[go: up one dir, main page]

WO2023054806A1 - Process-based convergence surface processing method, program, and platform - Google Patents

Process-based convergence surface processing method, program, and platform Download PDF

Info

Publication number
WO2023054806A1
WO2023054806A1 PCT/KR2021/017076 KR2021017076W WO2023054806A1 WO 2023054806 A1 WO2023054806 A1 WO 2023054806A1 KR 2021017076 W KR2021017076 W KR 2021017076W WO 2023054806 A1 WO2023054806 A1 WO 2023054806A1
Authority
WO
WIPO (PCT)
Prior art keywords
function value
processing method
program
value
surface function
Prior art date
Application number
PCT/KR2021/017076
Other languages
French (fr)
Korean (ko)
Inventor
이승준
Original Assignee
이승준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이승준 filed Critical 이승준
Publication of WO2023054806A1 publication Critical patent/WO2023054806A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40937Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of machining or material parameters, pocket machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention designs a new high-efficiency functional surface as AI technology by designing a new high-efficiency functional surface, selecting materials and It is a process-based fusion/composite surface processing method, program, and platform technology that can automatically or semi-automatically derive technical elements and processes for production.
  • the existing functional surface manufacturing process is a design-based manufacturing method in which pre-design is followed by post-production.
  • 3D design based on research information based on natural simulation or the performance of released products, and through industry-specific analysis and simulation, find a technology that can produce a verified model with a target shape and performance approximation, design and manufacture the process.
  • this conventional method is a process in which design and manufacturing are separated, and there is a difficulty in that design and analysis must be performed for each surface shape, and the manufacturing process must be redesigned for each process. This leads to a waste of time and material resources and results in an increase in production cost.
  • the present invention aims to provide a process-based convergence/composite surface processing method that can quickly determine whether or not to manufacture by reproducing and verifying in virtual space through modeling and analysis through process design.
  • a process-based convergence/complex surface processing method that can design new high-efficiency functional surfaces as AI technology by converting information on functional surfaces into big data and automatically or semi-automatically derive technical elements and processes for material selection and production We want to provide that purpose.
  • the present invention includes a process input step of inputting process design values for material surface processing; A modeling step of modeling the surface shape of the material by data according to the process design; It provides a process-based convergence/composite surface processing method comprising the step of interpreting and outputting the surface function value representing the functionality of the surface of the material according to the modeling.
  • the process design value is characterized in that the output of the AI program by inputting the desired surface function value based on the surface function value big data.
  • the surface function value is terminated if the surface function value is within the error range of the set desired surface function value, and if the surface function value exceeds the error range of the set desired surface function value It is characterized in that the process design value is changed by correcting by the learned AI program.
  • the AI program In the step of interpreting and outputting the surface function value, the AI program outputs a process design value based on the surface function value data.
  • the process design value and surface function value data output when the end is completed are relearned by the AI program. characterized by
  • the process design value is characterized in that it is input by setting the type of equipment for surface processing, processing conditions, and processing order.
  • the device for surface processing is characterized in that at least one of a waveform-based processing device, a rotating body-based processing device, a wave-and-rotating body-based processing device, a particle-based processing device, and an electromagnetic-based processing device.
  • the surface functional value is characterized in that one or more of the mechanical, physical, and chemical properties of the material are numerically expressed.
  • the surface functional value is characterized in that any one of optical, energy, water repellency, sunlight, hydrophobicity, antiviral, parent cell, hydrodynamics, and tribology is data.
  • the step of analyzing and outputting the surface function value it is characterized in that the type and material of the material are set and input.
  • the AI program is characterized in that the big data is learned as surface function values and process design values based on research information, industry information, and processing error information.
  • the result can be output as 2D and 3D data through calculation, and the suitability of the design can be checked through simulation.
  • Process-based convergence design and manufacturing techniques can be output using Big Data and AI, and AI can derive from shape design to analysis and manufacturing processes.
  • Design values worked by humans can be verified, corrected and supplemented by AI technology, and design and process corrections or new models can be automatically created.
  • AI can compare and analyze design values and actual results and automatically calculate error rates and correction values.
  • FIG. 1 is a flow chart of a process-based fusion/composite surface processing method according to an embodiment of the present invention.
  • Figure 2 is a flow chart using the AI program of the process-based convergence and composite surface processing method according to an embodiment of the present invention.
  • FIG. 3 is a detailed flow chart of the AI program of the process-based convergence and composite surface processing method according to an embodiment of the present invention.
  • FIG. 1 is a flow chart of a process-based fusion/composite surface processing method according to an embodiment of the present invention.
  • the present invention largely includes a process input step of inputting process design values for material surface processing, a modeling step of modeling the surface shape of the material by data according to the process design, and It is characterized in that the surface function value is output based on the process design through the step of analyzing and outputting the surface function value representing the functionality of the material surface.
  • the process input step is a step of designing a process for processing the surface of a material.
  • Process design can be designed with a program tool, and process design for material processing can be performed because the type of equipment, processing conditions according to the type of equipment, processing sequence, etc. are programmed into setting modes and steps.
  • the process design value can be input by selecting the type of equipment for material surface processing, processing conditions, and processing sequence settings, and it is necessary to verify the data through calculation and processing.
  • Any device for processing the surface can be used as long as it is for processing the surface of the material, and if classified, it is a waveform-based processing device, a rotating body-based processing device, a wave-and-rotating body-based processing device, a particle-based processing device, and an electromagnetic-based processing device. device as an example.
  • the waveform-based processing machine can perform a machining process using vibration, which is a waveform, and examples thereof include a vibration cutting machine, a slow tool servo (STS), a fast tool servo (FTS), and a shaping machine.
  • vibration cutting machine a vibration cutting machine
  • STS slow tool servo
  • FTS fast tool servo
  • shaping machine a shaping machine.
  • a rotating body-based processing machine can perform a machining process using a spindle, which is a rotating body, and examples thereof include milling, turning, and CNC.
  • Wave and rotating body-based processing machines can perform processing using ultrasonic (vibration) spindles, and examples include milling, turning, CNC, polishing machines, and grinding machines.
  • Particle-based processing equipment is a processing process using particle injection, and examples thereof include a grinder, a grinding machine, an abrasive air jet (AAJ), and an abrasive water jet (AWJ).
  • a grinder a grinding machine
  • AAJ abrasive air jet
  • AWJ abrasive water jet
  • Electromagnetic-based processing equipment is capable of processing processes using electronic devices, such as ion beam, electric discharge machining, and laser processing.
  • Process design can be used by inputting one of the above devices, and various types of surface patterns can be designed through setting input of complex device mode that uses various devices in combination according to the purpose, functionality, complexity and specificity of the surface shape.
  • processing conditions may be set by channel, tool design, and waveform design.
  • the channel can be set in a structure (single-axis, multi-axis) and layer structure (single-layer, multi-layer, layered), and the tool design can be set in the shape of a machining tool, such as a triangle, square, curve, or circle, and the waveform design can be set in the waveform mode.
  • waveform type, frequency, displacement, period, etc. can be set and designed.
  • the type, size, distance adjustment, etc. of the laser can be set, and the type of tool path capable of irradiating the laser can be set.
  • the type of particle, the shape of the particle, the size of the particle, etc. can be set, the amount of sprayed particles can be set, and the spray pressure or speed can be set.
  • the modeling step is expressed as 2D and 3D images by a program that graphically expresses the shape of the material by process design, so that the surface shape can be confirmed, and the designed model is divided into embossed and intaglio to automatically generate and data can be output.
  • the functional value desired by the user for the surface of the material that has undergone process design and modeling is expressed numerically and can be achieved by an analysis program.
  • the surface functional value allows one or more of mechanical, physical, and chemical properties of the surface of a material to be expressed.
  • the surface function value allows the user to add or change a mode for any one of the characteristics of optics, energy, water repellency, sunlight, hydrophobicity, antiviral, cell-friendly, hydrodynamics, and tribology by user setting, so that the numerical values for each characteristic It can be expressed as and is preferably set in the analysis result module.
  • optical properties include transmittance, reflectance, and refractive index
  • solar properties include light concentration and energy efficiency.
  • Antiviral properties include antiviral values
  • fluid dynamics include lubrication coefficient
  • tribology can be output with friction coefficient and surface tension.
  • surface function values according to information on the material can be derived through a setting mode that reflects the type of material and physical, mechanical, physical, and chemical characteristics of the material before running the analysis program. .
  • an AI program can be used.
  • Figure 2 is a flow chart using the AI program of the process-based convergence and composite surface processing method according to an embodiment of the present invention.
  • a process input step of inputting process design values for material surface processing a modeling step of modeling the surface shape of the material by data based on the process design, and surface function values according to the modeling
  • the step of interpreting and outputting is the same as described above, and in the process input step, the process design value can be derived using an AI program.
  • the AI program is characterized by outputting a process design value by inputting a desired surface function value based on surface function value big data, so that the process design value can be reflected in the process input step.
  • the AI program can learn AI by storing the shape and material information of the functional surface announced by industry and research field and the result thereof. By setting categories for each industry and research field, linking material information to the input shape information, and inputting performance information, AI learning can be performed on how performance changes according to shape and material.
  • reverse engineering capability can be secured by identifying and learning the characteristics of surface shapes that can be implemented for each process.
  • the surface shape information For the surface shape information, if you input the 2D image included in the thesis, it is converted into a 3D shape through AI and stored, and the measurement information of products in the industry is stored. It can be used as correction information.
  • dimensions in design shapes or drawings can be converted by analyzing dimension lines and created dimensions, and in measurement photos, they can be converted by analyzing scale bars and contrast.
  • 3D shapes can be reverse engineered.
  • 3D shape information of the actual product can be obtained through 3D measurement.
  • optics which shows the characteristics of each industry under the physical properties of the material, and information on surface tension and viscoelasticity is obtained in tribology.
  • performance information you can learn by inputting performance information by industry and research field.
  • information such as transmittance, reflectance, and refractive index is obtained;
  • in sunlight information such as light collection rate and energy efficiency is obtained;
  • in hydrophobicity information on wetting angle;
  • antivirus information on antiviral values;
  • lubrication coefficient information can be obtained, and in tribology, friction coefficient and surface tension information can be obtained.
  • the step of analyzing and outputting the surface function value ends when the surface function value is within the error range of the set desired surface function value.
  • the data of the process design value and the surface function value that are output after the end is re-learned by the AI program.
  • the desired surface function value is a surface function value desired by the user.
  • the present invention is the basic technical idea of the process-based fusion/composite surface processing method, program, and platform, and within the scope of the basic idea of the present invention, conventional knowledge in the art Of course, many other variations are possible for those who have it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention provides a process-based convergence surface processing method comprising: a process input step for inputting a value of a process design for processing a surface of a material; a modeling step for modeling a surface shape of the material via data according to the process design; and a step for analyzing and outputting a surface function value indicating functionality of the surface of the material according to the modeling, thereby reproducing, in a virtual space, a result according to the process design via a process-based convergence design technique and verifying same to quickly determine manufacturability (producibility).

