WO2023063350A1 - Hot-rolled steel plate - Google Patents
Hot-rolled steel plate Download PDFInfo
- Publication number
- WO2023063350A1 WO2023063350A1 PCT/JP2022/038039 JP2022038039W WO2023063350A1 WO 2023063350 A1 WO2023063350 A1 WO 2023063350A1 JP 2022038039 W JP2022038039 W JP 2022038039W WO 2023063350 A1 WO2023063350 A1 WO 2023063350A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- hot
- rolled steel
- steel sheet
- content
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 117
- 239000010959 steel Substances 0.000 title claims abstract description 117
- 239000000126 substance Substances 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 229910001566 austenite Inorganic materials 0.000 claims description 39
- 230000000717 retained effect Effects 0.000 claims description 25
- 229910001563 bainite Inorganic materials 0.000 claims description 16
- 229910000734 martensite Inorganic materials 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 description 67
- 238000001816 cooling Methods 0.000 description 63
- 230000000694 effects Effects 0.000 description 42
- 238000000034 method Methods 0.000 description 18
- 238000007747 plating Methods 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 11
- 230000009471 action Effects 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 150000001247 metal acetylides Chemical class 0.000 description 10
- 229910052761 rare earth metal Inorganic materials 0.000 description 9
- 238000005098 hot rolling Methods 0.000 description 8
- 238000004804 winding Methods 0.000 description 8
- 230000001186 cumulative effect Effects 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 239000002344 surface layer Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- 229910001567 cementite Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 230000002542 deteriorative effect Effects 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 238000005246 galvanizing Methods 0.000 description 3
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005315 distribution function Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910021365 Al-Mg-Si alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910007567 Zn-Ni Inorganic materials 0.000 description 1
- 229910007614 Zn—Ni Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- FJMNNXLGOUYVHO-UHFFFAOYSA-N aluminum zinc Chemical compound [Al].[Zn] FJMNNXLGOUYVHO-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005244 galvannealing Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to hot rolled steel sheets.
- This application claims priority based on Japanese Patent Application No. 2021-168627 filed in Japan on October 14, 2021, the content of which is incorporated herein.
- the microstructure is mainly composed of bainite, the hard phase composed of martensite and / or austenite is 3% or more and less than 20% in terms of area fraction, and the hard phase present in the center of the plate thickness
- the phases those having an aspect ratio of 3 or more account for 60% or more
- the length of the hard phase present in the center of the plate thickness in the rolling direction is less than 20 ⁇ m
- X-ray random intensity ratio is 3.5 or more
- the X-ray random intensity ratio of ⁇ 001> orientation viewed from the rolling direction is 1.0 or less.
- Patent Document 1 it is necessary to further improve the strength in order to further reduce the weight of the automobile body. Moreover, in Patent Document 1, isotropy of ductility is not taken into consideration.
- An object of the present invention is to provide a hot-rolled steel sheet having high strength, excellent ductility isotropy and hole expandability.
- the present inventors have found that it is important to control the textures of the surface layer region and the internal region of the hot-rolled steel plate in order to increase the isotropy of ductility and the hole expansibility of the hot-rolled steel plate. Moreover, the present inventors have found that it is particularly effective to control the finish rolling conditions in order to control the textures of the surface layer region and the internal region of the hot-rolled steel sheet.
- the gist of the present invention made based on the above knowledge is as follows.
- (1) The hot-rolled steel sheet according to one aspect of the present invention has a chemical composition in mass% of C: 0.100 to 0.350%, Si: 0.010 to 3.00%, Mn: 1.00 to 4.00%, sol. Al: 0.001 to 2.000%, Si+sol.
- Al 1.00% or more, Ti: 0.010 to 0.380%, P: 0.100% or less, S: 0.0300% or less, N: 0.1000% or less, O: 0.0100% or less, Nb: 0 to 0.100%, V: 0 to 0.500%, Cu: 0 to 2.00%, Cr: 0 to 2.00%, Mo: 0 to 1.00%, Ni: 0 to 2.00%, B: 0 to 0.0100%, Ca: 0 to 0.0200%, Mg: 0-0.0200%, REM: 0 to 0.1000%, Bi: 0 to 0.020%, One or more of Zr, Co, Zn and W: 0 to 1.00% in total, and Sn: 0 to 0.050%,
- the balance consists of Fe and impurities,
- the metal structure in the region from 1/8 of the plate thickness from the surface to 3/8 of the plate thickness from the surface is area%, retained austenite: 10-20%, Fresh martensite: 10% or less, and bainite: 70
- the hot-rolled steel sheet according to (1) above has the chemical composition, in mass%, Nb: 0.005 to 0.100%, V: 0.005 to 0.500%, Cu: 0.01 to 2.00%, Cr: 0.01 to 2.00%, Mo: 0.01 to 1.00%, Ni: 0.02 to 2.00%, B: 0.0001 to 0.0100%, Ca: 0.0005 to 0.0200%, Mg: 0.0005-0.0200%, REM: 0.0005-0.1000% and Bi: 0.0005-0.020% It may contain one or more selected from the group consisting of.
- the hot-rolled steel sheet according to the present embodiment has a chemical composition in mass% of C: 0.100 to 0.350%, Si: 0.010 to 3.00%, Mn: 1.00 to 4. .00%, sol. Al: 0.001-2.000%, Si+sol. Al: 1.00% or more, Ti: 0.010 to 0.380%, P: 0.100% or less, S: 0.0300% or less, N: 0.1000% or less, O: 0.0100% or less , and the balance: Fe and impurities. Each element will be described in detail below.
- C 0.100-0.350% C is an element necessary to obtain desired strength. If the C content is less than 0.100%, it becomes difficult to obtain the desired strength. Therefore, the C content should be 0.100% or more.
- the C content is preferably 0.120% or more and 0.150% or more.
- the transformation rate slows down, making it easier to generate MA (mixed phase of fresh martensite and retained austenite), resulting in excellent ductility isotropy and hole expandability. difficult to obtain. Therefore, the C content should be 0.350% or less.
- the C content is preferably 0.330% or less and 0.310% or less.
- Si 0.010-3.00%
- Si has the effect of delaying the precipitation of cementite. This action can increase the amount of untransformed austenite remaining, that is, the area ratio of retained austenite.
- the strength can be increased by maintaining a large amount of dissolved C in the hard phase and preventing cementite from coarsening.
- Si itself also has the effect of increasing the strength of the hot-rolled steel sheet through solid-solution strengthening.
- Si has the effect of making steel sound by deoxidizing (suppressing the occurrence of defects such as blowholes in steel). If the Si content is less than 0.010%, the above effects cannot be obtained. Therefore, the Si content should be 0.010% or more.
- the Si content is preferably 0.50% or more, 1.00% or more, 1.20% or more, 1.50% or more.
- the Si content exceeds 3.00%, the precipitation of cementite is significantly retarded and the amount of retained austenite becomes excessive, which is not preferable.
- the hot-rolled steel sheet has significantly deteriorated surface properties, chemical conversion treatability, ductility and weldability, and the A3 transformation point is significantly increased. This makes it difficult to stably perform hot rolling. Therefore, the Si content should be 3.00% or less.
- the Si content is preferably 2.70% or less and 2.50% or less.
- Mn 1.00-4.00% Mn has the effect of suppressing ferrite transformation and increasing the strength of the hot-rolled steel sheet. If the Mn content is less than 1.00%, the desired strength cannot be obtained. Therefore, the Mn content should be 1.00% or more. The Mn content is preferably 1.50% or more and 1.80% or more. On the other hand, if the Mn content exceeds 4.00%, the ductility isotropy and hole expansibility of the hot-rolled steel sheet deteriorate. Therefore, the Mn content should be 4.00% or less. The Mn content is preferably 3.70% or less and 3.50% or less.
- sol. Al 0.001-2.000% sol.
- Al like Si, has the effect of deoxidizing the steel to make it sound and suppressing the precipitation of cementite from austenite, thereby promoting the formation of retained austenite. sol. If the Al content is less than 0.001%, the above effects cannot be obtained. Therefore, sol. Al content shall be 0.001% or more. sol. The Al content is preferably 0.010% or more. On the other hand, sol. If the Al content exceeds 2.000%, the above effect is saturated and it is economically unfavorable. Furthermore, the A3 transformation point rises significantly, making it difficult to perform stable hot rolling. Therefore, sol. Al content is 2.000% or less. sol. The Al content is preferably 1.500% or less and 1.300% or less. In addition, in this embodiment, sol. Al means acid-soluble Al, and indicates solid-solution Al present in steel in a solid-solution state.
- Si+sol. Al 1.00% or more Si and sol.
- Al has the effect of delaying the precipitation of cementite, and this effect can increase the amount of untransformed austenite remaining, that is, the area ratio of retained austenite. Si and sol. If the total Al content is less than 1.00%, the above effects cannot be obtained. Therefore, Si and sol.
- the total content of Al is set to 1.00% or more. It is preferably 1.20% or more and 1.50% or more.
- Si of "Si+sol.Al" shows content in mass % of Si, and sol. Al is sol. Content of Al in mass % is shown.
- Ti 0.010-0.380%
- Ti is an element effective for suppressing recrystallization and grain growth of austenite between stands of hot rolling. By suppressing the recrystallization of austenite between the stands, more strain can be accumulated. As a result, the texture of the hot-rolled steel sheet can be preferably controlled. If the Ti content is less than 0.010%, the above effect cannot be obtained. Therefore, the Ti content is set to 0.010% or more. Preferably, it is 0.050% or more, 0.070% or more, or 0.080% or more. On the other hand, when the Ti content exceeds 0.380%, inclusions originating from TiN are generated, and the toughness of the hot-rolled steel sheet deteriorates. Therefore, the Ti content is set to 0.380% or less. Preferably, it is 0.320% or less or 0.300% or less.
- P 0.100% or less
- P is an element generally contained in steel as an impurity. Therefore, P may be positively contained.
- P is an element that easily segregates, and when the P content exceeds 0.100%, the isotropic deterioration of hole expansibility and ductility due to grain boundary segregation becomes significant. Therefore, the P content should be 0.100% or less.
- the P content is preferably 0.030% or less. Although the lower limit of the P content does not have to be specified, it is preferably 0.001% from the viewpoint of refining cost.
- S 0.0300% or less
- S is an element contained in steel as an impurity, and forms sulfide-based inclusions in steel, deteriorating the isotropy of hole expansibility and ductility of hot-rolled steel sheets.
- the S content should be 0.0300% or less.
- the S content is preferably 0.0050% or less.
- the lower limit of the S content does not have to be specified, it is preferably 0.0001% from the viewpoint of refining cost.
- N 0.1000% or less
- N is an element contained in steel as an impurity, and has the effect of deteriorating the hole expansibility and ductility isotropy of the hot-rolled steel sheet. If the N content exceeds 0.1000%, the isotropy of the hole expansibility and ductility of the hot-rolled steel sheet is significantly deteriorated. Therefore, the N content should be 0.1000% or less.
- the N content is preferably 0.0800% or less and 0.0700% or less.
- the lower limit of the N content does not need to be specified, but in order to promote the precipitation of carbonitrides, the N content is preferably 0.0010% or more, and preferably 0.0020% or more. more preferred.
- O 0.0100% or less
- O forms coarse oxides that act as starting points for fracture, and causes brittle fracture and hydrogen-induced cracking. Therefore, the O content is set to 0.0100% or less.
- the O content is preferably 0.0080% or less and 0.0050% or less.
- the O content may be 0.0005% or more and 0.0010% or more in order to disperse a large number of fine oxides when deoxidizing molten steel.
- the remainder of the chemical composition of the hot-rolled steel sheet according to this embodiment consists of Fe and impurities.
- impurities refer to elements that are mixed from ore, scrap, or the manufacturing environment as raw materials, or elements that are intentionally added in small amounts, and have an adverse effect on the hot-rolled steel sheet according to the present embodiment. It means what is permissible within the range not given.
- the chemical composition of the hot-rolled steel sheet according to the present embodiment may contain the following elements as optional elements in addition to the above elements.
- the lower limit of the content when the optional element is not contained is 0%.
- Each arbitrary element will be described in detail below.
- Nb 0.005-0.100% and V: 0.005-0.500%
- Nb and V are elements that, like Ti, suppress recrystallization and grain growth of austenite between hot rolling stands. Therefore, one or more of these elements may be contained.
- the Nb content it is preferable to set the Nb content to 0.005% or more or the V content to 0.005% or more.
- the Nb content is set to 0.100% or less
- the V content is set to 0.500% or less.
- Cu, Cr, Mo, Ni and B all have the effect of increasing the hardenability of hot-rolled steel sheets.
- Cr and Ni have the effect of stabilizing retained austenite
- Cu and Mo have the effect of precipitating carbides in the steel to increase the strength of the hot-rolled steel sheet.
- Ni has the effect of effectively suppressing intergranular cracking of the slab caused by Cu. Therefore, one or more of these elements may be contained.
- Cu has the effect of increasing the hardenability of the steel sheet and the effect of increasing the strength of the hot-rolled steel sheet by being precipitated as carbides in the steel at low temperatures.
- the Cu content is preferably 0.01% or more in order to more reliably obtain the effects of the above action.
- the Cu content is set to 2.00% or less.
- the Cr content is preferably 0.01% or more. However, if the Cr content exceeds 2.00%, the chemical conversion treatability of the hot-rolled steel sheet is remarkably lowered. Therefore, the Cr content should be 2.00% or less.
- Mo has the effect of increasing the hardenability of the steel sheet and the effect of precipitating carbides in the steel to increase the strength.
- the Mo content is preferably 0.01% or more. However, even if the Mo content exceeds 1.00%, the effect of the above action is saturated, which is economically unfavorable. Therefore, the Mo content should be 1.00% or less.
- Ni has the effect of enhancing the hardenability of the steel sheet.
- Ni has the effect of effectively suppressing intergranular cracking of the slab caused by Cu.
- the Ni content is preferably 0.02% or more. Since Ni is an expensive element, it is economically unfavorable to contain a large amount of Ni. Therefore, the Ni content is set to 2.00% or less.
- B has the effect of enhancing the hardenability of the steel sheet.
- the B content is preferably 0.0001% or more.
- the B content is made 0.0100% or less.
- Ca, Mg and REM all have the effect of improving the formability of the hot-rolled steel sheet by controlling the shape of inclusions to a preferred shape.
- Bi has the effect of increasing the formability of the hot-rolled steel sheet by refining the solidification structure. Therefore, one or more of these elements may be contained. In order to more reliably obtain the effects of the above action, it is preferable that at least one of Ca, Mg, REM and Bi is 0.0005% or more.
- the Ca content or Mg content exceeds 0.0200%, or when the REM content exceeds 0.1000%, inclusions are excessively formed in the steel, and the hole expansion of the hot-rolled steel plate is rather reduced. may degrade the isotropy of toughness and ductility.
- the Bi content exceeds 0.020%, the above effect is saturated, which is economically unfavorable. Therefore, the Ca content and Mg content should be 0.0200% or less, the REM content should be 0.1000% or less, and the Bi content should be 0.020% or less.
- the Bi content is preferably 0.010% or less.
- REM refers to a total of 17 elements consisting of Sc, Y and lanthanides, and the content of REM above refers to the total content of these elements.
- lanthanides they are industrially added in the form of misch metals.
- Zr, Co, Zn and W 0 to 1.00% in total
- Sn 0 to 0.050%
- Zr, Co, Zn and W the present inventors have confirmed that even if these elements are contained in a total of 1.00% or less, the effects of the hot-rolled steel sheet according to the present embodiment are not impaired. ing. Therefore, one or more of Zr, Co, Zn and W may be contained in a total amount of 1.00% or less.
- the present inventors have confirmed that even if a small amount of Sn is contained, the effects of the hot-rolled steel sheet according to the present embodiment are not impaired, but flaws may occur during hot rolling. , the Sn content is 0.050% or less.
- the chemical composition of the hot-rolled steel sheet mentioned above can be measured by a general analytical method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
- sol. Al can be measured by ICP-AES using the filtrate obtained by thermally decomposing the sample with acid.
- C and S can be measured using a combustion-infrared absorption method
- N can be measured using an inert gas fusion-thermal conductivity method
- O can be measured using an inert gas fusion-nondispersive infrared absorption method.
- the metal structure of the hot-rolled steel sheet according to the present embodiment will be described.
