WO2023058369A1 - 感放射線性樹脂組成物、樹脂、化合物及びパターン形成方法 - Google Patents
感放射線性樹脂組成物、樹脂、化合物及びパターン形成方法 Download PDFInfo
- Publication number
- WO2023058369A1 WO2023058369A1 PCT/JP2022/032972 JP2022032972W WO2023058369A1 WO 2023058369 A1 WO2023058369 A1 WO 2023058369A1 JP 2022032972 W JP2022032972 W JP 2022032972W WO 2023058369 A1 WO2023058369 A1 WO 2023058369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrocarbon group
- group
- carbon atoms
- radiation
- structural unit
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
- G03F7/0392—Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
- G03F7/0397—Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/22—Esters containing halogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/30—Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
- C08F220/303—Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one or more carboxylic moieties in the chain
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0045—Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0046—Photosensitive materials with perfluoro compounds, e.g. for dry lithography
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0048—Photosensitive materials characterised by the solvents or agents facilitating spreading, e.g. tensio-active agents
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2002—Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
- G03F7/2004—Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
Definitions
- the present invention relates to radiation-sensitive resin compositions, resins, compounds, and pattern forming methods.
- Photolithography technology that uses resist compositions is used to form fine circuits in semiconductor devices.
- an acid is generated by exposing the film of the resist composition to radiation through a mask pattern, and the acid is used as a catalyst to react with the resin in the exposed area and the unexposed area.
- a resist pattern is formed on a substrate by creating a difference in solubility in an organic solvent-based developer.
- CDU critical dimension uniformity
- the purpose of the present invention is to provide a radiation-sensitive resin composition, a resin, a compound, and a pattern forming method that can form a resist film with excellent sensitivity, CDU performance, and resolution when next-generation technology is applied.
- R a is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms.
- Ar 1 is a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
- n 1 is an integer from 1 to (the number of hydrogen atoms in the monovalent aromatic hydrocarbon group represented by Ar 2 above).
- the radiation-sensitive resin composition contains a resin containing the structural unit (I), it can exhibit sensitivity, CDU performance and resolution at a sufficient level.
- Structural unit (I) introduces an aromatic hydrocarbon group substituted with an iodine atom or a bromine atom (hereinafter also referred to as "specific aromatic hydrocarbon group").
- specific aromatic hydrocarbon group an aromatic hydrocarbon group substituted with an iodine atom or a bromine atom
- the present invention in one embodiment, It relates to a resin containing a structural unit (I) represented by the following formula (1).
- R a is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms.
- Ar 1 is a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
- m is 0 or 1;
- L 1 is a single bond, —O—, * —COO—, a divalent hydrocarbon group having 1 to 20 carbon atoms, or a combination of two or more thereof. * is a bond on the Ar 1 side.
- Ar 2 is a substituted or unsubstituted monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
- X is an iodine atom or a bromine atom that substitutes for a hydrogen atom in the monovalent aromatic hydrocarbon group represented by Ar 2 above. When there are multiple X's, the multiple X's are the same or different.
- n 1 is an integer from 1 to (the number of hydrogen atoms in the monovalent aromatic hydrocarbon group represented by Ar 2 above).
- the coexistence of the specific aromatic hydrocarbon group and the alkali dissociable group can impart excellent sensitivity, CDU performance and resolution to the radiation-sensitive resin composition containing them.
- R a is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms.
- Ar 1 is a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
- m is 0 or 1;
- L 1 is a single bond, —O—, * —COO—, a divalent hydrocarbon group having 1 to 20 carbon atoms, or a combination of two or more thereof. * is a bond on the Ar 1 side.
- Ar 2 is a substituted or unsubstituted monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
- X is an iodine atom or a bromine atom that substitutes for a hydrogen atom in the monovalent aromatic hydrocarbon group represented by Ar 2 above.
- X's When there are multiple X's, the multiple X's are the same or different.
- n 1 is an integer from 1 to (the number of hydrogen atoms in the monovalent aromatic hydrocarbon group represented by Ar 2 above).
- the compound since the specific aromatic hydrocarbon group and the alkali-dissociable group coexist, it is suitable as a monomer compound necessary for preparing the resin of the radiation-sensitive resin composition.
- the present invention in one embodiment, a step of directly or indirectly applying the radiation-sensitive resin composition onto a substrate to form a resist film; exposing the resist film; and developing the exposed resist film with a developer.
- the pattern forming method since the above radiation-sensitive resin composition having excellent sensitivity, CDU performance and resolution is used, a high-quality resist pattern can be efficiently formed by lithography applying next-generation exposure technology. .
- the radiation-sensitive resin composition (hereinafter also simply referred to as "composition") according to this embodiment contains a resin, a radiation-sensitive acid generator and a solvent.
- the above composition may contain other optional ingredients as long as they do not impair the desired effect.
- a resin is an assembly of polymers containing structural units (I).
- the resin may be a base resin that is a main component of the radiation-sensitive resin composition, a high fluorine content resin that can function as a modifier for the resist film surface, or a mixture thereof.
- the base resin contains, in addition to the structural unit (I), a structural unit (II) having a phenolic hydroxyl group, a structural unit (III) having an acid-dissociable group, a structural unit (IV) having a polar group, a lactone structure, and the like. It may contain a structural unit (V) and the like. Each structural unit will be described below.
- Structural unit (I) Structural unit (I) is represented by the following formula (1).
- R a is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms.
- Ar 1 is a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
- m is 0 or 1;
- L 1 is a single bond, —O—, * —COO—, a divalent hydrocarbon group having 1 to 20 carbon atoms, or a combination of two or more thereof. * is a bond on the Ar 1 side.
- Ar 2 is a substituted or unsubstituted monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
- X is an iodine atom or a bromine atom that substitutes for a hydrogen atom in the monovalent aromatic hydrocarbon group represented by Ar 2 above.
- X's When there are multiple X's, the multiple X's are the same or different.
- n 1 is an integer from 1 to (the number of hydrogen atoms in the monovalent aromatic hydrocarbon group represented by Ar 2 above).
- Examples of the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R a include a monovalent linear hydrocarbon group having 1 to 10 carbon atoms and a monovalent alicyclic ring having 3 to 10 carbon atoms. and a monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms.
- Examples of the chain hydrocarbon group having 1 to 10 carbon atoms include a linear or branched saturated hydrocarbon group having 1 to 10 carbon atoms, or a linear or branched unsaturated hydrocarbon group having 1 to 10 carbon atoms. is mentioned.
- Examples of the linear or branched saturated hydrocarbon group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group, 1- Alkyl groups such as a methylpropyl group and a t-butyl group are included.
- linear or branched unsaturated hydrocarbon groups having 1 to 10 carbon atoms examples include alkenyl groups such as ethenyl group, propenyl group and butenyl group; alkynyl groups such as ethynyl group, propynyl group and butynyl group. .
- Examples of the alicyclic hydrocarbon group having 3 to 10 carbon atoms include monocyclic or polycyclic saturated hydrocarbon groups and monocyclic or polycyclic unsaturated hydrocarbon groups.
- Preferred monocyclic saturated hydrocarbon groups are cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl groups.
- Preferred polycyclic cycloalkyl groups are bridged alicyclic hydrocarbon groups such as norbornyl, adamantyl and tricyclodecyl groups.
- the bridged alicyclic hydrocarbon group is a polycyclic alicyclic hydrocarbon group in which two carbon atoms that are not adjacent to each other among the carbon atoms constituting the alicyclic ring are bonded by a chemical bond containing one or more carbon atoms.
- Examples of the monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms include aryl groups such as phenyl group, tolyl group, xylyl group and naphthyl group; and aralkyl groups such as benzyl group and phenethyl group.
- R a is preferably a hydrogen atom or a monovalent chain hydrocarbon group having 1 to 10 carbon atoms, more preferably a hydrogen atom or a linear saturated hydrocarbon group having 1 to 5 carbon atoms.
- Some or all of the hydrogen atoms in the hydrocarbon group of R a may be substituted with a substituent.
- substituents include halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a hydroxyl group, a carboxy group, a cyano group, a nitro group, an alkoxy group, an alkoxycarbonyl group, an alkoxycarbonyloxy group, and an acyl group , an acyloxy group, and the like.
- the divalent aromatic hydrocarbon group having 6 to 20 carbon atoms represented by Ar 1 includes carbon atoms such as benzene ring, naphthalene ring, anthracene ring, phenalene ring, phenanthrene ring, pyrene ring, fluorene ring and perylene ring. Examples thereof include groups obtained by removing two hydrogen atoms from an aromatic hydrocarbon ring of numbers 6 to 20.
- Ar 1 is preferably a divalent aromatic hydrocarbon group having 6 to 10 carbon atoms, more preferably a benzene ring.
- Some or all of the hydrogen atoms in the aromatic hydrocarbon group for Ar 1 may be substituted with a substituent.
- the substituent for R a can be preferably employed.
- the divalent hydrocarbon group having 1 to 20 carbon atoms in L 1 is a group obtained by expanding the carbon number of the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R a to 20 (for example, A group obtained by removing one hydrogen atom from a tetracyclodecyl group, anthryl group, anthracenyl group, etc.) can be preferably employed.
- L 1 is preferably -R La -, -(R Lb ) ⁇ -OR Lc -, or * -COOR Ld -.
- ⁇ is 0 or 1; * is a bond on the Ar 1 side.
- R La , R Lb , R Lc and R Ld are each independently a divalent hydrocarbon group having 1 to 20 carbon atoms.
- a divalent hydrocarbon group having 1 to 20 carbon atoms for L 1 is preferably employed. can do.
- a divalent chain hydrocarbon group having 1 to 10 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms is preferable, and a divalent linear hydrocarbon group having 1 to 5 carbon atoms or A divalent aromatic hydrocarbon group having 6 to 10 carbon atoms is more preferable, and a methanediyl group, an ethanediyl group or a benzenediyl group is even more preferable.
- Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms represented by Ar 2 include a group obtained by removing one hydrogen atom from the aromatic hydrocarbon ring having 6 to 20 carbon atoms in Ar 1 . is mentioned. Among them, a phenyl group, a naphthyl group and a benzyl group are preferred.
- Some or all of the hydrogen atoms of the monovalent aromatic hydrocarbon group of Ar 2 are replaced with iodine atoms or bromine atoms represented by X, but some or all of the remaining hydrogen atoms are X may be substituted with other substituents other than As the substituent, the substituent for R a (excluding an iodine atom and a bromine atom) can be preferably employed.
- an iodine atom is preferable in terms of sensitivity.
- n1 is one.
- the upper limit of n1 is the number of hydrogen atoms possessed by the monovalent aromatic hydrocarbon group of Ar2 .
- n 1 is an integer from 1-5.
- n 1 is an integer of 1-7.
- the structural unit (I) includes a structural unit represented by the following formula (1-1) (hereinafter also referred to as “structural unit (I-1)”) and a structure represented by the following formula (1-2). unit (hereinafter also referred to as “structural unit (I-2)”).
- unit (hereinafter also referred to as “structural unit (I-2) (In formula (1-1), Ra and X have the same meanings as in formula (1) above.
- L 11 is a divalent chain hydrocarbon group having 1 to 10 carbon atoms or a divalent alicyclic hydrocarbon group having 3 to 12 carbon atoms. n 11 is an integer of 1-5.
- Ra and X have the same meanings as in formula (1) above.
- L 12 is ** -(R 12a ) ⁇ -OR 12b - or **- COOR 12c -.
- R 12a , R 12b and R 12c are each independently a divalent chain hydrocarbon group having 1 to 10 carbon atoms or a divalent alicyclic hydrocarbon group having 3 to 12 carbon atoms. ** is a bond that directly connects to the benzene ring. ⁇ is 0 or 1; n12 is an integer from 1 to 5; )
- the divalent chain hydrocarbon group having 1 to 10 carbon atoms represented by L 11 one hydrogen atom is added to the monovalent chain hydrocarbon group having 1 to 10 carbon atoms in R a . groups excepted.
