[go: up one dir, main page]

WO2023047468A1 - Motor drive device having dynamic braking circuit - Google Patents

Motor drive device having dynamic braking circuit Download PDF

Info

Publication number
WO2023047468A1
WO2023047468A1 PCT/JP2021/034637 JP2021034637W WO2023047468A1 WO 2023047468 A1 WO2023047468 A1 WO 2023047468A1 JP 2021034637 W JP2021034637 W JP 2021034637W WO 2023047468 A1 WO2023047468 A1 WO 2023047468A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current
dynamic
braking
value
Prior art date
Application number
PCT/JP2021/034637
Other languages
French (fr)
Japanese (ja)
Inventor
総 齊藤
力 鹿川
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to JP2023549201A priority Critical patent/JP7640725B2/en
Priority to PCT/JP2021/034637 priority patent/WO2023047468A1/en
Publication of WO2023047468A1 publication Critical patent/WO2023047468A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present invention relates to a motor drive device having a dynamic braking circuit.
  • Dynamic braking which short-circuits the input terminals of the motor and applies dynamic braking, is widely used in motor drive devices that drive motors that power machines such as machine tools and robots.
  • a power semiconductor module in which electronic components are mounted on an insulating substrate inside a housing and controls a three-phase AC motor provided outside the housing, the upper stage connected to each other in series on the insulating substrate A plurality of sets of switching elements each having a pair of a side element and a lower side element, a diode element connected in anti-parallel to the switching elements, and dynamic brake switching provided between any two phases of the three-phase AC motor.
  • a power semiconductor module characterized by comprising an element and (see, for example, Patent Literature 1).
  • power conversion means for converting DC power into three-phase AC power, current detection means for detecting the current flowing in the output line of the power conversion means for each phase, and a motor driven by the current flowing in the output line.
  • a speed detecting means for detecting the rotation speed of the motor;
  • a relay for short-circuiting each of the output lines by a back contact directly or via a current limiting means when the motor is in a non-driving state;
  • a failure detection means for detecting a failure of the relay or the current limiting means based on the detection output of the current detection means and the detection output of the speed detection means when the motor is in the non-driving state.
  • the torque flowing to the dynamic brake circuit is based on the motor rotation speed and the parameters defined in advance for the motor and the dynamic brake circuit.
  • a dynamic braking current calculator for calculating a value of the dynamic braking current; and a dynamic braking current applied to the contacts of the relay during the dynamic braking period based on the value of the dynamic braking current obtained by the dynamic braking current calculator.
  • a Joule heat calculation unit for calculating Joule heat by a dynamic braking current value at the start of dynamic braking; and the dynamic brake current value obtained by the dynamic brake current calculation unit at the start of the dynamic brake each time the dynamic brake is started.
  • Joule heat due to the arc obtained from the table Joule heat due to the dynamic braking current obtained by the Joule heat calculation unit during the dynamic braking period, or the sum of the Joule heat due to these arcs and the Joule heat due to the dynamic braking current and a comparison unit that compares the integrated value obtained by the integration unit with a preset reference value and outputs a comparison result.
  • a comparison unit that compares the integrated value obtained by the integration unit with a preset reference value and outputs a comparison result.
  • the optimum motor is selected according to the operation of the machine, and the motor drive device is designed according to the selected motor.
  • Machines such as machine tools and robots are used for many years while being repaired.
  • use of the machine even if the motor that powers the machine is different from the motor that was originally selected, such as a third-party motor instead of the manufacturer's genuine motor, or a manufacturer's genuine motor.
  • the motor may be replaced with a motor that is not suitable for If a motor with specifications different from the selected motor is replaced and the motor is connected to a motor drive device and operated, the motor will operate unexpectedly and damage the machine, the motor incorporated in the machine, and the motor.