Description

공정기반 융·복합 표면 가공 방법, 프로그램 및 플랫폼Process-based fusion/composite surface processing method, program and platform

본 발명은 선행된 자연모사기반 기능성 표면 연구정보, 산업계에서 생산하고 있는 기능성 표면, 진동절삭 기술을 응용한 기능성 표면에 대한 정보 등을 빅데이터화 시켜 AI기술로서 새로운 고효율 기능성 표면을 설계하고 재료 선정 및 생산을 위한 기술적 요소와 공정을 자동 또는 반자동으로 도출할 수 있는 공정기반 융·복합 표면 가공 방법, 프로그램 및 플랫폼에 관한 기술이다.The present invention designs a new high-efficiency functional surface as AI technology by designing a new high-efficiency functional surface, selecting materials and It is a process-based fusion/composite surface processing method, program, and platform technology that can automatically or semi-automatically derive technical elements and processes for production.

기존의 기능성 표면 제작 과정은 설계기반 제작으로 선설계하고 후제작하는 방식이다. 즉 자연모사 기반 연구정보 또는 출시된 제품의 성능을 바탕으로 3차원 설계를 하고 산업별 해석 시뮬레이션을 통해 검증된 모델을 목표로 하는 형상 및 성능 근사치로 제작할 수 있는 기술을 찾아 공정을 설계하고 제작한다. 그러나 이러한 종래의 방식은 설계와 제작이 분리된 과정으로 표면 형상별로 설계와 해석을 해야 하고 제작 공정 설계는 공정별로 다시 해야 하는 어려움이 있다. 이는 시간과 물적자원의 낭비로 이어지고 생산단가를 높이는 결과를 초래하게 된다.The existing functional surface manufacturing process is a design-based manufacturing method in which pre-design is followed by post-production. In other words, 3D design based on research information based on natural simulation or the performance of released products, and through industry-specific analysis and simulation, find a technology that can produce a verified model with a target shape and performance approximation, design and manufacture the process. However, this conventional method is a process in which design and manufacturing are separated, and there is a difficulty in that design and analysis must be performed for each surface shape, and the manufacturing process must be redesigned for each process. This leads to a waste of time and material resources and results in an increase in production cost.