- the divalent alicyclic hydrocarbon group having 3 to 12 carbon atoms represented by L 11 above the monovalent alicyclic hydrocarbon group having 3 to 10 carbon atoms in the above R a has up to 12 carbon atoms. Examples thereof include groups obtained by removing one hydrogen atom from an extended group (eg, tetracyclodecyl group, etc.).
- the above L 11 is preferably a divalent chain hydrocarbon group having 1 to 10 carbon atoms, more preferably a linear divalent hydrocarbon group having 1 to 5 carbon atoms, and further preferably a methanediyl group or an ethanediyl group.
- n 11 is preferably an integer of 1-4, more preferably an integer of 1-3.
- the divalent chain hydrocarbon group having 1 to 10 carbon atoms and the divalent alicyclic hydrocarbon group having 3 to 12 carbon atoms represented by R 12a , R 12b and R 12c are:
- a divalent chain hydrocarbon group having 1 to 10 carbon atoms and a divalent alicyclic hydrocarbon group having 3 to 12 carbon atoms represented by L 11 above can be preferably employed.
- n12 is preferably an integer of 1-4, more preferably an integer of 1-3.
- Structural unit (I) is preferably represented by the following formulas (I-1) to (I-27).
- R a has the same definition as in formula (1) above.
- the lower limit of the content of the structural unit (I) in the total structural units constituting the base resin is preferably 1 mol%, more preferably 5 mol%. , 10 mol % is more preferred, and 15 mol % is particularly preferred.
- the upper limit of the content ratio is preferably 50 mol %, more preferably 40 mol %, and even more preferably 25 mol %.
- a monomer compound giving structural unit (I) undergoes a nucleophilic substitution reaction with a hydroxyaryl halide and a halide of an acyl halide (e.g., chloroacetyl chloride, etc.), as typically shown in the scheme below. It can be synthesized by converting the ester into an ester, and further performing a nucleophilic substitution reaction between the ester and a polymerizable group-containing carboxylic acid or a polymerizable group-containing alcohol.
- acyl halide e.g., chloroacetyl chloride, etc.
- Ar 2 , X, n 1 and L 1 have the same definitions as in formula (1) above.
- X 1 and X 2 are halogen atoms.
- R Z is a polymerizable group-containing group.
- the base resin preferably contains a structural unit (II) having a phenolic hydroxyl group. If necessary, the resin has structural unit (II) or other structural units, so that the solubility in the developer can be adjusted more appropriately, and as a result, the sensitivity, etc. of the radiation-sensitive resin composition can be improved. can be further improved.
- the structural unit (II) improves etching resistance and contributes to the improvement of the difference in developer solubility (dissolution contrast) between In particular, it can be suitably applied to pattern formation using exposure to radiation with a wavelength of 50 nm or less, such as electron beams and EUV.
- Structural unit (II) is preferably represented by the following formula (2).
- R ⁇ is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- L CA is a single bond, -COO- * or -O- * . * is a bond on the aromatic ring side.
- R 52 is a cyano group, nitro group, alkyl group, fluorinated alkyl group, alkoxycarbonyloxy group, acyl group or acyloxy group. When multiple R 52 are present, the multiple R 52 are the same or different.
- n 3 is an integer of 0-2, m 3 is an integer of 1-8, and m 4 is an integer of 0-8. However, 1 ⁇ m 3 +m 4 ⁇ 2n 3 +5 is satisfied. )
- R ⁇ is preferably a hydrogen atom or a methyl group.
- LCA is preferably a single bond or -COO- * .
- R 52 is a cyano group, nitro group, alkyl group, fluorinated alkyl group, alkoxycarbonyloxy group, acyl group or acyloxy group.
- alkyl groups include linear or branched alkyl groups having 1 to 8 carbon atoms such as methyl group, ethyl group and propyl group.
- fluorinated alkyl group include linear or branched fluorinated alkyl groups having 1 to 8 carbon atoms such as trifluoromethyl group and pentafluoroethyl group.
- the alkoxycarbonyloxy group includes, for example, a chain or alicyclic alkoxycarbonyloxy group having 2 to 16 carbon atoms such as a methoxycarbonyloxy group, a butoxycarbonyloxy group and an adamantylmethyloxycarbonyloxy group.
- Acyl groups include, for example, aliphatic or aromatic acyl groups having 2 to 12 carbon atoms such as acetyl group, propionyl group, benzoyl group and acryloyl group.
- the acyloxy group includes, for example, aliphatic or aromatic acyloxy groups having 2 to 12 carbon atoms such as acetyloxy group, propionyloxy group, benzoyloxy group and acryloyloxy group.
- n3 0 or 1 is more preferable, and 0 is even more preferable.
- m 3 is preferably an integer of 1 to 3, more preferably 1 or 2.
- m 4 is preferably an integer of 0 to 3, more preferably an integer of 0 to 2.
- structural units (II) structural units represented by the following formulas (2-1) to (2-10) (hereinafter also referred to as “structural units (2-1) to (2-10)”) .) and the like are preferable.
- R ⁇ is the same as in formula (2) above.
- the structural units (2-1) to (2-4), (2-6), and (2-8) are preferred.
- the lower limit of the content ratio of the structural unit (II) in all the structural units constituting the base resin is 15 mol % is preferred, 20 mol % is more preferred, and 25 mol % is even more preferred.
- the upper limit of the content ratio is preferably 70 mol %, more preferably 65 mol %, and even more preferably 60 mol %.
- a monomer having a phenolic hydroxyl group such as hydroxystyrene
- the phenolic hydroxyl group is protected by a protective group before polymerization, and then deprotected to obtain the structural unit (II).
- protective groups include acid-dissociable groups such as ethoxyethyl groups and alkali-dissociable groups. Among them, acid-dissociable groups are preferred, and acetal protective groups are more preferred.
- the base resin preferably contains a structural unit (III) having an acid-labile group.
- the "acid-dissociable group” is a group that substitutes for a hydrogen atom of an alkali-soluble group such as a carboxy group, a phenolic hydroxyl group, a sulfo group and a sulfonamide group, and is dissociated by the action of an acid. Therefore, the acid-dissociable group is bound to the oxygen atom that was bound to the hydrogen atom in these functional groups.
- the structural unit (III) is preferably represented by the following formula (3).
- R7 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- R 8 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
- R 9 and R 10 are each independently a monovalent chain hydrocarbon group having 1 to 10 carbon atoms or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, or R 9 and R 10 represents a divalent alicyclic group having 3 to 20 carbon atoms which is combined with the carbon atoms to which they are bonded.
- R 7 is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoint of copolymerizability of the monomer that gives the structural unit (III).
- Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 8 include a chain hydrocarbon group having 1 to 10 carbon atoms and a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms. groups, monovalent aromatic hydrocarbon groups having 6 to 20 carbon atoms, and the like.
- the chain hydrocarbon group having 1 to 10 carbon atoms represented by R 8 to R 10 includes a linear or branched saturated hydrocarbon group having 1 to 10 carbon atoms, or a linear or branched hydrocarbon group having 1 to 10 carbon atoms.
- a branched chain unsaturated hydrocarbon group is mentioned.
- Examples of the alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R 8 to R 10 include monocyclic or polycyclic saturated hydrocarbon groups and monocyclic or polycyclic unsaturated hydrocarbon groups. be done.
- Preferred monocyclic saturated hydrocarbon groups are cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl groups.
- Preferred polycyclic cycloalkyl groups are bridged alicyclic hydrocarbon groups such as norbornyl, adamantyl, tricyclodecyl and tetracyclododecyl groups.
- the bridged alicyclic hydrocarbon group is a polycyclic alicyclic hydrocarbon group in which two carbon atoms that are not adjacent to each other among the carbon atoms constituting the alicyclic ring are linked by a bond chain containing one or more carbon atoms.
- a cyclic hydrocarbon group is a polycyclic alicyclic hydrocarbon group in which two carbon atoms that are not adjacent to each other among the carbon atoms constituting the alicyclic ring are linked by a bond chain containing one or more carbon atoms.
- Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms represented by R 8 include: Aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and anthryl group; and aralkyl groups such as benzyl group, phenethyl group and naphthylmethyl group.
- R 8 is preferably a linear or branched saturated hydrocarbon group having 1 to 10 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
- a divalent alicyclic group having 3 to 20 carbon atoms in which the chain hydrocarbon groups or alicyclic hydrocarbon groups represented by R 9 and R 10 are combined together with the carbon atoms to which they are bonded, is not particularly limited as long as it is a group obtained by removing two hydrogen atoms from the same carbon atoms constituting the carbocyclic ring of the above-mentioned monocyclic or polycyclic alicyclic hydrocarbon having the number of carbon atoms.
- Either a monocyclic hydrocarbon group or a polycyclic hydrocarbon group may be used, and the polycyclic hydrocarbon group may be either a bridged alicyclic hydrocarbon group or a condensed alicyclic hydrocarbon group.
- the condensed alicyclic hydrocarbon group is a polycyclic alicyclic hydrocarbon group in which a plurality of alicyclic rings share a side (a bond between two adjacent carbon atoms).
- the saturated hydrocarbon group is preferably a cyclopentanediyl group, a cyclohexanediyl group, a cycloheptanediyl group, a cyclooctanediyl group, or the like
- the unsaturated hydrocarbon group is a cyclopentenediyl group.
- cyclohexenediyl group, cycloheptenediyl group, cyclooctenediyl group, cyclodecenediyl group and the like are preferable.
- the polycyclic alicyclic hydrocarbon group is preferably a bridged alicyclic saturated hydrocarbon group, such as a bicyclo[2.2.1]heptane-2,2-diyl group (norbornane-2,2-diyl group ), bicyclo[2.2.2]octane-2,2-diyl group, tricyclo[3.3.1.1 3,7 ]decane-2,2-diyl group (adamantane-2,2-diyl group) etc. are preferred.
- a bridged alicyclic saturated hydrocarbon group such as a bicyclo[2.2.1]heptane-2,2-diyl group (norbornane-2,2-diyl group ), bicyclo[2.2.2]octane-2,2-diyl group, tricyclo[3.3.1.1 3,7 ]decane-2,2-diyl group (adamantane-2,2-diyl group) etc.
- R 8 is an alkyl group having 1 to 4 carbon atoms or a phenyl group
- R 9 and R 10 are combined with each other and the alicyclic structure composed together with the carbon atom to which they are bonded is polycyclic or monocyclic. is preferably a cycloalkane structure of
- structural unit (III-1) for example, structural units represented by the following formulas (3-1) to (3-7) (hereinafter also referred to as “structural units (III-1) to (III-7)" and so on.
- R 7 to R 10 have the same meanings as in formula (3) above.
- i and j are each independently an integer of 1 to 4;
- k and l are 0 or 1;
- R8 is preferably a methyl group, an ethyl group, an isopropyl group or a phenyl group.
- R 9 and R 10 are preferably a methyl group or an ethyl group.
- the base resin may contain one or a combination of two or more structural units (III).
- the lower limit of the content ratio of the structural unit (III) in all the structural units constituting the base resin is 10 mol % is preferred, 20 mol % is more preferred, 30 mol % is even more preferred, and 35 mol % is particularly preferred.
- the upper limit of the content ratio is preferably 70 mol %, more preferably 60 mol %, still more preferably 55 mol %, and particularly preferably 50 mol %.
- the base resin may appropriately contain a structural unit (IV) having a polar group in addition to the structural units (I) to (III).
- Polar groups also include ionic functional groups.
- Polar groups include, for example, fluorine atoms, alcoholic hydroxyl groups, carboxy groups, cyano groups, nitro groups, and sulfonamide groups.
- a structural unit having a fluorine atom, a structural unit having an alcoholic hydroxyl group and a structural unit having a carboxy group are preferable, and a structural unit having a fluorine atom and a structural unit having an alcoholic hydroxyl group are more preferable. .
- the ionic functional group includes an anionic group and a cationic group.
- the anionic group is preferably a group having a sulfonate anion
- the cationic group is preferably a group having a sulfonium cation.
- Structural units (IV) include, for example, structural units represented by the following formula.
- RA is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- the lower limit of the content ratio of the structural unit (IV) to the total structural units constituting the base resin is 3 mol % is preferred, 5 mol % is more preferred, and 8 mol % is even more preferred.
