[go: up one dir, main page]

WO2023048083A1 - Embolus-loaded catheter and medical device set - Google Patents

Embolus-loaded catheter and medical device set Download PDF

Info

Publication number
WO2023048083A1
WO2023048083A1 PCT/JP2022/034751 JP2022034751W WO2023048083A1 WO 2023048083 A1 WO2023048083 A1 WO 2023048083A1 JP 2022034751 W JP2022034751 W JP 2022034751W WO 2023048083 A1 WO2023048083 A1 WO 2023048083A1
Authority
WO
WIPO (PCT)
Prior art keywords
embolus
catheter
loaded
lumen
peripheral surface
Prior art date
Application number
PCT/JP2022/034751
Other languages
French (fr)
Japanese (ja)
Inventor
亮 水田
秀彬 柴田
恵理 生野
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2023048083A1 publication Critical patent/WO2023048083A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/12Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes

Definitions

  • the present invention relates to embolus-loaded catheters and medical device sets.
  • aneurysms aortic aneurysms
  • surgery for aortic aneurysms was mainly performed by artificial blood vessel replacement surgery in which an artificial blood vessel was transplanted through laparotomy or thoracotomy. application is expanding rapidly.
  • stent graft insertion for abdominal aortic aneurysm AAA
  • a catheter containing a stent graft at its tip is inserted from the patient's peripheral blood vessel, and the stent graft is deployed and indwelled in the affected area of the aneurysm, Blood flow to the aneurysm may be blocked to prevent rupture of the aneurysm.
  • a stent graft used in stent graft insertion includes a "main body” having a substantially Y-shaped bifurcation, and a “main body” attached to the bifurcation and extending to the right iliac artery and the left iliac artery. It has a structure that can assemble two types of members that are attached to each leg.
  • Patent Document 1 discloses a catheter capable of holding a relatively elongated compressed sponge (embolus) in its lumen in order to block residual blood flow in an aortic aneurysm caused by an endoleak, and a catheter and a plunger that pushes the embolus held therein into the blood-filled aneurysm. Since the sponge used in this device expands immediately when exposed to blood, it expands when it is pushed out into the aneurysm and absorbs the blood inside the aneurysm, and remains in that state in the aneurysm to increase blood flow. It cuts off and prevents rupture.
  • embolus relatively elongated compressed sponge
  • air may exist in the lumen, and when the embolus is ejected into the aneurysm, the air is also included. May be discharged. Air expelled into the aneurysm can flow into the collateral vessels of the aneurysm, causing air embolism. Therefore, the operator performs a priming operation of injecting a priming solution such as physiological saline into the catheter loaded with the embolus to expel the air in the lumen.
  • a priming solution such as physiological saline
  • At least one embodiment of the present invention has been made in view of the circumstances described above.
  • the purpose is to provide an instrument set.
  • a catheter with an embolus loaded therein communicates with an elongated catheter body and an embolus that swells upon contact with a liquid from the distal end to the proximal end of the catheter body.
  • a loading lumen provided and loaded with the embolic material
  • an injection hub having an insertion passage that communicates with the loading lumen and capable of injecting a fluid into the loading lumen; It has a plurality of contact portions that are in contact with the defining inner peripheral surface of the catheter body and receive a movement suppressing force that suppresses movement of the embolus in the axial direction of the catheter body, the catheter body comprising: an inlet for injecting the fluid into the loading lumen through the inlet hub and an outlet for discharging the fluid from the loading lumen; A fluid flow path extending from a distal end to a proximal end of the loading lumen and communicating with the inlet and the outlet is formed in the loading lumen in a state where the portion is subjected to the movement suppressing force.
  • the medical instrument set according to the present embodiment includes the above-described embolus-loaded catheter and an elongated pusher that can be inserted into the loading lumen through the insertion passage of the proximal hub of the embolus-loaded catheter.
  • a delivery pusher comprising a body.
  • FIG. 1 is a diagram showing the configuration of an embolus delivery medical system according to this embodiment
  • FIG. 1 is a schematic partial cross-sectional view taken along an axial direction of an embolus-loaded catheter that constitutes a medical instrument set
  • FIG. 10 is a schematic cross-sectional view showing an example of the form of an embolus loaded in an embolus-loaded catheter.
  • FIG. 10 is a schematic cross-sectional view showing an example of the form of an embolus loaded in an embolus-loaded catheter.
  • FIG. 10 is a schematic cross-sectional view showing an example of the form of an embolus loaded in an embolus-loaded catheter.
  • FIG. 10 is a schematic cross-sectional view showing an example of the form of an embolus loaded in an embolus-loaded catheter.
  • FIG. 10 is a schematic cross-sectional view showing an example of the form of an embolus loaded in an embolus-loaded catheter.
  • FIG. 10 is a schematic cross-sectional view showing an example of the form of an embolus loaded in an embolus-loaded catheter.
  • FIG. 10 is a schematic cross-sectional view showing an example of the form of an embolus loaded in an embolus-loaded catheter.
  • FIG. 11 is a partially enlarged view of the vicinity of the handle portion of the delivery pusher;
  • FIG. 11 is a partial enlarged view showing the insertion state of the delivery pusher;
  • FIG. 10 is an operation example of the embolus delivery medical system according to the present embodiment, showing a state in which the delivery catheter is delivered into the aneurysm.
  • FIG. 10 is a schematic cross-sectional view showing an example of the form of an embolus loaded in an embolus-loaded catheter.
  • FIG. 10 is a schematic cross-sectional view showing an example of the form of an embolus loaded
  • FIG. 10 is an operation example of the embolus delivery medical system, showing a state in which the stent graft is deployed in the aneurysm.
  • FIG. 10 is a diagram showing an operation example of the embolus delivery medical system, showing a state before the embolus-loaded catheter is attached to the delivery catheter.
  • FIG. 10 is a diagram showing an operation example of the embolus delivery medical system, showing a state in which an embolus-loaded catheter is attached to the delivery catheter.
  • FIG. 10 is an operation example of the embolus delivery medical system, showing a state during insertion of the delivery pusher into the embolus-loaded catheter.
  • FIG. 10 is an operation example of the embolus delivery medical system, showing a state in which the delivery pusher pushes the embolus into the aneurysm.
  • FIG. 10 is a diagram showing an operation example of the embolus delivery medical system, showing a state in which an embolus-loaded catheter is detached from the delivery catheter.
  • FIG. 11 is a schematic perspective view of an embolus-loaded catheter loaded with an embolus (circular spiral shape) according to Modification 1;
  • FIG. 11 is a schematic perspective view of an embolus-loaded catheter loaded with an embolus (triangular spiral shape) according to modification 1;
  • FIG. 10 is a schematic perspective view of an embolus-loaded catheter loaded with an embolus (square spiral shape) according to modification 1;
  • FIG. 8B is a schematic cross-sectional view of the embolus-loaded catheter shown in FIG. 8A.
  • FIG. 8B is a schematic cross-sectional view of the embolus-loaded catheter shown in FIG. 8B.
  • FIG. 8D is a schematic cross-sectional view of the embolus-loaded catheter shown in FIG. 8C.
  • FIG. 10 is a schematic perspective view of an embolus-loaded catheter loaded with an embolus (zigzag shape) according to Modification 1;
  • FIG. 10 is a schematic perspective view of an embolus-loaded catheter loaded with an embolus (wavy shape) according to Modification 1;
  • 10B is a schematic cross-sectional view of the embolus-loaded catheter shown in FIGS. 10A and 10B.
  • FIG. 10 is a schematic perspective view of an embolus-loaded catheter loaded with an embolus (zigzag shape) according to Modification 1;
  • FIG. 10 is a schematic perspective view of an embolus-loaded catheter loaded with an embo
  • the side to be inserted into a biological lumen is defined as the "tip”, and the side opposite to the tip (grasped by the operator). side) is referred to as the “proximal end”.
  • the term “distal end” means a certain range in the axial direction (longitudinal direction) from the distal end
  • the term “base end” means a certain range in the axial direction from the most proximal end.
  • composition A medical instrument set 100, a delivery system 200, and an embolism delivery medical system 300 according to this embodiment will be described.
  • the medical instrument set 100, the delivery system 200, and the embolus delivery medical system 300 according to the present embodiment are, for example, an abdominal aorta, which is a therapeutic method for preventing rupture of an intravascular aneurysm (for example, an aneurysm). It can be applied in endoleak embolization for stent grafting of aneurysms (AAA).
  • the medical device set 100, the delivery system 200, and the embolus delivery medical system 300 according to the present embodiment can be applied not only to the above-described endoleak embolization, but also to blood vessels and other biological lumens. It can also be applied to other interventional treatments to prevent rupture of aneurysms in
  • FIG. 1 shows the devices constituting the medical instrument set 100 and the delivery system 200 according to this embodiment
  • FIG. 2 shows the devices constituting the embolism delivery medical system 300 according to this embodiment. It is shown.
  • the medical instrument set 100 includes an embolus-loaded catheter 20 loaded with an embolus 10 and a delivery pusher 30 as shown in FIG.
  • the embolus 10 is indwelled in an aneurysm such as an aneurysm formed in a blood vessel, and expands by absorbing fluid including blood flowing into the aneurysm.
  • the embolus 10 is loaded into the catheter 20 loaded with the embolus, and the catheter 20 loaded with the embolus is pushed out by the pusher 30 for delivery while being attached to the catheter 40 for delivery and left in the aneurysm.
  • the embolus 10 is an elongated fibrous linear body (linear body) made of an expandable material (such as a polymer material (water-absorbing gel material)) that expands under physiological conditions when it comes into contact with an aqueous liquid containing blood.
  • an expandable material such as a polymer material (water-absorbing gel material)
  • physiological condition means a condition that has at least one environmental characteristic in or on the body of a mammal (eg, human). Such properties include an isotonic environment, a pH buffered environment, an aqueous environment, a pH near neutrality (about 7), or combinations thereof.
  • aqueous liquid includes, for example, isotonic liquid, water; body fluids of mammals (eg, humans) such as blood, cerebrospinal fluid, plasma, serum, vitreous humor, and urine.
  • the outer diameter of the embolus 10 can be accommodated within the inner diameters of the embolus-loaded catheter 20 and the delivery catheter 40, and can be, for example, approximately the same as the inner diameters of these catheters.
  • the total length of the embolization device 10 is not particularly limited, but may be appropriately determined depending on the size of the aneurysm to be indwelled in consideration of ease of loading and shortening of procedure time.
  • the constituent material of the embolization object 10 should be at least a material that expands by absorbing a liquid such as blood and has no (or extremely low) toxicity to the human body even when indwelled in the aneurysm.
  • the embolus 10 may be added with a visualization material that allows confirmation of its location in the living body by a confirmation method such as X-rays, fluorescent X-rays, ultrasonic waves, fluorescent methods, infrared rays, and ultraviolet rays.
  • the embolus 10 is in contact with the inner peripheral surface 21a of the catheter body 21 defining the loading lumen 22 of the catheter 20 loaded with the embolus, thereby suppressing movement of the embolus 10 in the axial direction of the catheter body 21.
  • a plurality of contact portions 11 that receive force are provided on the outer peripheral surface.
  • the “movement suppression force” is a force that acts along the radial direction of the catheter body 21 and suppresses the axial movement of the embolus 10 against the axial pressing force applied to the embolus 10.
  • the movement suppressing force is defined as "the pressure resulting from the compressive force that compresses the embolus 10 from the inner peripheral surface 21a of the catheter body 21 toward the axial center of the catheter body 21" pressure due to a restoring force (pulling force) directed from the axial center of the embolization object 10 toward the inner peripheral surface 21a of the catheter body 21 due to the resilience of the embolism object 10 when it is applied.
  • the movement-suppressing force has a force that prevents the embolus 10 from unintentionally popping out of the catheter body 21 at least during the priming operation, and that allows the embolus 10 to be ejected during an intentional ejection operation using the delivery pusher 30 or the like. Therefore, the embolus 10 does not jump out of the catheter main body 21 against the pressing force (water pressure) received from the priming liquid during the priming operation, and is smoothly expelled without interfering with the ejection operation.
  • the movement-suppressing force is a force resulting from a compressive force or a restoring force. Appropriate force can be adjusted by appropriately setting the adjustment element. Further, the movement suppressing force can be made more appropriate by adjusting the frictional force caused by the materials of the embolization object 10 and the catheter main body 21 in addition to these adjusting elements.
  • the plurality of contact portions 11 of the embolus 10 receive a movement-suppressing force, so that the apparent normal force N increases, and the relation of "stationary friction force F>pressing force P by the priming liquid" is satisfied. Easier to maintain relationships. Therefore, during the priming operation, the embolus 10 stays in the loading lumen 22 against the pressing force P of the priming solution and does not jump out of the catheter main body 21 .
  • a liquid that extends from the distal end to the proximal end of the loading lumen 22 and that the catheter main body 21 of the catheter 20 with the embolus loaded has.
  • a liquid that extends from the distal end to the proximal end of the loading lumen 22 and that the catheter main body 21 of the catheter 20 with the embolus loaded has.
  • fluid flow passages 28 communicating with inlets and outlets of .
  • a fluid flow path 28 is formed within the loading lumen 22 with the embolus 10 loaded.
  • the fluid flow path 28 communicates with a liquid injection part having an injection port into the loading lumen 22 through which liquid can be injected, and communicates with a liquid injection part having an outlet through which the liquid can be discharged from the loading lumen 22,
  • a liquid such as a priming liquid is configured to flow.
  • the injection port is an opening on the distal end side of the insertion passage 23a of the proximal hub 23 that functions as a liquid injection part, and communicates with the opening on the liquid injection side of the fluid channel 28 .
  • the outlet is an opening on the distal end side of the loading lumen 22 that functions as a liquid outlet, and communicates with an opening on the liquid outlet side of the fluid channel 28 .
  • the injection port communicating with the fluid flow path 28 is not limited to the opening on the distal side of the insertion passage 23a of the proximal hub 23. Any opening may be used. Further, the discharge port communicating with the fluid flow path 28 is not limited to the opening on the distal end side of the loading lumen 22, and may be any liquid discharge opening provided in the catheter body 21 and communicating with the loading lumen 22. Just do it.
  • the embolus 10 is shorter than the total length of the loading lumen 22 of the embolus-loaded catheter 20 as shown in FIG. Therefore, the fluid flow path 28 includes at least a portion of the loading lumen 22 (the space extending in the axial direction of the embolus 10), the inner peripheral surface 21a of the catheter body 21 defining the loading lumen 22, and the embolus. 10 and the first fluid flow path 28a formed of a gap formed between the outer peripheral surface of the first fluid flow path 28a.
  • the fluid flow path 28 includes at least a portion of the loading lumen 22 and a second fluid flow path 28 b formed from a gap formed inside the embolus 10 from the proximal end to the distal end of the embolus 10 . good too.
  • fluid flow path 28 may include at least a portion of loading lumen 22, first fluid flow path 28a and second fluid flow path 28b.
  • the fluid flow path 28 is formed by at least one of the first fluid flow path 28a and the second fluid flow path 28b.
  • the other opening communicates with the discharge port (the opening on the distal end side of the loading lumen 22).
  • the embolus-loaded catheter 20 has a fluid flow path 28 formed in the loading lumen 22 with the embolus 10 loaded therein. Therefore, when the embolus-loaded catheter 20 is primed, the priming solution is injected into the loading lumen 22 of the embolus-loaded catheter 20 and then flows smoothly from the loading lumen 22 through the fluid flow path 28 . Ejected. Therefore, the embolus 10 is less likely to protrude from the catheter main body 21 because the pressing force received from the priming solution is reduced, coupled with the movement restraining effect of the movement restraining force.
  • FIGS. 4A to 4C and FIGS. 5A to 5C show schematic cross-sectional views of various forms of the embolus 10 according to the present embodiment, which are loaded into the loading lumen 22 of the catheter 20 loaded with the embolus. ing.
  • the embolus-loaded catheter 20 shown in FIGS. 4A to 4C and FIGS. 5A to 5C is loaded into the loading lumen 22 in a state where the contact portion 11 receives a movement restraining force in any of the configurations. , a fluid flow path 28 is formed.
  • the embolus 10 (emboli 10A to 10C) has an outer peripheral surface 21a of the catheter body 21 defining the loading lumen 22 of the catheter 20 loaded with the embolus. , a plurality of locations on the outer peripheral surface function as contact portions 11 (contact portions 11A to 11C).
  • the contact portions 11A to 11C come into contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force.
  • a first fluid flow path 28a is formed in the loading lumen 22 by the gap between the embolus 10 and the inner peripheral surface 21a.
  • the contact form of the contact portions 11A to 11C with the inner peripheral surface 21a may be either point contact or surface contact, and is particularly limited as long as they are in contact with the inner peripheral surface 21a while receiving a movement suppressing force. no.
  • the embolus 10A has an elliptical cross-sectional shape.
  • the embolus 10A functions as a contact portion 11A at its ends (two points in the drawing) in the longitudinal direction, and is in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force.
  • two gaps formed between the plug 10A and the inner peripheral surface 21a function as first fluid flow paths 28a.
  • the embolus 10B has a star-shaped polygon (star-shaped regular heptagon) in cross section.
  • the embolus 10B functions as a contact portion 11B at each vertex (seven points in the figure) facing the inner peripheral surface 21a, and is in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force.
  • seven gaps formed between the plug 10B and the inner peripheral surface 21a function as first fluid flow paths 28a.
  • the embolus 10C has a cross-sectional shape.
  • the embolus 10C functions as a contact portion 11C at the corners (eight locations in the drawing) of the apex facing the inner peripheral surface 21a, and contacts the inner peripheral surface 21a of the catheter main body 21 while receiving a movement suppressing force.
  • eight gaps formed between the plug 10C and the inner peripheral surface 21a function as first fluid flow paths 28a.
  • the embolus 10 (embolus 10D to 10F) has an external shape that is substantially the same as the shape of the inner peripheral surface 21a of the catheter body 21 defining the loading lumen 22. , substantially the entire outer peripheral surface functions as the contact portion 11 (contact portions 11D to 11F). The contact portions 11D to 11F come into contact with the inner peripheral surface 21a of the catheter body 21 while receiving movement suppressing force.
  • a second fluid flow path is provided in the loading lumen 22 by a gap formed inwardly from the distal side to the proximal side of the embolus 10. 28b is formed.
  • the embolus 10D has a substantially cylindrical cross-sectional shape. Approximately the entire outer peripheral surface of the embolus 10D functions as a contact portion 11D, and is in contact with the inner peripheral surface 21a of the catheter main body 21 while being subjected to a movement suppressing force at a plurality of locations on the outer peripheral surface.
  • a lumen (gap) formed in the embolus 10D in communication from the distal end to the proximal end functions as a second fluid channel 28b.
  • the embolus 10E has a substantially circular cross-sectional shape, and a plurality of micropores (regardless of whether the hole shape is circular or polygonal) are formed inside. Approximately the entire outer peripheral surface of the embolus 10E functions as a contact portion 11E, and is in contact with the inner peripheral surface 21a of the catheter main body 21 while being subjected to a movement suppressing force at a plurality of locations on the outer peripheral surface. Further, as shown in FIG. 5B, a plurality of holes (gaps) formed in communication from the distal end side to the proximal end side of the embolization object 10E function as second fluid flow paths 28b.
  • the embolization object 10E is not particularly limited in terms of the opening size and the number of micropores formed, and may have any configuration that allows liquid to flow while ensuring the function of the embolization object 10. FIG.
  • the embolus 10F has a helical cross-sectional shape.
  • the embolus 10F is formed, for example, in a rectangular plate shape in a plan view, and then rolled in a lateral direction perpendicular to the axial direction so as to be accommodated in the loading lumen 22 .
  • Approximately the entire outermost peripheral surface of the embolus 10F functions as a contact portion 11F, and is in contact with the inner peripheral surface 21a of the catheter main body 21 while being subjected to a movement suppressing force at multiple locations on the outermost peripheral surface.
  • a space having a spiral cross-section formed in communication from the distal end side to the proximal end side of the embolus 10F functions as a second fluid flow path 28b.
  • the embolus 10A to 10F are loaded into the loading lumen 22 in a state in which the contact portions 11A to 11F are in contact with the inner peripheral surface 21a of the catheter body 21 while receiving the movement suppressing force.
  • a fluid flow path 28 including at least one of a first fluid flow path 28a and a second fluid flow path 28b through which the priming liquid can flow. is formed. Since the priming fluid flows through the fluid flow path 28 and into the loading lumen 22, the pressure force applied to the occlusive object 10 during the priming operation is significantly greater than that of a device having a conventional configuration that does not have the fluid flow path 28. reduced.
  • the embolus 10 since the embolus 10 is loaded into the loading lumen 22 while the contact portion 11 receives the movement suppressing force, it can stay in the loading lumen 22 against the pressing force of the priming solution. Therefore, the embolus-loaded catheter 20 is prevented from unintentionally ejecting the embolus 10 during the priming operation.
  • the embolus 10 is not limited to the shapes shown in FIGS. 4A to 4C and FIGS. 5A to 5C.
  • the embolus 10 has a plurality of contact portions 11 which receive a movement suppressing force while being in contact with the inner peripheral surface 21a of the catheter body 21 at least when loaded into the loading lumen 22, and is loaded into the loading lumen 22.
  • the priming liquid injected into the charging lumen 22 from the injection port (for example, the opening on the distal end side of the proximal hub 23) is discharged from the discharge port (for example, the opening on the distal side of the loading lumen 22).
  • the fluid flow path 28 including the first fluid flow path 28a and the second fluid flow path 28b can be formed so as to be discharged from the fluid flow path 28a.
  • the plug 10 may have a shape having the contact portion 11 only partially in the axial direction.
  • the first fluid flow path 28a can be formed as shown in FIGS.
  • At least one helically wavy groove is provided along the groove, the groove functions as the first fluid flow path 28a, and the outer peripheral surface other than the groove functions as the contact portion 11. .
  • the plug 10 can be configured to include both the first fluid channel 28a and the second fluid channel 28b.
  • an obturator 10A having an elliptical cross section shown in FIG. 4A may be provided with a lumen extending axially from the distal end to the proximal end as shown in FIG. 5A.
  • the embolus-loaded catheter 20 includes an elongated catheter body 21 having a loading lumen 22 provided therein, a proximal hub 23 provided on the proximal side of the catheter body 21, and a proximal hub 23 at one end. It has a flexible tube 24 which is connected to the proximal side and whose other end is connected to a port 26 of a stopcock 25 .
  • the catheter main body 21 is a tubular member in which a hole (loading lumen 22) communicating from an opening on the distal end side to an opening on the proximal end side along the axial direction is formed.
  • the length of the catheter main body 21 in the extending direction is defined as appropriate, but it is sufficient that it has a length that can accommodate at least the embolism 10 .
  • the inner diameter of the loading lumen 22 is designed to be substantially the same as the inner diameter of the sheath lumen 42 of the delivery catheter 40 . This allows the outer diameter of the embolus 10 to be approximately the same as the inner diameter of the embolus-loaded catheter 20 and the delivery catheter 40 .
  • the embolus-loaded catheter 20 is mainly supplied with the embolus 10 pre-loaded. You can load it inside. As a method of loading the embolus 10, the operator can grasp the embolus 10 and insert it into the catheter 20 loaded with the embolus from the distal connecting portion 27 side or the proximal hub 23 side.
  • the catheter body 21 with the embolus 10 housed therein is attached by engaging with the sheath hub 43 of the delivery catheter 40 via the distal connection portion 27 .
  • the delivery pusher 30 is inserted from the proximal hub 23 to push the loaded embolus 10 toward the delivery catheter 40 .
  • the constituent material of the embolus-loaded catheter 20 is at least more rigid than the delivery catheter 40, and is a material that provides an appropriate degree of hardness to prevent breakage of the embolus 10 loaded during packaging. If there is, it is not particularly limited.
  • constituent materials of the catheter body 21 include polyolefins (eg, polyethylene, polypropylene, polybutene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, ionomers, or mixtures of two or more of these), polyolefin elastomers.
  • Polyolefin crosslinked products Polyvinyl chloride, Polyamide, Polyamide elastomer, Polyester, Polyester elastomer, Polyurethane, Polyurethane elastomer, Fluoropolymers, Polycarbonate, Polystyrene, Polyacetal, Polyimide, Polyetherimide, Aromatic polyetherketone, etc.
  • Resin materials such as materials or mixtures thereof, shape memory alloys, metal materials such as stainless steel, tantalum, titanium, platinum, gold, and tungsten can be preferably used.
  • the catheter main body 21 only needs to be more rigid than the sheath 41 from the viewpoint of preventing breakage of the embolus 10. Therefore, the material itself should be hard, and if the same material as the sheath 41 is used, it will be thicker than the sheath 41. It is good also as a form which thickens thickness and is hard to kink. In the case of a configuration in which the wall thickness is variable, the outer diameter of the catheter main body 21 is larger than the outer diameter of the sheath 41, but the catheter 20 loaded with the embolus is attached to the delivery catheter 40 via the engaging portion 60. Therefore, it is not a problem.
  • the proximal end hub 23 has an insertion passage 23a (lumen) that allows the tube 24 to communicate with the loading lumen 22 of the catheter body 21. It is an intermediate member for circulating through the catheter main body 21.
  • Proximal hub 23 functions as an injection hub capable of injecting priming fluid into loading lumen 22 of embolization-loaded catheter 20 .
  • the embolus 10 loaded into the loading lumen 22 is pushed out toward the delivery catheter 40 by inserting the delivery pusher 30 into the loading lumen 22 via the insertion passage 23 a of the proximal hub 23 .
  • the constituent material of the base end hub 23 is not particularly limited as long as it is a hard material such as hard resin.
  • a hard material such as hard resin.
  • polyolefins such as polyethylene and polypropylene, polyamide, polycarbonate, polystyrene, and the like can be suitably used.
  • a hemostatic valve (not shown) is attached to the inside of the proximal end side of the proximal end hub 23 .
  • the hemostasis valve may use a substantially elliptical film-like (disc-like) valve body made of, for example, an elastic member such as silicone rubber, latex rubber, butyl rubber, or isoprene rubber.
  • the tube 24 has one end connected to the proximal side of the proximal hub 23 and the other end connected to the port 26 of the stopcock 25 .
  • the tube 24 is a conduit through which liquid such as physiological saline discharged from a priming syringe (not shown) connected to the port 26 flows.
  • the tube 24 is not particularly limited as long as it is a resin material having flexibility in consideration of operability.
  • polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymers
  • polyesters such as polyethylene terephthalate, polystyrene, and polyvinyl chloride can be suitably used.
  • the stopcock 25 communicates with the insertion passage 23 a of the proximal hub 23 and the loading lumen 22 of the catheter body 21 via the tube 24 .
  • the proximal end of the tube 24 is connected to the port 26 of the stopcock 25, and a priming syringe for priming the loading lumen 22 of the catheter body 21 can also be connected.
  • the stopcock 25 employs a three-way stopcock.
  • the stopcock 25 is not limited to a three-way stopcock, and other forms (for example, a two-way stopcock, a multi-way stopcock having four or more ports, etc.) may be adopted.
  • the distal end connection part 27 is provided on the distal end side of the catheter 20 loaded with the embolus, and is detachably connected to the proximal end side of the sheath hub 43 of the delivery catheter 40 .
  • the distal connection portion 27 includes an engaging concave portion formed on the inner peripheral surface of the communicating passage 43a of the sheath hub 43 on the proximal end side, an elastically deformable engaging convex portion projecting radially outward from the distal connecting portion 27, It is possible to adopt a so-called snap-fit configuration.
  • connection of the distal end connecting part 27 to the sheath hub 43 is not particularly limited, and other forms of connection such as a threaded type, for example, that maintain the connected state between the catheter 20 loaded with the embolus and the delivery catheter 40 are adopted. You can also In addition, the catheter 20 loaded with the embolus and the delivery catheter 40 should be connected at least in the connected state so that the embolus 10 can move.
  • the pusher for delivery 30 is an elongated rod-like member inserted through the proximal hub 23 to push out the embolus 10 accommodated in the catheter body 21 and deliver it through the see lumen 42 of the delivery catheter 40 into the aneurysm. It is a member.
  • the delivery pusher 30 includes a rod-shaped pusher body 31 and a handle portion 32 provided on the proximal end side of the pusher body 31 and held by the operator when delivering the embolus 10 into the aneurysm.
  • the delivery pusher 30 When the delivery pusher 30 is operated by the operator while the handle portion 32 is gripped in a state where the catheter 20 loaded with the embolus is attached to the delivery catheter 40, the embolus loaded in the loading lumen 22 is pushed.
  • the article 10 is pushed through the sheath lumen 42 of the delivery catheter 40 and into the aneurysm. Specifically, the delivery pusher 30 pushes out the embolic material 10 loaded in the embolus-loaded catheter 20 to the outside ( into the aneurysm).
  • the body length of the pusher main body 31 of the delivery pusher 30 is the length of the delivery catheter 40 from the proximal end of the insertion passage 23a of the proximal hub 23 in the mounted state in which the catheter 20 loaded with the embolic material is mounted on the delivery catheter 40. It is longer than the distance up to the distal opening 41a of the sheath 41 (the distal opening communicating with the sheath lumen 42). Therefore, if the delivery pusher 30 is inserted from the proximal end hub 23 in a state in which the catheter 20 loaded with the embolus and the delivery catheter 40 are attached, the embolus loaded in the loading lumen 22 can be pushed out by a single pushing operation.