또한, 기능성 표면 개발(해석) 및 제작 프로세스가 산업별로 전문성을 띄고 있지만 유사 산업분야에 국한되어 개발됨으로써 제품개발의 다양성이 낮은 문제점도 있다.In addition, functional surface development (interpretation) and manufacturing processes are specialized for each industry, but there is a problem in that the diversity of product development is low because they are developed only in similar industries.

상기와 같은 문제를 해결하기 위하여 본 발명은 공정설계를 통하여 모델링과 해석에 의해 가상공간에서 재현하고 검증함으로써 제작여부를 빠르게 판단할 수 있도록 하는 공정기반 융·복합 표면 가공 방법을 제공하고자 하는데 그 목적이 있다.In order to solve the above problems, the present invention aims to provide a process-based convergence/composite surface processing method that can quickly determine whether or not to manufacture by reproducing and verifying in virtual space through modeling and analysis through process design. there is

또한, 기능성 표면에 대한 정보 등을 빅데이터화 시켜 AI기술로서 새로운 고효율 기능성 표면을 설계하고 재료 선정 및 생산을 위한 기술적 요소와 공정을 자동 또는 반자동으로 도출할 수 있는 공정기반 융·복합 표면 가공 방법을 제공하고자 하는데 그 목적이 있다.In addition, a process-based convergence/complex surface processing method that can design new high-efficiency functional surfaces as AI technology by converting information on functional surfaces into big data and automatically or semi-automatically derive technical elements and processes for material selection and production We want to provide that purpose.

상기와 같은 과제를 해결하기 위하여 본 발명은 소재 표면 가공을 위한 공정설계값을 입력하는 공정입력 단계; 상기 공정설계에 따른 데이터에 의해 상기 소재의 표면 형상을 모델링하는 모델링 단계; 상기 모델링에 따른 소재 표면의 기능성을 나타낸 표면기능값을 해석하여 출력하는 단계;를 포함하는 것을 특징으로 하는 공정기반 융·복합 표면 가공 방법을 제공한다.In order to solve the above problems, the present invention includes a process input step of inputting process design values for material surface processing; A modeling step of modeling the surface shape of the material by data according to the process design; It provides a process-based convergence/composite surface processing method comprising the step of interpreting and outputting the surface function value representing the functionality of the surface of the material according to the modeling.

상기 공정입력 단계에서는, 상기 공정설계값은 표면기능값 빅데이터기반의 희망표면기능값 입력에 의한 AI프로그램의 출력인 것을 특징으로 한다.In the process input step, the process design value is characterized in that the output of the AI program by inputting the desired surface function value based on the surface function value big data.

상기 표면기능값을 해석하여 출력하는 단계에서는, 상기 표면기능값이 설정된 희망표면기능값의 오차범위 이내인 경우에는 종료하고, 상기 표면기능값이 설정된 희망표면기능값의 오차범위를 초과하는 경우에는 학습된 AI프로그램에 의해 보정하여 상기 공정설계값을 변경하는 것을 특징으로 한다.In the step of analyzing and outputting the surface function value, the surface function value is terminated if the surface function value is within the error range of the set desired surface function value, and if the surface function value exceeds the error range of the set desired surface function value It is characterized in that the process design value is changed by correcting by the learned AI program.

상기 표면기능값을 해석하여 출력하는 단계에서는, 상기 AI프로그램은 표면기능값 데이터 기반으로 공정설계값을 출력하는 것을 특징으로 한다.In the step of interpreting and outputting the surface function value, the AI program outputs a process design value based on the surface function value data.

상기 표면기능값을 해석하여 출력하는 단계에서는, 상기 표면기능값이 설정된 희망표면기능값의 오차범위 이내인 경우에는 종료하는 경우 출력되는 공정설계값과 표면기능값의 데이터가 AI프로그램에 재학습 하는 것을 특징으로 한다.In the step of interpreting and outputting the surface function value, if the surface function value is within the error range of the desired surface function value set, the process design value and surface function value data output when the end is completed are relearned by the AI program. characterized by

상기 공정설계값은, 표면 가공을 위한 기기의 종류와 가공조건, 가공순서를 설정하여 입력되는 것을 특징으로 한다.The process design value is characterized in that it is input by setting the type of equipment for surface processing, processing conditions, and processing order.

상기 표면 가공을 위한 기기는, 파형기반 가공기기, 회전체기반 가공기기, 파형과 회전체 기반 가공기기, 입자기반 가공기기, 전자기반 가공기기 중 하나 이상인 것을 특징으로 한다.The device for surface processing is characterized in that at least one of a waveform-based processing device, a rotating body-based processing device, a wave-and-rotating body-based processing device, a particle-based processing device, and an electromagnetic-based processing device.

상기 표면 가공을 위한 기기 중 진동절삭기기인 경우 진동 파형을 반영하는 것을 특징으로 한다.In the case of a vibration cutting machine among the devices for surface processing, it is characterized in that a vibration waveform is reflected.

상기 표면기능값은, 소재의 기계적, 물리적, 화학적 특성의 하나 이상이 수치적으로 표현되는 것을 특징으로 한다.The surface functional value is characterized in that one or more of the mechanical, physical, and chemical properties of the material are numerically expressed.

상기 표면기능값은, 광학, 에너지, 발수성, 태양광, 소수성, 항바이러스, 친세포, 유체역학, 마찰학 중 어느 하나 특성이 데이터된 것을 특징으로 한다.The surface functional value is characterized in that any one of optical, energy, water repellency, sunlight, hydrophobicity, antiviral, parent cell, hydrodynamics, and tribology is data.

상기 표면기능값을 해석하여 출력하는 단계에서는, 상기 소재의 종류와 소재를 설정하여 입력하는 것을 특징으로 한다.In the step of analyzing and outputting the surface function value, it is characterized in that the type and material of the material are set and input.

상기 AI프로그램은, 상기 빅데이터는 연구정보, 산업정보, 가공오차 정보에 의한 표면기능값과 공정설계값으로 학습되는 것을 특징으로 한다.The AI program is characterized in that the big data is learned as surface function values and process design values based on research information, industry information, and processing error information.

상기의 해결 수단에 의하면 다음과 같은 효과를 기대할 수 있다.According to the above solution, the following effects can be expected.

공정기반 융·복합 설계 기법으로 공정 설계에 따른 결과물을 가상공간에서 재현하고 검증함으로써 제작(생산)여부를 빠르게 판단할 수 있다.With process-based convergence and complex design techniques, it is possible to quickly determine whether or not to manufacture (production) by reproducing and verifying the results of process design in virtual space.

다양한 제작 기술들을 설정하고 공정별 가공 조건 및 환경 데이터를 입력하면 연산을 통해 2차원과 3차원 데이터로 결과물을 출력하고 시뮬레이션을 통해 설계의 적합성을 확인할 수 있다.By setting various manufacturing technologies and inputting processing conditions and environmental data for each process, the result can be output as 2D and 3D data through calculation, and the suitability of the design can be checked through simulation.

기능성 표면을 설계할 때 융·복합 공정을 기반으로 하여 설계 할 수 있으며 제작 공정에 따른 다양한 시도를 가상공간에서 공정 설계를 통해 결과물에 대한 정보를 미리 획득할 수 있다.When designing a functional surface, it can be designed based on the fusion/composite process, and various attempts according to the manufacturing process can be obtained in advance through process design in virtual space.

빅 데이터(Big Data)와 AI을 이용해 공정기반 융·복합 설계 및 제작기법을 출력할 수 있으며 AI가 형상 설계부터 해석과 제작 공정까지 도출할 수 있다.Process-based convergence design and manufacturing techniques can be output using Big Data and AI, and AI can derive from shape design to analysis and manufacturing processes.

인간이 작업한 설계값을 검증하고 수정 및 보완을 AI 기술로 디자인 및 공정의 보정 또는 새로운 모델을 자동으로 생성할 수 있다.Design values worked by humans can be verified, corrected and supplemented by AI technology, and design and process corrections or new models can be automatically created.

실제 제작된 제품의 정보 및 성능을 빅데이터(Big Data)에 저장하여 AI가 설계값과 실제 결과물을 비교 분석하고 오차율과 보정값을 자동으로 산출해 낼 수 있다.By storing information and performance of actually manufactured products in Big Data, AI can compare and analyze design values and actual results and automatically calculate error rates and correction values.

도 1은 본 발명의 실시예에 따른 공정기반 융·복합 표면 가공 방법의 순서도.1 is a flow chart of a process-based fusion/composite surface processing method according to an embodiment of the present invention.

도 2는 본 발명의 실시예에 따른 공정기반 융·복합 표면 가공 방법의 AI프로그램을 이용한 순서도.Figure 2 is a flow chart using the AI program of the process-based convergence and composite surface processing method according to an embodiment of the present invention.

도 3은 본 발명의 실시예에 따른 공정기반 융·복합 표면 가공 방법의 AI프로그램을 상세한 순서도.Figure 3 is a detailed flow chart of the AI program of the process-based convergence and composite surface processing method according to an embodiment of the present invention.

이하에서는 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명하고자 한다. 하기 설명 및 첨부 도면에 나타난 바는 본 발명의 전반적인 이해를 위해 제시된 것이므로 본 발명의 기술적 범위가 그것들에 한정되는 것은 아니다. 그리고 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 구성 및 기능에 대한 상세한 설명은 생략하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Since the bar shown in the following description and accompanying drawings is presented for a general understanding of the present invention, the technical scope of the present invention is not limited thereto. In addition, detailed descriptions of well-known configurations and functions that may unnecessarily obscure the gist of the present invention will be omitted.

도 1은 본 발명의 실시예에 따른 공정기반 융·복합 표면 가공 방법의 순서도이다.1 is a flow chart of a process-based fusion/composite surface processing method according to an embodiment of the present invention.

도 1을 참조하면, 본 발명은 크게 소재 표면 가공을 위한 공정설계값을 입력하는 공정입력 단계와, 상기 공정설계에 따른 데이터에 의해 상기 소재의 표면 형상을 모델링하는 모델링 단계와, 상기 모델링에 따른 소재 표면의 기능성을 나타낸 표면기능값을 해석하여 출력하는 단계를 거쳐 공정설계를 기반으로 표면기능값이 출력되는 것을 특징으로 한다.Referring to FIG. 1, the present invention largely includes a process input step of inputting process design values for material surface processing, a modeling step of modeling the surface shape of the material by data according to the process design, and It is characterized in that the surface function value is output based on the process design through the step of analyzing and outputting the surface function value representing the functionality of the material surface.

먼저, 상기 공정입력 단계는 소재 표면 가공을 위한 공정을 설계하는 단계이다.First, the process input step is a step of designing a process for processing the surface of a material.

공정설계는 프로그램툴에 의해서 설계할 수 있으며, 기기의 종류, 기기의 종류에 따른 가공조건, 가공순서 등이 설정모드와 단계로 프로그램화되어 있어 소재 가공을 위한 공정설계를 할 수 있다.Process design can be designed with a program tool, and process design for material processing can be performed because the type of equipment, processing conditions according to the type of equipment, processing sequence, etc. are programmed into setting modes and steps.

여기서, 공정설계값은 소재 표면 가공을 위한 기기의 종류와 가공조건, 가공순서 설정을 선택하여 입력할 수 있으며 연산 및 처리에 의해 데이터를 검증하는 것이 필요하다.Here, the process design value can be input by selecting the type of equipment for material surface processing, processing conditions, and processing sequence settings, and it is necessary to verify the data through calculation and processing.

상기 표면 가공을 위한 기기는 소재의 표면을 가공하기 위한 것이면 어떠한 것도 가능하며, 분류를 하면 파형기반 가공기기, 회전체기반 가공기기, 파형과 회전체 기반 가공기기, 입자기반 가공기기, 전자기반 가공기기를 예를 들 수 있다.Any device for processing the surface can be used as long as it is for processing the surface of the material, and if classified, it is a waveform-based processing device, a rotating body-based processing device, a wave-and-rotating body-based processing device, a particle-based processing device, and an electromagnetic-based processing device. device as an example.

구체적으로 파형기반 가공기기는 파형인 진동을 이용한 가공공정을 할 수 있는 것으로, 진동절삭기, Slow Tool Servo(STS), Fast Tool Servo(FTS), 세이핑(Shaping) 가공기를 예를 들 수 있다.Specifically, the waveform-based processing machine can perform a machining process using vibration, which is a waveform, and examples thereof include a vibration cutting machine, a slow tool servo (STS), a fast tool servo (FTS), and a shaping machine.

회전체기반 가공기기는 회전체인 스핀들을 이용한 가공공정을 할 수 있는 것으로 대표적으로 밀링, 터닝, CNC를 예를 들 수 있다.A rotating body-based processing machine can perform a machining process using a spindle, which is a rotating body, and examples thereof include milling, turning, and CNC.