- the upper limit of the content ratio is preferably 30 mol %, more preferably 20 mol %, and even more preferably 15 mol %.
- Structural unit (V) is a structural unit containing at least one selected from the group consisting of a lactone structure, a cyclic carbonate structure and a sultone structure.
- the base resin can adjust the solubility in the developer, and as a result, the radiation-sensitive resin composition improves lithography performance such as resolution. be able to.
- the adhesion between the resist pattern formed from the base resin and the substrate can be improved.
- a structural unit containing a lactone structure is preferable, a structural unit containing a norbornanelactone structure is more preferable, and a structural unit derived from norbornanelactone-yl (meth)acrylate is even more preferable.
- the lower limit of the content ratio of the structural unit (V) in all the structural units constituting the base resin is as follows: 5 mol % is preferred, 10 mol % is more preferred, and 15 mol % is even more preferred.
- the upper limit of the content ratio is preferably 40 mol %, more preferably 30 mol %, and even more preferably 20 mol %.
- the content of the base resin is preferably 70% by mass or more, more preferably 75% by mass or more, and even more preferably 80% by mass or more, based on the total solid content of the radiation-sensitive resin composition.
- solid content refers to all components other than the solvent among the components contained in the radiation-sensitive resin composition.
- the base resin can be synthesized, for example, by polymerizing monomers that provide each structural unit using a radical polymerization initiator or the like in an appropriate solvent.
- the molecular weight of the base resin is not particularly limited, but the polystyrene equivalent weight average molecular weight (Mw) by gel permeation chromatography (GPC) is preferably 1,000 or more and 10,000 or less, and 2,000 or more and 30,000 or less. It is more preferably 3,000 or more and 12,000 or less, and particularly preferably 4,000 or more and 8,000 or less. If the Mw of the base resin is less than the above lower limit, the resulting resist film may have reduced heat resistance. When the Mw of the base resin exceeds the above upper limit, the developability of the resist film may deteriorate.
- Mw polystyrene equivalent weight average molecular weight
- the ratio (Mw/Mn) of Mw to the polystyrene equivalent number average molecular weight (Mn) of the base resin measured by GPC is usually 1 or more and 5 or less, preferably 1 or more and 3 or less, and more preferably 1 or more and 2 or less.
- the Mw and Mn of the base resin and high fluorine content resin are values measured using gel permeation chromatography (GPC) under the following conditions.
- GPC columns 2 G2000HXL, 1 G3000HXL, 1 G4000HXL (manufactured by Tosoh) Column temperature: 40°C Elution solvent: Tetrahydrofuran Flow rate: 1.0 mL/min Sample concentration: 1.0% by mass Sample injection volume: 100 ⁇ L Detector: Differential refractometer Standard substance: Monodisperse polystyrene
- the radiation-sensitive resin composition of the present embodiment may contain a resin having a higher mass content of fluorine atoms than the base resin (hereinafter also referred to as "high fluorine content resin”) together with the base resin. good.
- the radiation-sensitive resin composition contains a high fluorine content resin, it can be unevenly distributed on the surface layer of the resist film with respect to the base resin, and as a result, the state of the resist film surface and the components in the resist film The distribution can be controlled as desired.
- the high fluorine content resin preferably contains a structural unit having a fluorine atom-containing group (hereinafter also referred to as "structural unit (VI)"). It is preferable that the high fluorine content resin further have the structural unit (I) and the structural unit (III) of the base resin, if necessary. As described above, the structural unit (I) represented by formula (1) may be contained in the base resin or may be contained in the high fluorine content resin. When the high-fluorine content resin has the structural unit (I) or the structural unit (III), the embodiment is the same as the structural unit (I) or the structural unit (III) described for the base resin.
- Structural unit (VI) is preferably represented by the following formula (6).
- R 13 is a hydrogen atom, a methyl group or a trifluoromethyl group.
- G L is a single bond, an oxygen atom, a sulfur atom, -COO-, -SO 2 ONH-, -CONH- or -OCONH-.
- R 14 is a monovalent fluorinated chain hydrocarbon group having 1 to 20 carbon atoms or a monovalent fluorinated alicyclic hydrocarbon group having 3 to 20 carbon atoms.
- R 13 is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoint of copolymerizability of the monomer that gives the structural unit (VI).
- GL is preferably a single bond or -COO-, more preferably -COO-.
- R 14 As the monovalent fluorinated chain hydrocarbon group having 1 to 20 carbon atoms represented by R 14 , some or all of the hydrogen atoms possessed by a linear or branched alkyl group having 1 to 20 carbon atoms are fluorine Those substituted by atoms can be mentioned.
- the monovalent fluorinated alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R 14 includes a part of the hydrogen atoms of a monocyclic or polycyclic hydrocarbon group having 3 to 20 carbon atoms, or Those completely substituted with fluorine atoms can be mentioned.
- R 14 above is preferably a fluorinated chain hydrocarbon group, more preferably a fluorinated alkyl group, 2,2,2-trifluoroethyl group, 1,1,1,3,3,3-hexafluoropropyl and 5,5,5-trifluoro-1,1-diethylpentyl groups are more preferred.
- the lower limit of the content of the structural unit (VI) in the total structural units constituting the high fluorine content resin is preferably 40 mol% and 45 mol%. More preferably, 50 mol % is even more preferable, and 55 mol % is particularly preferable.
- the upper limit of the content ratio is preferably 90 mol %, more preferably 85 mol %, and even more preferably 80 mol %.
- the lower limit of Mw of the high fluorine content resin is preferably 1,000, more preferably 2,000, still more preferably 3,000, and particularly preferably 5,000.
- the upper limit of Mw is preferably 50,000, more preferably 30,000, still more preferably 20,000, and particularly preferably 15,000.
- the lower limit of Mw/Mn of the high fluorine content resin is usually 1, more preferably 1.1.
- the upper limit of Mw/Mn is usually 5, preferably 3, more preferably 2, and even more preferably 1.7.
- the lower limit of the content of the high fluorine content resin is preferably 0.1% by mass, more preferably 0.5% by mass, more preferably 1% by mass, based on the total solid content in the radiation-sensitive resin composition. More preferably, 1.5% by mass is even more preferable.
- the upper limit of the content is preferably 20% by mass, more preferably 15% by mass, still more preferably 10% by mass, and particularly preferably 7% by mass.
- the lower limit of the content of the high fluorine content resin is preferably 0.1 parts by mass, more preferably 0.5 parts by mass, still more preferably 1 part by mass, and 1.5 parts by mass with respect to 100 parts by mass of the base resin. Parts by weight are particularly preferred.
- the upper limit of the content is preferably 15 parts by mass, more preferably 10 parts by mass, still more preferably 8 parts by mass, and particularly preferably 5 parts by mass.
- the radiation-sensitive resin composition may contain one or more high-fluorine content resins.
- the high fluorine content resin can be synthesized by a method similar to the method for synthesizing the base resin described above.
- the radiation-sensitive acid generator is a component that contains an organic acid anion portion and an onium cation portion and generates an acid upon exposure.
- the resin contains the structural unit (III) having an acid-labile group
- the acid generated by exposure can dissociate the acid-labile group of the structural unit (III) to generate a carboxy group or the like.
- This function does not substantially dissociate the acid-dissociable group or the like of the structural unit (III) of the resin under the pattern forming conditions using the radiation-sensitive resin composition, and the radiation-sensitive It differs from the function of an acid diffusion control agent (described later), which is to suppress the diffusion of acid generated from an acid generator.
- the acid generated from the radiation-sensitive acid generator is a relatively stronger acid (an acid with a smaller pKa) than the acid generated from the acid diffusion controller.
- the functions of the radiation-sensitive acid generator and the acid diffusion controller depend on the energy required for the dissociation of the acid-dissociable group possessed by the structural unit (III) of the resin and the use of the radiation-sensitive resin composition. It is determined by the thermal energy conditions and the like applied when forming the pattern by using a heat source.
- the radiation-sensitive acid generator contained in the radiation-sensitive resin composition may be present alone as a compound (free from the polymer) or incorporated as a part of the polymer. Although both forms may be used, the form in which they exist alone as a compound is preferred.
- the radiation-sensitive resin composition contains the radiation-sensitive acid generator, the polarity of the resin in the exposed area increases, and the resin in the exposed area becomes soluble in the developer in the case of alkaline aqueous solution development. On the other hand, in the case of organic solvent development, it becomes sparingly soluble in the developer.
- Examples of radiation-sensitive acid generators include onium salt compounds, sulfonimide compounds, halogen-containing compounds, and diazoketone compounds.
- Examples of onium salt compounds include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts and the like. Among these, sulfonium salts and iodonium salts are preferred.
- acids generated by exposure include those that generate sulfonic acid by exposure.
- Such acids include compounds in which the carbon atom adjacent to the sulfo group is substituted with one or more fluorine atoms or fluorinated hydrocarbon groups.
- a compound composed of an organic acid anion portion and an onium cation portion is preferable as the radiation-sensitive acid generator.
- the organic acid anion portion preferably has a cyclic structure.
- the onium cation moiety preferably contains a fluorine-substituted aromatic ring structure (including a structure in which a linking group is interposed between the fluorine atom and the aromatic ring; the same shall apply hereinafter).
- the radiation-sensitive acid generator preferably has a structure represented by formula (K-1) below.
- n2 is an integer from 1 to 5; R f1 and R f2 are each independently a hydrogen atom, a fluorine atom or a fluoroalkyl group. However, when n2 is 1, at least one of R f1 and R f2 is a fluorine atom or a fluoroalkyl group. When n2 is 2 to 5, at least one of multiple R f1 and R f2 is a fluorine atom or a fluoroalkyl group, and multiple R f1 and R f2 are the same or different.
- L K1 is a divalent linking group.
- R5a is a monovalent organic group having a ring structure.
- X 1 + is a monovalent onium cation.
- n2 is preferably an integer of 1 to 4, more preferably an integer of 1 to 3, and even more preferably 1 or 2.
- examples of the fluoroalkyl group represented by R f1 and R f2 include a fluoroalkyl group having 1 to 20 carbon atoms.
- R f1 and R f2 are preferably a fluorine atom and a fluoroalkyl group, more preferably a fluorine atom and a perfluoroalkyl group, still more preferably a fluorine atom and a trifluoromethyl group, and particularly preferably a fluorine atom.
- the divalent linking group represented by L K1 includes, for example, a divalent linear or branched hydrocarbon group having 1 to 10 carbon atoms, 4 carbon atoms, -12 divalent alicyclic hydrocarbon groups, -CO-, -O-, -NH-, -S- and one group selected from a cyclic acetal structure, or a combination of two or more of these groups and the like.
- Examples of the above-mentioned divalent linear or branched hydrocarbon group having 1 to 10 carbon atoms include methanediyl group, ethanediyl group, propanediyl group, butanediyl group, hexanediyl group, octanediyl group and the like. Among them, an alkanediyl group having 1 to 8 carbon atoms is preferred.
- Examples of the divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms include monocyclic cycloalkanediyl groups such as cyclopentanediyl group and cyclohexanediyl group; polycyclic groups such as norbornanediyl group and adamantanediyl group; and the like. Among them, a cycloalkanediyl group having 5 to 12 carbon atoms is preferable.
- Examples of the monovalent organic group having a ring structure represented by R5a include a monovalent group containing an alicyclic structure having 5 or more ring members, a monovalent group containing an aliphatic heterocyclic structure having 5 or more ring members, a monovalent group containing an aromatic ring structure with 6 or more ring members, a monovalent group containing an aromatic heterocyclic structure with 5 or more ring members, and the like.
- the monovalent organic group represented by R 5a is bonded to the polymer and the radiation-sensitive acid generator represented by the above formula (K-1) is incorporated as part of the polymer. is included in the radiation-sensitive acid generator.
