performing a cooling process on the first surface 61 of the semiconductor structure 6 to condense the cleaning gas entering the pattern area 63 into a cleaning liquid. It should be noted that when there are particulate impurities P in the pattern area 63, the condensed cleaning liquid will wrap the particulate impurities P. At this time, since the second surface 62 of the semiconductor structure 6 is arranged vertically downward, the wrapping The cleaning liquid with particulate impurities P will flow down along the sidewall of the graphic area 63 due to gravity. Cleaning liquid can be transformed into the cleaning liquid of gaseous form again because of the pressure in the cleaning chamber 1 and the heating effect of gas generator 2 in the process of descending.
  • the cleaning device further includes a recovery assembly 5 .
  • the recovery component 5 communicates with the cleaning chamber 1 and is used for recovering the re-vaporized cleaning liquid, so as to discharge the particulate impurities accumulated in the graphic area 63 to the outside of the cleaning chamber 1 .
  • the heating region 13 is heated by the gas generator 2 to generate cleaning gas, and then the cleaning gas cleans the second surface 62 with the pattern area 63 on the semiconductor structure 6.
  • the The cooling assembly 4 cools the first surface 61 of the semiconductor structure 6, so that the cleaning gas is condensed into a cleaning liquid, and the cleaning liquid wraps the particulate impurities P in the pattern area 63 and flows downward through the action of gravity.
  • the cleaning liquid of particulate impurity P will be vaporized again into a gaseous cleaning liquid, and finally the re-vaporized cleaning liquid is recovered by the recovery component 5 , so that the particulate impurity P is discharged out of the cleaning chamber 1 .
  • the pattern area 63 of the semiconductor structure 6 is efficiently cleaned by using the state change of the cleaning gas, effectively reducing the influence of surface capillary tension on the pattern area 63 of the semiconductor structure 6 during the cleaning process, thereby improving the cleaning quality.
  • the gas generator 2 includes a housing 21 and a heating assembly 22 .
  • the housing 21 has an accommodation cavity, which is used to contain cleaning agents, such as deionized water, acid solution, alkali solution, and some suitable organic solvents, such as but not limited to ethanol, propanol, isophthalic acid, etc. propanol etc.
  • the top of the housing 21 is disposed toward the cleaning area 12 and may directly face the pattern area 63 of the second surface 62 of the semiconductor structure 6 .
  • the heating assembly 22 can be arranged inside the housing 21 or outside the cleaning chamber 1 for heating the heating area 13 and heating the cleaning agent in the chamber so that the cleaning agent generates cleaning gas.
  • the generated cleaning gas will enter the pattern area 63 during the rising process, and fill the surroundings of the particulate impurities P, and then cool the first surface 61 of the semiconductor structure 6 through the cooling assembly 4, and the cleaning gas will condense into a cleaning liquid, and the cleaning liquid
  • the particulate impurities P are wrapped and descended by gravity, thereby cleaning the particulate impurities P out of the pattern area 63 .
  • the housing 21 includes a housing body 211 with an opening and a cover 212 covering the opening.
  • the shell body 211 may include a U-shaped groove, and the interior of the U-shaped groove is configured as an accommodating cavity, and an opening (not shown in the figure) is provided on the top surface of the shell body 211 .
  • a cleaning gas pipeline 7 communicating with the accommodating cavity is provided on the shell body 211 .
  • the semiconductor structure 6 completes the cleaning process, as shown in FIG. deal with.
  • the delivery of the cleaning gas is stopped.
  • the semiconductor structure 6 is moved out of the cleaning chamber 1 by a semiconductor device such as a manipulator.
  • the heating component 22 continues to heat and make the cleaning agent generate cleaning gas. Under the joint action of the cleaning gas and the cleaning gas, the cleaning chamber The interior of chamber 1 undergoes a self-cleaning process.
  • the cleaning gas includes an inert gas.
  • a liquid supply pipeline 8 is also provided on the shell body 211 .
  • One end of the liquid supply pipeline 8 communicates with the housing cavity, and the other end of the liquid supply pipeline 8 can communicate with the first liquid storage tank 81 storing the cleaning agent for transporting the cleaning agent.
  • the liquid supply pipeline 8 can also include an air intake device (not shown in the figure), and the air intake device communicates with the first liquid storage tank 81, so that gas, such as carbon dioxide gas, can be introduced into the first liquid storage tank 81, the first When deionized water is stored in the liquid storage tank 81, feeding carbon dioxide can reduce the surface tension of water molecules, thereby improving the cleaning effect when cleaning the surface of the semiconductor structure 6.
  • the gas feeding is not limited to this, and can also be used Inert gas, and some non-corrosive, non-toxic gases, etc.
  • the cleaning gas pipeline 7 and the liquid supply pipeline 8 are located on different sides of the shell body 211, so as to reasonably arrange various components of the cleaning device.
  • a gas outlet 2121 is provided on the cover 212 .
  • the gas outlet 2121 may be disposed on the top of the cover 212 and opposite to the pattern area 63 of the semiconductor structure 6 .
  • the cleaning gas introduced by the cleaning gas pipeline 7 and the cleaning gas generated by heating the cleaning agent by the heating component 22 are both output from the gas outlet 2121 .
  • the cleaning gas pipeline 7 and the liquid supply pipeline 8 are arranged in the cleaning chamber 1, together with the cover body 212 and the heating assembly 3 provided with the gas outlet 2121, the cleaning efficiency can be effectively improved, and at the same time, the cleaning efficiency can be quickly
  • the drying process of the cleaned semiconductor structure 6 and the subsequent self-cleaning process of the cleaning chamber 1 are realized.
  • the longitudinal section of the cover body 212 is used as the projection plane, and the projection shape of the cover body 212 on the projection plane includes one of a conical shape, a semi-elliptical shape and a concave shape. .
  • there are multiple gas outlets 2121 on the cover 212 and they are uniformly arranged on the cover 212 .
  • the plurality of gas outlets 2121 may be arranged in a circular array, or in a rectangular array, or arranged at intervals, so as to facilitate the uniform delivery of the cleaning gas and/or the cleaning gas to the pattern area 63 of the semiconductor structure 6 In this process, the cleaning gas and/or the time difference between the pattern regions 63 in various regions on the second surface 62 of the semiconductor structure 6 are exposed to the cleaning gas and/or the time difference of the cleaning gas is reduced, thereby reducing the time cost of cleaning and drying the semiconductor structure 6 .
  • the heating assembly 22 includes a first chuck 221 and a first heater 222 .
  • the first chuck 221 may be arranged in the shell body 211 and located below the liquid flow pipeline for cleaning the cleaning liquid in the flow liquid pipeline. for heating.
  • the first chuck 211 may be integrally formed with the shell body 211 and the liquid flow pipeline.
  • the first chuck 221 may include an electrostatic chuck.
  • the first chuck 221 may also be arranged on the bottom surface outside the shell body 211, and a liquid flow pipeline is arranged on the bottom surface inside the shell body 211, that is, the first chuck 221 and the shell body Between 211 is a split structure design.
  • the first heater 222 is disposed on the shell body 211 and connected to the first chuck 221 for heating the first chuck 221 .
  • the first heater 222 can be fixed on the bottom of the housing 21, and the first heater 222 can be a heating tube in the form of electric heating.
  • the first chuck 221 is rapidly heated by the first heater 222 , so that the cleaning agent can be quickly converted into a gaseous cleaning gas, which can effectively reduce the cleaning period for the semiconductor structure 6 .
  • a first driving member 9 is disposed on the cleaning chamber 1 .
  • the output shaft end of the first driving member is connected with the gas generator 2 for adjusting the relative distance between the gas generator 2 and the fixing assembly 3 .
  • the first driving member 9 is connected with the casing 21 in the gas generator 2, and can drive the casing 21 to move up and down in the vertical direction.
  • the first driving member 9 includes a first driving motor, which can realize the adjustment of the first distance L1 between the housing 21 and the semiconductor structure 6, as shown in FIG.
  • the first The length range of the distance L1 is 20mm-50mm, for example, 20mm, 25mm, 30mm, 35mm, 40mm, 45mm, 50mm.
  • the relative spacing between the casing 21 and the semiconductor structure 6 can be adjusted by the first driving member, so that the semiconductor structure 6 is close to the gas generator 2, thereby reducing the temperature of the semiconductor structure 6
  • the temperature of the surface layer of the pattern area 63 is finely adjusted to further improve the quality of cleaning and drying of the semiconductor structure 6 .
  • the fixing assembly 3 includes a fixing frame 31 and a fixing rod 32 , wherein the first surface 61 of the semiconductor structure 6 is disposed facing the fixing frame 31 .
  • fixing rods 32 There are multiple fixing rods 32 , and the plurality of fixing rods 32 are evenly spaced on the fixing frame 31 , and one end of the fixing rods 32 is arranged facing the gas generator 2 .
  • a fixing portion 321 for supporting the semiconductor structure 6 is provided at the bottom end of each fixing rod 32 .
  • a receiving space 33 is formed between the plurality of fixing parts 321 and the fixing frame 31 .
  • the semiconductor structure 6 is disposed in the accommodating space 33 , and the edge of the semiconductor structure 6 overlaps the fixing portion 321 .
  • the triangle formed by the three fixing parts 321 is an isosceles triangle or an equilateral triangle, so that the semiconductor structure 6 can be stably placed in the accommodating space 33 . It should be noted that the semiconductor structure 6 can be placed in the accommodating space 33 by a manipulator in the semiconductor device.
  • a plurality of fixing rods 32 are provided, and the fixing portion 321 at the bottom end of the fixing rods 32 is used to make the placement of the semiconductor structure 6 more stable, so as to prevent the position of the semiconductor structure 6 from shifting during the cleaning process, so as to further improve the performance of the semiconductor structure 6. Cleaning quality of Structure 6.
  • the cooling assembly 4 includes a second chuck 41 and a cooling pipeline 42 disposed on the second chuck 41 .
