WO2023053916A1 - ポリアリーレンスルフィド樹脂組成物および成形品 - Google Patents
ポリアリーレンスルフィド樹脂組成物および成形品 Download PDFInfo
- Publication number
- WO2023053916A1 WO2023053916A1 PCT/JP2022/034016 JP2022034016W WO2023053916A1 WO 2023053916 A1 WO2023053916 A1 WO 2023053916A1 JP 2022034016 W JP2022034016 W JP 2022034016W WO 2023053916 A1 WO2023053916 A1 WO 2023053916A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pas
- polyarylene sulfide
- weight
- resin composition
- parts
- Prior art date
Links
- 229920000412 polyarylene Polymers 0.000 title claims abstract description 70
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims abstract description 63
- 239000011342 resin composition Substances 0.000 title claims abstract description 44
- 101100345332 Schizosaccharomyces pombe (strain 972 / ATCC 24843) mfr1 gene Proteins 0.000 claims abstract description 32
- 101100023124 Schizosaccharomyces pombe (strain 972 / ATCC 24843) mfr2 gene Proteins 0.000 claims abstract description 31
- 239000000155 melt Substances 0.000 claims abstract description 30
- 230000001186 cumulative effect Effects 0.000 claims abstract description 26
- 238000000465 moulding Methods 0.000 claims abstract description 25
- 239000003365 glass fiber Substances 0.000 claims abstract description 21
- 238000009826 distribution Methods 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 101
- 238000010438 heat treatment Methods 0.000 claims description 41
- 125000000524 functional group Chemical group 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 17
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 claims description 16
- 239000007822 coupling agent Substances 0.000 claims description 16
- 125000003700 epoxy group Chemical group 0.000 claims description 15
- 238000002156 mixing Methods 0.000 claims description 14
- 239000012528 membrane Substances 0.000 claims description 11
- 229920001971 elastomer Polymers 0.000 claims description 10
- 239000000806 elastomer Substances 0.000 claims description 9
- 239000012530 fluid Substances 0.000 claims description 8
- 150000001336 alkenes Chemical class 0.000 claims description 7
- 125000003277 amino group Chemical group 0.000 claims description 7
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 7
- 150000001282 organosilanes Chemical class 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 6
- 238000009428 plumbing Methods 0.000 claims description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 2
- 238000011085 pressure filtration Methods 0.000 claims description 2
- 229910000077 silane Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 abstract description 39
- 229920005989 resin Polymers 0.000 abstract description 20
- 239000011347 resin Substances 0.000 abstract description 20
- 239000006087 Silane Coupling Agent Substances 0.000 abstract description 10
- 229920006124 polyolefin elastomer Polymers 0.000 abstract description 7
- 239000004593 Epoxy Substances 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 72
- 238000006243 chemical reaction Methods 0.000 description 65
- 239000003960 organic solvent Substances 0.000 description 60
- 238000005406 washing Methods 0.000 description 53
- 239000002798 polar solvent Substances 0.000 description 47
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 42
- 150000001491 aromatic compounds Chemical class 0.000 description 40
- 229920001577 copolymer Polymers 0.000 description 34
- 239000003795 chemical substances by application Substances 0.000 description 32
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 26
- 239000000126 substance Substances 0.000 description 26
- 239000007787 solid Substances 0.000 description 25
- 239000002904 solvent Substances 0.000 description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 23
- 239000007788 liquid Substances 0.000 description 23
- 239000012298 atmosphere Substances 0.000 description 21
- 239000012632 extractable Substances 0.000 description 20
- 238000001035 drying Methods 0.000 description 19
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 18
- 239000005977 Ethylene Substances 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 18
- 125000004122 cyclic group Chemical group 0.000 description 18
- 239000011541 reaction mixture Substances 0.000 description 18
- 238000001914 filtration Methods 0.000 description 16
- -1 sulfide sulfones Chemical class 0.000 description 16
- 239000002253 acid Substances 0.000 description 15
- 239000011261 inert gas Substances 0.000 description 15
- 238000003756 stirring Methods 0.000 description 14
- 238000009835 boiling Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 239000002245 particle Substances 0.000 description 13
- 230000018044 dehydration Effects 0.000 description 12
- 238000006297 dehydration reaction Methods 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 238000011282 treatment Methods 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 238000001746 injection moulding Methods 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 238000000926 separation method Methods 0.000 description 11
- 239000004711 α-olefin Substances 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 238000002425 crystallisation Methods 0.000 description 10
- 230000008025 crystallization Effects 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 238000011109 contamination Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000005227 gel permeation chromatography Methods 0.000 description 8
- 230000001590 oxidative effect Effects 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 7
- 238000005119 centrifugation Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 6
- 238000004821 distillation Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 230000007062 hydrolysis Effects 0.000 description 6
- 238000006460 hydrolysis reaction Methods 0.000 description 6
- 238000004898 kneading Methods 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000001542 size-exclusion chromatography Methods 0.000 description 6
- 238000005486 sulfidation Methods 0.000 description 6
- 230000004580 weight loss Effects 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- 238000007334 copolymerization reaction Methods 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- VXNZUUAINFGPBY-UHFFFAOYSA-N ethyl ethylene Natural products CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 5
- 239000001307 helium Substances 0.000 description 5
- 229910052734 helium Inorganic materials 0.000 description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000011256 inorganic filler Substances 0.000 description 5
- 229910003475 inorganic filler Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000004925 denaturation Methods 0.000 description 4
- 230000036425 denaturation Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 229920006285 olefinic elastomer Polymers 0.000 description 4
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 4
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 4
- 238000005303 weighing Methods 0.000 description 4
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 3
- 229910052977 alkali metal sulfide Inorganic materials 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229920001400 block copolymer Polymers 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229920005604 random copolymer Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 3
- 150000004763 sulfides Chemical class 0.000 description 3
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 2
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical group ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000000944 Soxhlet extraction Methods 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001555 benzenes Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000002026 chloroform extract Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 239000002274 desiccant Substances 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000012765 fibrous filler Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000012783 reinforcing fiber Substances 0.000 description 2
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 229910052979 sodium sulfide Inorganic materials 0.000 description 2
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000012756 surface treatment agent Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 2
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 2
- WQONPSCCEXUXTQ-UHFFFAOYSA-N 1,2-dibromobenzene Chemical compound BrC1=CC=CC=C1Br WQONPSCCEXUXTQ-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- JSRLURSZEMLAFO-UHFFFAOYSA-N 1,3-dibromobenzene Chemical compound BrC1=CC=CC(Br)=C1 JSRLURSZEMLAFO-UHFFFAOYSA-N 0.000 description 1
- ZPQOPVIELGIULI-UHFFFAOYSA-N 1,3-dichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1 ZPQOPVIELGIULI-UHFFFAOYSA-N 0.000 description 1
- SWJPEBQEEAHIGZ-UHFFFAOYSA-N 1,4-dibromobenzene Chemical compound BrC1=CC=C(Br)C=C1 SWJPEBQEEAHIGZ-UHFFFAOYSA-N 0.000 description 1
- UTGSRNVBAFCOEU-UHFFFAOYSA-N 1,4-dichloro-2,5-dimethylbenzene Chemical compound CC1=CC(Cl)=C(C)C=C1Cl UTGSRNVBAFCOEU-UHFFFAOYSA-N 0.000 description 1
- QKMNFFSBZRGHDJ-UHFFFAOYSA-N 1,4-dichloro-2-methoxybenzene Chemical compound COC1=CC(Cl)=CC=C1Cl QKMNFFSBZRGHDJ-UHFFFAOYSA-N 0.000 description 1
- KFAKZJUYBOYVKA-UHFFFAOYSA-N 1,4-dichloro-2-methylbenzene Chemical compound CC1=CC(Cl)=CC=C1Cl KFAKZJUYBOYVKA-UHFFFAOYSA-N 0.000 description 1
- JDPKCYMVSKDOGS-UHFFFAOYSA-N 1,4-dichloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=C(Cl)C2=C1 JDPKCYMVSKDOGS-UHFFFAOYSA-N 0.000 description 1
- VEXIPBDOSJGYAC-UHFFFAOYSA-N 1,4-diisocyanatopentane Chemical group O=C=NC(C)CCCN=C=O VEXIPBDOSJGYAC-UHFFFAOYSA-N 0.000 description 1
- ZBQZXTBAGBTUAD-UHFFFAOYSA-N 1,5-dichloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1Cl ZBQZXTBAGBTUAD-UHFFFAOYSA-N 0.000 description 1
- ZFPGARUNNKGOBB-UHFFFAOYSA-N 1-Ethyl-2-pyrrolidinone Chemical compound CCN1CCCC1=O ZFPGARUNNKGOBB-UHFFFAOYSA-N 0.000 description 1
- JRGGUPZKKTVKOV-UHFFFAOYSA-N 1-bromo-3-chlorobenzene Chemical compound ClC1=CC=CC(Br)=C1 JRGGUPZKKTVKOV-UHFFFAOYSA-N 0.000 description 1
- NHDODQWIKUYWMW-UHFFFAOYSA-N 1-bromo-4-chlorobenzene Chemical compound ClC1=CC=C(Br)C=C1 NHDODQWIKUYWMW-UHFFFAOYSA-N 0.000 description 1
- URUJZHZLCCIILC-UHFFFAOYSA-N 1-chloro-4-(4-chlorophenoxy)benzene Chemical compound C1=CC(Cl)=CC=C1OC1=CC=C(Cl)C=C1 URUJZHZLCCIILC-UHFFFAOYSA-N 0.000 description 1
- NUXAUCXMSVFGME-UHFFFAOYSA-N 2,5-dichloro-1,3-dimethylbenzene Chemical compound CC1=CC(Cl)=CC(C)=C1Cl NUXAUCXMSVFGME-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- CXKCZFDUOYMOOP-UHFFFAOYSA-N 3,5-dichlorobenzoic acid Chemical compound OC(=O)C1=CC(Cl)=CC(Cl)=C1 CXKCZFDUOYMOOP-UHFFFAOYSA-N 0.000 description 1
- NMSZFQAFWHFSPE-UHFFFAOYSA-N 3-(oxiran-2-ylmethoxycarbonyl)but-3-enoic acid Chemical compound OC(=O)CC(=C)C(=O)OCC1CO1 NMSZFQAFWHFSPE-UHFFFAOYSA-N 0.000 description 1
- FMGBDYLOANULLW-UHFFFAOYSA-N 3-isocyanatopropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCN=C=O FMGBDYLOANULLW-UHFFFAOYSA-N 0.000 description 1
- NNTRMVRTACZZIO-UHFFFAOYSA-N 3-isocyanatopropyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)CCCN=C=O NNTRMVRTACZZIO-UHFFFAOYSA-N 0.000 description 1
- YTBRNEUEFCNVHC-UHFFFAOYSA-N 4,4'-dichlorobiphenyl Chemical group C1=CC(Cl)=CC=C1C1=CC=C(Cl)C=C1 YTBRNEUEFCNVHC-UHFFFAOYSA-N 0.000 description 1
- GPAPPPVRLPGFEQ-UHFFFAOYSA-N 4,4'-dichlorodiphenyl sulfone Chemical compound C1=CC(Cl)=CC=C1S(=O)(=O)C1=CC=C(Cl)C=C1 GPAPPPVRLPGFEQ-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- ZWXPDGCFMMFNRW-UHFFFAOYSA-N N-methylcaprolactam Chemical compound CN1CCCCCC1=O ZWXPDGCFMMFNRW-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- IBSGAWQJFSDRBJ-UHFFFAOYSA-M cesium sulfanide Chemical compound [SH-].[Cs+] IBSGAWQJFSDRBJ-UHFFFAOYSA-M 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 229940018560 citraconate Drugs 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- QTNDMWXOEPGHBT-UHFFFAOYSA-N dicesium;sulfide Chemical compound [S-2].[Cs+].[Cs+] QTNDMWXOEPGHBT-UHFFFAOYSA-N 0.000 description 1
- PJIFJEUHCQYNHO-UHFFFAOYSA-N diethoxy-(3-isocyanatopropyl)-methylsilane Chemical compound CCO[Si](C)(OCC)CCCN=C=O PJIFJEUHCQYNHO-UHFFFAOYSA-N 0.000 description 1
- OOISEBIWKZXNII-UHFFFAOYSA-N diethoxy-ethyl-(3-isocyanatopropyl)silane Chemical compound CCO[Si](CC)(OCC)CCCN=C=O OOISEBIWKZXNII-UHFFFAOYSA-N 0.000 description 1
- 238000006251 dihalogenation reaction Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- YQGOWXYZDLJBFL-UHFFFAOYSA-N dimethoxysilane Chemical compound CO[SiH2]OC YQGOWXYZDLJBFL-UHFFFAOYSA-N 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- HEAMQYHBJQWOSS-UHFFFAOYSA-N ethene;oct-1-ene Chemical compound C=C.CCCCCCC=C HEAMQYHBJQWOSS-UHFFFAOYSA-N 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010101 extrusion blow moulding Methods 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 1
- HXQGSILMFTUKHI-UHFFFAOYSA-M lithium;sulfanide Chemical compound S[Li] HXQGSILMFTUKHI-UHFFFAOYSA-M 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 238000003541 multi-stage reaction Methods 0.000 description 1
- MQWFLKHKWJMCEN-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CCCNCCN MQWFLKHKWJMCEN-UHFFFAOYSA-N 0.000 description 1
- PZYDAVFRVJXFHS-UHFFFAOYSA-N n-cyclohexyl-2-pyrrolidone Chemical compound O=C1CCCN1C1CCCCC1 PZYDAVFRVJXFHS-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- ZOCLAPYLSUCOGI-UHFFFAOYSA-M potassium hydrosulfide Chemical compound [SH-].[K+] ZOCLAPYLSUCOGI-UHFFFAOYSA-M 0.000 description 1
- DPLVEEXVKBWGHE-UHFFFAOYSA-N potassium sulfide Chemical compound [S-2].[K+].[K+] DPLVEEXVKBWGHE-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- LXOXXUIVMOYGST-UHFFFAOYSA-M rubidium(1+);sulfanide Chemical compound [SH-].[Rb+] LXOXXUIVMOYGST-UHFFFAOYSA-M 0.000 description 1
- AHKSSQDILPRNLA-UHFFFAOYSA-N rubidium(1+);sulfide Chemical compound [S-2].[Rb+].[Rb+] AHKSSQDILPRNLA-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- UUCCCPNEFXQJEL-UHFFFAOYSA-L strontium dihydroxide Chemical compound [OH-].[OH-].[Sr+2] UUCCCPNEFXQJEL-UHFFFAOYSA-L 0.000 description 1
- 229910001866 strontium hydroxide Inorganic materials 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- ISXOBTBCNRIIQO-UHFFFAOYSA-N tetrahydrothiophene 1-oxide Chemical compound O=S1CCCC1 ISXOBTBCNRIIQO-UHFFFAOYSA-N 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- DDBUVUBWJVIGFH-UHFFFAOYSA-N trichloro(3-isocyanatopropyl)silane Chemical compound Cl[Si](Cl)(Cl)CCCN=C=O DDBUVUBWJVIGFH-UHFFFAOYSA-N 0.000 description 1
- FRGPKMWIYVTFIQ-UHFFFAOYSA-N triethoxy(3-isocyanatopropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCN=C=O FRGPKMWIYVTFIQ-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/0209—Polyarylenethioethers derived from monomers containing one aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/04—Polysulfides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5435—Silicon-containing compounds containing oxygen containing oxygen in a ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/544—Silicon-containing compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms
- C08L23/0815—Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms with aliphatic 1-olefins containing one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
- C08L23/0869—Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen with unsaturated acids, e.g. [meth]acrylic acid; with unsaturated esters, e.g. [meth]acrylic acid esters
- C08L23/0884—Epoxide-containing esters
Definitions
- the present invention relates to a polyarylene sulfide resin composition having excellent hydraulic breaking strength. More particularly, it relates to a molded article excellent in hydraulic breaking strength, especially a plumbing part for a plumbing area.