  • the object 10 can be passed through the insertion path 23a ⁇ sheath hub 43 ⁇ sheath lumen 42 in this order and pushed out into the aneurysm.
  • the handle portion 32 has a substantially mushroom-shaped shape having a large-diameter head portion 32a on the distal end side and a small-diameter handle portion 32b extending toward the base end side of the large-diameter head portion 32a.
  • the outer diameter dimension of the large-diameter head portion 32 a which is the maximum outer diameter of the handle portion 32 , is designed to be larger than the inner diameter dimension of the insertion passage 23 a of the base end hub 23 .
  • FIG. 6B when the delivery pusher 30 is inserted into the embolus-loaded catheter 20, the large-diameter head portion 32a is not inserted into the insertion passage 23a of the proximal hub 23.
  • the withdrawal operation of the catheter 20 loaded with the embolus is performed when the operation of pushing out the embolus 10 by the delivery pusher 30 is completed. Along with this, it is easy to pull out the inserted state at the same time, and the detachment operation becomes simple.
  • the delivery pusher 30 may be withdrawn from the embolus-loaded catheter 20 prior to the withdrawal operation of the embolus-loaded catheter 20 .
  • the handle portion 32 may be configured such that the large diameter head portion 32a can be fitted to the proximal side of the proximal hub 23 when the catheter 20 is inserted into the catheter 20 loaded with the embolization material. With such a configuration, when the catheter 20 loaded with the embolus is removed, the delivery pusher 30 can be reliably pulled out from the catheter 20 loaded with the embolus without coming off.
  • the constituent material of the pusher main body 31 is not particularly limited as long as it is a material that provides appropriate hardness and flexibility that allow the embolization object 10 to be transported.
  • materials constituting the pusher body 31 include polyolefins (eg, polyethylene, polypropylene, polybutene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, ionomers, or mixtures of two or more of these), polyolefin elastomers.
  • polyolefin crosslinked products polyvinyl chloride, polyamide, polyamide elastomer, polyester, polyester elastomer, polyurethane, polyurethane elastomer, fluorine resins such as ETFE, polycarbonate, polystyrene, polyacetal, polyimide, polyetherimide, aromatic polyether ketone, etc. or a resin material such as a mixture thereof, a metal material such as a shape memory alloy, stainless steel, tantalum, titanium, platinum, gold, and tungsten.
  • fluorine resins such as ETFE, polycarbonate, polystyrene, polyacetal, polyimide, polyetherimide, aromatic polyether ketone, etc. or a resin material such as a mixture thereof, a metal material such as a shape memory alloy, stainless steel, tantalum, titanium, platinum, gold, and tungsten.
  • the delivery system 200 according to this embodiment includes, in addition to the medical instrument set 100, a delivery catheter 40 to which the embolized material-loaded catheter 20 is attached and detached while being indwelled in a biological lumen. I have.
  • the delivery catheter 40 can also utilize, for example, an existing catheter that can be left in a body lumen. Therefore, in the delivery system 200 according to the present embodiment, the medical device set 100 and the delivery catheter 40 can be sold as a set and supplied to the market, but even if only the medical device set 100 is sold and supplied to the market , an existing catheter can be used as the delivery catheter 40 to function as the delivery system 200 .
  • the delivery catheter 40 includes a sheath 41 made of an elongated tubular member in which a hole (sheath lumen 42) communicating from an opening on the distal end side to an opening on the proximal end side is formed along the axial direction. It is left in the lumen and functions as an introduction channel for delivering the embolus 10 into the aneurysm.
  • a main body 51 of an insertion assisting member 50 which will be described later, can be inserted through the sheath 41 over its entire length. Therefore, the axial length of the sheath 41 is set at least shorter than the main body 51 of the insertion assisting member 50 .
  • the inner diameter of the sheath lumen 42 is designed to be substantially the same as the inner diameter of the loading lumen 22 .
  • the constituent material of the sheath 41 is not particularly limited as long as it is flexible and rigid enough to follow the curved shape of the body lumen such as meandering and bending.
  • materials constituting the sheath 41 include polyolefins (eg, polyethylene, polypropylene, polybutene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, ionomers, or mixtures of two or more thereof), polyolefin elastomers, Polymer materials such as crosslinked polyolefin, polyvinyl chloride, polyamide, polyamide elastomer, polyester, polyester elastomer, polyurethane, polyurethane elastomer, fluororesin, polycarbonate, polystyrene, polyacetal, polyimide, polyetherimide, aromatic polyetherketone, etc. , or a resin material such as a mixture thereof can be suitably used.
  • polyolefins eg, polyethylene, poly
  • the delivery catheter 40 includes a sheath hub 43 connected to the proximal end of the sheath 41, and a flexible tube 44 having one end connected to the proximal end of the sheath hub 43 and the other end connected to a stopcock 45. Prepare.
  • the sheath hub 43 is provided with a communication passage 43a that communicates between the sheath lumen 42 and the tube 44 and between the loading lumen 22 and the sheath lumen 42. It is an intermediate member for circulating the sheath 41 through the embolus-loaded catheter 20 and guiding the embolus 10 pushed out from the embolus-loaded catheter 20 into the sheath lumen 42 .
  • the insertion assisting member 50 is inserted through the sheath hub 43 when the delivery catheter 40 is left in the biological lumen.
  • the same materials as those exemplified as the constituent materials of the base end hub 23 can be used.
  • the sheath hub 43 is connected to the distal end connecting portion 27 of the catheter 20 loaded with the embolus.
  • the loading lumen 22 and the sheath lumen 42 are aligned in the axial direction.
  • the embolus 10 pushed out from the catheter body 21 is prevented from being damaged (bent or crushed on the distal end side) due to contact with the inner wall surface of the sheath hub 43 .
  • the tube 44 has one end connected to the proximal end side of the sheath hub 43 and the other end connected to the port 46 of the stopcock 45 .
  • the tube 44 is a conduit through which liquid such as physiological saline discharged from a priming syringe (not shown) connected to the port 46 flows. It should be noted that the same materials as those exemplified as the constituent materials of the tube 24 described above can be used as the constituent material of the tube 44 .
  • the stopcock 45 communicates with the communicating passage 43 a of the sheath hub 43 and the sheath lumen 42 of the sheath 41 via the tube 44 .
  • a port 46 of the stopcock 45 is connected to the proximal end of the tube 44, a priming syringe for priming the sheath lumen 42 of the sheath 41, and a liquid injection syringe for injecting a contrast agent or a drug.
  • the stopcock 45 employs a three-way stopcock.
  • the stopcock 45 is not limited to the three-way stopcock, and other forms (for example, a two-way stopcock, a multi-way stopcock having four or more ports, etc.) may be employed.
  • a hemostasis valve is attached to the inner side of the proximal end of the sheath hub 43 .
  • the hemostasis valve may use a substantially elliptical film-like (disc-like) valve body made of, for example, an elastic member such as silicone rubber, latex rubber, butyl rubber, or isoprene rubber.
  • the delivery catheter 40 is a catheter having an outer diameter of 6 Fr (inner diameter of 1.8 mm), and the applied technique is endoleak embolization for stent graft insertion of an abdominal aortic aneurysm (AAA).
  • the outer diameter of the embolus 10 is 0.4 to 1.9 mm (preferably about 1.6 mm)
  • the inner diameter of the catheter 20 loaded with the embolus is 1.0 to 1.0 mm, which is equivalent to the inner diameter of the delivery catheter 40. It can be 1.8 mm (preferably about 1.8 mm).
  • the length of the catheter body 21 of the catheter 20 loaded with the embolus is 30 to 105 cm (preferably about 42 cm), the length of the sheath 41 of the delivery catheter 40 is 39 to 90 cm (preferably about 47 cm), and the delivery pusher
  • the body length of the pusher body 31 of 30 can be 79 to 205 cm (preferably about 96 cm).
  • the total length of the embolus 10 is appropriately determined depending on the size of the aneurysm, but should be in the range of 30 to 100 cm (preferably about 40 cm) from the viewpoints of ease of loading into the catheter 20 loaded with the embolus and shortening of the procedure time. can be done.
  • the embolism delivery medical system 300 includes, in addition to the delivery system 200, an insertion assisting member 50 for delivering the delivery catheter 40 into the body lumen.
  • the insertion assisting member 50 is formed with a guide wire lumen 52 that is inserted from the distal end side to the proximal end side along the axial direction of the main body 51, and the delivery catheter 40 is inserted along the guide wire previously inserted into the biological lumen. It is an auxiliary tool for assisting the insertion when delivering the aneurysm into the aneurysm.
  • the insertion assisting member 50 is inserted and assembled into the delivery catheter 40 in order to prevent bending or the like when the delivery catheter 40 is inserted into the biological lumen.
  • the guidewire lumen 52 has a smaller inner diameter than the sheath lumen 42 of the delivery catheter 40 . Therefore, when the delivery catheter 40 is delivered into the aneurysm, axial deviation of the delivery catheter 40 with respect to the guide wire can be reduced, making delivery easier.
  • the constituent material of the insertion assisting member 50 is not particularly limited as long as it is harder and more flexible than the delivery catheter 40 .
  • Examples of constituent materials of the insertion assisting member 50 include polyolefins such as polyethylene and polypropylene, polyesters such as polyamide and polyethylene terephthalate, fluorine resins such as ETFE, PEEK (polyetheretherketone), and resin materials such as polyimide.
  • Metal materials such as memory alloys, stainless steel, tantalum, titanium, platinum, gold, and tungsten can be preferably used.
  • the following description is an operation example when the embolus delivery medical system 300 is applied to endoleak embolization for stent graft insertion of an abdominal aortic aneurysm (AAA). uses an elliptical shape. 7C to 7G, "A” indicates inside an aneurysm, “V” indicates inside a blood vessel, and “O” indicates outside the body. expressed in
  • the operator removes the sheath 41 of the delivery catheter 40 into which the insertion assisting member 50 is inserted from the limb of the patient serving as the puncture site through an introducer (for example, FIG. 7A). ) is percutaneously inserted into the biological lumen, and the tip opening 41a of the delivery catheter 40 is delivered to the abdominal aortic aneurysm.
  • the insertion assisting member 50 is removed.
  • the delivery catheter 40 may be delivered to the affected area of the aneurysm using a guide wire previously inserted into the aneurysm without using the insertion assisting member 50 .
  • the delivery catheter 40 is primed before it is introduced into the body lumen.
  • the operator inserts the catheter (stent graft device) in which the stent graft SG is compressed and inserted through the introducer into the biological lumen, and uses a guide wire that has been inserted into the aneurysm in advance. to the site of the aneurysm.
  • the stent graft SG is deployed from the catheter at the affected area and left in place.
  • the delivery catheter 40 is placed between the leg of the stent graft SG and the vessel wall, and the tip of the delivery catheter 40 is placed between the stent graft SG and the vessel wall of the aneurysm. That is, it is inserted into the aneurysm and left in the living body lumen with the distal end opening 41a positioned within the aneurysm.
  • FIG. 7C shows the embolus-loaded catheter 20 before it is attached to the delivery catheter 40 .
  • the operator performs a priming operation before attaching the catheter 20 loaded with the embolus to the delivery catheter 40 .
  • the embolization object 10 is loaded with the contact portion 11 in contact with the inner peripheral surface 21 a of the catheter body 21 .
  • the contact portion 11 of the embolus 10 receives a movement suppressing force, which is a force along the radial direction of the catheter body 21 .
  • the priming solution that extends from the distal end to the proximal end of the loading lumen 22 and that the catheter body 21 of the catheter 20 with the embolus loaded has is injected.
  • a fluid flow path 28 is formed that communicates with an inlet (distal opening of proximal hub 23) and an outlet (distal opening of loading lumen 22).
  • the embolus 10 In the priming operation, when the priming liquid is injected from the inlet, it passes through the fluid channel 28 and flows through the loading lumen 22, and then is discharged from the outlet. Therefore, the embolus 10 receives less pressing force from the priming solution. In addition, since the embolus 10 is loaded in contact with the inner peripheral surface 21a of the catheter main body 21 in a state in which a movement suppressing force acts on the contact portion 11, it stays on the catheter main body 21 against the pressing force of the priming solution. maintained. Therefore, in the embolus-loaded catheter 20, the embolus 10 does not protrude from the catheter main body 21 during the priming operation. That is, the embolus-loaded catheter 20 is prevented from unintentionally popping out during the priming operation.
  • the operator After completing the priming operation of the embolus-loaded catheter 20, the operator attaches the distal end connecting portion 27 of the embolus-loaded catheter 20 to the proximal end of the sheath hub 43 of the delivery catheter 40, as shown in FIG. 7D. . At this time, the axial center of the loading lumen 22 is aligned with the axial center of the see lumen 42 .
  • the operator inserts the distal end of the pusher main body 31 from the proximal side of the proximal hub 23 while gripping the handle portion 32, as shown in FIG. 7E.
  • the distal end of the delivery pusher 30 inserted from the proximal hub 23 abuts the proximal end of the embolus 10 loaded in the embolus-loaded catheter 20, and the operator pushes out the embolus 10 for delivery. Push and move through the sheath lumen 42 of the catheter 40 .
  • the operator pushes out the delivery pusher 30 inserted from the proximal hub 23 to push out the embolus 10 from the sheath lumen 42 into the aneurysm. Thereafter, the operator withdraws the emptied embolus-loaded catheter 20 together with the delivery pusher 30 from the delivery catheter 40, as shown in FIG. 7G.
  • the delivery pusher 30 can be removed from the delivery catheter 40 while inserted into the embolus-loaded catheter 20 . This completes the first insertion operation of the embolization object 10 into the aneurysm.
  • the delivery pusher 30 may be withdrawn from the embolus-loaded catheter 20 prior to the withdrawal operation of the embolus-loaded catheter 20 .
  • endoleak embolization a series of embolus placement operations shown in FIGS. 7C to 7G are repeated until the required amount of embolus 10 is loaded into the aneurysm.
  • the required amount of the embolization material 10 is calculated by subtracting the volume of the stent graft SG when deployed in the aneurysm from the aneurysm volume calculated based on the patient's CT data.
  • the operator pulls out the delivery catheter 40 from the aneurysm and the body lumen.
  • the delivery catheter 40 may be pulled out from the aneurysm and the biological lumen. good.
  • the delivery pusher 30 may be withdrawn from the delivery catheter 40 while the embolus-loaded catheter 20 is withdrawn from the delivery catheter 40 before the delivery catheter 40 is withdrawn from the aneurysm and biological lumen.
  • the delivery pusher 30 is withdrawn from the delivery catheter 40 and the embolus-loaded catheter 20, and then the embolus-loaded catheter 20 is pulled out of the delivery catheter 40. can be left out.
  • the introducer is left in the body lumen for additional expansion of the stent graft SG by the balloon after placement of the embolus 10, imaging operation, and the like.
  • the embolus 10 placed in the aneurysm contacts with fluid such as blood in the aneurysm and gradually swells. It is buried and the aneurysm is occluded. This prevents the aneurysm from rupturing.
  • the embolus 10 (embolus 10G to 10M) according to Modification 1 extends along the axial direction of the loading lumen 22, and the embolus 10 extends along the axial direction of the loading lumen 22, as shown in any of FIGS.
  • a portion of the outer peripheral surface of the catheter functions as a contact portion 11 (contact portions 11G to 11M) to form a linear structure that contacts the inner peripheral surface 21a of the catheter body 21 defining the loading lumen 22.
  • the “linear structure” refers to a non-linear three-dimensional structure including a secondary structure such as a helical shape, a zigzag shape, a wave shape, etc., and is in contact with the inner peripheral surface 21a of the catheter body 21 at multiple points. do.
  • the embolus 10D to 10F according to the modified example 1 have the above-described linear structure, and the contact portions 11G to 11M receive the movement suppressing force, and the inner peripheral surface 21a of the catheter body 21 and a plurality of locations. It is loaded into the loading lumen 22 in contact. In the state in which the embolus 10D to 10F are loaded in the loading lumen 22, the embolus facing between the embolus 10 and the inner peripheral surface 21a and in the radial direction of the catheter main body 21 are present in the loading lumen 22. A third fluid flow path 28c is formed which is formed by the air gap between the articles 10 .
  • the form of contact between the contact portion 11 and the inner peripheral surface 21a is not particularly limited, and may be point contact or surface contact.
  • FIGS. 8A to 8C show schematic perspective views of an embolus-loaded catheter 20 loaded with helical forms (emboli 10G to embolus 10K) of the embolus 10 according to Modification 1.
  • FIG. . 9A-9C show schematic cross-sectional views of embolus-loaded catheter 20 loaded with emboli 10G-10K.
  • the plug 10G extends along the axial direction of the loading lumen 22 and has an elliptical spiral shape when viewed from the axial direction.
  • the end of the embolism 10G functions as a contact portion 11G, and is in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force.
  • the gaps formed between the embolus 10G and the inner peripheral surface 21a and between the embolus 10G facing each other in the radial and axial directions of the catheter body 21 are the third fluid flow paths 28c. function as
  • the plug 10H extends along the axial direction of the loading lumen 22 and has a triangular spiral shape (triangular spiral shape) when viewed from the axial direction.
  • the embolus 10H has a triangular apex functioning as a contact portion 11H, and is in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force.
  • the gaps formed between the embolus 10H and the inner peripheral surface 21a and between the embolus 10H facing each other in the radial and axial directions of the catheter body 21 are the third fluid flow paths 28c. function as
  • the embolus 10K extends along the axial direction of the loading lumen 22 and has a quadrangular helical shape (square helical shape) when viewed from the axial direction.
  • the embolus 10K has a quadrangular apex functioning as a contact portion 11K, and is in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force.
  • the gaps formed between the embolus 10K and the inner peripheral surface 21a and between the embolus 10K facing each other in the radial direction and the axial direction of the catheter body 21 are the third fluid flow paths 28c. function as
  • FIGS. 10A and 10B of the embolus 10 according to Modification 1, examples of forms (emboli 10L, embolus 10M) having a linear structure (zigzag shape, wave shape) other than a spiral shape are loaded.
  • a schematic perspective view of an embolus-loaded catheter 20 is shown.
  • FIG. 11 shows a schematic cross-sectional view of embolus-loaded catheter 20 loaded with embolus 10L or embolus 10M.
  • the embolus 10L has a zigzag shape (triangular wave shape) extending along the axial direction of the loading lumen 22 .
  • the embolus 10L has a zigzag vertex functioning as a contact portion 11L, and is in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force.
  • the gap formed between the plugging object 10L and the inner peripheral surface 21a or between the plugging objects 10L facing each other in the axial direction functions as the third fluid flow path 28c.
  • the plug 10M has a wave shape (sine wave shape) extending along the axial direction of the loading lumen 22.
  • the crest of the embolus 10M functions as a contact portion 11M, and is in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force.
  • the gaps formed between the plugging object 10M and the inner peripheral surface 21a or between the plugging objects 10M facing each other in the axial direction function as the third fluid flow path 28c.
  • each of the emboli 10G to 10M having a nonlinear linear structure extending in the axial direction of the loading lumen 22 is a contact portion.
  • the catheter body 21 is loaded into the loading lumen 22 by contacting the inner peripheral surface 21a of the catheter main body 21 at a plurality of points in a state where the contact portions 11G to 11M receive movement suppressing force.
  • a fluid channel 28 including a third fluid channel 28c through which the priming liquid can flow is formed.
  • the embolization material-loaded catheter 20 according to Modification 1 prevents the embolization material 10 from unintentionally popping out during the priming operation, similar to the embodiments shown in FIGS. 4A to 4C and FIGS. 5A to 5C. be.
  • the embolization material-loaded catheter 20 according to Modification 1 can also arbitrarily combine the forms shown in FIGS. 8A to 8C, 10A, and 10B described above.
  • the obturator 10 may have a helical shape as shown in FIG. 8A from the distal end to the intermediate portion, and a zigzag shape as shown in FIG. 10A from the intermediate portion to the proximal end.
  • the embolus-loaded catheter 20 according to Modification 1 is not limited to the forms shown in FIGS. It is sufficient that the embolus 10 having a linear structure that functions as the contact portion 11 and contacts the inner peripheral surface 21 a of the catheter body 21 defining the loading lumen 22 is loaded. Alternatively, the embolus 10 may have a linear structure in which only a portion thereof is in contact with the inner peripheral surface 21 a of the catheter body 21 defining the loading lumen 22 .
  • the configuration shown in FIGS. 4A to 4C has a circular shape of the inner peripheral surface 21a of the catheter body 21 defining the loading lumen 22, and a cross section in a direction perpendicular to the axial direction of the embolus 10.
  • the shape or the shape viewed from the axial direction is different from the inner peripheral surface 21a of the catheter main body 21 (that is, non-circular).
  • the shape of the embolus 10 should be at least different from the shape of the inner peripheral surface 21 a of the catheter body 21 . Therefore, the shape of the inner peripheral surface 21a of the catheter body 21 may be non-circular, and the embolus 10 may be configured to be circular inscribed in the inner peripheral surface 21a.
  • the contact portion 11 that contacts the inner peripheral surface 21a of the catheter body 21 is A fluid flow path 28 is formed in the loading lumen 22 to be loaded into the loading lumen 22 while receiving a movement restraining force, and includes a first fluid flow path 28a and a second fluid flow path 28b. Therefore, the embolus-loaded catheter 20 prevents the embolus 10 from unintentionally popping out during the priming operation.
  • the embolus 10 can be appropriately combined with each of the above-described forms (the embolus 10A to the embolus 10M). Therefore, the embolus 10 has a form in which arbitrarily selected embolus 10A to 10F are combined, and a form in which arbitrarily selected embolus 10G to 10M are combined. A form in which an embolus arbitrarily selected from the embolus 10A to 10F and an embolus 10G to 10M arbitrarily selected can be combined.
  • the embolus delivery medical system 300 as a delivery method for the embolus 10, is placed on the proximal end side of the delivery catheter 40 indwelled in the biological lumen.
  • a method was employed in which the tip side of the catheter 20 loaded with the embolus was attached, the delivery pusher 30 was inserted into the catheter 20 loaded with the embolus, and the embolus 10 was ejected into the aneurysm.
  • the embolus delivery medical system 300 is not limited to the above-described delivery methods, and may have a device configuration compatible with other delivery methods (for example, "direct insertion method” or "indirect insertion method”). can also produce the same effect.
  • the “indirect insertion method” refers to inserting a second catheter (corresponding to the embolus-loaded catheter 20) loaded with the embolus 10 into the first catheter (corresponding to the delivery catheter 40). Then, with the tip of the second catheter reaching the aneurysm, a delivery pusher (corresponding to the delivery pusher 30) is inserted into the second catheter to deliver the embolus 10 into the aneurysm.
  • the "indirect insertion method” refers to a first catheter in which part of the tip of a second catheter (corresponding to the catheter 20 loaded with the embolus) loaded with the embolus 10 is left in the body lumen.
  • a catheter (corresponding to the delivery catheter 40), insert the loading pusher into the second catheter to transfer the embolus 10 to the first catheter, and move the second catheter to the first catheter.
  • a pusher for delivery (corresponding to the pusher for delivery 30) is inserted into the first catheter to deliver the embolus 10 into the aneurysm.
  • the medical instrument set 100, the delivery system 200, and the embolus delivery medical system 300 according to the present embodiment can be used in any of the embolus delivery methods described above when the embolus-loaded catheter 20 is primed. can be prevented from unintentionally popping out.
  • the catheter 20 loaded with the embolus communicates with the elongated catheter body 21 and the embolus 10 that swells when it comes into contact with liquid, from the distal end to the proximal end of the catheter body 21 . and has a loading lumen 22 loaded with the embolus 10 and an insertion path (insertion path 23a) communicating with the loading lumen 22 so that a fluid (priming solution) can be injected into the loading lumen 22. It has an injection hub (proximal hub 23).
  • the embolus 10 contacts the inner peripheral surface 21a of the catheter body 21 defining the loading lumen 22 to suppress the movement of the embolus 10 in the axial direction of the catheter body 21. It has a plurality of contact portions 11 receiving a movement restraining force.
  • Catheter body 21 has an inlet for injecting fluid into loading lumen 22 via an injection hub and an outlet for discharging fluid from within loading lumen 22 .
  • the loading lumen 22 In the loading lumen 22 loaded with the embolus 10 and in a state where the plurality of contact portions are subjected to the movement suppressing force, the loading lumen 22 extends from the distal end to the proximal end, and the injection A fluid flow path 28 is formed in communication with the inlet and outlet.
  • the embolus 10 is loaded into the loading lumen 22 in a state where the plurality of contact portions 11 are subjected to movement suppressing force. can stay.
  • the fluid channel 28 communicating with the inlet and the outlet is formed in the loading lumen 22 loaded with the embolus 10 , the priming solution flows through the fluid channel 28 into the loading lumen 22 . can be distributed. Therefore, even if the embolus-loaded catheter 20 is primed with the embolus 10 loaded in the catheter body 21, the embolus 10 can be prevented from unintentionally popping out.
  • the embolus 10 has a different shape from the inner peripheral surface 21a of the catheter body 21 defining the loading lumen 22 in the cross section in the direction perpendicular to the axial direction. has a plurality of contact portions 11 that come into contact with the inner peripheral surface 21a of the catheter body 21, and the fluid flow path 28 is formed at least between the inner peripheral surface 21a of the catheter body 21 and the outer peripheral surface of the embolus 10. It may be configured to include the first fluid flow path 28a composed of a gap formed between.
  • the embolus 10 is loaded into the loading lumen 22 in contact with the inner peripheral surface 21a of the catheter main body 21 while the plurality of contact portions 11 on the outer peripheral surface receive a movement suppressing force.
  • the loading lumen 22 loaded with the embolus 10 also includes a first fluid channel 28a which is a gap formed between the inner peripheral surface 21a of the catheter body 21 and the outer peripheral surface of the embolus 10.
  • a fluid flow path 28 is formed. Therefore, the priming liquid is injected through the inlet and discharged through the outlet through the fluid flow path 28 . Since the embolus 10 is loaded into the loading lumen 22 while the contact portion 11 receives a movement suppressing force, it stays in the loading lumen 22 against the pressing force of the priming solution. Therefore, even if the embolus-loaded catheter 20 is primed with the embolus 10 loaded in the catheter main body 21, the embolus 10 can be prevented from unintentionally popping out.
  • the fluid flow path 28 is a second fluid flow path 28 b that is formed at least from the proximal end to the distal end of the embolization material 10 and formed inside the embolization material 10 .
  • substantially the entire outer peripheral surface of the embolus 10 functions as the contact portion 11, and the contact portion 11 is loaded while being in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force. It is loaded into the lumen 22 for use.
  • a fluid flow path 28 including a second fluid flow path 28b is formed by the embolus 10 and a gap formed inside the embolus 10 from the proximal end to the distal end. is formed. Therefore, the priming liquid is injected through the inlet and discharged through the outlet through the fluid flow path 28 .
  • the embolus 10 Since the embolus 10 is loaded into the loading lumen 22 while the contact portion 11 receives a movement suppressing force, it stays in the loading lumen 22 against the pressing force of the priming solution. Therefore, even if the embolus-loaded catheter 20 is primed with the embolus 10 loaded in the catheter main body 21, the embolus 10 can be prevented from unintentionally popping out.
  • the embolus 10 extends along the axial direction of the loading lumen 22 and has a plurality of contact portions that contact the inner peripheral surface 21 a of the catheter body 21 .
  • the fluid channel 28 may include at least a third fluid channel 28c consisting of a gap formed between the inner peripheral surface 21a of the catheter body 21 and the embolus 10. good.
  • a portion of the outer peripheral surface of the embolus 10 functions as the contact portion 11, and the contact portion 11 is loaded while being in contact with the inner peripheral surface 21a of the catheter main body 21 while receiving a movement suppressing force. It is loaded into the lumen 22 for use. Further, in the loading lumen 22 loaded with the embolization material 10, there is at least a third fluid flow path 28c consisting of a gap formed between the inner peripheral surface 21a of the catheter body 21 and the embolization material 10. A path 28 is formed. Thus, the priming liquid is injected through the inlet and discharged through the outlet through the fluid flow path 28 .
  • the embolus 10 Since the embolus 10 is loaded into the loading lumen 22 while the contact portion 11 receives a movement-suppressing force, it stays in the loading lumen 22 against the pressing force of the priming solution. Therefore, even if the embolus-loaded catheter 20 is primed with the embolus 10 loaded in the catheter main body 21, the embolus 10 can be prevented from unintentionally popping out.
  • the medical instrument set 100 is inserted into the loading lumen 22 through any of the catheters 20 loaded with the embolus described above and the insertion passage 23a of the proximal hub 23 of the catheter 20 loaded with the embolus.
  • a delivery pusher 30 comprising a possibly elongated pusher body 31 .
  • the medical instrument set 100 inserts the delivery pusher 30 from the proximal end hub 23 when the catheter 20 loaded with the embolic material and the delivery catheter 40 are put into the mounting state, thereby causing the loading lumen 22 to move.
  • the internally loaded embolus 10 can be easily pushed through the delivery catheter 40 into the aneurysm.
  • the catheter 20 loaded with the embolizing material is primed with the embolizing material 10 loaded in the catheter main body 21, the unintended ejection of the embolizing material 10 can be prevented.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Reproductive Health (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