파형과 회전체 기반 가공기기는 초음파(진동) 스핀들을 이용한 가공공정을 할 수 있는 것으로 밀링, 터닝, CNC, 연마기, 연삭기를 예를 들 수 있다.Wave and rotating body-based processing machines can perform processing using ultrasonic (vibration) spindles, and examples include milling, turning, CNC, polishing machines, and grinding machines.

입자기반 가공기기는 입자 분사를 이용한 가공공정으로 연마기, 연삭기, AAJ(Abrasive Air Jet), AWJ(Abrasive Water Jet)을 예를 들 수 있다.Particle-based processing equipment is a processing process using particle injection, and examples thereof include a grinder, a grinding machine, an abrasive air jet (AAJ), and an abrasive water jet (AWJ).

전자기반 가공기기는 전자장치를 이용한 가공공정을 할 수 있는 것으로, 이온빔, 방전가공, 레이져가공을 예를 들 수 있다Electromagnetic-based processing equipment is capable of processing processes using electronic devices, such as ion beam, electric discharge machining, and laser processing.

상기의 기기를 중 하나를 입력하여 공정설계를 사용할 수 있으며, 표면 형상의 용도와 기능성과 복잡성 및 특수성에 따라 여러 가지 기기를 혼용하는 복합기기 모드를 설정 입력을 통해 다양한 형태의 표면 패턴을 설계할 수 있다.Process design can be used by inputting one of the above devices, and various types of surface patterns can be designed through setting input of complex device mode that uses various devices in combination according to the purpose, functionality, complexity and specificity of the surface shape. can

상기 표면 가공을 위한 기기 중 FTS의 경우 가공조건은 채널 (channel), 툴 디자인, 파형 디자인을 설정할 수 있다. 채널은 축구조(단축, 다축)와 층구조(단층, 복층, 계층)로 설정할 수 있으며, 툴 디자인은 가공툴의 형상으로 삼각, 사각, 곡선, 원형 등으로 설정할 수 있으며, 파형 디자인은 파형모드, 파형종류, 주파수, 변위, 주기 등을 설정하여 설계할 수 있다.In the case of the FTS among the above surface processing devices, processing conditions may be set by channel, tool design, and waveform design. The channel can be set in a structure (single-axis, multi-axis) and layer structure (single-layer, multi-layer, layered), and the tool design can be set in the shape of a machining tool, such as a triangle, square, curve, or circle, and the waveform design can be set in the waveform mode. , waveform type, frequency, displacement, period, etc. can be set and designed.

상기 표면 가공을 위한 기기 중 레이저인 경우에는 레이저의 종류, 사이즈, 거리조정 등을 설정할 수 있으며, 레이저를 조사할 수 있는 툴패스의 종류를 설정할 수 있다.In the case of a laser among the devices for surface processing, the type, size, distance adjustment, etc. of the laser can be set, and the type of tool path capable of irradiating the laser can be set.

상기 표면 가공을 위한 기기 중 AAJ(Abrasive Air Jet)인 경우에는 입자의 종류, 입자의 모양, 입자의 사이즈 등을 설정할 수 있으며, 분사되는 입자의 양인 분사량을 설정할 수 있고, 분사압력 또는 속도를 설정할 수 있다.In the case of an AAJ (Abrasive Air Jet) among the surface processing devices, the type of particle, the shape of the particle, the size of the particle, etc. can be set, the amount of sprayed particles can be set, and the spray pressure or speed can be set. can

상기 모델링(modeling) 단계는 공정설계에 의한 소재의 형상을 그래픽으로 표현하는 프로그램에 의해 2D, 3D 이미지로 표현되어 표면 형상을 확인할 수 있으며 설계한 하나의 모델을 양각과 음각으로 구분하여 자동생성 및 데이터를 출력할 수 있다.The modeling step is expressed as 2D and 3D images by a program that graphically expresses the shape of the material by process design, so that the surface shape can be confirmed, and the designed model is divided into embossed and intaglio to automatically generate and data can be output.

상기 표면기능값을 해석하여 출력하는 단계는 공정설계와 모델링을 거친 소재의 표면에 대해 사용자가 원하는 기능값이 수치적으로 표현되며 해석프로그램에 의해 달성할 수 있다.In the step of analyzing and outputting the surface functional value, the functional value desired by the user for the surface of the material that has undergone process design and modeling is expressed numerically and can be achieved by an analysis program.

상기 표면기능값은 소재의 표면에 대한 기계적, 물리적, 화학적 특성 중 하나 이상이 표현되도록 한다. 구체적으로 표면기능값은 사용자 설정에 의해 광학, 에너지, 발수성, 태양광, 소수성, 항바이러스, 친세포, 유체역학, 마찰학 중 어느 하나 특성에 대한 모드 추가 또는 변경할 수 있도록 하여 각 특성에 대한 수치로 표현될 수 있으며 해석 결과 모듈에 설정되는 것이 바람직하다.The surface functional value allows one or more of mechanical, physical, and chemical properties of the surface of a material to be expressed. Specifically, the surface function value allows the user to add or change a mode for any one of the characteristics of optics, energy, water repellency, sunlight, hydrophobicity, antiviral, cell-friendly, hydrodynamics, and tribology by user setting, so that the numerical values for each characteristic It can be expressed as and is preferably set in the analysis result module.

상세하게, 광학적 특성은 투과율, 반사율, 굴절율 등이 있으며, 태양광적 특성은 집광율, 에너지효율 등이 있으며, 소수성은 친수성의 반대어로 물과의 친화성이 적은 성질을 나타낸 것으로 젖음각 등으로 표현되며, 항바이러스 특성은 항바이러스수치 등이 있으며, 유체역학은 윤활계수 등이 있으며, 마찰학은 마찰계수, 표면장력 등으로 출력할 수 있다.In detail, optical properties include transmittance, reflectance, and refractive index, and solar properties include light concentration and energy efficiency. Antiviral properties include antiviral values, fluid dynamics include lubrication coefficient, and tribology can be output with friction coefficient and surface tension.

상기 표면기능값을 해석하여 출력하는 단계에서는 해석프로그램 가동 이전에 상기 소재의 종류와 소재의 물리적 기계적, 물리적, 화학적 특성을 반영하는 설정모드를 통해 소재에 정보에 따른 표면기능값을 도출할 수 있다.In the step of analyzing and outputting the surface function value, surface function values according to information on the material can be derived through a setting mode that reflects the type of material and physical, mechanical, physical, and chemical characteristics of the material before running the analysis program. .