- Examples of the alicyclic structure having 5 or more ring members include Monocyclic cycloalkane structures such as cyclopentane structure, cyclohexane structure, cycloheptane structure, cyclooctane structure, cyclononane structure, cyclodecane structure, cyclododecane structure; monocyclic cycloalkene structures such as cyclopentene structure, cyclohexene structure, cycloheptene structure, cyclooctene structure, cyclodecene structure; Polycyclic cycloalkane structures such as norbornane structure, adamantane structure, tricyclodecane structure, and tetracyclododecane structure; Norbornene structure, polycyclic cycloalkene structure such as tricyclodecene structure, and the like can be mentioned.
- Monocyclic cycloalkane structures such as cyclopentane structure, cyclohex
- Examples of the aliphatic heterocyclic structure having 5 or more ring members include Lactone structures such as pentanolactone structure, hexanolactone structure, and norbornane lactone structure; Sultone structures such as pentanosultone structure, hexanosultone structure, norbornane sultone structure; Oxygen atom-containing heterocyclic structures such as an oxacyclopentane structure, an oxacycloheptane structure, an oxanorbornane structure, and a cyclic acetal structure; nitrogen atom-containing heterocyclic structures such as azacyclopentane structure, azacyclohexane structure, diazabicyclooctane structure; A thiacyclopentane structure, a thiacyclohexane structure, a sulfur atom-containing heterocyclic structure having a thianorbornane structure, and the like can be mentioned.
- Lactone structures such as pentanolactone structure,
- Examples of the aromatic ring structure having 6 or more ring members include a benzene structure, naphthalene structure, phenanthrene structure, and anthracene structure.
- aromatic heterocyclic structure having 5 or more ring members examples include oxygen atom-containing heterocyclic structures such as a furan structure, a pyran structure and a benzopyran structure, nitrogen atom-containing heterocyclic structures such as a pyridine structure, a pyrimidine structure and an indole structure. can be mentioned.
- the lower limit of the number of ring members in the ring structure of R 5a may be 5, preferably 6, more preferably 7, and even more preferably 8.
- the upper limit of the number of ring members is preferably 15, more preferably 14, still more preferably 13, and particularly preferably 12.
- Some or all of the hydrogen atoms in the ring structure of R5a may be substituted with a substituent.
- substituents include halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a hydroxyl group, a carboxy group, a cyano group, a nitro group, an alkoxy group, an alkoxycarbonyl group, an alkoxycarbonyloxy group, and an acyl group , an acyloxy group, and the like.
- hydroxy groups are preferred.
- R 5a is preferably a monovalent group containing an alicyclic structure having 5 or more ring members and a monovalent group containing an aliphatic heterocyclic structure having 5 or more ring members, and an alicyclic structure having 6 or more ring members.
- a monovalent group containing a ring structure and a monovalent group containing an aliphatic heterocyclic structure having 6 or more ring members is more preferable, and a monovalent group containing an alicyclic structure having 9 or more ring members and an aliphatic having 9 or more ring members More preferred are monovalent groups containing a group heterocyclic ring structure, such as adamantyl group, hydroxyadamantyl group, norbornanelactone-yl group, norbornanesulton-yl group and 5-oxo-4-oxatricyclo[4.3.1.13 ,8]undecane-yl group is more preferred, and adamantyl group is particularly preferred.
- Examples of the monovalent onium cation represented by X 1 + include elements such as S, I, O, N, P, Cl, Br, F, As, Se, Sn, Sb, Te, and Bi.
- Radiation-degradable onium cations include, for example, sulfonium cations, tetrahydrothiophenium cations, iodonium cations, phosphonium cations, diazonium cations, pyridinium cations, and the like. Among them, a sulfonium cation or an iodonium cation is preferred. Sulfonium cations or iodonium cations are preferably represented by the following formulas (X-1) to (X-5).
- R a1 , R a2 and R a3 are each independently a substituted or unsubstituted C 1-12 linear or branched alkyl group, alkoxy group or alkoxycarbonyl oxy group, substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 3 to 12 carbon atoms, substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, hydroxy group, halogen atom, —OSO 2 —R P , —SO 2 —R Q or —S—R T , or represents a ring structure composed of two or more of these groups combined together.
- the ring structure may contain a heteroatom such as O or S between the carbon-carbon bonds forming the skeleton.
- R P , R Q and R T are each independently a substituted or unsubstituted linear or branched C 1-12 alkyl group, a substituted or unsubstituted C 5-25 alicyclic It is a hydrocarbon group or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms.
- k1, k2 and k3 are each independently an integer from 0 to 5; When R a1 to R a3 and R P , R Q and R T are each plural, R a1 to R a3 and R P , R Q and R T may be the same or different.
- R b1 is a substituted or unsubstituted linear or branched alkyl group or alkoxy group having 1 to 20 carbon atoms, or a substituted or unsubstituted acyl group having 2 to 8 carbon atoms. , or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 8 carbon atoms, or a hydroxy group.
- nk is 0 or 1; When nk is 0, k4 is an integer of 0-4, and when nk is 1, k4 is an integer of 0-7.
- R b1 When there are a plurality of R b1 , the plurality of R b1 may be the same or different, and the plurality of R b1 may represent a ring structure formed by being combined with each other.
- R b2 is a substituted or unsubstituted C 1-7 linear or branched alkyl group or a substituted or unsubstituted C 6 or 7 aromatic hydrocarbon group.
- LC is a single bond or a divalent linking group.
- k5 is an integer from 0 to 4;
- the plurality of Rb2 's may be the same or different, and the plurality of Rb2 's may represent a ring structure formed by being combined with each other.
- q is an integer from 0 to 3;
- the ring structure containing S + may contain a heteroatom such as O or S between the carbon-carbon bonds forming the skeleton.
- R c1 , R c2 and R c3 are each independently a substituted or unsubstituted C 1-12 linear or branched alkyl group.
- R g1 is a substituted or unsubstituted linear or branched alkyl group or alkoxy group having 1 to 20 carbon atoms, or a substituted or unsubstituted acyl group having 2 to 8 carbon atoms. , or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 8 carbon atoms, or a hydroxy group.
- nk is 0 or 1; When nk2 is 0, k10 is an integer of 0-4, and when nk2 is 1, k10 is an integer of 0-7.
- R g1 When there are a plurality of R g1 , the plurality of R g1 may be the same or different, and the plurality of R g1 may represent a ring structure formed by being combined with each other.
- R g2 and R g3 are each independently a substituted or unsubstituted C 1-12 linear or branched alkyl group, an alkoxy group or an alkoxycarbonyloxy group, a substituted or unsubstituted C 3 -12 monocyclic or polycyclic cycloalkyl groups, substituted or unsubstituted C6-12 aromatic hydrocarbon groups, hydroxy groups, halogen atoms, or these groups combined together Represents a ring structure.
- k11 and k12 are each independently an integer of 0-4. When each of R g2 and R g3 is plural, the plural R g2 and R g3 may be the same or different.
- R d1 and R d2 are each independently a substituted or unsubstituted C 1-12 linear or branched alkyl group, alkoxy group or alkoxycarbonyl group, substituted or an unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, a halogen atom, a halogenated alkyl group having 1 to 4 carbon atoms, a nitro group, or two or more of these groups combined with each other Represents the ring structure that is composed.
- k6 and k7 are each independently an integer from 0 to 5; When each of R d1 and R d2 is plural, the plural R d1 and R d2 may be the same or different.
- Examples of the radiation-sensitive acid generator represented by the above formula (K-1) include radiation-sensitive acid generators represented by the following formulas (K-1-1) to (K-1-41) ( Hereinafter, also referred to as “radiation-sensitive acid generator (1-1) to radiation-sensitive acid generator (1-41)”) and the like.
- X 1 + is a monovalent onium cation.
- Examples of the radiation-sensitive acid generator include radiation-sensitive acid generators represented by the following formulas (K-2-1) to (K-2-12) (hereinafter referred to as "radiation-sensitive acid generator (2 -1) to a radiation-sensitive acid generator (2-12)” are also suitable.
- X 2 + is a monovalent onium cation.
- the sulfonate anion of the radiation-sensitive acid generator represented by the above formula (K-1) preferably has one or more iodine atoms.
- the monovalent onium cation represented by X 1 + and the monovalent onium cation represented by X 2 + preferably have one or more fluorine atoms, more preferably three or more fluorine atoms. preferable.
- the radiation-sensitive acid generator may be used alone or in combination of two or more.
- the lower limit of the content of the radiation-sensitive acid generator (total when multiple types of radiation-sensitive acid generators are present) is preferably 3 parts by mass, more preferably 5 parts by mass, based on 100 parts by mass of the resin. 10 parts by mass is more preferable.
- the upper limit of the content is preferably 50 parts by mass, more preferably 45 parts by mass, and even more preferably 40 parts by mass. As a result, excellent sensitivity, CDU performance, and resolution can be exhibited when forming a resist pattern.
- the radiation-sensitive resin composition may contain an acid diffusion controller, if necessary.
- the acid diffusion control agent has the effect of controlling the diffusion phenomenon in the resist film of the acid generated from the radiation-sensitive acid generator upon exposure, and suppressing unfavorable chemical reactions in the non-exposed regions. Moreover, the storage stability of the resulting radiation-sensitive resin composition is improved. Furthermore, the resolution of the resist pattern is further improved, and the line width change of the resist pattern due to the fluctuation of the holding time from exposure to development can be suppressed, and a radiation-sensitive resin composition excellent in process stability is obtained. be done.
- Nitrogen-containing compounds are examples of acid diffusion control agents. Specific examples include primary amine compounds, secondary amine compounds, tertiary amine compounds, imino group-containing compounds, amide group-containing compounds, urea compounds, and nitrogen-containing heterocyclic compounds.
- a compound having an acid dissociable group can also be used as the nitrogen-containing organic compound.
- an onium salt compound that generates an acid with a higher pKa than the acid generated from the radiation-sensitive acid generator by irradiation with radiation (hereinafter also referred to as a "radiation-sensitive weak acid generator” for convenience). ) can also be suitably used.
- the acid generated by the radiation-sensitive weak acid generator is a weak acid that does not induce dissociation of the acid-dissociable groups in the resin under conditions that dissociate the acid-dissociable groups.
- "dissociation" of an acid-dissociable group means dissociation upon post-exposure baking at 110°C for 60 seconds.
- radiation-sensitive weak acid generators examples include sulfonium salt compounds represented by the following formula (8-1) and iodonium salt compounds represented by the following formula (8-2).
- J + is a sulfonium cation and U + is an iodonium cation.
- Sulfonium cations represented by J + include sulfonium cations represented by the above formulas (X-1) to (X-4), among which sulfonium cations containing a fluorine-substituted aromatic ring structure are preferred.
- the iodonium cation represented by U + includes iodonium cations represented by the above formula (X-5), among which iodonium cations containing a fluorine-substituted aromatic ring structure are preferred.
- E - and Q - are each independently anions represented by OH - , R ⁇ -COO - , and -N - -.
- R ⁇ is an alkyl group, an aryl group or an aralkyl group.
- a hydrogen atom of an alkyl group represented by R ⁇ or a hydrogen atom of an aromatic ring of an aryl group or an aralkyl group is a halogen atom, a hydroxy group, a nitro group, or a halogen atom-substituted or unsubstituted alkyl group having 1 to 12 carbon atoms. Alternatively, it may be substituted with an alkoxy group having 1 to 12 carbon atoms.
- Examples of the radiation-sensitive weak acid generator include compounds represented by the following formula.
- the lower limit of the content of the acid diffusion control agent is preferably 5 mol%, more preferably 10 mol%, and even more preferably 15 mol%, relative to the total number of moles of the radiation-sensitive acid generator.
- the upper limit of the content is preferably 60 mol%, more preferably 55 mol%, and even more preferably 50 mol%.
- the radiation-sensitive resin composition according to this embodiment contains a solvent.
- the solvent is not particularly limited as long as it can dissolve or disperse at least the resin, the radiation-sensitive acid generator, and optional additives.
- solvents examples include alcohol-based solvents, ether-based solvents, ketone-based solvents, amide-based solvents, ester-based solvents, and hydrocarbon-based solvents.