- the metal structure in the region from the surface to the depth of 1 ⁇ 8 of the plate thickness from the surface to the depth of 1 ⁇ 8 of the plate thickness is area%, retained austenite: 10 to 20%.
- fresh martensite 10% or less
- bainite 70 to 90%.
- 110> and ⁇ 112 ⁇ ⁇ 110> orientation groups have a pole density of 2.0 to 8.0, and a region from a depth of 1/8 the plate thickness from the surface to a depth of 1/2 the plate thickness from the surface In the texture of the ⁇ 110 ⁇ 112> orientation, the pole density is 2.0 to 4.0.
- the depth position of 1/4 of the plate thickness from the surface (1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface region) defines the area ratio of retained austenite, fresh martensite and bainite.
- the reason is that the metallographic structure at this position shows the typical metallographic structure of hot-rolled steel sheets.
- Retained austenite 10-20% Retained austenite is a structure that improves the hole expansibility and ductility isotropy of the hot-rolled steel sheet. If the area ratio of retained austenite is less than 10%, desired isotropic hole expandability and ductility cannot be obtained. Therefore, the area ratio of retained austenite is set to 10% or more. Preferably, it is 12% or more or 13% or more. On the other hand, if the area ratio of retained austenite exceeds 20%, desired strength cannot be obtained. Therefore, the area ratio of retained austenite is set to 20% or less. Preferably, it is 18% or less, 17% or less.
- Fresh martensite 10% or less Since fresh martensite is a hard structure, it contributes to improvement in the strength of the hot-rolled steel sheet. However, fresh martensite is also a structure with poor isotropy in expansibility and ductility. If the area ratio of fresh martensite exceeds 10%, desired isotropy of hole expandability and ductility cannot be obtained. Therefore, the area ratio of fresh martensite is set to 10% or less. Preferably, it is 8% or less, 6% or less, 4% or less, or 2% or less. The area ratio of fresh martensite may be 0%.
- Bainite 70-90% Bainite is a structure that improves the strength and ductility isotropy of hot-rolled steel sheets. If the area ratio of bainite is less than 70%, the desired strength cannot be obtained. Therefore, the area ratio of bainite is set to 70% or more. Preferably, it is 73% or more, 75% or more or 77% or more. On the other hand, if the area ratio of bainite exceeds 90%, the strength becomes too high, and the desired hole expansibility cannot be obtained. Therefore, the area ratio of bainite is set to 90% or less. Preferably less than 90%, no more than 88% or no more than 85%.
- the area ratio of structures other than retained austenite is measured by the following method. From the hot-rolled steel sheet, in the thickness cross section parallel to the rolling direction, 1/4 depth of the plate thickness from the surface (1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface) ) Take a test piece so that the metal structure can be observed. Next, after polishing the thickness cross-section, the polished surface is subjected to nital corrosion, and a 30 ⁇ m ⁇ 30 ⁇ m region is structurally observed using an optical microscope and a scanning electron microscope (SEM). At least three observation areas are provided. The area ratio of bainite is obtained by performing image analysis on the structure photograph obtained by this structure observation. After that, after performing repeller corrosion on the same observation position, the structure was observed using an optical microscope and a scanning electron microscope, and the image analysis was performed on the obtained structure photograph. get rate.
- SEM scanning electron microscope
- Fresh martensite has a high dislocation density and substructures such as blocks and packets within the grains, so it can be distinguished from other metal structures according to electron channeling contrast images using a scanning electron microscope. is possible.
- the term "Fe-based carbides elongated in the same direction” refers to Fe-based carbides with a difference of 5° or less in the orientation of the Fe-based carbides.
- the area ratio of retained austenite is measured by the following method.
- the area ratio of retained austenite is measured by X-ray diffraction.
- 1/4 depth of the plate thickness from the surface (1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface) region)
- Co-K ⁇ rays obtain the integrated intensity of a total of 6 peaks ⁇ (110), ⁇ (200), ⁇ (211), ⁇ (111), ⁇ (200), ⁇ (220)
- the volume fraction of retained austenite is calculated using the intensity average method. This volume fraction of retained austenite is regarded as the area fraction of retained austenite.
- the pole density of the orientation group is less than 2.0, the ductility isotropy and hole expansibility of the hot-rolled steel sheet deteriorate. Therefore, the pole density of ⁇ 001 ⁇ 110>, ⁇ 111 ⁇ 110> and ⁇ 112 ⁇ 110> orientation groups in the texture of the surface layer region is set to 2.0 or more.
- the pole density of the ⁇ 001 ⁇ 110>, ⁇ 111 ⁇ 110> and ⁇ 112 ⁇ 110> orientation groups in the texture of the surface region is set to 8.0 or less. Preferably, it is 7.5 or less or 7.0 or less.
- the extreme density of ⁇ 110 ⁇ ⁇ 112> orientation in the texture of the region from the surface to the depth of 1/8 the plate thickness to the depth of 1/2 the plate thickness from the surface (hereinafter sometimes referred to as the internal region) If it exceeds 4.0, the ductility isotropy and hole expansibility of the hot-rolled steel sheet deteriorate. Therefore, the pole density of the ⁇ 110 ⁇ 112> orientation in the texture of the inner region is set to 4.0 or less. It is preferably 3.6 or less, 3.2 or less, or 3.0 or less.
- the extreme density of the ⁇ 110 ⁇ 112> orientation in the texture of the inner region is set to 2.0 or more from the viewpoint of suppressing strength deterioration. It is preferably 2.3 or more or 2.5 or more.
- a device that combines a scanning electron microscope and an EBSD analysis device and AMETEK's OIM Analysis (registered trademark) are used.
- OIM Orientation Distribution Function
- the surface region Determine the extreme densities of the ⁇ 001 ⁇ 110>, ⁇ 111 ⁇ 110> and ⁇ 112 ⁇ 110> orientation groups in the texture and ⁇ 110 ⁇ 112> in the texture of the inner region.
- the measurement range for the surface layer area is from the surface to 1/8 of the plate thickness from the surface, and for the internal area, from the surface to 1/8 of the plate thickness from the surface to 1/8 of the plate thickness. Let it be a region of 2 depths.
- a measurement pitch is 5 ⁇ m/step.
- ⁇ hkl ⁇ represents a crystal plane parallel to the rolling plane
- ⁇ uvw> represents a crystal direction parallel to the rolling direction. That is, ⁇ hkl ⁇ uvw> indicates a crystal in which ⁇ hkl ⁇ is oriented in the plate surface normal direction and ⁇ uvw> is oriented in the rolling direction.
- the rolling direction of the hot-rolled steel sheet can be determined by the following method. First, a test piece is taken so that the thickness cross section of the hot-rolled steel sheet can be observed. After mirror-polishing the plate thickness cross-section of the sampled test piece, it is observed using an optical microscope. The observation range is the entire plate thickness, and areas with dark luminance are determined to be inclusions. Among the inclusions, the direction parallel to the extending direction of the inclusions having a major axis length of 40 ⁇ m or more is determined as the rolling direction.
- the hot-rolled steel sheet according to the present embodiment has a tensile (maximum) strength of 980 MPa or more.
- the tensile strength is 1180 MPa or higher.
- the upper limit is not particularly limited, but may be 1470 MPa, 1300 MPa or less, or 1200 MPa or less.
- the difference between the total elongation in the C direction and the total elongation in the L direction ((total elongation in the L direction - total elongation in the C direction)/total elongation in the C direction), which is an index of ductility isotropy, is ⁇ 3.0. % or less.
- the hole expansion ratio which is an index of the hole expandability, is 40% or more.
- the tensile strength TS and total elongation EL are measured according to JIS Z 2241:2011 using JIS Z 2241:2011 No. 5 test piece.
- a tensile test piece is taken from a quarter portion from the edge in the width direction of the sheet, and the direction perpendicular to the rolling direction (C direction) is taken as the longitudinal direction.
- C direction the direction perpendicular to the rolling direction
- the total elongation EL the total elongation in the L direction is measured by also performing a tensile test on a tensile test piece whose longitudinal direction is parallel to the rolling direction (L direction).
- the hole expansion ratio ⁇ is measured according to JIS Z 2256:2010 using a No. 5 test piece of JIS Z 2241:2011.
- the hole-expanding test piece may be sampled at a 1/4 portion from the edge of the hot-rolled steel sheet in the width direction.
- the thickness of the hot-rolled steel sheet according to the present embodiment is not particularly limited, but may be 1.2 to 8.0 mm.
- the thickness of the hot-rolled steel sheet according to this embodiment may be 1.2 mm or more.
- it is 1.4 mm or more.
- the plate thickness may be 8.0 mm or less.
- it is 6.0 mm or less.
- the hot-rolled steel sheet according to the present embodiment having the chemical composition and metallographic structure described above may be provided with a plating layer on the surface thereof for the purpose of improving corrosion resistance, etc., to form a surface-treated steel sheet.
- the plating layer may be an electroplating layer or a hot dipping layer.
- the electroplating layer include electrogalvanizing and electroplating of Zn—Ni alloy.
- hot-dip coating layers include hot-dip galvanizing, hot-dip galvannealing, hot-dip aluminum plating, hot-dip Zn--Al alloy plating, hot-dip Zn--Al--Mg alloy plating, and hot-dip Zn--Al--Mg--Si alloy plating. be.
- the amount of plating deposited is not particularly limited, and may be the same as the conventional one. Further, it is possible to further improve the corrosion resistance by applying an appropriate chemical conversion treatment (for example, applying a silicate-based chromium-free chemical conversion treatment solution and drying) after plating.
- an appropriate chemical conversion treatment for example, applying a silicate-based chromium-free chemical conversion treatment solution and drying
- a preferred method for manufacturing the hot-rolled steel sheet according to this embodiment includes the following steps (a) to (d).
- the temperature in the following description refers to the surface temperature of the steel sheet unless otherwise specified.
- the interpass time between each of the last four stands is 0.1-10.0 seconds.
- the cumulative rolling reduction of the last four stands shall be 60% or more.
- the finish rolling completion temperature is set to 850 to 1000°C.
- the slab having the chemical composition described above is preferably heated to a temperature range of 1100°C or higher and lower than 1350°C.
- the method for producing the slab is not particularly limited, and a commonly used method of melting molten steel having the chemical composition described above in a converter or the like and forming a slab by a casting method such as continuous casting can be applied. In addition, an agglomeration-blooming method may be used.
- the slab before hot rolling is heated in a desired temperature range to dissolve coarse precipitates.
- the heating temperature of the slab is preferably 1100° C. or higher. However, if the heating temperature of the slab becomes too high, surface defects will occur and the yield will decrease due to scale off. Therefore, the heating temperature of the steel material is preferably less than 1350°C.
- the slab is heated to a temperature range of 1100°C or more and less than 1350°C and held for a predetermined time.
- the holding time in the temperature range of 1100° C. or more and less than 1350° C. is preferably 4800 seconds or less.
- the slab may be subjected to rough rolling.
- Conditions for the rough rolling are not particularly limited as long as the desired sheet bar dimensions can be obtained.
- (b) Finish Rolling Step the heated slab is finish rolled using a rolling mill having a plurality of stands. At this time, it is preferable to satisfy the following conditions (I) to (V). Descaling is preferably performed before finish rolling or during rolling between rolling stands for finish rolling.
- Finish rolling start temperature 850°C or higher
- the finish rolling start temperature (entry side temperature of the first pass of finish rolling) is preferably 850°C or higher. If the finish rolling start temperature is less than 850° C., rolling in some of the plurality of rolling stands (especially the first half of the stands) will be performed at the two-phase region temperature of ferrite+austenite. As a result, the worked structure may remain after finish rolling, deteriorating the strength and ductility of the hot-rolled steel sheet. Therefore, the finishing rolling start temperature is preferably 850° C. or higher. In addition, the finish rolling start temperature may be set to 1100° C. or less in order to suppress coarsening of austenite.
- (II) ⁇ : 40 to 80 represented by the following formula (1) in each of the last four stands ⁇ exp(0.753+3000/T) ⁇ 0.21 ⁇ ′ 0.13 (1)
- T is the temperature (° C.) just before entering each stand (that is, entry temperature)
- ⁇ is the equivalent plastic strain
- ⁇ ′ is the strain rate.
- ⁇ of 40 to 80 at each of the last four stands gives ⁇ for the fourth to last stand, ⁇ for the third to last stand, ⁇ for the second to last stand, In other words, ⁇ of the final stand and ⁇ are all 40-80.
- each of the last four stands may not adequately impart the strain necessary for texture development in the superficial region.
- the pole density of the ⁇ 001 ⁇ ⁇ 110>, ⁇ 111 ⁇ ⁇ 110> and ⁇ 112 ⁇ ⁇ 110> orientation groups is preferably controlled in the texture in the region from the surface to the depth of 1/8 of the plate thickness from the surface. may not be possible.
- the texture of the inner region may not be controlled favorably. Therefore, ⁇ in each of the last four stands is preferably 40 or more. Also, if there is even one stand with ⁇ exceeding 80, the texture may not develop and the texture may become randomized due to dynamic recrystallization. As a result, the ductility isotropy and hole expansibility of the hot-rolled steel sheet may deteriorate. Therefore, ⁇ in each of the last four stands is preferably 80 or less.
- ⁇ ' which is the strain rate
- ⁇ ' ⁇ /t, where t(s) is the rolling time.
- the rolling time t is the time during which the steel sheet is in contact with the rolling rolls and strain is applied to the steel sheet.
- Inter-pass time between each of the last four stands 0.1 to 10.0 seconds Any inter-pass time exceeding 10.0 seconds between each of the last four stands , recovery and recrystallization progresses between passes. As a result, accumulation of strain becomes difficult, and a desired texture may not be obtained in the surface layer region and the inner region. Therefore, the interpass time between each of the last four stands is preferably 10.0 seconds or less. It is preferable that the interpass time between the last four stands is short, but there are restrictions on the installation space of each stand and the rolling speed in terms of shortening the interpass time, so it should be 0.1 seconds or more. is preferred.
- the inter-pass time between each of the last four stands is 0.1 to 10.0 seconds
- the inter-pass time between the fourth to last stand and the third to last stand is 0.1 to 10.0 seconds
- the inter-pass time between the third to last stand and the second to last stand is all 0.1 to 10.0 seconds.
- (IV) Cumulative rolling reduction of the last four stands 60% or more If the cumulative rolling reduction of the last four stands is less than 60%, the dislocation density introduced into the unrecrystallized austenite may become small. When the density of dislocations introduced into unrecrystallized austenite becomes small, it becomes difficult to obtain a desired texture, and the isotropy of hole expandability and ductility of the hot-rolled steel sheet may deteriorate. Therefore, the cumulative rolling reduction of the last four stands is preferably 60% or more. Note that if the cumulative rolling reduction of the last four stands exceeds 97%, the shape of the hot-rolled steel sheet may deteriorate. Therefore, the cumulative rolling reduction of the last four stands may be 97% or less.
- the cumulative rolling reduction of the last four stands is ⁇ 1 ⁇ (t1/t0) ⁇ 100 when the thickness t0 at the entrance of the fourth stand from the end and the thickness t1 at the exit of the final stand are taken. It can be expressed in (%).
- the finish rolling completion temperature 850 ⁇ 1000 ° C If the finish rolling end temperature (the delivery side temperature of the final stand) is less than 850°C, the rolling is performed at the two-phase temperature of ferrite + austenite. As a result, a worked structure may remain after rolling, deteriorating isotropy of strength and ductility of the hot-rolled steel sheet. Therefore, the finish rolling completion temperature is preferably 850° C. or higher.
- the non-recrystallized austenite region is generally a temperature region of 1000° C. or lower.
- the finish rolling completion temperature is preferably 1000° C. or lower.
- Cooling step In the cooling step, air cooling is performed for 2.0 to 4.0 seconds after completion of finish rolling, and then cooling is performed so that the average cooling rate to the temperature range of 550 to 450 ° C. is 100 ° C./s or more. is preferred.
- Air cooling time 2.0 to 4.0 seconds Air cooling is preferably performed for 2.0 to 4.0 seconds after completion of finish rolling. If the air cooling time is less than 2.0 seconds or more than 4.0 seconds, the desired amount of bainite may not be obtained. Therefore, air cooling is preferably performed for 2.0 to 4.0 seconds. In this embodiment, air cooling refers to cooling at an average cooling rate of less than 10°C/s.