- Polyarylene sulfide (hereinafter sometimes abbreviated as PAS) belongs to the highly heat-resistant super engineering plastics and is excellent in mechanical strength, rigidity, flame retardancy, chemical resistance, electrical properties and dimensional stability. , various electric and electronic parts, household appliance parts, automobile parts and machine parts.
- Patent Document 1 discloses a fluid piping component made of a resin composition containing a polyarylene sulfide resin and an elastomer and having a notched Charpy impact value of 20 KJ/m 2 or more at -40°C.
- Patent Document 2 discloses a polyphenylene sulfide resin composition obtained by blending a surface-treated fibrous filler and an olefin elastomer resin with a polyphenylene sulfide resin.
- Patent Document 1 by blending a relatively large amount of a thermoplastic elastomer resin with a polyarylene sulfide resin, although an excellent notched Charpy impact value is exhibited, there is a large amount of gas derived from the elastomer, and the gas derived from the polyarylene sulfide resin Therefore, there was a problem that the molding workability was inferior and the hydraulic fracture strength was also lowered.
- Patent Document 2 by blending a surface-treated fibrous filler and an olefin-based elastomer resin with a polyphenylene sulfide resin, the torque strength of the screw molded product is improved, but the hydraulic fracture strength is still insufficient. there were.
- a polyarylene sulfide resin composition comprising 100 parts by weight of (A) polyarylene sulfide, 10 to 100 parts by weight of (B) glass fiber, and 1 to 20 parts by weight of (C) an olefin elastomer.
- the (A) polyarylene sulfide has a cumulative integral value of 48 or more and 53 or less at a molecular weight of 4,000 when the cumulative integral value of the molecular weight distribution curve from 100 to 10,000 is 100;
- the melt flow rate of the (A) polyarylene sulfide is MFR1
- the (A) polyarylene sulfide and the epoxysilane coupling agent are mixed at a weight ratio of 100:1, and the melt is heated at 315.5 ° C. for 5 minutes.
- a polyarylene sulfide resin composition having a rate of change represented by MFR2/MFR1 of 0.085 or less, where MFR2 is the flow rate.
- the polyarylene sulfide resin composition has (A) 100 parts by weight of the polyarylene sulfide and (D) at least one functional group selected from the group consisting of an epoxy group, an amino group and an isocyanate group.
- the polyarylene sulfide resin composition according to (1) which contains 0.1 to 10 parts by weight of an organic silane coupling agent.
- the (A) polyarylene sulfide having a crosslinked structure was dissolved in 20 times the weight of 1-chloronaphthalene at 250° C. over 5 minutes, and subjected to hot pressure filtration through a PTFE membrane filter having a pore size of 1 ⁇ m.
- the polyarylene sulfide resin composition according to (4) which has a residue amount of 4.0% by weight or less.
- the molded article according to (6), wherein the molded article is a fluid piping component through which a fluid containing water as a main component flows.
- the molded product is any plumbing part selected from toilet-related parts, water heater-related parts, bath-related parts, pump-related parts, underfloor heating-related parts, and water meter-related parts (7 ).
- the mechanical strength of the molded product is improved, and the molding processability is improved because less gas is generated during molding (low gas) and excellent fluidity (good fluidity).
- a polyarylene sulfide resin composition can be provided.
- Polyarylene Sulfide (1) Chemical Structure and Molecular Weight Polyarylene sulfide in the present invention is a homopolymer or copolymer having a repeating unit of the formula —(Ar—S)— as a main structural unit.
- Ar includes units represented by the following formulas (A) to (L), etc., and formula (A) is particularly preferable.
- R 1 and R 2 are substituents selected from hydrogen, alkyl groups, alkoxy groups and halogen groups, and R 1 and R 2 may be the same or different).
- this repeating unit can contain a small amount of branching units or cross-linking units represented by the following formulas (M) to (P).
- the amount of copolymerization of these branching units or cross-linking units is preferably in the range of 0 mol % or more and 1 mol % or less per 1 mol of -(Ar-S)- units.
- the PAS in the present invention may be a random copolymer, a block copolymer, or a mixture thereof containing the repeating unit.
- Representative examples of these include polyarylene sulfides, polyarylene sulfide sulfones, polyarylene sulfide ketones, random copolymers, block copolymers and mixtures thereof.
- Particularly preferred PAS include polyarylene sulfides, polyarylene sulfide sulfones, and polyarylene sulfide ketones containing 90 mol % or more of p-arylene units represented by the following formula as main structural units of the polymer.
- the molecular weight of these PAS is not particularly limited, but the weight average molecular weight Mw of general PAS can be exemplified by 5,000 to 1,000,000, preferably 7,500 to 500,000, and 10,000 to 100. , 000 can be exemplified more preferably.
- the molecular weight measurement of PAS in the present invention is carried out by gel permeation chromatography (GPC) which is a kind of size exclusion chromatography (SEC).
- GPC gel permeation chromatography
- SEC size exclusion chromatography
- the melt viscosity which is known to correlate with the weight average molecular weight Mw, can be exemplified in the range of 0.1 to 1,000 Pa s (300 ° C., shear rate 1,000 / sec) from the preferred Mw described above. , 0.1 to 500 Pa ⁇ s.
- a PAS having a molecular weight and a melt viscosity within the preferred ranges described above is excellent in moldability and tends to be preferably used in many applications
- the sulfidation agent used in the present invention may be any one capable of introducing a sulfide bond into the dihalogenated aromatic compound, and examples thereof include alkali metal sulfides and alkali metal hydrosulfides.
- alkali metal sulfides include sodium sulfide, potassium sulfide, lithium sulfide, rubidium sulfide, and cesium sulfide, among which sodium sulfide is preferably used.
- These alkali metal sulfides can be used as hydrates or aqueous mixtures, or in anhydrous form.
- alkali metal hydrosulfides include sodium hydrosulfide, potassium hydrosulfide, lithium hydrosulfide, rubidium hydrosulfide, and cesium hydrosulfide, among which sodium hydrosulfide is preferably used. These alkali metal hydrosulfides can be used as hydrates or aqueous mixtures, or in anhydrous form.
- alkali metal hydroxide and/or an alkaline earth metal hydroxide can be used together with the sulfidating agent.
- alkali metal hydroxides include sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, etc.
- alkaline earth metal hydroxides include hydroxide Calcium, strontium hydroxide, barium hydroxide and the like can be mentioned, among which sodium hydroxide is preferably used.
- an alkali metal hydrosulfide is used as the sulfidating agent, it is particularly preferable to use an alkali metal hydroxide at the same time.
- mol or less is preferable, 1.00 mol or more and 1.15 mol or less is more preferable, and 1.005 mol or more and 1.100 mol or less is even more preferable.
- the sulfidating agent may be introduced into the system at any timing, but is preferably introduced before the dehydration operation described later.
- the dihalogenated aromatic compound used in the present invention is a compound having an aromatic ring, two halogen atoms in one molecule, and a molecular weight of 1,000 or less. It's about. Specific examples include p-dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene, p-dibromobenzene, m-dibromobenzene, o-dibromobenzene, 1-bromo-4-chlorobenzene, 1-bromo-3-chlorobenzene and dihalogenated benzenes such as 1-methoxy-2,5-dichlorobenzene, 1-methyl-2,5-dichlorobenzene, 1,4-dimethyl-2,5-dichlorobenzene, 1,3-dimethyl-2, 5-dichlorobenzene, dihalogenated benzenes also containing non-halogen substituents such as
- it contains 80 to 100 mol % of p-dichlorobenzene, more preferably 90 to 100 mol %. It is also possible to use a combination of two or more different dihalogenated aromatic compounds to produce the PAS copolymer.
- the amount of the dihalogenated aromatic compound used is preferably 0.1 mol or more and 3 mol or less, more preferably 0.5 mol or more and 2 mol or less, and 0.9 mol or more and 1.2 mol, per 1 mol of sulfur in the sulfidating agent. More preferably, the following can be exemplified.
- the amount of the dihalogenated aromatic compound used is within the above preferred range, it is possible to easily control the molecular weight of the PAS within the preferred range of the present invention, and to obtain a PAS with a small amount of chloroform-extractable components in the PAS.
- the dihalogenated aromatic compound can be introduced into the system at any timing, it is preferable to introduce it after the dehydration operation described later.
- a method of charging it is possible to adopt not only a method of charging the entire amount at once, but also a method of introducing step by step.
- an organic polar solvent is used as a reaction solvent, and among them, an organic amide solvent with high reaction stability is preferably used.
- N-alkylpyrrolidones such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone and N-cyclohexyl-2-pyrrolidone
- caprolactams such as N-methyl- ⁇ -caprolactam
- 1, aprotic organic solvents such as 3-dimethyl-2-imidazolidinone, N,N-dimethylacetamide, N,N-dimethylformamide, hexamethylphosphoric acid triamide, dimethylsulfone, tetramethylene sulfoxide;
- a mixture of these can also be used, but among them, N-methyl-2-pyrrolidone is preferably used.
- the amount of the organic polar solvent used in the present invention is preferably 0.5 mol or more and 10 mol or less, more preferably 2 mol or more and 8 mol or less per 1 mol of sulfur in the sulfidating agent. I can give an example.
- the amount of the organic polar solvent is within the above preferred range, undesirable reactions tend to occur with difficulty, and the degree of polymerization tends to increase.
- the amount of the organic polar solvent in the reaction system is the amount obtained by subtracting the amount of the organic polar solvent removed out of the reaction system from the amount of the organic polar solvent introduced into the reaction system.
- Water Water in the present invention includes water directly added at the time of charging raw materials, charged sulfidating agent, dihalogenated aromatic compound, water introduced accompanying an organic polar solvent, water generated in the course of reaction, and the like. , and the amount of water present in the system at the start of the reaction is defined as the above total minus the water distilled out of the system in the dehydration operation.
- the presence of water in the present invention has the effect of increasing the solubility of the sulfidating agent in the organic polar solvent and contributing to the promotion of the reaction, while excessive water reduces the nucleophilicity of the sulfidating agent and retards the reaction. It is important to control the amount of water present in the system within a preferable range because it has the effect of increasing the pressure in the system and increasing the pressure in the system.
- the preferred range of the amount of water present in the system at the start of the reaction is as close to 0 mol per 1 mol of sulfur in the sulfidating agent as the lower limit. 0.01 mol or more can be exemplified per 1 mol of sulfur. Moreover, as an upper limit, 2.5 mol or less is preferable, and 2.0 mol or less can be exemplified more preferably.
- the reaction rate tends to be high and the formation of by-products can be suppressed. Furthermore, the pressure rise in the system can be suppressed, and there is a tendency that the cost associated with the introduction of high pressure-resistant equipment can be reduced.
- the water content at the start of the reaction exceeds the preferred water content, it is possible to adjust the water content by performing an operation to reduce the water content in the reaction system by dehydration.
- the method of performing the dehydration operation and a method of dehydrating the raw material to be charged in advance, or a method in which any one or more of the sulfidating agent, the dihalogenated aromatic compound, and the organic polar solvent is not present.
- any method can be adopted, such as a method of dehydrating the mixture in the state of addition, a method of dehydrating after preparing a mixture containing a sulfidating agent, a dihalogenated aromatic compound, and an organic polar solvent, From the viewpoint of precisely controlling the amount of the dihalogenated aromatic compound that tends to scatter when heated, a method of dehydrating the mixture to which the dihalogenated aromatic compound has not been added is preferably employed. At this time, the temperature at which the mixture is heated cannot be clearly specified because it varies depending on the combination of the sulfidating agent and the organic polar solvent used, the ratio with water, etc., but the lower limit is 150 ° C. or higher.
- the heating temperature for dehydration is within the preferred range described above, dehydration can be efficiently performed while suppressing the charged sulfidating agent from scattering out of the system as hydrogen sulfide.
- the pressure conditions for dehydration are not particularly limited, and any of normal pressure, reduced pressure, and increased pressure can be employed, but normal pressure or reduced pressure is preferable in order to distill off water more efficiently. .
- the normal pressure means the pressure in the vicinity of the standard state of the atmosphere, that is, the temperature in the vicinity of about 25° C. and the atmospheric pressure condition in the vicinity of 101 kPa in absolute pressure.
- the atmosphere in the system is preferably a non-oxidizing condition, preferably an inert gas atmosphere such as nitrogen, helium, and argon. In particular, from the viewpoint of economy and ease of handling, a nitrogen atmosphere is more preferred.
- Step 1 A step of distilling off the organic polar solvent from the reaction mixture obtained at the end of the reaction to obtain a solid content containing PAS.
- Step 2 Following step 1, a step of washing the solid content containing PAS with water.
- Step 3 Following step 2, a step of washing the PAS with an organic solvent to reduce the amount of chloroform extractables in the PAS to 1.7% by weight or less.
- Step 4 Following step 3, the organic solvent used in step 3 is distilled off by heating while flowing an inert gas at a flow rate of 0.2 L/min or more per 1 kg of PAS.
- the chloroform-extracted component in the present invention is an oligomer component mainly contained in PAS, and is a component composed of cyclic PAS and linear PAS oligomers.
- the ratio of these components is not particularly limited.
- the cyclic PAS is a cyclic compound having a repeating unit of the formula -(Ar-S)- as a main structural unit, preferably the following general formula (Q) containing 80 mol% or more of the repeating unit. It is a compound such as
- Ar can be exemplified by the units represented by the above formulas (A) to (L), as in the case of the above PAS, but among them, the formula (A) is particularly preferable.
- repeating units such as the above formulas (A) to (L) may be included randomly, may be included in blocks, or may be a mixture thereof.
- Representative examples of these include cyclic polyarylene sulfides, cyclic polyarylene sulfide sulfones, cyclic polyarylene sulfide ketones, cyclic random copolymers containing these, cyclic block copolymers and mixtures thereof. can be exemplified.
- a particularly preferred cyclic PAS is a cyclic polyarylene sulfide (hereinafter abbreviated as cyclic PAS There is also).
- the repeating number m in the above formula (Q) of the cyclic PAS is preferably 2 to 50, more preferably 3 to 40, and even more preferably 4 to 30.
- the cyclic PAS may be either a single compound having a single repeating number or a mixture of cyclic PAS having different repeating numbers, but in many cases a mixture of cyclic PAS having different repeating numbers is obtained.