  • the motor driving device that drives the motor breaks down, or the surroundings of the machine are adversely affected. For example, it is conceivable to determine whether or not the motor is a manufacturer-genuine motor suitable for use in the machine based on the ID information given to the motor, but it is necessary to provide the motor with a storage unit for storing the ID information , which is a factor of high cost. In addition, a complicated design such as processing for passing ID information between the motor and the motor driving device is required, and moreover, it takes time and effort to write the ID information in the storage unit. Therefore, it is desired to realize a low-cost and easy-to-manufacture motor drive device that can determine whether or not an expected motor is attached.
  • a motor drive device short-circuits a storage unit that stores predetermined parameters for a registered motor and an input terminal of the motor that is being driven through a dynamic brake resistance, thereby using a dynamic brake circuit that brakes the driving motor by generating a deceleration torque at a constant speed, the number of revolutions per unit time of the driving motor at the start of braking by the dynamic brake circuit, and the parameters stored in the storage unit, a calculation unit for calculating information about an estimated value of the dynamic braking current flowing between the motor being driven and the dynamic braking circuit during braking by the dynamic braking circuit; a measuring unit that acquires information about the measured value of the dynamic braking current flowing between the motor and the registered motor based on the result of comparison between the information about the estimated value of the dynamic braking current and the information about the measured value of the dynamic braking current; a determination unit that determines whether or not they match.
  • FIG. 1 illustrates a motor drive device according to an embodiment of the present disclosure
  • FIG. 4 is a flow chart showing the operation flow of the motor driving device according to the embodiment of the present disclosure
  • FIG. 5 is a diagram illustrating a current waveform of an estimated value of dynamic brake current calculated by a calculator in the motor drive device according to the embodiment of the present disclosure
  • a motor drive device having a dynamic brake circuit will be described below with reference to the drawings.
  • similar parts are provided with similar reference numerals.
  • the scales of these drawings are appropriately changed.
  • the illustrated forms are examples of implementations and are not limited to these forms.
  • FIG. 1 is a diagram showing a motor drive device according to one embodiment of the present disclosure.
  • a motor driven by the motor driving device 1 is called a "driving motor".
  • a motor that is registered in advance as being permitted to be connected to the motor drive device 1 is referred to as a "registered motor”.
  • the driving and registration motors may be, for example, induction motors or synchronous motors.
  • the registered motor may be a motor that is selected at the time of design as a power source for a machine such as a machine tool or a robot and is permitted to be connected to the motor drive device 1 provided in the machine, or a motor manufactured by a genuine manufacturer.
  • can be Motors that are different from registered motors include, for example, motors manufactured by a genuine manufacturer whose specifications are different from those originally designed, and motors manufactured by third parties.
  • a motor permitted to be connected to the motor drive device 1 is registered in advance as a registered motor, and the motor being driven is the registered motor when the dynamic braking circuit 12 brakes the motor being driven.
  • the driving motor is the registered motor (for example, a motor that was selected in advance as a power source for a machine such as a machine tool or a robot at the time of design, or a motor manufactured by a genuine manufacturer. (e.g., motors made by a genuine manufacturer but different from the original design specifications, motors made by a third party, etc.), notify workers to that effect. do.
  • a motor drive device 1 includes a converter 101, an inverter 102, a DC link capacitor 103, a motor control unit 10, a storage unit 11, a dynamic brake circuit 12, a calculation unit 13, a measurement A unit 14 , a determination unit 15 , a position detector 16 , and a brake control unit 17 are provided.
  • the converter 101 converts the AC power supplied from the AC power supply 2 into DC power and outputs it to the DC link.
  • Examples of the converter 101 include a diode rectifier circuit, a 120-degree conduction rectifier circuit, and a PWM switching control type rectifier circuit.
  • the converter 101 is a PWM switching control rectifier circuit, it consists of a switching element and a bridge circuit of diodes connected in inverse parallel to the switching element. Each switching element is on/off-controlled to perform power conversion in both AC and DC directions.
  • Examples of semiconductor switching elements include unipolar transistors such as FETs, bipolar transistors, IGBTs, thyristors, and GTOs. There may be.