이처럼 공정설계에 따른 결과물을 모델링과 해석에 의해 가상공간에서 재현하고 검증함으로써 제작여부를 빠르게 판단할 수 있는 이점이 있다. 또한 다양한 제작 기술들을 설정하고 공정별 가공 조건 및 환경 데이터를 입력하면 연산을 통해 2차원 또는 3차원 데이터로 결과물을 출력하고 시뮬레이션을 통해 설계의 적합성을 확인할 수 있다. 게다가 기능성 표면을 설계할 때 융·복합 공정을 기반으로 하여 설계 할 수 있으며 제작 공정에 따른 다양한 시도를 가상공간에서 공정 설계를 통해 결과물에 대한 정보를 미리 획득할 수 있다.As such, it has the advantage of being able to quickly determine whether or not to manufacture by reproducing and verifying the result of the process design in virtual space through modeling and analysis. In addition, by setting various manufacturing technologies and inputting processing conditions and environmental data for each process, the result is output as 2D or 3D data through calculation, and the suitability of the design can be checked through simulation. In addition, when designing a functional surface, it can be designed based on the convergence/composite process, and various attempts according to the manufacturing process can be obtained in advance through process design in virtual space.

한편, 본 발명인 공정기반 융·복합 표면 가공 방법에서는 AI프로그램을 이용할 수 있다.On the other hand, in the process-based convergence/composite surface processing method of the present invention, an AI program can be used.

도 2는 본 발명의 실시예에 따른 공정기반 융·복합 표면 가공 방법의 AI프로그램을 이용한 순서도이다.Figure 2 is a flow chart using the AI program of the process-based convergence and composite surface processing method according to an embodiment of the present invention.

도 2를 참조하면, 소재 표면 가공을 위한 공정설계값을 입력하는 공정입력 단계와, 상기 공정설계에 따른 데이터에 의해 상기 소재의 표면 형상을 모델링하는 모델링 단계와, 상기 모델링에 따른 표면기능값을 해석하여 출력하는 단계는 상기의 설명한 바와 동일하며, 공정입력단계에서 공정설계값을 AI프로그램을 이용하여 도출할 수 있다.Referring to FIG. 2, a process input step of inputting process design values for material surface processing, a modeling step of modeling the surface shape of the material by data based on the process design, and surface function values according to the modeling The step of interpreting and outputting is the same as described above, and in the process input step, the process design value can be derived using an AI program.

여기서, 상기 AI프로그램은 표면기능값 빅데이터 기반으로 희망표면기능값 입력에 의해 공정설계값을 출력하는 것을 특징으로 하여 공정설계값을 공정입력 단계에 반영할 수 있다.Here, the AI program is characterized by outputting a process design value by inputting a desired surface function value based on surface function value big data, so that the process design value can be reflected in the process input step.

한편, 상기 AI프로그램은 산업 및 연구 분야별 발표되어 있는 기능성 표면의 형상 및 소재 정보와 그에 따른 결과를 저장하여 AI 학습할 수 있다. 산업 및 연구 분야별로 카테고리를 설정하고, 입력한 형상 정보에 소재정보를 링크, 성능 정보를 입력하여 형상 및 소재에 따라 성능이 어떻게 변하는지 AI 학습을 진행할 수 있다.On the other hand, the AI program can learn AI by storing the shape and material information of the functional surface announced by industry and research field and the result thereof. By setting categories for each industry and research field, linking material information to the input shape information, and inputting performance information, AI learning can be performed on how performance changes according to shape and material.

예를 들어 공정 정보를 형상과 소재에 따른 제작 방법 및 기술을 학습하고 설계 대비 제품의 가공오차를 학습할 수 있다.For example, it is possible to learn manufacturing methods and techniques according to the shape and material of the process information, and to learn the machining error of the product compared to the design.

또한, 공정별로 구현될 수 있는 표면 형상의 특성을 파악하고 학습하여 역설계 능력을 확보할 수 있다.In addition, reverse engineering capability can be secured by identifying and learning the characteristics of surface shapes that can be implemented for each process.

표면 형상 정보에 대해서는 논문에 수록된 2D이미지를 입력하면 AI를 통해 3D 형상으로 변환 저장, 산업계에 나와 있는 제품의 측정 정보 저장하며, 표면 형상 정보는 설계 정보와 제품 정보로 나뉘며 서로 비교를 통해 가공 오차 보정 정보로 활용할 수 있다.For the surface shape information, if you input the 2D image included in the thesis, it is converted into a 3D shape through AI and stored, and the measurement information of products in the industry is stored. It can be used as correction information.

예를들어 형상정보에 관해서는 설계 형상이나 그림에서 치수는 치수선과 작성되어 있는 치수를 분석하여 변환 가능하고, 측정 사진에서는 스케일바와 명암대비를 분석하여 변환 가능하며, 논문의 내용을 바탕으로 2D 또는 3D 형상으로 역설계가 가능하다. 그리고 제품에 대해서는 3차원 측정을 통한 실제 제품의 3D 형상 정보를 얻을 수 있다.For example, regarding shape information, dimensions in design shapes or drawings can be converted by analyzing dimension lines and created dimensions, and in measurement photos, they can be converted by analyzing scale bars and contrast. 3D shapes can be reverse engineered. And for the product, 3D shape information of the actual product can be obtained through 3D measurement.

소재정보에 관해서는 소재가 가지고 있는 물리적 성질 밑 산업분야별 특성을 나나낸 광학에서는 투명도에 관한 정보를 얻으며 마찰학에서는 표면장력, 점탄성 등의 관한 정보를 얻는다.Regarding material information, information on transparency is obtained in optics, which shows the characteristics of each industry under the physical properties of the material, and information on surface tension and viscoelasticity is obtained in tribology.

성능정보에서는 산업 및 연구 분야별 나와 있는 성능 정보를 입력하여 학습할 수 있다. 광학에서는 투과율, 반사율, 굴절율 등의 정보를 얻으며, 태양광에서는 집광률, 에너지효율 등의 정보를 얻으며, 소수성에서는 젖음각 정보 얻으며, 항바이러스에서는 항바이러스 수치 정보를 얻으며, 친세포에서는 세포친화성 정보를 얻으며, 유체역학에서는 윤활계수 정보를 얻으며, 마찰학에서는 마찰계수, 표면장력 정보를 얻을 수 있다.In performance information, you can learn by inputting performance information by industry and research field. In optics, information such as transmittance, reflectance, and refractive index is obtained; in sunlight, information such as light collection rate and energy efficiency is obtained; in hydrophobicity, information on wetting angle; in antivirus, information on antiviral values; In fluid dynamics, lubrication coefficient information can be obtained, and in tribology, friction coefficient and surface tension information can be obtained.