- the linear PAS oligomer is a linear oligomer having a repeating unit of the formula -(Ar-S)- as a main structural unit, and Ar is shown in the above (A) polyarylene sulfide (1) item.
- structure is the same as Although the number of repetitions of the main structural unit of the linear PAS oligomer is not limited, the number of repetitions is preferably 2 to 20, more preferably 2 to 10, for the component extracted with chloroform.
- the linear PAS oligomer may be either a single compound having a single repeating number or a mixture of linear PAS oligomers having different repeating numbers, provided that a mixture of linear PAS oligomers having different repeating numbers is obtained. There are many.
- the present invention it is preferable to use a PAS that causes less mold contamination by reducing relatively low volatility (high boiling point) oligomer components that adhere and accumulate on the mold during molding. It has been confirmed that the oligomer component is approximately equal to the chloroform extract component. Therefore, it is preferable to remove and reduce the chloroform extractables in PAS. The smaller the amount of chloroform-extracted components in PAS, the less mold fouling during molding. An improvement trend was found. Therefore, in the present invention, it is preferable to wash the PAS with an organic solvent to reduce the amount of chloroform extractables in the PAS to 1.7% by weight or less in step 3 described later.
- the lower limit of the amount of chloroform-extracted components in PAS is most preferably 0% by weight, in which no chloroform-extracted components are contained in PAS, since the smaller the amount, the better, from the viewpoint of reducing mold contamination.
- the upper limit is preferably 1.2% by weight or less, more preferably 1.0% by weight or less.
- the amount of chloroform-extracted components in PAS in the present invention is obtained by weighing 10 g of PAS, performing Soxhlet extraction with 100 g of chloroform for 3 hours, and measuring the weight of the component obtained after distilling off chloroform from this extract. It is calculated as a ratio to the weight of the polymer.
- the amount of chloroform extractables in PAS is preferably as small as possible from the viewpoint of reducing mold contamination during PAS molding.
- PAS is known to exhibit a good fluidization effect that reduces the melt viscosity at the time of melting by being present in the PAS. may be allowed to exist.
- cyclic PAS has the potential to be applied to high-performance materials and functional materials based on the properties resulting from its cyclic shape, such as properties as a compound with clathrate ability and high-molecular-weight linear polymer.
- the temperature at which the mixture is heated and reacted in the present invention depends on the type and amount of the raw materials used and cannot be unconditionally defined. C. or higher, more preferably 240.degree. C. or higher can be exemplified. On the other hand, the upper limit can be 350° C. or lower, preferably 320° C. or lower, more preferably 310° C. or lower, and even more preferably 300° C. or lower. When the temperature at which the mixture is heated and reacted is within the above preferred range, PAS exhibiting normal physical properties can be obtained more efficiently.
- methods for heating at such a temperature include, for example, a method of heating the mixture under a pressure exceeding normal pressure, and a method of heating the mixture under pressure exceeding normal pressure.
- a method of putting the mixture in a liquid container, sealing it, and heating it can be exemplified.
- the normal pressure means the pressure near the standard state of the atmosphere
- the standard state of the atmosphere means the temperature of about 25° C. and the atmospheric pressure condition of about 101 kPa in absolute pressure.
- the reflux temperature is the temperature at which the liquid component of the mixture repeatedly boils and condenses.
- the reaction in the present invention may be any of a reaction performed at a constant temperature, a multistage reaction in which the temperature is raised stepwise, or a reaction in which the temperature is changed continuously.
- the time for which the mixture is heated and reacted depends on the type and amount of the raw materials used and the reaction temperature, so it cannot be generally defined, but the lower limit is preferably 0.5 hours or more, more preferably 1 hour or more. I can give an example. Moreover, as an upper limit, within 20 hours is preferable, and within 10 hours can be exemplified more preferably.
- the raw materials can be sufficiently consumed by the reaction, and the PAS can be efficiently produced in a shorter time.
- the pressure in the reaction system cannot be uniquely defined because it changes depending on the raw materials constituting the mixture, the composition, the reaction temperature, and the progress of the reaction.
- the lower limit of the pressure at the reaction temperature of the invention is preferably 0.25 MPa or more, more preferably 0.3 MPa or more, in terms of gauge pressure.
- an upper limit 5 MPa or less is preferable, 3 MPa or less is more preferable, and 2 MPa or less is even more preferable.
- the inside of the reaction system may be pressurized with an inert gas at any stage such as before the start of the reaction or during the reaction, preferably before the start of the reaction.
- the gauge pressure is a relative pressure with respect to the atmospheric pressure, and is the same as the pressure difference obtained by subtracting the atmospheric pressure from the absolute pressure.
- a mixture containing at least a sulfidation agent, a dihalogenated aromatic compound, and an organic polar solvent is heated and reacted, and after completion of this reaction, step 1, which will be described later, is then carried out.
- step 1 which will be described later
- “Completion of the reaction” in the present invention refers to a state in which the charged dihalogenated aromatic compound is reacted until the conversion rate reaches 97% or more. After reacting the dihalogenated aromatic compound to such a conversion rate, the amount of chloroform-extractable components in the obtained PAS can be reduced by carrying out step 1 described later.
- the reaction is considered to be completed when the conversion of the dihalogenated aromatic compound reaches 97% or more, but it is also preferable to continue the reaction to further increase the conversion of the dihalogenated aromatic compound.
- the lower limit is more preferably 98% or more, and more preferably 98.5% or more.
- the upper limit may exceed 100% due to the convenience of the following calculation formula, and varies depending on the amount of the dihalogenated aromatic compound used, so it cannot be defined unconditionally. It can be said that the conversion rate in the case of conversion is a preferable upper limit.
- the conversion rate of the dihalogenated aromatic compound is within the preferred range described above, the amount of chloroform extractables in the obtained PAS tends to be further reduced.
- the residual amount of the dihalogenated aromatic compound in the reaction solution is estimated by gas chromatography, and the dihalogenated aromatic compound Calculate the conversion of The calculation formula is as follows.
- the amount of the dihalogenated aromatic compound charged refers to the amount of the dihalogenated aromatic compound present in the system at the start of the reaction. is removed from the system, the amount of the dihalogenated aromatic compound present in the system at the start of the reaction is estimated in consideration of the number of moles scattered.
- Step 1 in the present invention is a step of distilling off the organic polar solvent from the reaction mixture obtained in the reaction for producing PAS to obtain a solid content containing PAS.
- the solid matter obtained by this operation includes not only PAS but also water-soluble substances such as by-product salts and unreacted sulfidation agents. By this operation, the organic polar solvent can be easily recovered, and there is a tendency that the cost of PAS production can be suppressed.
- the resulting reaction mixture is heated to the boiling point of the organic polar solvent or higher to distill off the organic polar solvent.
- the reaction mixture is heated in a closed state using a pressure-resistant reactor equipped with an outlet at the bottom of the vessel, and the outlet at the bottom of the vessel is opened after the reaction mixture is heated to the boiling point or higher at normal pressure.
- flash method can be exemplified in which the organic polar solvent is instantaneously vaporized and distilled off by withdrawing the reaction mixture into a normal pressure or reduced pressure atmosphere.
- the temperature for distilling off the organic polar solvent in step 1 is not particularly limited as long as it is equal to or higher than the boiling point of the organic polar solvent used, but the lower limit is preferably 200°C or higher, more preferably 220°C or higher, and 220°C. More preferably, the temperature exceeding On the other hand, the upper limit is preferably 250° C. or lower, more preferably 240° C. or lower.
- the temperature for distilling off the organic polar solvent in step 1 is within the above preferable range, the distillation of the organic polar solvent can be completed in a relatively short time, and the generated PAS particles can be prevented from being fused together.
- the solid content obtained after flashing does not form large lumps, and tends to be in the form of easy-to-handle granules. Furthermore, the specific surface area of the obtained PAS particles tends to increase, and due to this effect, when the PAS is washed with an organic solvent in step 3 described later, the amount of chloroform extractables in the PAS tends to be more easily reduced.
- the temperature at which the organic polar solvent is distilled off in step 1 means not the temperature of the container but the internal temperature.
- the pressure conditions for distilling off the organic polar solvent by heating the reaction mixture above the boiling point of the organic polar solvent may be normal pressure, reduced pressure, or increased pressure, but reduced pressure conditions are adopted. is preferred. Under such preferable pressure conditions, the rate of distillation of the organic polar solvent can be increased, and the additional effect of removing oligomer components and other volatile impurities together with the organic polar solvent tends to be obtained. be.
- the conditions are not particularly limited, but as a preferable condition, the reaction mixture is usually heated to a high temperature and high pressure state of 250° C. or higher and 0.8 MPa or higher, and the reaction mixture is heated to about 290° C. and 5 kg/cm 2
- a method of releasing high-temperature, high-pressure steam adjusted to 20 kg/cm 2 or less into an air stream at a flow rate of 50 kg/hr or more and 5,000 kg/hr or less can be exemplified.
- the feed rate of the reaction mixture at this time is preferably in the range of 0.5 kg/hr or more and 5,000 kg/hr or less.
- Such a preferred method tends to efficiently remove oligomeric components and other volatile impurities with steam entrainment, and the resulting solids after flashing are in the form of granules that are easy to handle, rather than large clumps. tends to be easy.
- the temperature of the vessel from which the reaction mixture is extracted in the flash method is not particularly limited as long as it is at least the boiling point of the organic polar solvent used at normal pressure, but the lower limit is preferably 200 ° C. or higher, more preferably 220 ° C. or higher. I can give an example.
- the upper limit is preferably 250° C. or lower, more preferably 240° C. or lower.
- the solid content obtained later does not form large lumps, and tends to be in the form of easy-to-handle granules. Furthermore, the specific surface area of the obtained PAS particles tends to increase, and due to this effect, when the PAS is washed with an organic solvent in step 3 described later, the amount of chloroform extractables in the PAS tends to be more easily reduced. .
- step 1 the organic polar solvent is distilled off from the reaction mixture obtained in the reaction to obtain a solid content containing PAS.
- the advantage of this operation is that the organic polar solvent can be recovered at low cost.
- the resulting reaction mixture contains not only PAS but also water-soluble substances such as by-product salts and unreacted sulfidation agents.
- the filtrate produced in the process is often contaminated with water, water-soluble substances and organic polar solvents all.
- the organic polar solvent is recovered from such a filtrate by a distillation operation or the like, since water is a substance with a large latent heat of vaporization, it costs a lot, and as a result, the PAS production cost tends to increase significantly.
- the above-mentioned situation can be avoided by recovering the organic polar solvent first, so it is possible to produce PAS at low cost.
- Step 2 in the present invention is a step of washing the PAS-containing solid content with water after step 1 to remove water-soluble substances. Since the solid content obtained after distilling off the organic polar solvent in step 1 contains not only PAS but also water-soluble substances such as by-product salts and unreacted sulfidating agents, it is washed with water in the following step 2. to remove those water-soluble substances.
- the bath ratio of the amount of water to the amount of PAS (bath weight ratio)
- the bath ratio to the PAS weight is 1 or more. can be exemplified, 2 or more are preferable, and 3 or more can be exemplified more preferably.
- the liquor ratio to the PAS weight can be exemplified as 100 or less, preferably 50 or less, and more preferably 20 or less.
- the temperature (slurry temperature) at which the solid content containing PAS is washed with water to remove water-soluble substances is not particularly limited, but the lower limit can be exemplified by 0°C or higher, preferably 100°C or higher, and 150°C. Above is more preferable, 170° C. or higher is more preferable, and 180° C. or higher is even more preferable.
- the upper limit can be exemplified by 250° C. or less, preferably 220° C. or less, and more preferably 200° C. or less.
- the temperature within the above preferable range prevents the internal pressure of the device from excessively increasing, and effectively removes the water-soluble substance trapped inside the particles of the PAS. tend to be extracted.
- the method for raising the temperature above the boiling point of water but for example, a method of putting PAS and water in a pressure-resistant container to form a slurry, sealing the mixture and heating it can be exemplified.
- the stirring time when the solid content containing PAS is washed with water to remove water-soluble substances there is no particular limitation on the stirring time when the solid content containing PAS is washed with water to remove water-soluble substances, but the lower limit can be exemplified as 0.1 minutes or longer, preferably 1 minute or longer. Moreover, 3 hours or less can be illustrated as an upper limit, and 1 hour or less is preferable.
- the stirring time for washing the PAS with water to remove the water-soluble substances is within the above preferable range, the water-soluble substances contained in the PAS tend to be efficiently extracted.
- the temperature inside the solid-liquid separator is not particularly limited when the solid content containing PAS is slurried with water and then solid-liquid separated by operations such as filtration and centrifugation, but the lower limit is 0 ° C. or higher. can be exemplified, preferably 20° C. or higher, more preferably 50° C. or higher. On the other hand, as an upper limit, 100 degrees C or less can be illustrated.
- the solid-liquid separation operation can be performed using a simple device without being affected by the boiling point and melting point of water at normal pressure.
- the number of operations for washing the solids containing PAS with water to remove water-soluble substances is not particularly limited, but if the number of operations is one, Since there is a tendency that water-soluble substances tend to remain after washing, it is preferable to perform the washing operation twice or more. By performing the washing operation a plurality of times in this way, it is possible to further remove the water-soluble substances.
- the atmosphere in which the solid content containing PAS is washed with water to remove the water-soluble substance can be carried out in the atmosphere without any problem, but from the viewpoint of preventing the decomposition and oxidation of the terminal groups, non-oxidizing conditions It is preferable to use In this case, an atmosphere of an inert gas such as nitrogen, helium, or argon is preferable, and a nitrogen atmosphere is particularly preferable from the viewpoint of economy and ease of handling.
- an inert gas such as nitrogen, helium, or argon
- the method of washing by adding acid to the water used tends to reduce the metal content contained in PAS, and is preferably employed.
- the acid to be added is not particularly limited as long as it does not oxidize, decompose, or degrade PAS, and both inorganic acids and organic acids can be used.
- Acids to be added include, for example, acetic acid, hydrochloric acid, dilute sulfuric acid, phosphoric acid, silicic acid, carbonic acid and propyl acid, and these acids may be used alone or in combination.
- acetic acid and hydrochloric acid are preferably used from the viewpoint of cost. After adding the acid and washing with water, it is preferable to additionally wash with normal water at least one time so that the added acid does not remain in the PAS.
- the atmosphere when adding an acid and washing the PAS with water is an inert atmosphere in order to suppress the decomposition and oxidation of the terminal groups of the PAS.
- step 2 the PAS becomes wet after being washed with water, but it is also possible to dry the PAS after this. Since water is a poor solvent for chloroform-extracted components in PAS, drying the PAS in step 2 tends to increase the washing effect when washing the PAS with an organic solvent in the following step 3. . If the organic solvent used in step 3 is water-insoluble, the cleaning effect tends to be the same regardless of whether the PAS is dry or wet. No need.
- the lower limit of the drying temperature is preferably 70°C or higher, more preferably 100°C or higher, and even more preferably 120°C or higher.
- 170 degrees C or less is preferable and 150 degrees C or less can be illustrated more preferably.