  • a “DC link” refers to a circuit portion that electrically connects the DC output side of the converter 101 and the DC input side of the inverter 102. , ⁇ DC bus'' or ⁇ DC intermediate circuit''.
  • a DC link capacitor 103 is provided in the DC link.
  • the DC link capacitor 103 has a function of accumulating energy (DC power) in the DC link and a function of suppressing pulsation of the DC side output of the converter 101 . As the DC link capacitor 103 is charged, DC power is accumulated in the DC link.
  • the inverter 102 performs power conversion between DC power in the DC link and AC power, which is drive power or regenerative power for the motor 3 being driven.
  • Examples of the inverter 102 include a PWM inverter including semiconductor switching elements therein.
  • the semiconductor switching element is composed of, for example, a unipolar transistor such as an FET, a bipolar transistor, an IGBT, a thyristor, a GTO, or the like. may be
  • the motor control unit 10 generates a drive command for on/off controlling each semiconductor switching element of the inverter 102 and outputs it to the inverter 102 .
  • the motor control unit 10 detects the rotation speed (speed feedback) of the driving motor 3 detected by the position detector 16, and the current flowing in the power line between the inverter 102 and the driving motor 3 detected by the measuring unit 14 ( It controls the power conversion operation of the inverter 102 based on current feedback), a predetermined torque command, an operation program of the motor 3 during driving, and the like.
  • the speed, torque, or position of the rotor of the motor 3 being driven is controlled based on the AC power supplied from the inverter 102 .
  • the configuration of the motor control unit 10 described here is merely an example, and terms such as a position command generation unit, a position control unit, a speed control unit, a current control unit, and a torque command generation unit are included in the motor control unit.
  • a configuration of the unit 10 may be defined.
  • the storage unit 11 stores parameters defined in advance for registered motors.
  • the storage unit 11 is composed of an electrically erasable/recordable nonvolatile memory such as EEPROM (registered trademark), or a random access memory such as DRAM or SRAM that can be read and written at high speed. good too. Even after the parameters are stored in the storage unit 11, the parameters may be rewritten as necessary.
  • the parameters for the registered motor include mechanical friction T f [kgm 2 ], back electromotive force coefficient K v [Vsec/rad], motor winding resistance value R m [ ⁇ ], motor pole number p, motor At least one of inductance L m [H] and rotor inertia moment J [kgm 2 ] is included.
  • the storage unit 11 also stores the value R DB [ ⁇ ] of the dynamic brake resistor 21 as a dynamic brake circuit parameter related to the dynamic brake circuit 12 .
  • the dynamic brake (DB) circuit 12 has a dynamic brake resistor 21 and a switch 22 connected in series with the dynamic brake resistor 21 . As shown, a series circuit consisting of a dynamic brake resistor 21 and a switch 22 is provided between the input terminals of the motor 3 during driving (between the winding phases of the motor 3 during driving).
  • the switch 22 is composed of a relay, a semiconductor switching element, or the like, and is controlled to be turned on/off by a brake command (on/off command) generated by the brake control unit 17, which will be described later.
  • the switch 22 is turned on to short-circuit the input terminals of the motor 3 through the dynamic brake resistor 21 during driving. At that time, even if the driving motor 3 is electrically disconnected from the power supply, the field magnetic flux exists, and the driving motor 3 rotating by inertia works as a generator, so the dynamic brake current generated by this is turned on. The heat flows into the dynamic brake resistor 21 through the switch 22 and is converted into Joule heat by the dynamic brake resistor 21 and consumed. As a result, deceleration torque is generated in the motor 3 during driving. This deceleration torque brakes the driving motor 3, and finally the driving motor 3 stops.
  • the calculation unit 13 uses the number of revolutions per unit time of the driving motor 3 detected by the position detector 16 when the dynamic brake circuit 12 starts braking, and the parameter stored in the storage unit 11, to calculate the dynamic brake circuit. Information about the estimated value of the dynamic braking current flowing between the motor 3 and the dynamic braking circuit 12 during driving by 12 is calculated.