[Problem] To prevent unintentional ejection of an embolus loaded in a catheter during a priming operation. [Solution] An embolus 10 loaded in an embolus-loaded catheter 20 has, on an outer peripheral surface of the embolus 10, a plurality of contact sections 11 that make contact with an inner peripheral surface 21a of a catheter body 21 defining a loading lumen 22 and that are subject to a movement-suppressing force suppressing movement of the embolus 10 in the axial direction of the catheter body 21. The catheter body 21 has an injection port for injecting fluid (priming fluid) into the loading lumen 22 via an injection hub, and a discharge port for discharging the fluid from the inside of the loading lumen 22. Further, in the loading lumen 22 in a state where the embolus 10 is loaded and the plurality of contact sections 11 are subject to the movement-suppressing force, a fluid flow path 28 is formed, extending from the distal end of the loading lumen 22 to the proximal end thereof and communicating with the injection port and the discharge port.

Description

塞栓物装填済みカテーテルおよび医療器具セットEmbolization pre-loaded catheter and medical device set

 本発明は、塞栓物装填済みカテーテルおよび医療器具セットに関する。 The present invention relates to embolus-loaded catheters and medical device sets.

 患者の大動脈に生じた瘤(大動脈瘤)は、瘤径の増大、破裂を防ぐ薬物的治療はなく、破裂の危険を伴う瘤径のものに対しては、一般的に外科的療法(手術)が行われる。また、大動脈瘤の手術は、従来、開腹または開胸して人工血管を移植する人工血管置換術が主流であったが、近年では、より低侵襲なステントグラフト内挿術(Endovascular Aneurysm Repair;EVAR)の適用が急速に拡大しつつある。 For aneurysms (aortic aneurysms) that occur in the patient's aorta, there is no drug treatment to prevent the aneurysm from increasing in size or rupture. is done. Conventionally, surgery for aortic aneurysms was mainly performed by artificial blood vessel replacement surgery in which an artificial blood vessel was transplanted through laparotomy or thoracotomy. application is expanding rapidly.

 一例として、腹部大動脈瘤(AAA:Abdominal aortic aneurysm)に対するステントグラフト内挿術においては、先端にステントグラフトを収容したカテーテルを患者の末梢血管から挿入し、ステントグラフトを動脈瘤患部に展開・留置することにより、動脈瘤への血流が遮断されて動脈瘤の破裂が防止され得る。 As an example, in stent graft insertion for abdominal aortic aneurysm (AAA), a catheter containing a stent graft at its tip is inserted from the patient's peripheral blood vessel, and the stent graft is deployed and indwelled in the affected area of the aneurysm, Blood flow to the aneurysm may be blocked to prevent rupture of the aneurysm.

 一般的に、ステントグラフト内挿術で使用されるステントグラフトは、略Y字状に分岐した分岐部を備える「主本体部」と、分岐部に装着されると共に右腸骨動脈および左腸骨動脈にそれぞれ装着される「脚部」の2種類の部材を組み立てられる構造を有している。 Generally, a stent graft used in stent graft insertion includes a "main body" having a substantially Y-shaped bifurcation, and a "main body" attached to the bifurcation and extending to the right iliac artery and the left iliac artery. It has a structure that can assemble two types of members that are attached to each leg.

 そのため、ステントグラフト内挿術において、内挿したステントグラフトの密着不足によるステントグラフト周囲からの血液漏れ、動脈瘤から枝分れした細い血管(側枝血管)からの血液の逆流などにより、動脈瘤内に血流が残存する、所謂「エンドリーク」が生じることがある。この場合、動脈瘤内に浸入した血流によって動脈瘤壁に圧がかかってしまうため、動脈瘤破裂の危険性が潜在する。 Therefore, during stent graft insertion, blood leakage from around the stent graft due to insufficient adhesion of the inserted stent graft, backflow of blood from small blood vessels (side branch vessels) branching from the aneurysm, etc. So-called "endoleak" may occur. In this case, blood flow that has entered the aneurysm exerts pressure on the aneurysm wall, potentially causing the aneurysm to rupture.

 下記特許文献1には、エンドリークを起因とする大動脈瘤内への血流残存を遮断するため、圧縮した比較的細長なスポンジ(塞栓物)をその管腔内に保持可能なカテーテルと、カテーテル内に保持された塞栓物を血液で満たされた動脈瘤内に押し出すプランジャーとを備えたデバイスについて開示されている。このデバイスに使用されるスポンジは、血液に曝されると直ちに拡張するため、動脈瘤内に押し出されて瘤内の血液を吸収すると膨張し、その状態で動脈瘤内に留置されて血流を遮断して破裂を防止するものである。 Patent Document 1 below discloses a catheter capable of holding a relatively elongated compressed sponge (embolus) in its lumen in order to block residual blood flow in an aortic aneurysm caused by an endoleak, and a catheter and a plunger that pushes the embolus held therein into the blood-filled aneurysm. Since the sponge used in this device expands immediately when exposed to blood, it expands when it is pushed out into the aneurysm and absorbs the blood inside the aneurysm, and remains in that state in the aneurysm to increase blood flow. It cuts off and prevents rupture.

米国特許第9561096号明細書U.S. Pat. No. 9,561,096

 特許文献1に開示されるデバイスのような管腔に塞栓物を装填した状態のカテーテルは、管腔内に空気が存在する場合があり、瘤内に塞栓物を吐出した際、空気も一緒に排出されることがある。瘤内に排出された空気は、瘤の側枝血管に流れ込んでエアーエンボリズムを引き起こす可能性がある。そのため、術者は、塞栓物を装填した状態のカテーテルに対し、生理食塩水などのプライミング液をカテーテル内に注入して管腔内の空気を排出させるプライミング操作を行う。 In a catheter whose lumen is loaded with an embolus, such as the device disclosed in Patent Document 1, air may exist in the lumen, and when the embolus is ejected into the aneurysm, the air is also included. May be discharged. Air expelled into the aneurysm can flow into the collateral vessels of the aneurysm, causing air embolism. Therefore, the operator performs a priming operation of injecting a priming solution such as physiological saline into the catheter loaded with the embolus to expel the air in the lumen.

 しかし、特許文献1に開示されるデバイスでは、カテーテルに塞栓物を装填した状態でプライミング操作を行うと、プライミング液の押圧力(水圧)によって塞栓物がカテーテルから意図せず飛び出してしまうことがある。塞栓物を装填するカテーテルは、血管などの生体管腔内に挿入して使用するため径サイズが小さく、一度カテーテルから飛び出た塞栓物を再び装填し直すのは困難であり、また、飛び出した塞栓物を再装填することは衛生的にも好ましくなく、改善の余地がある。 However, in the device disclosed in Patent Document 1, when a priming operation is performed with the embolus loaded in the catheter, the embolus may unintentionally pop out of the catheter due to the pressing force (water pressure) of the priming liquid. . Catheters for loading emboli have small diameters because they are used by inserting them into biological lumens such as blood vessels. Reloading is also unhygienic and there is room for improvement.

 本発明の少なくとも一実施形態は、上述の事情に鑑みてなされたものであり、具体的には、プライミング操作時にカテーテルに装填された塞栓物の意図しない飛び出しを防止できる塞栓物装填済みカテーテルおよび医療器具セットを提供することを目的としている。 At least one embodiment of the present invention has been made in view of the circumstances described above. The purpose is to provide an instrument set.

 上記課題を解決するため、本実施形態に係る塞栓物装填済みカテーテルは、長尺状のカテーテル本体と、液体との接触により膨潤する塞栓物と、前記カテーテル本体の先端から基端にかけて連通して設けられ、前記塞栓物が装填された装填用ルーメンと、
 前記装填用ルーメンと連通する挿通路を有し、前記装填用ルーメンに流体を注入可能な注入用ハブと、を備え、前記塞栓物は、前記塞栓物の外周面上に、前記装填用ルーメンを画成する前記カテーテル本体の内周面と接触して前記塞栓物の前記カテーテル本体の軸方向への移動を抑制する移動抑制力を受けている複数の接触部を有し、前記カテーテル本体は、前記注入用ハブを介して前記流体を前記装填用ルーメン内に注入する注入口および前記流体を前記装填用ルーメン内から排出する排出口を有し、前記塞栓物が装填され、かつ前記複数の接触部が前記移動抑制力を受けている状態の前記装填用ルーメン内には、前記装填用ルーメンの先端から基端にかけて延在し、かつ前記注入口および前記排出口と連通した流体流路が形成されている。
In order to solve the above-mentioned problems, a catheter with an embolus loaded therein according to this embodiment communicates with an elongated catheter body and an embolus that swells upon contact with a liquid from the distal end to the proximal end of the catheter body. a loading lumen provided and loaded with the embolic material;
an injection hub having an insertion passage that communicates with the loading lumen and capable of injecting a fluid into the loading lumen; It has a plurality of contact portions that are in contact with the defining inner peripheral surface of the catheter body and receive a movement suppressing force that suppresses movement of the embolus in the axial direction of the catheter body, the catheter body comprising: an inlet for injecting the fluid into the loading lumen through the inlet hub and an outlet for discharging the fluid from the loading lumen; A fluid flow path extending from a distal end to a proximal end of the loading lumen and communicating with the inlet and the outlet is formed in the loading lumen in a state where the portion is subjected to the movement suppressing force. It is

 また、本実施形態に係る医療器具セットは、上述した塞栓物装填済みカテーテルと、前記塞栓物装填済みカテーテルの基端ハブの挿通路を介して前記装填用ルーメンに挿入可能な長尺状のプッシャー本体を備える送達用プッシャーと、を有する。 Further, the medical instrument set according to the present embodiment includes the above-described embolus-loaded catheter and an elongated pusher that can be inserted into the loading lumen through the insertion passage of the proximal hub of the embolus-loaded catheter. a delivery pusher comprising a body.

 本発明の少なくとも一実施形態によれば、プライミング操作時にカテーテルに装填された塞栓物の意図しない飛び出しを防止できる。 According to at least one embodiment of the present invention, it is possible to prevent unintentional ejection of the embolus loaded in the catheter during the priming operation.

本実施形態に係る医療器具セットおよびデリバリーシステムの構成を示す図である。It is a figure which shows the structure of the medical instrument set and delivery system which concern on this embodiment. 本実施形態に係る塞栓物デリバリー医療システムの構成を示す図である。1 is a diagram showing the configuration of an embolus delivery medical system according to this embodiment; FIG. 医療器具セットを構成する塞栓物装填済みカテーテルを軸方向に沿って切断した概略部分断面図である。1 is a schematic partial cross-sectional view taken along an axial direction of an embolus-loaded catheter that constitutes a medical instrument set; FIG. 塞栓物装填済みカテーテルに装填された塞栓物の形態例を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing an example of the form of an embolus loaded in an embolus-loaded catheter. 塞栓物装填済みカテーテルに装填された塞栓物の形態例を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing an example of the form of an embolus loaded in an embolus-loaded catheter. 塞栓物装填済みカテーテルに装填された塞栓物の形態例を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing an example of the form of an embolus loaded in an embolus-loaded catheter. 塞栓物装填済みカテーテルに装填された塞栓物の形態例を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing an example of the form of an embolus loaded in an embolus-loaded catheter. 塞栓物装填済みカテーテルに装填された塞栓物の形態例を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing an example of the form of an embolus loaded in an embolus-loaded catheter. 塞栓物装填済みカテーテルに装填された塞栓物の形態例を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing an example of the form of an embolus loaded in an embolus-loaded catheter. 送達用プッシャーのハンドル部近傍の部分拡大図である。FIG. 11 is a partially enlarged view of the vicinity of the handle portion of the delivery pusher; 送達用プッシャーの挿入状態を示す部分拡大図である。FIG. 11 is a partial enlarged view showing the insertion state of the delivery pusher; 本実施形態に係る塞栓物デリバリー医療システムの動作例であって、送達用カテーテルが瘤内に送達された状態を示す図である。FIG. 10 is an operation example of the embolus delivery medical system according to the present embodiment, showing a state in which the delivery catheter is delivered into the aneurysm. 塞栓物デリバリー医療システムの動作例であって、瘤内にステントグラフトが展開された状態を示す図である。FIG. 10 is an operation example of the embolus delivery medical system, showing a state in which the stent graft is deployed in the aneurysm. 塞栓物デリバリー医療システムの動作例であって、塞栓物装填済みカテーテルを送達用カテーテルに装着する前の状態を示す図である。FIG. 10 is a diagram showing an operation example of the embolus delivery medical system, showing a state before the embolus-loaded catheter is attached to the delivery catheter. 塞栓物デリバリー医療システムの動作例であって、塞栓物装填済みカテーテルを送達用カテーテルに装着した状態を示す図である。FIG. 10 is a diagram showing an operation example of the embolus delivery medical system, showing a state in which an embolus-loaded catheter is attached to the delivery catheter. 塞栓物デリバリー医療システムの動作例であって、送達用プッシャーを塞栓物装填済みカテーテルに挿入中の状態を示す図である。FIG. 10 is an operation example of the embolus delivery medical system, showing a state during insertion of the delivery pusher into the embolus-loaded catheter. 塞栓物デリバリー医療システムの動作例であって、送達用プッシャーによって塞栓物が瘤内に押し出された状態を示す図である。FIG. 10 is an operation example of the embolus delivery medical system, showing a state in which the delivery pusher pushes the embolus into the aneurysm. 塞栓物デリバリー医療システムの動作例であって、送達用カテーテルから塞栓物装填済みカテーテルを離脱させる状態を示す図である。FIG. 10 is a diagram showing an operation example of the embolus delivery medical system, showing a state in which an embolus-loaded catheter is detached from the delivery catheter. 変形例1に係る塞栓物(円形螺旋形状)を装填した塞栓物装填済みカテーテルの概略斜視図である。FIG. 11 is a schematic perspective view of an embolus-loaded catheter loaded with an embolus (circular spiral shape) according to Modification 1; 変形例1に係る塞栓物(三角螺旋形状)を装填した塞栓物装填済みカテーテルの概略斜視図である。FIG. 11 is a schematic perspective view of an embolus-loaded catheter loaded with an embolus (triangular spiral shape) according to modification 1; 変形例1に係る塞栓物(四角螺旋形状)を装填した塞栓物装填済みカテーテルの概略斜視図である。FIG. 10 is a schematic perspective view of an embolus-loaded catheter loaded with an embolus (square spiral shape) according to modification 1; 図8Aに示した塞栓物を装填した塞栓物装填済みカテーテルの概略断面図である。FIG. 8B is a schematic cross-sectional view of the embolus-loaded catheter shown in FIG. 8A. 図8Bに示した塞栓物を装填した塞栓物装填済みカテーテルの概略断面図である。FIG. 8B is a schematic cross-sectional view of the embolus-loaded catheter shown in FIG. 8B. 図8Cに示した塞栓物を装填した塞栓物装填済みカテーテルの概略断面図である。FIG. 8D is a schematic cross-sectional view of the embolus-loaded catheter shown in FIG. 8C. 変形例1に係る塞栓物(ジグザグ形状)を装填した塞栓物装填済みカテーテルの概略斜視図である。FIG. 10 is a schematic perspective view of an embolus-loaded catheter loaded with an embolus (zigzag shape) according to Modification 1; 変形例1に係る塞栓物(波形状)を装填した塞栓物装填済みカテーテルの概略斜視図である。FIG. 10 is a schematic perspective view of an embolus-loaded catheter loaded with an embolus (wavy shape) according to Modification 1; 図10A、図10Bに示した塞栓物を装填した塞栓物装填済みカテーテルの概略断面図である。10B is a schematic cross-sectional view of the embolus-loaded catheter shown in FIGS. 10A and 10B. FIG.