  • the second chuck 41 is connected to the cleaning chamber 1 through the second driving member 10, wherein the second chuck 41 includes an electrostatic chuck, and the second driving member 10 includes a second driving motor, which is arranged in the cleaning chamber.
  • the output shaft end of the second drive motor passes through the top of the cleaning chamber 1 and the fixing frame 31 downwards and is connected with the second chuck 41 .
  • the second driving member 10 is used to drive the second chuck 41 to abut against the first surface 61 of the semiconductor structure 6 .
  • the semiconductor structure 6 can be stably fixed in the accommodating space through the second chuck 41 that can move up and down and cooperate with a plurality of fixing parts 321, so as to prevent the position of the semiconductor structure 6 from shifting during cleaning. In order to further improve the cleaning quality of the semiconductor structure 6 .
  • the second driving member 10 can drive the second chuck 41 to move up and down, and the displacement distance L2 of the second chuck 41 ranges from 15mm to 30mm, for example, 15mm, 18mm, 20mm, 25 mm, 30 mm, so that the semiconductor structure 6 is placed in the accommodating space 33 , or the semiconductor structure 6 is taken out from the accommodating space 33 .
  • the length of the initial distance L3 ranges from 80 mm to 120 mm, so as to ensure During the heating process, the temperature of each region of the second surface 62 of the semiconductor structure 6 rises uniformly, thereby facilitating subsequent cleaning of the semiconductor structure 6 .
  • the cooling pipeline 42 includes a cooling loop 421 and a cooling branch 422 .
  • the plurality of cooling loops 421 may be arranged on the upper surface and the lower surface of the second chuck 41 , or arranged inside the second chuck 41 .
  • One of the cooling loops 421 is provided with a cooling inlet 423 , and the cooling inlet 423 can communicate with a second liquid storage tank 425 storing cooling liquid through a connecting pipeline.
  • the other cooling loop 421 is provided with a cooling outlet 424, and the cooling outlet 424 can communicate with a second liquid storage tank 425 storing cooling liquid through a connecting pipeline.
  • Adjacent cooling loops 421 communicate with each other through a plurality of cooling branches 422 arranged at intervals. Wherein, along the direction extending from the edge of the second chuck 41 to its center, the number of cooling branches 422 between the adjacent cooling loops 421 in the first position is the same as that of the adjacent cooling loops 421 in the second position. The number of cooling branches 422 between them is different.
  • a complete cooling circulation passage is formed on the second chuck 41 through a plurality of concentrically arranged cooling loops 421 in cooperation with the cooling branch 422, the cooling inlet 423 and the cooling outlet 424, so as to improve the stability of the semiconductor structure.
  • the cooling speed and cooling effect of the first surface 61 of the semiconductor structure 6 increase the condensation speed of the cleaning gas in the pattern area 63 and reduce the cleaning cycle of the semiconductor structure 6 .
  • the recovery assembly 5 includes a vacuum pump 51 and a recovery pipeline 52 .
  • the vacuum pump 51 communicates with the recovery pipeline 52
  • the recovery pipeline 52 communicates with the cleaning chamber 1
  • the recovery pipeline 52 is provided with a first stop valve 53 .
  • the temperature in the recovery pipeline 52 is greater than or equal to the boiling point of the cleaning liquid, for example, it can be greater than 100° C., so as to ensure that the cleaning liquid wrapped with particulate impurities P is always in the form of gas, and then is sucked away by the vacuum pump 51 for recovery.
  • the vacuum pump 51 is used to form a vacuum in the cleaning chamber 1 , and discharge the re-vaporized cleaning liquid wrapped with particulate impurities P to the outside of the cleaning chamber 1 through the recovery pipeline 52 .
  • the recovery pipeline 52 in the cleaning chamber 1 may include a plurality of branch pipelines, and the multiple branch pipelines are evenly spaced on the inside of the inner wall of the cleaning chamber 1 to vaporize the cleaning chamber 1. The cleaning liquid is evenly discharged to the outside of the cleaning chamber 1.
  • the vacuum pump 51, the recovery pipeline 52 and the first shut-off valve 53 can be used to quickly discharge the re-vaporized cleaning liquid wrapped with particulate impurities P to the outside of the cleaning chamber 1, which is convenient for operation and can The cleaning period of the semiconductor structure 6 is effectively reduced.
  • the recovery assembly 5 may further include a purification pipeline 54 . Both ends of the purification pipeline 54 communicate with the casing 21 of the gas generator 2 and the recovery pipeline 52 respectively. It should be noted that part of the cleaning liquid wrapped with particulate impurities may not be vaporized again during the descending process, but enters the accommodating cavity through the gas outlet 2121 on the cover 212 . In this implementation, through the purification pipeline, the part of the cleaning liquid deposited in the casing 21 and wrapped with the particulate impurities P can be discharged out of the cleaning chamber 1 to improve the cleaning quality of the semiconductor structure.
  • a second cut-off valve 55 is provided on the purge pipeline 54 .
  • the cleaning device further includes a second heater 110, and the second heater 110 communicates with the cleaning chamber 1.
  • the second heater 110 communicates with the cleaning chamber 1.
  • the present disclosure provides a cleaning method for a cleaning device in an exemplary embodiment, and the cleaning method includes:
  • Step S100 placing the semiconductor structure in the fixing assembly in the cleaning chamber, so that the second surface of the pattern area with a predetermined aspect ratio on the semiconductor structure is set facing the gas generator.
  • Step S200 Using the gas generator to heat the heating area for the first time, so that the liquid cleaning agent in the gas generator is converted into gaseous cleaning gas to clean the second surface.
  • Step S300 Use the cooling assembly to perform a cooling process on the cleaned first surface of the semiconductor structure to condense the cleaning gas into a cleaning liquid.
  • Step S400 Carrying out a second temperature raising treatment on the heating area by the gas generator, and at the same time adjusting the pressure in the cleaning chamber to vaporize the cleaning liquid again.
  • Step S500 using the recovery component to discharge the vaporized cleaning liquid.
  • step S100 after the semiconductor structure 6 undergoes various process steps, a pattern region 63 with a predetermined aspect ratio is formed on the second surface 62 (ie, the top surface) of the semiconductor structure 6 .
  • the semiconductor structure 6 can be turned over 180 degrees by a semiconductor device such as a manipulator, so that the second surface 62 of the semiconductor structure 6 is set downward.
  • the semiconductor structure 6 is sent to the fixing assembly 3 by the manipulator, the second driving member 10 drives the second chuck 41 to move downward, and cooperates with the fixing parts 321 of a plurality of fixing rods 32 to firmly fix the semiconductor structure 6 in the accommodating space 33 , the graphic area 63 is set facing the gas generator 2 .
  • step S200 use the gas generator 2 to heat the heating region 13 for the first time, so that the liquid cleaning liquid in the housing 21 is converted into a gaseous cleaning liquid to produce cleaning gas, and the cleaning gas passes through the gas of the cover body 212
  • the cleaning gas is discharged from the outlet 2121 , and the cleaning gas enters the pattern area 63 during the rising process, and fills around the particle impurities P in the pattern area 63 .
  • step S300 the cooling pipeline 42 is used to lower the temperature of the second chuck 41, so that the surface temperature of the first surface 61 of the semiconductor structure 6 drops, so that the surface temperature between the first surface 61 and the second surface 62 of the semiconductor structure 6
  • the pressure in the cleaning chamber 1 is controlled to condense the cleaning gas in the pattern area 63 into a cleaning liquid in liquid form, wherein the cleaning liquid is wrapped with particulate impurities P.
  • the cleaning liquid flows out along the sidewall of the structure with a preset aspect ratio in the graphic area 63 .
  • step S400 the second temperature raising process is performed on the heating area by the gas generator 2, and the pressure in the cleaning chamber 1 is adjusted at the same time. Due to the pressure in the cleaning chamber 1 and the high temperature of the first chuck 221 , the cleaning liquid wrapped with particulate impurities P will be transformed into gaseous cleaning liquid again during the descending process.
  • step S500 the pressure in the cleaning chamber 1 is reduced, and the vaporized cleaning liquid is discharged into the cleaning chamber 1 by the vacuum pump 51 in the recovery component 5 .
  • this step S500 also includes: after the cleaning of the semiconductor structure 6 is completed, heating the second chuck 41, and at the same time injecting an inert gas through the cleaning gas pipeline 7 to clean the semiconductor structure 6 after cleaning. Dry processing.
  • the vacuum pump 51 is used to evacuate the cleaning chamber 1 to maintain the vacuum state in the cleaning chamber 1, and then the second driving member 10 drives the second chuck 41 to move upward to release the fixed state of the semiconductor structure 6.
  • the semiconductor structure 6 is turned out of the cleaning chamber 1 by a robot.
  • the second chuck 41 is heated. Then the cleaning gas is introduced through the cleaning gas pipeline 7, and at the same time, the gas generator 2 is used to heat the cleaning agent to generate cleaning gas, and the pressure in the cleaning chamber 1 is increased to perform self-cleaning on the cleaning chamber 1.
  • the cleaning method of the cleaning device of this embodiment uses the gas generator 2 to heat up and generate cleaning gas, and the cleaning gas cleans the second surface 62 with the pattern area 63 on the semiconductor structure 6.
  • the cooling assembly 4 is used to The first surface 61 of the semiconductor structure 6 is cooled to condense the cleaning gas into a cleaning liquid wrapped with particulate impurities P, and then the re-vaporized cleaning liquid is recovered by the recovery component 5, and the semiconductor structure 6 is cleaned by the state change of the cleaning gas.
  • the pattern area 63 of the semiconductor structure 6 is cleaned efficiently, effectively reducing the impact of surface capillary tension on the pattern area 63 of the semiconductor structure 6 during the cleaning process, and improving the cleaning quality.
  • the pattern area of the semiconductor structure is cleaned by changing the state of the cleaning gas, effectively reducing the influence of surface capillary tension on the pattern area during the cleaning process, and improving the cleaning quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