  • Equation 3 can be expressed as Equation 4.
  • Formula 5 is defined as a cofunction with C as a constant.
  • Equation 7 A special solution represented by Equation 7 with X and Y as constants is obtained.
  • Equations 8 and 9 are obtained by comparing equations obtained by substituting the above special solution into equation 3 with equation 2.
  • Equations 10 and 11 X and Y are expressed as in Equations 10 and 11.
  • Equation 12 the first phase current i I [A] can be expressed as shown in Equation 12.
  • ⁇ ⁇ is expressed as in Equation 13.
  • stator voltage e II and current i II of the second phase, the stator voltage e III and current i III of the third phase, and the stator voltage e I and current i I of the first phase are 2/3 ⁇ and -2/3 ⁇ respectively. Since there is a deviation, the stator power P[W] can be expressed as shown in Equation 14.
  • Equation 15 the torque constant K t [N ⁇ m/Ap] is represented by Equation 15.
  • Equation 17 the power P [W] of the stator of the driving motor 3 as expressed by Equation 17 is obtained.
  • Formula 19 is obtained by substituting formula 17 into formula 18 and arranging it. Let ⁇ [rad/sec] be the rotational angular velocity of the rotor.
  • Equation 20 The equation of motion of the rotor of the driving motor 3 is expressed by Equation 20.
  • Equation 21 By substituting the torque T[N] represented by Equation 19 into Equation 20 and solving, Equation 21 is obtained.
  • Equation 22 A, B, ⁇ , ⁇ , ⁇ , and ⁇ are expressed as in Equation 22.
  • Equation 24 is obtained by integrating both sides of Equation 23 with C 1 as the integration constant.
  • a constant C 1 is expressed as in Equation 25.
  • the rotational angular velocity ⁇ 0 [rad/sec] of the driving motor 3 when the dynamic braking circuit 12 starts braking is the rotation speed N 0 [rotation/sec] of the driving motor 3 per unit time when the dynamic braking circuit 12 starts braking. sec] is expressed as in Equation 26.
  • Equation 27 is obtained.
  • Equation 28 the estimated value of the dynamic brake current i DB ( ⁇ t )[A] can be expressed as Equation 28 based on Equation 12.
  • Equation 28 ⁇ ⁇ is represented by Equation 29.
  • Equation 30 the relationship between the rotational angular velocity ⁇ [rad/sec] of the driving motor 3 after the start of braking by the dynamic brake circuit 12 and the time t can be expressed as in Equation 30 based on Equation 27.
  • Equation 30 each constant is represented by Equation 31.
  • Equation 28 the current peak value i DBpeak [A] of the estimated value of the dynamic braking current shown in Equation 32 is obtained.
  • Estimated static time t set [sec], which is the time required for the number of rotations per unit time of the motor 3 being driven to become equal to or less than a predetermined threshold value from the start of braking by the dynamic brake circuit 12 (t 0).
  • the predetermined threshold is set to a minute value close to zero.
  • the calculation unit 13 uses the number of revolutions per unit time of the driving motor 3 detected by the position detector 16 when the dynamic brake circuit 12 starts braking, and the parameter stored in the storage unit 11, to calculate the dynamic brake circuit. 12, the current peak value i DBpeak [A] of the estimated value shown in Equation 32, the estimated static time t set [sec] shown in Equation 33, or , or the estimated value i DB ( ⁇ t) [A] of the dynamic braking current shown in Equation 28 representing the current waveform of the estimated value of the dynamic braking current at each time t.
  • FIG. 3 is a diagram illustrating a current waveform of an estimated value of dynamic braking current calculated by a calculator in the motor drive device according to the embodiment of the present disclosure.
  • calculation formula used for calculating the information regarding the estimated value of the dynamic braking current described above is an example, and the information regarding the estimated value of the dynamic braking current may be calculated using a calculation formula other than this.