 以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。ここで示す実施形態は、本発明の技術的思想を具体化するために例示するものであって、本発明を限定するものではない。また、本発明の要旨を逸脱しない範囲で当業者などにより考え得る実施可能な他の形態、実施例および運用技術などは全て本発明の範囲、要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. The embodiment shown here is an example for embodying the technical idea of the present invention, and does not limit the present invention. In addition, other practicable modes, embodiments, operation techniques, etc. that can be conceived by those skilled in the art without departing from the gist of the present invention are all included in the scope and gist of the present invention, and are described in the scope of claims. included within the scope of the claimed invention and its equivalents.

 さらに、本明細書に添付する図面は、図示と理解のし易さの便宜上、適宜縮尺、縦横の寸法比、形状などについて、実物から変更し模式的に表現される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。 Furthermore, the drawings attached to this specification may be represented schematically by appropriately changing the scale, length-to-width ratio, shape, etc. from the actual thing for the convenience of illustration and ease of understanding. and does not limit the interpretation of the present invention.

 本実施形態に係る医療器具セット100、デリバリーシステム200および塞栓物デリバリー医療システム300において、生体管腔(血管など)に挿入される側を「先端」とし、先端側と反対側(術者が把持する側)を「基端」とする。また、「先端」とは、最先端から軸方向(長手方向)における一定の範囲を含み、「基端」とは、最基端から軸方向における一定の範囲を含むことを意味する。 In the medical instrument set 100, the delivery system 200, and the embolus delivery medical system 300 according to the present embodiment, the side to be inserted into a biological lumen (such as a blood vessel) is defined as the "tip", and the side opposite to the tip (grasped by the operator). side) is referred to as the “proximal end”. Also, the term "distal end" means a certain range in the axial direction (longitudinal direction) from the distal end, and the term "base end" means a certain range in the axial direction from the most proximal end.

 なお、以下の説明において、「第1」、「第2」のような序数詞を付して説明する場合は、特に言及しない限り、便宜上用いるものであって何らかの順序を規定するものではない。 It should be noted that, in the following description, when describing with ordinal numbers such as "first" and "second", unless otherwise specified, it is used for convenience and does not prescribe any order.

 [構成]
 本実施形態に係る医療器具セット100、デリバリーシステム200および塞栓物デリバリー医療システム300について説明する。
[composition]
A medical instrument set 100, a delivery system 200, and an embolism delivery medical system 300 according to this embodiment will be described.

 本実施形態に係る医療器具セット100、デリバリーシステム200、および塞栓物デリバリー医療システム300は、一例として血管内に生じた瘤(例えば動脈瘤)の破裂を防止するための治療法である、腹部大動脈瘤(AAA)のステントグラフト内挿術に対するエンドリーク塞栓術に適用され得る。また、本実施形態に係る医療器具セット100、デリバリーシステム200、および塞栓物デリバリー医療システム300が適用可能な治療法としては、上記エンドリーク塞栓術に限らず、血管や血管以外の生体管腔内に生じた瘤などの破裂を防止させるための他のインターベンション治療法にも適用可能である。 The medical instrument set 100, the delivery system 200, and the embolus delivery medical system 300 according to the present embodiment are, for example, an abdominal aorta, which is a therapeutic method for preventing rupture of an intravascular aneurysm (for example, an aneurysm). It can be applied in endoleak embolization for stent grafting of aneurysms (AAA). In addition, the medical device set 100, the delivery system 200, and the embolus delivery medical system 300 according to the present embodiment can be applied not only to the above-described endoleak embolization, but also to blood vessels and other biological lumens. It can also be applied to other interventional treatments to prevent rupture of aneurysms in

 図1には、本実施形態に係る医療器具セット100、デリバリーシステム200を構成する各デバイスが示されており、図2には、本実施形態に係る塞栓物デリバリー医療システム300を構成する各デバイスが示されている。 FIG. 1 shows the devices constituting the medical instrument set 100 and the delivery system 200 according to this embodiment, and FIG. 2 shows the devices constituting the embolism delivery medical system 300 according to this embodiment. It is shown.

 <医療器具セット>
 医療器具セット100は、図1に示すように塞栓物10が装填された塞栓物装填済みカテーテル20と、送達用プッシャー30を備えている。
<Medical instrument set>
The medical instrument set 100 includes an embolus-loaded catheter 20 loaded with an embolus 10 and a delivery pusher 30 as shown in FIG.

 〈塞栓物〉
 塞栓物10は、血管内に生じた動脈瘤のような瘤内に留置され、瘤内に流入される血液を含む液体を吸収して膨張する。塞栓物10は、塞栓物装填済みカテーテル20に装填され、塞栓物装填済みカテーテル20が送達用カテーテル40に装着された状態で送達用プッシャー30により押し出されて瘤内に留置される。
<Embolus>
The embolus 10 is indwelled in an aneurysm such as an aneurysm formed in a blood vessel, and expands by absorbing fluid including blood flowing into the aneurysm. The embolus 10 is loaded into the catheter 20 loaded with the embolus, and the catheter 20 loaded with the embolus is pushed out by the pusher 30 for delivery while being attached to the catheter 40 for delivery and left in the aneurysm.

 塞栓物10は、生理条件下で血液を含む水性液体との接触により膨脹する膨張性材料(高分子材料(吸水ゲル材料)など)からなる細長い繊維状の線体(線状体)である。 The embolus 10 is an elongated fibrous linear body (linear body) made of an expandable material (such as a polymer material (water-absorbing gel material)) that expands under physiological conditions when it comes into contact with an aqueous liquid containing blood.

 ここで、「生理条件」とは、哺乳動物(例えば、ヒト)の体内または体表面における少なくとも1つの環境特性を有する条件を意味する。そのような特性は、等張環境、pH緩衝環境、水性環境、中性付近(約7)のpH、又はそれらの組み合わせを包含する。また、「水性液体」は、例えば、等張液、水;血液、髄液、血漿、血清、ガラス体液、尿などの哺乳動物(例えば、ヒト)の体液を包含する。塞栓物10の外径は、塞栓物装填済みカテーテル20および送達用カテーテル40の内径に収容可能であればよく、例えばこれらカテーテルの内径と略同等とすることができる。また、塞栓物10の全長は、特に制限はないが、装填容易性と手技時間の短縮化などを考慮しつつ留置先となる瘤の大きさなどによって適宜決定されてよい。 Here, "physiological condition" means a condition that has at least one environmental characteristic in or on the body of a mammal (eg, human). Such properties include an isotonic environment, a pH buffered environment, an aqueous environment, a pH near neutrality (about 7), or combinations thereof. In addition, "aqueous liquid" includes, for example, isotonic liquid, water; body fluids of mammals (eg, humans) such as blood, cerebrospinal fluid, plasma, serum, vitreous humor, and urine. The outer diameter of the embolus 10 can be accommodated within the inner diameters of the embolus-loaded catheter 20 and the delivery catheter 40, and can be, for example, approximately the same as the inner diameters of these catheters. Also, the total length of the embolization device 10 is not particularly limited, but may be appropriately determined depending on the size of the aneurysm to be indwelled in consideration of ease of loading and shortening of procedure time.

 なお、塞栓物10の構成材料は、少なくとも血液のような液体を吸収して膨張し、かつ瘤内に留置された状態でも人体への有害性がない(または極めて低い)材料であれば、特に限定されない。また、塞栓物10は、X線、蛍光X線、超音波、蛍光法、赤外線、紫外線などの確認方法によって生体内の存在位置が確認可能な可視化材料が添加されていてよい。 In addition, the constituent material of the embolization object 10 should be at least a material that expands by absorbing a liquid such as blood and has no (or extremely low) toxicity to the human body even when indwelled in the aneurysm. Not limited. In addition, the embolus 10 may be added with a visualization material that allows confirmation of its location in the living body by a confirmation method such as X-rays, fluorescent X-rays, ultrasonic waves, fluorescent methods, infrared rays, and ultraviolet rays.

 塞栓物10は、塞栓物装填済みカテーテル20の装填用ルーメン22を画成するカテーテル本体21の内周面21aと接触して塞栓物10のカテーテル本体21の軸方向への移動を抑制する移動抑制力を受ける接触部11を、外周面上に複数有する。 The embolus 10 is in contact with the inner peripheral surface 21a of the catheter body 21 defining the loading lumen 22 of the catheter 20 loaded with the embolus, thereby suppressing movement of the embolus 10 in the axial direction of the catheter body 21. A plurality of contact portions 11 that receive force are provided on the outer peripheral surface.

 ここで、「移動抑制力」とは、カテーテル本体21の径方向に沿って作用し、塞栓物10が受ける軸方向の押圧力に抗して塞栓物10の軸方向への移動を抑制する力である。詳細には、移動抑制力は、「カテーテル本体21の内周面21aからカテーテル本体21の軸中心方向に向かって塞栓物10を圧縮する圧縮力に起因した圧力」と、「カテーテル本体21に装填された際の塞栓物10の復元性により塞栓物10の軸中心からカテーテル本体21の内周面21aに向かう復元力(突っ張り力)に起因した圧力」の少なくとも一方を含む。 Here, the “movement suppression force” is a force that acts along the radial direction of the catheter body 21 and suppresses the axial movement of the embolus 10 against the axial pressing force applied to the embolus 10. is. Specifically, the movement suppressing force is defined as "the pressure resulting from the compressive force that compresses the embolus 10 from the inner peripheral surface 21a of the catheter body 21 toward the axial center of the catheter body 21" pressure due to a restoring force (pulling force) directed from the axial center of the embolization object 10 toward the inner peripheral surface 21a of the catheter body 21 due to the resilience of the embolism object 10 when it is applied.

 移動抑制力は、少なくともプライミング操作時に意図しないカテーテル本体21からの塞栓物10の飛び出しが防止され、送達用プッシャー30などによる意図的な吐出操作時には塞栓物10が吐出可能な程度の力を有する。したがって、塞栓物10は、プライミング操作時には、プライミング液から受ける押圧力(水圧)に抗してカテーテル本体21から飛び出ず、吐出操作時には、その操作を妨げることなくスムーズに吐出される。移動抑制力は、上述したように圧縮力や復元力に起因する力であるため、塞栓物10の外径サイズ、カテーテル本体21の送達用ルーメンの内径サイズ、塞栓物10の弾性復元力などの調整要素を適宜設定することで適切な力に調整することができる。また、移動抑制力は、これら調整要素に加えて、塞栓物10やカテーテル本体21の材質に起因する摩擦力を調整することで、より適切なものとすることができる。 The movement-suppressing force has a force that prevents the embolus 10 from unintentionally popping out of the catheter body 21 at least during the priming operation, and that allows the embolus 10 to be ejected during an intentional ejection operation using the delivery pusher 30 or the like. Therefore, the embolus 10 does not jump out of the catheter main body 21 against the pressing force (water pressure) received from the priming liquid during the priming operation, and is smoothly expelled without interfering with the ejection operation. As described above, the movement-suppressing force is a force resulting from a compressive force or a restoring force. Appropriate force can be adjusted by appropriately setting the adjustment element. Further, the movement suppressing force can be made more appropriate by adjusting the frictional force caused by the materials of the embolization object 10 and the catheter main body 21 in addition to these adjusting elements.

 塞栓物10は、図3に示すように、複数の接触部11が移動抑制力を受けることにより、見かけ上の垂直抗力Nが増加し、「静止摩擦力F>プライミング液による押圧力P」の関係が維持され易くなる。そのため、塞栓物10は、プライミング操作の際に、プライミング液の押圧力Pに抗して装填用ルーメン22内に留まってカテーテル本体21から飛び出ることがない。 As shown in FIG. 3, the plurality of contact portions 11 of the embolus 10 receive a movement-suppressing force, so that the apparent normal force N increases, and the relation of "stationary friction force F>pressing force P by the priming liquid" is satisfied. Easier to maintain relationships. Therefore, during the priming operation, the embolus 10 stays in the loading lumen 22 against the pressing force P of the priming solution and does not jump out of the catheter main body 21 .

 また、塞栓物10が装填された状態の装填用ルーメン22内には、装填用ルーメン22の先端から基端にかけて延在し、かつ塞栓物装填済みカテーテル20のカテーテル本体21が有する液体(プライミング液)の注入口および排出口と連通する流体流路28が形成される。 In addition, in the loading lumen 22 loaded with the embolus 10, there is a liquid (priming liquid) that extends from the distal end to the proximal end of the loading lumen 22 and that the catheter main body 21 of the catheter 20 with the embolus loaded has. ) are formed in fluid flow passages 28 communicating with inlets and outlets of .

 流体流路28は、塞栓物10が装填された状態で装填用ルーメン22内に形成される。流体流路28は、装填用ルーメン22内に液体が注入可能な注入口を有する液体注入部と連通するとともに、装填用ルーメン22から液体が排出可能な排出口を有する液体注入部と連通し、プライミング液などの液体が流通可能に構成される。本実施形態において、注入口は、液体注入部として機能する基端ハブ23の挿通路23aにおける先端側の開口部であり、流体流路28の液体注入側の開口部と連通する。本実施形態において、排出口は、液体排出部として機能する装填用ルーメン22の先端側の開口部であり、流体流路28の液体排出側の開口部と連通する。 A fluid flow path 28 is formed within the loading lumen 22 with the embolus 10 loaded. The fluid flow path 28 communicates with a liquid injection part having an injection port into the loading lumen 22 through which liquid can be injected, and communicates with a liquid injection part having an outlet through which the liquid can be discharged from the loading lumen 22, A liquid such as a priming liquid is configured to flow. In this embodiment, the injection port is an opening on the distal end side of the insertion passage 23a of the proximal hub 23 that functions as a liquid injection part, and communicates with the opening on the liquid injection side of the fluid channel 28 . In this embodiment, the outlet is an opening on the distal end side of the loading lumen 22 that functions as a liquid outlet, and communicates with an opening on the liquid outlet side of the fluid channel 28 .

 なお、流体流路28と連通する注入口は、基端ハブ23の挿通路23aにおける先端側の開口部に限定されず、カテーテル本体21に設けられて装填用ルーメン22と連通した液体注入用の開口部であればよい。また、流体流路28と連通する排出口は、装填用ルーメン22の先端側の開口部に限定されず、カテーテル本体21に設けられて装填用ルーメン22と連通した液体排出用の開口部であればよい。 The injection port communicating with the fluid flow path 28 is not limited to the opening on the distal side of the insertion passage 23a of the proximal hub 23. Any opening may be used. Further, the discharge port communicating with the fluid flow path 28 is not limited to the opening on the distal end side of the loading lumen 22, and may be any liquid discharge opening provided in the catheter body 21 and communicating with the loading lumen 22. Just do it.

 本実施形態において、塞栓物10は、図1に示すように塞栓物装填済みカテーテル20の装填用ルーメン22の全長よりも短い。そのため、流体流路28は、少なくとも装填用ルーメン22の一部(塞栓物10の軸方向の前後に広がる空間)と、装填用ルーメン22を画成するカテーテル本体21の内周面21aと塞栓物10の外周面との間に形成される空隙からなる第1流体流路28aを含む構成となる。また、流体流路28は、少なくとも装填用ルーメン22の一部と、塞栓物10の基端から先端にかけて塞栓物10の内方に形成される空隙からなる第2流体流路28bを含む構成としてもよい。さらに、流体流路28は、少なくとも装填用ルーメン22の一部と、第1流体流路28aおよび第2流体流路28bを含む構成としてもよい。 In this embodiment, the embolus 10 is shorter than the total length of the loading lumen 22 of the embolus-loaded catheter 20 as shown in FIG. Therefore, the fluid flow path 28 includes at least a portion of the loading lumen 22 (the space extending in the axial direction of the embolus 10), the inner peripheral surface 21a of the catheter body 21 defining the loading lumen 22, and the embolus. 10 and the first fluid flow path 28a formed of a gap formed between the outer peripheral surface of the first fluid flow path 28a. In addition, the fluid flow path 28 includes at least a portion of the loading lumen 22 and a second fluid flow path 28 b formed from a gap formed inside the embolus 10 from the proximal end to the distal end of the embolus 10 . good too. Further, fluid flow path 28 may include at least a portion of loading lumen 22, first fluid flow path 28a and second fluid flow path 28b.

 なお、塞栓物10の全長と装填用ルーメン22の全長とが略同一の場合、流体流路28は、第1流体流路28a、第2流体流路28bの少なくとも一方で構成されることとなる。第1流体流路28aや第2流体流路28bのみで構成される流体流路28は、一方の開口部が注入口(本実施形態における基端ハブ23の先端側の開口部)と連通し、他方の開口部が排出口(装填用ルーメン22の先端側の開口部)と連通する。 In addition, when the total length of the embolus 10 and the total length of the loading lumen 22 are substantially the same, the fluid flow path 28 is formed by at least one of the first fluid flow path 28a and the second fluid flow path 28b. . One of the openings of the fluid flow path 28, which is composed only of the first fluid flow path 28a and the second fluid flow path 28b, communicates with the injection port (the opening on the distal end side of the proximal hub 23 in this embodiment). , the other opening communicates with the discharge port (the opening on the distal end side of the loading lumen 22).

 このように、塞栓物装填済みカテーテル20は、装填用ルーメン22内に塞栓物10が装填された状態で、装填用ルーメン22内に流体流路28が形成される。そのため、塞栓物装填済みカテーテル20をプライミング操作した際、プライミング液は、塞栓物装填済みカテーテル20の装填用ルーメン22に注入された後、流体流路28を通って装填用ルーメン22内からスムーズに排出される。したがって、塞栓物10は、プライミング液から受ける押圧力が低減するため、移動抑制力による移動抑制効果と相俟って、カテーテル本体21からより飛び出し難くなる。 Thus, the embolus-loaded catheter 20 has a fluid flow path 28 formed in the loading lumen 22 with the embolus 10 loaded therein. Therefore, when the embolus-loaded catheter 20 is primed, the priming solution is injected into the loading lumen 22 of the embolus-loaded catheter 20 and then flows smoothly from the loading lumen 22 through the fluid flow path 28 . Ejected. Therefore, the embolus 10 is less likely to protrude from the catheter main body 21 because the pressing force received from the priming solution is reduced, coupled with the movement restraining effect of the movement restraining force.

 図4A~図4Cおよび図5A~図5Cには、本実施形態に係る塞栓物10の各形態において、塞栓物装填済みカテーテル20の装填用ルーメン22に装填された状態の概略断面図が示されている。図4A~図4Cおよび図5A~図5Cに示す塞栓物装填済みカテーテル20は、何れの形態においても接触部11が移動抑制力を受けた状態で装填用ルーメン22に装填され、この装填状態において、流体流路28が形成される。 4A to 4C and FIGS. 5A to 5C show schematic cross-sectional views of various forms of the embolus 10 according to the present embodiment, which are loaded into the loading lumen 22 of the catheter 20 loaded with the embolus. ing. The embolus-loaded catheter 20 shown in FIGS. 4A to 4C and FIGS. 5A to 5C is loaded into the loading lumen 22 in a state where the contact portion 11 receives a movement restraining force in any of the configurations. , a fluid flow path 28 is formed.

 図4A~図4Cに示すように、塞栓物10(塞栓物10A~塞栓物10C)は、外形が、塞栓物装填済みカテーテル20の装填用ルーメン22を画成するカテーテル本体21の内周面21aの形状と異なり、外周面の複数箇所が接触部11(接触部11A~接触部11C)として機能する。接触部11A~接触部11Cは、移動抑制力を受けた状態でカテーテル本体21の内周面21aと接触する。塞栓物10A~塞栓物10Cが装填用ルーメン22に装填された状態において、装填用ルーメン22内には、塞栓物10と内周面21aとの間の空隙によって第1流体流路28aが形成される。なお、接触部11A~接触部11Cの内周面21aとの接触形態は、点接触でもよいし面接触でもよく、移動抑制力を受けた状態で内周面21aと接触していれば特に制限はない。 As shown in FIGS. 4A to 4C, the embolus 10 (emboli 10A to 10C) has an outer peripheral surface 21a of the catheter body 21 defining the loading lumen 22 of the catheter 20 loaded with the embolus. , a plurality of locations on the outer peripheral surface function as contact portions 11 (contact portions 11A to 11C). The contact portions 11A to 11C come into contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force. In a state in which the embolus 10A to 10C are loaded in the loading lumen 22, a first fluid flow path 28a is formed in the loading lumen 22 by the gap between the embolus 10 and the inner peripheral surface 21a. be. The contact form of the contact portions 11A to 11C with the inner peripheral surface 21a may be either point contact or surface contact, and is particularly limited as long as they are in contact with the inner peripheral surface 21a while receiving a movement suppressing force. no.

 図4Aに示すように、塞栓物10Aは、断面形状が楕円形をなしている。塞栓物10Aは、長径方向の端部(図中2箇所)が接触部11Aとして機能し、移動抑制力を受けた状態でカテーテル本体21の内周面21aと接触している。また、図4Aに示すように、塞栓物10Aと内周面21aの間に形成された2箇所の空隙が第1流体流路28aとして機能する。 As shown in FIG. 4A, the embolus 10A has an elliptical cross-sectional shape. The embolus 10A functions as a contact portion 11A at its ends (two points in the drawing) in the longitudinal direction, and is in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force. Further, as shown in FIG. 4A, two gaps formed between the plug 10A and the inner peripheral surface 21a function as first fluid flow paths 28a.

 図4Bに示すように、塞栓物10Bは、断面形状が星形多角形(星形正七角形)をなしている。塞栓物10Bは、内周面21aと対向する各頂点(図中7箇所)が接触部11Bとして機能し、移動抑制力を受けた状態でカテーテル本体21の内周面21aと接触している。また、図4Bに示すように、塞栓物10Bと内周面21aの間に形成された7箇所の空隙が第1流体流路28aとして機能する。 As shown in FIG. 4B, the embolus 10B has a star-shaped polygon (star-shaped regular heptagon) in cross section. The embolus 10B functions as a contact portion 11B at each vertex (seven points in the figure) facing the inner peripheral surface 21a, and is in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force. Further, as shown in FIG. 4B, seven gaps formed between the plug 10B and the inner peripheral surface 21a function as first fluid flow paths 28a.

 図4Cに示すように、塞栓物10Cは、断面形状が略十字形をなしている。塞栓物10Cは、内周面21aと対向する頂端部の角部(図中8箇所)が接触部11Cとして機能し、移動抑制力を受けた状態でカテーテル本体21の内周面21aと接触している。また、図4Cに示すように、塞栓物10Cと内周面21aの間に形成された8箇所の空隙が第1流体流路28aとして機能する。 As shown in FIG. 4C, the embolus 10C has a cross-sectional shape. The embolus 10C functions as a contact portion 11C at the corners (eight locations in the drawing) of the apex facing the inner peripheral surface 21a, and contacts the inner peripheral surface 21a of the catheter main body 21 while receiving a movement suppressing force. ing. Further, as shown in FIG. 4C, eight gaps formed between the plug 10C and the inner peripheral surface 21a function as first fluid flow paths 28a.