- the cooling equipment is preferably equipment capable of cooling the steel sheet at an average cooling rate of 100° C./s or more.
- a water cooling equipment using water as a cooling medium can be exemplified.
- the average cooling rate in the cooling process is a value obtained by dividing the temperature drop width of the steel sheet from the start of cooling to the end of cooling by the time required from the start of cooling to the end of cooling.
- the start of cooling is when the steel plate is introduced into the cooling equipment, and the end of cooling is when the steel plate is taken out of the cooling equipment.
- Cooling equipment includes equipment that has no air-cooling section in the middle and equipment that has one or more air-cooling sections in the middle. In this embodiment, any cooling equipment may be used. Even when using a cooling facility having an air-cooling section, the average cooling rate from the start of cooling to the end of cooling should be 100° C./s or more.
- Average cooling rate from the air cooling end temperature to the temperature range of 450 to 550 ° C. 100 ° C./s or more Ferrite tends to be formed, and the desired amount of bainite may not be obtained. Therefore, the average cooling rate from the air-cooling end temperature to the temperature range of 450 to 550° C. is preferably 100° C./s or more.
- (d) Winding Step it is preferable to coil the steel sheet cooled to a temperature range of 450 to 550°C. Since the steel sheet is coiled immediately after cooling, the coiling temperature is approximately equal to the cooling stop temperature. If the coiling temperature is less than 450°C, the desired amount of bainite cannot be obtained, and the isotropy of hole expansibility and ductility may deteriorate. Moreover, when the winding temperature is higher than 550° C., a large amount of ferrite and pearlite are generated, and the desired strength may not be obtained. Therefore, the winding temperature is preferably in the temperature range of 450-550°C.
- the hot-rolled steel sheet After winding, it should be air-cooled. After coiling, the hot-rolled steel sheet may be temper-rolled or pickled to remove scales formed on the surface.
- plating treatment such as aluminum plating, aluminum-zinc plating, aluminum-silicon plating, hot dip galvanizing, electrogalvanizing, alloyed hot dip galvanizing, etc., or chemical conversion treatment may be applied.
- the hot-rolled steel sheet according to the present embodiment can be stably manufactured by the suitable manufacturing method described above.
- the conditions in the examples are one example of conditions adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one example of conditions. It is not limited. Various conditions can be adopted in the present invention as long as the objects of the present invention are achieved without departing from the gist of the present invention.
- Molten steel having the chemical composition shown in Table 1 was melted in a converter, and slabs were obtained by continuous casting. Next, these slabs were heated under the conditions shown in Tables 2A and 2B, subjected to rough rolling, and then subjected to finish rolling under the conditions shown in Tables 2A and 2B. After completion of the finish rolling, the hot-rolled steel sheets having the thicknesses shown in Tables 3A and 3B were obtained by cooling and winding under the conditions shown in Tables 3A and 3B. In the heating step, the holding time at the heating temperatures listed in Tables 2A and 2B was 4800 seconds or less.
- the average cooling rate in Tables 3A and 3B is a value obtained by dividing the temperature drop width of the steel plate from the time when the water cooling equipment is introduced to the time when the water cooling equipment is taken out by the time required for the steel plate to pass through the water cooling equipment.
- a test piece was taken from the obtained hot-rolled steel sheet, and the area ratio of each structure, the extreme density of the texture, the tensile strength, the total elongation in the C and L directions, and the hole expansion ratio were measured by the method described above. It was measured. The results obtained are shown in Tables 4A and 4B.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、熱間圧延鋼板に関する。
本願は、2021年10月14日に、日本に出願された特願2021-168627号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to hot rolled steel sheets.
This application claims priority based on Japanese Patent Application No. 2021-168627 filed in Japan on October 14, 2021, the content of which is incorporated herein.
地球環境保護の観点から、自動車の燃費向上を目的として、自動車車体の軽量化が進められている。自動車車体をより軽量化するためには、自動車車体に適用される鋼板の強度を高める必要がある。しかし、一般的に、鋼板を高強度化すれば成形性が低下する。 From the perspective of protecting the global environment, weight reduction of automobile bodies is being promoted with the aim of improving fuel efficiency of automobiles. In order to further reduce the weight of automobile bodies, it is necessary to increase the strength of steel sheets applied to automobile bodies. However, in general, increasing the strength of a steel sheet lowers its formability.
鋼板の成形性を向上させる方法として、鋼板の金属組織に残留オーステナイトを含有させる方法がある。しかし、鋼板の金属組織に残留オーステナイトを含有させると、延性は向上するが、延性の等方性が劣化する場合および穴広げ性が劣化する場合がある。曲げ成形、穴広げ加工およびバーリング加工を行う際には、延性の異方性が低減されていること、すなわち延性の等方性に優れることが要求される。更に、上記のような加工を行う際には、穴広げ性に優れることも要求される。 As a method of improving the formability of steel sheets, there is a method of adding retained austenite to the metal structure of steel sheets. However, when the metal structure of the steel sheet contains retained austenite, the ductility is improved, but the isotropy of the ductility may be deteriorated and the hole expansibility may be deteriorated. When performing bending, hole expanding and burring, it is required that ductility anisotropy be reduced, that is, ductility isotropy be excellent. Furthermore, when performing the above processing, it is also required to have excellent hole expandability.
特許文献1には、ミクロ組織が、ベイナイトを主体とし、面積分率で、マルテンサイトおよび/またはオーステナイトで構成される硬質相が3%以上20%未満であり、板厚中央部に存在する硬質相のうちアスペクト比が3以上のものが60%以上を占め、板厚中央部に存在する硬質相の圧延方向の長さが20μm未満であり、圧延方向から見た<011>方位および<111>方位のX線ランダム強度比の和が3.5以上であり、かつ圧延方向から見た<001>方位のX線ランダム強度比が1.0以下である、熱延鋼板が開示されている。 In Patent Document 1, the microstructure is mainly composed of bainite, the hard phase composed of martensite and / or austenite is 3% or more and less than 20% in terms of area fraction, and the hard phase present in the center of the plate thickness Among the phases, those having an aspect ratio of 3 or more account for 60% or more, the length of the hard phase present in the center of the plate thickness in the rolling direction is less than 20 μm, and the <011> orientation and <111> orientation viewed from the rolling direction > orientation X-ray random intensity ratio is 3.5 or more, and the X-ray random intensity ratio of <001> orientation viewed from the rolling direction is 1.0 or less. .
しかしながら、特許文献1では、自動車車体をより軽量化するために強度をより向上させる必要がある。また、特許文献1では、延性の等方性については考慮されていない。 However, in Patent Document 1, it is necessary to further improve the strength in order to further reduce the weight of the automobile body. Moreover, in Patent Document 1, isotropy of ductility is not taken into consideration.
本発明は、高い強度を有し、且つ優れた延性の等方性および穴広げ性を有する熱間圧延鋼板を提供することを目的とする。 An object of the present invention is to provide a hot-rolled steel sheet having high strength, excellent ductility isotropy and hole expandability.
本発明者らは、上述の課題に鑑み、熱間圧延鋼板の化学組成および金属組織と機械特性との関係について鋭意研究を重ねた結果、以下の知見を得て、本発明を完成した。 In view of the above-mentioned problems, the present inventors have made intensive studies on the relationship between the chemical composition and metallographic structure of hot-rolled steel sheets and the mechanical properties, and as a result, have obtained the following knowledge and completed the present invention.
熱間圧延鋼板の延性の等方性および穴広げ性を高めるためには、熱間圧延鋼板の表層領域および内部領域の集合組織を制御することが重要であることを本発明者らは知見した。また、熱間圧延鋼板の表層領域および内部領域の集合組織を制御するためには、特に仕上げ圧延条件を制御することが効果的であることを本発明者らは知見した。 The present inventors have found that it is important to control the textures of the surface layer region and the internal region of the hot-rolled steel plate in order to increase the isotropy of ductility and the hole expansibility of the hot-rolled steel plate. . Moreover, the present inventors have found that it is particularly effective to control the finish rolling conditions in order to control the textures of the surface layer region and the internal region of the hot-rolled steel sheet.
上記知見に基づいてなされた本発明の要旨は以下の通りである。
(1)本発明の一態様に係る熱間圧延鋼板は、化学組成が、質量%で、
C :0.100~0.350%、
Si:0.010~3.00%、
Mn:1.00~4.00%、
sol.Al:0.001~2.000%、
Si+sol.Al:1.00%以上、
Ti:0.010~0.380%、
P :0.100%以下、
S :0.0300%以下、
N :0.1000%以下、
O :0.0100%以下、
Nb:0~0.100%、
V :0~0.500%、
Cu:0~2.00%、
Cr:0~2.00%、
Mo:0~1.00%、
Ni:0~2.00%、
B :0~0.0100%、
Ca:0~0.0200%、
Mg:0~0.0200%、
REM:0~0.1000%、
Bi:0~0.020%、
Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%、並びに
Sn:0~0.050%を含有し、
残部がFeおよび不純物からなり、
表面から板厚の1/8深さ~前記表面から板厚の3/8深さの領域における金属組織が、面積%で、
残留オーステナイト:10~20%、
フレッシュマルテンサイト:10%以下、および
ベイナイト:70~90%からなり、
前記表面~前記表面から板厚の1/8深さの領域の集合組織において、
{001}<110>、{111}<110>および{112}<110>方位群の極密度が2.0~8.0であり、
前記表面から板厚の1/8深さ~前記表面から板厚の1/2深さの領域の集合組織において、
{110}<112>方位の極密度が2.0~4.0であり、
引張強さが980MPa以上である。
(2)上記(1)に記載の熱間圧延鋼板は、前記化学組成が、質量%で、
Nb:0.005~0.100%、
V :0.005~0.500%、
Cu:0.01~2.00%、
Cr:0.01~2.00%、
Mo:0.01~1.00%、
Ni:0.02~2.00%、
B :0.0001~0.0100%、
Ca:0.0005~0.0200%、
Mg:0.0005~0.0200%、
REM:0.0005~0.1000%、および
Bi:0.0005~0.020%
からなる群から選択される1種または2種以上を含有してもよい。
The gist of the present invention made based on the above knowledge is as follows.
(1) The hot-rolled steel sheet according to one aspect of the present invention has a chemical composition in mass% of
C: 0.100 to 0.350%,
Si: 0.010 to 3.00%,
Mn: 1.00 to 4.00%,
sol. Al: 0.001 to 2.000%,
Si+sol. Al: 1.00% or more,
Ti: 0.010 to 0.380%,
P: 0.100% or less,
S: 0.0300% or less,
N: 0.1000% or less,
O: 0.0100% or less,
Nb: 0 to 0.100%,
V: 0 to 0.500%,
Cu: 0 to 2.00%,
Cr: 0 to 2.00%,
Mo: 0 to 1.00%,
Ni: 0 to 2.00%,
B: 0 to 0.0100%,
Ca: 0 to 0.0200%,
Mg: 0-0.0200%,
REM: 0 to 0.1000%,
Bi: 0 to 0.020%,
One or more of Zr, Co, Zn and W: 0 to 1.00% in total, and Sn: 0 to 0.050%,
The balance consists of Fe and impurities,
The metal structure in the region from 1/8 of the plate thickness from the surface to 3/8 of the plate thickness from the surface is area%,
retained austenite: 10-20%,
Fresh martensite: 10% or less, and bainite: 70 to 90%,
In the texture of the region from the surface to the depth of 1/8 of the plate thickness from the surface,
{001} <110>, {111} <110> and {112} <110> orientation groups have a pole density of 2.0 to 8.0,
In the texture in the region from the surface to the depth of 1/8 of the plate thickness to the depth of 1/2 of the plate thickness from the surface,
{110} <112> orientation pole density is 2.0 to 4.0,
Tensile strength is 980 MPa or more.
(2) The hot-rolled steel sheet according to (1) above has the chemical composition, in mass%,
Nb: 0.005 to 0.100%,
V: 0.005 to 0.500%,
Cu: 0.01 to 2.00%,
Cr: 0.01 to 2.00%,
Mo: 0.01 to 1.00%,
Ni: 0.02 to 2.00%,
B: 0.0001 to 0.0100%,
Ca: 0.0005 to 0.0200%,
Mg: 0.0005-0.0200%,
REM: 0.0005-0.1000% and Bi: 0.0005-0.020%
It may contain one or more selected from the group consisting of.
本発明に係る上記態様によれば、高い強度を有し、且つ優れた延性の等方性および穴広げ性を有する熱間圧延鋼板を提供することができる。 According to the above aspect of the present invention, it is possible to provide a hot-rolled steel sheet having high strength and excellent ductility isotropy and hole expansibility.
本実施形態に係る熱間圧延鋼板の化学組成および金属組織について、以下により具体的に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。 The chemical composition and metallographic structure of the hot-rolled steel sheet according to this embodiment will be described more specifically below. However, the present invention is not limited to the configuration disclosed in this embodiment, and various modifications can be made without departing from the gist of the present invention.
以下に「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」または「超」と示す数値には、その値が数値範囲に含まれない。以下の説明において、化学組成に関する%は特に指定しない限り質量%である。 The numerical limits described below with "~" in between include the lower and upper limits. Any numerical value indicated as "less than" or "greater than" excludes that value from the numerical range. In the following description, % regarding chemical composition is mass % unless otherwise specified.
化学組成
本実施形態に係る熱間圧延鋼板は、化学組成が、質量%で、C:0.100~0.350%、Si:0.010~3.00%、Mn:1.00~4.00%、sol.Al:0.001~2.000%、Si+sol.Al:1.00%以上、Ti:0.010~0.380%、P:0.100%以下、S:0.0300%以下、N:0.1000%以下、O:0.0100%以下、並びに、残部:Feおよび不純物を含む。
以下、各元素について詳細に説明する。
Chemical composition The hot-rolled steel sheet according to the present embodiment has a chemical composition in mass% of C: 0.100 to 0.350%, Si: 0.010 to 3.00%, Mn: 1.00 to 4. .00%, sol. Al: 0.001-2.000%, Si+sol. Al: 1.00% or more, Ti: 0.010 to 0.380%, P: 0.100% or less, S: 0.0300% or less, N: 0.1000% or less, O: 0.0100% or less , and the balance: Fe and impurities.
Each element will be described in detail below.
C:0.100~0.350%
Cは、所望の強度を得るために必要な元素である。C含有量が0.100%未満では、所望の強度を得ることが困難となる。したがって、C含有量は0.100%以上とする。C含有量は、好ましくは0.120%以上、0.150%以上である。
一方、C含有量が0.350%超では、変態速度が遅くなることでMA(フレッシュマルテンサイトおよび残留オーステナイトの混合相)が生成しやすくなり、優れた延性の等方性および穴広げ性を得ることが困難となる。したがって、C含有量は0.350%以下とする。C含有量は好ましくは0.330%以下、0.310%以下である。
C: 0.100-0.350%
C is an element necessary to obtain desired strength. If the C content is less than 0.100%, it becomes difficult to obtain the desired strength. Therefore, the C content should be 0.100% or more. The C content is preferably 0.120% or more and 0.150% or more.
On the other hand, when the C content is more than 0.350%, the transformation rate slows down, making it easier to generate MA (mixed phase of fresh martensite and retained austenite), resulting in excellent ductility isotropy and hole expandability. difficult to obtain. Therefore, the C content should be 0.350% or less. The C content is preferably 0.330% or less and 0.310% or less.