- alcohol solvents include Carbon such as iso-propanol, 4-methyl-2-pentanol, 3-methoxybutanol, n-hexanol, 2-ethylhexanol, furfuryl alcohol, cyclohexanol, 3,3,5-trimethylcyclohexanol, diacetone alcohol Monoalcoholic solvents of numbers 1 to 18; C2-C18 poly(ethylene glycol, 1,2-propylene glycol, 2-methyl-2,4-pentanediol, 2,5-hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, etc.) a alcohol-based solvent; A polyhydric alcohol partial ether solvent obtained by etherifying a part of the hydroxy groups of the above polyhydric alcohol solvent may be used.
- ether solvents examples include Dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; Aromatic ring-containing ether solvents such as diphenyl ether and anisole (methylphenyl ether); Examples thereof include polyhydric alcohol ether solvents obtained by etherifying the hydroxy groups of the above polyhydric alcohol solvents.
- ketone solvents examples include chain ketone solvents such as acetone, butanone, and methyl-iso-butyl ketone; Cyclic ketone solvents such as cyclopentanone, cyclohexanone, and methylcyclohexanone; 2,4-pentanedione, acetonylacetone, acetophenone and the like.
- amide solvents include cyclic amide solvents such as N,N'-dimethylimidazolidinone and N-methylpyrrolidone; Chain amide solvents such as N-methylformamide, N,N-dimethylformamide, N,N-diethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, N-methylpropionamide, and the like.
- ester solvents include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate; Polyhydric alcohol partial ether acetate solvents such as diethylene glycol mono-n-butyl ether acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate; Lactone solvents such as ⁇ -butyrolactone and valerolactone; Carbonate solvents such as diethyl carbonate, ethylene carbonate, propylene carbonate; Polyvalent carboxylic acid diester solvents such as propylene glycol diacetate, methoxytriglycol acetate, diethyl oxalate, ethyl acetoacetate, ethyl lactate and diethyl phthalate can be used.
- monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate
- hydrocarbon solvents examples include Aliphatic hydrocarbon solvents such as n-hexane, cyclohexane, and methylcyclohexane; Aromatic hydrocarbon solvents such as benzene, toluene, di-iso-propylbenzene, n-amylnaphthalene, and the like are included.
- ester solvents and ketone solvents are preferred, polyhydric alcohol partial ether solvents, polyhydric alcohol partial ether acetate solvents, cyclic ketone solvents, and lactone solvents are more preferred, and propylene glycol monomethyl ether and propylene. More preferred are glycol monomethyl ether acetate, cyclohexanone and ⁇ -butyrolactone.
- the radiation-sensitive resin composition may contain one or more solvents.
- the radiation-sensitive resin composition may contain other optional components in addition to the components described above.
- the other optional components include a cross-linking agent, an uneven distribution promoter, a surfactant, an alicyclic skeleton-containing compound, a sensitizer, and the like. These other optional components may be used alone or in combination of two or more.
- the radiation-sensitive resin composition can be prepared, for example, by mixing a resin, a radiation-sensitive acid generator, a solvent, and, if necessary, other optional components in a predetermined ratio. After mixing, the radiation-sensitive resin composition is preferably filtered through, for example, a filter having a pore size of about 0.5 ⁇ m.
- the solid content concentration of the radiation-sensitive resin composition is usually 0.1% by mass to 50% by mass, preferably 0.5% by mass to 30% by mass, more preferably 1% by mass to 20% by mass.
- the resin according to this embodiment contains a structural unit (I) represented by the following formula (1).
- R a is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms.
- Ar 1 is a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
- m is 0 or 1;
- L 1 is a single bond, —O—, * —COO—, a divalent hydrocarbon group having 1 to 20 carbon atoms, or a combination of two or more thereof. * is a bond on the Ar 1 side.
- Ar 2 is a substituted or unsubstituted monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
- X is an iodine atom or a bromine atom that substitutes for a hydrogen atom in the monovalent aromatic hydrocarbon group represented by Ar 2 above.
- X's When there are multiple X's, the multiple X's are the same or different.
- n 1 is an integer from 1 to (the number of hydrogen atoms in the monovalent aromatic hydrocarbon group represented by Ar 2 above).
- the resin in the radiation-sensitive resin composition can be suitably used.
- the sensitivity, CDU performance and resolution of the resist film can be improved.
- R a is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms.
- Ar 1 is a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
- m is 0 or 1;
- L 1 is a single bond, —O—, * —COO—, a divalent hydrocarbon group having 1 to 20 carbon atoms, or a combination of two or more thereof. * is a bond on the Ar 1 side.
- Ar 2 is a substituted or unsubstituted monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
- X is an iodine atom or a bromine atom that substitutes for a hydrogen atom in the monovalent aromatic hydrocarbon group represented by Ar 2 above.
- X's When there are multiple X's, the multiple X's are the same or different.
- n 1 is an integer from 1 to (the number of hydrogen atoms in the monovalent aromatic hydrocarbon group represented by Ar 2 above).
- the compound a structure similar to that of the structural unit (I) of the resin in the radiation-sensitive resin composition can be preferably adopted, and a monomer compound that provides the structural unit (I) of the resin is preferably can be used.
- the pattern formation method in this embodiment includes: Step (1) of directly or indirectly coating the radiation-sensitive resin composition on a substrate to form a resist film (hereinafter also referred to as “resist film forming step”); Step (2) of exposing the resist film (hereinafter also referred to as “exposure step”), and A step (3) of developing the exposed resist film (hereinafter also referred to as a “development step”) is included.
- a high-quality resist pattern can be formed because the radiation-sensitive resin composition is excellent in sensitivity, CDU performance, and resolution in the exposure process. Each step will be described below.
- a resist film is formed from the radiation-sensitive resin composition.
- the substrate on which the resist film is formed include conventionally known substrates such as silicon wafers, silicon dioxide, and aluminum-coated wafers. Further, for example, an organic or inorganic antireflection film disclosed in JP-B-6-12452, JP-A-59-93448, etc. may be formed on the substrate. Examples of coating methods include spin coating, casting coating, and roll coating. After coating, if necessary, prebaking (PB) may be performed in order to volatilize the solvent in the coating film.
- the PB temperature is usually 60°C to 140°C, preferably 80°C to 120°C.
- the PB time is usually 5 to 600 seconds, preferably 10 to 300 seconds.
- the thickness of the resist film to be formed is preferably 10 nm to 1,000 nm, more preferably 10 nm to 500 nm.
- a resin having the structural unit (III) and, if necessary, the structural unit (II) may be used as the base resin in the composition. is preferred.
- the resist film formed in the resist film forming step (step (1) above) is coated through a photomask (in some cases, through an immersion medium such as water). , emit radiation and expose. Radiation used for exposure depends on the line width of the desired pattern. A charged particle beam and the like can be mentioned. Among these, far ultraviolet rays, electron beams, and EUV are preferred, and ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), electron beams, and EUV are more preferred. The following electron beams and EUV are more preferable.
- a post-exposure bake is performed to accelerate the dissociation of the acid-dissociable groups of the resin or the like by the acid generated from the radiation-sensitive acid generator upon exposure in the exposed portions of the resist film.
- This PEB causes a difference in solubility in a developer between the exposed area and the unexposed area.
- the PEB temperature is usually 50°C to 180°C, preferably 80°C to 130°C.
- the PEB time is usually 5 to 600 seconds, preferably 10 to 300 seconds.
- step (3) above the resist film exposed in the exposure step (step (2) above) is developed. Thereby, a predetermined resist pattern can be formed. After development, it is common to wash with a rinsing liquid such as water or alcohol and dry.
- a rinsing liquid such as water or alcohol
- TMAH tetramethylammonium hydroxide
- a TMAH aqueous solution is preferable, and a 2.38% by mass TMAH aqueous solution is more preferable.
- organic solvents such as hydrocarbon-based solvents, ether-based solvents, ester-based solvents, ketone-based solvents, alcohol-based solvents, or solvents containing organic solvents can be used.
- organic solvent include one or more of the solvents listed above as the solvent for the radiation-sensitive resin composition.
- ester solvents and ketone solvents are preferred.
- the ester solvent an acetate solvent is preferable, and n-butyl acetate and amyl acetate are more preferable.
- ketone-based solvent a chain ketone is preferred, and 2-heptanone is more preferred.
- the content of the organic solvent in the developer is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 99% by mass or more.
- components other than the organic solvent in the developer include water and silicon oil.
- Examples of the developing method include a method of immersing the substrate in a tank filled with a developer for a certain period of time (dip method), and a method of developing by standing still for a certain period of time while the developer is heaped up on the surface of the substrate by surface tension (puddle method).
- dip method a method of immersing the substrate in a tank filled with a developer for a certain period of time
- puddle method a method of developing by standing still for a certain period of time while the developer is heaped up on the surface of the substrate by surface tension
- method a method of spraying the developer onto the substrate surface
- spray method a method of continuously discharging the developer while scanning the developer discharge nozzle at a constant speed onto the substrate rotating at a constant speed
- dynamic dispensing method a method of continuously discharging the developer while scanning the developer discharge nozzle at a constant speed onto the substrate rotating at a constant speed
- parts by mass are values when the total mass of the monomers used is 100 parts by mass
- mol % is the amount of the monomers used. It means a value when the total number of moles is 100 mol%.
- 1,4-dioxane 100 parts by mass with respect to the total amount of monomers
- the resin obtained after filtration was dissolved in methyl isobutyl ketone (300 parts by mass), and a solution obtained by dissolving p-toluenesulfonic acid (1.5 parts by mass) in ion-exchanged water (150 parts by mass) was added thereto and left for 6 hours. Stirred.
- Table 1 also shows the amount of each structural unit used in the obtained resin, and the values of Mw and Mw/Mn.
- “-" indicates that the component was not used. The same applies to the following tables.
- Table 2 also shows the amount of each structural unit used in the resulting polymer.
- [Example 1] [A] 100 parts by mass of resin (A-1), [B] 3 parts by mass of high fluorine content resin (B-1) in terms of solid content, and [C] 22 parts by mass of (C-1) as an acid generator , [D] 40 mol % of (D-1) as an acid diffusion inhibitor with respect to (C-1), and [E] (E-1) and (E-2) as solvents are blended.
- a radioactive resin composition (R-1) was prepared.
- PEB post-exposure baked
- TMAH tetramethylammonium hydroxide
- the exposure dose for forming a 25 nm contact hole pattern was defined as the optimum exposure dose, and this optimum exposure dose was defined as the sensitivity (mJ/cm 2 ).
- the sensitivity was judged as "good” when it was 65 mJ/cm 2 or less, and as “bad” when it exceeded 65 mJ/cm 2 .
- CDU performance A 25 nm contact hole pattern was observed from above using the scanning electron microscope, and a total of 800 lengths were measured at arbitrary points. The dimensional variation (3 ⁇ ) was determined and defined as the CDU performance (nm). CDU indicates that the smaller the value, the smaller the dispersion of the hole diameter in the long period and the better. The CDU performance was evaluated as "good” when 4.0 nm or less, and "bad” when over 4.0 nm.