 図5A~図5Cに示すように、塞栓物10(塞栓物10D~塞栓物10F)は、外形が、装填用ルーメン22を画成するカテーテル本体21の内周面21aの形状と略同形であり、外周面の略全面が接触部11(接触部11D~接触部11F)として機能する。接触部11D~接触部11Fは、移動抑制力を受けた状態でカテーテル本体21の内周面21aと接触する。塞栓物10D~塞栓物10Fが装填用ルーメン22に装填された状態において、装填用ルーメン22には、塞栓物10の先端側から基端側にかけて内方に形成される空隙によって第2流体流路28bが形成される。 As shown in FIGS. 5A to 5C, the embolus 10 (embolus 10D to 10F) has an external shape that is substantially the same as the shape of the inner peripheral surface 21a of the catheter body 21 defining the loading lumen 22. , substantially the entire outer peripheral surface functions as the contact portion 11 (contact portions 11D to 11F). The contact portions 11D to 11F come into contact with the inner peripheral surface 21a of the catheter body 21 while receiving movement suppressing force. In the state where the embolus 10D to 10F are loaded in the loading lumen 22, a second fluid flow path is provided in the loading lumen 22 by a gap formed inwardly from the distal side to the proximal side of the embolus 10. 28b is formed.

 図5Aに示すように、塞栓物10Dは、断面形状が略円筒形をなしている。塞栓物10Dは、外周面の略全域が接触部11Dとして機能し、外周面の複数箇所で移動抑制力を受けた状態でカテーテル本体21の内周面21aと接触している。また、図5Aに示すように、塞栓物10Dの内方に先端側から基端側にかけて連通して形成される内腔(空隙)が第2流体流路28bとして機能する。 As shown in FIG. 5A, the embolus 10D has a substantially cylindrical cross-sectional shape. Approximately the entire outer peripheral surface of the embolus 10D functions as a contact portion 11D, and is in contact with the inner peripheral surface 21a of the catheter main body 21 while being subjected to a movement suppressing force at a plurality of locations on the outer peripheral surface. In addition, as shown in FIG. 5A, a lumen (gap) formed in the embolus 10D in communication from the distal end to the proximal end functions as a second fluid channel 28b.

 図5Bに示すように、塞栓物10Eは、断面形状が略円形をなし、内方に複数の微小孔(孔形状は円形、多角形を問わず)が形成されている。塞栓物10Eは、外周面の略全域が接触部11Eとして機能し、外周面の複数箇所で移動抑制力を受けた状態でカテーテル本体21の内周面21aと接触している。また、図5Bに示すように、塞栓物10Eの内方に先端側から基端側にかけて連通して形成される複数の孔(空隙)が第2流体流路28bとして機能する。なお、塞栓物10Eは、複数の微小孔における開口サイズや形成数について特に制限はなく、塞栓物10としての機能を担保しつつ液体が流通可能な構成であればよい。 As shown in FIG. 5B, the embolus 10E has a substantially circular cross-sectional shape, and a plurality of micropores (regardless of whether the hole shape is circular or polygonal) are formed inside. Approximately the entire outer peripheral surface of the embolus 10E functions as a contact portion 11E, and is in contact with the inner peripheral surface 21a of the catheter main body 21 while being subjected to a movement suppressing force at a plurality of locations on the outer peripheral surface. Further, as shown in FIG. 5B, a plurality of holes (gaps) formed in communication from the distal end side to the proximal end side of the embolization object 10E function as second fluid flow paths 28b. The embolization object 10E is not particularly limited in terms of the opening size and the number of micropores formed, and may have any configuration that allows liquid to flow while ensuring the function of the embolization object 10. FIG.

 図5Cに示すように、塞栓物10Fは、断面形状が螺旋形をなしている。塞栓物10Fは、例えば平面視矩形板状に成形した後、装填用ルーメン22内に収容可能に軸方向と直交する短手方向に丸めて成形される。塞栓物10Fは、最外周面の略全域が接触部11Fとして機能し、最外周面の複数箇所で移動抑制力を受けた状態でカテーテル本体21の内周面21aと接触している。また、図5Cに示すように、塞栓物10Fの内方に先端側から基端側にかけて連通して形成される断面渦巻き状の空隙が第2流体流路28bとして機能する。 As shown in FIG. 5C, the embolus 10F has a helical cross-sectional shape. The embolus 10F is formed, for example, in a rectangular plate shape in a plan view, and then rolled in a lateral direction perpendicular to the axial direction so as to be accommodated in the loading lumen 22 . Approximately the entire outermost peripheral surface of the embolus 10F functions as a contact portion 11F, and is in contact with the inner peripheral surface 21a of the catheter main body 21 while being subjected to a movement suppressing force at multiple locations on the outermost peripheral surface. Further, as shown in FIG. 5C, a space having a spiral cross-section formed in communication from the distal end side to the proximal end side of the embolus 10F functions as a second fluid flow path 28b.

 以上のように、塞栓物10A~塞栓物10Fは、接触部11A~接触部11Fが移動抑制力を受けた状態でカテーテル本体21の内周面21aと接触した状態で装填用ルーメン22に装填される。また、塞栓物10A~塞栓物10Fを装填した状態の装填用ルーメン22内には、プライミング液が流通可能な第1流体流路28aと第2流体流路28bの少なくとも一方を含む流体流路28が形成される。プライミング液は、流体流路28を通って装填用ルーメン22内を流通するため、プライミング操作時に塞栓物10が受ける押圧力は、流体流路28を有さない従来構成のデバイスと比べて格段に低減される。また、塞栓物10は、接触部11が移動抑制力を受けた状態で装填用ルーメン22内に装填されるため、プライミング液の押圧力に抗して装填用ルーメン22内に留まることができる。したがって、塞栓物装填済みカテーテル20は、プライミング操作時に塞栓物10の意図しない飛び出しが防止される。 As described above, the embolus 10A to 10F are loaded into the loading lumen 22 in a state in which the contact portions 11A to 11F are in contact with the inner peripheral surface 21a of the catheter body 21 while receiving the movement suppressing force. be. In the loading lumen 22 loaded with the embolus 10A to 10F, there is a fluid flow path 28 including at least one of a first fluid flow path 28a and a second fluid flow path 28b through which the priming liquid can flow. is formed. Since the priming fluid flows through the fluid flow path 28 and into the loading lumen 22, the pressure force applied to the occlusive object 10 during the priming operation is significantly greater than that of a device having a conventional configuration that does not have the fluid flow path 28. reduced. In addition, since the embolus 10 is loaded into the loading lumen 22 while the contact portion 11 receives the movement suppressing force, it can stay in the loading lumen 22 against the pressing force of the priming solution. Therefore, the embolus-loaded catheter 20 is prevented from unintentionally ejecting the embolus 10 during the priming operation.

 なお、塞栓物10は、図4A~図4Cや図5A~図5Cに示した形状に限定されない。塞栓物10は、少なくとも装填用ルーメン22内に装填された状態においてカテーテル本体21の内周面21aと接触した状態で移動抑制力を受ける接触部11を複数有し、かつ装填用ルーメン22に装填された状態で注入口(一例として、基端ハブ23の先端側の開口部)から装填用ルーメン22内に注入したプライミング液が排出口(一例として、装填用ルーメン22の先端側の開口部)から排出されるように第1流体流路28aや第2流体流路28bを含む流体流路28が形成可能な形状を有していればよい。また、塞栓物10は、軸方向における一部のみに接触部11を有する形状としてもよい。 The embolus 10 is not limited to the shapes shown in FIGS. 4A to 4C and FIGS. 5A to 5C. The embolus 10 has a plurality of contact portions 11 which receive a movement suppressing force while being in contact with the inner peripheral surface 21a of the catheter body 21 at least when loaded into the loading lumen 22, and is loaded into the loading lumen 22. The priming liquid injected into the charging lumen 22 from the injection port (for example, the opening on the distal end side of the proximal hub 23) is discharged from the discharge port (for example, the opening on the distal side of the loading lumen 22). It is sufficient that the fluid flow path 28 including the first fluid flow path 28a and the second fluid flow path 28b can be formed so as to be discharged from the fluid flow path 28a. Further, the plug 10 may have a shape having the contact portion 11 only partially in the axial direction.

 塞栓物10の他の形態例としては、図4A~図4Cに示した第1流体流路28aが形成可能な構成において、塞栓物10の先端側から基端側の外周面に、軸方向に沿う少なくとも一条の螺旋状波形の溝部(ねじ溝形状の螺旋溝)を設け、溝部を第1流体流路28aとして機能させ、溝部以外の外周面を接触部11として機能させるような構成が挙げられる。 As another example of the configuration of the embolization object 10, in the configuration in which the first fluid flow path 28a can be formed as shown in FIGS. At least one helically wavy groove (thread groove-shaped spiral groove) is provided along the groove, the groove functions as the first fluid flow path 28a, and the outer peripheral surface other than the groove functions as the contact portion 11. .

 また、塞栓物10は、第1流体流路28aと第2流体流路28bの両方を備えた構成とすることもできる。例えば、図4Aに示す断面楕円形の塞栓物10Aの内方に、図5Aに示すような軸方向に先端から基端にかけて延在する内腔を設けた構成とすることもできる。 Also, the plug 10 can be configured to include both the first fluid channel 28a and the second fluid channel 28b. For example, an obturator 10A having an elliptical cross section shown in FIG. 4A may be provided with a lumen extending axially from the distal end to the proximal end as shown in FIG. 5A.

 〈塞栓物装填済みカテーテル〉
 塞栓物装填済みカテーテル20は、内方に装填用ルーメン22が設けられる長尺状のカテーテル本体21と、カテーテル本体21の基端側に設けられる基端ハブ23と、一端が基端ハブ23の基端側と接続されて他端が活栓25のポート26と接続される可撓性を有するチューブ24を備えている。
<Cather with embolus loaded>
The embolus-loaded catheter 20 includes an elongated catheter body 21 having a loading lumen 22 provided therein, a proximal hub 23 provided on the proximal side of the catheter body 21, and a proximal hub 23 at one end. It has a flexible tube 24 which is connected to the proximal side and whose other end is connected to a port 26 of a stopcock 25 .

 カテーテル本体21は、軸方向に沿って先端側の開口部から基端側の開口部にかけて連通する孔(装填用ルーメン22)が形成された管状部材である。カテーテル本体21の延在方向の長さは、適宜規定されるが、少なくとも塞栓物10が収容可能な長さを有していればよい。 The catheter main body 21 is a tubular member in which a hole (loading lumen 22) communicating from an opening on the distal end side to an opening on the proximal end side along the axial direction is formed. The length of the catheter main body 21 in the extending direction is defined as appropriate, but it is sufficient that it has a length that can accommodate at least the embolism 10 .

 装填用ルーメン22の内径は、送達用カテーテル40のシースルーメン42の内径と略同等に設計されている。これにより、塞栓物10の外径は、塞栓物装填済みカテーテル20および送達用カテーテル40の内径と略同等にできる。 The inner diameter of the loading lumen 22 is designed to be substantially the same as the inner diameter of the sheath lumen 42 of the delivery catheter 40 . This allows the outer diameter of the embolus 10 to be approximately the same as the inner diameter of the embolus-loaded catheter 20 and the delivery catheter 40 .

 塞栓物装填済みカテーテル20は、主として予め塞栓物10が装填された状態で供されるが、カテーテル本体21に装填される塞栓物10は、術者などが塞栓物10を把持してカテーテル本体21内に装填してもよい。塞栓物10の装填方法としては、術者が塞栓物10を把持して塞栓物装填済みカテーテル20の先端接続部27側または基端ハブ23側から挿入することができる。 The embolus-loaded catheter 20 is mainly supplied with the embolus 10 pre-loaded. You can load it inside. As a method of loading the embolus 10, the operator can grasp the embolus 10 and insert it into the catheter 20 loaded with the embolus from the distal connecting portion 27 side or the proximal hub 23 side.

 カテーテル本体21は、塞栓物10が収容された状態で先端接続部27を介して送達用カテーテル40のシースハブ43と係合して装着される。この装着状態において、送達用プッシャー30が基端ハブ23から挿入されることにより、装填される塞栓物10は、送達用カテーテル40に向けて押し出される。 The catheter body 21 with the embolus 10 housed therein is attached by engaging with the sheath hub 43 of the delivery catheter 40 via the distal connection portion 27 . In this mounted state, the delivery pusher 30 is inserted from the proximal hub 23 to push the loaded embolus 10 toward the delivery catheter 40 .

 塞栓物装填済みカテーテル20の構成材料は、少なくとも送達用カテーテル40よりも剛性を有し、包装時などに装填される塞栓物10の破損が防止される程度の適度な硬さが得られる材料であれば、特に限定されない。カテーテル本体21の構成材料の一例としては、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、またはこれら二種以上の混合物など)、ポリオレフィンエラストマー、ポリオレフィンの架橋体、ポリ塩化ビニル、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、ポリウレタンエラストマー、フッ素系樹脂、ポリカーボネート、ポリスチレン、ポリアセタール、ポリイミド、ポリエーテルイミド、芳香族ポリエーテルケトンなどの高分子材料またはこれらの混合物のような樹脂材料、形状記憶合金、ステンレス、タンタル、チタン、プラチナ、金、タングステンのような金属材料を好適に用いることができる。 The constituent material of the embolus-loaded catheter 20 is at least more rigid than the delivery catheter 40, and is a material that provides an appropriate degree of hardness to prevent breakage of the embolus 10 loaded during packaging. If there is, it is not particularly limited. Examples of constituent materials of the catheter body 21 include polyolefins (eg, polyethylene, polypropylene, polybutene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, ionomers, or mixtures of two or more of these), polyolefin elastomers. , Polyolefin crosslinked products, Polyvinyl chloride, Polyamide, Polyamide elastomer, Polyester, Polyester elastomer, Polyurethane, Polyurethane elastomer, Fluoropolymers, Polycarbonate, Polystyrene, Polyacetal, Polyimide, Polyetherimide, Aromatic polyetherketone, etc. Resin materials such as materials or mixtures thereof, shape memory alloys, metal materials such as stainless steel, tantalum, titanium, platinum, gold, and tungsten can be preferably used.

 なお、カテーテル本体21は、塞栓物10の破損防止の観点からシース41よりも剛性を有していればよいため、材料自体を硬質なものにする他、シース41と同材料を採用したときには肉厚を厚くしてキンクし難い形態としてもよい。肉厚を可変した形態の場合、カテーテル本体21の外径がシース41の外径よりも太径となるが、塞栓物装填済みカテーテル20は送達用カテーテル40と係合部60を介して装着されるため、特に問題とはならない。 It should be noted that the catheter main body 21 only needs to be more rigid than the sheath 41 from the viewpoint of preventing breakage of the embolus 10. Therefore, the material itself should be hard, and if the same material as the sheath 41 is used, it will be thicker than the sheath 41. It is good also as a form which thickens thickness and is hard to kink. In the case of a configuration in which the wall thickness is variable, the outer diameter of the catheter main body 21 is larger than the outer diameter of the sheath 41, but the catheter 20 loaded with the embolus is attached to the delivery catheter 40 via the engaging portion 60. Therefore, it is not a problem.

 基端ハブ23は、カテーテル本体21の装填用ルーメン22とチューブ24を連通させる挿通路23a(ルーメン)を備え、活栓25から流入する流体(生理食塩水などのプライミング液)を、チューブ24を介してカテーテル本体21に流通させる中間部材である。基端ハブ23は、塞栓物装填済みカテーテル20の装填用ルーメン22にプライミング液を注入可能な注入用ハブとして機能する。装填用ルーメン22に装填された塞栓物10は、送達用プッシャー30が基端ハブ23の挿通路23aを介して装填用ルーメン22に挿通されることにより、送達用カテーテル40に向けて押し出される。 The proximal end hub 23 has an insertion passage 23a (lumen) that allows the tube 24 to communicate with the loading lumen 22 of the catheter body 21. It is an intermediate member for circulating through the catheter main body 21. Proximal hub 23 functions as an injection hub capable of injecting priming fluid into loading lumen 22 of embolization-loaded catheter 20 . The embolus 10 loaded into the loading lumen 22 is pushed out toward the delivery catheter 40 by inserting the delivery pusher 30 into the loading lumen 22 via the insertion passage 23 a of the proximal hub 23 .

 基端ハブ23の構成材料としては、硬質樹脂のような硬質材料であれば、特に限定されない。基端ハブ23の構成材料の一例としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、ポリカーボネート、ポリスチレンなどを好適に用いることができる。 The constituent material of the base end hub 23 is not particularly limited as long as it is a hard material such as hard resin. As an example of the constituent material of the base end hub 23, polyolefins such as polyethylene and polypropylene, polyamide, polycarbonate, polystyrene, and the like can be suitably used.

 また、基端ハブ23の基端側の内方には、図示しない止血弁が取り付けられている。止血弁は、例えば弾性部材であるシリコーンゴム、ラテックスゴム、ブチルゴム、イソプレンゴムなどで構成された略楕円形の膜状(円盤状)の弁体を用いてよい。 A hemostatic valve (not shown) is attached to the inside of the proximal end side of the proximal end hub 23 . The hemostasis valve may use a substantially elliptical film-like (disc-like) valve body made of, for example, an elastic member such as silicone rubber, latex rubber, butyl rubber, or isoprene rubber.

 チューブ24は、一端が基端ハブ23の基端側と連結され、他端が活栓25のポート26と連結される。チューブ24は、ポート26に連結される図示しないプライミング用シリンジから流出される生理食塩水などの液体が流通する管路である。 The tube 24 has one end connected to the proximal side of the proximal hub 23 and the other end connected to the port 26 of the stopcock 25 . The tube 24 is a conduit through which liquid such as physiological saline discharged from a priming syringe (not shown) connected to the port 26 flows.

 チューブ24は、操作性を考慮して可撓性を有する樹脂材料であれば、特に限定されない。チューブ24の構成材料の一例としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体などのポリオレフィン、ポリエチレンテレフタレートなどのポリエステル、ポリスチレン、ポリ塩化ビニルなどを好適に用いることができる。 The tube 24 is not particularly limited as long as it is a resin material having flexibility in consideration of operability. As an example of the constituent material of the tube 24, polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymers, polyesters such as polyethylene terephthalate, polystyrene, and polyvinyl chloride can be suitably used.

 活栓25は、基端ハブ23の挿通路23aと、チューブ24を介してカテーテル本体21の装填用ルーメン22と連通する。活栓25のポート26には、チューブ24の基端側が接続される他、カテーテル本体21の装填用ルーメン22をプライミング操作するためのプライミング用シリンジを接続することもできる。本実施形態において、活栓25は、三方活栓を採用している。しかし、活栓25は、三方活栓に限定されず、他の形態(例えば二方活栓やポートが4つ以上の多方活栓など)を採用してもよい。 The stopcock 25 communicates with the insertion passage 23 a of the proximal hub 23 and the loading lumen 22 of the catheter body 21 via the tube 24 . The proximal end of the tube 24 is connected to the port 26 of the stopcock 25, and a priming syringe for priming the loading lumen 22 of the catheter body 21 can also be connected. In this embodiment, the stopcock 25 employs a three-way stopcock. However, the stopcock 25 is not limited to a three-way stopcock, and other forms (for example, a two-way stopcock, a multi-way stopcock having four or more ports, etc.) may be adopted.

 先端接続部27は、塞栓物装填済みカテーテル20の先端側に設けられ、送達用カテーテル40のシースハブ43の基端側に着脱可能に接続される。先端接続部27は、シースハブ43の連通路43aにおける基端側の内周面に形成した係合凹部と、先端接続部27の径方向外方に突出する弾性変形可能な係合凸部と、で構成される、所謂スナップフィットのような形態を採用することができる。なお、先端接続部27のシースハブ43に対する接続形態は、特に限定されず、塞栓物装填済みカテーテル20と送達用カテーテル40の接続状態が維持される、例えばねじ込み式のような他の接続形態を採用することもできる。また、塞栓物装填済みカテーテル20と送達用カテーテル40とは、少なくとも接続状態において塞栓物10が移動可能に接続されればよい。 The distal end connection part 27 is provided on the distal end side of the catheter 20 loaded with the embolus, and is detachably connected to the proximal end side of the sheath hub 43 of the delivery catheter 40 . The distal connection portion 27 includes an engaging concave portion formed on the inner peripheral surface of the communicating passage 43a of the sheath hub 43 on the proximal end side, an elastically deformable engaging convex portion projecting radially outward from the distal connecting portion 27, It is possible to adopt a so-called snap-fit configuration. The form of connection of the distal end connecting part 27 to the sheath hub 43 is not particularly limited, and other forms of connection such as a threaded type, for example, that maintain the connected state between the catheter 20 loaded with the embolus and the delivery catheter 40 are adopted. You can also In addition, the catheter 20 loaded with the embolus and the delivery catheter 40 should be connected at least in the connected state so that the embolus 10 can move.

 〈送達用プッシャー〉
 送達用プッシャー30は、基端ハブ23に挿通されてカテーテル本体21に収容された塞栓物10を押し出し、送達用カテーテル40のシースルーメン42を介して瘤内へと送達させるための長尺な棒状部材である。送達用プッシャー30は、棒状のプッシャー本体31と、プッシャー本体31の基端側に設けられて塞栓物10を瘤内に送達する際に術者が把持するハンドル部32を備えている。
<Delivery pusher>
The pusher for delivery 30 is an elongated rod-like member inserted through the proximal hub 23 to push out the embolus 10 accommodated in the catheter body 21 and deliver it through the see lumen 42 of the delivery catheter 40 into the aneurysm. It is a member. The delivery pusher 30 includes a rod-shaped pusher body 31 and a handle portion 32 provided on the proximal end side of the pusher body 31 and held by the operator when delivering the embolus 10 into the aneurysm.

 送達用プッシャー30は、塞栓物装填済みカテーテル20を送達用カテーテル40に装着した状態において、術者によりハンドル部32が把持された状態で所定操作されると、装填用ルーメン22に装填された塞栓物10を、送達用カテーテル40のシースルーメン42を介して瘤内へと押し出す。具体的に、送達用プッシャー30は、塞栓物装填済みカテーテル20および送達用カテーテル40の軸方向に沿って押し出し操作されることにより、塞栓物装填済みカテーテル20に装填された塞栓物10を外部(瘤内)へと押し出す。 When the delivery pusher 30 is operated by the operator while the handle portion 32 is gripped in a state where the catheter 20 loaded with the embolus is attached to the delivery catheter 40, the embolus loaded in the loading lumen 22 is pushed. The article 10 is pushed through the sheath lumen 42 of the delivery catheter 40 and into the aneurysm. Specifically, the delivery pusher 30 pushes out the embolic material 10 loaded in the embolus-loaded catheter 20 to the outside ( into the aneurysm).

 送達用プッシャー30のプッシャー本体31の本体長は、塞栓物装填済みカテーテル20が送達用カテーテル40に装着された装着状態において、基端ハブ23の挿通路23aの基端から、送達用カテーテル40のシース41の先端開口部41a(シースルーメン42と連通する先端側の開口部)に至るまでの距離よりも長い。そのため、塞栓物装填済みカテーテル20と送達用カテーテル40の装着させた状態で送達用プッシャー30を基端ハブ23から挿入させれば、一度の押し出し操作によって、装填用ルーメン22内に装填された塞栓物10を、挿通路23a→シースハブ43→シースルーメン42の順で通過させてして瘤内に押し出すことができる。 The body length of the pusher main body 31 of the delivery pusher 30 is the length of the delivery catheter 40 from the proximal end of the insertion passage 23a of the proximal hub 23 in the mounted state in which the catheter 20 loaded with the embolic material is mounted on the delivery catheter 40. It is longer than the distance up to the distal opening 41a of the sheath 41 (the distal opening communicating with the sheath lumen 42). Therefore, if the delivery pusher 30 is inserted from the proximal end hub 23 in a state in which the catheter 20 loaded with the embolus and the delivery catheter 40 are attached, the embolus loaded in the loading lumen 22 can be pushed out by a single pushing operation. The object 10 can be passed through the insertion path 23a→sheath hub 43→sheath lumen 42 in this order and pushed out into the aneurysm.