- the atmosphere during drying is preferably a non-oxidizing condition, preferably an inert gas atmosphere such as nitrogen, helium, and argon, and in particular, a nitrogen atmosphere from the viewpoint of economy and ease of handling. Lower is more preferred.
- the time is not particularly limited, but the lower limit can be exemplified as 0.5 hours or more, preferably 1 hour or more. Further, the upper limit can be exemplified as 50 hours or less, preferably 20 hours or less, and more preferably 10 hours or less.
- the drying time of PAS is within the above preferred range, PAS can be industrially produced efficiently.
- the dryer to be used is not particularly limited, and a general vacuum dryer or hot air dryer can be used. It is also possible to use a heating device, a fluidized bed dryer, or the like. From the viewpoint of drying the PAS efficiently and uniformly, it is preferable to dry the PAS using a rotary heating device or a heating device with stirring blades.
- Step 3 Step 3 in the present invention is, subsequent to step 2, washing the PAS with an organic solvent to reduce the amount of chloroform extractables in the PAS to 1.7% by weight or less.
- the amount of chloroform extractables in PAS is 2.0 In many cases, the amount is not less than 5.0% by weight and not more than 5.0% by weight.
- the chloroform-extracted components in this PAS are the main causative agents of mold contamination during the molding process of PAS. By reducing the content, it is possible to reduce mold contamination during molding.
- step 3 it is preferable to reduce the amount of chloroform extractables in PAS to 1.7% by weight or less by washing PAS with an organic solvent. If the amount of the chloroform-extracted component in the PAS exceeds 1.7% by weight, mold fouling during molding of PAS cannot be clearly improved, and the effects of the present invention cannot be obtained.
- the lower limit of the amount of chloroform-extracted components in PAS is most preferably 0% by weight, in which no chloroform-extracted components are contained in PAS, since the smaller the amount, the better, from the viewpoint of reducing mold contamination.
- the upper limit is more preferably 1.2% by weight or less, and even more preferably 0.9% by weight or less. When the amount of the chloroform-extractable component in the PAS is within the above preferred range, there is a tendency that mold fouling during molding of the PAS is more clearly improved.
- the organic solvent used for washing the PAS in step 3 should have a high solubility for the chloroform-extracted components in the PAS, but a low solubility for the PAS, and should not exhibit the action of oxidizing, decomposing, or deteriorating the PAS.
- N-methyl-2-pyrrolidone dimethylformamide, dimethylacetamide, amide-based polar solvents such as dimethylimidazolidinone, dimethylsulfoxide, sulfoxide-sulfone-based solvents such as dimethylsulfone, acetone, methyl ethyl ketone, Ketone solvents such as diethyl ketone and acetophenone; ether solvents such as dimethyl ether, diethyl ether, dipropyl ether, tetrahydrofuran, and diphenyl ether; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; nitrile solvents such as acetonitrile; , methylene chloride, trichlorethylene, dichloroethylene, 1,2-dichloroethane, tetrachloroethane, chlorobenzene, 1-chloronaphthalene and
- dimethylformamide, tetrahydrofuran, chloroform, 1-chloronaphthalene, toluene, and p-xylene tend to have high solubility of chloroform-extracted components in PAS.
- N-methyl-2-pyrrolidone which is often used, is particularly preferably employed from the viewpoint of availability.
- These organic solvents may be used alone, or may be used as a mixed solvent of two or more.
- the amount of chloroform-extracted components in PAS in the present invention is measured by the following method. First, 10 g of PAS is weighed and subjected to Soxhlet extraction with 100 g of chloroform for 3 hours. After distilling off chloroform from the extract, the weight is measured, and the ratio to the weight of the polymer charged is determined to be the amount of chloroform-extracted component.
- Step 4 which will be described later, is a step of distilling off the organic solvent used in Step 3 by heating while flowing an inert gas. , the amount of chloroform extractables in PAS hardly changes. Therefore, the amount of chloroform-extractable components in PAS after step 3 is evaluated by the amount of chloroform-extractable components in PAS after step 4.
- the water content of the PAS before washing with an organic solvent is preferably 30% by weight or less. Since water is a poor solvent for chloroform-extracted components in PAS, reducing the water content of PAS tends to make it easier to reduce chloroform-extracted components when PAS is washed with an organic solvent. In addition, when the organic solvent used for washing the PAS in step 3 is a water-insoluble organic solvent such as chloroform or toluene, there is a tendency that a stable washing effect can be obtained regardless of the water content of the PAS.
- a water-insoluble organic solvent such as chloroform or toluene
- N-methyl-2-pyrrolidone which is a particularly preferable cleaning solvent from the viewpoint of availability, is a water-soluble organic solvent.
- reducing the water content in the PAS is a more preferable method.
- the lower limit of the water content of the PAS before washing with an organic solvent is preferably as low as possible in order to enhance the washing effect, and the most preferred is 0% by weight, at which no water is contained in the PAS.
- the upper limit is more preferably 10% by weight or less, more preferably 5% by weight or less, and even more preferably 1% by weight or less.
- step 3 when the water content of PAS before washing with an organic solvent is within the above preferable range, the amount of chloroform extractables in PAS tends to be more easily reduced when a water-soluble organic solvent is used for washing PAS.
- a method for reducing the water content to 30% by weight or less there is a method of drying the PAS after washing with water in step 2, as described above.
- the water content measurement of PAS in the present invention is carried out by the Karl Fischer method in accordance with Japanese Industrial Standards JIS K 7251.
- the specific surface area of the PAS before washing with an organic solvent is preferably 5 m 2 /g or more as a lower limit, more preferably 8 m 2 /g or more, and further preferably 10 m 2 /g or more. It can be exemplified preferably.
- the upper limit is preferably 50 m 2 /g or less.
- the specific surface area of the PAS before washing with an organic solvent in step 3 is the temperature at which the organic polar solvent is distilled off from the reaction mixture in step 1, and the PAS is dried after washing with water in step 2. In some cases, the drying temperature can be adjusted.
- the lower limit of the temperature for distilling off the organic polar solvent from the reaction mixture in step 1 is preferably 200° C. or higher, more preferably 220° C. or higher.
- the upper limit is preferably 250° C. or lower, more preferably 240° C. or lower.
- the drying temperature is preferably 70° C. or higher and 170° C. or lower when the PAS is washed with water and then dried.
- the drying temperature within the above preferred range prevents the particles of PAS from fusing together, and the specific surface area of the PAS before washing with an organic solvent in step 3. tends to be easily adjusted to the preferred range described above.
- the specific surface area of PAS is measured by weighing 0.2 g of PAS into a glass cell, degassing it under reduced pressure for 5 hours at room temperature, measuring it by the krypton gas adsorption method, and analyzing it by the BET multipoint method.
- the method of washing PAS with an organic solvent to remove chloroform-extracted components in PAS is not particularly limited. , a method of separating and recovering PAS as a solid content to remove chloroform-extracted components in PAS to the filtrate side, a method of spreading PAS on a filter medium, and a method of pouring an organic solvent over it and washing it can be exemplified.
- a method of separating and recovering PAS as a solid content to remove chloroform-extracted components in PAS to the filtrate side a method of spreading PAS on a filter medium, and a method of pouring an organic solvent over it and washing it can be exemplified.
- the bath ratio (weight bath ratio) of the amount of the organic solvent to the amount of PAS
- the lower limit is the bath ratio to the PAS weight.
- One or more can be exemplified, two or more are preferable, and three or more can be exemplified more preferably.
- the liquor ratio to the PAS weight can be exemplified as 100 or less, preferably 50 or less, and more preferably 20 or less.
- the bath ratio within the above preferred range tends to efficiently remove the chloroform-extracted components in the PAS.
- solid-liquid separation is carried out by operations such as filtration and centrifugation after slurrying, there is a tendency that the treatment can be performed in a short time.
- the temperature (slurry temperature) at which the PAS is washed with an organic solvent to remove the chloroform-extracted component in the PAS is not particularly limited, but the lower limit can be exemplified by 0°C or higher, preferably 20°C or higher, and 60°C. The above can be exemplified more preferably.
- the upper limit can be exemplified by 300° C. or lower, preferably 250° C. or lower, more preferably 200° C. or lower, and even more preferably 150° C. or lower.
- the temperature for removing the chloroform-extracted components in the PAS by washing the PAS with an organic solvent is within the above preferred range, there is a tendency that the chloroform-extracted components in the PAS can be efficiently extracted without excessively increasing the pressure.
- the rate of solid-liquid separation increases, and there is a tendency for efficient treatment.
- the method of raising the temperature to the boiling point or higher of the organic solvent is not particularly limited, but for example, a method of putting PAS and the organic solvent in a pressure-resistant container to form a slurry, sealing and heating can be exemplified.
- the stirring time for washing the PAS with an organic solvent to remove the chloroform-extracted component in the PAS is not particularly limited, but the lower limit can be exemplified as 0.1 minutes or longer, preferably 1 minute or longer, and 5 minutes or longer. is more preferred. Moreover, 3 hours or less can be illustrated as an upper limit, 1 hour or less is preferable, and 30 minutes or less is more preferable.
- the stirring time for removing the chloroform-extracted components in the PAS by washing the PAS with an organic solvent is within the above preferred range, the chloroform-extracted components tend to be efficiently extracted.
- the temperature inside the solid-liquid separator is not particularly limited when the PAS is slurried with an organic solvent and then solid-liquid separated by operations such as filtration and centrifugation, but the lower limit can be 0° C. or higher. , 20°C or higher, and more preferably 60°C or higher.
- the upper limit can be exemplified by 300° C. or lower, preferably 250° C. or lower, more preferably 200° C. or lower, and even more preferably 150° C. or lower.
- specific operations for solid-liquid separation include operations such as filtration and centrifugation.
- a method of pressurizing the minute is also preferably employed. By additionally performing such an operation, the amount of the mother liquor contained in the solid content is reduced, and there is a tendency that the chloroform-extracted components in the PAS contained in the PAS can be reduced more easily.
- the number of operations for washing the PAS with an organic solvent to remove the chloroform-extracted components in the PAS is not particularly limited. As a result, the chloroform-extracted components in the PAS tend to remain, so it is preferable to perform the washing operation twice or more. By performing the washing operation a plurality of times in this way, it becomes possible to further remove the chloroform-extracted components.
- the atmosphere in which the PAS is washed with an organic solvent to remove the chloroform-extracted components in the PAS can be carried out in the atmosphere without any problem, but from the viewpoint of preventing the decomposition and oxidation of the terminal groups, non-oxidizing conditions It is preferable to use In this case, an atmosphere of an inert gas such as nitrogen, helium, or argon is preferable, and a nitrogen atmosphere is particularly preferable from the viewpoint of economy and ease of handling.
- an inert gas such as nitrogen, helium, or argon
- Step 4 in the present invention is, after step 3, a step of heating while flowing an inert gas at a flow rate of 0.2 L/min or more per 1 kg of PAS to distill off the organic solvent used in step 3.
- step 4 it is possible to obtain a PAS that causes less mold fouling during molding, has excellent melt fluidity, and has high reactivity with a coupling agent.
- step 4 when the organic solvent used in step 3 is distilled off by heating under conditions where the flow rate of inert gas is less than 0.2 L / min per 1 kg of PAS, PAS tends to be thermally denatured, and PAS and cup The reactivity with the ring agent is lowered, and the hydrolysis resistance of the compound obtained by melt-kneading with other resins or inorganic fillers tends to be difficult to increase.
- the lower limit of the flow rate of the inert gas when distilling off the organic solvent in step 4 is preferably 0.4 L/min or more, and more preferably 0.8 L/min or more.
- the upper limit is preferably 50 L/min or less, more preferably 25 L/min or less.
- the inert gas is a stable gas that does not cause a chemical reaction, and nitrogen, helium, and argon can be preferably used, but nitrogen is more preferably used from the viewpoint of economy and ease of handling. preferable.
- the oxygen concentration in the apparatus for distilling off the organic solvent in step 4 tends to inevitably be low due to the flow of inert gas, but the lower limit of the oxygen concentration in the apparatus is In order to prevent this, the lower the better, and the most preferred is 0% by volume, where no oxygen is contained in the device.
- the upper limit is preferably 1% by volume or less, more preferably 0.1% by volume or less, and even more preferably 0.01% by volume or less.
- the pressure in the apparatus for distilling off the organic solvent in step 4 is not particularly limited, and any of normal pressure, reduced pressure, and increased pressure can be used. Since it is necessary to introduce expensive equipment that can withstand the environment, normal pressure is preferable from the viewpoint of producing PAS more economically.
- the normal pressure means the pressure in the vicinity of the standard state of the atmosphere, that is, the temperature in the vicinity of about 25° C. and the atmospheric pressure condition in the vicinity of 101 kPa in absolute pressure.
- the temperature for distilling off the organic solvent is not particularly limited.
- the upper limit is preferably 250° C. or lower, more preferably 230° C. or lower.
- the drying temperature of the PAS is within the above preferable range, there is a tendency that the PAS can be efficiently dried in a short time without being fused.
- the time for distilling off the organic solvent in step 4 is not particularly limited, but the lower limit can be exemplified as 0.1 hours or more, preferably 1 hour or more. Further, the upper limit can be exemplified as 50 hours or less, preferably 20 hours or less, and more preferably 10 hours or less.
- the drying time of PAS is within the above preferred range, it is possible to produce PAS efficiently while suppressing thermal denaturation of PAS.
- the dryer used for distilling off the organic solvent in step 4 is not particularly limited, and a general vacuum dryer or hot air dryer can be used. , a fluidized bed dryer, etc. can also be used. From the viewpoint of drying the PAS efficiently and uniformly, it is preferable to dry the PAS using a rotary heating device or a heating device with stirring blades.
- the process of distilling off the organic solvent in step 4 tends to take a long time at a high temperature.
- a method of replacing the organic solvent contained in the PAS with another solvent having a lower boiling point before drying is also preferably employed.
- the solvent to be substituted is not particularly limited as long as it is a solvent miscible with the solvent used for washing, but water and acetone are preferably used from the viewpoint of being inexpensively available and having a relatively low boiling point. There are many.
- step 4 in the present invention is a step of heating while flowing an inert gas to distill off the organic solvent used in step 3.
- this step 4 can be carried out.
- the amount of chloroform extractables in PAS hardly changed. Therefore, the amount of chloroform-extracted components in PAS after step 3 can be evaluated by the amount of chloroform-extracted components in PAS after step 4.
- PAS PAS with sufficiently low mold fouling during molding.
- a preferable example is to additionally subject PAS to heat treatment (curing) to form (A) polyarylene sulfide having a crosslinked structure.
- the temperature at which the PAS obtained after step 4 is additionally heat-treated is not particularly limited, but the lower limit can be exemplified by 150°C or higher, and preferably 160°C or higher. Moreover, 270 degrees C or less can be illustrated as an upper limit, and 260 degrees C or less can be illustrated preferably.
- the PAS heat treatment temperature is within the above preferable range, the PAS is not excessively thermally denatured, and the mold fouling that occurs during the PAS molding process can be further reduced, and the mechanical strength can be easily improved. In addition, there is a tendency that the heat treatment can be performed uniformly without fusing the PAS.
- the lower limit can be exemplified as 0.2 hours or more, preferably 0.3 hours or more.