本公开公布了一种清洗装置及其清洗方法,清洗装置包括:清洗腔室、气体发生器、固定组件、冷却组件和回收组件,清洗腔室内设有冷却区域、清洗区域和加热区域;气体发生器用于生成清洗气体;固定组件用于将半导体结构固定于清洗区域;冷却组件用于对半导体结构的第一面执行冷却制程,使进入半导体结构第二面的图形区的清洗气体冷凝为清洗液体;回收组件用于回收再次汽化的清洗液体。

Description

清洗装置及其清洗方法
本公开基于申请号为202111231207.6,申请日为2021年10月22日,申请名称为“清洗装置及其清洗方法”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及但不限于一种清洗装置及其清洗方法。
背景技术
在整个半导体结构的制造过程中,为了保证半导体结构表面的清洁,经常需要对半导体结构进行清洗处理。而随着半导体技术的高速发展,半导体结构的制造工艺日益复杂,具有高深宽比结构的半导体结构愈发重要。
在对高深宽比结构的半导体结构在清洗过程中,半导体结构极易产生侧向弯曲或者尺寸变化等问题,降低了半导体结构的性能和良率。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开提供一种清洗装置及其清洗方法。
本公开实施例的第一方面,提供了一种清洗装置,包括:
清洗腔室,所述清洗腔室内构造成依次间隔设置的冷却区域、清洗区域和加热区域,所述冷却区域位于所述加热区域的上方;
气体发生器,用于对所述加热区域升温并生成清洗气体;
固定组件,用于将半导体结构固定于所述清洗区域中,所述半导体结构具有相对设置的第一面和第二面,所述第二面上具有预设深宽比的图形区,其中,所述第二面朝向所述加热区域的方向;
与所述冷却区域连通的冷却组件,用于对所述第一面执行冷却制程,使进入所述图形区的所述清洗气体冷凝为清洗液体;
回收组件,与所述清洗腔室连通,用于回收再次汽化后的所述清洗液体。
根据本公开的一些实施例,所述气体发生器包括具有容纳腔的壳体和加热组件,所述容纳腔用于盛放清洗剂;
所述加热组件用于对所述加热区域升温,并对所述清洗剂加热以生成所述清洗气体。
根据本公开的一些实施例,所述壳体包括具有开口的壳本体以及盖设在所述开口上的罩体;
所述壳本体上设有分别与所述容纳腔相连通的清洁气体管路和供液管路,所述清洁气体管路和所述供液管路位于所述壳本体的不同侧,其中,所述清洁气体管路用于清洗后对所述清洗腔室进行干燥处理,所述供液管路用于输送所述清洗剂;
所述罩体设置有气体出口,所述清洗气体由所述气体出口向外输出。
根据本公开的一些实施例,所述罩体在纵截面上的投影形状包括圆锥型、半椭圆形和凹型中的一种。
根据本公开的一些实施例,所述气体出口的个数为多个,且均匀布设于所述罩体上。
根据本公开的一些实施例,所述加热组件包括第一卡盘和第一加热器,所述第一卡盘设置于所述壳体内;
所述第一加热器设置在所述壳体上,并与所述第一卡盘连接,用于对所述第一卡盘进行加热。
根据本公开的一些实施例,所述清洗腔室上设有第一驱动件,所述第一驱动件的输出轴端与所述气体发生器连接,所述第一驱动件用于调节所述气体发生器与所述固定组件之间的相对间距。
根据本公开的一些实施例,所述固定组件包括固定架和固定杆;
所述固定杆设置在所述固定架朝向所述气体发生器的一侧,所述固 定杆的个数为多个,每个所述固定杆的底端均设有用于承载所述半导体结构的固定部,多个所述固定部与所述固定架之间围合成容置空间;
其中,所述第一面朝向所述固定架设置。
根据本公开的一些实施例,所述冷却组件包括第二卡盘以及设在所述第二卡盘上的冷却管路,所述第二卡盘通过第二驱动件与所述清洗腔室连接,所述第二驱动件用于驱动所述第二卡盘抵接在所述第一面上。
根据本公开的一些实施例,所述冷却管路包括冷却环路和冷却支路;
所述冷却环路的个数为多个且同心设置,所述冷却环路上设有冷却进口和冷却出口,其中,所述冷却进口和所述冷却出口位于不同的所述冷却环路上;
所述冷却支路用于连接相邻的所述冷却环路,相邻的所述冷却环路之间的所述冷却支路的个数不同。
根据本公开的一些实施例,所述回收组件包括真空泵和回收管路,所述真空泵与所述回收管路连通,所述回收管路与所述清洗腔室连通,所述回收管路上设有第一截止阀。
根据本公开的一些实施例,所述回收组件还包括净化管路,所述净化管路分别与所述气体发生器和所述回收管路连通,所述净化管路上设有第二截止阀。
根据本公开的一些实施例,所述清洗装置还包括第二加热器,所述第二加热器与所述清洗腔室连通,用于对所述清洗腔室进行干燥处理。
根据本公开的一些实施例,所述预设深宽比大于或等于5。
本公开实施例的第二方面,提供了一种清洗装置的清洗方法,应用于如第一方面所述的清洗装置,所述清洗方法包括:
将半导体结构放置于清洗腔室内的固定组件中,使所述半导体结构上具有预设深宽比的图形区的第二面朝向气体发生器设置;
利用所述气体发生器对加热区域进行第一次升温处理,使所述气体发生器内的液态清洗剂转化为气态的清洗气体,以对所述第二面进行清洗;
利用冷却组件对清洗后的所述半导体结构的第一面执行冷却制程, 使所述清洗气体冷凝为清洗液体;
通过所述气体发生器对所述加热区域进行第二次升温处理,同时调整所述清洗腔室内的压力,使所述清洗液体再次汽化;
利用回收组件将汽化后的所述清洗液体排出。
根据本公开的一些实施例,所述清洗方法还包括:
将清洗后的半导体结构自所述清洗腔室中移出,并对所述清洗腔室进行清洗。
本公开的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书,附图以及权利要求书变得明显。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本公开的实施例,并且与描述一起用于解释本公开实施例的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本公开的一些实施例,而不是全部实施例。对于本领域技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。
图1是根据一示例性实施例示出的清洗装置的示意图。
图2是根据一示例性实施例示出的清洗装置中放置半导体结构的示意图。
图3是根据一示例性实施例示出的清洗装置中第二卡盘抵接在半导体结构上的示意图。
图4是根据一示例性实施例示出的清洗装置中对半导体结构的第二面进行清洗的示意图。
图5是根据一示例性实施例示出的清洗装置中对颗粒杂质进行清洗的示意图。
图6是根据一示例性实施例示出的清洗装置中颗粒杂质排出过程的示意图。
图7是根据一示例性实施例示出的清洗装置中对半导体结构进行干燥处理的示意图。
图8是根据一示例性实施例示出的清洗装置中半导体结构移出后的示意图。
图9是根据一示例性实施例示出的清洗装置中罩体的三种结构的示意图。
图10是根据一示例性实施例示出的清洗装置中冷却组件的示意图。
图11是根据一示例性实施例示出的清洗装置中第一距离、位移距离和初始距离的示意图。
图12是根据一示例性实施例示出的清洗装置的清洗方法的流程图。
附图标记:
1、清洗腔室;2、气体发生器;
3、固定组件;4、冷却组件;
5、回收组件;6、半导体结构;
7、清洁气体管路;8、供液管路;
9、第一驱动件;10、第二驱动件;
11、冷却区域;12、清洗区域;
13、加热区域;21、壳体;
22、加热组件;31、固定架;
32、固定杆;33、容置空间
41、第二卡盘;42、冷却管路;
51、真空泵;52、回收管路;
53、第一截止阀;54、净化管路;
55、第二截止阀;61、第一面;
62、第二面;63、图形区;
81、第一储液罐;110、第二加热器;
211、壳本体;212、罩体;
221、第一卡盘;222、第一加热器;
321、固定部;421、冷却环路;
422、冷却支路;423、冷却进口;
424、冷却出口;425、第二储液罐;
2121、气体出口;L1、第一距离;
L2、位移距离;L3、初始距离;
P、颗粒杂质。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在整个半导体结构的制造过程中,为了保证半导体结构表面的清洁,经常需要对半导体结构进行清洗处理。而随着半导体技术的高速发展,半导体结构的制造工艺日益复杂,具有高深宽比结构的半导体结构愈发重要。
但具有高深宽比结构的半导体结构在清洗过程中,由于清洗液中掺杂的化学药剂等的毛细张力在半导体结构干燥过程中会释放较大的作用力,从而使半导体结构中的高深宽比结构极易产生侧向弯曲或者尺寸变化等问题,降低了半导体结构的性能和良率。
本公开实施例的清洗装置及其清洗方法中,利用气体发生器升温并生成清洗气体,清洗气体对半导体结构上具有图形区的第二面进行清洗,在清洗过程中,通过冷却组件对半导体结构的第一面进行冷却,使清洗气体冷凝为清洗液体,而后再通过回收组件对再次汽化后的清洗液体进行回收,从而通过清洗气体的状态变化对半导体结构的图形区进行高效清洗,有效减少清洗过程中表面毛细张力对半导体结构图形区的影响,提高清洗质量。
本公开示例性的实施例中提供一种清洗装置,如图1所示,图1示出了根据本公开一示例性的实施例提供的清洗装置的示意图,下面结合图2-图11对清洗装置进行介绍。
如图1所示,本公开一示例性的实施例提供了一种清洗装置,包括清洗 腔室1。该清洗腔室1内部构造成依次间隔设置的冷却区域11、清洗区域12和加热区域13,冷却区域11位于加热区域13的上方。
冷却区域11位于清洗腔室1内的最上方位置处,冷却区域11内可以设置有冷却组件4。清洗区域12位于冷却区域11和加热区域13之间,在清洗区域12中可以设置有待清洗的半导体结构6,半导体结构6包括但不限于晶圆。加热区域13位于清洗腔室1内的最下方位置处。
继续参照图1,清洗装置中还包括气体发生器2。气体发生器2可以是设置在加热区域13内;也可以是设置在清洗腔室1外,并通过导热管道等与加热区域13连通。该气体发生器2用于对加热区域13升温,并生成清洗气体,例如水、酸、碱、有机溶剂蒸汽等。其中,清洗气体产生后会沿着朝向清洗区域12的方向移动,并对位于清洗区域12内的半导体结构进行初步清洗。
继续参照图1、图5和图7,清洗装置还包括固定组件3。固定组件3用于将半导体结构6固定于清洗区域12内。在一些实施例中,半导体结构6包括相对设置的第一面61和第二面62。在半导体结构6的第二面62上具有预设深宽比的图形区63,在一些实施例中,本公开的清洗装置可以良好地清洗预设深宽比的半导体结构6,例如预设深宽比可以大于或等于5。需要说明的是,参照图5所示,半导体结构6在半导体各个工艺制程中,通常都会经过诸如薄膜沉积、刻蚀、抛光等多道工艺步骤,从而在半导体结构6的功能面比如第二面62上形成有图形区63,而上述工艺步骤中可能会使图形区63内聚集有各种颗粒杂质P等。在本实施例中,将半导体结构6的第二面62朝向加热区域13的方向设置,并通过气体发生器2所产生的清洗气体对图形区63中的颗粒杂质P进行清洗。
参照图1和图10,清洗装置还包括冷却组件4。该冷却组件4用于对半导体结构6的第一面61执行冷却制程,使进入图形区63的清洗气体冷凝为清洗液体。需要说明的是,当图形区63中存在颗粒杂质P时,冷凝后的清洗液体将包裹有颗粒杂质P,此时,由于半导体结构6的第二面62是沿垂直朝下方向设置的,包裹有颗粒杂质P的清洗液体因重力作用会沿着图形区63的侧壁向下流动。清洗液体在下降过程中,会因清洗腔室1内的压力以及气体 发生器2的升温作用下重新转化为气态形式的清洗液体。
参照图1和图6,清洗装置还包括回收组件5。回收组件5与清洗腔室1连通,用于回收再次汽化后的清洗液体,从而将聚集在图形区63中的颗粒杂质排至清洗腔室1外。
本实施例的清洗装置中,通过气体发生器2对加热区域13升温并产生清洗气体,然后清洗气体对对半导体结构6上具有图形区63的第二面62进行清洗,在清洗过程中,通过冷却组件4对半导体结构6的第一面61进行冷却,使清洗气体冷凝为清洗液体,清洗液体包裹住图形区63内的颗粒杂质P并通过重力作用向下流动,在流动过程中,包裹有颗粒杂质P的清洗液体会被再次汽化转化为气态形式的清洗液体,最后通过回收组件5对再次汽化后的清洗液体进行回收,从而将颗粒杂质P排出至清洗腔室1外。本公开实施例中利用清洗气体的状态变化对半导体结构6的图形区63进行高效清洗,有效减少清洗过程中表面毛细张力对半导体结构6的图形区63的影响,从而提高清洗质量。
如图1所示,在一些实施例中,气体发生器2包括壳体21和加热组件22。其中,壳体21内具有容纳腔,该容纳腔用于盛放清洗剂,例如去离子水、酸液、碱液,以及一些合适的有机溶剂等,例如包括但不限于乙醇、丙醇、异丙醇等。需要说明的是,壳体21的顶端朝向清洗区域12设置,并且可以直接与半导体结构6的第二面62的图形区63正对。加热组件22可以是设置在壳体21内,或者是设置在清洗腔室1外,用于对加热区域13升温,并对容纳腔内的清洗剂加热,从而使清洗剂生成清洗气体。生成的清洗气体在上升过程中会进入图形区63内,并充斥在颗粒杂质P的周围,然后通过冷却组件4对半导体结构6的第一面61进行冷却,清洗气体冷凝为清洗液体,清洗液体包裹住颗粒杂质P,并通过重力作用下降,从而将颗粒杂质P清理至图形区63外。
如图3所示,在一些实施例中,壳体21包括具有开口的壳本体211以及盖设在开口上的罩体212。其中,壳本体211可以包括U型槽,该U型槽的内部构造成容纳腔,开口(图中未示出)设置在壳本体211的顶面上。
如图1所示,在壳本体211上设置与容纳腔相连通的清洁气体管路7。 其中,当半导体结构6完成清洗工序后,参照图7所示,在清洁气体管路7中通入清洁气体,以对半导体结构6的第一面61、第二面62以及图形区63进行干燥处理。半导体结构6的干燥处理完成后,停止输送清洁气体。而后,通过机械手等半导体设备将该半导体结构6移出清洗腔室1。在一些实施例中,还可以继续向清洁气体管路7内通入清洁气体,同时,加热组件22继续加热并使清洗剂生成清洗气体,在清洁气体和清洗气体的共同作用下,对清洗腔室1的内部进行自清洗过程。在一些实施例中,清洁气体包括惰性气体。
继续参照图1,在壳本体211上还设置有供液管路8。供液管路8的一端与容纳腔连通,供液管路8的另一端可以与储存有清洗剂的第一储液罐81连通,用于输送清洗剂,进一步地,在一些实施例中,供液管路8还可以包括进气装置(图中未示出),进气装置连通第一储液罐81,从而可以向第一储液罐81中通入气体,例如二氧化碳气体,第一储液罐81中存储有去离子水时,通入二氧化碳可以减少水分子的表面张力,从而提高清洗半导体结构6表面时的清洗效果,当然,通入的气体并不限定于此,还可以使用惰性气体、以及一些无腐蚀性、无毒的气体等。其中,清洁气体管路7与供液管路8位于壳本体211的不同侧,以合理布置清洗装置的各个部件。
参照图1和图6,在罩体212上设置有气体出口2121。气体出口2121可以设置在罩体212的顶端并与半导体结构6的图形区63相对设置。其中,由清洁气体管路7通入的清洁气体以及由加热组件22对清洗剂加热所生成的清洗气体均由气体出口2121向外输出。
在本实施例中,在清洗腔室1内设置清洁气体管路7和供液管路8,配合设置有气体出口2121的罩体212和加热组件3,可有效提高清洗效率,同时也可以快速实现对清洗后的半导体结构6的干燥处理、以及后续清洗腔室1的自清洗过程。
在一些实施例中,如图1和图9所示,以罩体212的纵截面为投影面,罩体212在该投影面上的投影形状包括圆锥型、半椭圆形和凹型中的一种。在本实施例中,罩体212上的气体出口2121的个数为多个,且均匀布设于罩体212上。需要说明的是,多个气体出口2121可以是呈圆周阵 列排布,或者呈矩形阵列排布,或者是间隔设置的,便于清洗气体和/或清洁气体均匀的输送至半导体结构6的图形区63中,减少半导体结构6的第二面62上各个区域的图形区63接触到的清洗气体和/或清洁气体的时间差,从而降低对半导体结构6的清洗和干燥处理的时间成本。
如图1和图2所示,在一些实施例中,加热组件22包括第一卡盘221和第一加热器222。需要说明的是,在壳本体211内可以具有液体流动管路,第一卡盘221可以设置在壳本体211内,并位于液体流动管路的下方,用于对流动液体管路内的清洗液进行加热。在本实施例中,第一卡盘211可以是与壳本体211和液体流动管路一体成型。其中,第一卡盘221可以包括静电卡盘。而在另一实施例中,也可以是将第一卡盘221设置在壳本体211外侧的底面上,壳本体211内部的底面上设置有液体流动管路,即第一卡盘221与壳本体211之间为分体结构设计。
第一加热器222设置在壳本体211上,并与第一卡盘221连接,用于对第一卡盘221进行加热。其中,第一加热器222可以固定于壳体21的底部,第一加热器222可以采用电加热形式的加热管。
本实施例中通过第一加热器222对第一卡盘221进行快速加热,能使清洗剂快速转化为气态形式的清洗气体,能有效减少对半导体结构6的清洗周期。
继续参照图1所示,在清洗腔室1上设置有第一驱动件9。该第一驱动件的输出轴端与气体发生器2连接,用于调节气体发生器2与固定组件3之间的相对间距。其中,第一驱动件9是与气体发生器2中的壳体21连接的,并可带动壳体21沿垂直方向进行上下移动。从而调节壳体21与半导体结构6之间的相对间距。在一些实施例中,第一驱动件9包括第一驱动电机,该第一驱动电机能够实现壳体21与半导体结构6之间的第一距离L1的调节,参照图11所示,该第一距离L1的长度范围为20mm-50mm,例如,20mm、25mm、30mm、35mm、40mm、45mm、50mm。当清洗腔室1内的温度上升至预定温度时,可以通过第一驱动件调整壳体21与半导体结构6之间的相对间距,使得半导体结构6靠近气体发生器2,从而对半导体结构6的图形区63表层的温度进行微调,以进一步提高半导体结构6的清洗质量以及干燥处 理的质量。
如图1至图5所示,固定组件3包括固定架31和固定杆32,其中,半导体结构6的第一面61朝向固定架31设置。
固定杆32的个数为多个,多个固定杆32均匀间隔设置在固定架31上,且固定杆32的一端朝向气体发生器2设置。在每个固定杆32的底端均设有用于承载半导体结构6的固定部321。参照图8所示,多个固定部321与固定架31之间围合成容置空间33。其中,半导体结构6被设置在容置空间33内,并且半导体结构6的边缘搭接在固定部321上。
在一些实施例中,固定杆32的个数至少为三个。当固定杆32的个数为三个时,三个固定部321所形成的三角形为等腰三角形或者等边三角形,以使半导体结构6能够稳定的放置在容置空间33内。需要说明的是,半导体结构6可以通过半导体设备中的机械手放置在容置空间33内。
本实施例中,通过设置多个固定杆32,并利用固定杆32底端的固定部321使半导体结构6的放置更加稳定,避免在清洗过程中半导体结构6的位置发生偏移,以进一步提高半导体结构6的清洗质量。
参照图1所示,在一些实施例中,冷却组件4包括第二卡盘41以及设在第二卡盘41上的冷却管路42。第二卡盘41通过第二驱动件10与清洗腔室1连接,其中,第二卡盘41包括静电卡盘,第二驱动件10包括第二驱动电机,该第二驱动电机设置在清洗腔室1的顶部,第二驱动电机的输出轴端向下依次穿过清洗腔室1的顶部和固定架31后与第二卡盘41连接。第二驱动件10用于驱动第二卡盘41抵接在半导体结构6的第一面61上。在本实施例中,通过可上下移动的第二卡盘41配合多个固定部321,可以将半导体结构6稳定的固定在容置空间内,避免在清洗时半导体结构6的位置发生偏移,以进一步提高半导体结构6的清洗质量。
参照图1和图11所示,其中,第二驱动件10可以带动第二卡盘41上下移动,该第二卡盘41的位移距离L2范围为15mm-30mm,例如,15mm、18mm、20mm、25mm、30mm,以便于半导体结构6被放置于容置空间33中,或者便于半导体结构6从容置空间33中取出。
参照图11所示,需要说明的是,在一些实施例中,第一卡盘221和第二卡盘41之间具有初始距离L3,而该初始距离L3的长度范围为80mm-120mm,以保证在升温过程中,半导体结构6的第二面62的各个区域温度上升的均匀性,从而方便后续对半导体结构6进行清洗。
参照图1和图10所示,在一些实施例中,冷却管路42包括冷却环路421和冷却支路422。冷却环路421的个数为多个,并且多个冷却环路421同心设置。其中,多个冷却环路421可以是设置在第二卡盘41的上表面、下表面,或者是设置在第二卡盘41的内部。其中之一的冷却环路421上设置有冷却进口423,该冷却进口423可以通过连接管路与储存有冷却液的第二储液罐连通425。其中另一的冷却环路421上设置有冷却出口424,该冷却出口424可以通过连接管路与储存有冷却液的第二储液罐425连通。
相邻的冷却环路421之间通过多个间隔设置的冷却支路422连通。其中,沿第二卡盘41的边缘至其中心延伸的方向,第一位置中相邻的冷却环路421之间的冷却支路422的个数与第二位置中相邻的冷却环路421之间的冷却支路422的个数不同。
在本实施例中,通过多个同心设置的冷却环路421配合冷却支路422、冷却进口423和冷却出口424,在第二卡盘41上形成一个完整的冷却循环通路,以提高对半导体结构6的第一面61的冷却速度和冷却效果,提高对图形区63中清洁气体的冷凝速度,减少半导体结构6清洗的周期。
参照图1和图6所示,在一些实施例中,回收组件5包括真空泵51和回收管路52。真空泵51与回收管路52连通,回收管路52与清洗腔室1连通,回收管路52上设有第一截止阀53。其中,回收管路52中温度大于等于清洗液体的沸点,例如可以大于100℃,从而保证包裹有颗粒杂质P的清洗液体始终呈气体,进而经真空泵51抽走,以进行回收。真空泵51用于使清洗腔室1内形成真空,以及将包裹有颗粒杂质P的且再次汽化后的清洗液体通过回收管路52排出至清洗腔室1外。需要说明的是,在清洗腔室1内的回收管路52可以包括多个分支管路,多个分支管路均匀间隔在清洗腔室1的内壁的内侧,以将清洗腔室1内汽化后的清洗液体均 匀的排至清洗腔室1外。
在本实施例中,利用真空泵51、回收管路52和第一截止阀53,能够使包裹有颗粒杂质P的且再次汽化后的清洗液体快速的排出至清洗腔室1外,便于操作,能够有效降低半导体结构6的清洗周期。
参照图1所示,在一些实施例中,回收组件5还可以包括净化管路54。该净化管路54的两端分别与气体发生器2中的壳体21和回收管路52连通。需要说明的是,部分包裹有颗粒杂质的清洗液体在下降过程可能存不会被再次汽化,而是通过罩体212上的气体出口2121进入容纳腔中。在本实施中,通过净化管路,可以将沉积在壳体21中的那部分包裹有颗粒杂质P的清洗液体排出至清洗腔室1外,提高半导体结构的清洗质量。
参照图1所示,其中,为了便于控制净化管路54的导通状态,在净化管路54上设置有第二截止阀55。
在一些实施例中,如图1所示,清洗装置还包括第二加热器110,第二加热器110与清洗腔室1连通,当半导体结构6完成清洗,并被转移处清洗腔室1后,利用第二加热器110对清洗腔室1内进行干燥处理,以便于后续半导体结构6的清洗处理。
如图12所示,本公开以示例性的实施例提供了一种清洗装置的清洗方法,该清洗方法包括:
步骤S100:将半导体结构放置于清洗腔室内的固定组件中,使半导体结构上具有预设深宽比的图形区的第二面朝向气体发生器设置。
步骤S200:利用气体发生器对加热区域进行第一次升温处理,使气体发生器内的液态清洗剂转化为气态的清洗气体,以对第二面进行清洗。
步骤S300:利用冷却组件对清洗后的半导体结构的第一面执行冷却制程,使清洗气体冷凝为清洗液体。
步骤S400:通过气体发生器对加热区域进行第二次升温处理,同时调整清洗腔室内的压力,使清洗液体再次汽化。
步骤S500:利用回收组件将汽化后的清洗液体排出。
示例性地,在步骤S100中,半导体结构6经过多种制程工艺步骤之 后,在半导体结构6的第二面62(即顶面)上形成有预定深宽比的图形区63。其中,半导体结构6在进入清洗腔室1之前,可以通过机械手等半导体设备将该半导体结构6翻转180度,使半导体结构6的第二面62朝下设置。
然后通过机械手将半导体结构6送至固定组件3中,第二驱动件10带动第二卡盘41向下移动,配合多个固定杆32的固定部321将半导体结构6牢固的固定在容置空间33内,使图形区63朝向气体发生器2设置。
在步骤S200中,利用气体发生器2对加热区域13进行第一次升温处理,使壳体21中的液态清洗液转为气态的清洗液,以生产清洗气体,清洗气体通过罩体212的气体出口2121排出,该清洗气体在上升过程中进入图形区63中,并充斥在图形区63的颗粒杂质P周围。
在步骤S300中,利用冷却管路42对第二卡盘41进行降温处理,使得半导体结构6的第一面61的表面温度下降,从而在半导体结构6的第一面61和第二面62之间形成温度差,同时,控制清洗腔室1内的压力,将图形区63内的清洗气体冷凝为液体形式的清洗液体,其中,清洗液体中包裹有颗粒杂质P。而后,通过重力作用,清洗液体沿着图形区63中具有预设深宽比结构的侧壁流出。
在步骤S400中,通过气体发生器2对加热区域进行第二次升温处理,同时调节清洗腔室1内的压力。由于清洗腔室1内的压力和第一卡盘221的高温,使得包裹有颗粒杂质P的清洗液体在下降过程会再次转化为气态形式的清洗液体。
在步骤S500中,降低清洗腔室1内的压力,利用回收组件5中的真空泵51将汽化后的清洗液体排出至清洗腔室1。
需要说明的是,在该步骤S500中,还包括:待半导体结构6清洗完成后,对第二卡盘41加热,同时通过清洁气体管路7通入惰性气体,对清洗之后的半导体结构6进行干燥处理。
干燥处理制程结束后,通过真空泵51对清洗腔室1抽真空,保持清洗腔室1内的真空状态,而后第二驱动件10带动第二卡盘41向上移动,解除半导体结构6的固定状态,利用机械手将半导体结构6从清洗腔室1 中转出。
当半导体结构6自清洗腔室1中移出后,对第二卡盘41加热。而后经清洁气体管路7通入清洁气体,同时利用气体发生器2对清洗剂加热生成清洗气体,并调高清洗腔室1内的压力,对清洗腔室1进行自清洗。
本实施例的清洗装置的清洗方法,利用气体发生器2升温并生成清洗气体,清洗气体对半导体结构6上具有图形区63的第二面62进行清洗,在清洗过程中,通过冷却组件4对半导体结构6的第一面61进行冷却,使清洗气体冷凝为包裹有颗粒杂质P的清洗液体,而后通过回收组件5对再次汽化后的清洗液体进行回收,通过清洗气体的状态变化对半导体结构6的图形区63进行高效清洗,有效减少清洗过程中表面毛细张力对半导体结构6的图形区63的影响,提高清洗质量。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术语“实施例”、“示例性的实施例”、“一些实施方式”、“示意性实施方式”、“示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。
在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
可以理解的是,本公开所使用的术语“第一”、“第二”等可在本公开中用于描述各种结构,但这些结构不受这些术语的限制。这些术语仅用于将第一个结构与另一个结构区分。
在一个或多个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的多个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的结构。在下文中描述了本公开的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本公开。但正如本领域技术人员能够理解的那样,可以不按照这些特定的细节来实现本公开。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本公开实施例的清洗装置及清洗方法中,通过清洗气体的状态变化对半导体结构的图形区进行清洗,有效减少清洗过程中表面毛细张力对图形区的影响,提高清洗质量。

Claims (16)

  1. 一种清洗装置,包括:
    清洗腔室,所述清洗腔室内构造成依次间隔设置的冷却区域、清洗区域和加热区域,所述冷却区域位于所述加热区域的上方;
    气体发生器,用于对所述加热区域升温并生成清洗气体;
    固定组件,用于将半导体结构固定于所述清洗区域中,所述半导体结构具有相对设置的第一面和第二面,所述第二面上具有预设深宽比的图形区,其中,所述第二面朝向所述加热区域的方向;
    与所述冷却区域连通的冷却组件,用于对所述第一面执行冷却制程,使进入所述图形区的所述清洗气体冷凝为清洗液体;
    回收组件,与所述清洗腔室连通,用于回收再次汽化后的所述清洗液体。
  2. 根据权利要求1所述的清洗装置,其中,所述气体发生器包括具有容纳腔的壳体和加热组件,所述容纳腔用于盛放清洗剂;
    所述加热组件用于对所述加热区域升温,并对所述清洗剂加热以生成所述清洗气体。
  3. 根据权利要求2所述的清洗装置,其中,所述壳体包括具有开口的壳本体以及盖设在所述开口上的罩体;
    所述壳本体上设有分别与所述容纳腔相连通的清洁气体管路和供液管路,所述清洁气体管路和所述供液管路位于所述壳本体的不同侧,其中,所述清洁气体管路用于清洗后对所述清洗腔室进行干燥处理,所述供液管路用于输送所述清洗剂;
    所述罩体设置有气体出口,所述清洗气体由所述气体出口向外输出。
  4. 根据权利要求3所述的清洗装置,其中,所述罩体在纵截面上的投影形状包括圆锥型、半椭圆形和凹型中的一种。
  5. 根据权利要求3所述的清洗装置,其中,所述气体出口的个数为 多个,且布设于所述罩体上。
  6. 根据权利要求2所述的清洗装置,其中,所述加热组件包括第一卡盘和第一加热器,所述第一卡盘设置于所述壳体内;
    所述第一加热器设置在所述壳体上,并与所述第一卡盘连接,用于对所述第一卡盘进行加热。
  7. 根据权利要求1所述清洗装置,其中,所述清洗腔室上设有第一驱动件,所述第一驱动件的输出轴端与所述气体发生器连接,所述第一驱动件用于调节所述气体发生器与所述固定组件之间的相对间距。
  8. 根据权利要求1所述的清洗装置,其中,所述固定组件包括固定架和固定杆;
    所述固定杆设置在所述固定架朝向所述气体发生器的一侧,所述固定杆的个数为多个,每个所述固定杆的底端均设有用于承载所述半导体结构的固定部,多个所述固定部与所述固定架之间围合成容置空间;
    其中,所述第一面朝向所述固定架设置。
  9. 根据权利要求1所述的清洗装置,其中,所述冷却组件包括第二卡盘以及设在所述第二卡盘上的冷却管路,所述第二卡盘通过第二驱动件与所述清洗腔室连接,所述第二驱动件用于驱动所述第二卡盘抵接在所述第一面上。
  10. 根据权利要求9所述的清洗装置,其中,所述冷却管路包括冷却环路和冷却支路;
    所述冷却环路的个数为多个且同心设置,所述冷却环路上设有冷却进口和冷却出口,其中,所述冷却进口和所述冷却出口位于不同的所述冷却环路上;
    所述冷却支路用于连接相邻的所述冷却环路,相邻的所述冷却环路之间的所述冷却支路的个数不同。
  11. 根据权利要求1所述的清洗装置,其中,所述回收组件包括真空泵和回收管路,所述真空泵与所述回收管路连通,所述回收管路与所述清洗腔室连通,所述回收管路上设有第一截止阀。
  12. 根据权利要求11所述的清洗装置,其中,所述回收组件还包括 净化管路,所述净化管路分别与所述气体发生器和所述回收管路连通,所述净化管路上设有第二截止阀。
  13. 根据权利要求1所述的清洗装置,其中,所述清洗装置还包括第二加热器,所述第二加热器与所述清洗腔室连通,用于对所述清洗腔室进行干燥处理。
  14. 根据权利要求1-13任一项所述的清洗装置,其中,所述预设深宽比大于或等于5。
  15. 一种清洗装置的清洗方法,应用于如权利要求1-14任一项所述的清洗装置,所述清洗方法包括:
    将半导体结构放置于清洗腔室内的固定组件中,使所述半导体结构上具有预设深宽比的图形区的第二面朝向气体发生器设置;
    利用所述气体发生器对加热区域进行第一次升温处理,使所述气体发生器内的液态清洗剂转化为气态的清洗气体,以对所述第二面进行清洗;
    利用冷却组件对清洗后的所述半导体结构的第一面执行冷却制程,使所述清洗气体冷凝为清洗液体;
    通过所述气体发生器对所述加热区域进行第二次升温处理,同时调整所述清洗腔室内的压力,使所述清洗液体再次汽化;
    利用回收组件将汽化后的所述清洗液体排出。
  16. 根据权利要求15所述的清洗装置的清洗方法,其中,所述清洗方法还包括:
    将清洗后的半导体结构自所述清洗腔室中移出,并对所述清洗腔室进行清洗。
PCT/CN2021/130537 2021-10-22 2021-11-15 清洗装置及其清洗方法 WO2023065435A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111231207.6 2021-10-22
CN202111231207.6A CN116013804A (zh) 2021-10-22 2021-10-22 清洗装置及其清洗方法