 図6Aに示すように、ハンドル部32は、先端側に大径傘部32aを有し、大径傘部32aの基端側に延在する小径柄部32bを有する略キノコ型の形状をなしており、ハンドル部32の最大外径となる大径傘部32aの外径寸法は、基端ハブ23の挿通路23aの内径寸法よりも大きく設計されている。これにより、図6Bに示すように、送達用プッシャー30を塞栓物装填済みカテーテル20に挿入した際に、大径傘部32aが基端ハブ23の挿通路23aに挿入されないため、送達用プッシャー30の挿入長を制限することができる。また、ハンドル部32は、大径傘部32aによって基端ハブ23に入り込むことがないため、送達用プッシャー30により塞栓物10の押し出し操作が終了した際に、塞栓物装填済みカテーテル20の離脱操作に連れて挿入状態のまま同時に引き抜き易く、離脱操作が簡便となる。なお、送達用プッシャー30は、塞栓物装填済みカテーテル20の離脱操作前に、塞栓物装填済みカテーテル20から引き抜いてもよい。 As shown in FIG. 6A, the handle portion 32 has a substantially mushroom-shaped shape having a large-diameter head portion 32a on the distal end side and a small-diameter handle portion 32b extending toward the base end side of the large-diameter head portion 32a. The outer diameter dimension of the large-diameter head portion 32 a , which is the maximum outer diameter of the handle portion 32 , is designed to be larger than the inner diameter dimension of the insertion passage 23 a of the base end hub 23 . As a result, as shown in FIG. 6B, when the delivery pusher 30 is inserted into the embolus-loaded catheter 20, the large-diameter head portion 32a is not inserted into the insertion passage 23a of the proximal hub 23. can limit the insertion length of In addition, since the handle portion 32 does not enter the proximal hub 23 due to the large-diameter head portion 32a, the withdrawal operation of the catheter 20 loaded with the embolus is performed when the operation of pushing out the embolus 10 by the delivery pusher 30 is completed. Along with this, it is easy to pull out the inserted state at the same time, and the detachment operation becomes simple. The delivery pusher 30 may be withdrawn from the embolus-loaded catheter 20 prior to the withdrawal operation of the embolus-loaded catheter 20 .

 なお、ハンドル部32は、塞栓物装填済みカテーテル20に挿入した際に、大径傘部32aが基端ハブ23の基端側と嵌合可能な構成とすることもできる。このような構成とすることにより、塞栓物装填済みカテーテル20の離脱の際に、送達用プッシャー30が塞栓物装填済みカテーテル20から外れることなく確実に引き抜くことができる。 The handle portion 32 may be configured such that the large diameter head portion 32a can be fitted to the proximal side of the proximal hub 23 when the catheter 20 is inserted into the catheter 20 loaded with the embolization material. With such a configuration, when the catheter 20 loaded with the embolus is removed, the delivery pusher 30 can be reliably pulled out from the catheter 20 loaded with the embolus without coming off.

 プッシャー本体31の構成材料は、塞栓物10が搬送可能な適度な硬さと可撓性が得られる材料であれば、特に限定されない。プッシャー本体31の構成材料の一例としては、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、またはこれら二種以上の混合物など)、ポリオレフィンエラストマー、ポリオレフィンの架橋体、ポリ塩化ビニル、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、ポリウレタンエラストマー、ETFEなどのフッ素系樹脂、ポリカーボネート、ポリスチレン、ポリアセタール、ポリイミド、ポリエーテルイミド、芳香族ポリエーテルケトンなどの高分子材料またはこれらの混合物のような樹脂材料、形状記憶合金、ステンレス、タンタル、チタン、プラチナ、金、タングステンのような金属材料を好適に用いることができる。 The constituent material of the pusher main body 31 is not particularly limited as long as it is a material that provides appropriate hardness and flexibility that allow the embolization object 10 to be transported. Examples of materials constituting the pusher body 31 include polyolefins (eg, polyethylene, polypropylene, polybutene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, ionomers, or mixtures of two or more of these), polyolefin elastomers. , polyolefin crosslinked products, polyvinyl chloride, polyamide, polyamide elastomer, polyester, polyester elastomer, polyurethane, polyurethane elastomer, fluorine resins such as ETFE, polycarbonate, polystyrene, polyacetal, polyimide, polyetherimide, aromatic polyether ketone, etc. or a resin material such as a mixture thereof, a metal material such as a shape memory alloy, stainless steel, tantalum, titanium, platinum, gold, and tungsten.

 <デリバリーシステム>
 次に、本実施形態に係るデリバリーシステム200について説明する。図1に示すように、本実施形態に係るデリバリーシステム200は、医療器具セット100に加えて、生体管腔内に留置された状態で塞栓物装填済みカテーテル20が着脱される送達用カテーテル40を備えている。
<Delivery system>
Next, the delivery system 200 according to this embodiment will be described. As shown in FIG. 1, the delivery system 200 according to the present embodiment includes, in addition to the medical instrument set 100, a delivery catheter 40 to which the embolized material-loaded catheter 20 is attached and detached while being indwelled in a biological lumen. I have.

 〈送達用カテーテル〉
 送達用カテーテル40は、例えば生体管腔内に留置可能な既存のカテーテルを利用することもできる。そのため、本実施形態に係るデリバリーシステム200において、医療器具セット100および送達用カテーテル40をセット販売して市場に供給することもできるが、医療器具セット100のみを販売して市場に供給したとしても、既存のカテーテルを送達用カテーテル40として利用することにより、デリバリーシステム200として機能させることができる。
<Delivery catheter>
The delivery catheter 40 can also utilize, for example, an existing catheter that can be left in a body lumen. Therefore, in the delivery system 200 according to the present embodiment, the medical device set 100 and the delivery catheter 40 can be sold as a set and supplied to the market, but even if only the medical device set 100 is sold and supplied to the market , an existing catheter can be used as the delivery catheter 40 to function as the delivery system 200 .

 送達用カテーテル40は、例えば軸方向に沿って先端側の開口部から基端側の開口部にかけて連通する孔(シースルーメン42)が形成された長尺な管状部材からなるシース41を備え、生体管腔内に留置されて塞栓物10を瘤内まで送達させるための導入路として機能する。シース41は、その全長に亘って後述する挿通補助部材50の本体51が挿通可能である。したがって、シース41の軸方向の長さは、少なくとも挿通補助部材50の本体51よりも短く設定される。 The delivery catheter 40 includes a sheath 41 made of an elongated tubular member in which a hole (sheath lumen 42) communicating from an opening on the distal end side to an opening on the proximal end side is formed along the axial direction. It is left in the lumen and functions as an introduction channel for delivering the embolus 10 into the aneurysm. A main body 51 of an insertion assisting member 50, which will be described later, can be inserted through the sheath 41 over its entire length. Therefore, the axial length of the sheath 41 is set at least shorter than the main body 51 of the insertion assisting member 50 .

 シースルーメン42の内径は、装填用ルーメン22の内径と略同等に設計されている。これにより、係合部60による塞栓物装填済みカテーテル20と送達用カテーテル40の接続状態において装填用ルーメン22からシースルーメン42へと塞栓物10をスムーズに移動させることができる。 The inner diameter of the sheath lumen 42 is designed to be substantially the same as the inner diameter of the loading lumen 22 . As a result, the embolus 10 can be smoothly moved from the loading lumen 22 to the sheath lumen 42 while the catheter 20 loaded with the embolus and the delivery catheter 40 are connected by the engaging portion 60 .

 シース41の構成材料は、蛇行や湾曲といった生体管腔の曲がり形状に追従できる程度の可撓性および剛性を有する材料であれば、特に限定されない。シース41の構成材料の一例としては、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、またはこれら二種以上の混合物など)、ポリオレフィンエラストマー、ポリオレフィンの架橋体、ポリ塩化ビニル、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、ポリウレタンエラストマー、フッ素系樹脂、ポリカーボネート、ポリスチレン、ポリアセタール、ポリイミド、ポリエーテルイミド、芳香族ポリエーテルケトンなどの高分子材料、またはこれらの混合物のような樹脂材料を好適に用いることができる。 The constituent material of the sheath 41 is not particularly limited as long as it is flexible and rigid enough to follow the curved shape of the body lumen such as meandering and bending. Examples of materials constituting the sheath 41 include polyolefins (eg, polyethylene, polypropylene, polybutene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, ionomers, or mixtures of two or more thereof), polyolefin elastomers, Polymer materials such as crosslinked polyolefin, polyvinyl chloride, polyamide, polyamide elastomer, polyester, polyester elastomer, polyurethane, polyurethane elastomer, fluororesin, polycarbonate, polystyrene, polyacetal, polyimide, polyetherimide, aromatic polyetherketone, etc. , or a resin material such as a mixture thereof can be suitably used.

 また、送達用カテーテル40は、シース41の基端側に連結されるシースハブ43と、一端がシースハブ43の基端側と接続されて他端が活栓45と接続される可撓性を有するチューブ44を備える。 The delivery catheter 40 includes a sheath hub 43 connected to the proximal end of the sheath 41, and a flexible tube 44 having one end connected to the proximal end of the sheath hub 43 and the other end connected to a stopcock 45. Prepare.

 シースハブ43は、シースルーメン42とチューブ44との間、および装填用ルーメン22とシースルーメン42との間を連通させる連通路43aを備え、活栓45から流入する流体(プライミング液など)を、チューブ44を介してシース41に流通させると共に、塞栓物装填済みカテーテル20から押し出された塞栓物10をシースルーメン42内に導くための中間部材である。シースハブ43は、送達用カテーテル40を生体管腔内に留置させる際に挿通補助部材50が挿通される。 The sheath hub 43 is provided with a communication passage 43a that communicates between the sheath lumen 42 and the tube 44 and between the loading lumen 22 and the sheath lumen 42. It is an intermediate member for circulating the sheath 41 through the embolus-loaded catheter 20 and guiding the embolus 10 pushed out from the embolus-loaded catheter 20 into the sheath lumen 42 . The insertion assisting member 50 is inserted through the sheath hub 43 when the delivery catheter 40 is left in the biological lumen.

 なお、シースハブ43の構成材料は、上述した基端ハブ23の構成材料として例示した材料と同様のものを用いることができる。 As for the constituent material of the sheath hub 43, the same materials as those exemplified as the constituent materials of the base end hub 23 can be used.

 シースハブ43は、塞栓物装填済みカテーテル20の先端接続部27と接続される。シースハブ43と先端接続部27の接続状態において、装填用ルーメン22とシースルーメン42は、軸方向で揃う。これにより、カテーテル本体21から押し出された塞栓物10は、シースハブ43の内壁面に突き当たることによる破損(折れ曲がりまたは先端側の潰れ)が防止される。 The sheath hub 43 is connected to the distal end connecting portion 27 of the catheter 20 loaded with the embolus. In the connected state of the sheath hub 43 and the distal connection portion 27, the loading lumen 22 and the sheath lumen 42 are aligned in the axial direction. As a result, the embolus 10 pushed out from the catheter body 21 is prevented from being damaged (bent or crushed on the distal end side) due to contact with the inner wall surface of the sheath hub 43 .

 チューブ44は、一端がシースハブ43の基端側と連結され、他端が活栓45のポート46と連結される。チューブ44は、ポート46に連結される図示しないプライミング用シリンジから流出される生理食塩水などの液体が流通する管路である。なお、チューブ44の構成材料は、上述したチューブ24の構成材料として例示した材料と同様のものを用いることができる。 The tube 44 has one end connected to the proximal end side of the sheath hub 43 and the other end connected to the port 46 of the stopcock 45 . The tube 44 is a conduit through which liquid such as physiological saline discharged from a priming syringe (not shown) connected to the port 46 flows. It should be noted that the same materials as those exemplified as the constituent materials of the tube 24 described above can be used as the constituent material of the tube 44 .

 活栓45は、シースハブ43の連通路43aと、チューブ44を介してシース41のシースルーメン42と連通する。活栓45のポート46には、チューブ44の基端側が接続される他、シース41のシースルーメン42をプライミング操作するためのプライミング用シリンジ、造影剤または薬剤などを注入する液剤投入用シリンジを接続することもできる。本実施形態において、活栓45は、三方活栓を採用している。しかし、活栓45は、三方活栓に限定されず、他の形態(例えば二方活栓やポートが4つ以上の多方活栓など)を採用してもよい。 The stopcock 45 communicates with the communicating passage 43 a of the sheath hub 43 and the sheath lumen 42 of the sheath 41 via the tube 44 . A port 46 of the stopcock 45 is connected to the proximal end of the tube 44, a priming syringe for priming the sheath lumen 42 of the sheath 41, and a liquid injection syringe for injecting a contrast agent or a drug. can also In this embodiment, the stopcock 45 employs a three-way stopcock. However, the stopcock 45 is not limited to the three-way stopcock, and other forms (for example, a two-way stopcock, a multi-way stopcock having four or more ports, etc.) may be employed.

 また、シースハブ43の基端側の内方には、止血弁が取り付けられている。止血弁は、例えば弾性部材であるシリコーンゴム、ラテックスゴム、ブチルゴム、イソプレンゴムなどで構成された略楕円形の膜状(円盤状)の弁体を用いてよい。 A hemostasis valve is attached to the inner side of the proximal end of the sheath hub 43 . The hemostasis valve may use a substantially elliptical film-like (disc-like) valve body made of, for example, an elastic member such as silicone rubber, latex rubber, butyl rubber, or isoprene rubber.

 ここで、本実施形態に係るデリバリーシステム200を構成する各デバイスの寸法例について説明する。なお、以下に示される数値は一例であって、これらに限定されるものではない。 Here, an example of dimensions of each device constituting the delivery system 200 according to this embodiment will be described. It should be noted that the numerical values shown below are only examples, and the present invention is not limited to these.

 本実施形態に係るデリバリーシステム200において、送達用カテーテル40を外径6Frサイズ(内径1.8mm)のカテーテルとし、適用される術式を腹部大動脈瘤(AAA)のステントグラフト内挿術に対するエンドリーク塞栓術とした場合、塞栓物10の外径を0.4~1.9mm(好ましくは1.6mm程度)、塞栓物装填済みカテーテル20の内径を送達用カテーテル40の内径と同等の1.0~1.8mm(好ましくは1.8mm程度)とすることができる。また、塞栓物装填済みカテーテル20のカテーテル本体21の本体長は30~105cm(好ましくは42cm程度)、送達用カテーテル40のシース41の本体長は39~90cm(好ましくは47cm程度)、送達用プッシャー30のプッシャー本体31の本体長は79~205cm(好ましくは96cm程度)とすることができる。また、塞栓物10の全長は、瘤サイズによって適宜決定されるが、塞栓物装填済みカテーテル20への装填容易性と手技時間短縮の観点から30~100cmの範囲(好ましくは40cm程度)とすることができる。 In the delivery system 200 according to the present embodiment, the delivery catheter 40 is a catheter having an outer diameter of 6 Fr (inner diameter of 1.8 mm), and the applied technique is endoleak embolization for stent graft insertion of an abdominal aortic aneurysm (AAA). In the case of surgery, the outer diameter of the embolus 10 is 0.4 to 1.9 mm (preferably about 1.6 mm), and the inner diameter of the catheter 20 loaded with the embolus is 1.0 to 1.0 mm, which is equivalent to the inner diameter of the delivery catheter 40. It can be 1.8 mm (preferably about 1.8 mm). The length of the catheter body 21 of the catheter 20 loaded with the embolus is 30 to 105 cm (preferably about 42 cm), the length of the sheath 41 of the delivery catheter 40 is 39 to 90 cm (preferably about 47 cm), and the delivery pusher The body length of the pusher body 31 of 30 can be 79 to 205 cm (preferably about 96 cm). The total length of the embolus 10 is appropriately determined depending on the size of the aneurysm, but should be in the range of 30 to 100 cm (preferably about 40 cm) from the viewpoints of ease of loading into the catheter 20 loaded with the embolus and shortening of the procedure time. can be done.

 <塞栓物デリバリー医療システム>
 次に、本実施形態に係る塞栓物デリバリー医療システム300の構成について説明する。図2に示すように、本実施形態に係る塞栓物デリバリー医療システム300は、デリバリーシステム200に加えて、生体管腔内に送達用カテーテル40を送達させる挿通補助部材50を備えている。
<Embolitic Delivery Medical System>
Next, the configuration of the embolism delivery medical system 300 according to this embodiment will be described. As shown in FIG. 2, the embolism delivery medical system 300 according to this embodiment includes, in addition to the delivery system 200, an insertion assisting member 50 for delivering the delivery catheter 40 into the body lumen.

 〈挿通補助部材〉
 挿通補助部材50は、本体51の軸方向に沿って先端側から基端側にかけて挿通するガイドワイヤルーメン52が形成され、事前に生体管腔内に挿通されたガイドワイヤに沿って送達用カテーテル40を瘤内まで送達させる際の挿入を補助するための補助具である。
<Auxiliary insertion member>
The insertion assisting member 50 is formed with a guide wire lumen 52 that is inserted from the distal end side to the proximal end side along the axial direction of the main body 51, and the delivery catheter 40 is inserted along the guide wire previously inserted into the biological lumen. It is an auxiliary tool for assisting the insertion when delivering the aneurysm into the aneurysm.

 挿通補助部材50は、生体管腔内に送達用カテーテル40を挿入する際の折れ曲がりなどを防ぐため、送達用カテーテル40に挿入して組み付けられる。また、ガイドワイヤルーメン52は、送達用カテーテル40のシースルーメン42よりも内径が小さい。このため、送達用カテーテル40を瘤内に送達させる際に、送達用カテーテル40のガイドワイヤに対する軸ずれを小さくでき、より送達が容易になる。 The insertion assisting member 50 is inserted and assembled into the delivery catheter 40 in order to prevent bending or the like when the delivery catheter 40 is inserted into the biological lumen. Also, the guidewire lumen 52 has a smaller inner diameter than the sheath lumen 42 of the delivery catheter 40 . Therefore, when the delivery catheter 40 is delivered into the aneurysm, axial deviation of the delivery catheter 40 with respect to the guide wire can be reduced, making delivery easier.

 挿通補助部材50の構成材料は、送達用カテーテル40よりも硬質で可撓性を有する材料であれば、特に限定されない。挿通補助部材50の構成材料の一例としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、ポリエチレンテレフタレートなどのポリエステル、ETFEなどのフッ素系樹脂、PEEK(ポリエーテルエーテルケトン)、ポリイミドのような樹脂材料、形状記憶合金、ステンレス、タンタル、チタン、プラチナ、金、タングステンのような金属材料を好適に用いることができる。 The constituent material of the insertion assisting member 50 is not particularly limited as long as it is harder and more flexible than the delivery catheter 40 . Examples of constituent materials of the insertion assisting member 50 include polyolefins such as polyethylene and polypropylene, polyesters such as polyamide and polyethylene terephthalate, fluorine resins such as ETFE, PEEK (polyetheretherketone), and resin materials such as polyimide. Metal materials such as memory alloys, stainless steel, tantalum, titanium, platinum, gold, and tungsten can be preferably used.

 [動作]
 次に、図7A~図7Gを適宜参照しながら、本実施形態に係る塞栓物デリバリー医療システム300の動作について説明する。
[motion]
Next, the operation of the embolism delivery medical system 300 according to this embodiment will be described with reference to FIGS. 7A to 7G as appropriate.

 以下の説明では、塞栓物デリバリー医療システム300を、腹部大動脈瘤(AAA)のステントグラフト内挿術に対するエンドリーク塞栓術に適用した際の動作例であり、塞栓物10は、図4Aに示す断面形状が楕円形のものを用いている。また、図7C~図7Gにおいて、瘤内を「A」、血管内を「V」、体外を「O」とし、塞栓物デリバリー医療システム300の各デバイスの配置位置が体系的に把握可能なように表現した。 The following description is an operation example when the embolus delivery medical system 300 is applied to endoleak embolization for stent graft insertion of an abdominal aortic aneurysm (AAA). uses an elliptical shape. 7C to 7G, "A" indicates inside an aneurysm, "V" indicates inside a blood vessel, and "O" indicates outside the body. expressed in

 まず、術前の準備工程として、術者は、図7Aに示すように、挿通補助部材50を挿入した送達用カテーテル40のシース41を、穿刺部位となる患者の肢体からイントロデューサー(例えば図7Aの二点鎖線で示された部材)を介して経皮的に生体管腔へと挿入し、送達用カテーテル40の先端開口部41aを腹部大動脈瘤まで送達させる。先端開口部41aが瘤内まで送達されると、挿通補助部材50を抜去する。なお、送達用カテーテル40は、挿通補助部材50を使用せず、予め動脈瘤内に挿入したガイドワイヤを用いて動脈瘤患部まで送達させてもよい。また、送達用カテーテル40については生体管腔への導入前にプライミング操作を行う。 First, as a preoperative preparation step, as shown in FIG. 7A, the operator removes the sheath 41 of the delivery catheter 40 into which the insertion assisting member 50 is inserted from the limb of the patient serving as the puncture site through an introducer (for example, FIG. 7A). ) is percutaneously inserted into the biological lumen, and the tip opening 41a of the delivery catheter 40 is delivered to the abdominal aortic aneurysm. When the tip opening 41a is delivered into the aneurysm, the insertion assisting member 50 is removed. The delivery catheter 40 may be delivered to the affected area of the aneurysm using a guide wire previously inserted into the aneurysm without using the insertion assisting member 50 . Also, the delivery catheter 40 is primed before it is introduced into the body lumen.

 次に、術者は、図7Bに示すように、イントロデューサーを介してステントグラフトSGを圧縮挿入したカテーテル(ステントグラフトデバイス)を生体管腔内に挿入し、予め動脈瘤内に挿入したガイドワイヤを用いて動脈瘤患部まで移動させる。その後、患部にてカテーテルからステントグラフトSGを展開し留置する。これにより、図7Bに示すように、送達用カテーテル40は、ステントグラフトSGの脚部と血管壁との間を介して、送達用カテーテル40の先端部がステントグラフトSGと動脈瘤の血管壁との間、すなわち動脈瘤内に挿入され、先端開口部41aが瘤内に位置した状態で生体管腔内に留置される。 Next, as shown in FIG. 7B, the operator inserts the catheter (stent graft device) in which the stent graft SG is compressed and inserted through the introducer into the biological lumen, and uses a guide wire that has been inserted into the aneurysm in advance. to the site of the aneurysm. After that, the stent graft SG is deployed from the catheter at the affected area and left in place. As a result, as shown in FIG. 7B, the delivery catheter 40 is placed between the leg of the stent graft SG and the vessel wall, and the tip of the delivery catheter 40 is placed between the stent graft SG and the vessel wall of the aneurysm. That is, it is inserted into the aneurysm and left in the living body lumen with the distal end opening 41a positioned within the aneurysm.

 次に、図7Cに示すように、塞栓物10が装填された塞栓物装填済みカテーテル20を準備する。図7Cには、塞栓物装填済みカテーテル20が、送達用カテーテル40に装着される前の状態が示されている。 Next, as shown in FIG. 7C, an embolus-loaded catheter 20 loaded with the embolus 10 is prepared. FIG. 7C shows the embolus-loaded catheter 20 before it is attached to the delivery catheter 40 .

 術者は、塞栓物装填済みカテーテル20を送達用カテーテル40に装着させる前に、プライミング操作を行う。塞栓物10は、カテーテル本体21の内周面21aに接触部11が接触した状態で装填されている。塞栓物10の接触部11は、カテーテル本体21の径方向に沿う力である移動抑制力を受けている。また、塞栓物10が装填された状態の装填用ルーメン22内には、装填用ルーメン22の先端から基端にかけて延在し、かつ塞栓物装填済みカテーテル20のカテーテル本体21が有するプライミング液の注入口(基端ハブ23の先端側の開口部)および排出口(装填用ルーメン22の先端側の開口部)と連通する流体流路28が形成される。 The operator performs a priming operation before attaching the catheter 20 loaded with the embolus to the delivery catheter 40 . The embolization object 10 is loaded with the contact portion 11 in contact with the inner peripheral surface 21 a of the catheter body 21 . The contact portion 11 of the embolus 10 receives a movement suppressing force, which is a force along the radial direction of the catheter body 21 . In the loading lumen 22 loaded with the embolus 10, the priming solution that extends from the distal end to the proximal end of the loading lumen 22 and that the catheter body 21 of the catheter 20 with the embolus loaded has is injected. A fluid flow path 28 is formed that communicates with an inlet (distal opening of proximal hub 23) and an outlet (distal opening of loading lumen 22).