상기 표면기능값을 해석하여 출력하는 단계에서는 상기 표면기능값이 설정된 희망표면기능값의 오차범위 이내인 경우에는 종료하게 된다. 종료하여 출력되는 공정설계값과 표면기능값의 데이터가 AI프로그램에 재학습 하게 한다. 여기서 희망표면기능값은 사용자가 원하는 표면기능값이다.The step of analyzing and outputting the surface function value ends when the surface function value is within the error range of the set desired surface function value. The data of the process design value and the surface function value that are output after the end is re-learned by the AI program. Here, the desired surface function value is a surface function value desired by the user.

반대로 상기 표면기능값이 설정된 희망표면기능값의 오차범위를 초과하는 경우에는 학습된 AI프로그램에 의해 보정하여 상기 공정설계값을 변경하여 설계에 반영되게 된다.Conversely, if the surface function value exceeds the error range of the set desired surface function value, it is corrected by the learned AI program and the process design value is changed and reflected in the design.

따라서, 데이터와 AI프로그램을 이용해 공정기반 융·복합 설계 및 제작기법을 출력할 수 있으며, 뿐만 아니라 AI를 이용하여 형상 설계부터 해석과 제작 공정까지 도출도 가능할 수 있다. 또한, 인간이 작업한 설계값을 검증하고 수정 및 보완을 AI 기술로 디자인 및 공정의 보정 또는 새로운 모델을 자동으로 생성할 수 있다. 실제 제작된 제품의 정보 및 성능을 빅데이터에 저장하여 AI가 설계값과 실제 결과물을 비교 분석하고 오차율과 보정값을 자동으로 산출해 낼 수도 있다.Therefore, it is possible to output process-based convergence design and manufacturing techniques using data and AI programs, and it is also possible to derive from shape design to analysis and manufacturing processes using AI. In addition, design values worked by humans can be verified and corrected and supplemented by AI technology, and design and process corrections or new models can be automatically created. By storing information and performance of actually manufactured products in big data, AI can compare and analyze design values and actual results and automatically calculate error rates and correction values.

이상과 같이 본 발명은 공정기반 융·복합 표면 가공 방법,프로그램 및 플랫폼의 기본적인 기술적인 사상으로 하고 있음을 알 수 있으며, 이와 같은 본 발명의 기본적인 사상의 범주내에서, 당업계의 통상의 지식을 가진 자에게 있어서는 다른 많은 변형이 가능함은 물론이다.As described above, it can be seen that the present invention is the basic technical idea of the process-based fusion/composite surface processing method, program, and platform, and within the scope of the basic idea of the present invention, conventional knowledge in the art Of course, many other variations are possible for those who have it.

Claims (14)

소재 표면 가공을 위한 공정설계값을 입력하는 공정입력 단계;A process input step of inputting process design values for material surface processing; 상기 공정설계에 따른 데이터에 의해 상기 소재의 표면 형상을 모델링하는 모델링 단계;A modeling step of modeling the surface shape of the material by data according to the process design; 상기 모델링에 따른 소재 표면의 기능성을 나타낸 표면기능값을 해석하여 출력하는 단계;를Analyzing and outputting surface functional values representing the functionality of the surface of the material according to the modeling; 포함하는 것을 특징으로 하는 공정기반 융·복합 표면 가공 방법.Process-based convergence and composite surface processing method, characterized in that it comprises. 제1항에 있어서,According to claim 1, 상기 공정입력 단계에서는,In the process input step, 상기 공정설계값은 표면기능값 빅데이터기반의 희망표면기능값 입력에 의한 AI프로그램의 출력인 것을 특징으로 하는 공정기반 융·복합 표면 가공 방법.The process design value is a process-based convergence and complex surface processing method, characterized in that the output of the AI program by inputting the desired surface function value based on the surface function value big data. 제2항에 있어서,According to claim 2, 상기 표면기능값을 해석하여 출력하는 단계에서는,In the step of analyzing and outputting the surface function value, 상기 표면기능값이 설정된 희망표면기능값의 오차범위 이내인 경우에는 종료하고,Ending when the surface function value is within the error range of the set desired surface function value, 상기 표면기능값이 설정된 희망표면기능값의 오차범위를 초과하는 경우에는 학습된 AI프로그램에 의해 보정하여 상기 공정설계값을 변경하는 것을 특징으로 하는 공정기반 융·복합 표면 가공 방법.When the surface function value exceeds the error range of the set desired surface function value, the process design value is changed by correcting it by the learned AI program. 제2항에 있어서,According to claim 2, 상기 표면기능값을 해석하여 출력하는 단계에서는,In the step of analyzing and outputting the surface function value, 상기 AI프로그램은 표면기능값 데이터 기반으로 공정설계값을 출력하는 것을 특징으로 하는 공정기반 융·복합 표면 가공 방법.The AI program is a process-based convergence and complex surface processing method, characterized in that for outputting the process design value based on the surface function value data. 제3항에 있어서,According to claim 3, 상기 표면기능값을 해석하여 출력하는 단계에서는,In the step of analyzing and outputting the surface function value, 상기 표면기능값이 설정된 희망표면기능값의 오차범위 이내인 경우에는 종료하는 경우 출력되는 공정설계값과 표면기능값의 데이터가 AI프로그램에 재학습 하는 것을 특징으로 하는 공정기반 융·복합 표면 가공 방법.When the surface function value is within the error range of the set desired surface function value, the data of the process design value and the surface function value output when ending is re-learned by the AI program. . 제1항에 있어서,According to claim 1, 상기 공정설계값은,The process design value is, 표면 가공을 위한 기기의 종류와 가공조건, 가공순서를 설정하여 입력되는 것을 특징으로 하는 공정기반 융·복합 표면 가공 방법.A process-based convergence/composite surface processing method characterized in that the type of equipment for surface processing, processing conditions, and processing sequence are set and input. 제6항에 있어서,According to claim 6, 상기 표면 가공을 위한 기기는,The device for surface processing, 파형기반 가공기기, 회전체기반 가공기기, 파형과 회전체 기반 가공기기, 입자기반 가공기기, 전자기반 가공기기 중 하나 이상인 것을 특징으로 하는 공정기반 융·복합 표면 가공 방법.A process-based fusion/composite surface processing method, characterized in that at least one of a waveform-based processing device, a rotating body-based processing device, a waveform- and rotating body-based processing device, a particle-based processing device, and an electromagnetic-based processing device. 제7항에 있어서,According to claim 7, 상기 표면 가공을 위한 기기 중 진동절삭기기(FTS, Fast Tool Servo)인 경우 진동 파형을 반영하는 것을 특징으로 하는 공정기반 융·복합 표면 가공 방법.Process-based convergence and complex surface processing method, characterized in that the vibration waveform is reflected in the case of a vibration cutting device (FTS, Fast Tool Servo) among the devices for surface processing. 제1항에 있어서,According to claim 1, 상기 표면기능값은,The surface functional value is, 소재의 기계적, 물리적, 화학적 특성의 하나 이상이 수치적으로 표현되는 것을 특징으로 하는 공정기반 융·복합 표면 가공 방법.A process-based fusion/composite surface processing method characterized in that one or more of the mechanical, physical, and chemical properties of the material are numerically expressed. 제9항에 있어서,According to claim 9, 상기 표면기능값은,The surface functional value is, 광학, 에너지, 발수성, 태양광, 소수성, 항바이러스, 친세포, 유체역학, 마찰학 중 어느 하나 특성이 데이터된 것을 특징으로 하는 공정기반 융·복합 표면 가공 방법.A process-based convergence/composite surface processing method characterized in that any one of optical, energy, water repellency, sunlight, hydrophobicity, antiviral, cell-friendly, fluid dynamics, and tribology is data. 제1항에 있어서,According to claim 1, 상기 표면기능값을 해석하여 출력하는 단계에서는,In the step of analyzing and outputting the surface function value, 상기 소재의 종류와 소재를 설정하여 입력하는 것을 특징으로 하는 공정기반 융·복합 표면 가공 방법.A process-based convergence/composite surface processing method characterized in that the type and material of the material are set and input. 제2항에 있어서,According to claim 2, 상기 AI프로그램은,The AI program, 상기 빅데이터는 연구정보, 산업정보, 가공오차 정보에 의한 표면기능값과 공정설계값으로 학습되는 것을 특징으로 하는 공정기반 융·복합 표면 가공 방법.The big data is a process-based convergence and complex surface processing method, characterized in that it is learned as surface function values and process design values by research information, industry information, and processing error information. 상기 제1항 내지 제12항 중 어느 하나의 항을 실행시키는 프로그램.A program for executing any one of the above claims 1 to 12. 상기 제13항에 있어서,According to claim 13, 상기 프로그램이 실행되는 플랫폼.The platform on which the program runs.
PCT/KR2021/017076 2021-09-28 2021-11-19 Process-based convergence surface processing method, program, and platform WO2023054806A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210128055A KR102687409B1 (en) 2021-09-28 2021-09-28 Process-based fusion/composite surface processing method and program
KR10-2021-0128055 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023054806A1 true WO2023054806A1 (en) 2023-04-06