Si:0.010~3.00%
Siは、セメンタイトの析出を遅延させる作用を有する。この作用により、オーステナイトが未変態で残留する量、すなわち残留オーステナイトの面積率を高めることができる。また、硬質相中の固溶C量を多く保つこと、およびセメンタイトの粗大化を防ぐことで強度を高めることができる。またSi自体も固溶強化により熱間圧延鋼板の強度を高める効果がある。また、Siは脱酸により鋼を健全化する(鋼にブローホールなどの欠陥が生じることを抑制する)作用を有する。Si含有量が0.010%未満では、上記作用による効果を得ることができない。したがって、Si含有量は0.010%以上とする。Si含有量は、好ましくは0.50%以上、1.00%以上、1.20%以上、1.50%以上である。
一方、Si含有量が3.00%超では、セメンタイトの析出を著しく遅延させ、残留オーステナイト量が過剰となるため好ましくない。また、熱間圧延鋼板の表面性状および化成処理性、さらには延性および溶接性が著しく劣化するとともに、A3変態点が著しく上昇する。これにより、安定して熱間圧延を行うことが困難になる。したがって、Si含有量は3.00%以下とする。Si含有量は、好ましくは2.70%以下、2.50%以下である。
Si: 0.010-3.00%
Si has the effect of delaying the precipitation of cementite. This action can increase the amount of untransformed austenite remaining, that is, the area ratio of retained austenite. In addition, the strength can be increased by maintaining a large amount of dissolved C in the hard phase and preventing cementite from coarsening. Si itself also has the effect of increasing the strength of the hot-rolled steel sheet through solid-solution strengthening. In addition, Si has the effect of making steel sound by deoxidizing (suppressing the occurrence of defects such as blowholes in steel). If the Si content is less than 0.010%, the above effects cannot be obtained. Therefore, the Si content should be 0.010% or more. The Si content is preferably 0.50% or more, 1.00% or more, 1.20% or more, 1.50% or more.
On the other hand, if the Si content exceeds 3.00%, the precipitation of cementite is significantly retarded and the amount of retained austenite becomes excessive, which is not preferable. In addition, the hot-rolled steel sheet has significantly deteriorated surface properties, chemical conversion treatability, ductility and weldability, and the A3 transformation point is significantly increased. This makes it difficult to stably perform hot rolling. Therefore, the Si content should be 3.00% or less. The Si content is preferably 2.70% or less and 2.50% or less.
Mn:1.00~4.00%
Mnは、フェライト変態を抑制して熱間圧延鋼板を高強度化する作用を有する。Mn含有量が1.00%未満では、所望の強度を得ることができない。したがって、Mn含有量は1.00%以上とする。Mn含有量は、好ましくは1.50%以上、1.80%以上である。
一方、Mn含有量が4.00%超では、熱間圧延鋼板の延性の等方性および穴広げ性が劣化する。したがって、Mn含有量は4.00%以下とする。Mn含有量は、好ましくは3.70%以下、3.50%以下である。
Mn: 1.00-4.00%
Mn has the effect of suppressing ferrite transformation and increasing the strength of the hot-rolled steel sheet. If the Mn content is less than 1.00%, the desired strength cannot be obtained. Therefore, the Mn content should be 1.00% or more. The Mn content is preferably 1.50% or more and 1.80% or more.
On the other hand, if the Mn content exceeds 4.00%, the ductility isotropy and hole expansibility of the hot-rolled steel sheet deteriorate. Therefore, the Mn content should be 4.00% or less. The Mn content is preferably 3.70% or less and 3.50% or less.
sol.Al:0.001~2.000%
sol.Alは、Siと同様に、脱酸により鋼を健全化するとともに、オーステナイトからのセメンタイトの析出を抑制することで、残留オーステナイトの生成を促進する作用を有する。sol.Al含有量が0.001%未満では上記作用による効果を得ることができない。したがって、sol.Al含有量は、0.001%以上とする。sol.Al含有量は、好ましくは0.010%以上である。
一方、sol.Al含有量が2.000%超では、上記効果が飽和するとともに経済的に好ましくない。さらに、A3変態点が著しく上昇し、安定して熱間圧延を行うことが困難になる。そのため、sol.Al含有量は2.000%以下とする。sol.Al含有量は、好ましくは1.500%以下、1.300%以下である。
なお、本実施形態においてsol.Alとは、酸可溶性Alを意味し、固溶状態で鋼中に存在する固溶Alのことを示す。
sol. Al: 0.001-2.000%
sol. Al, like Si, has the effect of deoxidizing the steel to make it sound and suppressing the precipitation of cementite from austenite, thereby promoting the formation of retained austenite. sol. If the Al content is less than 0.001%, the above effects cannot be obtained. Therefore, sol. Al content shall be 0.001% or more. sol. The Al content is preferably 0.010% or more.
On the other hand, sol. If the Al content exceeds 2.000%, the above effect is saturated and it is economically unfavorable. Furthermore, the A3 transformation point rises significantly, making it difficult to perform stable hot rolling. Therefore, sol. Al content is 2.000% or less. sol. The Al content is preferably 1.500% or less and 1.300% or less.
In addition, in this embodiment, sol. Al means acid-soluble Al, and indicates solid-solution Al present in steel in a solid-solution state.
Si+sol.Al:1.00%以上
Siおよびsol.Alは、いずれもセメンタイトの析出を遅延させる作用を有し、この作用により、オーステナイトが未変態で残留する量、すなわち残留オーステナイトの面積率を高めることができる。Siおよびsol.Alの含有量の合計が1.00%未満では上記作用による効果を得ることができない。そのため、Siおよびsol.Alの含有量の合計は1.00%以上とする。好ましくは1.20%以上、1.50%以上である。
なお、「Si+sol.Al」のSiはSiの質量%での含有量を示し、sol.Alはsol.Alの質量%での含有量を示す。
Si+sol. Al: 1.00% or more Si and sol. Al has the effect of delaying the precipitation of cementite, and this effect can increase the amount of untransformed austenite remaining, that is, the area ratio of retained austenite. Si and sol. If the total Al content is less than 1.00%, the above effects cannot be obtained. Therefore, Si and sol. The total content of Al is set to 1.00% or more. It is preferably 1.20% or more and 1.50% or more.
In addition, Si of "Si+sol.Al" shows content in mass % of Si, and sol. Al is sol. Content of Al in mass % is shown.
Ti:0.010~0.380%
Tiは、熱間圧延のスタンド間でのオーステナイトの再結晶および粒成長を抑制するために有効な元素である。スタンド間でのオーステナイトの再結晶を抑制することによって、ひずみをより蓄積させることができる。その結果、熱間圧延鋼板の集合組織を好ましく制御することができる。Ti含有量が0.010%未満であると、上記効果を得ることができない。そのため、Ti含有量は0.010%以上とする。好ましくは、0.050%以上、0.070%以上または0.080%以上である。
一方、Ti含有量が0.380%超であると、TiNを起因とした介在物が生成し、熱間圧延鋼板の靭性が劣化する。そのため、Ti含有量は0.380%以下とする。好ましくは、0.320%以下または0.300%以下である。
Ti: 0.010-0.380%
Ti is an element effective for suppressing recrystallization and grain growth of austenite between stands of hot rolling. By suppressing the recrystallization of austenite between the stands, more strain can be accumulated. As a result, the texture of the hot-rolled steel sheet can be preferably controlled. If the Ti content is less than 0.010%, the above effect cannot be obtained. Therefore, the Ti content is set to 0.010% or more. Preferably, it is 0.050% or more, 0.070% or more, or 0.080% or more.
On the other hand, when the Ti content exceeds 0.380%, inclusions originating from TiN are generated, and the toughness of the hot-rolled steel sheet deteriorates. Therefore, the Ti content is set to 0.380% or less. Preferably, it is 0.320% or less or 0.300% or less.
P:0.100%以下
Pは、一般的に不純物として鋼中に含有される元素であるが、固溶強化により熱間圧延鋼板の強度を高める作用を有する。したがって、Pを積極的に含有させてもよい。しかし、Pは偏析し易い元素であり、P含有量が0.100%を超えると、粒界偏析に起因する穴広げ性および延性の等方性の劣化が顕著となる。したがって、P含有量は、0.100%以下とする。P含有量は、好ましくは0.030%以下である。
P含有量の下限は特に規定する必要はないが、精錬コストの観点から、0.001%とすることが好ましい。
P: 0.100% or less P is an element generally contained in steel as an impurity. Therefore, P may be positively contained. However, P is an element that easily segregates, and when the P content exceeds 0.100%, the isotropic deterioration of hole expansibility and ductility due to grain boundary segregation becomes significant. Therefore, the P content should be 0.100% or less. The P content is preferably 0.030% or less.
Although the lower limit of the P content does not have to be specified, it is preferably 0.001% from the viewpoint of refining cost.
S:0.0300%以下
Sは、不純物として鋼中に含有される元素であり、鋼中に硫化物系介在物を形成して熱間圧延鋼板の穴広げ性および延性の等方性を劣化させる。S含有量が0.0300%を超えると、熱間圧延鋼板の穴広げ性および延性の等方性が著しく劣化する。したがって、S含有量は0.0300%以下とする。S含有量は、好ましくは0.0050%以下である。
S含有量の下限は特に規定する必要はないが、精錬コストの観点から、0.0001%とすることが好ましい。
S: 0.0300% or less S is an element contained in steel as an impurity, and forms sulfide-based inclusions in steel, deteriorating the isotropy of hole expansibility and ductility of hot-rolled steel sheets. Let When the S content exceeds 0.0300%, the hole expansibility and ductility isotropy of the hot-rolled steel sheet are remarkably deteriorated. Therefore, the S content should be 0.0300% or less. The S content is preferably 0.0050% or less.
Although the lower limit of the S content does not have to be specified, it is preferably 0.0001% from the viewpoint of refining cost.
N:0.1000%以下
Nは、不純物として鋼中に含有される元素であり、熱間圧延鋼板の穴広げ性および延性の等方性を劣化させる作用を有する。N含有量が0.1000%超では、熱間圧延鋼板の穴広げ性および延性の等方性が著しく劣化する。したがって、N含有量は0.1000%以下とする。N含有量は、好ましくは0.0800%以下、0.0700%以下である。
N含有量の下限は特に規定する必要はないが、炭窒化物の析出を促進させるためには、N含有量は0.0010%以上とすることが好ましく、0.0020%以上とすることがより好ましい。
N: 0.1000% or less N is an element contained in steel as an impurity, and has the effect of deteriorating the hole expansibility and ductility isotropy of the hot-rolled steel sheet. If the N content exceeds 0.1000%, the isotropy of the hole expansibility and ductility of the hot-rolled steel sheet is significantly deteriorated. Therefore, the N content should be 0.1000% or less. The N content is preferably 0.0800% or less and 0.0700% or less.
The lower limit of the N content does not need to be specified, but in order to promote the precipitation of carbonitrides, the N content is preferably 0.0010% or more, and preferably 0.0020% or more. more preferred.
O:0.0100%以下
Oは、鋼中に多く含まれると破壊の起点となる粗大な酸化物を形成し、脆性破壊や水素誘起割れを引き起こす。そのため、O含有量は0.0100%以下とする。O含有量は、0.0080%以下、0.0050%以下とすることが好ましい。
溶鋼の脱酸時に微細な酸化物を多数分散させるために、O含有量は0.0005%以上、0.0010%以上としてもよい。
O: 0.0100% or less When contained in steel in a large amount, O forms coarse oxides that act as starting points for fracture, and causes brittle fracture and hydrogen-induced cracking. Therefore, the O content is set to 0.0100% or less. The O content is preferably 0.0080% or less and 0.0050% or less.
The O content may be 0.0005% or more and 0.0010% or more in order to disperse a large number of fine oxides when deoxidizing molten steel.
本実施形態に係る熱間圧延鋼板の化学組成の残部は、Feおよび不純物からなる。本実施形態において、不純物とは、原料としての鉱石、スクラップ、または製造環境等から混入される元素や意図的に微量添加される元素であって、本実施形態に係る熱間圧延鋼板に悪影響を与えない範囲で許容されるものを意味する。 The remainder of the chemical composition of the hot-rolled steel sheet according to this embodiment consists of Fe and impurities. In the present embodiment, impurities refer to elements that are mixed from ore, scrap, or the manufacturing environment as raw materials, or elements that are intentionally added in small amounts, and have an adverse effect on the hot-rolled steel sheet according to the present embodiment. It means what is permissible within the range not given.
本実施形態に係る熱間圧延鋼板の化学組成は、上記元素に加え、以下の元素を任意元素として含有してもよい。上記任意元素を含有しない場合の含有量の下限は0%である。以下、各任意元素について詳細に説明する。 The chemical composition of the hot-rolled steel sheet according to the present embodiment may contain the following elements as optional elements in addition to the above elements. The lower limit of the content when the optional element is not contained is 0%. Each arbitrary element will be described in detail below.
Nb:0.005~0.100%およびV:0.005~0.500%
NbおよびVは、いずれも、Tiと同様、熱間圧延のスタンド間でのオーステナイトの再結晶および粒成長を抑制する元素である。そのため、これらの元素の1種または2種以上を含有させてもよい。上記作用による効果をより確実に得るためには、Nb含有量を0.005%以上とするか、V含有量を0.005%以上とすることが好ましい。
しかし、これらの元素を過剰に含有させても、上記作用による効果が飽和して経済的に好ましくない。したがって、Nb含有量は0.100%以下とし、V含有量は0.500%以下とする。
Nb: 0.005-0.100% and V: 0.005-0.500%
Both Nb and V are elements that, like Ti, suppress recrystallization and grain growth of austenite between hot rolling stands. Therefore, one or more of these elements may be contained. In order to more reliably obtain the effect of the above action, it is preferable to set the Nb content to 0.005% or more or the V content to 0.005% or more.
However, even if these elements are excessively contained, the effect of the above action is saturated, which is economically unfavorable. Therefore, the Nb content is set to 0.100% or less, and the V content is set to 0.500% or less.
Cu:0.01~2.00%、Cr:0.01~2.00%、Mo:0.01~1.00%、Ni:0.02~2.00%およびB:0.0001~0.0100%
Cu、Cr、Mo、NiおよびBは、いずれも、熱間圧延鋼板の焼入性を高める作用を有する。また、CrおよびNiは残留オーステナイトを安定化させる作用を有し、CuおよびMoは鋼中に炭化物を析出して熱間圧延鋼板の強度を高める作用を有する。さらに、Niは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。したがって、これらの元素の1種または2種以上を含有させてもよい。
Cu: 0.01-2.00%, Cr: 0.01-2.00%, Mo: 0.01-1.00%, Ni: 0.02-2.00% and B: 0.0001- 0.0100%
Cu, Cr, Mo, Ni and B all have the effect of increasing the hardenability of hot-rolled steel sheets. Moreover, Cr and Ni have the effect of stabilizing retained austenite, and Cu and Mo have the effect of precipitating carbides in the steel to increase the strength of the hot-rolled steel sheet. Furthermore, when Cu is contained, Ni has the effect of effectively suppressing intergranular cracking of the slab caused by Cu. Therefore, one or more of these elements may be contained.
上述したようにCuは、鋼板の焼入れ性を高める作用および低温で鋼中に炭化物として析出して熱間圧延鋼板の強度を高める作用を有する。上記作用による効果をより確実に得るためには、Cu含有量は0.01%以上とすることが好ましい。
しかし、Cu含有量が2.00%超では、スラブの粒界割れが生じる場合がある。したがって、Cu含有量は2.00%以下とする。
As described above, Cu has the effect of increasing the hardenability of the steel sheet and the effect of increasing the strength of the hot-rolled steel sheet by being precipitated as carbides in the steel at low temperatures. The Cu content is preferably 0.01% or more in order to more reliably obtain the effects of the above action.
However, if the Cu content exceeds 2.00%, intergranular cracking of the slab may occur. Therefore, the Cu content is set to 2.00% or less.
上述したようにCrは、鋼板の焼入性を高める作用および残留オーステナイトを安定化させる作用を有する。上記作用による効果をより確実に得るためには、Cr含有量を0.01%以上とすることが好ましい。
しかし、Cr含有量が2.00%超では、熱間圧延鋼板の化成処理性が著しく低下する。したがって、Cr含有量は2.00%以下とする。
As described above, Cr has the effect of increasing the hardenability of steel sheets and the effect of stabilizing retained austenite. In order to more reliably obtain the effects of the above action, the Cr content is preferably 0.01% or more.
However, if the Cr content exceeds 2.00%, the chemical conversion treatability of the hot-rolled steel sheet is remarkably lowered. Therefore, the Cr content should be 2.00% or less.
上述したようにMoは、鋼板の焼入性を高める作用および鋼中に炭化物を析出して強度を高める作用を有する。上記作用による効果をより確実に得るためには、Mo含有量を0.01%以上とすることが好ましい。
しかし、Mo含有量を1.00%超としても上記作用による効果は飽和して経済的に好ましくない。したがって、Mo含有量は1.00%以下とする。
As described above, Mo has the effect of increasing the hardenability of the steel sheet and the effect of precipitating carbides in the steel to increase the strength. In order to more reliably obtain the effects of the above action, the Mo content is preferably 0.01% or more.