- the radiation-sensitive resin composition and the method of forming a resist pattern of the present invention sensitivity, CDU and resolution can be improved compared to conventional methods. Therefore, they can be suitably used for fine resist pattern formation in the lithography process of various electronic devices such as semiconductor devices and liquid crystal devices.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials For Photolithography (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
下記式(1)で表される構造単位(I)を含む樹脂と、
有機酸アニオン部分とオニウムカチオン部分とを含む感放射線性酸発生剤と、
溶剤と
を含む感放射線性樹脂組成物に関する。
Raは、水素原子、又は置換若しくは非置換の炭素数1~10の1価の炭化水素基である。
Ar1は、置換又は非置換の炭素数6~20の2価の芳香族炭化水素基である。
mは0又は1である。
L1は、単結合、又は-O-、*-COO-、炭素数1~20の2価の炭化水素基若しくはこれらの2種以上を組み合わせた基である。*はAr1側の結合手である。
Ar2は、置換又は非置換の炭素数6~20の1価の芳香族炭化水素基である。
Xは、上記Ar2で表される1価の芳香族炭化水素基における水素原子を置換するヨウ素原子又は臭素原子である。Xが複数存在する場合、複数のXは互いに同一又は異なる。
n1は、1~(上記Ar2で表される1価の芳香族炭化水素基における水素原子の数)の整数である。)
下記式(1)で表される構造単位(I)を含む樹脂に関する。
Raは、水素原子、又は置換若しくは非置換の炭素数1~10の1価の炭化水素基である。
Ar1は、置換又は非置換の炭素数6~20の2価の芳香族炭化水素基である。
mは0又は1である。
L1は、単結合、又は-O-、*-COO-、炭素数1~20の2価の炭化水素基若しくはこれらの2種以上を組み合わせた基である。*はAr1側の結合手である。
Ar2は、置換又は非置換の炭素数6~20の1価の芳香族炭化水素基である。
Xは、上記Ar2で表される1価の芳香族炭化水素基における水素原子を置換するヨウ素原子又は臭素原子である。Xが複数存在する場合、複数のXは互いに同一又は異なる。
n1は、1~(上記Ar2で表される1価の芳香族炭化水素基における水素原子の数)の整数である。)
下記式(i)で表される化合物に関する。
Raは、水素原子、又は置換若しくは非置換の炭素数1~10の1価の炭化水素基である。
Ar1は、置換又は非置換の炭素数6~20の2価の芳香族炭化水素基である。
mは0又は1である。
L1は、単結合、又は-O-、*-COO-、炭素数1~20の2価の炭化水素基若しくはこれらの2種以上を組み合わせた基である。*はAr1側の結合手である。
Ar2は、置換又は非置換の炭素数6~20の1価の芳香族炭化水素基である。
Xは、上記Ar2で表される1価の芳香族炭化水素基における水素原子を置換するヨウ素原子又は臭素原子である。Xが複数存在する場合、複数のXは互いに同一又は異なる。
n1は、1~(上記Ar2で表される1価の芳香族炭化水素基における水素原子の数)の整数である。)
当該感放射線性樹脂組成物を基板上に直接又は間接に塗布してレジスト膜を形成する工程と、
上記レジスト膜を露光する工程と、
露光された上記レジスト膜を現像液で現像する工程と
を含むパターン形成方法に関する。
本実施形態に係る感放射線性樹脂組成物(以下、単に「組成物」ともいう。)は、樹脂、感放射線性酸発生剤及び溶剤を含む。上記組成物は、所期の効果を損なわない限り、他の任意成分を含んでいてもよい。
樹脂は、構造単位(I)を含む重合体の集合体である。樹脂は、感放射線性樹脂組成物の主要成分であるベース樹脂であってもよく、レジスト膜表面の改質剤等として機能し得る高フッ素含有量樹脂であってもよく、これらの混合物であってもよい。
ベース樹脂は、構造単位(I)以外に、フェノール性水酸基を有する構造単位(II)、酸解離性基を有する構造単位(III)、極性基を有する構造単位(IV)、ラクトン構造等を含む構造単位(V)等を含んでいてもよい。以下、各構造単位について説明する。
Raは、水素原子、又は置換若しくは非置換の炭素数1~10の1価の炭化水素基である。
Ar1は、置換又は非置換の炭素数6~20の2価の芳香族炭化水素基である。
mは0又は1である。
L1は、単結合、又は-O-、*-COO-、炭素数1~20の2価の炭化水素基若しくはこれらの2種以上を組み合わせた基である。*はAr1側の結合手である。
Ar2は、置換又は非置換の炭素数6~20の1価の芳香族炭化水素基である。
Xは、上記Ar2で表される1価の芳香族炭化水素基における水素原子を置換するヨウ素原子又は臭素原子である。Xが複数存在する場合、複数のXは互いに同一又は異なる。
n1は、1~(上記Ar2で表される1価の芳香族炭化水素基における水素原子の数)の整数である。
Ra及びXは上記式(1)と同義である。
L11は、炭素数1~10の2価の鎖状炭化水素基又は炭素数3~12の2価の脂環式炭化水素基である。
n11は、1~5の整数である。
式(1-2)中、
Ra及びXは上記式(1)と同義である。
L12は、**-(R12a)γ-O-R12b-又は**-COOR12c-である。R12a、R12b及びR12cは、それぞれ独立して、炭素数1~10の2価の鎖状炭化水素基又は炭素数3~12の2価の脂環式炭化水素基である。**はベンゼン環と直結する結合手である。γは0又は1である。
n12は、1~5の整数である。)
構造単位(I)を与える単量体化合物は、下記スキームに代表的に示すように、ハロゲン化ヒドロキシアリールとハロゲン化アシルのハロゲン化物(例えば、塩化クロロアセチル等)とによる求核置換反応を行ってエステル体とし、さらにエステルと重合性基含有カルボン酸又は重合性基含有アルコールとの求核置換反応を行うことで合成することができる。
ベース樹脂は、フェノール性水酸基を有する構造単位(II)を含むことが好ましい。樹脂は、必要に応じ構造単位(II)やその他の構造単位を有することで、現像液への溶解性をより適度に調整することができ、その結果、上記感放射線性樹脂組成物の感度等をより向上させることができる。また、パターン形成方法における露光工程で照射する放射線として、KrFエキシマレーザー光、EUV、電子線等を用いる場合には、構造単位(II)はエッチング耐性の向上と、露光部と未露光部との間の現像液溶解性の差(溶解コントラスト)の向上に寄与する。特に、電子線やEUVといった波長50nm以下の放射線による露光を用いるパターン形成に好適に適用することができる。
Rαは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
LCAは、単結合、-COO-*又は-O-*である。*は芳香環側の結合手である。
R52は、シアノ基、ニトロ基、アルキル基、フッ素化アルキル基、アルコキシカルボニルオキシ基、アシル基又はアシロキシ基である。R52が複数存在する場合、複数のR52は互いに同一又は異なる。
n3は0~2の整数であり、m3は1~8の整数であり、m4は0~8の整数である。ただし、1≦m3+m4≦2n3+5を満たす。)
ベース樹脂は、酸解離性基を有する構造単位(III)を含むことが好ましい。「酸解離性基」とは、カルボキシ基、フェノール性水酸基、スルホ基、スルホンアミド基等のアルカリ可溶性基が有する水素原子を置換する基であって、酸の作用により解離する基をいう。従って、酸解離性基は、これらの官能基中の上記水素原子と結合していた酸素原子と結合していることになる。構造単位(III)としては、当該感放射線性樹脂組成物のパターン形成性の向上の観点から、下記式(3)で表されることが好ましい。
フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;ベンジル基、フェネチル基、ナフチルメチル基等のアラルキル基などが挙げられる。
ベース樹脂は、上記構造単位(I)~構造単位(III)以外に極性基を有する構造単位(IV)を適宜含んでいてもよい。極性基にはイオン性官能基も含まれる。極性基としては、例えば、フッ素原子、アルコール性水酸基、カルボキシ基、シアノ基、ニトロ基、スルホンアミド基等を挙げることができる。構造単位(IV)の中で、フッ素原子を有する構造単位、アルコール性水酸基を有する構造単位及びカルボキシ基を有する構造単位が好ましく、フッ素原子を有する構造単位及びアルコール性水酸基を有する構造単位がより好ましい。イオン性官能基にはアニオン性基、カチオン性基があり、アニオン性基としてはスルホン酸アニオンを有する基が好ましく、カチオン性基としてはスルホニウムカチオンを有する基が好ましい。
構造単位(V)は、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種を含む構造単位である。ベース樹脂は、構造単位(V)をさらに有することで、現像液への溶解性を調整することができ、その結果、当該感放射線性樹脂組成物は、解像性等のリソグラフィー性能を向上させることができる。また、ベース樹脂から形成されるレジストパターンと基板との密着性を向上させることができる。
ベース樹脂は、例えば、各構造単位を与える単量体を、ラジカル重合開始剤等を用い、適当な溶剤中で重合反応を行うことにより合成できる。
GPCカラム:G2000HXL 2本、G3000HXL 1本、G4000HXL 1本(以上、東ソー製)
カラム温度:40℃
溶出溶剤:テトラヒドロフラン
流速:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
検出器:示差屈折計
標準物質:単分散ポリスチレン
本実施形態の感放射線性樹脂組成物は、上記ベース樹脂とともに、上記ベース樹脂よりもフッ素原子の質量含有率が大きい樹脂(以下、「高フッ素含有量樹脂」ともいう。)を含んでいてもよい。上記感放射線性樹脂組成物が高フッ素含有量樹脂を含有する場合、上記ベース樹脂に対してレジスト膜の表層に偏在化させることができ、その結果、レジスト膜表面の状態やレジスト膜中の成分分布を所望の状態に制御することができる。
高フッ素含有量樹脂は、上述のベース樹脂の合成方法と同様の方法により合成することができる。
感放射線性酸発生剤は、有機酸アニオン部分とオニウムカチオン部分とを含み、露光により酸を発生する成分である。樹脂が酸解離性基を有する構造単位(III)を含む場合、露光により発生した酸は該構造単位(III)の有する酸解離性基を解離させ、カルボキシ基等を発生させることができる。この機能は、上記感放射線性樹脂組成物を用いたパターン形成条件において、樹脂の構造単位(III)等が有する酸解離性基などを実質的に解離させず、未露光部において上記感放射線性酸発生剤から発生した酸の拡散を抑制するという酸拡散制御剤(後述)の機能とは異なる。感放射線性酸発生剤から発生する酸は、酸拡散制御剤から発生する酸より相対的に強い酸(pKaが小さい酸)であるということができる。感放射線性酸発生剤及び酸拡散制御剤の機能の別は、樹脂の構造単位(III)等が有する酸解離性基が解離するのに必要とするエネルギー、および感放射線性樹脂組成物を用いてパターンを形成する際に与えられる熱エネルギー条件等によって決まる。感放射線性樹脂組成物における感放射線性酸発生剤の含有形態としては、それ単独で化合物として存在する(重合体から遊離した)形態でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよいものの、単独で化合物として存在する形態が好ましい。
n2は1~5の整数である。
Rf1及びRf2は、それぞれ独立して、水素原子、フッ素原子又はフルオロアルキル基である。ただし、n2が1である場合、Rf1及びRf2のうちの少なくとも1つはフッ素原子又はフルオロアルキル基である。n2が2~5である場合、複数存在するRf1及びRf2のうちの少なくとも1つはフッ素原子又はフルオロアルキル基であり、複数存在するRf1及びRf2は互いに同一又は異なる。
LK1は2価の連結基である。
R5aは、環構造を有する1価の有機基である。
X1 +は、1価のオニウムカチオンである。
シクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造、シクロノナン構造、シクロデカン構造、シクロドデカン構造等の単環のシクロアルカン構造;
シクロペンテン構造、シクロヘキセン構造、シクロヘプテン構造、シクロオクテン構造、シクロデセン構造等の単環のシクロアルケン構造;
ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環のシクロアルカン構造;
ノルボルネン構造、トリシクロデセン構造等の多環のシクロアルケン構造などを挙げることができる。
ペンタノラクトン構造、ヘキサノラクトン構造、ノルボルナンラクトン構造等のラクトン構造;
ペンタノスルトン構造、ヘキサノスルトン構造、ノルボルナンスルトン構造等のスルトン構造;
オキサシクロペンタン構造、オキサシクロヘプタン構造、オキサノルボルナン構造、環状アセタール構造等の酸素原子含有複素環構造;
アザシクロペンタン構造、アザシクロヘキサン構造、ジアザビシクロオクタン構造等の窒素原子含有複素環構造;
チアシクロペンタン構造、チアシクロヘキサン構造、チアノルボルナン構造のイオウ原子含有複素環構造などを挙げることができる。
当該感放射線性樹脂組成物は、必要に応じて、酸拡散制御剤を含有してもよい。酸拡散制御剤は、露光により感放射線性酸発生剤から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏する。また、得られる感放射線性樹脂組成物の貯蔵安定性が向上する。さらに、レジストパターンの解像度がさらに向上すると共に、露光から現像処理までの引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に優れた感放射線性樹脂組成物が得られる。
本実施形態に係る感放射線性樹脂組成物は、溶剤を含有する。溶剤は、少なくとも樹脂及び感放射線性酸発生剤、並びに所望により含有される添加剤等を溶解又は分散可能な溶剤であれば特に限定されない。