- the upper limit can be exemplified as 50 hours or less, preferably 20 hours or less, more preferably 10 hours or less, and even more preferably 6 hours or less.
- the PAS obtained after the step 4 is additionally heat-treated
- the equipment to be used there is no particular limitation on the equipment to be used, and a general vacuum dryer or hot air dryer can be used. It is also possible to use a heating device with a type or a stirring blade, a fluidized bed dryer, or the like. From the viewpoint of heat-treating the PAS efficiently and uniformly, it is preferable to heat-treat the PAS using a rotary or stirring blade-equipped heating device.
- the atmosphere in which the PAS obtained after the step 4 is additionally heat-treated is preferably a non-oxidizing condition from the viewpoint of preventing the decomposition and oxidation of the terminal groups.
- the heat treatment may be carried out for the purpose of increasing the melt viscosity of PAS, in which case the heat treatment may be carried out in an atmosphere containing a certain amount of oxygen.
- the oxygen concentration can be exemplified as a lower limit of 0.5% by volume or more, preferably 1% by volume or more.
- the upper limit can be exemplified as 50% by volume or less, preferably 25% by volume or less, and more preferably 15% by volume or less.
- the air at a certain flow rate when the PAS obtained after the step 4 is additionally heat-treated.
- 0.1 L/min or more per 1 kg of resin can be exemplified.
- the upper limit can be exemplified as 50 L/min or less, preferably 30 L/min or less, and more preferably 15 L/min or less per 1 kg of resin.
- PAS used in the present invention preferably has a residue amount of 4.0% by weight or less. When the residual amount is 4.0% by weight or less, thermal oxidation cross-linking of PAS proceeds appropriately, and an increase in gelled matter in the resin can be prevented.
- a more preferable upper limit of the residue amount can be exemplified by 3.0% by weight or less, and more preferably 2.0% by weight or less. Although the lower limit of the residue amount is not particularly limited, 0.5% by weight or more can be preferably exemplified.
- the amount of residue is measured using a SUS test tube equipped with a high-temperature filtration device, a pneumatic cap, and a collection funnel, using a PAS press film of about 80 ⁇ m thickness as a sample. Specifically, first, a membrane filter with a pore size of 1 ⁇ m is set in a SUS test tube, and then PAS formed into a press film having a thickness of about 80 ⁇ m and 1-chloronaphthalene weighing 20 times the weight are weighed and sealed. This is placed in a high-temperature filtering device at 250° C. and heated and shaken for 5 minutes.
- the method of controlling the residual amount of PAS used in the present invention to 4.0% by weight or less includes a treatment temperature of 160 to 220 ° C., an oxygen volume concentration of 2% to 25% by volume, and a treatment time of 0.2 to 25% by volume. It is preferably exemplified that the time is set to 20 hours and the PAS is appropriately thermally oxidized. Under these oxidation treatment conditions, moderate oxidative cross-linking proceeds, and the residual amount of PAS can be reduced to 4.0% by weight or less.
- the method of producing PAS by the so-called quenching method after PAS is polymerized, water is poured into the system before precipitation of PAS particles, followed by slow cooling to increase the PAS particle size. If this is done, the PAS particles tend to become porous, and washing with an organic solvent tends to wash away even oligomer components that do not correspond to the causative substances of mold contamination more than necessary.
- the PAS obtained by this quenching method has a molecular weight distribution shape such that the cumulative integral value at a molecular weight of 4,000 is less than 48 when the cumulative integral value from molecular weight 100 to 10,000 in the molecular weight distribution curve is 100.
- the so-called flash method for producing PAS after PAS is polymerized, the reaction system in a high temperature state is flashed into a container under normal pressure or reduced pressure to evaporate the polymerization solvent. It is widely recognized that it is possible to produce PAS in a short period of time, and there is no idea of adding an additional cost to the washing operation with an organic solvent.
- the PAS obtained by this flash method has a molecular weight distribution shape such that the cumulative integral value at a molecular weight of 4,000 is greater than 53 when the cumulative integral value from molecular weight 100 to 10,000 in the molecular weight distribution curve is 100.
- the PAS used in the present invention is a material that has both less mold fouling during molding and high melt fluidity, and is a material with excellent moldability. It can be said that
- the melt fluidity evaluation of PAS in the present invention is performed by measuring the melt flow rate (the amount of resin discharged per 10 minutes) in accordance with ASTM-D1238-70 and comparing the values.
- the PAS used in the present invention has a melt flow rate of MFR1, and the PAS and the epoxysilane coupling agent are mixed at a weight ratio of 100: 1, and the melt flow rate after heating at 315.5 ° C. for 5 minutes is MFR2, the rate of change represented by MFR2/MFR1 must be 0.085 or less.
- MFR2/MFR1 the rate of change represented by MFR2/MFR1 must be 0.085 or less. This means that the PAS reacts with the epoxysilane coupling agent to increase the melt viscosity, and the smaller the rate of change, the higher the melt viscosity. If the rate of change represented by MFR2/MFR1 exceeds 0.085, there is a problem that mechanical strength and hydrolysis resistance are inferior when compounded by melt-kneading with other resins or inorganic fillers.
- the organic solvent used in step 3 may be distilled off by heating while flowing an inert gas at a flow rate of 0.2 L / min or more per 1 kg of PAS. .
- PAS which reacts with epoxysilane coupling agents to greatly increase its melt viscosity, tends to improve mechanical strength and hydrolysis resistance when melt-kneaded with other resins and inorganic fillers to form compounds.
- the lower limit of the rate of change represented by MFR2/MFR1 is not particularly limited, but can be exemplified by 0.0001 or more, preferably 0.001 or more, and more preferably 0.002 or more.
- the upper limit is 0.085 or less, preferably 0.080 or less, more preferably 0.070 or less, and even more preferably 0.060 or less.
- the rate of change represented by MFR2/MFR1 is within the above preferable range, when the PAS is melt-kneaded with other resins or inorganic fillers to form a compound, the mechanical strength and hydrolysis resistance tend to be further improved, and the water resistance is It can be particularly preferably used in applications where degradability is required.
- the rate of change represented by MFR2/MFR1 in the present invention is obtained by first measuring the melt flow rate of PAS in accordance with ASTM-D1238-70 to obtain MFR1, then PAS1g and 2-(3,4-epoxycyclohexyl ) MFR2/MFR1 is calculated by measuring the melt flow rate of a mixture obtained by mixing 0.01 g of ethyltrimethoxysilane (KBM-303 manufactured by Shin-Etsu Silicone Co., Ltd.) using a mortar and pestle.
- KBM-303 ethyltrimethoxysilane
- the PAS used in the present invention tends to have a cooling crystallization temperature of 210°C or higher and 250°C or lower. Since the PAS used in the present invention tends to have higher crystallinity than general PAS, it can be particularly preferably used for resin injection molding. Generally, in injection molding, it is known that the slower the cooling rate in the cooling and crystallization temperature range during the process of cooling and solidifying from the molten state, the more crystallization is promoted. However, since the PAS obtained by the method of the present invention tends to be highly crystalline, crystallization proceeds sufficiently even at a relatively low mold temperature, and efficiency It is possible to mold PAS well.
- the temperature-lowering crystallization temperature of PAS obtained by the preferred method of the present invention varies depending on the polymerization conditions and washing conditions, but the lower limit tends to be 210°C or higher, with a greater tendency to be 215°C or higher. Also, the upper limit tends to be 250° C. or lower, and more likely to be 240° C. or lower.
- the polyarylene sulfide resin composition of the present invention comprises 100 parts by weight of (A) polyarylene sulfide and 10 to 100 parts by weight of (B) glass fiber.
- the lower limit of the blending ratio of the glass fiber is preferably 20 parts by weight or more, more preferably 40 parts by weight or more, and more preferably 50 parts by weight or more from the viewpoint of obtaining excellent hydraulic breaking strength.
- the upper limit of the preferable compounding ratio of the glass fiber is preferably 90 parts by weight or less, more preferably 80 parts by weight or less.
- the cross-sectional shape of the (B) glass fiber used in the present invention is not particularly limited.
- a semicircular or arcuate cross-sectional shape, a rectangular cross-sectional shape, or a similar shape thereof can be preferably exemplified, and a flat cross-sectional shape is particularly preferable.
- the fiber diameter of the (B) glass fiber having a round cross-sectional shape (hereinafter sometimes abbreviated as round glass fiber) used in the present invention is preferably 4 ⁇ m or more, more preferably 7 ⁇ m or more, and 10 ⁇ m or more. is more preferable.
- the upper limit of the fiber diameter is preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 15 ⁇ m or less. As the fiber diameter becomes thinner, the number of glass fibers per unit weight increases and the reinforcing effect increases, which is preferable.
- (B) glass fibers are preferably opened in the polyarylene sulfide resin composition.
- the state in which the fibers are opened refers to the state in which the (B) glass fibers in the polyarylene sulfide resin composition are opened to single fibers. means that the number of reinforcing fibers bundled with 10 or more is 40% or less of the total number of reinforcing fibers.
- the (B) glass fiber used in the present invention is preferably treated with a sizing agent or a surface treatment agent.
- sizing agents or surface treatment agents include functional compounds such as epoxy-based compounds, isocyanate-based compounds, silane-based compounds, and titanate-based compounds. is particularly preferred from
- the (B) glass fiber having a round cross-sectional shape is available from Nippon Electric Glass Co., Ltd. under the trade name of T-760H, for example.
- the polyarylene sulfide resin composition of the present invention comprises 1 to 20 parts by weight of (C) an olefin-based elastomer blended with 100 parts by weight of the polyarylene sulfide (A).
- the (C) olefin-based elastomer used in the present invention is an ⁇ -olefin such as ethylene, propylene, 1-butene, 1-pentene, 1-octene, 4-methyl-1-pentene, and isobutylene, or polymerizes two or more of them.
- the olefin-based elastomer used in the present invention is preferably an ⁇ -olefin-based copolymer having an epoxy group.
- An ⁇ -olefin copolymer having an epoxy group can be obtained by introducing a functional group-containing component such as a glycidyl ester of an ⁇ , ⁇ -unsaturated acid into an olefin elastomer.
- a functional group-containing component such as a glycidyl ester of an ⁇ , ⁇ -unsaturated acid
- glycidyl esters of ⁇ , ⁇ -unsaturated acids include epoxy group-containing monomers such as glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate and glycidyl citraconate.
- the method for introducing these functional group-containing components is not particularly limited, and may be copolymerization during copolymerization of an olefinic (co)polymer, or graft introduction into an olefinic (co)polymer using a radical initiator. It is possible to use a method such as
- the amount of the functional group-containing component introduced is in the range of 0.001 to 40 mol%, preferably 0.01 to 35 mol%, relative to the total monomers constituting the ⁇ -olefin copolymer having an epoxy group. It is appropriate to have
- ⁇ -olefin copolymers having an epoxy group include ethylene/propylene-g-glycidyl methacrylate copolymer ("g" represents graft, hereinafter the same), ethylene/1-butene -g-glycidyl methacrylate copolymer, ethylene/glycidyl acrylate copolymer, ethylene/glycidyl methacrylate copolymer, ethylene/methyl acrylate/glycidyl methacrylate copolymer, ethylene/methyl methacrylate/glycidyl methacrylate Copolymers, or epoxy group-containing olefinic copolymers containing other monomers as essential components in addition to ⁇ -olefins such as ethylene and propylene and glycidyl esters of ⁇ , ⁇ -unsaturated acids are also suitable.
- g represents graft, hereinafter the same
- the (C) olefin elastomer used in the present invention is an excellent molding that is used in combination with an ⁇ -olefin copolymer having an epoxy group and an olefin (co)polymer having no polar functional group. It is preferable in terms of obtaining durability and water pressure resistance strength.
- the amount of the ⁇ -olefin copolymer having an epoxy group it is preferably 6 parts by weight or less per 100 parts by weight of (A) polyphenylene sulfide from the viewpoint of moldability.
- ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-octene, 4-methyl-1-pentene, and isobutylene, or two (Co)polymers obtained by polymerizing the above, e.g., ethylene/propylene copolymer ("/" represents copolymerization, the same shall apply hereinafter), ethylene/1-butene copolymer, ethylene/1-hexene copolymer polymers, ethylene/1-octene copolymers.
- Preferred olefinic (co)polymers having no polar functional groups include ethylene/1-butene copolymers and ethylene/1-octene copolymers.
- the weight ratio is preferably 5/95 to 95/5, more preferably 10/90 to 90/10.
- (D) Organic silane coupling agent having a functional group The polyarylene sulfide resin composition of the present invention is prepared by adding (D ) An organosilane coupling agent having at least one functional group selected from the group consisting of an epoxy group, an amino group and an isocyanate group (hereinafter sometimes abbreviated as (D) an organosilane coupling agent having a functional group.) 0.1 to 10 parts by weight of is also included as a preferred embodiment. (D) Addition of an organic silane coupling agent having a functional group makes it possible to improve mechanical strength, toughness, and the like.
- the lower limit of the amount of the organic silane coupling agent having a functional group (D) is 0.2 parts by weight or more, and from the viewpoint of obtaining a sufficient mechanical strength improvement effect, 0.3 parts by weight or more It can be exemplified more preferably.
- the upper limit of the amount of the organic silane coupling agent having a functional group is more preferably 5 parts by weight or less, and more preferably 2 parts by weight or less from the viewpoint of suppressing excessive thickening.
- (D) functional group-containing organic silane coupling agent examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and 2-(3,4-epoxycyclohexyl)ethyl.
- Epoxy group-containing alkoxysilane compounds such as trimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatopropylmethyldiethoxysilane, ⁇ -isocyanatopropylethyl Isocyanate group-containing alkoxysilane compounds such as dimethoxysilane, ⁇ -isocyanatopropylethyldiethoxysilane, ⁇ -isocyanatopropyltrichlorosilane, ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane, ⁇ -(2-aminoethyl)amino Amino group-containing alkoxysilane compounds such as propyltrimethoxysilane, ⁇ -amino
- the organic silane coupling agents having an epoxy group ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -glycidoxypropyltriethoxysilane are more preferable from the viewpoint of exhibiting better mechanical strength and moist heat resistance.
- the organosilane coupling agent having an amino group exhibits superior hydraulic fracture strength compared to the silane coupling agent having an epoxy group. It can be preferably exemplified from the viewpoint of suppressing the generation of burrs during injection molding (developing low burr properties).
- the method for producing the PAS resin composition of the present invention is not particularly limited, but each raw material is mixed and supplied to a generally known melt mixer such as a single-screw or twin-screw extruder, Banbury mixer, kneader and mixing roll.
- a melt mixer such as a single-screw or twin-screw extruder, Banbury mixer, kneader and mixing roll.
- L/D is more preferably 20 or more and 100 or less, and even more preferably 30 or more and 100 or less.
- the PAS resin composition obtained in this manner is a resin composition that has improved mechanical strength, generates a small amount of gas when melted, and is excellent in moldability.
- the weight loss on heating of the PAS resin composition of the present invention is preferably 0.35% by weight or less, more preferably 0.30% by weight or less, and even more preferably 0.25% by weight or less.