 プライミング操作において、プライミング液は、注入口から注入されると流体流路28を通って装填用ルーメン22内を流通した後、排出口から排出される。そのため、塞栓物10は、プライミング液から受ける押圧力が低減する。また、塞栓物10は、接触部11に移動抑制力が働いた状態でカテーテル本体21の内周面21aと接触して装填されるため、プライミング液の押圧力に抗してカテーテル本体21に留まった状態を維持する。そのため、塞栓物装填済みカテーテル20は、プライミング操作時に塞栓物10がカテーテル本体21から飛び出ない。すなわち、塞栓物装填済みカテーテル20は、プライミング操作時における意図しない飛び出しが防止される。 In the priming operation, when the priming liquid is injected from the inlet, it passes through the fluid channel 28 and flows through the loading lumen 22, and then is discharged from the outlet. Therefore, the embolus 10 receives less pressing force from the priming solution. In addition, since the embolus 10 is loaded in contact with the inner peripheral surface 21a of the catheter main body 21 in a state in which a movement suppressing force acts on the contact portion 11, it stays on the catheter main body 21 against the pressing force of the priming solution. maintained. Therefore, in the embolus-loaded catheter 20, the embolus 10 does not protrude from the catheter main body 21 during the priming operation. That is, the embolus-loaded catheter 20 is prevented from unintentionally popping out during the priming operation.

 塞栓物装填済みカテーテル20のプライミング操作が終わると、術者は、図7Dに示すように、送達用カテーテル40のシースハブ43の基端に、塞栓物装填済みカテーテル20の先端接続部27を装着させる。この際、装填用ルーメン22の軸中心は、シースルーメン42の軸中心と揃う。 After completing the priming operation of the embolus-loaded catheter 20, the operator attaches the distal end connecting portion 27 of the embolus-loaded catheter 20 to the proximal end of the sheath hub 43 of the delivery catheter 40, as shown in FIG. 7D. . At this time, the axial center of the loading lumen 22 is aligned with the axial center of the see lumen 42 .

 次に、術者は、図7Eに示すように、ハンドル部32を把持した状態でプッシャー本体31の先端を基端ハブ23の基端側から挿入する。基端ハブ23から挿入された送達用プッシャー30の先端は、塞栓物装填済みカテーテル20内に装填された塞栓物10の基端と当接し、術者の押し出し操作によって、塞栓物10を送達用カテーテル40のシースルーメン42へと押し出して移動させる。 Next, the operator inserts the distal end of the pusher main body 31 from the proximal side of the proximal hub 23 while gripping the handle portion 32, as shown in FIG. 7E. The distal end of the delivery pusher 30 inserted from the proximal hub 23 abuts the proximal end of the embolus 10 loaded in the embolus-loaded catheter 20, and the operator pushes out the embolus 10 for delivery. Push and move through the sheath lumen 42 of the catheter 40 .

 そして、術者は、図7Fに示すように、基端ハブ23から挿入された送達用プッシャー30を押し出し操作してシースルーメン42から塞栓物10を瘤内へと押し出す。その後、術者は、図7Gに示すように、空になった塞栓物装填済みカテーテル20を送達用プッシャー30と共に、送達用カテーテル40から離脱させる。送達用プッシャー30は、塞栓物装填済みカテーテル20に挿入した状態で送達用カテーテル40から離脱させることができる。これにより、瘤内に対する塞栓物10の1回目の挿入動作が完了する。なお、挿入動作において、送達用プッシャー30は、塞栓物装填済みカテーテル20の離脱操作前に、塞栓物装填済みカテーテル20から引き抜いてもよい。 Then, as shown in FIG. 7F, the operator pushes out the delivery pusher 30 inserted from the proximal hub 23 to push out the embolus 10 from the sheath lumen 42 into the aneurysm. Thereafter, the operator withdraws the emptied embolus-loaded catheter 20 together with the delivery pusher 30 from the delivery catheter 40, as shown in FIG. 7G. The delivery pusher 30 can be removed from the delivery catheter 40 while inserted into the embolus-loaded catheter 20 . This completes the first insertion operation of the embolization object 10 into the aneurysm. During the insertion operation, the delivery pusher 30 may be withdrawn from the embolus-loaded catheter 20 prior to the withdrawal operation of the embolus-loaded catheter 20 .

 エンドリーク塞栓術では、図7Cから図7Gに示す一連の塞栓物留置動作を、瘤内に塞栓物10が必要量だけ装填されるまで繰り返し行う。なお、塞栓物10の必要量は、患者のCTデータを基に動脈瘤の体積を計算し、その値から当該動脈瘤に展開した場合のステントグラフトSGの体積分を引いた値として算出する。 In endoleak embolization, a series of embolus placement operations shown in FIGS. 7C to 7G are repeated until the required amount of embolus 10 is loaded into the aneurysm. The required amount of the embolization material 10 is calculated by subtracting the volume of the stent graft SG when deployed in the aneurysm from the aneurysm volume calculated based on the patient's CT data.

 動脈瘤内に必要量の塞栓物10の留置が完了すると、術者は、送達用カテーテル40を瘤内および生体管腔から引き抜く。この際、塞栓物装填済みカテーテル20が送達用カテーテル40に装着され、かつ送達用プッシャー30が送達用カテーテル40に挿入された状態で、送達用カテーテル40を瘤内および生体管腔から引き抜いてもよい。また、送達用カテーテル40を瘤内および生体管腔から引き抜く前に、送達用カテーテル40から塞栓物装填済みカテーテル20を離脱させつつ、送達用プッシャー30を送達用カテーテル40から引き抜いてもよい。また、送達用カテーテル40を瘤内および生体管腔から引き抜く前に、送達用プッシャー30を送達用カテーテル40および塞栓物装填済みカテーテル20から引き抜いた後に、送達用カテーテル40から塞栓物装填済みカテーテル20を離脱させてもよい。なお、何れの場合でも、塞栓物10の留置後のバルーンによるステントグラフトSGの追加拡張や造影操作などのために、イントロデューサーは生体管腔内に留置したままにする。 When the required amount of embolization material 10 is placed in the aneurysm, the operator pulls out the delivery catheter 40 from the aneurysm and the body lumen. At this time, with the catheter 20 loaded with the embolus attached to the delivery catheter 40 and the delivery pusher 30 inserted into the delivery catheter 40, the delivery catheter 40 may be pulled out from the aneurysm and the biological lumen. good. Alternatively, the delivery pusher 30 may be withdrawn from the delivery catheter 40 while the embolus-loaded catheter 20 is withdrawn from the delivery catheter 40 before the delivery catheter 40 is withdrawn from the aneurysm and biological lumen. Also, before the delivery catheter 40 is withdrawn from the aneurysm and the biological lumen, the delivery pusher 30 is withdrawn from the delivery catheter 40 and the embolus-loaded catheter 20, and then the embolus-loaded catheter 20 is pulled out of the delivery catheter 40. can be left out. In any case, the introducer is left in the body lumen for additional expansion of the stent graft SG by the balloon after placement of the embolus 10, imaging operation, and the like.

 その後、動脈瘤内に留置された塞栓物10は、瘤内の血液などの液体と接触して徐々に膨潤し、完全に膨脹した塞栓物10が動脈瘤内面とステントグラフト外面との間の空間が埋まって瘤内が閉塞される。これにより、動脈瘤は、破裂が防止されることとなる。 After that, the embolus 10 placed in the aneurysm contacts with fluid such as blood in the aneurysm and gradually swells. It is buried and the aneurysm is occluded. This prevents the aneurysm from rupturing.

 [変形例]
 上述した実施形態は以下のような構成に改変することができる。また、以下の変形例を本発明の要旨を逸脱しない範囲の中で任意に組み合わせて実施することもできる。なお、以下に説明する変形例は、上述した実施形態と同一の機能を有する構成要件について同一の符号を付して詳細な説明を省略し、特に言及しない構成、部材などについては、上述した実施形態と同様のものとしてよい。
[Modification]
The embodiment described above can be modified as follows. Also, the following modifications can be arbitrarily combined within the scope of the present invention. In the modified examples described below, constituent elements having the same functions as those of the embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted. It may be similar to the form.

 〈変形例1〉
 変形例1に係る塞栓物10(塞栓物10G~塞栓物10M)は、図8A~図11の何れかに示すように、装填用ルーメン22の軸方向に沿って延在し、かつ塞栓物10の外周面の一部が接触部11(接触部11G~接触部11M)として機能して装填用ルーメン22を画成するカテーテル本体21の内周面21aと接触する線状構造をなす。ここで、「線状構造」とは、螺旋形状のような二次構造、ジグザグ形状、波形状などを含む非直線状の立体構造であり、カテーテル本体21の内周面21aと複数箇所で接触する。
<Modification 1>
The embolus 10 (embolus 10G to 10M) according to Modification 1 extends along the axial direction of the loading lumen 22, and the embolus 10 extends along the axial direction of the loading lumen 22, as shown in any of FIGS. A portion of the outer peripheral surface of the catheter functions as a contact portion 11 (contact portions 11G to 11M) to form a linear structure that contacts the inner peripheral surface 21a of the catheter body 21 defining the loading lumen 22. Here, the “linear structure” refers to a non-linear three-dimensional structure including a secondary structure such as a helical shape, a zigzag shape, a wave shape, etc., and is in contact with the inner peripheral surface 21a of the catheter body 21 at multiple points. do.

 変形例1に係る塞栓物10D~塞栓物10Fは、上述した線状構造をなし、接触部11G~接触部11Mが移動抑制力を受けた状態でカテーテル本体21の内周面21aと複数箇所で接触して装填用ルーメン22内に装填される。装填用ルーメン22内に塞栓物10D~塞栓物10Fが装填された状態において、装填用ルーメン22内には、塞栓物10と内周面21aとの間やカテーテル本体21の径方向で対向する塞栓物10の間の空隙によって形成される第3流体流路28cが形成される。なお、接触部11の内周面21aとの接触形態は、特に制限されず、点接触でもよいし面接触でもよい。 The embolus 10D to 10F according to the modified example 1 have the above-described linear structure, and the contact portions 11G to 11M receive the movement suppressing force, and the inner peripheral surface 21a of the catheter body 21 and a plurality of locations. It is loaded into the loading lumen 22 in contact. In the state in which the embolus 10D to 10F are loaded in the loading lumen 22, the embolus facing between the embolus 10 and the inner peripheral surface 21a and in the radial direction of the catheter main body 21 are present in the loading lumen 22. A third fluid flow path 28c is formed which is formed by the air gap between the articles 10 . The form of contact between the contact portion 11 and the inner peripheral surface 21a is not particularly limited, and may be point contact or surface contact.

 図8A~図8Cには、変形例1に係る塞栓物10のうち螺旋形状を有する形態(塞栓物10G~塞栓物10K)を装填した塞栓物装填済みカテーテル20の概略斜視図が示されている。図9A~図9Cには、塞栓物10G~塞栓物10Kを装填した塞栓物装填済みカテーテル20の概略断面図が示されている。 FIGS. 8A to 8C show schematic perspective views of an embolus-loaded catheter 20 loaded with helical forms (emboli 10G to embolus 10K) of the embolus 10 according to Modification 1. FIG. . 9A-9C show schematic cross-sectional views of embolus-loaded catheter 20 loaded with emboli 10G-10K.

 図8Aに示すように、塞栓物10Gは、装填用ルーメン22の軸方向に沿って延在し、軸方向から見て楕円形の螺旋形状をなしている。塞栓物10Gは、長径方向の端部が接触部11Gとして機能し、カテーテル本体21の内周面21aに移動抑制力を受けた状態で接触している。また、図9Aに示すように、塞栓物10Gと内周面21aの間、およびカテーテル本体21の径方向や軸方向で対向する塞栓物10Gの間に形成された空隙が第3流体流路28cとして機能する。 As shown in FIG. 8A, the plug 10G extends along the axial direction of the loading lumen 22 and has an elliptical spiral shape when viewed from the axial direction. The end of the embolism 10G functions as a contact portion 11G, and is in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force. Further, as shown in FIG. 9A, the gaps formed between the embolus 10G and the inner peripheral surface 21a and between the embolus 10G facing each other in the radial and axial directions of the catheter body 21 are the third fluid flow paths 28c. function as

 図8Bに示すように、塞栓物10Hは、装填用ルーメン22の軸方向に沿って延在し、軸方向から見て三角形の螺旋形状(三角螺旋形状)をなしている。塞栓物10Hは、三角形状の頂点部が接触部11Hとして機能し、カテーテル本体21の内周面21aに移動抑制力を受けた状態で接触している。また、図9Bに示すように、塞栓物10Hと内周面21aの間、およびカテーテル本体21の径方向や軸方向で対向する塞栓物10Hの間に形成された空隙が第3流体流路28cとして機能する。 As shown in FIG. 8B, the plug 10H extends along the axial direction of the loading lumen 22 and has a triangular spiral shape (triangular spiral shape) when viewed from the axial direction. The embolus 10H has a triangular apex functioning as a contact portion 11H, and is in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force. Further, as shown in FIG. 9B, the gaps formed between the embolus 10H and the inner peripheral surface 21a and between the embolus 10H facing each other in the radial and axial directions of the catheter body 21 are the third fluid flow paths 28c. function as

 図8Cに示すように、塞栓物10Kは、装填用ルーメン22の軸方向に沿って延在し、軸方向から見て四角形の螺旋形状(四角螺旋形状)をなしている。塞栓物10Kは、四角形状の頂点部が接触部11Kとして機能し、カテーテル本体21の内周面21aに移動抑制力を受けた状態で接触している。また、図9Cに示すように、塞栓物10Kと内周面21aの間、およびカテーテル本体21の径方向や軸方向で対向する塞栓物10Kの間に形成された空隙が第3流体流路28cとして機能する。 As shown in FIG. 8C, the embolus 10K extends along the axial direction of the loading lumen 22 and has a quadrangular helical shape (square helical shape) when viewed from the axial direction. The embolus 10K has a quadrangular apex functioning as a contact portion 11K, and is in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force. Further, as shown in FIG. 9C, the gaps formed between the embolus 10K and the inner peripheral surface 21a and between the embolus 10K facing each other in the radial direction and the axial direction of the catheter body 21 are the third fluid flow paths 28c. function as

 図10A、図10Bには、変形例1に係る塞栓物10のうち螺旋形状以外の他の線状構造(ジグザグ形状、波形状)を有する形態例(塞栓物10L、塞栓物10M)を装填した塞栓物装填済みカテーテル20の概略斜視図が示されている。図11には、塞栓物10Lまたは塞栓物10Mを装填した塞栓物装填済みカテーテル20の概略断面図が示されている。 In FIGS. 10A and 10B, of the embolus 10 according to Modification 1, examples of forms (emboli 10L, embolus 10M) having a linear structure (zigzag shape, wave shape) other than a spiral shape are loaded. A schematic perspective view of an embolus-loaded catheter 20 is shown. FIG. 11 shows a schematic cross-sectional view of embolus-loaded catheter 20 loaded with embolus 10L or embolus 10M.

 図10Aに示すように、塞栓物10Lは、装填用ルーメン22の軸方向に沿って延在するジグザグ形状(三角波形状)をなしている。塞栓物10Lは、ジグザグ形状の頂点部が接触部11Lとして機能し、カテーテル本体21の内周面21aに移動抑制力を受けた状態で接触している。また、図11に示すように、塞栓物10Lと内周面21aの間や軸方向で対向する塞栓物10Lの間に形成された空隙が第3流体流路28cとして機能する。 As shown in FIG. 10A , the embolus 10L has a zigzag shape (triangular wave shape) extending along the axial direction of the loading lumen 22 . The embolus 10L has a zigzag vertex functioning as a contact portion 11L, and is in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force. In addition, as shown in FIG. 11, the gap formed between the plugging object 10L and the inner peripheral surface 21a or between the plugging objects 10L facing each other in the axial direction functions as the third fluid flow path 28c.

 図10Bに示すように、塞栓物10Mは、装填用ルーメン22の軸方向に沿って延在する波形状(正弦波形状)をなしている。塞栓物10Mは、波型の頂点部が接触部11Mとして機能し、カテーテル本体21の内周面21aに移動抑制力を受けた状態で接触している。また、図11に示すように、塞栓物10Mと内周面21aの間や軸方向で対向する塞栓物10Mの間に形成された空隙が第3流体流路28cとして機能する。 As shown in FIG. 10B, the plug 10M has a wave shape (sine wave shape) extending along the axial direction of the loading lumen 22. As shown in FIG. The crest of the embolus 10M functions as a contact portion 11M, and is in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force. Further, as shown in FIG. 11, the gaps formed between the plugging object 10M and the inner peripheral surface 21a or between the plugging objects 10M facing each other in the axial direction function as the third fluid flow path 28c.

 以上のように、変形例1に係る塞栓物装填済みカテーテル20において、装填用ルーメン22の軸方向に延在する非直線な線状構造をなす塞栓物10G~塞栓物10Mは、何れも接触部11G~接触部11Mが移動抑制力を受けた状態でカテーテル本体21の内周面21aと複数箇所で接触して装填用ルーメン22に装填される。また、塞栓物10G~塞栓物10Mを装填した状態のカテーテル本体21には、プライミング液が流通可能な第3流体流路28cを含む流体流路28が形成される。そのため、変形例1に係る塞栓物装填済みカテーテル20は、上述した図4A~図4Cや図5A~図5Cに示した各形態と同様、プライミング操作時における塞栓物10の意図しない飛び出しが防止される。 As described above, in the embolus-loaded catheter 20 according to Modification 1, each of the emboli 10G to 10M having a nonlinear linear structure extending in the axial direction of the loading lumen 22 is a contact portion. The catheter body 21 is loaded into the loading lumen 22 by contacting the inner peripheral surface 21a of the catheter main body 21 at a plurality of points in a state where the contact portions 11G to 11M receive movement suppressing force. Further, in the catheter main body 21 loaded with the embolus 10G to 10M, a fluid channel 28 including a third fluid channel 28c through which the priming liquid can flow is formed. Therefore, the embolization material-loaded catheter 20 according to Modification 1 prevents the embolization material 10 from unintentionally popping out during the priming operation, similar to the embodiments shown in FIGS. 4A to 4C and FIGS. 5A to 5C. be.

 なお、変形例1に係る塞栓物装填済みカテーテル20は、上述した図8A~図8C、図10A、図10Bに示す各形態を任意に組み合わせることもできる。例えば、塞栓物10は、先端側から中間部分までの領域を図8Aに示す螺旋形状とし、中間部分から基端側までの領域を図10Aに示すジグザグ形状とすることができる。 It should be noted that the embolization material-loaded catheter 20 according to Modification 1 can also arbitrarily combine the forms shown in FIGS. 8A to 8C, 10A, and 10B described above. For example, the obturator 10 may have a helical shape as shown in FIG. 8A from the distal end to the intermediate portion, and a zigzag shape as shown in FIG. 10A from the intermediate portion to the proximal end.

 また、変形例1に係る塞栓物装填済みカテーテル20は、図8A~図11に示した形態に限定されず、装填用ルーメン22の軸方向に沿って延在し、かつ外周面の一部が接触部11として機能して装填用ルーメン22を画成するカテーテル本体21の内周面21aと接触する線状構造をなす塞栓物10を装填した構成であればよい。また、塞栓物10は、その一部のみを装填用ルーメン22を画成するカテーテル本体21の内周面21aと接触する線状構造としてもよい。 Further, the embolus-loaded catheter 20 according to Modification 1 is not limited to the forms shown in FIGS. It is sufficient that the embolus 10 having a linear structure that functions as the contact portion 11 and contacts the inner peripheral surface 21 a of the catheter body 21 defining the loading lumen 22 is loaded. Alternatively, the embolus 10 may have a linear structure in which only a portion thereof is in contact with the inner peripheral surface 21 a of the catheter body 21 defining the loading lumen 22 .

 〈その他の変形例〉
 上述した実施形態において、図4A~図4Cに示す形態は、装填用ルーメン22を画成するカテーテル本体21の内周面21aの形状を円形とし、塞栓物10の軸方向と直交する方向の断面形状または軸方向から見た形状を、カテーテル本体21の内周面21aとは異なる形状(すなわち、非円形)を有する構成であった。しかし、塞栓物10の形状は、少なくともカテーテル本体21の内周面21aの形状と異なる形状をなしていればよい。したがって、カテーテル本体21の内周面21aの形状を非円形とし、塞栓物10は、内周面21aに内接する円形とした構成とすることもできる。このように、カテーテル本体21の内周面21aの形状を非円形、塞栓物10の断面形状を内周面21aと異なる円形としても、カテーテル本体21の内周面21aと接触する接触部11が移動抑制力を受けた状態で装填用ルーメン22内に装填され、かつ第1流体流路28aや第2流体流路28bを含む流体流路28が装填用ルーメン22内に形成される。そのため、塞栓物装填済みカテーテル20は、プライミング操作時に塞栓物10の意図しない飛び出しが防止される。
<Other Modifications>
In the above-described embodiment, the configuration shown in FIGS. 4A to 4C has a circular shape of the inner peripheral surface 21a of the catheter body 21 defining the loading lumen 22, and a cross section in a direction perpendicular to the axial direction of the embolus 10. The shape or the shape viewed from the axial direction is different from the inner peripheral surface 21a of the catheter main body 21 (that is, non-circular). However, the shape of the embolus 10 should be at least different from the shape of the inner peripheral surface 21 a of the catheter body 21 . Therefore, the shape of the inner peripheral surface 21a of the catheter body 21 may be non-circular, and the embolus 10 may be configured to be circular inscribed in the inner peripheral surface 21a. Thus, even if the shape of the inner peripheral surface 21a of the catheter body 21 is non-circular and the cross-sectional shape of the embolus 10 is circular different from the inner peripheral surface 21a, the contact portion 11 that contacts the inner peripheral surface 21a of the catheter body 21 is A fluid flow path 28 is formed in the loading lumen 22 to be loaded into the loading lumen 22 while receiving a movement restraining force, and includes a first fluid flow path 28a and a second fluid flow path 28b. Therefore, the embolus-loaded catheter 20 prevents the embolus 10 from unintentionally popping out during the priming operation.

 また、塞栓物10は、上述した各形態(塞栓物10A~塞栓物10M)を適宜組み合わせることができる。したがって、塞栓物10は、塞栓物10A~塞栓物10Fの中から任意に選択したものを組み合わせた形態、塞栓物10G~塞栓物10Mの中から任意に選択したものを組み合わせた形態に加えて、塞栓物10A~塞栓物10Fの中から任意に選択したものと塞栓物10G~塞栓物10Mの中から任意に選択したものを組み合わせた形態とすることができる。 In addition, the embolus 10 can be appropriately combined with each of the above-described forms (the embolus 10A to the embolus 10M). Therefore, the embolus 10 has a form in which arbitrarily selected embolus 10A to 10F are combined, and a form in which arbitrarily selected embolus 10G to 10M are combined. A form in which an embolus arbitrarily selected from the embolus 10A to 10F and an embolus 10G to 10M arbitrarily selected can be combined.