iso-プロパノール、4-メチル-2-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-エチルヘキサノール、フルフリルアルコール、シクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ジアセトンアルコール等の炭素数1~18のモノアルコール系溶剤;
エチレングリコール、1,2-プロピレングリコール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の炭素数2~18の多価アルコール系溶剤;
上記多価アルコール系溶剤が有するヒドロキシ基の一部をエーテル化した多価アルコール部分エーテル系溶剤等が挙げられる。
ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のジアルキルエーテル系溶剤;
テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶剤;
ジフェニルエーテル、アニソール(メチルフェニルエーテル)等の芳香環含有エーテル系溶剤;
上記多価アルコール系溶剤が有するヒドロキシ基をエーテル化した多価アルコールエーテル系溶剤等が挙げられる。
シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等の環状ケトン系溶剤;
2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶剤等が挙げられる。
酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶剤;
ジエチレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート等の多価アルコール部分エーテルアセテート系溶剤;
γ-ブチロラクトン、バレロラクトン等のラクトン系溶剤;
ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶剤;
ジ酢酸プロピレングリコール、酢酸メトキシトリグリコール、シュウ酸ジエチル、アセト酢酸エチル、乳酸エチル、フタル酸ジエチル等の多価カルボン酸ジエステル系溶剤が挙げられる。
n-ヘキサン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶剤;
ベンゼン、トルエン、ジ-iso-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素系溶剤等が挙げられる。
上記感放射線性樹脂組成物は、上記成分以外にも、その他の任意成分を含有していてもよい。上記その他の任意成分としては、例えば、架橋剤、偏在化促進剤、界面活性剤、脂環式骨格含有化合物、増感剤等を挙げることができる。これらのその他の任意成分は、それぞれ1種又は2種以上を併用してもよい。
上記感放射線性樹脂組成物は、例えば、樹脂、感放射線性酸発生剤及び溶剤と、必要に応じてその他の任意成分とを所定の割合で混合することにより調製できる。上記感放射線性樹脂組成物は、混合後に、例えば、孔径0.5μm程度のフィルター等でろ過することが好ましい。上記感放射線性樹脂組成物の固形分濃度としては、通常0.1質量%~50質量%であり、0.5質量%~30質量%が好ましく、1質量%~20質量%がより好ましい。
本実施形態に係る樹脂は、下記式(1)で表される構造単位(I)を含む。
Raは、水素原子、又は置換若しくは非置換の炭素数1~10の1価の炭化水素基である。
Ar1は、置換又は非置換の炭素数6~20の2価の芳香族炭化水素基である。
mは0又は1である。
L1は、単結合、又は-O-、*-COO-、炭素数1~20の2価の炭化水素基若しくはこれらの2種以上を組み合わせた基である。*はAr1側の結合手である。
Ar2は、置換又は非置換の炭素数6~20の1価の芳香族炭化水素基である。
Xは、上記Ar2で表される1価の芳香族炭化水素基における水素原子を置換するヨウ素原子又は臭素原子である。Xが複数存在する場合、複数のXは互いに同一又は異なる。
n1は、1~(上記Ar2で表される1価の芳香族炭化水素基における水素原子の数)の整数である。)
本実施形に係る化合物は、下記式(i)で表される。
Raは、水素原子、又は置換若しくは非置換の炭素数1~10の1価の炭化水素基である。
Ar1は、置換又は非置換の炭素数6~20の2価の芳香族炭化水素基である。
mは0又は1である。
L1は、単結合、又は-O-、*-COO-、炭素数1~20の2価の炭化水素基若しくはこれらの2種以上を組み合わせた基である。*はAr1側の結合手である。
Ar2は、置換又は非置換の炭素数6~20の1価の芳香族炭化水素基である。
Xは、上記Ar2で表される1価の芳香族炭化水素基における水素原子を置換するヨウ素原子又は臭素原子である。Xが複数存在する場合、複数のXは互いに同一又は異なる。
n1は、1~(上記Ar2で表される1価の芳香族炭化水素基における水素原子の数)の整数である。)
本実施形態におけるパターン形成方法は、
上記感放射線性樹脂組成物を基板上に直接又は間接に塗布してレジスト膜を形成する工程(1)(以下、「レジスト膜形成工程」ともいう)、
上記レジスト膜を露光する工程(2)(以下、「露光工程」ともいう)、及び、
露光された上記レジスト膜を現像する工程(3)(以下、「現像工程」ともいう)を含む。
本工程(上記工程(1))では、上記感放射線性樹脂組成物でレジスト膜を形成する。このレジスト膜を形成する基板としては、例えば、シリコンウェハ、二酸化シリコン、アルミニウムで被覆されたウェハ等の従来公知のもの等を挙げることができる。また、例えば、特公平6-12452号公報や特開昭59-93448号公報等に開示されている有機系又は無機系の反射防止膜を基板上に形成してもよい。塗布方法としては、例えば、回転塗布(スピンコーティング)、流延塗布、ロール塗布等を挙げることができる。塗布した後に、必要に応じて、塗膜中の溶剤を揮発させるため、プレベーク(PB)を行ってもよい。PB温度としては、通常60℃~140℃であり、80℃~120℃が好ましい。PB時間としては、通常5秒~600秒であり、10秒~300秒が好ましい。形成されるレジスト膜の膜厚としては、10nm~1,000nmが好ましく、10nm~500nmがより好ましい。
本工程(上記工程(2))では、上記工程(1)であるレジスト膜形成工程で形成されたレジスト膜に、フォトマスクを介して(場合によっては、水等の液浸媒体を介して)、放射線を照射し、露光する。露光に用いる放射線としては、目的とするパターンの線幅に応じて、例えば、可視光線、紫外線、遠紫外線、EUV(極端紫外線)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などを挙げることができる。これらの中でも、遠紫外線、電子線、EUVが好ましく、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)、電子線、EUVがより好ましく、次世代露光技術として位置付けされる波長50nm以下の電子線、EUVがさらに好ましい。
本工程(上記工程(3))では、上記工程(2)である上記露光工程で露光されたレジスト膜を現像する。これにより、所定のレジストパターンを形成することができる。現像後は、水又はアルコール等のリンス液で洗浄し、乾燥することが一般的である。
樹脂の項に記載の測定条件により測定した。また、分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
日本電子社の「JNM-Delta400」を用いて測定した。
[合成例1:化合物(Z-1)の合成]
下記反応スキームに従って化合物(Z-1)を合成した。
前駆体を適宜選択し、合成例1と同様の処方を選択することで、下記式(Z-2)~(Z-11)で表される化合物(Z-2)~(Z-11)を合成した。
下記式(W-1)で表される化合物については特開2019-001997号公報を、下記式(W-2)で表される化合物については特開2012-048067号公報を参考に、化合物(W-1)~(W-2)をそれぞれ合成した。
各実施例及び比較例における各ベース樹脂としての樹脂の合成で用いた単量体化合物を以下に示す。以下の合成例においては特に断りのない限り、「質量部」は使用した単量体の合計質量を100質量部とした場合の値を意味し、「モル%」は使用した単量体の合計モル数を100モル%とした場合の値を意味する。
化合物(M-1)、(M-4)、(Z-1)のモル比率が35/45/20となるように1,4-ジオキサン(全モノマー量に対して200質量部)に溶解した。次に、開始剤としてアゾビスイソブチロニトリルを全モノマーに対して6モル%添加し、単量体溶液を調製した。
モノマーを適宜選択し、樹脂合成例1と同様の操作を行うことによって、樹脂(A-2)~(A-23)を合成した。
化合物(M-4)、(M-11)のモル比率が30/70になるように2-ブタノン(全モノマー量に対して100質量部)に溶解した。ここに開始剤としてアゾビスイソブチロニトリル(全モノマーに対して5モル%)を添加し、単量体溶液を調製した。
モノマーを適宜選択し、樹脂合成例23と同様の操作を行うことによって、高フッ素含有量樹脂(B-2)~(B-4)を合成した。
下記実施例及び比較例の感放射線性樹脂組成物の調製に用いた[C]感放射線性酸発生剤、[D]酸拡散制御剤、及び[E]溶剤を以下に示す。
感放射線性酸発生剤として(C-1)~(C-9)で表される化合物を用いた。
酸拡散抑制剤として(D-1)で表される化合物を用いた。
E-1:プロピレングリコールモノメチルエーテルアセテート
E-2:プロピレングリコールモノメチルエーテル
[A]樹脂(A-1)100質量部、[B]高フッ素含有量樹脂(B-1)を固形分で3質量部、[C]酸発生剤としての(C-1)22質量部、[D]酸拡散抑制剤としての(D-1)を(C-1)に対して40モル%、[E]溶剤としての(E-1)及び(E-2)を配合して感放射線性樹脂組成物(R-1)を調製した。
下記表3に示す種類及び配合量の各成分を用いた以外は、実施例1と同様に操作して、感放射線性樹脂組成物(R-2)~(R-29)及び(CR-1)~(CR-4)を調製した。
膜厚20nmの下層膜(AL412(Brewer Science社製))が形成された12インチのシリコンウェハ表面に、スピンコーター(CLEAN TRACK ACT12、東京エレクトロン製)を使用して、上記調製した各感放射線性樹脂組成物を塗布した。100℃で60秒間SB(ソフトベーク)を行った後、23℃で30秒間冷却し、膜厚30nmのレジスト膜を形成した。次に、このレジスト膜に、EUV露光機(型式「NXE3300」、ASML製、NA=0.33、照明条件:Conventional s=0.89)を用いてEUV光を照射した。上記レジスト膜を100℃で60秒間PEB(ポストエクスポージャーベーク)した。次いで、2.38wt%のテトラメチルアンモニウムヒドロキシド(TMAH)水溶液を用いて23℃で30秒間現像し、ポジ型の50nmピッチ・25nmコンタクトホールパターンを形成した。
上記形成した各レジストパターンについて、下記方法に従って測定することにより、各感放射線性樹脂組成物の感度、CDU性能及び解像度を評価した。なお、レジストパターンの測長には走査型電子顕微鏡(日立ハイテクノロジーズ社の「CG-5000」)を用いた。評価結果を下記表4に示す。
上記レジストパターンの形成において、25nmコンタクトホールパターンを形成する露光量を最適露光量とし、この最適露光量を感度(mJ/cm2)とした。感度は、65mJ/cm2以下の場合は「良好」と、65mJ/cm2を超える場合は「不良」と判定した。
上記走査型電子顕微鏡を用いて25nmコンタクトホールパターンを上部から観察し、任意のポイントで計800個測長した。寸法のバラつき(3σ)を求め、これをCDU性能(nm)とした。CDUは、その値が小さいほど、長周期でのホール径のばらつきが小さく良好であることを示す。CDU性能は、4.0nm以下の場合は「良好」と、4.0nmを超える場合は「不良」と評価した。
露光量を変えた場合に解像される最小のレジストパターンの寸法を測定し、この測定値を解像性(nm)として0.5nm刻みで表4に表示した。解像性は、値が小さいほど良いことを示す。解像性は、21.0nm以下の場合は良好と、21.0nmを超える場合は不良と評価できる。
Claims (16)
- 下記式(1)で表される構造単位(I)を含む樹脂と、
有機酸アニオン部分とオニウムカチオン部分とを含む感放射線性酸発生剤と、
溶剤と
を含む感放射線性樹脂組成物。
Raは、水素原子、又は置換若しくは非置換の炭素数1~10の1価の炭化水素基である。
Ar1は、置換又は非置換の炭素数6~20の2価の芳香族炭化水素基である。
mは0又は1である。
L1は、単結合、又は-O-、*-COO-、炭素数1~20の2価の炭化水素基若しくはこれらの2種以上を組み合わせた基である。*はAr1側の結合手である。
Ar2は、置換又は非置換の炭素数6~20の1価の芳香族炭化水素基である。
Xは、上記Ar2で表される1価の芳香族炭化水素基における水素原子を置換するヨウ素原子又は臭素原子である。Xが複数存在する場合、複数のXは互いに同一又は異なる。
n1は、1~(上記Ar2で表される1価の芳香族炭化水素基における水素原子の数)の整数である。) - 上記L1は、-RLa-、-(RLb)β-O-RLc-、又は*-COORLd-であり、RLa、RLb、RLc及びRLdはそれぞれ独立して炭素数1~20の2価の炭化水素基であり、βは0又は1であり、*はAr1側の結合手である請求項1に記載の感放射線性樹脂組成物。
- 上記構造単位(I)は、下記式(1-1)で表される構造単位及び下記式(1-2)で表される構造単位のうちの少なくとも1種である請求項1に記載の感放射線性樹脂組成物。
Ra及びXは上記式(1)と同義である。
L11は、炭素数1~10の2価の鎖状炭化水素基又は炭素数3~12の2価の脂環式炭化水素基である。
n11は、1~5の整数である。
式(1-2)中、
Ra及びXは上記式(1)と同義である。
L12は、**-(R12a)γ-O-R12b-又は**-COOR12c-である。R12a、R12b及びR12cは、それぞれ独立して、炭素数1~10の2価の鎖状炭化水素基又は炭素数3~12の2価の脂環式炭化水素基である。**はベンゼン環側の結合手である。γは0又は1である。
n12は、1~5の整数である。) - 上記式(1)中、Xはヨウ素原子である請求項1~3のいずれか1項に記載の感放射線性樹脂組成物。
- 上記樹脂は、フェノール性水酸基を有する構造単位をさらに含む請求項1~3のいずれか1項に記載の感放射線性樹脂組成物。
- 上記樹脂は、フッ素原子含有基を有する構造単位をさらに含む請求項1~3のいずれか1項に記載の感放射線性樹脂組成物。