However, even if the Mo content exceeds 1.00%, the effect of the above action is saturated, which is economically unfavorable. Therefore, the Mo content should be 1.00% or less.
上述したようにNiは、鋼板の焼入性を高める作用を有する。またNiは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。上記作用による効果をより確実に得るためには、Ni含有量を0.02%以上とすることが好ましい。
Niは、高価な元素であるため、多量に含有させることは経済的に好ましくない。したがって、Ni含有量は2.00%以下とする。
As described above, Ni has the effect of enhancing the hardenability of the steel sheet. In addition, when Cu is contained, Ni has the effect of effectively suppressing intergranular cracking of the slab caused by Cu. In order to more reliably obtain the effects of the above action, the Ni content is preferably 0.02% or more.
Since Ni is an expensive element, it is economically unfavorable to contain a large amount of Ni. Therefore, the Ni content is set to 2.00% or less.
上述したようにBは、鋼板の焼入れ性を高める作用を有する。この作用による効果をより確実に得るためには、B含有量を0.0001%以上とすることが好ましい。
しかし、B含有量が0.0100%超では、熱間圧延鋼板の穴広げ性および延性の等方性が著しく劣化するため、B含有量は0.0100%以下とする。
As described above, B has the effect of enhancing the hardenability of the steel sheet. In order to more reliably obtain the effect of this action, the B content is preferably 0.0001% or more.
However, if the B content exceeds 0.0100%, the hole expansibility and ductility isotropy of the hot-rolled steel sheet are remarkably deteriorated, so the B content is made 0.0100% or less.
Ca:0.0005~0.0200%、Mg:0.0005~0.0200%、REM:0.0005~0.1000%およびBi:0.0005~0.020%
Ca、MgおよびREMは、いずれも、介在物の形状を好ましい形状に制御することにより、熱間圧延鋼板の成形性を高める作用を有する。また、Biは、凝固組織を微細化することにより、熱間圧延鋼板の成形性を高める作用を有する。したがって、これらの元素の1種または2種以上を含有させてもよい。上記作用による効果をより確実に得るためには、Ca、Mg、REMおよびBiのいずれか1種以上を0.0005%以上とすることが好ましい。しかし、Ca含有量またはMg含有量が0.0200%を超えると、あるいはREM含有量が0.1000%を超えると、鋼中に介在物が過剰に生成され、却って熱間圧延鋼板の穴広げ性および延性の等方性を劣化させる場合がある。また、Bi含有量を0.020%超としても、上記作用による効果は飽和してしまい、経済的に好ましくない。したがって、Ca含有量、Mg含有量を0.0200%以下、REM含有量を0.1000%以下、並びにBi含有量を0.020%以下とする。Bi含有量は、好ましくは0.010%以下である。
Ca: 0.0005-0.0200%, Mg: 0.0005-0.0200%, REM: 0.0005-0.1000% and Bi: 0.0005-0.020%
Ca, Mg and REM all have the effect of improving the formability of the hot-rolled steel sheet by controlling the shape of inclusions to a preferred shape. Moreover, Bi has the effect of increasing the formability of the hot-rolled steel sheet by refining the solidification structure. Therefore, one or more of these elements may be contained. In order to more reliably obtain the effects of the above action, it is preferable that at least one of Ca, Mg, REM and Bi is 0.0005% or more. However, when the Ca content or Mg content exceeds 0.0200%, or when the REM content exceeds 0.1000%, inclusions are excessively formed in the steel, and the hole expansion of the hot-rolled steel plate is rather reduced. may degrade the isotropy of toughness and ductility. Moreover, even if the Bi content exceeds 0.020%, the above effect is saturated, which is economically unfavorable. Therefore, the Ca content and Mg content should be 0.0200% or less, the REM content should be 0.1000% or less, and the Bi content should be 0.020% or less. The Bi content is preferably 0.010% or less.
ここで、REMは、Sc、Yおよびランタノイドからなる合計17元素を指し、上記REMの含有量は、これらの元素の合計含有量を指す。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。 Here, REM refers to a total of 17 elements consisting of Sc, Y and lanthanides, and the content of REM above refers to the total content of these elements. In the case of lanthanides, they are industrially added in the form of misch metals.
Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%、並びに、Sn:0~0.050%
Zr、Co、ZnおよびWについて、本発明者らは、これらの元素を合計で1.00%以下含有させても、本実施形態に係る熱間圧延鋼板の効果は損なわれないことを確認している。そのため、Zr、Co、ZnおよびWのうち1種または2種以上を合計で1.00%以下含有させてもよい。
また、本発明者らは、Snを少量含有させても本実施形態に係る熱間圧延鋼板の効果は損なわれないことを確認しているが、熱間圧延時に疵が発生する場合があるため、Sn含有量は0.050%以下とする。
One or more of Zr, Co, Zn and W: 0 to 1.00% in total, and Sn: 0 to 0.050%
With regard to Zr, Co, Zn and W, the present inventors have confirmed that even if these elements are contained in a total of 1.00% or less, the effects of the hot-rolled steel sheet according to the present embodiment are not impaired. ing. Therefore, one or more of Zr, Co, Zn and W may be contained in a total amount of 1.00% or less.
In addition, the present inventors have confirmed that even if a small amount of Sn is contained, the effects of the hot-rolled steel sheet according to the present embodiment are not impaired, but flaws may occur during hot rolling. , the Sn content is 0.050% or less.
上述した熱間圧延鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。 The chemical composition of the hot-rolled steel sheet mentioned above can be measured by a general analytical method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). In addition, sol. Al can be measured by ICP-AES using the filtrate obtained by thermally decomposing the sample with acid. C and S can be measured using a combustion-infrared absorption method, N can be measured using an inert gas fusion-thermal conductivity method, and O can be measured using an inert gas fusion-nondispersive infrared absorption method.
熱間圧延鋼板の金属組織
次に、本実施形態に係る熱間圧延鋼板の金属組織について説明する。
本実施形態に係る熱間圧延鋼板では、表面から板厚の1/8深さ~表面から板厚の3/8深さの領域における金属組織が、面積%で、残留オーステナイト:10~20%、フレッシュマルテンサイト:10%以下、およびベイナイト:70~90%からなり、表面~前記表面から板厚の1/8深さの領域の集合組織において、{001}<110>、{111}<110>および{112}<110>方位群の極密度が2.0~8.0であり、前記表面から板厚の1/8深さ~前記表面から板厚の1/2深さの領域の集合組織において、{110}<112>方位の極密度が2.0~4.0である。
Metal structure of hot-rolled steel sheet Next, the metal structure of the hot-rolled steel sheet according to the present embodiment will be described.
In the hot-rolled steel sheet according to the present embodiment, the metal structure in the region from the surface to the depth of ⅛ of the plate thickness from the surface to the depth of ⅛ of the plate thickness is area%, retained austenite: 10 to 20%. , fresh martensite: 10% or less, and bainite: 70 to 90%. 110> and {112} <110> orientation groups have a pole density of 2.0 to 8.0, and a region from a depth of 1/8 the plate thickness from the surface to a depth of 1/2 the plate thickness from the surface In the texture of the {110}<112> orientation, the pole density is 2.0 to 4.0.
なお、本実施形態では、圧延方向に平行な板厚断面の、表面から板厚の1/4深さ位置(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)における、残留オーステナイト、フレッシュマルテンサイトおよびベイナイトの面積率を規定する。その理由は、この位置における金属組織が、熱間圧延鋼板の代表的な金属組織を示すからである。 In this embodiment, in the plate thickness cross section parallel to the rolling direction, the depth position of 1/4 of the plate thickness from the surface (1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface region) defines the area ratio of retained austenite, fresh martensite and bainite. The reason is that the metallographic structure at this position shows the typical metallographic structure of hot-rolled steel sheets.
残留オーステナイト:10~20%
残留オーステナイトは、熱間圧延鋼板の穴広げ性および延性の等方性を向上する組織である。残留オーステナイトの面積率が10%未満であると、所望の穴広げ性および延性の等方性を得ることができない。そのため、残留オーステナイトの面積率は10%以上とする。好ましくは、12%以上または13%以上である。
一方、残留オーステナイトの面積率が20%超であると、所望の強度を得ることができない。そのため、残留オーステナイトの面積率は20%以下とする。好ましくは、18%以下、17%以下である。
Retained austenite: 10-20%
Retained austenite is a structure that improves the hole expansibility and ductility isotropy of the hot-rolled steel sheet. If the area ratio of retained austenite is less than 10%, desired isotropic hole expandability and ductility cannot be obtained. Therefore, the area ratio of retained austenite is set to 10% or more. Preferably, it is 12% or more or 13% or more.
On the other hand, if the area ratio of retained austenite exceeds 20%, desired strength cannot be obtained. Therefore, the area ratio of retained austenite is set to 20% or less. Preferably, it is 18% or less, 17% or less.
フレッシュマルテンサイト:10%以下
フレッシュマルテンサイトは硬質な組織であるため、熱間圧延鋼板の強度の向上に寄与する。しかし、フレッシュマルテンサイトは穴広げ性および延性の等方性に乏しい組織でもある。フレッシュマルテンサイトの面積率が10%超であると、所望の穴広げ性および延性の等方性を得ることができない。そのため、フレッシュマルテンサイトの面積率は10%以下とする。好ましくは、8%以下、6%以下、4%以下または2%以下である。フレッシュマルテンサイトの面積率は0%であってもよい。
Fresh martensite: 10% or less Since fresh martensite is a hard structure, it contributes to improvement in the strength of the hot-rolled steel sheet. However, fresh martensite is also a structure with poor isotropy in expansibility and ductility. If the area ratio of fresh martensite exceeds 10%, desired isotropy of hole expandability and ductility cannot be obtained. Therefore, the area ratio of fresh martensite is set to 10% or less. Preferably, it is 8% or less, 6% or less, 4% or less, or 2% or less. The area ratio of fresh martensite may be 0%.
ベイナイト:70~90%
ベイナイトは、熱間圧延鋼板の強度および延性の等方性を向上する組織である。ベイナイトの面積率が70%未満であると、所望の強度を得ることができない。そのため、ベイナイトの面積率は70%以上とする。好ましくは、73%以上、75%以上または77%以上である。
一方、ベイナイトの面積率が90%超であると、強度が高くなりすぎ、所望の穴広げ性を得ることができない。そのため、ベイナイトの面積率は90%以下とする。好ましくは、90%未満、88%以下または85%以下である。
Bainite: 70-90%
Bainite is a structure that improves the strength and ductility isotropy of hot-rolled steel sheets. If the area ratio of bainite is less than 70%, the desired strength cannot be obtained. Therefore, the area ratio of bainite is set to 70% or more. Preferably, it is 73% or more, 75% or more or 77% or more.
On the other hand, if the area ratio of bainite exceeds 90%, the strength becomes too high, and the desired hole expansibility cannot be obtained. Therefore, the area ratio of bainite is set to 90% or less. Preferably less than 90%, no more than 88% or no more than 85%.
上述した各組織のうち、残留オーステナイト以外の組織の面積率は、以下の方法により測定する。
熱間圧延鋼板から、圧延方向に平行な板厚断面の、表面から板厚の1/4深さ(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)における金属組織が観察できるように試験片を採取する。次に、板厚断面を研磨した後、研磨面をナイタール腐食し、光学顕微鏡および走査型電子顕微鏡(SEM)を用いて、30μm×30μmの領域を組織観察する。観察領域は少なくとも3領域とする。この組織観察により得られた組織写真に対して画像解析を行うことによって、ベイナイトの面積率を得る。その後、同様の観察位置に対し、レペラー腐食をした後、光学顕微鏡および走査型電子顕微鏡を用いて組織観察を行い、得られた組織写真に対して画像解析を行うことによって、フレッシュマルテンサイトの面積率を得る。
Among the structures described above, the area ratio of structures other than retained austenite is measured by the following method.
From the hot-rolled steel sheet, in the thickness cross section parallel to the rolling direction, 1/4 depth of the plate thickness from the surface (1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface) ) Take a test piece so that the metal structure can be observed. Next, after polishing the thickness cross-section, the polished surface is subjected to nital corrosion, and a 30 μm×30 μm region is structurally observed using an optical microscope and a scanning electron microscope (SEM). At least three observation areas are provided. The area ratio of bainite is obtained by performing image analysis on the structure photograph obtained by this structure observation. After that, after performing repeller corrosion on the same observation position, the structure was observed using an optical microscope and a scanning electron microscope, and the image analysis was performed on the obtained structure photograph. get rate.
上述の組織観察において、各組織は、以下の方法により同定する。
フレッシュマルテンサイトは転位密度が高く、かつ粒内にブロックやパケットといった下部組織を持つ組織であるので、走査型電子顕微鏡を用いた電子チャンネリングコントラスト像によれば、他の金属組織と区別することが可能である。
In the tissue observation described above, each tissue is identified by the following method.
Fresh martensite has a high dislocation density and substructures such as blocks and packets within the grains, so it can be distinguished from other metal structures according to electron channeling contrast images using a scanning electron microscope. is possible.
ラス状の結晶粒の集合であり、組織の内部に長径20nm以上のFe系炭化物を含まない組織のうちフレッシュマルテンサイトでない組織、又は、組織の内部に長径20nm以上のFe系炭化物を含み、そのFe系炭化物が単一のバリアントを有する、すなわち同一方向に伸張したFe系炭化物である組織をベイナイトとみなす。ここで、同一方向に伸長したFe系炭化物とは、Fe系炭化物の伸長方向の差異が5°以内であるものをいう。 A structure that is an aggregate of lath-shaped crystal grains and is not fresh martensite in a structure that does not contain Fe-based carbides with a major axis of 20 nm or more in the interior of the structure, or contains Fe-based carbides with a major axis of 20 nm or more in the interior of the structure, and A structure in which Fe-based carbides have a single variant, that is, Fe-based carbides elongated in the same direction is considered bainite. Here, the term "Fe-based carbides elongated in the same direction" refers to Fe-based carbides with a difference of 5° or less in the orientation of the Fe-based carbides.
残留オーステナイトの面積率は以下の方法により測定する。
本実施形態では、残留オーステナイトの面積率はX線回折により測定する。まず、熱間圧延鋼板の圧延方向に平行な板厚断面の、表面から板厚の1/4深さ(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)において、Co-Kα線を用いて、α(110)、α(200)、α(211)、γ(111)、γ(200)、γ(220)の計6ピークの積分強度を求め、強度平均法を用いて残留オーステナイトの体積率を算出する。この残留オーステナイトの体積率を残留オーステナイトの面積率とみなす。
The area ratio of retained austenite is measured by the following method.
In this embodiment, the area ratio of retained austenite is measured by X-ray diffraction. First, in the thickness cross section parallel to the rolling direction of the hot-rolled steel sheet, 1/4 depth of the plate thickness from the surface (1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface) region), using Co-Kα rays, obtain the integrated intensity of a total of 6 peaks α(110), α(200), α(211), γ(111), γ(200), γ(220) , the volume fraction of retained austenite is calculated using the intensity average method. This volume fraction of retained austenite is regarded as the area fraction of retained austenite.
表面~表面から板厚の1/8深さの領域の集合組織における{001}<110>、{111}<110>および{112}<110>方位群の極密度:2.0~8.0
表面~表面から板厚の1/8深さの領域(以下、表層領域と記載する場合がある)の集合組織における{001}<110>、{111}<110>および{112}<110>方位群の極密度が2.0未満であると、熱間圧延鋼板の延性の等方性および穴広げ性が劣化する。そのため、表層領域の集合組織における{001}<110>、{111}<110>および{112}<110>方位群の極密度は2.0以上とする。好ましくは2.2以上、2.5以上または2.7以上である。
表層領域の集合組織における{001}<110>、{111}<110>および{112}<110>方位群の極密度が8.0超であると、熱間圧延鋼板の延性の等方性および穴広げ性が劣化する。そのため、表層領域の集合組織における{001}<110>、{111}<110>および{112}<110>方位群の極密度は8.0以下とする。好ましくは、7.5以下または7.0以下である。
Polar density of {001}<110>, {111}<110> and {112}<110> orientation groups in the texture of the region from the surface to the depth of 1/8 of the plate thickness from the surface: 2.0 to 8. 0
{001}<110>, {111}<110>, and {112}<110> in the texture of the region from the surface to the depth of 1/8 of the plate thickness from the surface (hereinafter sometimes referred to as the surface layer region) If the pole density of the orientation group is less than 2.0, the ductility isotropy and hole expansibility of the hot-rolled steel sheet deteriorate. Therefore, the pole density of {001}<110>, {111}<110> and {112}<110> orientation groups in the texture of the surface layer region is set to 2.0 or more. It is preferably 2.2 or more, 2.5 or more, or 2.7 or more.