- the heat loss was measured by weighing 10 g of the PAS resin composition pellets of the present invention in an aluminum cup previously heated at 330° C. for 3 hours, heating with a hot air dryer at 320° C. for 2 hours, and placing in a desiccator containing a desiccant. After taking out and cooling, the weight was weighed, and the weight loss value was calculated as the weight percentage of the weight before heating.
- the PAS resin composition of the present invention can be used for various molding such as injection molding, extrusion molding, blow molding and transfer molding, and is particularly suitable for injection molding.
- the PAS resin composition of the present invention is particularly useful as a fluid piping part through which a fluid containing water as a main component flows because of its excellent hydraulic fracture strength.
- the fluid containing water as the main component is a liquid containing 30% by weight or more of water, and includes room temperature water, hot water heated from room temperature to 100° C., and long-life coolant for automobiles. Cooling water obtained by diluting ethylene glycol, which is the main component of cooling water, with 30% by weight or more of water can be exemplified.
- More specific piping parts include joints, valves, servos, sensors, pipes, pumps, etc. through which cooling water for automobiles and hot water in water heaters flow.
- the liquid that flows through the piping parts may be an antifreeze liquid containing water as a main component and alcohols, glycols, glycerin, etc., and its type and concentration are not particularly limited.
- molded articles made from the PAS resin composition of the present invention include, for example, sensors, LED lamps, consumer connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable condenser cases, and oscillators. , various terminal boards, transformers, plugs, printed circuit boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, semiconductors, liquid crystals, FDD carriages, FDD chassis, motor brush holders, parabolic antennas, computer related parts, etc.
- VTR parts VTR parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, audio equipment parts, audio equipment parts such as audio, laser discs (registered trademark) and compact discs, lighting parts, It can also be applied to household and office electrical product parts such as refrigerator parts, air conditioner parts, typewriter parts, word processor parts, and the like.
- Other machine-related parts such as office computer-related parts, telephone-related parts, facsimile-related parts, copying machine-related parts, cleaning jigs, motor parts, writers, typewriters, etc.
- Microscopes binoculars, cameras, clocks, etc.
- valve alternator terminal Optical equipment and precision machinery related parts represented by : valve alternator terminal, alternator connector, IC regulator, potentiometer base for light ear, various valves such as exhaust gas valve, various pipes related to fuel, exhaust system, intake system, air Intake nozzle snorkel, intake manifold, fuel pump, engine coolant joint, carburetor main body, carburetor spacer, exhaust gas sensor, coolant sensor, oil temperature sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake pad wear Sensors, thermostat bases for air conditioners, hot air flow control valves, brush holders for radiator motors, water pump impellers, turbine vanes, wiper motor related parts, dust tributors, starter switches, starter relays, wire harnesses for transmissions, window washer nozzles , air conditioner panel switch board, fuel-related electromagnetic valve coil, fuse connector, horn terminal, electrical component insulation plate, step motor rotor, lamp socket, lamp reflector, lamp housing, brake piston, solenoid bobbin, engine oil filter, ignition device Examples include various applications such
- molded articles made of the resin composition of the present invention are suitable for toilet-related parts, water heater-related parts, bath-related parts, pump-related parts, water meter-related parts, and other plumbing parts.
- water faucet pieces, mixed faucets, mixed valves, pump parts, pipe joints, fittings (elbows, tee, sockets, etc.), water control valves, pressure reducing valves, relief valves, solenoid valves, three-way valves, thermostats These include valves, water temperature sensors, water level sensors, bathtub adapters, and water meter housings.
- Apparatus SSC-7110 manufactured by Senshu Science Co., Ltd.
- Eluent 1-chloronaphthalene Detector: Differential refractive index detector
- the molecular weight distribution shape of PAS is evaluated by sequentially accumulating the concentration fractions of the chromatogram obtained by the GPC measurement, plotting the molecular weight (logarithmic value) on the horizontal axis and the integrated value of the concentration fractions on the vertical axis. Create an integral molecular weight distribution curve, cut out the range of the molecular weight value of the horizontal axis of the integral molecular weight distribution curve from 100 to 10,000, and set the cumulative integral value from 100 to 10,000 to 100. A cumulative integral value up to 4,000 was calculated, and this value was used as the molecular weight distribution shape.
- melt flow rate (MFR) The melt fluidity evaluation of PAS was carried out by measuring the melt flow rate (resin discharge amount per 10 minutes: g/10 min) in accordance with ASTM-D1238-70 and comparing the values.
- Apparatus Melt indexer manufactured by Toyo Seiki Seisakusho Co., Ltd. (using an orifice with a length of 8.0 mm and a hole diameter of 2.095 mm) Load: 5,000g Sample amount: 7g Temperature: 315.5°C (melting time 5 minutes).
- Rate of change represented by MFR2/MFR1 MFR1 is the melt flow rate of PAS, and the melt flow rate after mixing PAS and an epoxysilane coupling agent at a weight ratio of 100:1 and heating at 315.5 ° C. for 5 minutes is MFR2, the rate of change represented by MFR2/MFR1 is obtained by first measuring the melt flow rate of PAS in accordance with ASTM-D1238-70 to obtain MFR1, then PAS1g and 2-(3,4-epoxy A mixture obtained by mixing 0.01 g of cyclohexyl)ethyltrimethoxysilane (KBM-303 manufactured by Shin-Etsu Chemical Co., Ltd.) using a mortar and pestle is heated at 315.5 ° C. for 5 minutes and the melt flow rate is measured to obtain MFR2. was obtained, and MFR2/MFR1 was calculated.
- a pre-weighed PTFE membrane filter with a pore size of 1 ⁇ m was set in a SUS test tube manufactured by Senshu Scientific Co., Ltd. equipped with a pneumatic cap and a collection funnel, and formed into a press film with a thickness of about 80 ⁇ m.
- 100 mg of PAS and 2 g of 1-chloronaphthalene were weighed in and sealed. This was inserted into a high-temperature filter SSC-9300 manufactured by Senshu Kagaku Co., Ltd., and heated and shaken at 250° C. for 5 minutes to dissolve PAS in 1-chloronaphthalene.
- the piston was pushed out to filter the solution through a membrane filter.
- the membrane filter was taken out, vacuum-dried at 150° C. for 1 hour, and then weighed. The difference in weight of the membrane filter before and after filtration was defined as the residue amount (% by weight).
- PAS [Reference Example 1] Preparation of PAS: A1 An autoclave equipped with a stirrer and an extraction valve at the bottom was connected to a distillation apparatus and an alkali trap, and 11.6 kg (100 mol) of a 48.3% aqueous sodium hydrosulfide solution, 48. 8.25 kg (101 mol) of a 9% sodium hydroxide aqueous solution, 16.4 kg (165 mol) of N-methyl-2-pyrrolidone, and 1.56 kg (19.0 mol) of sodium acetate were charged, and the reaction vessel was sufficiently filled with nitrogen. replaced.
- the temperature inside the reaction vessel was raised from 130°C to 275°C over about 2 hours while stirring at 250 rpm, and the reaction was allowed to proceed while maintaining the temperature at 275°C for 70 minutes.
- the pressure inside the system was 1.10 MPa.
- Step 1 After completion of the reaction, the extractor valve at the bottom of the autoclave was opened, and the reaction liquid at 1.10 MPa and 275°C was flushed into a container with a stirrer (equipped with a distillation apparatus) heated to 220°C under normal pressure over 15 minutes. After that, the container was maintained at 240° C. with stirring to distill off the N-methyl-2-pyrrolidone, then the heating was stopped and the mixture was cooled, and the solid content in the container was recovered.
- a stirrer equipped with a distillation apparatus
- Step 2 The solid matter obtained in step 1 was put into another vessel equipped with a stirrer, 108 kg of ion-exchanged water was added, and the mixture was stirred at 70°C for 30 minutes, and then filtered through a pressure filter to obtain a cake.
- the cake obtained above was placed in a pressure-resistant container equipped with a stirrer, 128 kg of ion-exchanged water was added, and after purging with nitrogen, the temperature was raised to 192°C and stirred for 30 minutes. After that, the vessel was cooled, the slurry was taken out, and filtered through a pressure filter to obtain a cake.
- the cake obtained above was put into a container with a stirrer again, and after adding 108 kg of ion-exchanged water and stirring at 70°C for 30 minutes, the process of filtering with a pressure filter to obtain a cake was repeated three times.
- the resulting wet cake was dried at 120°C for 3 hours under a nitrogen stream to obtain dry polyarylene sulfide (PAS).
- the water content of the obtained dry PAS was measured by the Karl Fischer method according to JIS K 7251 and found to be 0.1% by weight.
- Step 3 The dry PAS obtained in step 2 was charged in a vessel equipped with a stirrer, 54 kg of N-methyl-2-pyrrolidone (weight bath ratio to PAS: 5) was added, and the mixture was stirred at 30°C for 20 minutes, and filtered through a pressure filter. Filtration gave a cake.
- Step 4 The wet cake obtained in step 3 (containing 10.8 kg as PAS) is heated at 200° C. for 20 hours with nitrogen flow at a flow rate of 4 L/min (0.4 L/min per 1 kg of polyarylene sulfide). NMP was distilled off to obtain dry PAS.
- PAS The obtained PAS: A1 was analyzed and found to have a weight average molecular weight Mw of 40,000. It turned out to be 52. Also, MFR1 was 637 g/10 minutes, MFR2 was 32 g/10 minutes, and the rate of change represented by MFR2/MFR1 was 0.050. The residual amount after dissolving in the 1-chloronaphthalene solvent was 0.6% by weight.
- Step 3 After completion of the reaction in Reference Example 1, without performing Step 1, Step 3 was repeated three times, and then Step 2 of Reference Example 1 was carried out to prepare PAS. manufactured.
- the obtained PAS: A'3 was analyzed and found to have a weight average molecular weight Mw of 42,000, and a cumulative integral value of the molecular weight from 100 to 4,000 when the cumulative integral value from the molecular weight of 100 to 10,000 is taken as 100. was calculated to be 42. Also, MFR1 was 580 g/10 minutes, MFR2 was 72 g/10 minutes, and the rate of change represented by MFR2/MFR1 was 0.124. The residual amount after dissolving in the 1-chloronaphthalene solvent was 0.5% by weight.
- KBM-303 (2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane)
- D2 KBE-903 (3-aminopropyltriethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.;
- Hydraulic Fracture Strength PAS resin composition pellets are supplied to an injection molding machine (SE100DU) manufactured by Sumitomo Heavy Industries, Ltd. set at a cylinder temperature of 305 ° C. and a mold temperature of 130 ° C., and filled with a filling time of 1 s. Injection molding was performed at a holding pressure of 50% of the filling pressure to obtain a test piece of a T-shaped pipe joint having an outer diameter of 21.7 mm and a wall thickness of 2.8 mm as defined in JIS G3452. A rubber pipe connected to a pump (T-300N) manufactured by Kyowa Co., Ltd. was connected to one end of this test piece, another end was closed, and another end was connected to a ball valve.
- SE100DU injection molding machine
- burr length ( ⁇ m). The gate position was set at the central portion of the disk (shorter burr length means better burr reduction property).
- the PAS resin composition of the present invention has excellent low gas properties and excellent mechanical strength, especially hydraulic breaking strength, so that piping where hot water flows and is subjected to water pressure as high as the direct pressure of tap water or high water pressure due to water hammer. It can be preferably applied to parts.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
Description
(1)(A)ポリアリーレンスルフィド100重量部に対し、(B)ガラス繊維を10~100重量部、および(C)オレフィン系エラストマーを1~20重量部配合してなるポリアリーレンスルフィド樹脂組成物であって、前記(A)ポリアリーレンスルフィドが、分子量分布曲線における分子量100から10,000までの累積積分値を100とした時に、分子量4,000における累積積分値が48以上53以下であり、前記(A)ポリアリーレンスルフィドのメルトフローレートをMFR1とし、前記(A)ポリアリーレンスルフィドとエポキシシランカップリング剤とを重量比100:1で混合して315.5℃で5分間加熱後のメルトフローレートをMFR2とした場合に、MFR2/MFR1で表す変化率が0.085以下であるポリアリーレンスルフィド樹脂組成物。
(2)前記ポリアリーレンスルフィド樹脂組成物が、(A)ポリアリーレンスルフィド100重量部に対し、さらに(D)エポキシ基、アミノ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する有機シランカップリング剤を0.1~10重量部配合してなる(1)に記載のポリアリーレンスルフィド樹脂組成物。
(3)前記(D)有機シランカップリング剤の有する官能基が、アミノ基である(2)に記載のポリアリーレンスルフィド樹脂組成物。
(4)前記(A)ポリアリーレンスルフィドが、架橋構造を有する(1)~(3)のいずれかに記載のポリアリーレンスルフィド樹脂組成物。
(5)架橋構造を有する前記(A)ポリアリーレンスルフィドを、250℃で20倍重量の1-クロロナフタレンに5分間かけて溶解し、ポアサイズ1μmのPTFEメンブランフィルターで熱時加圧濾過した際の残渣量が4.0重量%以下である(4)に記載のポリアリーレンスルフィド樹脂組成物。
(6)(1)~(5)のいずれかに記載のポリアリーレンスルフィド樹脂組成物からなる成形品。
(7)前記成形品が、水を主成分とする流体が流れる流体配管部品である(6)に記載の成形品。
(8)前記成形品が、トイレ関連部品、給湯器関連部品、風呂関連部品、ポンプ関連部品、床下暖房関連部品、および水道メーター関連部品から選ばれるいずれかの水廻り用配管部品である(7)に記載の成形品。
(1)化学構造と分子量
本発明におけるポリアリーレンスルフィドとは、式-(Ar-S)-の繰り返し単位を主要構成単位とするホモポリマーまたはコポリマーである。Arとしては下記式(A)から式(L)などで表される単位などがあるが、式(A)が特に好ましい。
本発明で用いられるスルフィド化剤とは、ジハロゲン化芳香族化合物にスルフィド結合を導入できるものであればよく、例えばアルカリ金属硫化物、アルカリ金属水硫化物が挙げられる。アルカリ金属硫化物の具体例としては、例えば硫化ナトリウム、硫化カリウム、硫化リチウム、硫化ルビジウム、硫化セシウムなどが挙げられ、中でも硫化ナトリウムが好ましく用いられる。これらのアルカリ金属硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。
本発明で用いられるジハロゲン化芳香族化合物とは、芳香環を有し、かつ、1分子中にハロゲン原子を2個有し、かつ分子量が1,000以下の化合物のことである。具体例としては、p-ジクロロベンゼン、m-ジクロロベンゼン、o-ジクロロベンゼン、p-ジブロモベンゼン、m-ジブロモベンゼン、o-ジブロモベンゼン、1-ブロモ-4-クロロベンゼン、1-ブロモ-3-クロロベンゼンなどのジハロゲン化ベンゼン、および1-メトキシ-2,5-ジクロロベンゼン、1-メチル-2,5-ジクロロベンゼン、1,4-ジメチル-2,5-ジクロロベンゼン、1,3-ジメチル-2,5-ジクロロベンゼン、3,5-ジクロロ安息香酸などのハロゲン以外の置換基をも含むジハロゲン化ベンゼン、および1,4-ジクロロナフタレン、1,5-ジクロロナフタレン、4,4’-ジクロロビフェニル、4,4’-ジクロロジフェニルエーテル、4,4’-ジクロロジフェニルスルホン、4,4’-ジクロロジフェニルケトンなどのジハロゲン化芳香族化合物などが挙げられ、中でも、p-ジクロロベンゼンに代表されるp-ジハロゲン化ベンゼンを主成分にするジハロゲン化芳香族化合物が好ましい。特に好ましくは、p-ジクロロベンゼンを80~100モル%含むものであり、さらに好ましくは90~100モル%含むものである。また、PAS共重合体を製造するために異なる2種以上のジハロゲン化芳香族化合物を組み合わせて用いることも可能である。
本発明では反応溶媒として有機極性溶媒を用いるが、中でも反応の安定性が高い有機アミド溶媒を用いるのが好ましい。具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドンなどのN-アルキルピロリドン類、N-メチル-ε-カプロラクタムなどのカプロラクタム類、1,3-ジメチル-2-イミダゾリジノン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルリン酸トリアミド、ジメチルスルホン、テトラメチレンスルホキシドなどに代表されるアプロチック有機溶媒などが挙げられ、さらには、これらの混合物なども使用することができるが、中でもN-メチル-2-ピロリドンが好ましく用いられる。
本発明における水は、原料仕込み時に直接添加した水、仕込んだスルフィド化剤、ジハロゲン化芳香族化合物、有機極性溶媒に付随して導入された水、反応の過程で生成した水などを指し、反応開始時に系内に存在する水分量は、上記の合計から、脱水操作で系外に留去した水を差し引いたものとして定義する。本発明における水の存在は、スルフィド化剤の有機極性溶媒に対する溶解性を高めて反応促進に寄与する効果がある一方で、過剰な水分についてはスルフィド化剤の求核性を低下させて反応遅延させたり、系内圧力を上昇させたりする影響があるため、系内に存在する水分量は、好ましい範囲に制御することが重要である。
本発明では、少なくともスルフィド化剤、ジハロゲン化芳香族化合物、および有機極性溶媒を含む混合物を加熱し反応させてPASを生成し、このPASを生成する反応の終了後に以下の工程1、2、3および4を行ってPASを得ることが好ましい。
工程1:反応の終了時に得られた反応混合物から有機極性溶媒を留去させてPASを含む固形分を得る工程。
工程2:工程1に次いで、PASを含む固形分を水で洗浄する工程。
工程3:工程2に次いで、PASを有機溶媒で洗浄し、PAS中のクロロホルム抽出成分量を1.7重量%以下とする工程。
工程4:工程3に次いで、PAS1kg当たり0.2L/分以上の流量で不活性ガスをフローしながら加熱して工程3で使用した有機溶媒を留去する工程。
本発明におけるクロロホルム抽出成分とは、主にPASに含まれるオリゴマー成分のことであり、環式PASと線状PASオリゴマーからなる成分である。なお、これら成分の比率には特に制限はない。
本発明では、少なくともスルフィド化剤、ジハロゲン化芳香族化合物、および有機極性溶媒を含む混合物を加熱し反応させてPASを生成する。
(a)ジハロゲン化芳香族化合物をスルフィド化剤に対しモル比で過剰に使用した場合
ジハロゲン化芳香族化合物の転化率(%)=[仕込んだジハロゲン化芳香族化合物の量(モル)-ジハロゲン化芳香族化合物の残存量(モル)]/仕込んだスルフィド化剤の量(モル)×100
(b)上記(a)以外の場合
ジハロゲン化芳香族化合物の転化率(%)=[仕込んだジハロゲン化芳香族化合物の量(モル)-ジハロゲン化芳香族化合物の残存量(モル)]/仕込んだジハロゲン化芳香族化合物の量(モル)×100
ここで、仕込んだスルフィド化剤の量とは、反応の開始時点で系内に存在したスルフィド化剤の量を指し、反応の開始前に脱水操作によって一部のスルフィド化剤が硫化水素として系外に除去された場合は、飛散した硫化水素のモル数を考慮した上で、反応の開始時点で系内に存在したスルフィド化剤の量を見積もる。
本発明における工程1は、PASを生成する反応で得られた反応混合物から有機極性溶媒を留去させてPASを含む固形分を得る工程である。この操作で得られる固形物には、PASだけでなく副生塩や未反応のスルフィド化剤などの水溶性物質も含まれる。この操作によって、有機極性溶媒を簡便に回収することができ、PAS製造にかかるコストを抑制できる傾向がある。
本発明における工程2は、工程1に次いで、PASを含む固形分を水で洗浄し、水溶性物質を除去する工程である。工程1において有機極性溶媒を留去した後に得られた固形分には、PASだけでなく副生塩や未反応のスルフィド化剤などの水溶性物質が含まれるため、続く工程2において水洗浄することで、それらの水溶性物質を除去する。
本発明における工程3は、工程2に次いで、PASを有機溶媒で洗浄し、PAS中のクロロホルム抽出成分量を1.7重量%以下とする工程である。好ましい方法でPAS製造を行った場合、(特に、反応時に使用した有機極性溶媒量に影響を受ける傾向があるが、)工程2を終了した時点で、PAS中のクロロホルム抽出成分量は2.0重量%以上5.0重量%以下となる場合が多い。上述の通り、このPAS中のクロロホルム抽出成分はPASを成形加工する際の金型汚れの主な原因物質であることが確認されているため、工程3を実施してPAS中のクロロホルム抽出成分の含有率を低減することで、成形加工時の金型汚れを低減することが可能となる。
本発明における工程4は、工程3に次いで、PAS1kg当たり0.2L/分以上の流量で不活性ガスをフローしながら加熱して工程3で使用した有機溶媒を留去する工程である。この工程4を行うことにより、成形加工時の金型汚れが少なく、溶融流動性に優れ、かつカップリング剤との反応性が高いPASを得ることができる。
かくして得られたPASは成形加工時の金型汚れが十分に少ないPASとなっているが、金型汚れをより一層低減させるために、工程4の実施後に得られたPASに対し、付加的に熱処理(キュアリング)を行い、架橋構造を有する(A)ポリアリーレンスルフィドとすることも好ましく例示できる。
本発明で使用するPASは、サイズ排除クロマトグラフィー(SEC)の一種であるゲルパーミエーションクロマトグラフィー(GPC)により分子量を測定すると、分子量分布が従来のPASには見られない特徴的な形状を示すことがわかっている。具体的には、分子量分布曲線における分子量100から10,000までの累積積分値を100とした時の分子量4,000における累積積分値が48以上53以下となるような分子量分布の形状を示す。例えば、いわゆるクエンチ法によるPASの製造方法では、PASを重合後にPAS粒子析出前に系内に注水してから徐冷することでPAS粒子径を大きく成長させる操作を行うが、このような処理を行うとPAS粒子が多孔質化しやすく、有機溶媒で洗浄することで金型汚れの原因物質には該当しないオリゴマー成分まで必要以上に洗浄除去される傾向がある。このクエンチ法によって得られたPASは、分子量分布曲線における分子量100から10,000までの累積積分値を100とした時の分子量4,000における累積積分値が48未満となるような分子量分布の形状を示し、成形加工時の金型汚れは少ないが溶融流動性が低く、成形加工性が低い材料となる傾向がある。一方で、いわゆるフラッシュ法によるPASの製造方法では、PASを重合後に高温状態の反応系を常圧あるいは減圧下の容器にフラッシュして重合溶媒を留去するが、この方法の最大の利点は安価にPASを製造できる点にあると広く認識されており、付加的なコストをかけて有機溶媒による洗浄操作を行う着想はない。このフラッシュ法によって得られたPASは、分子量分布曲線における分子量100から10,000までの累積積分値を100とした時の分子量4,000における累積積分値が53より大きくなるような分子量分布の形状を示し、溶融流動性は高いが、成形加工時の金型汚れが多い材料となる傾向がある。上記した従来のPASに対し、本発明で使用するPASは成形加工時の金型汚れが少ない点と、溶融流動性が高い点を両立する材料となっており、より成形加工性に優れた材料であると言える。ここで、本発明におけるPASの溶融流動性評価は、ASTM-D1238-70に準拠してメルトフローレート(10分当たりの樹脂吐出量)を測定し、その値を比較することで行う。
本発明のポリアリーレンスルフィド樹脂組成物は、前記(A)ポリアリーレンスルフィド100重量部に対し、(B)ガラス繊維を10~100重量部配合してなる。(B)ガラス繊維の配合割合が10重量部以上となることで、十分な機械強度が発現する。(B)ガラス繊維の好ましい配合割合の下限は20重量部以上であり、40重量部以上がより好ましく、50重量部以上が優れた水圧破壊強度を得る観点から更に好ましい範囲として例示できる。(B)ガラス繊維の好ましい配合割合の上限は、90重量部以下が好ましく、80重量部以下がより好ましい。(B)ガラス繊維の配合量が100重量部を超えると、材料の靱性が損なわれ、溶融流動性も低下するため好ましくない。
本発明のポリアリーレンスルフィド樹脂組成物は、前記(A)ポリアリーレンスルフィド100重量部に対し、(C)オレフィン系エラストマーを1~20重量部配合してなる。
本発明のポリアリーレンスルフィド樹脂組成物は、(A)ポリアリーレンスルフィド100重量部に対して、機械的強度、靱性などの向上を目的に、(D)エポキシ基、アミノ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する有機シランカップリング剤(以下、(D)官能基を有する有機シランカップリング剤と略す場合がある。)を0.1~10重量部配合することも好ましい態様として挙げられる。(D)官能基を有する有機シランカップリング剤を添加することで、機械的強度、靱性などの向上が可能になる。より好ましい(D)官能基を有する有機シランカップリング剤の配合量の下限としては、0.2重量部以上が例示でき、十分な機械強度向上効果を得る観点からは0.3重量部以上がさらに好ましく例示できる。(D)官能基を有する有機シランカップリング剤の配合量の上限としては、5重量部以下がより好ましく、過度な増粘を抑制する観点からは2重量部以下がさらに好ましく例示できる。
(1)分子量測定および分子量分布形状の評価方法
PASの分子量測定は、サイズ排除クロマトグラフィー(SEC)の一種であるゲルパーミエーションクロマトグラフィー(GPC)により実施した。測定試料は、PAS5mgに1-クロロナフタレン5gを加えて250℃に加熱して溶解させ、この溶液を室温まで冷却してスラリー状とし、メンブレンフィルター(孔径0.1μm)でろ過することで調製した。調製した試料を下記条件でGPC測定し、ポリスチレン換算で数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
装置:(株)センシュー科学製 SSC-7110
カラム名:Shodex UT806M×2
溶離液:1-クロロナフタレン
検出器:示差屈折率検出器
カラム温度:210℃
プレ恒温槽温度:250℃
ポンプ恒温槽温度:50℃
検出器温度:210℃
流量:1.0mL/分
試料注入量:300μL。
PASの溶融流動性評価は、ASTM-D1238-70に準拠してメルトフローレート(10分当たりの樹脂吐出量:g/10min)を測定し、その値を比較することで行った。
装置:(株)東洋精機製作所製メルトインデクサー(長さ8.0mm、穴直径2.095mmのオリフィス使用)
荷重:5,000g
サンプル量:7g
温度:315.5℃(溶融時間5分間)。
PASのメルトフローレートをMFR1とし、PASとエポキシシランカップリング剤とを重量比100:1で混合して315.5℃で5分間加熱後のメルトフローレートをMFR2とした場合に、MFR2/MFR1で表す変化率は、まずASTM-D1238-70に準拠してPASのメルトフローレートを測定してMFR1を求め、次いでPAS1gと2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(信越化学工業(株)製KBM-303)0.01gを乳鉢と乳棒を用いて混合した混合物について315.5℃で5分間加熱してメルトフローレートを測定してMFR2を求め、MFR2/MFR1を算出した。
空圧キャップと採集ロートを具備した(株)センシュー科学製のSUS試験管に、予め秤量しておいたポアサイズ1μmのPTFEメンブランフィルターをセットし、約80μm厚にプレスフィルム化したPAS100mgおよび1-クロロナフタレン2gを計り入れてから密閉した。これを(株)センシュー科学製の高温濾過装置SSC-9300に挿入し、250℃で5分間加熱振とうしてPASを1-クロロナフタレンに溶解した。空気を含んだ20mLの注射器を空圧キャップに接続した後、ピストンを押出して溶液をメンブランフィルターで濾過した。メンブランフィルターを取り出し、150℃で1時間真空乾燥してから秤量した。濾過前後のメンブランフィルター重量の差を残渣量(重量%)とした。
[参考例1]PAS:A1の調製
撹拌機と底部に抜き出しバルブを備えたオートクレーブに蒸留用装置とアルカリトラップを接続し、48.3%水硫化ナトリウム水溶液11.6kg(100モル)、48.9%水酸化ナトリウム水溶液8.25kg(101モル)、N-メチル-2-ピロリドン16.4kg(165モル)、酢酸ナトリウム1.56kg(19.0モル)を仕込み、反応容器内を十分に窒素置換した。
反応終了後、オートクレーブ底部の抜き出しバルブを開放し、1.10MPa、275℃の反応液を、220℃に加熱した常圧の攪拌機付き容器(蒸留用装置付き)に15分かけてフラッシュした。その後、撹拌しながら容器を240℃に維持してN-メチル-2-ピロリドンを留去した後、加熱を停止して冷却し、容器内の固形分を回収した。
工程1で得られた固形物を別の撹拌機付き容器に仕込み、イオン交換水108kgを加えて70℃で30分撹拌した後、加圧濾過器で濾過してケークを得た。
工程2で得られた乾燥PASを撹拌機付き容器に仕込み、N-メチル-2-ピロリドン54kg(PASに対する重量浴比は5)を加えて30℃で20分撹拌した後、加圧濾過器で濾過してケークを得た。
工程3で得られた湿潤状態のケーク(PASとして10.8kgを含む)を4L/分(ポリアリーレンスルフィド1kg当たり0.4L/分)の流量で窒素フローを行いながら、200℃で20時間加熱することによりNMPを留去し、乾燥PASを得た。
参考例1で得られたPAS:A1について、酸素濃度2%、220℃、12時間の条件で熱酸化処理を行った。得られたPAS:A2を分析したところ、重量平均分子量Mwは45,000、分子量100から10,000までの累積積分値を100とした時の分子量100から4,000までの累積積分値を算出したところ51であった。また、MFR1は450g/10分、MFR2は25g/10分で、MFR2/MFR1で表す変化率は0.055であった。1-クロロナフタレン溶媒に溶解した後の残渣量は、1.8重量%であった。
参考例1で得られたPAS:A1について、酸素濃度11%、220℃、12時間で熱酸化処理を行った。得られたPAS:A3を分析したところ、重量平均分子量Mwは49,000、分子量100から10,000までの累積積分値を100とした時の分子量100から4,000までの累積積分値を算出したところ49であった。また、MFR1は100g/10分、MFR2は7.5g/10分で、MFR2/MFR1で表す変化率は0.071であった。1-クロロナフタレン溶媒に溶解した後の残渣量は、13重量%であった。
参考例1の工程3を実施しなかった以外は、参考例1と同様にしてPASを製造した。得られたPAS:A’1を分析したところ、重量平均分子量Mwは39,000、分子量100から10,000までの累積積分値を100とした時の分子量100から4,000までの累積積分値を算出したところ54であった。MFR1は657g/10分、MFR2は41g/10分であり、MFR2/MFR1で表す変化率は0.062であった。1-クロロナフタレン溶媒に溶解した後の残渣量は、0.6重量%であった。
参考例1の工程3を実施しなかった以外は、参考例1と同様にしてPASを得た後、酸素濃度2%、220℃、12時間の条件で熱酸化処理を行った。得られたPAS:A’2を分析したところ、重量平均分子量Mwは44,000、分子量100から10,000までの累積積分値を100とした時の分子量100から4,000までの累積積分値を算出したところ54であった。また、MFR1は440g/10分、MFR2は30g/10分で、MFR2/MFR1で表す変化率は0.068であった。1-クロロナフタレン溶媒に溶解した後の残渣量は、1.9重量%であった。
参考例1の反応終了後に工程1を実施せずに、工程3を3回繰り返して実施し、次いで参考例1の工程2を実施してPASを製造した。得られたPAS:A’3を分析したところ、重量平均分子量Mwは42,000、分子量100から10,000までの累積積分値を100とした時の分子量100から4,000までの累積積分値を算出したところ42であった。また、MFR1は580g/10分、MFR2は72g/10分で、MFR2/MFR1で表す変化率は0.124であった。1-クロロナフタレン溶媒に溶解した後の残渣量は、0.5重量%であった。
B1:日本電気硝子(株)製T-760H(チョップドストランドガラス繊維)
(C)オレフィン系エラストマー
C1:住友化学(株)製 ボンドファーストE(エチレン・グリシジルメタクリレート・アクリル酸メチル共重合体)
C2:ダウケミカル社製 エンゲージ8842(エチレン・1-オクテン共重合体)
(D)官能基を有する有機シランカップリング剤
D1:信越化学工業(株)製KBM-303(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン)
D2:信越化学工業(株)製KBE-903(3-アミノプロピルトリエトキシシラン)。
(1)加熱減量
予め330℃で3時間加熱したアルミカップに本発明のPAS樹脂組成物ペレット10gを秤量し、320℃の熱風乾燥機で2時間加熱した。その後乾燥剤入りのデシケーター内に取り出し冷却してから重量を秤量し、加熱前の重量に対する、加熱前後における重量減少値の重量百分率として加熱減量(%)を計算した。
本発明のPAS樹脂組成物のペレット約10mgを秤量し、パーキンエルマー社製示差走査熱量計DSC-7を用い、昇温速度20℃/分で昇温し、340℃で5分間保持後、20℃/分の速度で降温させた時の結晶化ピーク(発熱ピーク)温度(℃)を測定した。
1mm厚み(1mmt)のスパイラルフロー金型を用いて、シリンダー温度320℃、金型温度140℃、射出速度230mm/sec、射出圧力98MPa、射出時間5sec、冷却時間15secの条件で成形し、流動長測定(単位:mm)を行った(使用射出成形機:住友重機械工業(株)製SE-30D)。この値が大きいほど流動性に優れる。
シリンダー温度320℃、金型温度140℃にて、ISO3167に準じた1A型ダンベル片(4.0mm厚み)を射出成形し、中央部を80mmに切り出しVノッチを加工した試験片(4.0mm幅、ノッチあり)を作成し、23℃の温度条件下でISO179に準じてノッチ付きシャルピー衝撃強度(KJ/m2)を測定した。
PAS樹脂組成物ペレットを、シリンダー温度305℃、金型温度130℃に設定した住友重機械工業(株)製射出成形機(SE100DU)に供給し、充填時間1sで充填、充填圧力の50%の保圧にて射出成形を行い、JIS G3452で規定される外径21.7mm、肉厚2.8mmのT字配管型継手の試験片を得た。この試験片の一方に(株)キヨーワ製のポンプ(T-300N)に接続したゴム配管を接続させ、別の一方を閉止し、更に別の一方にボールバルブを接続した。ボールバルブを開けた状態で試験片に通水させ、試験片内部のエアを抜いた後にボールバルブを閉じた。ポンプを使って水圧をかけ、試験片破壊時に圧力計が示した圧力を水圧破壊強度(単位:MPa)として測定した。
住友重機械工業(株)製射出成形機(SE30D)を用い、円周上に(a)幅5mm×長さ20mm×厚み1,000μm、(b)幅5mm×長さ20mm×厚み700μm、(c)幅5mm×長さ20mm×厚み500μm、(d)幅5mm×長さ20mm×厚み300μm、(e)幅5mm×長さ20mm×厚み100μm、(f)幅5mm×長さ20mm×厚み50μm、(g)幅5mm×長さ20mm×厚み20μm、(h)幅5mm×長さ20mm×厚み10μm、の8つの突起部を有する40mm直径×3mm厚の円盤形状金型を用い、成形温度320℃、金型温度130℃の温度条件で射出成形し、(b)の突起部が先端まで充填される時の(h)の突起部の充填長さを測定しバリ長さ(μm)とした。なお、ゲート位置は円板中心部分とした(バリ長さが短いと、低バリ性が良好である)。
シリンダー温度を310℃に設定した、26mm直径の中間添加口を有する2軸押出機(東芝機械(株)製TEM-26SS L/D=64.6)を用い、(A)PAS、(C)オレフィン系エラストマー、必要に応じ(D)官能基を有する有機シランカップリング剤を表1および表2に示す重量比でドライブレンドし、最も上流の押出機原料供給口から添加して溶融状態とし、(B)ガラス繊維を表1および表2に示す重量比で中間添加口から供給し、s/r回転数300rpm、全吐出量40kg/時間の条件で溶融混練して樹脂組成物ペレットを得た。得られた樹脂組成物ペレットを前記した射出成形に供して各種成形品を得た後、ノッチ付きシャルピー衝撃強度、水圧破壊強度を評価した。また、前記した方法で加熱減量、降温結晶化温度、スパイラル流動長、バリ長さを評価した。結果は表1および表2に示すとおりであった。
Claims (8)
- (A)ポリアリーレンスルフィド100重量部に対し、(B)ガラス繊維を10~100重量部、および(C)オレフィン系エラストマーを1~20重量部配合してなるポリアリーレンスルフィド樹脂組成物であって、前記(A)ポリアリーレンスルフィドが、分子量分布曲線における分子量100から10,000までの累積積分値を100とした時に、分子量4,000における累積積分値が48以上53以下であり、前記(A)ポリアリーレンスルフィドのメルトフローレートをMFR1とし、前記(A)ポリアリーレンスルフィドとエポキシシランカップリング剤とを重量比100:1で混合して315.5℃で5分間加熱後のメルトフローレートをMFR2とした場合に、MFR2/MFR1で表す変化率が0.085以下であるポリアリーレンスルフィド樹脂組成物。
- 前記ポリアリーレンスルフィド樹脂組成物が、前記(A)ポリアリーレンスルフィド100重量部に対し、さらに(D)エポキシ基、アミノ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する有機シランカップリング剤を0.1~10重量部配合してなる請求項1に記載のポリアリーレンスルフィド樹脂組成物。
- 前記(D)有機シランカップリング剤の有する官能基が、アミノ基である請求項2に記載のポリアリーレンスルフィド樹脂組成物。
- 前記(A)ポリアリーレンスルフィドが、架橋構造を有する請求項1~3のいずれかに記載のポリアリーレンスルフィド樹脂組成物。
- 架橋構造を有する前記(A)ポリアリーレンスルフィドを、250℃で20倍重量の1-クロロナフタレンに5分間かけて溶解し、ポアサイズ1μmのPTFEメンブランフィルターで熱時加圧濾過した際の残渣量が4.0重量%以下である請求項4に記載のポリアリーレンスルフィド樹脂組成物。
- 請求項1~5のいずれかに記載のポリアリーレンスルフィド樹脂組成物からなる成形品。
- 前記成形品が、水を主成分とする流体が流れる流体配管部品である請求項6に記載の成形品。
- 前記成形品が、トイレ関連部品、給湯器関連部品、風呂関連部品、ポンプ関連部品、床下暖房関連部品、および水道メーター関連部品から選ばれるいずれかの水廻り用配管部品である請求項7に記載の成形品。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022558072A JPWO2023053916A1 (ja) | 2021-09-28 | 2022-09-12 | |
CN202280063951.6A CN117980411A (zh) | 2021-09-28 | 2022-09-12 | 聚芳撑硫醚树脂组合物及成型品 |
KR1020247009150A KR20240065088A (ko) | 2021-09-28 | 2022-09-12 | 폴리아릴렌설파이드 수지 조성물 및 성형품 |
US18/693,743 US20240384099A1 (en) | 2021-09-28 | 2022-09-12 | Polyarylene sulfide resin composition and molded article |
EP22875788.6A EP4410897A1 (en) | 2021-09-28 | 2022-09-12 | Polyarylene sulfide resin composition and molded product |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021157378 | 2021-09-28 | ||
JP2021-157378 | 2021-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023053916A1 true WO2023053916A1 (ja) | 2023-04-06 |
Family
ID=85782403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/034016 WO2023053916A1 (ja) | 2021-09-28 | 2022-09-12 | ポリアリーレンスルフィド樹脂組成物および成形品 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240384099A1 (ja) |
EP (1) | EP4410897A1 (ja) |
JP (1) | JPWO2023053916A1 (ja) |
KR (1) | KR20240065088A (ja) |
CN (1) | CN117980411A (ja) |
WO (1) | WO2023053916A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004099684A (ja) * | 2002-09-06 | 2004-04-02 | Toray Ind Inc | ポリアリーレンスルフィド樹脂及びその製造方法 |
JP2006063255A (ja) | 2004-08-30 | 2006-03-09 | Dainippon Ink & Chem Inc | ポリアリーレンスルフィド樹脂組成物より成る流体配管部材 |
JP2009280794A (ja) * | 2008-04-22 | 2009-12-03 | Toray Ind Inc | ポリフェニレンスルフィド樹脂の処理方法 |
JP2017155065A (ja) * | 2016-02-29 | 2017-09-07 | 東レ株式会社 | ポリフェニレンスルフィド樹脂組成物からなる配管部品 |
JP2018141074A (ja) | 2017-02-28 | 2018-09-13 | 東レ株式会社 | ポリフェニレンサルファイド樹脂組成物および成形品 |
WO2021200332A1 (ja) * | 2020-03-31 | 2021-10-07 | 東レ株式会社 | ポリアリーレンスルフィドおよびその製造方法 |
-
2022
- 2022-09-12 KR KR1020247009150A patent/KR20240065088A/ko active Pending
- 2022-09-12 EP EP22875788.6A patent/EP4410897A1/en active Pending
- 2022-09-12 JP JP2022558072A patent/JPWO2023053916A1/ja active Pending
- 2022-09-12 CN CN202280063951.6A patent/CN117980411A/zh active Pending
- 2022-09-12 WO PCT/JP2022/034016 patent/WO2023053916A1/ja active Application Filing
- 2022-09-12 US US18/693,743 patent/US20240384099A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004099684A (ja) * | 2002-09-06 | 2004-04-02 | Toray Ind Inc | ポリアリーレンスルフィド樹脂及びその製造方法 |
JP2006063255A (ja) | 2004-08-30 | 2006-03-09 | Dainippon Ink & Chem Inc | ポリアリーレンスルフィド樹脂組成物より成る流体配管部材 |
JP2009280794A (ja) * | 2008-04-22 | 2009-12-03 | Toray Ind Inc | ポリフェニレンスルフィド樹脂の処理方法 |
JP2017155065A (ja) * | 2016-02-29 | 2017-09-07 | 東レ株式会社 | ポリフェニレンスルフィド樹脂組成物からなる配管部品 |
JP2018141074A (ja) | 2017-02-28 | 2018-09-13 | 東レ株式会社 | ポリフェニレンサルファイド樹脂組成物および成形品 |
WO2021200332A1 (ja) * | 2020-03-31 | 2021-10-07 | 東レ株式会社 | ポリアリーレンスルフィドおよびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117980411A (zh) | 2024-05-03 |
JPWO2023053916A1 (ja) | 2023-04-06 |
KR20240065088A (ko) | 2024-05-14 |
US20240384099A1 (en) | 2024-11-21 |
EP4410897A1 (en) | 2024-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5582244B2 (ja) | ポリフェニレンスルフィド樹脂組成物、該樹脂組成物の成形品、および該樹脂組成物の製造方法 | |
US20100249342A1 (en) | Process for production of polyphenylene sulfide resin | |
KR20160065815A (ko) | 폴리아릴렌 설파이드 수지 조성물 | |
JP2018009148A (ja) | ポリアリーレンスルフィド樹脂組成物の製造方法 | |
JP6705209B2 (ja) | ポリフェニレンスルフィド樹脂組成物からなる配管部品 | |
JP7067052B2 (ja) | ポリフェニレンスルフィド樹脂組成物および成形品 | |
KR20230028762A (ko) | 폴리아릴렌 설파이드 수지 조성물, 성형품 및 그들의 제조 방법 | |
JP5516241B2 (ja) | 環式ポリアリーレンスルフィドの製造方法 | |
JP2008222889A (ja) | ポリアリーレンスルフィド樹脂組成物 | |
JP2018154731A (ja) | ポリアリーレンスルフィド樹脂の製造方法 | |
JP4998231B2 (ja) | ポリフェニレンスルフィド樹脂組成物 | |
WO2023053916A1 (ja) | ポリアリーレンスルフィド樹脂組成物および成形品 | |
JP7635552B2 (ja) | 自動車冷却部品用ポリフェニレンスルフィド樹脂組成物および自動車冷却部品 | |
JP7452192B2 (ja) | ポリフェニレンスルフィド樹脂組成物、製造方法および成形品 | |
JP2006219665A (ja) | ポリアリーレンスルフィド樹脂組成物 | |
WO2023053917A1 (ja) | ポリアリーレンスルフィド樹脂組成物および成形品 | |
WO2023053915A1 (ja) | ポリアリーレンスルフィド樹脂組成物および成形品 | |
WO2023053914A1 (ja) | ポリアリーレンスルフィド樹脂組成物および成形品 | |
JP5098386B2 (ja) | ポリアリーレンスルフィド樹脂組成物 | |
JP2020105515A (ja) | ポリフェニレンスルフィド樹脂組成物および成形体 | |
JP7197066B1 (ja) | ポリアリーレンスルフィド樹脂組成物、成形品及びそれらの製造方法 | |
JP7070811B1 (ja) | ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法 | |
JP2024126013A (ja) | ポリアリーレンスルフィド樹脂組成物および成形品 | |
WO2023074035A1 (ja) | ポリアリーレンスルフィド樹脂組成物、成形品及びそれらの製造方法 | |
JP2023068631A (ja) | ポリフェニレンサルファイド樹脂組成物および成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2022558072 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22875788 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20247009150 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18693743 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280063951.6 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022875788 Country of ref document: EP Effective date: 20240429 |