  • the measuring unit 14 acquires information about the measured value of the dynamic braking current flowing between the motor 3 and the dynamic braking circuit 12 during braking by the dynamic braking circuit 12 .
  • a current sensor provided in the power line connecting the motor 3 and the dynamic brake circuit 12 during driving sequentially measures the dynamic brake current at minute intervals from the start of braking by the dynamic brake circuit 12, and the current waveform is are sequentially stored in a memory (not shown).
  • the measurement unit 14 determines from the current waveform stored in the memory, the current peak value of the measured value of the dynamic brake current, and the rotation speed per unit time of the motor 3 being driven from the start of braking by the dynamic brake circuit 12 is equal to or less than a predetermined threshold value.
  • the determination unit 15 determines whether the driving motor 3 is registered based on the result of comparison between the information regarding the estimated value of the dynamic braking current calculated by the calculating unit 13 and the information regarding the measured value of the dynamic braking current obtained by the measuring unit 14. Determine whether or not it matches the motor. That is, when the information about the estimated value of the dynamic braking current and the information about the measured value of the dynamic braking current match, the determination unit 15 determines that the motor 3 being driven matches the registered motor, and the estimated value of the dynamic braking current and the information about the measured value of the dynamic brake current do not match, it is determined that the motor 3 being driven does not match the registered motor.
  • the determination result by the determination unit 15 is sent to a display unit (not shown), and the display unit displays, as the determination result, "the motor being driven does not match the registered motor” or "the motor being driven matches the registered motor".
  • the display unit include a single display device, a display device attached to the motor drive device 1, a display device attached to a host controller (not shown), a display device attached to a personal computer and a mobile terminal, an LED, There are light-emitting devices such as lamps. Also, for example, if the display unit is composed of a light-emitting device such as an LED or a lamp, the light-emitting device emits light when an alarm is received. It notifies the operator that it matches the motor.
  • the determination result by the determination unit 15 is sent to, for example, an acoustic device (not shown), and the acoustic device emits a sound such as voice, speaker, buzzer, chime, etc., so that "the driving motor is registered.
  • the operator is informed that "the motor does not match” or "the motor being driven matches the registered motor”.
  • the operator can easily grasp whether or not the motor 3 being driven matches the registered motor.
  • the determination result by the determination unit 15 is sent to the motor control unit 10, and the motor control unit 10 stops the inverter 102 when the determination unit 15 determines that the motor 3 being driven does not match the registered motor. You may make it control so that it may carry out.
  • the driving motor 3 is a registered motor (for example, a motor that has been selected in advance as a power source for a machine such as a machine tool or a robot at the time of design, a motor manufactured by a genuine manufacturer, or the like). ) (for example, a motor manufactured by a genuine manufacturer but different from the specifications at the time of design, a motor manufactured by a third party, etc.).
  • whether or not the motor 3 being driven matches the registered motor is associated with the function of the dynamic braking circuit 12 provided in the motor driving device 1 that drives the motor 3 being driven. is determined, manufacturing is easier and the cost is lower than when determination processing is performed based on the ID information assigned to the motor.
  • the determination process determines whether or not the motor 3 being driven matches the registered motor based on the current peak value of the dynamic brake current.
  • the calculating unit 13 calculates the current peak value of the estimated value of the dynamic braking current according to the equation 32, for example, as information related to the estimated value of the dynamic braking current.
  • the measurement unit 14 acquires the current peak value of the measured value of the dynamic braking current as information about the measured value of the dynamic braking current. If the difference between the current peak value of the estimated value of the dynamic braking current and the current peak value of the measured value of the dynamic braking current is outside a predetermined range, the determination unit 15 determines that the motor 3 being driven does not match the registered motor.
  • the predetermined range may be set to, for example, about ⁇ 30% of the current peak value of the dynamic brake current.
  • the predetermined range may be stored in a rewritable storage unit (not shown) and rewritable by an external device. It can be changed to an appropriate value depending on the situation.
  • the calculation unit 13 calculates the estimated value of the dynamic brake current as information related to the estimated value of the dynamic brake current, for example, according to Equation 33, from the start of braking by the dynamic brake circuit 12 until the number of rotations per unit time of the motor 3 being driven becomes equal to or less than a predetermined threshold value. Calculate the static time estimate, which is time.
  • the measuring unit 14 as information on the measured value of the dynamic braking current, measures the time required from the start of braking by the dynamic braking circuit 12 until the number of revolutions per unit time of the motor 3 being driven becomes equal to or less than a predetermined threshold value. Get time measurements. If the difference between the estimated settling time value and the measured settling time value is outside the predetermined range, the determining unit 15 determines that the driving motor 3 does not match the registered motor, and if the difference is within the predetermined range. determines that the driving motor 3 matches the registered motor.
  • the predetermined range may be set to, for example, about ⁇ 30% of the settling time estimated value, but the numerical values given here are only examples, and other numerical values may be used. Note that the predetermined range may be stored in a rewritable storage unit (not shown) and rewritable by an external device. It can be changed to an appropriate value depending on the situation.
  • the determination process according to the third mode determines whether or not the driving motor 3 matches the registered motor based on the current waveform of the dynamic brake current during braking by the dynamic brake circuit 12 .
  • the calculation unit 13 calculates the current waveform of the estimated value of the dynamic braking current according to, for example, Equation 28 as information about the estimated value of the dynamic braking current.
  • the measuring unit 14 acquires the current waveform of the measured value of the dynamic braking current as information about the measured value of the dynamic braking current.
  • the determination unit 15 compares the difference between the current waveform of the estimated value of the dynamic braking current and the current waveform of the measured value of the dynamic braking current at minute intervals. It is determined that the driving motor 3 does not match the registered motor.
  • the predetermined range may be set to, for example, about ⁇ 30% of the amplitude of the dynamic brake current, but the numerical values given here are only examples and other numerical values may be used.
  • the predetermined range may be stored in a rewritable storage unit (not shown) and rewritable by an external device. It can be changed to an appropriate value depending on the situation.
  • FIG. 2 is a flow chart showing the operation flow of the motor drive device according to one embodiment of the present disclosure.
  • step S102 While the motor 3 is being driven by the alternating current supplied from the inverter 102 under the control of the motor control unit 10 (step S101), in step S102, the calculation unit 13 and the measurement unit 14 operate the dynamic brake circuit 12 determines whether or not braking of the motor 3 during driving has started.
  • the fact that the dynamic brake circuit 12 has started braking the motor 3 during driving can be determined by the fact that the brake command output from the brake control unit has been switched from the OFF command to the ON command.
  • the motor control unit 10 controls the inverter 102 to cut off the supply of driving power to the motor 3 during driving. turns on the switch 22 to short-circuit the input terminals of the motor 3 through the dynamic brake resistor 21 during driving.
  • the dynamic brake current generated thereby flows into the dynamic brake resistor 21 via the switch 22 that is turned on, where it is converted into Joule heat and consumed, resulting in the generation of deceleration torque in the motor 3 during driving.
  • This deceleration torque brakes the motor 3 during driving.
  • step S102 If it is determined in step S102 that the dynamic brake circuit 12 has started braking the motor 3 during driving, the process proceeds to steps S103 and S105, and it is determined that the dynamic brake circuit 12 has not started braking the motor 3 during driving. If so, the process returns to step S101.
  • step S103 the calculation unit 13 acquires the parameters stored in the storage unit 11, and acquires from the position detector 16 the number of rotations per unit time at the start of braking the motor 3 being driven by the dynamic brake circuit 12. .
  • step S104 the calculation unit 13 calculates the number of revolutions per unit time of the driving motor 3 detected by the position detector 16 at the start of braking by the dynamic brake circuit 12 and the parameters stored in the storage unit 11. is used to compute information about an estimate of the dynamic braking current that flows between the motor 3 and the dynamic braking circuit 12 during braking by the dynamic braking circuit 12 . After that, the process proceeds to step S107.