 また、上述した実施形態に係る塞栓物デリバリー医療システム300は、図7A~図7Gに示すように、塞栓物10の送達方式として、生体管腔内に留置した送達用カテーテル40の基端側に塞栓物装填済みカテーテル20の先端側を装着し、送達用プッシャー30を塞栓物装填済みカテーテル20に挿入して瘤内に塞栓物10を吐出させる方式とした。しかし、塞栓物デリバリー医療システム300は、上述した送達方式に限定されず、他の送達方式(例えば、「ダイレクト・インサーション方式」や「インダイレクト・インサーション方式」など)に対応した機器構成としても同様の効果を奏することができる。ここで、「インダイレクト・インサーション方式」とは、第1のカテーテル(送達用カテーテル40に相当)に塞栓物10が装填された第2のカテーテル(塞栓物装填済みカテーテル20に相当)を挿入し、第2のカテーテルの先端を瘤内に到達させた状態で送達用のプッシャー(送達用プッシャー30に相当)を第2のカテーテルに挿入して塞栓物10を瘤内に送達させる方式である。また、「インダイレクト・インサーション方式」とは、塞栓物10が装填された第2のカテーテル(塞栓物装填済みカテーテル20に相当)の先端の一部を生体管腔内に留置された第1のカテーテル(送達用カテーテル40に相当)のシース内に挿入させ、装填用のプッシャーを第2のカテーテルに挿入して塞栓物10を第1のカテーテルに移し、第2のカテーテルを第1のカテーテルから抜去した後、第1のカテーテルに送達用のプッシャー(送達用プッシャー30に相当)を挿入して塞栓物10を瘤内に送達させる方式である。本実施形態に係る医療器具セット100、デリバリーシステム200、および塞栓物デリバリー医療システム300は、上記何れの塞栓物送達方式であっても、塞栓物装填済みカテーテル20をプライミング操作した際の塞栓物10の意図しない飛び出しを防止することができる。 In addition, as shown in FIGS. 7A to 7G, the embolus delivery medical system 300 according to the above-described embodiment, as a delivery method for the embolus 10, is placed on the proximal end side of the delivery catheter 40 indwelled in the biological lumen. A method was employed in which the tip side of the catheter 20 loaded with the embolus was attached, the delivery pusher 30 was inserted into the catheter 20 loaded with the embolus, and the embolus 10 was ejected into the aneurysm. However, the embolus delivery medical system 300 is not limited to the above-described delivery methods, and may have a device configuration compatible with other delivery methods (for example, "direct insertion method" or "indirect insertion method"). can also produce the same effect. Here, the “indirect insertion method” refers to inserting a second catheter (corresponding to the embolus-loaded catheter 20) loaded with the embolus 10 into the first catheter (corresponding to the delivery catheter 40). Then, with the tip of the second catheter reaching the aneurysm, a delivery pusher (corresponding to the delivery pusher 30) is inserted into the second catheter to deliver the embolus 10 into the aneurysm. . In addition, the "indirect insertion method" refers to a first catheter in which part of the tip of a second catheter (corresponding to the catheter 20 loaded with the embolus) loaded with the embolus 10 is left in the body lumen. catheter (corresponding to the delivery catheter 40), insert the loading pusher into the second catheter to transfer the embolus 10 to the first catheter, and move the second catheter to the first catheter. After removing it from the catheter, a pusher for delivery (corresponding to the pusher for delivery 30) is inserted into the first catheter to deliver the embolus 10 into the aneurysm. The medical instrument set 100, the delivery system 200, and the embolus delivery medical system 300 according to the present embodiment can be used in any of the embolus delivery methods described above when the embolus-loaded catheter 20 is primed. can be prevented from unintentionally popping out.

 [作用効果]
 以上説明したように、本実施形態に係る塞栓物装填済みカテーテル20は、長尺状のカテーテル本体21と、液体との接触により膨潤する塞栓物10と、カテーテル本体21の先端から基端にかけて連通して設けられ、塞栓物10が装填された装填用ルーメン22と、装填用ルーメン22と連通する挿通路(挿通路23a)を有し、装填用ルーメン22に流体(プライミング液)を注入可能な注入用ハブ(基端ハブ23)を備えている。塞栓物10は、塞栓物10の外周面上に、装填用ルーメン22を画成するカテーテル本体21の内周面21aと接触して塞栓物10のカテーテル本体21の軸方向への移動を抑制する移動抑制力を受けている複数の接触部11を有する。カテーテル本体21は、注入用ハブを介して流体を装填用ルーメン22内に注入する注入口および流体を装填用ルーメン22内から排出する排出口を有する。そして、塞栓物10が装填され、かつ前記複数の接触部が前記移動抑制力を受けている状態の装填用ルーメン22内には、装填用ルーメン22の先端から基端にかけて延在し、かつ注入口および排出口と連通した流体流路28が形成されている。
[Effect]
As described above, the catheter 20 loaded with the embolus according to the present embodiment communicates with the elongated catheter body 21 and the embolus 10 that swells when it comes into contact with liquid, from the distal end to the proximal end of the catheter body 21 . and has a loading lumen 22 loaded with the embolus 10 and an insertion path (insertion path 23a) communicating with the loading lumen 22 so that a fluid (priming solution) can be injected into the loading lumen 22. It has an injection hub (proximal hub 23). On the outer peripheral surface of the embolus 10, the embolus 10 contacts the inner peripheral surface 21a of the catheter body 21 defining the loading lumen 22 to suppress the movement of the embolus 10 in the axial direction of the catheter body 21. It has a plurality of contact portions 11 receiving a movement restraining force. Catheter body 21 has an inlet for injecting fluid into loading lumen 22 via an injection hub and an outlet for discharging fluid from within loading lumen 22 . In the loading lumen 22 loaded with the embolus 10 and in a state where the plurality of contact portions are subjected to the movement suppressing force, the loading lumen 22 extends from the distal end to the proximal end, and the injection A fluid flow path 28 is formed in communication with the inlet and outlet.

 このような構成により、塞栓物10は、複数の接触部11が移動抑制力を受けた状態で装填用ルーメン22内に装填されため、プライミング液の押圧力に抗して装填用ルーメン22内に留まることができる。また、塞栓物10が装填された装填用ルーメン22内には、注入口および排出口と連通する流体流路28が形成されため、プライミング液は、流体流路28を通って装填用ルーメン22内を流通することができる。したがって、塞栓物装填済みカテーテル20は、塞栓物10をカテーテル本体21に装填した状態でプライミング操作しても、塞栓物10の意図しない飛び出しが防止できる。 With such a configuration, the embolus 10 is loaded into the loading lumen 22 in a state where the plurality of contact portions 11 are subjected to movement suppressing force. can stay. In addition, since the fluid channel 28 communicating with the inlet and the outlet is formed in the loading lumen 22 loaded with the embolus 10 , the priming solution flows through the fluid channel 28 into the loading lumen 22 . can be distributed. Therefore, even if the embolus-loaded catheter 20 is primed with the embolus 10 loaded in the catheter body 21, the embolus 10 can be prevented from unintentionally popping out.

 また、本実施形態に係る塞栓物装填済みカテーテル20において、塞栓物10は、軸方向と直交する方向の断面において、装填用ルーメン22を画成するカテーテル本体21の内周面21aとは異なる形状に形成されていることにより、カテーテル本体21の内周面21aと接触する複数の接触部11を有し、流体流路28は、少なくともカテーテル本体21の内周面21aと塞栓物10の外周面との間に形成される空隙からなる第1流体流路28aを含んだ構成としてもよい。 In addition, in the embolus-loaded catheter 20 according to the present embodiment, the embolus 10 has a different shape from the inner peripheral surface 21a of the catheter body 21 defining the loading lumen 22 in the cross section in the direction perpendicular to the axial direction. has a plurality of contact portions 11 that come into contact with the inner peripheral surface 21a of the catheter body 21, and the fluid flow path 28 is formed at least between the inner peripheral surface 21a of the catheter body 21 and the outer peripheral surface of the embolus 10. It may be configured to include the first fluid flow path 28a composed of a gap formed between.

 このような構成により、塞栓物10は、外周面の複数の接触部11が移動抑制力を受けた状態でカテーテル本体21の内周面21aと接触して装填用ルーメン22内に装填される。また、塞栓物10が装填された装填用ルーメン22内には、カテーテル本体21の内周面21aと塞栓物10の外周面との間に形成される空隙からなる第1流体流路28aを含む流体流路28が形成される。したがって、プライミング液は、注入口から注入されると、流体流路28を通って排出口から排出される。塞栓物10は、接触部11が移動抑制力を受けた状態で装填用ルーメン22内に装填されるため、プライミング液の押圧力に抗して装填用ルーメン22内に留まる。そのため、塞栓物装填済みカテーテル20は、塞栓物10をカテーテル本体21に装填した状態でプライミング操作しても、塞栓物10の意図しない飛び出しが防止できる。 With such a configuration, the embolus 10 is loaded into the loading lumen 22 in contact with the inner peripheral surface 21a of the catheter main body 21 while the plurality of contact portions 11 on the outer peripheral surface receive a movement suppressing force. The loading lumen 22 loaded with the embolus 10 also includes a first fluid channel 28a which is a gap formed between the inner peripheral surface 21a of the catheter body 21 and the outer peripheral surface of the embolus 10. A fluid flow path 28 is formed. Therefore, the priming liquid is injected through the inlet and discharged through the outlet through the fluid flow path 28 . Since the embolus 10 is loaded into the loading lumen 22 while the contact portion 11 receives a movement suppressing force, it stays in the loading lumen 22 against the pressing force of the priming solution. Therefore, even if the embolus-loaded catheter 20 is primed with the embolus 10 loaded in the catheter main body 21, the embolus 10 can be prevented from unintentionally popping out.

 また、本実施形態に係る塞栓物装填済みカテーテル20において、流体流路28は、少なくとも塞栓物10の基端から先端にかけて塞栓物10の内方に形成される空隙からなる第2流体流路28bを含んだ構成としてもよい。 In addition, in the embolization-loaded catheter 20 according to the present embodiment, the fluid flow path 28 is a second fluid flow path 28 b that is formed at least from the proximal end to the distal end of the embolization material 10 and formed inside the embolization material 10 . may be configured to include

 このような構成により、塞栓物10は、外周面の略全面が接触部11として機能し、この接触部11が移動抑制力を受けた状態でカテーテル本体21の内周面21aと接触して装填用ルーメン22内に装填される。また、塞栓物10が装填された装填用ルーメン22内には、塞栓物10と基端から先端にかけて塞栓物10の内方に形成される空隙によって第2流体流路28bを含む流体流路28が形成される。したがって、プライミング液は、注入口から注入されると、流体流路28を通って排出口から排出される。塞栓物10は、接触部11が移動抑制力を受けた状態で装填用ルーメン22内に装填されるため、プライミング液の押圧力に抗して装填用ルーメン22内に留まる。そのため、塞栓物装填済みカテーテル20は、塞栓物10をカテーテル本体21に装填した状態でプライミング操作しても、塞栓物10の意図しない飛び出しが防止できる。 With such a configuration, substantially the entire outer peripheral surface of the embolus 10 functions as the contact portion 11, and the contact portion 11 is loaded while being in contact with the inner peripheral surface 21a of the catheter body 21 while receiving a movement suppressing force. It is loaded into the lumen 22 for use. In addition, in the loading lumen 22 loaded with the embolus 10, a fluid flow path 28 including a second fluid flow path 28b is formed by the embolus 10 and a gap formed inside the embolus 10 from the proximal end to the distal end. is formed. Therefore, the priming liquid is injected through the inlet and discharged through the outlet through the fluid flow path 28 . Since the embolus 10 is loaded into the loading lumen 22 while the contact portion 11 receives a movement suppressing force, it stays in the loading lumen 22 against the pressing force of the priming solution. Therefore, even if the embolus-loaded catheter 20 is primed with the embolus 10 loaded in the catheter main body 21, the embolus 10 can be prevented from unintentionally popping out.

 また、本実施形態に係る塞栓物装填済みカテーテル20において、塞栓物10は、装填用ルーメン22の軸方向に沿って延在し、かつカテーテル本体21の内周面21aと接触する複数の接触部11を有する線状構造をなし、流体流路28は、少なくともカテーテル本体21の内周面21aと塞栓物10との間に形成される空隙からなる第3流体流路28cを含んだ構成としてもよい。 In the embolus-loaded catheter 20 according to the present embodiment, the embolus 10 extends along the axial direction of the loading lumen 22 and has a plurality of contact portions that contact the inner peripheral surface 21 a of the catheter body 21 . 11, and the fluid channel 28 may include at least a third fluid channel 28c consisting of a gap formed between the inner peripheral surface 21a of the catheter body 21 and the embolus 10. good.

 このような構成により、塞栓物10は、外周面の一部が接触部11として機能し、この接触部11が移動抑制力を受けた状態でカテーテル本体21の内周面21aと接触して装填用ルーメン22内に装填される。また、塞栓物10が装填された装填用ルーメン22内には、少なくともカテーテル本体21の内周面21aと塞栓物10との間に形成される空隙からなる第3流体流路28cを含む流体流路28が形成される。したがって、プライミング液は、注入口から注入されると、流体流路28を通って排出口から排出される。塞栓物10は、接触部11が移動抑制力を受けた状態で装填用ルーメン22内に装填されるため、プライミング液の押圧力に抗して装填用ルーメン22内に留まる。そのため、塞栓物装填済みカテーテル20は、塞栓物10をカテーテル本体21に装填した状態でプライミング操作しても、塞栓物10の意図しない飛び出しが防止できる。 With such a configuration, a portion of the outer peripheral surface of the embolus 10 functions as the contact portion 11, and the contact portion 11 is loaded while being in contact with the inner peripheral surface 21a of the catheter main body 21 while receiving a movement suppressing force. It is loaded into the lumen 22 for use. Further, in the loading lumen 22 loaded with the embolization material 10, there is at least a third fluid flow path 28c consisting of a gap formed between the inner peripheral surface 21a of the catheter body 21 and the embolization material 10. A path 28 is formed. Thus, the priming liquid is injected through the inlet and discharged through the outlet through the fluid flow path 28 . Since the embolus 10 is loaded into the loading lumen 22 while the contact portion 11 receives a movement-suppressing force, it stays in the loading lumen 22 against the pressing force of the priming solution. Therefore, even if the embolus-loaded catheter 20 is primed with the embolus 10 loaded in the catheter main body 21, the embolus 10 can be prevented from unintentionally popping out.

 また、本実施形態に係る医療器具セット100は、上述した何れかの塞栓物装填済みカテーテル20と、塞栓物装填済みカテーテル20の基端ハブ23の挿通路23aを介して装填用ルーメン22に挿入可能な長尺状のプッシャー本体31を備える送達用プッシャー30と、を有する。 Further, the medical instrument set 100 according to the present embodiment is inserted into the loading lumen 22 through any of the catheters 20 loaded with the embolus described above and the insertion passage 23a of the proximal hub 23 of the catheter 20 loaded with the embolus. a delivery pusher 30 comprising a possibly elongated pusher body 31 .

 このような構成により、医療器具セット100は、塞栓物装填済みカテーテル20と送達用カテーテル40とを装着状態としたとき、送達用プッシャー30を基端ハブ23から挿入させることにより、装填用ルーメン22内に装填された塞栓物10を、送達用カテーテル40を介して瘤内へ容易に押し出すことができる。また、塞栓物装填済みカテーテル20は、塞栓物10をカテーテル本体21に装填した状態でプライミング操作しても、塞栓物10の意図しない飛び出しが防止できる。 With such a configuration, the medical instrument set 100 inserts the delivery pusher 30 from the proximal end hub 23 when the catheter 20 loaded with the embolic material and the delivery catheter 40 are put into the mounting state, thereby causing the loading lumen 22 to move. The internally loaded embolus 10 can be easily pushed through the delivery catheter 40 into the aneurysm. In addition, even if the catheter 20 loaded with the embolizing material is primed with the embolizing material 10 loaded in the catheter main body 21, the unintended ejection of the embolizing material 10 can be prevented.

 本出願は、2021年9月22日に出願された日本国特許出願第2021-154164号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2021-154164 filed on September 22, 2021, the disclosure of which is incorporated by reference in its entirety.

 10(10A~10M) 塞栓物、
 11(11A~11M) 接触部、
 20 塞栓物装填済みカテーテル、
 21 カテーテル本体(21a 内周面)、
 22 装填用ルーメン、
 23 基端ハブ(23a 挿通路)、
 28 流体流路(28a 第1流体流路、28b 第2流体流路、28c 第3流体流路)、
 30 送達用プッシャー、
 31 プッシャー本体、
 40 送達用カテーテル、
 50 挿通補助部材、
 100 医療器具セット
 200 デリバリーシステム、
 300 塞栓物デリバリー医療システム。
 
10 (10A-10M) emboli,
11 (11A to 11M) contact part,
20 embolized catheter,
21 catheter body (21a inner peripheral surface),
22 loading lumens,
23 base end hub (23a insertion passage),
28 fluid flow path (28a first fluid flow path, 28b second fluid flow path, 28c third fluid flow path),
30 delivery pusher;
31 pusher body,
40 delivery catheter,
50 insertion auxiliary member,
100 medical instrument set 200 delivery system,
300 Embolic Delivery Medical System.

Claims (5)

 長尺状のカテーテル本体と、
 液体との接触により膨潤する塞栓物と、
 前記カテーテル本体の先端から基端にかけて連通して設けられ、前記塞栓物が装填された装填用ルーメンと、
 前記装填用ルーメンと連通する挿通路を有し、前記装填用ルーメンに流体を注入可能な注入用ハブと、
 を備え、
 前記塞栓物は、前記塞栓物の外周面上に、前記装填用ルーメンを画成する前記カテーテル本体の内周面と接触して前記塞栓物の前記カテーテル本体の軸方向への移動を抑制する移動抑制力を受けている複数の接触部を有し、
 前記カテーテル本体は、前記注入用ハブを介して前記流体を前記装填用ルーメン内に注入する注入口および前記流体を前記装填用ルーメン内から排出する排出口を有し、
 前記塞栓物が装填され、かつ前記複数の接触部が前記移動抑制力を受けている状態の前記装填用ルーメン内には、前記装填用ルーメンの先端から基端にかけて延在し、かつ前記注入口および前記排出口と連通した流体流路が形成されている、塞栓物装填済みカテーテル。
an elongated catheter body;
an embolus that swells upon contact with a liquid; and
a loading lumen provided in communication from the distal end to the proximal end of the catheter body and loaded with the embolization material;
an injection hub having an insertion passage communicating with the loading lumen and capable of injecting a fluid into the loading lumen;
with
The embolus moves on an outer peripheral surface of the embolus to contact an inner peripheral surface of the catheter body defining the loading lumen to inhibit axial movement of the embolus in the catheter body. having a plurality of contacts under restraining force,
The catheter body has an injection port for injecting the fluid into the loading lumen via the injection hub and an outlet for discharging the fluid from the loading lumen,
In the loading lumen in which the embolus is loaded and the plurality of contact portions are subjected to the movement suppressing force, the charging lumen extends from the distal end to the proximal end of the loading lumen, and the injection port and an embolus-loaded catheter defining a fluid passageway in communication with said outlet.
 前記塞栓物は、軸方向と直交する方向の断面において、前記装填用ルーメンを画成する前記カテーテル本体の前記内周面とは異なる形状に形成されていることにより、前記カテーテル本体の前記内周面と接触する複数の前記接触部を有し、
 前記流体流路は、少なくとも前記カテーテル本体の前記内周面と前記塞栓物の前記外周面との間に形成される空隙からなる第1流体流路を含む、請求項1記載の塞栓物装填済みカテーテル。
The embolus is formed in a shape different from the inner peripheral surface of the catheter body defining the loading lumen in a cross-section in a direction orthogonal to the axial direction, so that the inner peripheral surface of the catheter body is Having a plurality of the contact portions that contact the surface,
2. The embolus-loaded material of claim 1, wherein said fluid flow path comprises at least a first fluid flow path comprising a gap formed between said inner peripheral surface of said catheter body and said outer peripheral surface of said embolus. catheter.
前記流体流路は、少なくとも前記塞栓物の基端から先端にかけて前記塞栓物の内方に形成される空隙からなる第2流体流路を含む、請求項1または2記載の塞栓物装填済みカテーテル。 3. The embolus-loaded catheter of claim 1 or 2, wherein the fluid flow path comprises a second fluid flow path comprising a void formed inside the embolus at least from the proximal end to the distal end of the embolus.  前記塞栓物は、前記装填用ルーメンの軸方向に沿って延在し、かつ前記カテーテル本体の前記内周面と接触する複数の前記接触部を有する線状構造をなし、
 前記流体流路は、少なくとも前記カテーテル本体の前記内周面と前記塞栓物との間に形成される空隙からなる第3流体流路を含む、請求項1記載の塞栓物装填済みカテーテル。
The plug has a linear structure extending along the axial direction of the loading lumen and having a plurality of contact portions that contact the inner peripheral surface of the catheter body,
2. The embolus-loaded catheter of claim 1, wherein said fluid flow path comprises at least a third fluid flow path comprising a void formed between said inner peripheral surface of said catheter body and said embolus.
 請求項1~4の何れか1項に記載の塞栓物装填済みカテーテルと、
 前記塞栓物装填済みカテーテルの基端ハブの挿通路を介して前記装填用ルーメンに挿入可能な長尺状のプッシャー本体を備える送達用プッシャーと、を有する医療器具セット。
an embolus-loaded catheter according to any one of claims 1 to 4;
a delivery pusher comprising an elongated pusher body insertable into the loading lumen through a passageway in the proximal hub of the embolus-loaded catheter.
PCT/JP2022/034751 2021-09-22 2022-09-16 Embolus-loaded catheter and medical device set WO2023048083A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-154164 2021-09-22
JP2021154164A JP2024160188A (en) 2021-09-22 2021-09-22 Pre-loaded catheters and medical instrument sets

Publications (1)

Publication Number Publication Date
WO2023048083A1 true WO2023048083A1 (en) 2023-03-30

Family

ID=85720713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034751 WO2023048083A1 (en) 2021-09-22 2022-09-16 Embolus-loaded catheter and medical device set

Country Status (2)

Country Link
JP (1) JP2024160188A (en)
WO (1) WO2023048083A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520085A (en) * 1997-10-17 2001-10-30 マイクロ・セラピューティクス・インコーポレーテッド Catheter system and method for infusion of liquid embolic composition and coagulant
JP2011125437A (en) * 2009-12-16 2011-06-30 Terumo Corp Embolus material
JP2017536869A (en) * 2014-10-23 2017-12-14 トリバスキュラー・インコーポレイテッドTriVascular, INC. Stent graft delivery system with access conduit
JP2022153949A (en) * 2021-03-30 2022-10-13 テルモ株式会社 Embolization pre-loaded catheters and emboli

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520085A (en) * 1997-10-17 2001-10-30 マイクロ・セラピューティクス・インコーポレーテッド Catheter system and method for infusion of liquid embolic composition and coagulant
JP2011125437A (en) * 2009-12-16 2011-06-30 Terumo Corp Embolus material
JP2017536869A (en) * 2014-10-23 2017-12-14 トリバスキュラー・インコーポレイテッドTriVascular, INC. Stent graft delivery system with access conduit
JP2022153949A (en) * 2021-03-30 2022-10-13 テルモ株式会社 Embolization pre-loaded catheters and emboli

Also Published As

Publication number Publication date
JP2024160188A (en) 2024-11-13

Similar Documents

Publication Publication Date Title
EP1507569B1 (en) Liquid embolic composition delivery device
US20210145446A1 (en) Embolization device and a method of using the same
JP7326413B2 (en) embolization device
EP2739217B1 (en) Systems for treatment of acute ischemic stroke
EP1100381B1 (en) Devices for the repair of arteries
US20040098024A1 (en) Containers and methods for delivering vaso-occluding filaments and particles
EP1746942B1 (en) Introducer sheath stabilizer
CN110461278B (en) Delivery system for bifurcated stents
WO1994026175A1 (en) Embolization device
WO2022014632A1 (en) Medical instrument set, delivery system, and embolus delivery medical system
CN113795293B (en) Catheter comprising an expandable member
CN111096833A (en) conveyor
JP2022153949A (en) Embolization pre-loaded catheters and emboli
WO2023048083A1 (en) Embolus-loaded catheter and medical device set
JP2023044322A (en) Embolus-loaded catheter and method of using embolus-loaded catheter
WO2023042909A1 (en) Catheter and embolus pre-loaded catheter
US20230012812A1 (en) Medical instrument set, delivery system, and embolic device delivery medical system
CN115414577A (en) Medicine balloon catheter
WO2023054320A1 (en) Medical device and delivery system
WO2022014633A1 (en) Embolus loading catheter, medical instrument set, delivery system, and embolus delivery medical system
US20240341986A1 (en) Delivery system for a furcated stent
JP2022149382A (en) Obstruction loaded catheter and medical instrument set
WO2021199973A1 (en) Medical instrument set, delivery system, and embolus delivery medical system
US20250032121A1 (en) Systems and methods for treating aneurysms
JP2024052036A (en) Embolization material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22872837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP