WO2023063384A1 - 油井用金属管 - Google Patents
油井用金属管 Download PDFInfo
- Publication number
- WO2023063384A1 WO2023063384A1 PCT/JP2022/038193 JP2022038193W WO2023063384A1 WO 2023063384 A1 WO2023063384 A1 WO 2023063384A1 JP 2022038193 W JP2022038193 W JP 2022038193W WO 2023063384 A1 WO2023063384 A1 WO 2023063384A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- pin
- box
- metal pipe
- oil well
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract 9
- 239000002184 metal Substances 0.000 title claims abstract 9
- 239000003129 oil well Substances 0.000 title claims abstract 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract 4
- 239000000654 additive Substances 0.000 claims abstract 4
- 230000000996 additive effect Effects 0.000 claims abstract 4
- 229910052731 fluorine Inorganic materials 0.000 claims abstract 4
- 239000011737 fluorine Substances 0.000 claims abstract 4
- 229910002804 graphite Inorganic materials 0.000 claims abstract 4
- 239000010439 graphite Substances 0.000 claims abstract 4
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims abstract 4
- 229910052919 magnesium silicate Inorganic materials 0.000 claims abstract 4
- 235000019792 magnesium silicate Nutrition 0.000 claims abstract 4
- 239000000391 magnesium silicate Substances 0.000 claims abstract 4
- 239000000843 powder Substances 0.000 claims abstract 4
- 229920005989 resin Polymers 0.000 claims abstract 4
- 239000011347 resin Substances 0.000 claims abstract 4
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract 3
- 239000003822 epoxy resin Substances 0.000 claims abstract 2
- 229920000647 polyepoxide Polymers 0.000 claims abstract 2
- 229910010413 TiO 2 Inorganic materials 0.000 claims 2
- 229910052799 carbon Inorganic materials 0.000 claims 2
- 239000011248 coating agent Substances 0.000 claims 2
- 238000000576 coating method Methods 0.000 claims 2
- 239000000049 pigment Substances 0.000 claims 2
- 238000004040 coloring Methods 0.000 claims 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L15/00—Screw-threaded joints; Forms of screw-threads for such joints
- F16L15/04—Screw-threaded joints; Forms of screw-threads for such joints with additional sealings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L15/00—Screw-threaded joints; Forms of screw-threads for such joints
- F16L15/08—Screw-threaded joints; Forms of screw-threads for such joints with supplementary elements
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/02—Couplings; joints
- E21B17/04—Couplings; joints between rod or the like and bit or between rod and rod or the like
- E21B17/042—Threaded
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B7/00—Connections of rods or tubes, e.g. of non-circular section, mutually, including resilient connections
- F16B7/18—Connections of rods or tubes, e.g. of non-circular section, mutually, including resilient connections using screw-thread elements
- F16B7/182—Connections of rods or tubes, e.g. of non-circular section, mutually, including resilient connections using screw-thread elements for coaxial connections of two rods or tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L15/00—Screw-threaded joints; Forms of screw-threads for such joints
- F16L15/006—Screw-threaded joints; Forms of screw-threads for such joints with straight threads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L58/00—Protection of pipes or pipe fittings against corrosion or incrustation
- F16L58/02—Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
- F16L58/04—Coatings characterised by the materials used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B33/00—Features common to bolt and nut
- F16B33/004—Sealing; Insulation
Definitions
- the present disclosure relates to metal pipes, and more particularly to metal pipes for oil wells.
- Oil well metal pipes have threaded joints. Specifically, in an oil well drilling site, a plurality of oil well pipes are connected according to the depth of the oil well to form an oil well pipe connection body represented by a casing or tubing.
- the oil country tubular goods connecting body is formed by screwing together threaded joints.
- an inspection is performed on the connected body of oil country tubular goods. When conducting an inspection, the oil country tubular goods connecting body is pulled up and unscrewed. Then, the metal oil well pipe is removed from the oil well pipe coupling body by unscrewing and inspected. After inspection, the threaded joints of the metal oil well pipes are screwed together again and reused as a part of the oil well pipe coupling body.
- the oil well metal pipe is equipped with a pin and a box.
- the pin has a pin contact surface including a male thread on the outer peripheral surface of the end of the oil well metal tube.
- the box has a box contact surface including an internal thread on the inner peripheral surface of the end of the metal oil well pipe.
- the male threaded portion and the female threaded portion are also collectively referred to as "threaded portion”.
- the pin contact surfaces may also include pin unthreaded metal contact areas, including pin seal surfaces and pin shoulder surfaces.
- the box contact surfaces may further include box unthreaded metal contacts, including box seal surfaces and box shoulder surfaces.
- the pin contact surface and box contact surface of metal pipes for oil wells are repeatedly subjected to strong friction during screw tightening and screw unscrewing. Therefore, galling (irreparable seizure) is likely to occur on the pin contact surface and the box contact surface when screwing and unscrewing are repeated. Therefore, oil well metal pipes are required to have sufficient durability against friction, that is, to have excellent seizure resistance.
- compound grease containing heavy metal powder called dope has been used to improve the seizure resistance of metal pipes for oil wells.
- the seizure resistance of the oil well metal pipe can be improved.
- heavy metal powders such as Pb, Zn and Cu contained in compound grease may affect the environment. Therefore, there is a demand for the development of metal pipes for oil wells that have excellent anti-seizure properties without using compound grease.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2003-021278
- Patent Document 2 International Publication No. 2006/104251
- the oil well metal pipe disclosed in Patent Document 1 has a threaded joint and is composed of a pin and a box each having a contact surface including a threaded portion and an unthreaded metal contact portion.
- This oil well metal pipe has a solid lubricating coating made of a solid lubricant and a binder on the contact surface of at least one of the pin and the box.
- the secondary particles of the solid lubricant having an equivalent area diameter of 15 to 60 ⁇ m occupy an area ratio of 5 to 90%.
- Patent Literature 1 describes that, as a result, a metal pipe for an oil well can be obtained that can stably ensure seizure resistance and airtightness without applying compound grease.
- the oil well metal pipe disclosed in Patent Document 2 has a threaded joint and is composed of a pin and a box each provided with a contact surface having a threaded portion and an unthreaded metal contact portion.
- the contact surfaces of at least one of the pin and box members have a viscous liquid or semi-solid lubricating coating and a dry solid coating formed thereon.
- Patent Document 2 describes that, as a result, a metal pipe for an oil well can be obtained that suppresses the generation of rust without using compound grease and exhibits excellent anti-seizure properties and airtightness.
- Horizontal drilling is one of drilling methods for oil and natural gas.
- Horizontal drilling is a method in which a vertically drilled oil well is gradually bent horizontally and eventually drilled horizontally along the reservoir of oil and natural gas.
- horizontal wells provide more contact with the oil and gas reservoir, resulting in higher oil and gas production per well.
- the use of horizontal drilling has increased in oil and natural gas drilling. Therefore, there is a demand for an oil well pipe that can be used in a connected oil well pipe for horizontal drilling.
- the oil country tubular goods connecting body bends when the drilling direction changes from vertical to horizontal.
- drilling is advanced while rotating the oil country tubular goods connecting body in the circumferential direction to reach the target storage layer of oil and natural gas. Therefore, especially at the bent portion of the connected oil country tubular goods, the metal oil well pipe is twisted as the connected oil country tubular goods are bent and rotated in the circumferential direction.
- Metal pipes for oil wells tend to loosen when twisted under a high load.
- the oil well metal pipe is mainly twisted in the circumferential direction of the oil well metal pipe.
- oil country tubular goods For oil country tubular goods (OCTG) connections used for horizontal drilling, oil country tubular goods that can be fastened with a higher torque than before are required. If the oil well metal pipe can be tightened with a higher torque than before, the screw joint will not loosen easily. Therefore, the threaded joint is less likely to loosen at the bent portion of the oil country tubular goods connecting body during horizontal excavation.
- OCTG oil country tubular goods
- An object of the present disclosure is to provide an oil well metal pipe that can be fastened with high torque.
- An oil well metal tube comprises: a tube body including a first end and a second end;
- the pipe body is a pin formed at the first end; a box formed at the second end;
- the pin is including a pin contact surface including an externally threaded portion;
- the box is including a box contact surface including an internal thread;
- the oil well metal pipe further comprises: a resin coating on or above at least one of the pin contact surface and the box contact surface;
- the resin coating is Epoxy resin: 40.0 to 97.0% by mass, Hydrous magnesium silicate powder: 3.0 to 50.0% by mass, TiO 2 : 0 to 10.0% by mass, Wax: 0 to 10.0% by mass, Fluorine-based additive: 0 to 20.0% by mass, Graphite: 0 to 10.0% by mass, Antirust pigment: 0 to 30.0% by mass, Coloring pigment: 0 to 10.0% by mass, and Silane coupling agent: Contains 0 to 10.0% by mass and satisfies formula (1).
- CW is the content of the wax in mass%
- CF is the content of the fluorine-based additive in mass%
- CG is the content of the graphite.
- C Mg is the content of the hydrous magnesium silicate powder in mass %
- C TiO2 is the content of TiO 2 in mass %
- C Si is the content of the silane coupling agent by mass. %, respectively.
- the oil well metal pipe according to the present disclosure can be fastened with high torque.
- FIG. 1 is a graph showing the relationship between the coefficient of friction of a resin film containing an epoxy resin and the yield torque.
- FIG. 2 is a graph showing the relationship between the storage elastic modulus of a resin film containing an epoxy resin and the yield torque.
- FIG . 3 shows the content of wax (% by mass) and the content of fluorine-based additive ( 5 is a graph showing the relationship between the total ratio (F1) of the content of graphite (% by mass) and the content of graphite (% by mass), and the storage elastic modulus of the resin coating.
- FIG. 4 is a configuration diagram showing an example of the oil well metal pipe according to this embodiment.
- FIG. 5 is a partial cross-sectional view showing a cross section (longitudinal cross section) parallel to the tube axis direction of the coupling of the oil well metal pipe shown in FIG.
- FIG. 6 is a cross-sectional view of the portion of the metal oil well pipe shown in FIG. 5 in the vicinity of the pin, parallel to the axial direction of the metal oil well pipe.
- FIG. 7 is a cross-sectional view parallel to the pipe axis direction of the oil well metal pipe of the box vicinity portion of the oil well metal pipe shown in FIG. FIG.
- FIG. 8 shows an example of a metal oil well pipe in which the pin includes a male threaded portion and does not include a pin seal surface and a pin shoulder surface, and the box includes a female threaded portion and does not include a box seal surface and a box shoulder surface.
- FIG. 9 is a configuration diagram of an integral type oil well metal pipe according to the present embodiment. 10 is an enlarged view of the pin contact surface shown in FIG. 6; FIG. 11 is an enlarged view of the box contact surface shown in FIG. 7; FIG.
- the inventors investigated metal pipes for oil wells that can be fastened with high torque. As a result, the following findings were obtained.
- FIG. 1 is a graph showing the relationship between the coefficient of friction of a resin coating containing epoxy resin and the yield torque.
- the horizontal axis of FIG. 1 indicates the coefficient of friction ( ⁇ ) of the resin coating containing the epoxy resin.
- the vertical axis in FIG. 1 represents the yield torque (ft.lbs) when screwing the oil well metal pipe on which the resin film containing the epoxy resin is formed.
- the yield torque is the torque at which the threaded joint yields when screwed. A higher yield torque indicates that fastening is possible with a higher torque.
- the correlation coefficient R 2 between the coefficient of friction of the resin coating containing the epoxy resin and the yield torque was 0.144. This means that there is almost no correlation between the friction coefficient of the resin film containing the epoxy resin and the yield torque. Contrary to the expectations of the inventors, it was found that the correlation between the coefficient of friction and the yield torque is low. In other words, it was found that the yield torque could not be increased only by increasing the friction coefficient of the resin coating.
- the inventors further investigated metal pipes for oil wells that can be fastened with high torque.
- the present inventors paid attention to the behavior of the resin film in the final stage of screw tightening.
- the resin films are brought into contact with each other with high surface pressure and slide.
- an external force is applied to the resin coating, and an energy generated by twisting is also applied.
- the resin coating is highly resistant to the energy generated by external forces and torsion, it will resist to maintain its shape even in the final stage of screw tightening. In this case, it is considered that the screw tightening torque increases.
- the inventors considered that it would be effective to increase the dynamic viscoelasticity of the resin coating in order to increase the resistance to the energy generated by the external force and torsion.
- Dynamic viscoelasticity is divided into storage modulus and loss modulus.
- the storage modulus is the component of the energy generated in an object due to external force and strain that is stored inside the object.
- Loss modulus is a component of energy generated in an object due to external force and strain that diffuses to the outside.
- the present inventors considered that the yield torque is affected not by the loss modulus of the resin film but by the storage modulus of the resin film. Therefore, the present inventors investigated the relationship between the storage elastic modulus of the resin coating containing epoxy resin and the yield torque.
- FIG. 2 is a graph showing the relationship between the storage elastic modulus of a resin film containing an epoxy resin and the yield torque.
- the horizontal axis of FIG. 2 indicates the storage modulus (MPa) of the resin film containing the epoxy resin.
- the vertical axis in FIG. 2 indicates the yield torque (ft.lbs) when screwing the oil well metal pipe on which the resin coating containing the epoxy resin is formed.
- the correlation coefficient R 2 between the storage elastic modulus of the resin coating containing the epoxy resin and the yield torque was 0.7082. This means that there is a correlation between the storage modulus of the resin coating containing the epoxy resin and the yield torque. In other words, it was found that the yield torque of the oil well metal pipe can be increased by increasing the storage elastic modulus of the resin coating.
- FIG. 3 is a graph showing the relationship between F1 in a resin coating containing an epoxy resin and the storage elastic modulus of the resin coating.
- FIG. 3 is a partial excerpt of the results of the examples described later.
- the horizontal axis of FIG. 3 indicates F1.
- the vertical axis in FIG. 3 indicates the storage elastic modulus (MPa) of the resin coating.
- the storage elastic modulus of the resin coating is 1.50 MPa or more.
- Epoxy resin has moderate hardness and contains a large amount of oxygen (O) and hydrogen (H) inside.
- O oxygen
- H hydrogen
- hydroxyl groups and metals on the surface of the hydrous magnesium silicate powder and TiO 2 form hydrogen bonds with oxygen (O) and hydrogen (H) contained in the epoxy resin. This increases the storage elastic modulus of the resin coating.
- the silane coupling agent has an alkoxysilyl group and an organic reactive group.
- the alkoxysilyl group and the organic reactive group each chemically bond with the epoxy resin. Therefore, the silane coupling agent cross-links the epoxy resins. This increases the storage elastic modulus of the resin coating.
- Waxes, fluorine-based additives, and graphite do not contain many polar moieties such as oxygen (O), and thus have weak adhesiveness to epoxy resins. Therefore, if the hydrated magnesium silicate powder, TiO 2 and the silane coupling agent are contained in an excess amount relative to the wax, the fluorine-based additive and the graphite, the storage elastic modulus of the resin coating increases.
- O oxygen
- the wax content (% by mass) with respect to the sum of the content (% by mass) of the hydrous magnesium silicate powder, the content (% by mass) of TiO2 , and the content (% by mass) of the silane coupling agent ), the total ratio of the content (% by mass) of the fluorine-based additive and the content (% by mass) of graphite is set to 0.28 or less. This increases the storage elastic modulus of the resin coating.
- An oil well metal pipe a tube body including a first end and a second end;
- the pipe body is a pin formed at the first end; a box formed at the second end;
- the pin is including a pin contact surface including an externally threaded portion;
- the box is including a box contact surface including an internal thread;
- the oil well metal pipe further comprises: a resin coating on or above at least one of the pin contact surface and the box contact surface;
- the resin coating is Epoxy resin: 40.0 to 97.0% by mass, Hydrous magnesium silicate powder: 3.0 to 50.0% by mass, TiO 2 : 0 to 10.0% by mass, Wax: 0 to 10.0% by mass, Fluorine-based additive: 0 to 20.0% by mass, Graphite: 0 to 10.0% by mass, Antirust pigment: 0 to 30.0% by mass, Coloring pigment: 0 to 10.0% by mass, and Silane coupling agent: containing 0 to 10.0% by mass and satisfying the formula (1), Metal pipe for oil wells.
- CW is the content of the wax in mass%
- CF is the content of the fluorine-based additive in mass%
- CG is the content of the graphite.
- C Mg is the content of the hydrous magnesium silicate powder in mass %
- C TiO2 is the content of TiO 2 in mass %
- C Si is the content of the silane coupling agent by mass. %, respectively.
- the pin contact surface further includes a pin seal surface and a pin shoulder surface
- the box contact surface further includes a box seal surface and a box shoulder surface
- Metal pipe for oil wells
- Oil well metal pipes have a well-known configuration.
- Oil well metal pipes include T&C type oil well metal pipes and integral type oil well metal pipes. Each type of oil well metal pipe will be described in detail below.
- FIG. 4 is a configuration diagram showing an example of the oil well metal pipe 1 according to this embodiment.
- FIG. 4 is a configuration diagram of a so-called T&C type (Threaded and Coupled) oil well metal pipe 1 .
- oil well metal pipe 1 includes pipe body 10 .
- the pipe body 10 extends in the pipe axial direction.
- a cross section of the pipe body 10 perpendicular to the pipe axis direction is circular.
- the tube body 10 includes a first end 10A and a second end 10B.
- the first end 10A is the end opposite to the second end 10B.
- a coupling 12 is attached to one end of the pin tube body 11 . More specifically, the coupling 12 is screwed to one end of the pin tube 11 .
- FIG. 5 is a partial cross-sectional view showing a cross section (longitudinal cross section) parallel to the tube axis direction of the coupling 12 of the oil well metal pipe 1 shown in FIG. 4 and 5, tube body 10 includes pin 40 and box 50. As shown in FIG. The pin 40 is formed on the first end portion 10A of the tube body 10 . When fastening, the pin 40 is inserted into the box 50 of another oil well metal pipe 1 (not shown) and fastened to the box 50 of the other oil well metal pipe 1 by screws.
- the box 50 is formed at the second end 10B of the pipe body 10. At the time of fastening, the pin 40 of the other oil well metal pipe 1 is inserted into the box 50 and is fastened with the pin 40 of the other oil well metal pipe 1 by screws.
- FIG. 6 is a cross-sectional view parallel to the pipe axis direction of the oil well metal pipe 1 of the portion near the pin 40 of the oil well metal pipe 1 shown in FIG.
- a broken line portion in FIG. 6 shows the configuration of the box 50 of another oil well metal pipe 1 when fastening with another oil well metal pipe 1 .
- the pin 40 has a pin contact surface 400 on the outer peripheral surface of the first end 10A of the pipe body 10. As shown in FIG. The pin contact surface 400 is screwed into the box 50 of the other oil well metal pipe 1 and comes into contact with the box contact surface 500 (described later) of the box 50 when fastening with the other oil well metal pipe 1 .
- the pin contact surface 400 includes at least a male threaded portion 41 formed on the outer peripheral surface of the first end portion 10A.
- Pin contact surface 400 may further include pin seal surface 42 and pin shoulder surface 43 .
- the pin shoulder surface 43 is arranged on the distal end surface of the first end portion 10A, and the pin seal surface 42 is located closer to the distal end side of the first end portion 10A than the male thread portion 41 on the outer peripheral surface of the first end portion 10A. are placed. That is, the pin seal surface 42 is arranged between the male threaded portion 41 and the pin shoulder surface 43 .
- the pin seal surface 42 is provided in a tapered shape. Specifically, the outer diameter of the pin seal surface 42 gradually decreases from the male threaded portion 41 toward the pin shoulder surface 43 in the longitudinal direction (pipe axis direction) of the first end portion 10A.
- the pin seal surface 42 contacts the box seal surface 52 (described later) of the box 50 of the other oil well metal pipe 1 . More specifically, when the pin 40 is inserted into the box 50 of the other metal pipe 1 for oil wells, the pin seal surface 42 comes into contact with the box seal surface 52 . By further screwing the pin 40 into the box 50 of the other oil well metal pipe 1 , the pin seal surface 42 is brought into close contact with the box seal surface 52 . As a result, during fastening, the pin seal surface 42 is in close contact with the box seal surface 52 to form a seal based on metal-to-metal contact. Therefore, the airtightness can be improved in the metal pipes 1 for oil wells that are fastened to each other.
- the pin shoulder surface 43 is arranged on the tip surface of the first end portion 10A. That is, in the pin 40 shown in FIG. 6, the male threaded portion 41, the pin seal surface 42, and the pin shoulder surface 43 are arranged in order from the center of the pipe body 10 toward the first end portion 10A.
- the pin shoulder surface 43 faces and comes into contact with the box shoulder surface 53 (described later) of the box 50 of the other oil well metal pipe 1 . More specifically, when the pin 40 is inserted into the box 50 of the other oil well metal pipe 1 , the pin shoulder surface 43 comes into contact with the box shoulder surface 53 during fastening. Thereby, high torque can be obtained at the time of fastening. Also, the positional relationship between the pin 40 and the box 50 in the fastened state can be stabilized.
- pin contact surface 400 of the pin 40 includes at least the male threaded portion 41 . That is, pin contact surface 400 may include external threads 41 and not include pin seal surface 42 and pin shoulder surface 43 . Pin contact surface 400 includes external threads 41 and pin shoulder surface 43 and may not include pin seal surface 42 . Pin contact surface 400 may include external threads 41 and pin seal surface 42 and may not include pin shoulder surface 43 .
- FIG. 7 is a cross-sectional view parallel to the pipe axis direction of the oil well metal pipe 1 of the box 50 vicinity portion of the oil well metal pipe 1 shown in FIG.
- a broken line portion in FIG. 7 shows the configuration of the pin 40 of another oil well metal pipe 1 when fastening with another oil well metal pipe 1 .
- box 50 has a box contact surface 500 on the inner peripheral surface of second end 10B of tube body 10 .
- the pin 40 of the other oil well metal pipe 1 is screwed into the box contact surface 500 and contacts the pin contact surface 400 of the pin 40 when the box contact surface 500 is fastened with the other oil well metal pipe 1 .
- the box contact surface 500 includes at least a female threaded portion 51 formed on the inner peripheral surface of the second end portion 10B. At the time of fastening, the female threaded portion 51 meshes with the male threaded portion 41 of the pin 40 of the other oil well metal pipe 1 .
- the box contact surface 500 may further include a box sealing surface 52 and a box shoulder surface 53.
- the box seal surface 52 is arranged closer to the pipe main body 10 than the female threaded portion 51 on the inner peripheral surface of the second end portion 10B. That is, the box seal surface 52 is arranged between the female threaded portion 51 and the box shoulder surface 53 .
- the box seal surface 52 is tapered. Specifically, in the box seal surface 52, the inner diameter gradually decreases from the female threaded portion 51 toward the box shoulder surface 53 in the longitudinal direction (pipe axis direction) of the second end portion 10B.
- the box seal surface 52 When fastening with another oil well metal pipe 1 , the box seal surface 52 contacts the pin seal surface 42 of the pin 40 of the other oil well metal pipe 1 . More specifically, when the pin 40 of the other oil well metal pipe 1 is screwed into the box 50 at the time of fastening, the box seal surface 52 comes into contact with the pin seal surface 42, and further screwing causes the box seal surface 52 is in close contact with the pin seal surface 42 . As a result, during fastening, the box seal surface 52 is in close contact with the pin seal surface 42 to form a seal based on metal-to-metal contact. Therefore, the airtightness can be improved in the metal pipes 1 for oil wells that are fastened to each other.
- the box shoulder surface 53 is arranged closer to the pipe main body 10 than the box seal surface 52 is. That is, in the box 50, the box shoulder surface 53, the box seal surface 52, and the internal thread portion 51 are arranged in this order from the center of the pipe body 10 toward the tip of the second end portion 10B.
- the box shoulder surface 53 faces and contacts the pin shoulder surface 43 of the pin 40 of the other oil well metal pipe 1 . More specifically, when fastening, the box shoulder surface 53 contacts the pin shoulder surface 43 by inserting the pin 40 of the other oil well metal pipe 1 into the box 50 . Thereby, high torque can be obtained at the time of fastening. Also, the positional relationship between the pin 40 and the box 50 in the fastened state can be stabilized.
- the box contact surface 500 includes at least the female threaded portion 51 .
- the female threaded portion 51 of the box contact surface 500 of the box 50 corresponds to the male threaded portion 41 of the pin contact surface 400 of the pin 40 and contacts the male threaded portion 41 .
- Box seal surface 52 corresponds to pin seal surface 42 and contacts pin seal surface 42 .
- Box shoulder surface 53 corresponds to pin shoulder surface 43 and contacts pin shoulder surface 43 .
- the box contact surface 500 includes the female threaded portion 51 and does not include the box seal surface 52 and the box shoulder surface 53. If pin contact surface 400 includes external threads 41 and pin shoulder surface 43 but does not include pin seal surface 42 , box contact surface 500 includes internal threads 51 and box shoulder surface 53 but does not include box seal surface 52 . If pin contact surface 400 includes male threads 41 and pin seal surface 42 but does not include pin shoulder surface 43 , box contact surface 500 includes female threads 51 and box seal surface 52 but does not include box shoulder surface 53 .
- the pin contact surface 400 may include multiple external threads 41 , multiple pin seal surfaces 42 , or multiple pin shoulder surfaces 43 .
- the pin shoulder surface 43, the pin seal surface 42, the male threaded portion 41, the pin seal surface 42, the pin shoulder surface 43, the pin seal surface from the tip of the first end portion 10A toward the center of the pipe body 10. 42 and the male threaded portion 41 may be arranged in this order.
- the box contact surface 500 of the box 50 from the tip of the second end portion 10B toward the center of the pipe body 10, the female threaded portion 51, the box sealing surface 52, the box shoulder surface 53, the box sealing surface 52, the female threaded portion. 51 , box sealing surface 52 , and box shoulder surface 53 .
- the pin 40 includes a male threaded portion 41, a pin seal surface 42 and a pin shoulder surface 43
- the box 50 includes a female threaded portion 51, a box seal surface 52 and a box shoulder surface 53.
- pin 40 may include external threads 41 and not include pin seal surface 42 and pin shoulder surface 43
- box 50 includes internal threads 51 and does not include box seal surface 52 and box shoulder surface 53
- FIG. 8 shows that pin 40 includes male threaded portion 41 and does not include pin seal surface 42 and pin shoulder surface 43
- box 50 includes female threaded portion 51 and does not include box seal surface 52 and box shoulder surface 53. It is a figure which shows an example of the metal pipe 1 for oil wells.
- the oil well metal pipe 1 shown in FIGS. 4, 5 and 8 is a so-called T&C type oil well metal pipe 1 in which a pipe body 10 includes a pin pipe body 11 and a coupling 12 .
- the oil well metal pipe 1 of the present embodiment may be of the integral type instead of the T&C type.
- FIG. 9 is a configuration diagram of an integral type oil well metal pipe 1 according to this embodiment.
- an integral type oil well metal pipe 1 includes a pipe body 10 .
- the tube body 10 includes a first end 10A and a second end 10B.
- the first end 10A is arranged opposite to the second end 10B.
- the pipe body 10 includes the pin pipe body 11 and the coupling 12 . That is, in the T&C type oil well metal pipe 1, the pipe body 10 is configured by fastening two separate members (the pin pipe body 11 and the coupling 12).
- the pipe main body 10 is integrally formed.
- the pin 40 is formed on the first end portion 10A of the pipe body 10. At the time of fastening, the pin 40 is inserted and screwed into the box 50 of the other integral type oil well metal pipe 1 and fastened to the box 50 of the other integral type oil well metal pipe 1 .
- a box 50 is formed at the second end 10B of the tube body 10 . At the time of fastening, the pin 40 of the other integral type oil well metal pipe 1 is inserted and screwed into the box 50 to be fastened with the pin 40 of the other integral type oil well metal pipe 1 .
- the configuration of the pin 40 of the integral type oil well metal tube 1 is the same as the configuration of the pin 40 of the T&C type oil well metal tube 1 shown in FIG.
- the configuration of the box 50 of the integral type oil well metal pipe 1 is the same as the configuration of the box 50 of the T&C type oil well metal pipe 1 shown in FIG. 6 and 7, in the pin 40, the pin shoulder surface 43, the pin seal surface 42, and the male screw portion 41 are arranged in this order from the tip of the first end portion 10A toward the center of the pipe body 10.
- the female screw portion 51, the box seal surface 52, and the box shoulder surface 53 are arranged in this order.
- the pin contact surface 400 of the pin 40 of the integral type oil well metal tube 1 should include at least the male threaded portion 41. good.
- the box contact surface 500 of the box 50 of the integral type oil well metal pipe 1 should include at least the female screw portion 51. good.
- the oil well metal pipe 1 of this embodiment may be of the T&C type or the integral type.
- the oil well metal pipe 1 of this embodiment has a resin coating 100 on or above at least one of the pin contact surface 400 and the box contact surface 500 .
- FIG. 10 is an enlarged view of pin contact surface 400 shown in FIG.
- FIG. 11 is an enlarged view of the box contact surface 500 shown in FIG.
- the oil well metal pipe 1 according to this embodiment may have a resin coating 100 on both the pin contact surface 400 and the box contact surface 500 .
- the oil well metal pipe 1 according to this embodiment may be provided with the resin coating 100 only on either the pin contact surface 400 or the box contact surface 500 . For example, as shown in FIG.
- the oil well metal pipe 1 has the resin coating 100 on the pin contact surface 400 and/or the box contact surface 500 .
- the resin coating 100 has the following composition.
- Epoxy resin 40.0 to 97.0% by mass
- Epoxy resin is the base material of the resin coating 100 .
- the base material means the component contained in the resin film 100 in the largest amount.
- Epoxy resin has moderate hardness and contains a large amount of oxygen (O) and hydrogen (H) inside. Therefore, the epoxy resin easily forms hydrogen bonds with hydroxyl groups exposed on the surface of hydrous magnesium silicate powder and TiO 2 and metals such as magnesium and titanium.
- the epoxy resin also chemically bonds with the silane coupling agent. If the content of the epoxy resin is less than 40.0% by mass, the hardness of the resin coating 100 is lowered, and the resin coating 100 tends to peel off when the screws are repeatedly tightened and unscrewed.
- the content of the epoxy resin exceeds 97.0% by mass, the seizure resistance and yield torque of the metal pipe 1 for oil wells may be reduced because a sufficient amount of other components including the hydrated magnesium silicate powder cannot be contained.
- the content of epoxy resin is 40.0 to 97.0% by mass.
- a preferable lower limit of the content of the epoxy resin is 43.0% by mass, more preferably 45.0% by mass, and still more preferably 50.0% by mass.
- a preferable upper limit of the content of the epoxy resin is 95.0% by mass, more preferably 90.0% by mass, and still more preferably 89.0% by mass.
- Hydrous magnesium silicate powder 3.0 to 50.0% by mass
- the hydrated magnesium silicate powder increases the storage elastic modulus of the resin coating 100 .
- Polar groups containing hydroxyl groups and magnesium are exposed on the surface of the hydrated magnesium silicate powder. Therefore, the hydrated magnesium silicate powder easily forms hydrogen bonds with oxygen (O) and hydrogen (H) inside the epoxy resin. It is believed that the hydrous magnesium silicate powder forms hydrogen bonds in the epoxy resin, thereby increasing the storage modulus of the resin coating 100 . If the content of the hydrated magnesium silicate powder is less than 3.0% by mass, the above effects cannot be obtained. On the other hand, if the content of the hydrated magnesium silicate powder exceeds 50.0% by mass, the formation of the resin coating 100 becomes defective.
- the content of the hydrous magnesium silicate powder is 3.0 to 50.0% by mass.
- a preferred lower limit for the content of the hydrated magnesium silicate powder is 5.0% by mass, more preferably 7.0% by mass, and still more preferably 10.0% by mass.
- a preferable upper limit of the content of the hydrated magnesium silicate powder is 45.0% by mass, more preferably 40.0% by mass, and still more preferably 35.0% by mass.
- TiO 2 0 to 10.0% by mass
- TiO 2 is an optional component and need not be included. When included, TiO 2 increases the storage modulus of resin coating 100 .
- TiO2 is powder. Polar groups containing hydroxyl groups and titanium are exposed on the surface of the TiO 2 powder. Therefore, TiO 2 easily forms hydrogen bonds with oxygen (O) and hydrogen (H) inside the epoxy resin. It is believed that the storage modulus of the resin coating 100 is increased by TiO 2 forming hydrogen bonds within the epoxy resin.
- the content of TiO 2 exceeds 10.0% by mass, there is a possibility that abrasive wear will be accelerated and the seizure resistance of the oil well metal pipe 1 will be reduced. Therefore, the content of TiO 2 is 0-10.0 mass %.
- the lower limit of the content of TiO 2 is preferably 0.1% by mass, more preferably 0.2% by mass, still more preferably 0.5% by mass.
- the upper limit of the content of TiO 2 is preferably 5.0% by mass, more preferably 4.0% by mass, and still more preferably 3.0% by mass.
- Wax is a component that is optionally contained, and may not be contained.
- the wax enhances the lubricity of the resin coating 100 .
- the wax content is 0 to 10.0% by mass.
- the lower limit of the wax content is preferably 1.0% by mass, more preferably 2.0% by mass, and still more preferably 3.0% by mass.
- the upper limit of the wax content is preferably 9.0% by mass, more preferably 8.0% by mass, and still more preferably 5.0% by mass.
- the wax is, for example, one or more selected from the group consisting of animal waxes, vegetable waxes, mineral waxes and synthetic waxes. More specifically, waxes include beeswax, spermaceti (or animal wax), Japan wax, carnauba wax, candelilla wax, rice wax (or vegetable wax), paraffin wax, microcrystalline wax, petrolatum, montan wax, One or more selected from the group consisting of ozokerite, ceresin (all minerals), oxidized wax, polyethylene wax, polypropylene wax, Fischer-Tropsch wax, amide wax, hardened castor oil (castor wax) (all synthetic waxes) is. More preferably, the wax is one or more selected from the group consisting of polyethylene wax and polypropylene wax.
- the resin coating 100 may contain multiple types of wax. When multiple types of wax are contained, the wax content refers to the total content of the multiple types of wax.
- Fluorine-based additive 0 to 20.0% by mass
- a fluorine-based additive is a component that is arbitrarily contained, and does not have to be contained. When contained, the fluorine-based additive enhances the lubricity of the resin coating 100 . However, if the content of the fluorine-based additive exceeds 20.0% by mass, the hardness of the resin coating 100 is lowered, and the resin coating 100 tends to peel off when the screws are repeatedly tightened and unscrewed. Therefore, the content of the fluorine-based additive is 0 to 20.0% by mass.
- the lower limit of the content of the fluorine-based additive is preferably 1.0% by mass, more preferably 5.0% by mass, and still more preferably 8.0% by mass.
- the upper limit of the content of the fluorine-based additive is preferably 18.0% by mass, more preferably 15.0% by mass, and still more preferably 10.0% by mass.
- Fluorine-based additives are a general term for additives containing fluorine.
- the fluorine-based additive is, for example, one or more selected from the group consisting of perfluoropolyether (PFPE) and polytetrafluoroethylene (PTFE).
- PFPE perfluoropolyether
- PTFE polytetrafluoroethylene
- the resin coating 100 may contain a plurality of types of fluorine-based additives. When multiple types of fluorine-based additives are contained, the content of the fluorine-based additive refers to the total content of the multiple types of fluorine-based additives.
- Graphite 0 to 10.0% by mass
- graphite is a component that is optionally contained and may not be contained.
- graphite enhances the lubricity of the resin coating 100 .
- the content of graphite is 0 to 10.0% by mass.
- the lower limit of the graphite content is preferably 1.0% by mass, more preferably 3.0% by mass, and still more preferably 5.0% by mass.
- the upper limit of the graphite content is preferably 9.0% by mass, more preferably 8.0% by mass, and still more preferably 7.0% by mass.
- Antirust pigment 0 to 30.0% by mass
- the rust preventive pigment is a component that is optionally contained, and does not have to be contained.
- the rust preventive pigment enhances the rust preventiveness of the resin coating 100 .
- the content of the antirust pigment exceeds 30.0% by mass, the formation of the resin coating 100 becomes defective. Therefore, the content of the rust preventive pigment is 0 to 30.0% by mass.
- the lower limit of the content of the rust preventive pigment is preferably 1.0% by mass, more preferably 2.0% by mass, and still more preferably 4.0% by mass.
- the upper limit of the content of the rust preventive pigment is preferably 25.0% by mass, more preferably 20.0% by mass, and still more preferably 10.0% by mass.
- the rust preventive pigment is not particularly limited as long as it is a known pigment that enhances the rust preventiveness of the resin coating 100 .
- the antirust pigment is, for example, one or more selected from the group consisting of zinc phosphate, aluminum tripolyphosphate, aluminum phosphite, carboxylic acid metal soap, and sulfonate.
- the resin coating 100 may contain a plurality of types of antirust pigments. When a plurality of types of rust preventive pigments are contained, the content of the rust preventive pigments means the total content of the plurality of types of rust preventive pigments.
- Coloring pigment 0 to 10.0% by mass
- a color pigment is a component that is optionally contained, and does not have to be contained. When contained, the coloring pigment colors the resin coating 100 and makes damage to the resin coating 100 easier to see. However, if the content of the coloring pigment exceeds 10.0% by mass, the resin film 100 is poorly formed. Therefore, the content of the coloring pigment is 0 to 10.0% by mass.
- the lower limit of the content of the color pigment is preferably 0.1% by mass, more preferably 0.2% by mass, and still more preferably 0.5% by mass.
- the upper limit of the content of the color pigment is preferably 8.0% by mass, more preferably 5.0% by mass, and still more preferably 3.0% by mass.
- the coloring pigment is not particularly limited as long as it is a known pigment that can color the resin coating 100 .
- the coloring pigment is, for example, one or more selected from the group consisting of phthalocyanine copper, zinc oxide, carbon black, yellow iron oxide, iron oxide, and chromium hydroxide.
- the resin coating 100 may contain multiple types of color pigments. When multiple types of color pigments are contained, the content of the color pigments refers to the total content of the multiple types of color pigments.
- Silane coupling agent 0 to 10.0% by mass
- a silane coupling agent is a component that is optionally contained, and may not be contained. When contained, the silane coupling agent enhances adhesion of the resin coating 100 . As a result, peeling of the resin coating 100 is suppressed when the oil well metal pipe 1 is repeatedly screwed and unscrewed.
- the silane coupling agent also crosslinks the epoxy resin to increase the storage modulus of the resin coating 100 . However, if the content of the silane coupling agent exceeds 10.0% by mass, the formation of the resin coating 100 becomes defective. Therefore, the content of the silane coupling agent is 0 to 10.0% by mass.
- the lower limit of the content of the silane coupling agent is preferably 0.1% by mass, more preferably 0.2% by mass, and still more preferably 0.5% by mass.
- the upper limit of the content of the silane coupling agent is preferably 8.0% by mass, more preferably 6.0% by mass, and still more preferably 4.0% by mass.
- Other components 0 to 10.0% by mass
- Other components are components that are arbitrarily contained and do not have to be contained.
- Other components are, for example, one or more selected from the group consisting of preservatives and antioxidants.
- the total content of the other components is 10.0% by mass or less. That is, the total content of other components is 0 to 10.0% by mass.
- the resin film 100 contains epoxy resin: 40.0 to 97.0% by mass, hydrated magnesium silicate powder: 3.0 to 50.0% by mass, TiO 2 : 0 to 10.0% by mass, and wax: 0 to 10.0% by mass. 0% by mass, fluorine-based additive: 0 to 20.0% by mass, graphite: 0 to 10.0% by mass, antirust pigment: 0 to 30.0% by mass, coloring pigment: 0 to 10.0% by mass,
- the resin coating 100 may be composed of silane coupling agent: 0 to 10.0% by mass and other components: 0 to 10.0% by mass.
- the resin coating 100 satisfies the formula (1).
- CW is the content of the wax in mass%
- CF is the content of the fluorine-based additive in mass%
- CG is the content of the graphite
- C Mg is the content of the hydrous magnesium silicate powder in mass %
- C TiO2 is the content of TiO 2 in mass %
- C Si is the content of the silane coupling agent by mass. %, respectively.
- the upper limit of F1 is preferably 0.25, more preferably 0.20, still more preferably 0.15, still more preferably 0.10. F1 may be 0.
- the storage elastic modulus of the resin coating 100 increases when the composition of the resin coating 100 satisfies the formula (1). As a result, the yield torque of the oil well metal pipe 1 provided with the resin coating 100 is increased.
- the storage elastic modulus of the resin coating 100 is not particularly limited, it is preferably higher. If the storage elastic modulus of the resin coating 100 is 1.50 MPa or more, the yield torque of the oil well metal pipe 1 provided with the resin coating 100 can be significantly increased. Therefore, preferably, the storage elastic modulus of the resin coating 100 is 1.50 MPa or more.
- the lower limit of the storage modulus of the resin coating 100 is more preferably 1.55 MPa, more preferably 1.70 MPa, still more preferably 2.00 MPa.
- the upper limit of the storage modulus of the resin coating 100 is not particularly limited, it is, for example, 10.00 MPa.
- the storage elastic modulus of the resin coating 100 is measured by the following method.
- a composition for forming the resin coating 100 is sandwiched between hot plates and geometry of a rotary rheometer.
- the storage modulus is measured when the geometry is rotated in one direction at a constant speed.
- the specimen is set at room temperature, rapidly heated to 210°C, and held at 210°C for 20 minutes to measure the storage elastic modulus.
- Measurement conditions are as follows. Measurement temperature: 210°C, timing for measuring storage modulus: 20 minutes after the start of measurement, frequency: 1 Hz, environment: under nitrogen gas.
- the thickness of the resin coating 100 is not particularly limited.
- the thickness of the resin coating 100 is, for example, 1-100 ⁇ m. In this case, the yield torque of the oil well metal pipe 1 can be increased more stably.
- the lower limit of the thickness of the resin coating 100 is preferably 2 ⁇ m, more preferably 5 ⁇ m, and still more preferably 10 ⁇ m.
- the upper limit of the thickness of the resin coating 100 is preferably 50 ⁇ m, more preferably 40 ⁇ m, and even more preferably 30 ⁇ m.
- the thickness of the resin coating 100 is measured by the following method.
- a probe of an electromagnetic induction type film thickness measuring device is brought into contact with the pin contact surface 400 or the box contact surface 500 on which the resin film 100 is formed.
- the probe has an electromagnet, and when a magnetic body is brought close to it, electromagnetic induction occurs, and the voltage changes depending on the distance between the probe and the magnetic body.
- the thickness of the resin coating 100 is obtained from the change in the amount of voltage.
- the measurement points are 12 points (0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300°, 12 points of 330°). Let the arithmetic average of the measurement results of 12 points be the thickness of the resin coating 100 .
- the chemical composition of the pipe main body 10 of the oil well metal pipe 1 according to this embodiment is not particularly limited. That is, in the present embodiment, the steel type of the pipe main body 10 of the oil well metal pipe 1 is not particularly limited.
- the pipe body 10 may be made of, for example, carbon steel, stainless steel, alloys, or the like. That is, the oil well metal pipe 1 may be a steel pipe made of an Fe-based alloy, or may be an alloy pipe represented by a Ni-based alloy pipe.
- the steel pipe is, for example, a low-alloy steel pipe, a martensitic stainless steel pipe, a duplex stainless steel pipe, or the like.
- Ni-based alloys and high alloy steels such as duplex stainless steels containing alloying elements such as Cr, Ni and Mo have high corrosion resistance. Therefore, if these high-alloy steels are used for the pipe body 10, excellent corrosion resistance can be obtained in corrosive environments containing hydrogen sulfide, carbon dioxide, and the like.
- the method for manufacturing the oil well metal pipe 1 includes a preparation process, a coating process, and a curing process.
- a curing step is performed after the coating step.
- an oil well metal pipe 1 is prepared that includes a pipe body 10 that includes a pin 40 that includes a pin contact surface 400 that includes a male threaded portion 41 and a box 50 that includes a box contact surface 500 that includes a female threaded portion 51 .
- the oil well metal pipe 1 according to this embodiment has a well-known configuration. That is, in the preparation step, the oil well metal pipe 1 having a well-known configuration may be prepared.
- the composition is a composition for forming the resin coating 100 described above.
- the composition comprises epoxy resin: 40.0 to 97.0% by mass, hydrated magnesium silicate powder: 3.0 to 50.0% by mass, TiO 2 : 0 to 10.0% by mass, wax: 0 to 10.0%. % by mass, fluorine-based additive: 0 to 20.0% by mass, graphite: 0 to 10.0% by mass, antirust pigment: 0 to 30.0% by mass, coloring pigment: 0 to 10.0% by mass, and , silane coupling agent: 0 to 10.0% by mass, satisfying formula (1).
- the composition further contains a solvent.
- the composition excluding the solvent of the composition for forming the resin coating 100 is the same as the composition of the resin coating 100 described above.
- the composition can be produced, for example, by dissolving or dispersing the epoxy resin, the hydrated magnesium silicate powder and, if necessary, other components in a solvent and mixing them.
- the solvent is, for example, one or more selected from the group consisting of water, alcohol, and organic solvents.
- the solvent may contain trace amounts of surfactants.
- the ratio of the solvent is not particularly limited. The proportion of the solvent may be adjusted according to the coating method so that the composition has an appropriate viscosity.
- the ratio of the solvent is, for example, 40 to 60% by mass when the total of all components other than the solvent is 100% by mass.
- the method of applying the composition onto the pin contact surface 400 and/or the box contact surface 500 is not particularly limited, and any known method may be used.
- the composition in solution is applied onto the pin contact surface 400 and/or the box contact surface 500 by spraying.
- the composition is adjusted in viscosity so that it can be applied by spraying under an environment of normal temperature and normal pressure.
- the method of applying the composition onto the pin contact surface 400 and/or the box contact surface 500 may be brushing, dipping, or the like instead of spraying.
- the applied composition is cured to form the resin coating 100 .
- the composition is thermally cured to form a solid resin coating 100 .
- a heating method is not particularly limited, and a known method may be used.
- the heating method is, for example, a method in which the oil well metal pipe 1 coated with the composition is placed in a known heating furnace and heated.
- the heating temperature is, for example, 200-250° C., and the heating time is, for example, 5-30 minutes.
- the oil well metal pipe 1 according to the present embodiment is manufactured.
- the method for manufacturing the oil well metal pipe 1 according to the present embodiment may further include a surface treatment step before the coating step.
- a surface treatment step for example, one or more selected from the group consisting of pickling treatment, blasting treatment and alkali degreasing treatment is carried out.
- the pin contact surfaces 400 and/or the box contact surfaces 500 are immersed in a strong acid solution such as sulfuric acid, hydrochloric acid, nitric acid, hydrofluoric acid, or a mixed acid of these to remove the pin contact surfaces 400. and/or increase the surface roughness of the box contact surface 500;
- a strong acid solution such as sulfuric acid, hydrochloric acid, nitric acid, hydrofluoric acid, or a mixed acid of these to remove the pin contact surfaces 400. and/or increase the surface roughness of the box contact surface 500;
- blasting for example, sandblasting is performed by mixing a blasting material (abrasive) and compressed air and projecting it onto the pin contact surface 400 and/or the box contact surface 500 . In this case, the surface roughness of the pin contact surface 400 and/or the box contact surface 500 is increased.
- the pin contact surface 400 and the box contact surface 500 may be subjected to the same treatment or different treatments. Also, the priming process may be performed only on the pin contact surfaces 400 or only on the box contact surfaces 500 .
- the oil well metal pipe 1 according to the present embodiment is manufactured.
- the manufacturing method described above is an example of the manufacturing method of the oil well metal pipe 1 according to the present embodiment, and is not limited to this manufacturing method.
- the oil well metal pipe 1 according to this embodiment may be manufactured by other methods.
- the effects of the metal pipe for oil wells of this embodiment will be described more specifically by way of examples.
- the conditions in the following examples are examples of conditions adopted for confirming the feasibility and effect of the metal pipe for oil wells of this embodiment. Therefore, the oil well metal pipe of the present embodiment is not limited to this one condition example.
- a composition for forming a resin film was prepared and the storage elastic modulus of the resin film was evaluated. Specifically, it is as follows.
- a composition having the composition shown in Table 1 was prepared.
- the compositions contained solvents in addition to those listed in Table 1.
- a mixed solution of water, alcohol and surfactant was used as the solvent.
- the composition was applied to a hot plate of a rotational rheometer (manufactured by Anton Paar Japan Co., Ltd., Model No. MCR302).
- the composition was sandwiched between a hot plate and a geometry, and the storage modulus was measured when the geometry was rotated in one direction at a constant speed.
- the specimen was set at room temperature, rapidly heated to 210°C, and held at 210°C for 20 minutes to measure the storage elastic modulus.
- the measurement conditions were as follows. Measurement temperature: 210°C, timing for measuring storage modulus: 20 minutes after the start of measurement, frequency: 1 Hz, environment: under nitrogen gas.
- the composition was applied so that the thickness of the resin film was 30 to 40 ⁇ m.
- the resin coatings of test numbers 1 and 2 did not contain hydrated magnesium silicate powder.
- the storage modulus was less than 1.50 MPa. That is, the resin coatings of Test Nos. 1 and 2 could not increase the yield torque of the oil well metal pipe.
- the resin coatings of test numbers 3 and 9 contained too little hydrous magnesium silicate powder. Furthermore, it did not satisfy equation (1). As a result, the storage modulus was less than 1.50 MPa. That is, the resin coatings of Test Nos. 3 and 9 could not increase the yield torque of the oil well metal pipe.
- the resin coatings of test numbers 10 and 11 did not satisfy formula (1), although the content of each component was appropriate. Therefore, the storage elastic modulus was less than 1.50 MPa. That is, the resin coatings of Test Nos. 10 and 11 could not increase the yield torque of the oil well metal pipe.
- the resin coating of Test No. 19 contained too much wax and did not satisfy formula (1). Therefore, the storage elastic modulus was less than 1.50 MPa. That is, the resin coating of Test No. 19 could not increase the yield torque of the oil well metal pipe.
- the content of hydrous magnesium silicate powder in the resin coating of test number 20 was too low. Therefore, the storage elastic modulus was less than 1.50 MPa. That is, the resin coating of Test No. 20 could not increase the yield torque of the oil well metal pipe.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
第1端部と第2端部とを含む管本体を備え、
前記管本体は、
前記第1端部に形成されているピンと、
前記第2端部に形成されているボックスとを含み、
前記ピンは、
雄ねじ部を含むピン接触表面を含み、
前記ボックスは、
雌ねじ部を含むボックス接触表面を含み、
前記油井用金属管はさらに、
前記ピン接触表面及び前記ボックス接触表面の少なくとも一方の上又は上方に、樹脂被膜を備え、
前記樹脂被膜は、
エポキシ樹脂:40.0~97.0質量%、
含水珪酸マグネシウム粉末:3.0~50.0質量%、
TiO2:0~10.0質量%、
ワックス:0~10.0質量%、
フッ素系添加剤:0~20.0質量%、
黒鉛:0~10.0質量%、
防錆顔料:0~30.0質量%、
着色顔料:0~10.0質量%、及び、
シランカップリング剤:0~10.0質量%を含有し、式(1)を満たす。
(CW+CF+CG)/(CMg+CTiO2+CSi)≦0.28 (1)
ここで、式(1)中のCWには前記ワックスの含有量が質量%で、CFには前記フッ素系添加剤の含有量が質量%で、CGには前記黒鉛の含有量が質量%で、CMgには前記含水珪酸マグネシウム粉末の含有量が質量%で、CTiO2には前記TiO2の含有量が質量%で、CSiには前記シランカップリング剤の含有量が質量%で、それぞれ代入される。
(CW+CF+CG)/(CMg+CTiO2+CSi)≦0.28 (1)
ここで、式(1)中のCWには前記ワックスの含有量が質量%で、CFには前記フッ素系添加剤の含有量が質量%で、CGには前記黒鉛の含有量が質量%で、CMgには前記含水珪酸マグネシウム粉末の含有量が質量%で、CTiO2には前記TiO2の含有量が質量%で、CSiには前記シランカップリング剤の含有量が質量%で、それぞれ代入される。
油井用金属管であって、
第1端部と第2端部とを含む管本体を備え、
前記管本体は、
前記第1端部に形成されているピンと、
前記第2端部に形成されているボックスとを含み、
前記ピンは、
雄ねじ部を含むピン接触表面を含み、
前記ボックスは、
雌ねじ部を含むボックス接触表面を含み、
前記油井用金属管はさらに、
前記ピン接触表面及び前記ボックス接触表面の少なくとも一方の上又は上方に、樹脂被膜を備え、
前記樹脂被膜は、
エポキシ樹脂:40.0~97.0質量%、
含水珪酸マグネシウム粉末:3.0~50.0質量%、
TiO2:0~10.0質量%、
ワックス:0~10.0質量%、
フッ素系添加剤:0~20.0質量%、
黒鉛:0~10.0質量%、
防錆顔料:0~30.0質量%、
着色顔料:0~10.0質量%、及び、
シランカップリング剤:0~10.0質量%を含有し、式(1)を満たす、
油井用金属管。
(CW+CF+CG)/(CMg+CTiO2+CSi)≦0.28 (1)
ここで、式(1)中のCWには前記ワックスの含有量が質量%で、CFには前記フッ素系添加剤の含有量が質量%で、CGには前記黒鉛の含有量が質量%で、CMgには前記含水珪酸マグネシウム粉末の含有量が質量%で、CTiO2には前記TiO2の含有量が質量%で、CSiには前記シランカップリング剤の含有量が質量%で、それぞれ代入される。
[1]に記載の油井用金属管であって、
前記ピン接触表面はさらに、ピンシール面及びピンショルダ面を含み、
前記ボックス接触表面はさらに、ボックスシール面及びボックスショルダ面を含む、
油井用金属管。
初めに、本実施形態の油井用金属管の構成について説明する。油井用金属管は、周知の構成を有する。油井用金属管は、T&C型の油井用金属管と、インテグラル型の油井用金属管とがある。以下、各型の油井用金属管について詳述する。
図4は、本実施形態による油井用金属管1の一例を示す構成図である。図4は、いわゆるT&C型(Threaded and Coupled)の油井用金属管1の構成図である。図4を参照して、油井用金属管1は、管本体10を備える。
図6は、図5に示す油井用金属管1のうちのピン40近傍部分の、油井用金属管1の管軸方向に平行な断面図である。図6中の破線部分は、他の油井用金属管1と締結する場合の、他の油井用金属管1のボックス50の構成を示す。図6を参照して、ピン40は、管本体10の第1端部10Aの外周面に、ピン接触表面400を備える。ピン接触表面400は、他の油井用金属管1との締結時において、他の油井用金属管1のボックス50にねじ込まれ、ボックス50のボックス接触表面500(後述)と接触する。
図7は、図5に示す油井用金属管1のうちのボックス50近傍部分の、油井用金属管1の管軸方向に平行な断面図である。図7中の破線部分は、他の油井用金属管1と締結する場合の、他の油井用金属管1のピン40の構成を示す。図7を参照して、ボックス50は、管本体10の第2端部10Bの内周面に、ボックス接触表面500を備える。ボックス接触表面500は、他の油井用金属管1との締結時において、他の油井用金属管1のピン40がねじ込まれ、ピン40のピン接触表面400と接触する。
図4、図5及び図8に示す油井用金属管1は、管本体10が、ピン管体11とカップリング12とを含む、いわゆる、T&C型の油井用金属管1である。しかしながら、本実施形態の油井用金属管1は、T&C型ではなく、インテグラル型であってもよい。
本実施形態の油井用金属管1は、ピン接触表面400及びボックス接触表面500の少なくとも一方の上又は上方に、樹脂被膜100を備える。図10は、図6に示すピン接触表面400の拡大図である。図11は、図7に示すボックス接触表面500の拡大図である。図10及び図11に示すように、本実施形態による油井用金属管1は、ピン接触表面400及びボックス接触表面500の両方の上に、樹脂被膜100を備えてもよい。しかしながら、本実施形態による油井用金属管1は、ピン接触表面400又はボックス接触表面500の一方の上のみに、樹脂被膜100を備えてもよい。たとえば、図10に示すように、ピン接触表面400上に樹脂被膜100を備える場合、ボックス接触表面500上には、樹脂被膜100を備えなくてもよい。また、図11に示すように、ボックス接触表面500上に樹脂被膜100を備える場合、ピン接触表面400上には、樹脂被膜100を備えなくてもよい。言い換えると、本実施形態による油井用金属管1は、ピン接触表面400上及び/又はボックス接触表面500上に、樹脂被膜100を備える。
樹脂被膜100は、以下の組成を有する。
エポキシ樹脂は、樹脂被膜100の基材である。ここで基材とは、樹脂被膜100中に最も多く含有される成分をいう。エポキシ樹脂は、適度な硬度を有し、さらに、内部に酸素(O)や水素(H)を多く含む。そのため、エポキシ樹脂は、含水珪酸マグネシウム粉末及びTiO2の表面に露出した水酸基やマグネシウム及びチタン等の金属と、水素結合を形成しやすい。エポキシ樹脂はさらに、シランカップリング剤と化学結合する。エポキシ樹脂の含有量が40.0質量%未満では、樹脂被膜100の硬度が低下し、ねじ締め及びねじ戻しを繰り返した際に、樹脂被膜100が剥がれやすくなる。一方、エポキシ樹脂の含有量が97.0質量%を超えれば、含水珪酸マグネシウム粉末を含む他の成分を十分量含有できないため、油井用金属管1の耐焼付き性及びイールドトルクが低下する可能性がある。したがって、エポキシ樹脂の含有量は、40.0~97.0質量%である。エポキシ樹脂の含有量の好ましい下限は43.0質量%であり、さらに好ましくは45.0質量%であり、さらに好ましくは50.0質量%である。エポキシ樹脂の含有量の好ましい上限は95.0質量%であり、さらに好ましくは90.0質量%であり、さらに好ましくは89.0質量%である。
含水珪酸マグネシウム粉末は、樹脂被膜100の貯蔵弾性率を高める。含水珪酸マグネシウム粉末の表面には、水酸基及びマグネシウムを含む極性基が露出する。そのため、含水珪酸マグネシウム粉末は、エポキシ樹脂内部の酸素(O)や水素(H)と水素結合を形成しやすい。含水珪酸マグネシウム粉末がエポキシ樹脂内で水素結合を形成することによって、樹脂被膜100の貯蔵弾性率が高まると考えられる。含水珪酸マグネシウム粉末の含有量が3.0質量%未満では、上記効果を得られない。一方、含水珪酸マグネシウム粉末の含有量が50.0質量%を超えれば、樹脂被膜100が形成不良となる。したがって、含水珪酸マグネシウム粉末の含有量は3.0~50.0質量%である。含水珪酸マグネシウム粉末の含有量の好ましい下限は5.0質量%であり、さらに好ましくは7.0質量%であり、さらに好ましくは10.0質量%である。含水珪酸マグネシウム粉末の含有量の好ましい上限は45.0質量%であり、さらに好ましくは40.0質量%であり、さらに好ましくは35.0質量%である。
TiO2は任意に含有される成分であり、含有されなくても良い。含有される場合、TiO2は、樹脂被膜100の貯蔵弾性率を高める。TiO2は粉末である。TiO2粉末の表面には、水酸基及びチタンを含む極性基が露出する。そのため、TiO2は、エポキシ樹脂内部の酸素(O)や水素(H)と水素結合を形成しやすい。TiO2がエポキシ樹脂内で水素結合を形成することによって、樹脂被膜100の貯蔵弾性率が高まると考えられる。しかしながら、TiO2の含有量が10.0質量%を超えれば、アブレシブ摩耗を促進し、油井用金属管1の耐焼付き性を低下させてしまう可能性がある。したがって、TiO2の含有量は0~10.0質量%である。含有させる場合、TiO2の含有量の好ましい下限は0.1質量%であり、さらに好ましくは0.2質量%であり、さらに好ましくは0.5質量%である。含有させる場合、TiO2の含有量の好ましい上限は5.0質量%であり、さらに好ましくは4.0質量%であり、さらに好ましくは3.0質量%である。
ワックスは任意に含有される成分であり、含有されなくても良い。含有される場合、ワックスは、樹脂被膜100の潤滑性を高める。しかしながら、ワックスの含有量が10.0質量%を超えれば、樹脂被膜100の硬度が低下し、ねじ締め及びねじ戻しを繰り返した際に、樹脂被膜100が剥がれやすくなる。したがって、ワックスの含有量は0~10.0質量%である。含有させる場合、ワックスの含有量の好ましい下限は1.0質量%であり、さらに好ましくは2.0質量%であり、さらに好ましくは3.0質量%である。含有させる場合、ワックスの含有量の好ましい上限は9.0質量%であり、さらに好ましくは8.0質量%であり、さらに好ましくは5.0質量%である。
フッ素系添加剤は任意に含有される成分であり、含有されなくても良い。含有される場合、フッ素系添加剤は、樹脂被膜100の潤滑性を高める。しかしながら、フッ素系添加剤の含有量が20.0質量%を超えれば、樹脂被膜100の硬度が低下し、ねじ締め及びねじ戻しを繰り返した際に、樹脂被膜100が剥がれやすくなる。したがって、フッ素系添加剤の含有量は0~20.0質量%である。含有させる場合、フッ素系添加剤の含有量の好ましい下限は1.0質量%であり、さらに好ましくは5.0質量%であり、さらに好ましくは8.0質量%である。含有させる場合、フッ素系添加剤の含有量の好ましい上限は18.0質量%であり、さらに好ましくは15.0質量%であり、さらに好ましくは10.0質量%である。
黒鉛は任意に含有される成分であり、含有されなくても良い。含有される場合、黒鉛は、樹脂被膜100の潤滑性を高める。しかしながら、黒鉛の含有量が10.0質量%を超えれば、樹脂被膜100の硬度が低下し、ねじ締め及びねじ戻しを繰り返した際に、樹脂被膜100が剥がれやすくなる。したがって、黒鉛の含有量は0~10.0質量%である。含有させる場合、黒鉛の含有量の好ましい下限は1.0質量%であり、さらに好ましくは3.0質量%であり、さらに好ましくは5.0質量%である。含有させる場合、黒鉛の含有量の好ましい上限は9.0質量%であり、さらに好ましくは8.0質量%であり、さらに好ましくは7.0質量%である。
防錆顔料は任意に含有される成分であり、含有されなくても良い。含有される場合、防錆顔料は、樹脂被膜100の防錆性を高める。しかしながら、防錆顔料の含有量が30.0質量%を超えれば、樹脂被膜100が形成不良となる。したがって、防錆顔料の含有量は0~30.0質量%である。含有させる場合、防錆顔料の含有量の好ましい下限は1.0質量%であり、さらに好ましくは2.0質量%であり、さらに好ましくは4.0質量%である。含有させる場合、防錆顔料の含有量の好ましい上限は25.0質量%であり、さらに好ましくは20.0質量%であり、さらに好ましくは10.0質量%である。
着色顔料は任意に含有される成分であり、含有されなくても良い。含有される場合、着色顔料は、樹脂被膜100を着色し、樹脂被膜100の損傷を視認し易くする。しかしながら、着色顔料の含有量が10.0質量%を超えれば、樹脂被膜100が形成不良となる。したがって、着色顔料の含有量は0~10.0質量%である。含有させる場合、着色顔料の含有量の好ましい下限は0.1質量%であり、さらに好ましくは0.2質量%であり、さらに好ましくは0.5質量%である。含有させる場合、着色顔料の含有量の好ましい上限は8.0質量%であり、さらに好ましくは5.0質量%であり、さらに好ましくは3.0質量%である。
シランカップリング剤は任意に含有される成分であり、含有されなくても良い。含有される場合、シランカップリング剤は、樹脂被膜100の密着性を高める。これにより、油井用金属管1のねじ締め及びねじ戻しを繰り返した時に、樹脂被膜100の剥離を抑制する。シランカップリング剤はさらに、エポキシ樹脂を架橋して樹脂被膜100の貯蔵弾性率を高める。しかしながら、シランカップリング剤の含有量が10.0質量%を超えれば、樹脂被膜100が形成不良となる。したがって、シランカップリング剤の含有量は0~10.0質量%である。含有させる場合、シランカップリング剤の含有量の好ましい下限は0.1質量%であり、さらに好ましくは0.2質量%であり、さらに好ましくは0.5質量%である。含有させる場合、シランカップリング剤の含有量の好ましい上限は8.0質量%であり、さらに好ましくは6.0質量%であり、さらに好ましくは4.0質量%である。
その他の成分は任意に含有される成分であり、含有されなくても良い。その他の成分とはたとえば、防腐剤、及び、酸化防止剤からなる群から選択される1種以上である。その他の成分が含有される場合、その他の成分の含有量は合計で10.0質量%以下である。つまり、その他の成分の含有量は合計で0~10.0質量%である。
樹脂被膜100は、式(1)を満たす。
(CW+CF+CG)/(CMg+CTiO2+CSi)≦0.28 (1)
ここで、式(1)中のCWには前記ワックスの含有量が質量%で、CFには前記フッ素系添加剤の含有量が質量%で、CGには前記黒鉛の含有量が質量%で、CMgには前記含水珪酸マグネシウム粉末の含有量が質量%で、CTiO2には前記TiO2の含有量が質量%で、CSiには前記シランカップリング剤の含有量が質量%で、それぞれ代入される。
樹脂被膜100の貯蔵弾性率は特に限定されないが、高い方が好ましい。樹脂被膜100の貯蔵弾性率が1.50MPa以上であれば、樹脂被膜100を備える油井用金属管1のイールドトルクを顕著に高めることができる。したがって、好ましくは、樹脂被膜100の貯蔵弾性率は、1.50MPa以上である。樹脂被膜100の貯蔵弾性率の下限は、さらに好ましくは1.55MPa、さらに好ましくは1.70MPa、さらに好ましくは2.00MPaである。樹脂被膜100の貯蔵弾性率の上限は特に限定されないが、たとえば10.00MPaである。
樹脂被膜100の貯蔵弾性率は次の方法で測定する。樹脂被膜100を形成するための組成物を回転型レオメーターの熱板とジオメトリーとで挟む。ジオメトリーを一方向に一定の速度で回転させた際の、貯蔵弾性率を測定する。試験体は室温でセットし、210℃まで急速加熱させ、210℃で20分間保持した際の貯蔵弾性率を計測する。測定条件は次のとおりである。測定温度:210℃、貯蔵弾性率を測定するタイミング:測定開始から20分経過時、周波数:1Hz、環境:窒素ガス下。
樹脂被膜100の厚さは特に限定されない。樹脂被膜100の厚さはたとえば、1~100μmである。この場合、油井用金属管1のイールドトルクをより安定して高めることができる。樹脂被膜100の厚さの下限は好ましくは2μmであり、さらに好ましくは5μmであり、さらに好ましくは10μmである。樹脂被膜100の厚さの上限は好ましくは50μmであり、さらに好ましくは40μmであり、さらに好ましくは30μmである。
樹脂被膜100の厚さは、次の方法で測定する。樹脂被膜100を形成したピン接触表面400又はボックス接触表面500上に、電磁誘導式の膜厚測定器のプローブを接触させる。プローブは電磁石を有しており、磁性体を近づけると電磁誘導が起こり、プローブと磁性体との距離に依存してその電圧が変化する。電圧量の変化から樹脂被膜100の厚さを求める。測定箇所は、油井用金属管1の管周方向の12箇所(0°、30°、60°、90°、120°、150°、180°、210°、240°、270°、300°、330°の12箇所)である。12箇所の測定結果の算術平均を、樹脂被膜100の厚さとする。
本実施形態による油井用金属管1の管本体10の化学組成は、特に限定されない。すなわち、本実施形態において、油井用金属管1の管本体10の鋼種は特に限定されない。管本体10は、たとえば、炭素鋼、ステンレス鋼及び合金等によって形成されていてもよい。つまり、油井用金属管1とは、Fe基合金からなる鋼管であってもよく、Ni基合金管に代表される合金管であってもよい。ここで、鋼管はたとえば、低合金鋼管、マルテンサイト系ステンレス鋼管、二相ステンレス鋼管等である。一方、合金鋼の中でも、Ni基合金及びCr、Ni及びMo等の合金元素を含んだ二相ステンレス鋼等の高合金鋼は、耐食性が高い。そのため、これらの高合金鋼を管本体10として使用すれば、硫化水素や二酸化炭素等を含有する腐食環境において、優れた耐食性が得られる。
以下、本実施形態による油井用金属管1の製造方法を説明する。
準備工程では、雄ねじ部41を含むピン接触表面400を含むピン40と、雌ねじ部51を含むボックス接触表面500を含むボックス50とを含む管本体10を備える油井用金属管1を準備する。上述のとおり、本実施形態による油井用金属管1は、周知の構成を有する。すなわち、準備工程では、周知の構成を有する油井用金属管1を準備すればよい。
塗布工程では、ピン接触表面400及びボックス接触表面500の少なくとも一方の上に、組成物を塗布する。組成物は、上述の樹脂被膜100を形成するための組成物である。組成物は、エポキシ樹脂:40.0~97.0質量%、含水珪酸マグネシウム粉末:3.0~50.0質量%、TiO2:0~10.0質量%、ワックス:0~10.0質量%、フッ素系添加剤:0~20.0質量%、黒鉛:0~10.0質量%、防錆顔料:0~30.0質量%、着色顔料:0~10.0質量%、及び、シランカップリング剤:0~10.0質量%を含有し、式(1)を満たす。組成物はさらに、溶媒を含有する。樹脂被膜100を形成するための組成物の、溶媒を除いた組成は、上述の樹脂被膜100の組成と同じである。
硬化工程では、塗布された組成物を硬化して樹脂被膜100を形成する。ピン接触表面400及びボックス接触表面500の少なくとも一方の上に塗布された組成物を加熱することにより、組成物が熱硬化して固体の樹脂被膜100が形成される。加熱方法は特に限定されず、周知の方法で良い。加熱方法はたとえば、周知の加熱炉に、組成物を塗布した油井用金属管1を入れて加熱する方法である。加熱温度はたとえば、200~250℃、加熱時間はたとえば、5~30分である。
本実施形態による油井用金属管1の製造方法はさらに、塗布工程の前に、下地処理工程を備えてもよい。下地処理工程では、たとえば、酸洗処理、ブラスト処理及びアルカリ脱脂処理からなる群から選択される1種以上を実施する。
表1に示す組成を有する組成物を準備した。組成物は、表1に記載された組成以外に溶媒を含有した。溶媒は、水、アルコール及び界面活性剤の混合溶液を使用した。組成物を回転型レオメーター(株式会社アントンパール・ジャパン製、型番MCR302)の、熱板に塗布した。組成物を熱板とジオメトリーとで挟み、ジオメトリーを一方向に一定の速度で回転させた際の、貯蔵弾性率を測定した。試験体は室温でセットし、210℃まで急速加熱させ、210℃で20分間保持した際の貯蔵弾性率を計測した。測定条件は次のとおりとした。測定温度:210℃、貯蔵弾性率を測定するタイミング:測定開始から20分経過時、周波数:1Hz、環境:窒素ガス下。なお、組成物は、樹脂被膜の厚さがいずれも30~40μmとなるように塗布した。
表1を参照して、試験番号4~8及び12~18の樹脂被膜は、各成分の含有量が適切であり、さらに、式(1)を満たした。そのため、貯蔵弾性率が1.50MPa以上となった。試験番号4~8及び12~18の樹脂被膜は、油井用金属管のイールドトルクを高めることができた。
10 管本体
10A 第1端部
10B 第2端部
11 ピン管体
12 カップリング
40 ピン
41 雄ねじ部
42 ピンシール面
43 ピンショルダ面
50 ボックス
51 雌ねじ部
52 ボックスシール面
53 ボックスショルダ面
100 樹脂被膜
400 ピン接触表面
500 ボックス接触表面
Claims (2)
- 油井用金属管であって、
第1端部と第2端部とを含む管本体を備え、
前記管本体は、
前記第1端部に形成されているピンと、
前記第2端部に形成されているボックスとを含み、
前記ピンは、
雄ねじ部を含むピン接触表面を含み、
前記ボックスは、
雌ねじ部を含むボックス接触表面を含み、
前記油井用金属管はさらに、
前記ピン接触表面及び前記ボックス接触表面の少なくとも一方の上又は上方に、樹脂被膜を備え、
前記樹脂被膜は、
エポキシ樹脂:40.0~97.0質量%、
含水珪酸マグネシウム粉末:3.0~50.0質量%、
TiO2:0~10.0質量%、
ワックス:0~10.0質量%、
フッ素系添加剤:0~20.0質量%、
黒鉛:0~10.0質量%、
防錆顔料:0~30.0質量%、
着色顔料:0~10.0質量%、及び、
シランカップリング剤:0~10.0質量%を含有し、式(1)を満たす、
油井用金属管。
(CW+CF+CG)/(CMg+CTiO2+CSi)≦0.28 (1)
ここで、式(1)中のCWには前記ワックスの含有量が質量%で、CFには前記フッ素系添加剤の含有量が質量%で、CGには前記黒鉛の含有量が質量%で、CMgには前記含水珪酸マグネシウム粉末の含有量が質量%で、CTiO2には前記TiO2の含有量が質量%で、CSiには前記シランカップリング剤の含有量が質量%で、それぞれ代入される。 - 請求項1に記載の油井用金属管であって、
前記ピン接触表面はさらに、ピンシール面及びピンショルダ面を含み、
前記ボックス接触表面はさらに、ボックスシール面及びボックスショルダ面を含む、
油井用金属管。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2022368153A AU2022368153A1 (en) | 2021-10-15 | 2022-10-13 | Oil-Well Metal Pipe |
CN202280069130.3A CN118119785A (zh) | 2021-10-15 | 2022-10-13 | 油井用金属管 |
CA3232468A CA3232468A1 (en) | 2021-10-15 | 2022-10-13 | Oil-well metal pipe |
EP22881079.2A EP4417848A4 (en) | 2021-10-15 | 2022-10-13 | METAL PIPE FOR OIL DRILLING |
JP2023554609A JPWO2023063384A1 (ja) | 2021-10-15 | 2022-10-13 | |
US18/698,086 US20240418301A1 (en) | 2021-10-15 | 2022-10-13 | Oil-well metal pipe |
MX2024004466A MX2024004466A (es) | 2021-10-15 | 2022-10-13 | Tubo de metal para pozos de petroleo. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021169257 | 2021-10-15 | ||
JP2021-169257 | 2021-10-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023063384A1 true WO2023063384A1 (ja) | 2023-04-20 |
Family
ID=85988716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/038193 WO2023063384A1 (ja) | 2021-10-15 | 2022-10-13 | 油井用金属管 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20240418301A1 (ja) |
EP (1) | EP4417848A4 (ja) |
JP (1) | JPWO2023063384A1 (ja) |
CN (1) | CN118119785A (ja) |
AR (1) | AR127339A1 (ja) |
AU (1) | AU2022368153A1 (ja) |
CA (1) | CA3232468A1 (ja) |
MX (1) | MX2024004466A (ja) |
WO (1) | WO2023063384A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61117286A (ja) * | 1984-11-12 | 1986-06-04 | Toyota Central Res & Dev Lab Inc | ねじ部を有する鋼製部品 |
JP2003021278A (ja) | 2001-04-11 | 2003-01-24 | Sumitomo Metal Ind Ltd | 鋼管用ねじ継手 |
WO2006104251A1 (en) | 2005-03-29 | 2006-10-05 | Sumitomo Metal Industries, Ltd. | Threaded joint for steel pipes |
JP2008069883A (ja) * | 2006-09-14 | 2008-03-27 | Sumitomo Metal Ind Ltd | 鋼管用ねじ継手 |
CN103270146A (zh) * | 2010-07-20 | 2013-08-28 | 特纳瑞斯连接有限责任公司 | 具有改进的密封性、润滑性和耐腐蚀性的接头 |
WO2018216416A1 (ja) * | 2017-05-22 | 2018-11-29 | 新日鐵住金株式会社 | 管用ねじ継手及び管用ねじ継手の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA733572A (en) * | 1966-05-03 | Shell Oil Company | Polyamide and epoxy resin composition | |
JPH03268940A (ja) * | 1990-03-19 | 1991-11-29 | Sumitomo Metal Ind Ltd | 耐熱・耐硫化水素割れ性に優れた絶縁被覆金属管および継手 |
WO2006058227A1 (en) * | 2004-11-24 | 2006-06-01 | E.I. Dupont De Nemours And Company | System of pipes for use in oil wells |
US8322754B2 (en) * | 2006-12-01 | 2012-12-04 | Tenaris Connections Limited | Nanocomposite coatings for threaded connections |
CN102329553B (zh) * | 2011-08-04 | 2013-08-14 | 上海海隆赛能新材料有限公司 | 油井管防偏磨粉末涂料 |
-
2022
- 2022-10-12 AR ARP220102772A patent/AR127339A1/es unknown
- 2022-10-13 WO PCT/JP2022/038193 patent/WO2023063384A1/ja active Application Filing
- 2022-10-13 CA CA3232468A patent/CA3232468A1/en active Pending
- 2022-10-13 AU AU2022368153A patent/AU2022368153A1/en active Pending
- 2022-10-13 CN CN202280069130.3A patent/CN118119785A/zh active Pending
- 2022-10-13 EP EP22881079.2A patent/EP4417848A4/en active Pending
- 2022-10-13 US US18/698,086 patent/US20240418301A1/en active Pending
- 2022-10-13 JP JP2023554609A patent/JPWO2023063384A1/ja active Pending
- 2022-10-13 MX MX2024004466A patent/MX2024004466A/es unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61117286A (ja) * | 1984-11-12 | 1986-06-04 | Toyota Central Res & Dev Lab Inc | ねじ部を有する鋼製部品 |
JP2003021278A (ja) | 2001-04-11 | 2003-01-24 | Sumitomo Metal Ind Ltd | 鋼管用ねじ継手 |
WO2006104251A1 (en) | 2005-03-29 | 2006-10-05 | Sumitomo Metal Industries, Ltd. | Threaded joint for steel pipes |
JP2008069883A (ja) * | 2006-09-14 | 2008-03-27 | Sumitomo Metal Ind Ltd | 鋼管用ねじ継手 |
CN103270146A (zh) * | 2010-07-20 | 2013-08-28 | 特纳瑞斯连接有限责任公司 | 具有改进的密封性、润滑性和耐腐蚀性的接头 |
WO2018216416A1 (ja) * | 2017-05-22 | 2018-11-29 | 新日鐵住金株式会社 | 管用ねじ継手及び管用ねじ継手の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4417848A4 |
Also Published As
Publication number | Publication date |
---|---|
CN118119785A (zh) | 2024-05-31 |
EP4417848A1 (en) | 2024-08-21 |
MX2024004466A (es) | 2024-05-09 |
EP4417848A4 (en) | 2024-12-18 |
CA3232468A1 (en) | 2023-04-20 |
US20240418301A1 (en) | 2024-12-19 |
AU2022368153A1 (en) | 2024-05-02 |
AR127339A1 (es) | 2024-01-10 |
JPWO2023063384A1 (ja) | 2023-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6893978B2 (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
JP5736516B2 (ja) | 管状ねじ継手とそれに使用する潤滑被膜形成用組成物 | |
JP5984945B2 (ja) | 固体被膜形成用組成物及び管状ねじ継手 | |
WO2018216497A1 (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
WO2015141159A1 (ja) | 固体潤滑被膜用組成物、その組成物から形成された固体潤滑被膜を備えた管用ねじ継手、及び、その管用ねじ継手の製造方法 | |
WO2018003455A1 (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
JP2023164546A (ja) | 組成物、及び、その組成物からなる潤滑被膜層を備える管用ねじ継手 | |
CN111212892B (zh) | 组合物及具备由该组合物形成的润滑覆膜层的管用螺纹接头 | |
JP7583817B2 (ja) | 油井用金属管及び油井用金属管の製造方法 | |
WO2020149310A1 (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
WO2023063384A1 (ja) | 油井用金属管 | |
WO2023063385A1 (ja) | 油井用金属管 | |
WO2024019019A1 (ja) | 油井用金属管 | |
WO2024180941A1 (ja) | 油井用金属管及びその油井用金属管の潤滑被膜層を形成するための組成物 | |
WO2020021691A1 (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
JP2024106003A (ja) | 油井用金属管及び油井用金属管の潤滑被膜を形成するための組成物 | |
EA045795B1 (ru) | Металлическая труба для нефтяной скважины и способ ее изготовления | |
WO2024005167A1 (ja) | 油井用金属管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22881079 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 140250140003008784 Country of ref document: IR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3232468 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112024005561 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2023554609 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401002257 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2024/004466 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280069130.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 0024000028 Country of ref document: IQ |
|
WWE | Wipo information: entry into national phase |
Ref document number: AU2022368153 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202490823 Country of ref document: EA |
|
ENP | Entry into the national phase |
Ref document number: 2022368153 Country of ref document: AU Date of ref document: 20221013 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: DZP2024000370 Country of ref document: DZ Ref document number: 202417036818 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022881079 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022881079 Country of ref document: EP Effective date: 20240515 |
|
ENP | Entry into the national phase |
Ref document number: 112024005561 Country of ref document: BR Kind code of ref document: A2 Effective date: 20240320 |