- 上記樹脂を構成する全構造単位に占める上記構造単位(I)の含有割合が、5モル%以上40モル%以下である請求項1~3のいずれか1項に記載の感放射線性樹脂組成物。
- 上記感放射線性酸発生剤が有機酸アニオン部分及びオニウムカチオン部分からなる化合物であり、上記オニウムカチオン部分が、フッ素置換芳香環構造を含む請求項1~3のいずれか1項に記載の感放射線性樹脂組成物。
- 酸拡散制御剤をさらに含む請求項1~3のいずれか1項に記載の感放射線性樹脂組成物。
- 下記式(1)で表される構造単位(I)を含む樹脂。
Raは、水素原子、又は置換若しくは非置換の炭素数1~10の1価の炭化水素基である。
Ar1は、置換又は非置換の炭素数6~20の2価の芳香族炭化水素基である。
mは0又は1である。
L1は、単結合、又は-O-、*-COO-、炭素数1~20の2価の炭化水素基若しくはこれらの2種以上を組み合わせた基である。*はAr1側の結合手である。
Ar2は、置換又は非置換の炭素数6~20の1価の芳香族炭化水素基である。
Xは、上記Ar2で表される1価の芳香族炭化水素基における水素原子を置換するヨウ素原子又は臭素原子である。Xが複数存在する場合、複数のXは互いに同一又は異なる。
n1は、1~(上記Ar2で表される1価の芳香族炭化水素基における水素原子の数)の整数である。) - 上記L1は、-RLa-、-(RLb)β-O-RLc-、又は*-COORLd-であり、RLa、RLb、RLc及びRLdはそれぞれ独立して炭素数1~20の2価の炭化水素基であり、βは0又は1であり、*はAr1側の結合手である請求項11に記載の樹脂。
- 下記式(i)で表される化合物。
Raは、水素原子、又は置換若しくは非置換の炭素数1~10の1価の炭化水素基である。
Ar1は、置換又は非置換の炭素数6~20の2価の芳香族炭化水素基である。
mは0又は1である。
L1は、単結合、又は-O-、*-COO-、炭素数1~20の2価の炭化水素基若しくはこれらの2種以上を組み合わせた基である。*はAr1側の結合手である。
Ar2は、置換又は非置換の炭素数6~20の1価の芳香族炭化水素基である。
Xは、上記Ar2で表される1価の芳香族炭化水素基における水素原子を置換するヨウ素原子又は臭素原子である。Xが複数存在する場合、複数のXは互いに同一又は異なる。
n1は、1~(上記Ar2で表される1価の芳香族炭化水素基における水素原子の数)の整数である。) - 上記L1は、-RLa-、-(RLb)β-O-RLc-、又は*-COORLd-であり、RLa、RLb、RLc及びRLdはそれぞれ独立して炭素数1~20の2価の炭化水素基であり、βは0又は1であり、*はAr1側の結合手である請求項13に記載の化合物。
- 請求項1~3のいずれか1項に記載の感放射線性樹脂組成物を基板上に直接又は間接に塗布してレジスト膜を形成する工程と、
上記レジスト膜を露光する工程と、
露光された上記レジスト膜を現像液で現像する工程と
を含むパターン形成方法。 - 上記露光を極端紫外線又は電子線を用いて行う請求項15に記載のパターン形成方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023552748A JPWO2023058369A1 (ja) | 2021-10-06 | 2022-09-01 | |
US18/691,090 US20240385518A1 (en) | 2021-10-06 | 2022-09-01 | Radiation-sensitive resin composition, resin, compound, and pattern formation method |
KR1020247007381A KR20240073001A (ko) | 2021-10-06 | 2022-09-01 | 감방사선성 수지 조성물, 수지, 화합물 및 패턴 형성 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-164551 | 2021-10-06 | ||
JP2021164551 | 2021-10-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023058369A1 true WO2023058369A1 (ja) | 2023-04-13 |
Family
ID=85803346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/032972 WO2023058369A1 (ja) | 2021-10-06 | 2022-09-01 | 感放射線性樹脂組成物、樹脂、化合物及びパターン形成方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240385518A1 (ja) |
JP (1) | JPWO2023058369A1 (ja) |
KR (1) | KR20240073001A (ja) |
TW (1) | TW202315861A (ja) |
WO (1) | WO2023058369A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58179801A (ja) * | 1982-04-15 | 1983-10-21 | Tokuyama Soda Co Ltd | 有機光学ガラス |
JPS6315821A (ja) * | 1986-07-08 | 1988-01-22 | Mitsubishi Gas Chem Co Inc | ビニル末端ポリカ−ボネ−トオリゴマ−の製法 |
JP2000356702A (ja) * | 1999-06-15 | 2000-12-26 | Nof Corp | スチレン系単量体、その組成物、スチレン系重合体及びプラスチック光学材料 |
JP5220969B2 (ja) * | 1999-04-19 | 2013-06-26 | ロリク アーゲー | 液晶化合物 |
JP2018197853A (ja) * | 2017-05-22 | 2018-12-13 | 信越化学工業株式会社 | レジスト材料及びパターン形成方法 |
JP2019008280A (ja) * | 2017-06-21 | 2019-01-17 | 信越化学工業株式会社 | レジスト材料及びパターン形成方法 |
WO2020099190A1 (en) * | 2018-11-16 | 2020-05-22 | Lvd Biotech S. L. | Polymer for liquid embolic agents and method of obtaining same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4958584U (ja) | 1972-08-30 | 1974-05-23 |
-
2022
- 2022-09-01 WO PCT/JP2022/032972 patent/WO2023058369A1/ja active Application Filing
- 2022-09-01 US US18/691,090 patent/US20240385518A1/en active Pending
- 2022-09-01 JP JP2023552748A patent/JPWO2023058369A1/ja active Pending
- 2022-09-01 KR KR1020247007381A patent/KR20240073001A/ko active Pending
- 2022-09-13 TW TW111134560A patent/TW202315861A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58179801A (ja) * | 1982-04-15 | 1983-10-21 | Tokuyama Soda Co Ltd | 有機光学ガラス |
JPS6315821A (ja) * | 1986-07-08 | 1988-01-22 | Mitsubishi Gas Chem Co Inc | ビニル末端ポリカ−ボネ−トオリゴマ−の製法 |
JP5220969B2 (ja) * | 1999-04-19 | 2013-06-26 | ロリク アーゲー | 液晶化合物 |
JP2000356702A (ja) * | 1999-06-15 | 2000-12-26 | Nof Corp | スチレン系単量体、その組成物、スチレン系重合体及びプラスチック光学材料 |
JP2018197853A (ja) * | 2017-05-22 | 2018-12-13 | 信越化学工業株式会社 | レジスト材料及びパターン形成方法 |
JP2019008280A (ja) * | 2017-06-21 | 2019-01-17 | 信越化学工業株式会社 | レジスト材料及びパターン形成方法 |
WO2020099190A1 (en) * | 2018-11-16 | 2020-05-22 | Lvd Biotech S. L. | Polymer for liquid embolic agents and method of obtaining same |
Non-Patent Citations (1)
Title |
---|
GHANNAY SIWAR; BAKARI SANA; MSADDEK MONCEF; VIDAL SéBASTIEN; KADRI ADEL; AOUADI KAïSS: "Design, synthesis, molecular properties and in vitro antioxidant and antibacterial potential of novel enantiopure isoxazolidine derivatives", ARABIAN JOURNAL OF CHEMISTRY, vol. 13, no. 1, 3 April 2018 (2018-04-03), AMSTERDAM, NL , pages 2121 - 2131, XP086032974, ISSN: 1878-5352, DOI: 10.1016/j.arabjc.2018.03.013 * |
Also Published As
Publication number | Publication date |
---|---|
KR20240073001A (ko) | 2024-05-24 |
JPWO2023058369A1 (ja) | 2023-04-13 |
TW202315861A (zh) | 2023-04-16 |
US20240385518A1 (en) | 2024-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018180049A1 (ja) | 感放射線性組成物及びレジストパターン形成方法 | |
JP7400818B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法及び化合物 | |
JP7622654B2 (ja) | 感放射線性樹脂組成物及びレジストパターンの形成方法 | |
WO2023189502A1 (ja) | 感放射線性組成物、パターン形成方法及び光崩壊性塩基 | |
WO2023223624A1 (ja) | 感放射線性樹脂組成物、パターン形成方法、感放射線性酸発生剤、及び、酸拡散制御剤 | |
JP7396360B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生剤 | |
WO2021140761A1 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法及び化合物 | |
JP2024023188A (ja) | 感放射線性樹脂組成物及びそれを用いたレジストパターンの形成方法 | |
WO2024024801A1 (ja) | 感放射線性組成物、レジストパターン形成方法及び感放射線性酸発生剤 | |
WO2023203827A1 (ja) | 感放射線性樹脂組成物及びパターン形成方法 | |
WO2023100574A1 (ja) | 感放射線性樹脂組成物、パターン形成方法、基板の製造方法、及び化合物 | |
JP2022135905A (ja) | 感放射線性樹脂組成物及びレジストパターンの形成方法 | |
WO2022172736A1 (ja) | 感放射線性樹脂組成物及びパターン形成方法 | |
WO2023058369A1 (ja) | 感放射線性樹脂組成物、樹脂、化合物及びパターン形成方法 | |
US20200393761A1 (en) | Radiation-sensitive resin composition and resist pattern-forming method | |
JP7509140B2 (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
WO2024057751A1 (ja) | 感放射線性樹脂組成物及びパターン形成方法 | |
WO2025079475A1 (ja) | 感放射線性組成物、パターン形成方法及び化合物 | |
WO2022190964A1 (ja) | 感放射線性樹脂組成物及びパターン形成方法 | |
WO2024185308A1 (ja) | 感放射線性組成物及びパターン形成方法 | |
WO2023153294A1 (ja) | 感放射線性樹脂組成物及びパターン形成方法 | |
WO2023189503A1 (ja) | 感放射線性組成物、パターン形成方法及び光崩壊性塩基 | |
JP2020204765A (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
WO2023153296A1 (ja) | 感放射線性樹脂組成物及びパターン形成方法 | |
WO2025047218A1 (ja) | 感放射線性組成物及びパターン形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22878240 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023552748 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18691090 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22878240 Country of ref document: EP Kind code of ref document: A1 |