When the pole density of the {001}<110>, {111}<110> and {112}<110> orientation groups in the texture of the surface region is greater than 8.0, the ductility isotropy of the hot-rolled steel sheet And the hole expansibility deteriorates. Therefore, the pole density of {001}<110>, {111}<110> and {112}<110> orientation groups in the texture of the surface layer region is set to 8.0 or less. Preferably, it is 7.5 or less or 7.0 or less.
表面から板厚の1/8深さ~表面から板厚の1/2深さの領域の集合組織における{110}<112>方位の極密度:2.0~4.0
表面から板厚の1/8深さ~表面から板厚の1/2深さの領域(以下、内部領域と記載する場合がある)の集合組織における{110}<112>方位の極密度が4.0超であると、熱間圧延鋼板の延性の等方性および穴広げ性が劣化する。そのため、内部領域の集合組織における{110}<112>方位の極密度は4.0以下とする。好ましくは3.6以下、3.2以下または3.0以下である。
内部領域の集合組織における{110}<112>方位の極密度は、強度劣化を抑制する観点から2.0以上とする。好ましくは2.3以上または2.5以上である。
Polar density of {110} <112> orientation in the texture of the region from the surface to the depth of 1/8 of the plate thickness to the depth of 1/2 of the plate thickness from the surface: 2.0 to 4.0
The extreme density of {110} <112> orientation in the texture of the region from the surface to the depth of 1/8 the plate thickness to the depth of 1/2 the plate thickness from the surface (hereinafter sometimes referred to as the internal region) If it exceeds 4.0, the ductility isotropy and hole expansibility of the hot-rolled steel sheet deteriorate. Therefore, the pole density of the {110}<112> orientation in the texture of the inner region is set to 4.0 or less. It is preferably 3.6 or less, 3.2 or less, or 3.0 or less.
The extreme density of the {110}<112> orientation in the texture of the inner region is set to 2.0 or more from the viewpoint of suppressing strength deterioration. It is preferably 2.3 or more or 2.5 or more.
極密度は、走査電子顕微鏡とEBSD解析装置とを組み合わせた装置及びAMETEK社製のOIM Analysis(登録商標)を用いる。EBSD(Electron Back Scattering Diffraction)法で測定した方位データと球面調和関数とを用いて計算して算出した、3次元集合組織を表示する結晶方位分布関数(ODF:Orientation Distribution Function)から、表層領域の集合組織における{001}<110>、{111}<110>および{112}<110>方位群の極密度、並びに、内部領域の集合組織における{110}<112>の極密度を求める。 For extreme density, a device that combines a scanning electron microscope and an EBSD analysis device and AMETEK's OIM Analysis (registered trademark) are used. From the crystal orientation distribution function (ODF: Orientation Distribution Function) that displays the three-dimensional texture, calculated using the orientation data measured by the EBSD (Electron Back Scattering Diffraction) method and the spherical harmonic function, the surface region Determine the extreme densities of the {001}<110>, {111}<110> and {112}<110> orientation groups in the texture and {110}<112> in the texture of the inner region.
なお、測定範囲は、表層領域については、表面~表面から板厚の1/8深さの領域とし、内部領域については、表面から板厚の1/8深さ~表面から板厚の1/2深さの領域とする。測定ピッチは5μm/stepとする。 The measurement range for the surface layer area is from the surface to 1/8 of the plate thickness from the surface, and for the internal area, from the surface to 1/8 of the plate thickness from the surface to 1/8 of the plate thickness. Let it be a region of 2 depths. A measurement pitch is 5 μm/step.
{hkl}は圧延面に平行な結晶面、<uvw>は圧延方向に平行な結晶方向を表す。すなわち、{hkl}<uvw>とは板面法線方向に{hkl}、圧延方向に<uvw>が向いている結晶を示す。 {hkl} represents a crystal plane parallel to the rolling plane, and <uvw> represents a crystal direction parallel to the rolling direction. That is, {hkl}<uvw> indicates a crystal in which {hkl} is oriented in the plate surface normal direction and <uvw> is oriented in the rolling direction.
なお、熱間圧延鋼板の圧延方向は以下の方法で判別することができる。
まず、熱間圧延鋼板の板厚断面が観察できるように試験片を採取する。採取した試験片の板厚断面を鏡面研磨で仕上げた後、光学顕微鏡を用いて観察する。観察範囲は板厚の全厚とし、輝度が暗い領域を介在物と判定する。介在物のうち長軸の長さが40μm以上である介在物において、介在物が伸展している方向と平行な方向を圧延方向と判別する。
The rolling direction of the hot-rolled steel sheet can be determined by the following method.
First, a test piece is taken so that the thickness cross section of the hot-rolled steel sheet can be observed. After mirror-polishing the plate thickness cross-section of the sampled test piece, it is observed using an optical microscope. The observation range is the entire plate thickness, and areas with dark luminance are determined to be inclusions. Among the inclusions, the direction parallel to the extending direction of the inclusions having a major axis length of 40 μm or more is determined as the rolling direction.
機械特性
本実施形態に係る熱間圧延鋼板は、引張(最大)強さが980MPa以上である。引張強さを980MPa以上とすることで、車体軽量化により寄与することができる。より好ましくは、引張強さは1180MPa以上である。上限は特に限定する必要は無いが、1470MPa、1300MPa以下または1200MPa以下としてもよい。
延性の等方性の指標である、C方向の全伸びとL方向の全伸びとの差((L方向の全伸び-C方向の全伸び)/C方向の全伸び)は±3.0%以下であることが好ましい。
穴広げ性の指標である穴広げ率は、40%以上であることが好ましい。
Mechanical Properties The hot-rolled steel sheet according to the present embodiment has a tensile (maximum) strength of 980 MPa or more. By setting the tensile strength to 980 MPa or more, it is possible to contribute to the weight reduction of the vehicle body. More preferably, the tensile strength is 1180 MPa or higher. The upper limit is not particularly limited, but may be 1470 MPa, 1300 MPa or less, or 1200 MPa or less.
The difference between the total elongation in the C direction and the total elongation in the L direction ((total elongation in the L direction - total elongation in the C direction)/total elongation in the C direction), which is an index of ductility isotropy, is ±3.0. % or less.
It is preferable that the hole expansion ratio, which is an index of the hole expandability, is 40% or more.
引張強さTSおよび全伸びELは、JIS Z 2241:2011の5号試験片を用いて、JIS Z 2241:2011に準拠して測定する。引張試験片の採取位置は、板幅方向の端部から1/4部分とし、圧延方向に直角な方向(C方向)を長手方向とすればよい。なお、全伸びELについては、圧延方向に平行な方向(L方向)を長手方向とした引張試験片についても引張試験を行うことで、L方向の全伸びを測定する。 The tensile strength TS and total elongation EL are measured according to JIS Z 2241:2011 using JIS Z 2241:2011 No. 5 test piece. A tensile test piece is taken from a quarter portion from the edge in the width direction of the sheet, and the direction perpendicular to the rolling direction (C direction) is taken as the longitudinal direction. Regarding the total elongation EL, the total elongation in the L direction is measured by also performing a tensile test on a tensile test piece whose longitudinal direction is parallel to the rolling direction (L direction).
穴広げ率λは、JIS Z 2241:2011の5号試験片を用いて、JIS Z 2256:2010に準拠して測定する。穴広げ試験片の採取位置は、熱間圧延鋼板の板幅方向の端部から1/4部分とすればよい。 The hole expansion ratio λ is measured according to JIS Z 2256:2010 using a No. 5 test piece of JIS Z 2241:2011. The hole-expanding test piece may be sampled at a 1/4 portion from the edge of the hot-rolled steel sheet in the width direction.
板厚
本実施形態に係る熱間圧延鋼板の板厚は特に限定されないが、1.2~8.0mmとしてもよい。熱間圧延鋼板の板厚を1.2mm以上とすることで、圧延完了温度の確保が容易になるとともに圧延荷重を低減でき、熱間圧延を容易に行うことができる。したがって、本実施形態に係る熱間圧延鋼板の板厚は1.2mm以上としてもよい。好ましくは1.4mm以上である。また、板厚を8.0mm以下とすることで、集合組織の制御が困難となり、上述した集合組織を得ることが困難となる場合がある。したがって、板厚は8.0mm以下としてもよい。好ましくは6.0mm以下である。
Thickness The thickness of the hot-rolled steel sheet according to the present embodiment is not particularly limited, but may be 1.2 to 8.0 mm. By setting the thickness of the hot-rolled steel sheet to 1.2 mm or more, it becomes easy to secure the rolling completion temperature, the rolling load can be reduced, and hot rolling can be easily performed. Therefore, the thickness of the hot-rolled steel sheet according to this embodiment may be 1.2 mm or more. Preferably, it is 1.4 mm or more. Also, if the plate thickness is 8.0 mm or less, it becomes difficult to control the texture, and it may be difficult to obtain the texture described above. Therefore, the plate thickness may be 8.0 mm or less. Preferably, it is 6.0 mm or less.
めっき層
上述した化学組成および金属組織を有する本実施形態に係る熱間圧延鋼板は、表面に耐食性の向上等を目的としてめっき層を備えさせて表面処理鋼板としてもよい。めっき層は電気めっき層であってもよく溶融めっき層であってもよい。電気めっき層としては、電気亜鉛めっき、電気Zn-Ni合金めっき等が例示される。溶融めっき層としては、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、溶融Zn-Al合金めっき、溶融Zn-Al-Mg合金めっき、溶融Zn-Al-Mg-Si合金めっき等が例示される。めっき付着量は特に制限されず、従来と同様としてよい。また、めっき後に適当な化成処理(例えば、シリケート系のクロムフリー化成処理液の塗布と乾燥)を施して、耐食性をさらに高めることも可能である。
Plating Layer The hot-rolled steel sheet according to the present embodiment having the chemical composition and metallographic structure described above may be provided with a plating layer on the surface thereof for the purpose of improving corrosion resistance, etc., to form a surface-treated steel sheet. The plating layer may be an electroplating layer or a hot dipping layer. Examples of the electroplating layer include electrogalvanizing and electroplating of Zn—Ni alloy. Examples of hot-dip coating layers include hot-dip galvanizing, hot-dip galvannealing, hot-dip aluminum plating, hot-dip Zn--Al alloy plating, hot-dip Zn--Al--Mg alloy plating, and hot-dip Zn--Al--Mg--Si alloy plating. be. The amount of plating deposited is not particularly limited, and may be the same as the conventional one. Further, it is possible to further improve the corrosion resistance by applying an appropriate chemical conversion treatment (for example, applying a silicate-based chromium-free chemical conversion treatment solution and drying) after plating.
次に、本実施形態に係る熱間圧延鋼板の好適な製造方法について説明する。本実施形態に係る熱間圧延鋼板の好適な製造方法は、下記(a)~(d)の工程を含む。なお、下記説明における温度は特に指定のない限り鋼板の表面温度のことをいう。 Next, a suitable method for manufacturing the hot-rolled steel sheet according to this embodiment will be described. A preferred method for manufacturing the hot-rolled steel sheet according to the present embodiment includes the following steps (a) to (d). In addition, the temperature in the following description refers to the surface temperature of the steel sheet unless otherwise specified.
(a)上述した化学組成を有するスラブを1100℃以上、1350℃未満の温度域に加熱する、加熱工程。
(b)加熱後のスラブを、複数のスタンドを有する圧延機を用いて仕上げ圧延する仕上げ圧延工程であって、下記条件(I)~(V)を満足する。
(I)仕上げ圧延開始温度を850℃以上とする。
(II)複数のスタンドのうち最後の4つの各スタンドにおいて、下記式(1)によって表されるσが40~80となるように圧延する。
σ=exp(0.753+3000/T)×ε0.21×ε’0.13 …(1)
ここで、Tは各スタンドに入る直前の温度(℃)であり、εは相当塑性ひずみであり、ε’はひずみ速度である。
(III)最後の4つの各スタンド間のパス間時間を0.1~10.0秒とする。
(IV)最後の4つのスタンドの累積圧下率を60%以上とする。
(V)仕上げ圧延完了温度を850~1000℃とする。
(c)仕上げ圧延完了後に2.0~4.0秒間空冷し、その後、450~550℃の温度域までの平均冷却速度が100℃/s以上となるように冷却する、冷却工程。
(d)冷却後、巻取りを行う、巻取り工程。
以下、各工程について説明する。
(a) A heating step of heating the slab having the chemical composition described above to a temperature range of 1100°C or higher and lower than 1350°C.
(b) A finish rolling step in which the heated slab is finish rolled using a rolling mill having a plurality of stands, satisfying the following conditions (I) to (V).
(I) The finish rolling start temperature is 850° C. or higher.
(II) Rolling is performed so that σ represented by the following formula (1) is 40 to 80 in each of the last four stands out of the plurality of stands.
σ=exp(0.753+3000/T)× ε0.21 × ε′0.13 (1)
Here, T is the temperature (° C.) just before entering each stand, ε is the equivalent plastic strain, and ε′ is the strain rate.
(III) The interpass time between each of the last four stands is 0.1-10.0 seconds.
(IV) The cumulative rolling reduction of the last four stands shall be 60% or more.
(V) The finish rolling completion temperature is set to 850 to 1000°C.
(c) A cooling step in which air cooling is performed for 2.0 to 4.0 seconds after completion of finish rolling, and then the average cooling rate to the temperature range of 450 to 550° C. is 100° C./s or more.
(d) A winding step in which winding is performed after cooling.
Each step will be described below.
(a)加熱工程
加熱工程では、上述した化学組成を有するスラブを1100℃以上、1350℃未満の温度域に加熱することが好ましい。スラブの製造方法は、特に限定する必要はなく、上記した化学組成を有する溶鋼を、転炉等で溶製し、連続鋳造等の鋳造方法でスラブとする、常用の方法が適用できる。なお、造塊-分塊方法を用いてもよい。
(a) Heating Step In the heating step, the slab having the chemical composition described above is preferably heated to a temperature range of 1100°C or higher and lower than 1350°C. The method for producing the slab is not particularly limited, and a commonly used method of melting molten steel having the chemical composition described above in a converter or the like and forming a slab by a casting method such as continuous casting can be applied. In addition, an agglomeration-blooming method may be used.
スラブでは、Tiなどの炭窒化物形成元素の殆どが、スラブ中に不均一な分布で、粗大な炭窒化物として存在している。不均一な分布で存在する粗大な析出物(炭窒化物)は、熱間圧延鋼板の諸特性(例えば、引張強さ、延性、穴広げ性など)を劣化させる。そのため、熱間圧延前のスラブを所望の温度域で加熱して、粗大な析出物を固溶させる。この粗大な析出物を熱間圧延前に十分に固溶させるためには、スラブの加熱温度を1100℃以上とすることが好ましい。ただし、スラブの加熱温度が高くなりすぎると、表面疵の発生や、スケールオフによる歩留まり低下を引き起こす。そのため、鋼素材の加熱温度は1350℃未満とすることが好ましい。 In slabs, most carbonitride-forming elements such as Ti exist as coarse carbonitrides with uneven distribution in the slab. Coarse precipitates (carbonitrides) present in a non-uniform distribution deteriorate various properties (eg, tensile strength, ductility, hole expansibility, etc.) of hot-rolled steel sheets. Therefore, the slab before hot rolling is heated in a desired temperature range to dissolve coarse precipitates. In order to sufficiently dissolve the coarse precipitates before hot rolling, the heating temperature of the slab is preferably 1100° C. or higher. However, if the heating temperature of the slab becomes too high, surface defects will occur and the yield will decrease due to scale off. Therefore, the heating temperature of the steel material is preferably less than 1350°C.