Family

ID=85783039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017076 WO2023054806A1 (en) 2021-09-28 2021-11-19 Process-based convergence surface processing method, program, and platform

Country Status (2)

Country Link
KR (1) KR102687409B1 (en)
WO (1) WO2023054806A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050089915A (en) * 2004-03-06 2005-09-09 최준수 Optimized design method for light reflection pattern of light guiding panel
KR20100092943A (en) * 2007-10-29 2010-08-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Cutting tool using one or more machined tool tips with diffractive features
JP4545171B2 (en) * 2007-05-17 2010-09-15 正樹 佐藤 Cutting simulation method, cutting simulation program, recording medium recording cutting simulation program, modeling method, modeling method program, and recording medium recording medium
KR20190000978A (en) * 2017-06-26 2019-01-04 호서대학교 산학협력단 Tree type support and optimum design method thereof
KR20200071026A (en) * 2018-12-10 2020-06-18 시로나 덴탈 시스템스 게엠베하 Method for the design and manufacture of a dental component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101463803B1 (en) 2012-05-18 2014-11-21 한국기계연구원 Apparatus and method for micro surface texturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050089915A (en) * 2004-03-06 2005-09-09 최준수 Optimized design method for light reflection pattern of light guiding panel
JP4545171B2 (en) * 2007-05-17 2010-09-15 正樹 佐藤 Cutting simulation method, cutting simulation program, recording medium recording cutting simulation program, modeling method, modeling method program, and recording medium recording medium
KR20100092943A (en) * 2007-10-29 2010-08-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Cutting tool using one or more machined tool tips with diffractive features
KR20190000978A (en) * 2017-06-26 2019-01-04 호서대학교 산학협력단 Tree type support and optimum design method thereof
KR20200071026A (en) * 2018-12-10 2020-06-18 시로나 덴탈 시스템스 게엠베하 Method for the design and manufacture of a dental component

Also Published As

Publication number Publication date
KR20230045337A (en) 2023-04-04
KR102687409B1 (en) 2024-07-22

Similar Documents

Publication Publication Date Title
Soori et al. Tool deflection error of three-axis computer numerical control milling machines, monitoring and minimizing by a virtual machining system
Jeffries Enhanced robotic automated fiber placement with accurate robot technology and modular fiber placement head
CN101537567B (en) Modulization-based method for designing reconfigurable machine tool
Rodriguez et al. Design and dimensional synthesis of a Linear Delta robot with single legs for additive manufacturing
Cao et al. Model-based self-optimization method for form correction in the computer controlled bonnet polishing of optical freeform surfaces
Roy et al. Disruption in the US machine tool industry: the role of inhouse users and pre-disruption component experience in firm response
Shiu et al. Digital twin-driven centering process optimization for high-precision glass lens
Lan et al. Path planning for support heads in mirror-milling machining system
Cheung et al. Modelling and simulation of freeform surface generation in ultra-precision raster milling
WO2023054806A1 (en) Process-based convergence surface processing method, program, and platform
Hu et al. The architecture, methodology and implementation of step-nc compliant closed-loop robot machining system
Lu et al. Tool path generation for turbine blades machining with twin tool
Sundaram et al. A slicing procedure for 5-axis laseraided DMD process
Yuan et al. Mobile collaborative welding system for complex welding seams
Su et al. Modeling of stiffness characteristic on evaluating clamping scheme of milling of thin-walled parts
Chen et al. Optimization of five-axis tool grinder structure based on BP neural network and genetic algorithm
Walker et al. Digital twin technology for CNC machining: a review
Zhang et al. Surface Performance of titanium alloy brake shell polished by industrial robot based on digital twin
Bigliardi et al. Path approximation strategies for robot manufacturing: a preliminary experimental evaluation
Skrzek et al. Towards a smart reconfiguration process for complex product manufacturing based on industrial robot cells
CN111061218B (en) A method and equipment for predicting cutting force in complex surface machining based on ACIS
CN114700931A (en) Large glass substrate carrying robot system and modular design method thereof
Kong et al. A framework of an integrated platform for modelling and measurement of freeform surface generation in ultra-precision raster milling
Gierecker et al. Automated CAD-based sensor planning and system implementation for assembly supervision
Kamali Nejad et al. 3D simulation of manufacturing defects for tolerance analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21959574

Country of ref document: EP

Kind code of ref document: A1