Publications (1)

Publication Number Publication Date
WO2023065435A1 true WO2023065435A1 (zh) 2023-04-27

Family

ID=86027483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130537 WO2023065435A1 (zh) 2021-10-22 2021-11-15 清洗装置及其清洗方法

Country Status (2)

Country Link
CN (1) CN116013804A (zh)
WO (1) WO2023065435A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118618668A (zh) * 2024-08-13 2024-09-10 常州常衡德宇粉体集成系统有限公司 一种物料制造生产的防偏移包装设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329748A (zh) * 1998-10-09 2002-01-02 Scp环球技术公司 晶片清洗和蒸汽干燥系统和方法
JP2008218877A (ja) * 2007-03-07 2008-09-18 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
CN101314158A (zh) * 2007-05-28 2008-12-03 爱斯佩克株式会社 清洗干燥装置
CN102969260A (zh) * 2012-11-28 2013-03-13 上海华力微电子有限公司 一种干法化学预清洁工艺机台
CN103650117A (zh) * 2011-07-19 2014-03-19 东京毅力科创株式会社 清洗方法和处理装置以及存储介质
CN104217979A (zh) * 2013-05-28 2014-12-17 东京毅力科创株式会社 基板清洗装置和基板清洗方法
CN107946178A (zh) * 2017-11-22 2018-04-20 奕铭(大连)科技发展有限公司 一种半导体芯片的清洗方法
CN109332252A (zh) * 2018-08-30 2019-02-15 扬州虹扬科技发展有限公司 一种半导体器件清洗工艺及装置
CN113140488A (zh) * 2021-04-21 2021-07-20 瀚天天成电子科技(厦门)有限公司 一种晶片清洗装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329748A (zh) * 1998-10-09 2002-01-02 Scp环球技术公司 晶片清洗和蒸汽干燥系统和方法
JP2008218877A (ja) * 2007-03-07 2008-09-18 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
CN101314158A (zh) * 2007-05-28 2008-12-03 爱斯佩克株式会社 清洗干燥装置
CN103650117A (zh) * 2011-07-19 2014-03-19 东京毅力科创株式会社 清洗方法和处理装置以及存储介质
CN102969260A (zh) * 2012-11-28 2013-03-13 上海华力微电子有限公司 一种干法化学预清洁工艺机台
CN104217979A (zh) * 2013-05-28 2014-12-17 东京毅力科创株式会社 基板清洗装置和基板清洗方法
CN107946178A (zh) * 2017-11-22 2018-04-20 奕铭(大连)科技发展有限公司 一种半导体芯片的清洗方法
CN109332252A (zh) * 2018-08-30 2019-02-15 扬州虹扬科技发展有限公司 一种半导体器件清洗工艺及装置
CN113140488A (zh) * 2021-04-21 2021-07-20 瀚天天成电子科技(厦门)有限公司 一种晶片清洗装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118618668A (zh) * 2024-08-13 2024-09-10 常州常衡德宇粉体集成系统有限公司 一种物料制造生产的防偏移包装设备

Also Published As

Publication number Publication date
CN116013804A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
US9275847B2 (en) Recycling unit and substrate treating apparatus
KR102675393B1 (ko) 기판 처리 방법 및 기판 처리 시스템
US9506695B2 (en) Substrate treating apparatus and method
JP3194036B2 (ja) 乾燥処理装置及び乾燥処理方法
KR101671533B1 (ko) 기판 처리 장치, 기판 처리 방법 및 기억 매체
US20130000144A1 (en) Apparatus for treating substrate and method for discharging supercritical fluid
JP5639686B2 (ja) 基板処理方法
US20130284209A1 (en) Apparatus and method for cleaning substrates
WO2023065435A1 (zh) 清洗装置及其清洗方法
JP2015531546A (ja) ヒューム除去装置及び基板処理装置
CN102237260A (zh) 基板处理装置
TWI431692B (zh) 基板處理方法及基板處理系統
US11495474B2 (en) Apparatus and method for processing substrate
KR101896746B1 (ko) 종형 열처리 장치의 운전 방법, 기억 매체 및 종형 열처리 장치
JP2015156509A (ja) 基板洗浄装置及び基板洗浄方法
US7386944B2 (en) Method and apparatus for drying a wafer, and an apparatus for cleaning and drying a wafer
US20040045188A1 (en) Apparatus for drying a substrate using an isopropyl alcohol vapor
JP6376960B2 (ja) 基板処理装置および基板処理方法
CN113604786A (zh) 半导体设备的加热器及半导体设备
KR102061004B1 (ko) 기판 처리 장치 및 기판 처리 방법
US12020943B2 (en) Substrate processing method and substrate processing apparatus
KR20220095726A (ko) 기판 처리 장치 및 기판 처리 방법
US20030208922A1 (en) Apparatus and method for preventing droplets on wafers during solvent drying process
JP7421593B2 (ja) 基板処理装置
KR102747666B1 (ko) 초임계 유체 저장부 및 이를 포함하는 기판 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21961174

Country of ref document: EP

Kind code of ref document: A1