スラブを1100℃以上、1350℃未満の温度域に加熱して所定時間保持するが、保持時間が4800秒を超えると、スケール発生量が増大する。その結果、続く仕上げ圧延工程においてスケール噛み込み等が発生し易くなり、熱間圧延鋼板の表面品質が劣化する場合がある。したがって、1100℃以上、1350℃未満の温度域における保持時間は、4800秒以下とすることが好ましい。 The slab is heated to a temperature range of 1100°C or more and less than 1350°C and held for a predetermined time. As a result, in the subsequent finish rolling process, entrapment of scale and the like is likely to occur, and the surface quality of the hot-rolled steel sheet may deteriorate. Therefore, the holding time in the temperature range of 1100° C. or more and less than 1350° C. is preferably 4800 seconds or less.
粗圧延工程
加熱工程と仕上げ圧延工程との間で、スラブに対して粗圧延を行ってもよい。粗圧延は、所望のシートバー寸法を得ることができればよく、その条件は特に限定されない。
Rough Rolling Step Between the heating step and the finish rolling step, the slab may be subjected to rough rolling. Conditions for the rough rolling are not particularly limited as long as the desired sheet bar dimensions can be obtained.
(b)仕上げ圧延工程
仕上げ圧延工程では、加熱後のスラブを、複数のスタンドを有する圧延機を用いて仕上げ圧延する。このとき、以下に説明する条件(I)~(V)を満足することが好ましい。
なお、仕上げ圧延の前、もしくは仕上げ圧延の圧延スタンド間の圧延途中で、デスケーリングを行うことが好ましい。
(b) Finish Rolling Step In the finish rolling step, the heated slab is finish rolled using a rolling mill having a plurality of stands. At this time, it is preferable to satisfy the following conditions (I) to (V).
Descaling is preferably performed before finish rolling or during rolling between rolling stands for finish rolling.
(I)仕上げ圧延開始温度:850℃以上
仕上げ圧延開始温度(仕上げ圧延の最初のパスの入側温度)は850℃以上とすることが好ましい。仕上げ圧延開始温度が850℃未満であると、複数の圧延スタンドの一部(特に前半のスタンド)における圧延がフェライト+オーステナイトの二相域温度で行われることとなる。その結果、仕上げ圧延後に加工組織が残存して、熱間圧延鋼板の強度および延性が劣化する場合がある。よって、仕上げ圧延開始温度は850℃以上とすることが好ましい。
なお、仕上げ圧延開始温度は、オーステナイトの粗大化を抑制するため、1100℃以下としてもよい。
(I) Finish rolling start temperature: 850°C or higher The finish rolling start temperature (entry side temperature of the first pass of finish rolling) is preferably 850°C or higher. If the finish rolling start temperature is less than 850° C., rolling in some of the plurality of rolling stands (especially the first half of the stands) will be performed at the two-phase region temperature of ferrite+austenite. As a result, the worked structure may remain after finish rolling, deteriorating the strength and ductility of the hot-rolled steel sheet. Therefore, the finishing rolling start temperature is preferably 850° C. or higher.
In addition, the finish rolling start temperature may be set to 1100° C. or less in order to suppress coarsening of austenite.
(II)最後の4つの各スタンドにおいて、下記式(1)によって表されるσ:40~80
σ=exp(0.753+3000/T)・ε0.21・ε’0.13 …(1)
ここで、Tは各スタンドに入る直前の温度(℃)(すなわち入側温度)であり、εは相当塑性ひずみであり、ε’はひずみ速度である。
最後の4つの各スタンドにおいてσが40~80であることは、最後から4つ目のスタンドのσと、最後から3つ目のスタンドのσと、最後から2つ目のスタンドのσと、最終スタンドのσと、が全て40~80であると換言することができる。
(II) σ: 40 to 80 represented by the following formula (1) in each of the last four stands
σ=exp(0.753+3000/T)·ε 0.21 ·ε′ 0.13 (1)
Here, T is the temperature (° C.) just before entering each stand (that is, entry temperature), ε is the equivalent plastic strain, and ε′ is the strain rate.
σ of 40 to 80 at each of the last four stands gives σ for the fourth to last stand, σ for the third to last stand, σ for the second to last stand, In other words, σ of the final stand and σ are all 40-80.
σが40未満であるスタンドが1つでもあると、最後の4つの各スタンドにおいて表層領域の集合組織の発達に必要なひずみが好適に付与されない場合がある。その結果、表面~表面から板厚の1/8深さの領域の集合組織において、{001}<110>、{111}<110>および{112}<110>方位群の極密度を好ましく制御することができない場合がある。また、内部領域の集合組織を好ましく制御できない場合がある。そのため、最後の4つの各スタンドにおけるσは40以上とすることが好ましい。
また、σが80超であるスタンドが1つでもあると、上記集合組織が発達せず、動的再結晶が発現することにより組織がランダム化してしまう場合がある。その結果、熱間圧延鋼板の延性の等方性および穴広げ性が劣化する場合がある。そのため、最後の4つの各スタンドにおけるσは80以下とすることが好ましい。
If there is even one stand with σ less than 40, each of the last four stands may not adequately impart the strain necessary for texture development in the superficial region. As a result, the pole density of the {001} <110>, {111} <110> and {112} <110> orientation groups is preferably controlled in the texture in the region from the surface to the depth of 1/8 of the plate thickness from the surface. may not be possible. Also, the texture of the inner region may not be controlled favorably. Therefore, σ in each of the last four stands is preferably 40 or more.
Also, if there is even one stand with σ exceeding 80, the texture may not develop and the texture may become randomized due to dynamic recrystallization. As a result, the ductility isotropy and hole expansibility of the hot-rolled steel sheet may deteriorate. Therefore, σ in each of the last four stands is preferably 80 or less.
なお、相当塑性ひずみであるεは、入側板厚をhとし、出側板厚をHとしたとき、ε=(2/√3)×(h/H)により求めることができる。また、ひずみ速度であるε’は圧延時間をt(s)としたとき、ε’=ε/tにより求めることができる。
また、圧延時間tは、鋼板と圧延ロールとが接触して、鋼板にひずみが加わる時間のことをいう。
The equivalent plastic strain ε can be obtained by ε=(2/√3)×(h/H), where h is the plate thickness on the entry side and H is the plate thickness on the delivery side. Further, ε', which is the strain rate, can be obtained by ε'=ε/t, where t(s) is the rolling time.
Further, the rolling time t is the time during which the steel sheet is in contact with the rolling rolls and strain is applied to the steel sheet.
(III)最後の4つの各スタンド間のパス間時間:0.1~10.0秒
最後の4つの各スタンド間において、パス間時間が10.0秒を超えるパス間が1つでもあると、パス間での回復および再結晶が進行してしまう。その結果、ひずみの累積が困難となり、表層領域および内部領域において所望の集合組織を得ることができない場合がある。そのため、最後の4つの各スタンド間のパス間時間は10.0秒以下とすることが好ましい。
最後の4つの各スタンド間のパス間時間は短い方が好ましいが、パス間時間の短縮には、各スタンドの設置空間や圧延速度の点で制約があるため、0.1秒以上とすることが好ましい。
なお、最後の4つの各スタンド間のパス間時間が0.1~10.0秒であることは、最後から4つ目のスタンドと最後から3つ目のスタンドとの間のパス間時間、最後から3つ目のスタンドと最後から2つ目のスタンドとの間のパス間時間、最後から2つ目のスタンドと最終スタンドとの間のパス間時間が全て0.1~10.0秒であると換言することができる。
(III) Inter-pass time between each of the last four stands: 0.1 to 10.0 seconds Any inter-pass time exceeding 10.0 seconds between each of the last four stands , recovery and recrystallization progresses between passes. As a result, accumulation of strain becomes difficult, and a desired texture may not be obtained in the surface layer region and the inner region. Therefore, the interpass time between each of the last four stands is preferably 10.0 seconds or less.
It is preferable that the interpass time between the last four stands is short, but there are restrictions on the installation space of each stand and the rolling speed in terms of shortening the interpass time, so it should be 0.1 seconds or more. is preferred.
In addition, if the inter-pass time between each of the last four stands is 0.1 to 10.0 seconds, the inter-pass time between the fourth to last stand and the third to last stand, The inter-pass time between the third to last stand and the second to last stand, and the inter-pass time between the second to last stand and the last stand are all 0.1 to 10.0 seconds. can be rephrased as
(IV)最後の4つのスタンドの累積圧下率:60%以上
最後の4つのスタンドの累積圧下率が60%未満では、未再結晶オーステナイト中に導入される転位密度が小さくなる場合がある。未再結晶オーステナイト中に導入される転位密度が小さくなると、所望の集合組織を得ることが困難となり、熱間圧延鋼板の穴広げ性および延性の等方性が劣化する場合がある。そのため、最後の4つのスタンドの累積圧下率は60%以上とすることが好ましい。
なお、最後の4つのスタンドの累積圧下率が97%を超えると、熱間圧延鋼板の形状が劣化する場合がある。そのため、最後の4つのスタンドの累積圧下率は97%以下としてもよい。
(IV) Cumulative rolling reduction of the last four stands: 60% or more If the cumulative rolling reduction of the last four stands is less than 60%, the dislocation density introduced into the unrecrystallized austenite may become small. When the density of dislocations introduced into unrecrystallized austenite becomes small, it becomes difficult to obtain a desired texture, and the isotropy of hole expandability and ductility of the hot-rolled steel sheet may deteriorate. Therefore, the cumulative rolling reduction of the last four stands is preferably 60% or more.
Note that if the cumulative rolling reduction of the last four stands exceeds 97%, the shape of the hot-rolled steel sheet may deteriorate. Therefore, the cumulative rolling reduction of the last four stands may be 97% or less.
なお、最後の4つのスタンドの累積圧下率とは、最後から4つ目のスタンドの入口板厚t0とし、最終スタンドの出口板厚t1としたとき、{1-(t1/t0)}×100(%)で表すことができる。 The cumulative rolling reduction of the last four stands is {1−(t1/t0)}×100 when the thickness t0 at the entrance of the fourth stand from the end and the thickness t1 at the exit of the final stand are taken. It can be expressed in (%).
(V)仕上げ圧延完了温度850~1000℃
仕上げ圧延終了温度(最終スタンドの出側温度)が850℃未満では、圧延がフェライト+オーステナイトの二相域温度で行われることとなる。これにより、圧延後に加工組織が残存して熱間圧延鋼板の強度および延性の等方性が劣化する場合がある。そのため、仕上げ圧延完了温度は850℃以上とすることが好ましい。
また、本実施形態に係る化学組成を有するスラブにおいては、未再結晶オーステナイト域は概ね1000℃以下の温度域である。従って、仕上げ圧延完了温度が1000℃を超えると、オーステナイト粒が成長し、冷却後に得られる熱間圧延鋼板のマルテンサイトの粒長が大きくなる。その結果、所望の集合組織を得ることが困難となり、熱間圧延鋼板の強度および延性の等方性が劣化する場合がある。そのため、仕上げ圧延完了温度は1000℃以下とすることが好ましい。
(V) finish rolling completion temperature 850 ~ 1000 ° C
If the finish rolling end temperature (the delivery side temperature of the final stand) is less than 850°C, the rolling is performed at the two-phase temperature of ferrite + austenite. As a result, a worked structure may remain after rolling, deteriorating isotropy of strength and ductility of the hot-rolled steel sheet. Therefore, the finish rolling completion temperature is preferably 850° C. or higher.
In addition, in the slab having the chemical composition according to the present embodiment, the non-recrystallized austenite region is generally a temperature region of 1000° C. or lower. Therefore, when the finish rolling completion temperature exceeds 1000°C, the austenite grains grow and the grain length of martensite in the hot-rolled steel sheet obtained after cooling increases. As a result, it becomes difficult to obtain a desired texture, and the strength and ductility isotropy of the hot-rolled steel sheet may deteriorate. Therefore, the finish rolling completion temperature is preferably 1000° C. or lower.
(c)冷却工程
冷却工程では、仕上げ圧延完了後に2.0~4.0秒間空冷し、その後、550~450℃の温度域までの平均冷却速度が100℃/s以上となるように冷却することが好ましい。
(c) Cooling step In the cooling step, air cooling is performed for 2.0 to 4.0 seconds after completion of finish rolling, and then cooling is performed so that the average cooling rate to the temperature range of 550 to 450 ° C. is 100 ° C./s or more. is preferred.
空冷時間:2.0~4.0秒間
仕上げ圧延完了後は、2.0~4.0秒間空冷を行うことが好ましい。空冷を行う時間が2.0秒未満または4.0秒超であると、所望量のベイナイトを得ることができない場合がある。そのため、空冷は2.0~4.0秒間行うことが好ましい。
なお、本実施形態において空冷とは、平均冷却速度が10℃/s未満である冷却のことをいう。
Air cooling time: 2.0 to 4.0 seconds Air cooling is preferably performed for 2.0 to 4.0 seconds after completion of finish rolling. If the air cooling time is less than 2.0 seconds or more than 4.0 seconds, the desired amount of bainite may not be obtained. Therefore, air cooling is preferably performed for 2.0 to 4.0 seconds.
In this embodiment, air cooling refers to cooling at an average cooling rate of less than 10°C/s.
本実施形態では、仕上げ圧延設備の後段に冷却設備を設置し、この冷却設備に対して仕上げ圧延後の鋼板を通過させながら、上記空冷後に冷却を行うことが好ましい。なお、ここでいう冷却には上記の空冷は含まれない。
冷却設備は、100℃/s以上の平均冷却速度で鋼板を冷却することができる設備とすることが好ましい。そのような冷却設備として例えば、冷却媒体として水を用いた水冷設備を例示することができる。
In the present embodiment, it is preferable to install a cooling facility in the rear stage of the finish rolling facility, and perform cooling after the air cooling while allowing the steel sheet after finish rolling to pass through the cooling facility. The cooling referred to here does not include the air cooling described above.
The cooling equipment is preferably equipment capable of cooling the steel sheet at an average cooling rate of 100° C./s or more. As such cooling equipment, for example, a water cooling equipment using water as a cooling medium can be exemplified.
冷却工程における平均冷却速度は、冷却開始時から冷却終了時までの鋼板の温度降下幅を、冷却開始時から冷却終了時までの所要時間で除した値とする。冷却開始時とは、冷却設備への鋼板の導入時とし、冷却終了時とは、冷却設備からの鋼板の導出時とする。
また、冷却設備には、途中に空冷区間がない設備や、途中に1以上の空冷区間を有する設備がある。本実施形態では、いずれの冷却設備を用いてもよい。空冷区間を有する冷却設備を用いる場合であっても、冷却開始から冷却終了までの平均冷却速度が100℃/s以上であればよい。
The average cooling rate in the cooling process is a value obtained by dividing the temperature drop width of the steel sheet from the start of cooling to the end of cooling by the time required from the start of cooling to the end of cooling. The start of cooling is when the steel plate is introduced into the cooling equipment, and the end of cooling is when the steel plate is taken out of the cooling equipment.
Cooling equipment includes equipment that has no air-cooling section in the middle and equipment that has one or more air-cooling sections in the middle. In this embodiment, any cooling equipment may be used. Even when using a cooling facility having an air-cooling section, the average cooling rate from the start of cooling to the end of cooling should be 100° C./s or more.
空冷終了温度から、450~550℃の温度域までの平均冷却速度:100℃/s以上
空冷終了温度から、450~550℃の温度域までの平均冷却速度が100℃/s未満であると、フェライトが形成されやすくなり、所望量のベイナイトを得ることができない場合がある。そのため、空冷終了温度から、450~550℃の温度域までの平均冷却速度は100℃/s以上とすることが好ましい。
Average cooling rate from the air cooling end temperature to the temperature range of 450 to 550 ° C.: 100 ° C./s or more Ferrite tends to be formed, and the desired amount of bainite may not be obtained. Therefore, the average cooling rate from the air-cooling end temperature to the temperature range of 450 to 550° C. is preferably 100° C./s or more.
(d)巻取り工程
巻取り工程では、450~550℃の温度域まで冷却された鋼板をコイル状に巻き取ることが好ましい。冷却後に直ちに鋼板の巻取りが行われるため、巻取り温度は冷却停止温度にほぼ等しい。巻取り温度が450℃未満であると、所望量のベイナイトを得ることができず、穴広げ性および延性の等方性が劣化する場合がある。また、巻取り温度が550℃超であると、フェライトおよびパーライトが多量に生成し、所望の強度を得ることができない場合がある。そのため、巻取り温度は450~550℃の温度域とすることが好ましい。
(d) Winding Step In the winding step, it is preferable to coil the steel sheet cooled to a temperature range of 450 to 550°C. Since the steel sheet is coiled immediately after cooling, the coiling temperature is approximately equal to the cooling stop temperature. If the coiling temperature is less than 450°C, the desired amount of bainite cannot be obtained, and the isotropy of hole expansibility and ductility may deteriorate. Moreover, when the winding temperature is higher than 550° C., a large amount of ferrite and pearlite are generated, and the desired strength may not be obtained. Therefore, the winding temperature is preferably in the temperature range of 450-550°C.
巻取り後は空冷すればよい。なお、巻取り後、常法に従い、熱間圧延鋼板には調質圧延を施してもよく、また、酸洗を施して表面に形成されたスケールを除去してもよい。あるいは更に、アルミめっき、アルミ-亜鉛めっき、アルミ-珪素めっき、溶融亜鉛めっき、電気亜鉛めっき、合金化溶融亜鉛めっき等のめっき処理や、化成処理を施してもよい。 After winding, it should be air-cooled. After coiling, the hot-rolled steel sheet may be temper-rolled or pickled to remove scales formed on the surface. Alternatively, further, plating treatment such as aluminum plating, aluminum-zinc plating, aluminum-silicon plating, hot dip galvanizing, electrogalvanizing, alloyed hot dip galvanizing, etc., or chemical conversion treatment may be applied.
以上説明した好適な製造方法により、本実施形態に係る熱間圧延鋼板を安定的に製造することができる。 The hot-rolled steel sheet according to the present embodiment can be stably manufactured by the suitable manufacturing method described above.
次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions in the examples are one example of conditions adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one example of conditions. It is not limited. Various conditions can be adopted in the present invention as long as the objects of the present invention are achieved without departing from the gist of the present invention.
表1に示す化学組成の溶鋼を転炉で溶製し、連続鋳造法によりスラブを得た。次いで、これらのスラブを、表2Aおよび表2Bに示す条件で加熱し、粗圧延を行った後、表2Aおよび表2Bに示す条件で仕上げ圧延を行った。仕上げ圧延時完了後、表3Aおよび表3Bに示す条件で冷却し、巻き取ることで、表3Aおよび表3Bに示す板厚の熱間圧延鋼板を得た。
なお、加熱工程において、表2Aおよび表2Bに記載の加熱温度における保持時間は4800秒以下とした。
Molten steel having the chemical composition shown in Table 1 was melted in a converter, and slabs were obtained by continuous casting. Next, these slabs were heated under the conditions shown in Tables 2A and 2B, subjected to rough rolling, and then subjected to finish rolling under the conditions shown in Tables 2A and 2B. After completion of the finish rolling, the hot-rolled steel sheets having the thicknesses shown in Tables 3A and 3B were obtained by cooling and winding under the conditions shown in Tables 3A and 3B.
In the heating step, the holding time at the heating temperatures listed in Tables 2A and 2B was 4800 seconds or less.
なお、仕上げ圧延後の冷却(空冷を除く)は水冷によるものとし、途中に空冷区間を有しない水冷設備に鋼板を通過させることにより行った。表3Aおよび表3B中の平均冷却速度は、水冷設備導入時から水冷設備導出時に至るまでの鋼板の温度降下幅を、水冷設備に対する鋼板の所要通過時間で除した値である。 Cooling after finish rolling (excluding air cooling) was by water cooling, and the steel sheet was passed through water cooling equipment that does not have an air cooling section on the way. The average cooling rate in Tables 3A and 3B is a value obtained by dividing the temperature drop width of the steel plate from the time when the water cooling equipment is introduced to the time when the water cooling equipment is taken out by the time required for the steel plate to pass through the water cooling equipment.
得られた熱間圧延鋼板から試験片を採取し、上述の方法により、各組織の面積率、集合組織の極密度、引張強さ、C方向およびL方向の全伸び、並びに、穴広げ率を測定した。
得られた結果を表4Aおよび表4Bに示す。
A test piece was taken from the obtained hot-rolled steel sheet, and the area ratio of each structure, the extreme density of the texture, the tensile strength, the total elongation in the C and L directions, and the hole expansion ratio were measured by the method described above. It was measured.
The results obtained are shown in Tables 4A and 4B.
得られた引張強さが980MPa以上であった場合、高い強度を有するとして合格と判定した。一方、得られた引張強さが980MPa未満であった場合、高い強度を有さないとして不合格と判定した。 When the obtained tensile strength was 980 MPa or more, it was judged to have high strength and to be accepted. On the other hand, when the obtained tensile strength was less than 980 MPa, it was determined to be unsatisfactory because it did not have high strength.
得られたC方向の全伸びとL方向の全伸びとの差が±3.0%以下であった場合、優れた延性の等方性を有するとして合格と判定した。一方、C方向の全伸びとL方向の全伸びとの差が±3.0%超であった場合、優れた延性の等方性を有さないとして不合格と判定した。 When the difference between the obtained total elongation in the C direction and the total elongation in the L direction was ±3.0% or less, it was judged to have excellent ductility isotropy and to pass. On the other hand, when the difference between the total elongation in the C direction and the total elongation in the L direction was more than ±3.0%, it was determined to be unsatisfactory because it did not have excellent ductility isotropy.
得られた穴広げ率が40%以上であった場合、優れた穴広げ性を有するとして合格と判定した。一方、穴広げ率が40%未満であった場合、優れた穴広げ性を有さないとして不合格と判定した。 When the obtained hole expansion rate was 40% or more, it was determined to be acceptable as having excellent hole expansion properties. On the other hand, when the hole expansion rate was less than 40%, it was judged to be unsatisfactory because it did not have excellent hole expandability.
表4Aおよび表4Bから分かるように、本発明例において、高い強度を有し、且つ優れた延性の等方性および穴広げ性を有する熱間圧延鋼板が得られた。
一方、化学組成および/または金属組織が本発明で規定する範囲内でない比較例は、上記特性のうちいずれか一つ以上が劣った。
As can be seen from Tables 4A and 4B, hot-rolled steel sheets having high strength and excellent ductility isotropy and hole expansibility were obtained in the examples of the present invention.
On the other hand, the comparative examples whose chemical composition and/or metallographic structure were not within the range defined by the present invention were inferior in at least one of the above properties.
本発明に係る上記態様によれば、高い強度を有し、且つ優れた延性の等方性および穴広げ性を有する熱間圧延鋼板を提供することができる。 According to the above aspect of the present invention, it is possible to provide a hot-rolled steel sheet having high strength and excellent ductility isotropy and hole expansibility.
Claims (2)
C :0.100~0.350%、
Si:0.010~3.00%、
Mn:1.00~4.00%、
sol.Al:0.001~2.000%、
Si+sol.Al:1.00%以上、
Ti:0.010~0.380%、
P :0.100%以下、
S :0.0300%以下、
N :0.1000%以下、
O :0.0100%以下、
Nb:0~0.100%、
V :0~0.500%、
Cu:0~2.00%、
Cr:0~2.00%、
Mo:0~1.00%、
Ni:0~2.00%、
B :0~0.0100%、
Ca:0~0.0200%、
Mg:0~0.0200%、
REM:0~0.1000%、
Bi:0~0.020%、
Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%、並びに
Sn:0~0.050%を含有し、
残部がFeおよび不純物からなり、
表面から板厚の1/8深さ~前記表面から板厚の3/8深さの領域における金属組織が、面積%で、
残留オーステナイト:10~20%、
フレッシュマルテンサイト:10%以下、および
ベイナイト:70~90%からなり、
前記表面~前記表面から板厚の1/8深さの領域の集合組織において、
{001}<110>、{111}<110>および{112}<110>方位群の極密度が2.0~8.0であり、
前記表面から板厚の1/8深さ~前記表面から板厚の1/2深さの領域の集合組織において、
{110}<112>方位の極密度が2.0~4.0であり、
引張強さが980MPa以上であることを特徴とする熱間圧延鋼板。 The chemical composition, in mass %,
C: 0.100 to 0.350%,
Si: 0.010 to 3.00%,
Mn: 1.00 to 4.00%,
sol. Al: 0.001 to 2.000%,
Si+sol. Al: 1.00% or more,
Ti: 0.010 to 0.380%,
P: 0.100% or less,
S: 0.0300% or less,
N: 0.1000% or less,
O: 0.0100% or less,
Nb: 0 to 0.100%,
V: 0 to 0.500%,
Cu: 0 to 2.00%,
Cr: 0 to 2.00%,
Mo: 0 to 1.00%,
Ni: 0 to 2.00%,
B: 0 to 0.0100%,
Ca: 0 to 0.0200%,
Mg: 0-0.0200%,
REM: 0 to 0.1000%,
Bi: 0 to 0.020%,
One or more of Zr, Co, Zn and W: 0 to 1.00% in total, and Sn: 0 to 0.050%,
The balance consists of Fe and impurities,
The metal structure in the region from 1/8 of the plate thickness from the surface to 3/8 of the plate thickness from the surface is area%,
retained austenite: 10-20%,
Fresh martensite: 10% or less, and bainite: 70 to 90%,
In the texture of the region from the surface to the depth of 1/8 of the plate thickness from the surface,
{001} <110>, {111} <110> and {112} <110> orientation groups have a pole density of 2.0 to 8.0,
In the texture of the region from the depth of 1/8 the plate thickness from the surface to the depth of 1/2 the plate thickness from the surface,
{110} <112> orientation pole density is 2.0 to 4.0,
A hot-rolled steel sheet having a tensile strength of 980 MPa or more.
Nb:0.005~0.100%、
V :0.005~0.500%、
Cu:0.01~2.00%、
Cr:0.01~2.00%、
Mo:0.01~1.00%、
Ni:0.02~2.00%、
B :0.0001~0.0100%、
Ca:0.0005~0.0200%、
Mg:0.0005~0.0200%、
REM:0.0005~0.1000%、および
Bi:0.0005~0.020%
からなる群から選択される1種または2種以上を含有することを特徴とする請求項1に記載の熱間圧延鋼板。 The chemical composition, in mass %,
Nb: 0.005 to 0.100%,
V: 0.005 to 0.500%,
Cu: 0.01 to 2.00%,
Cr: 0.01 to 2.00%,
Mo: 0.01 to 1.00%,
Ni: 0.02 to 2.00%,
B: 0.0001 to 0.0100%,
Ca: 0.0005 to 0.0200%,
Mg: 0.0005-0.0200%,
REM: 0.0005-0.1000% and Bi: 0.0005-0.020%
The hot-rolled steel sheet according to claim 1, containing one or more selected from the group consisting of:
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22881045.3A EP4417718A1 (en) | 2021-10-14 | 2022-10-12 | Hot-rolled steel plate |
JP2023554573A JPWO2023063350A1 (en) | 2021-10-14 | 2022-10-12 | |
MX2024004249A MX2024004249A (en) | 2021-10-14 | 2022-10-12 | Hot-rolled steel plate. |
KR1020247011676A KR20240065116A (en) | 2021-10-14 | 2022-10-12 | hot rolled steel plate |
CN202280066930.XA CN118139998A (en) | 2021-10-14 | 2022-10-12 | Hot rolled steel plate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021168627 | 2021-10-14 | ||
JP2021-168627 | 2021-10-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023063350A1 true WO2023063350A1 (en) | 2023-04-20 |
Family
ID=85988683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/038039 WO2023063350A1 (en) | 2021-10-14 | 2022-10-12 | Hot-rolled steel plate |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4417718A1 (en) |
JP (1) | JPWO2023063350A1 (en) |
KR (1) | KR20240065116A (en) |
CN (1) | CN118139998A (en) |
MX (1) | MX2024004249A (en) |
WO (1) | WO2023063350A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016010004A1 (en) | 2014-07-14 | 2016-01-21 | 新日鐵住金株式会社 | Hot-rolled steel sheet |
WO2016158159A1 (en) * | 2015-03-31 | 2016-10-06 | 株式会社神戸製鋼所 | HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME |
WO2016167313A1 (en) * | 2015-04-15 | 2016-10-20 | 新日鐵住金株式会社 | Hot-rolled steel sheet and method for manufacturing same |
WO2021019947A1 (en) * | 2019-07-30 | 2021-02-04 | Jfeスチール株式会社 | High-strength steel sheet and method for manufacturing same |
JP2021168627A (en) | 2020-04-16 | 2021-10-28 | 株式会社クボタ | Harvester |
-
2022
- 2022-10-12 MX MX2024004249A patent/MX2024004249A/en unknown
- 2022-10-12 CN CN202280066930.XA patent/CN118139998A/en active Pending
- 2022-10-12 EP EP22881045.3A patent/EP4417718A1/en active Pending
- 2022-10-12 JP JP2023554573A patent/JPWO2023063350A1/ja active Pending
- 2022-10-12 WO PCT/JP2022/038039 patent/WO2023063350A1/en active Application Filing
- 2022-10-12 KR KR1020247011676A patent/KR20240065116A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016010004A1 (en) | 2014-07-14 | 2016-01-21 | 新日鐵住金株式会社 | Hot-rolled steel sheet |
WO2016158159A1 (en) * | 2015-03-31 | 2016-10-06 | 株式会社神戸製鋼所 | HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME |
WO2016167313A1 (en) * | 2015-04-15 | 2016-10-20 | 新日鐵住金株式会社 | Hot-rolled steel sheet and method for manufacturing same |
WO2021019947A1 (en) * | 2019-07-30 | 2021-02-04 | Jfeスチール株式会社 | High-strength steel sheet and method for manufacturing same |
JP2021168627A (en) | 2020-04-16 | 2021-10-28 | 株式会社クボタ | Harvester |
Also Published As
Publication number | Publication date |
---|---|
CN118139998A (en) | 2024-06-04 |
EP4417718A1 (en) | 2024-08-21 |
MX2024004249A (en) | 2024-04-24 |
KR20240065116A (en) | 2024-05-14 |
JPWO2023063350A1 (en) | 2023-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5163835B2 (en) | Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and production methods thereof | |
KR101536845B1 (en) | Hot-rolled steel sheet and production method therefor | |
US9410231B2 (en) | Steel sheet and method of manufacturing steel sheet | |
JP6241273B2 (en) | Hot rolled steel sheet | |
JP6241274B2 (en) | Manufacturing method of hot-rolled steel sheet | |
JP5157375B2 (en) | High-strength cold-rolled steel sheet excellent in rigidity, deep drawability and hole expansibility, and method for producing the same | |
WO2013018740A1 (en) | High-strength steel sheet having superior impact resistance, method for producing same, high-strength galvanized steel sheet, and method for producing same | |
JP7243854B2 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
JP2011012308A (en) | High-yield-ratio type hot-rolled steel plate superior in burring property and manufacturing method therefor | |
JP5712771B2 (en) | Steel sheet with excellent Young's modulus in the direction perpendicular to rolling and method for producing the same | |
CN111344423B (en) | High-strength cold-rolled steel sheet | |
JP2012012658A (en) | Baked hardening hot-rolled steel sheet excellent in burring properties and method for manufacturing the same | |
JP2019044269A (en) | High intensity cold rolled thin steel sheet | |
CN116096514A (en) | Hot rolled steel sheet | |
JP6264861B2 (en) | High Young's modulus cold-rolled steel sheet excellent in workability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof | |
JP5533143B2 (en) | Cold rolled steel sheet and method for producing the same | |
CN115362280B (en) | Steel sheet and method for producing same | |
JP6217455B2 (en) | Cold rolled steel sheet | |
US11060157B2 (en) | Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing full hard cold-rolled steel sheet, method for producing steel sheet, and method for producing coated steel sheet | |
JP6901417B2 (en) | High-strength steel sheet and high-strength galvanized steel sheet, and their manufacturing method | |
JP7348573B2 (en) | hot rolled steel plate | |
WO2023002910A1 (en) | Cold-rolled steel sheet and manufacturing method thereof | |
JP6121197B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same | |
WO2023063350A1 (en) | Hot-rolled steel plate | |
JP7303460B2 (en) | Steel plate and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22881045 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023554573 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280066930.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2024/004249 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20247011676 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202417028606 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401002296 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022881045 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022881045 Country of ref document: EP Effective date: 20240514 |