  • step S105 the measuring unit 14 acquires information about the measured value of the dynamic braking current flowing between the driving motor 3 and the dynamic braking circuit 12 during braking by the dynamic braking circuit 12 .
  • step S106 the measurement unit 14 determines whether or not the amplitude of the measured value of the dynamic braking current has become equal to or less than a predetermined amplitude threshold. If it is determined that the amplitude of the measured value of the dynamic braking current is equal to or less than the predetermined amplitude threshold value, the process proceeds to step S107. If it is not determined that the amplitude of the measured value of the dynamic braking current is equal to or less than the predetermined amplitude threshold value Return to step S105.
  • step S107 the determining unit 15 determines whether or not the information regarding the estimated value of the dynamic braking current calculated by the calculating unit 13 and the information regarding the measured value of the dynamic braking current obtained by the measuring unit 14 match. . If it is determined in step S107 that the information regarding the estimated value of the dynamic braking current and the information regarding the measured value of the dynamic braking current match, the determination unit 15 determines that the motor being driven matches the registered motor in step S108. . If it is determined in step S107 that the information regarding the estimated value of the dynamic braking current and the information regarding the measured value of the dynamic braking current do not match, then in step S108 the determination unit 15 determines that the motor being driven does not match the registered motor. judge.
  • the determination result by the determination unit 15 is sent to a display unit (not shown), and the display unit displays, as the determination result, "the motor being driven does not match the registered motor” or "the motor being driven matches the registered motor". to display Also, for example, if the display unit is composed of a light-emitting device such as an LED or a lamp, the light-emitting device emits light when an alarm is received. It notifies the operator that it matches the motor. Further, for example, the determination result by the determination unit 15 is sent to, for example, an acoustic device (not shown), and the acoustic device emits a sound such as a voice, a speaker, a buzzer, a chime, or the like to indicate that "the driving motor is registered. The operator is informed that "the motor does not match” or "the motor being driven matches the registered motor”. Thereby, the operator can easily grasp whether or not the motor 3 being driven matches the registered motor.
  • step S102 After it is determined in step S102 that the dynamic braking circuit 12 has started braking the driving motor 3, whether the number of rotations of the driving motor 3 at the start of braking by the dynamic braking circuit 12 is equal to or greater than a predetermined rotation number threshold.
  • the process proceeds to steps S103 and S105, and the dynamic brake circuit 12 If it is not determined that the rotation speed of the driving motor at the start of braking by the dynamic brake circuit 12 is equal to or greater than a predetermined rotation speed threshold value, only the braking process by the dynamic brake circuit 12 may be executed as it is, and the process may end.
  • the rotor moment of inertia J [kgm 2 ] has a different value depending on the load applied to the motor. Therefore, after it is determined in step S102 that the dynamic brake circuit 12 has started braking the motor 3 during driving, the operator is notified of the rotor inertia moment J [kgm 2 ] via a display unit (not shown).
  • a process for requesting input may be provided.
  • the operator When the operator is requested to input the rotor inertia moment J [kgm 2 ], the operator inputs the rotor inertia moment J [kgm 2 ] via an input unit (not shown), writes it in the storage unit 11, and then The process proceeds to steps S103 and S105. Thereby, the determination accuracy by the determination unit 15 can be further improved.
  • An arithmetic processing unit (processor) is provided in the motor driving device 1 described above.
  • arithmetic processing units include ICs, LSIs, CPUs, MPUs, and DSPs.
  • This arithmetic processing unit has a motor control section 10 , a calculation section 13 , a measurement section 14 , a determination section 15 and a brake control section 17 .
  • Each of these units of the arithmetic processing unit is, for example, a functional module realized by a computer program executed on the processor.
  • the motor control unit 10 when the motor control unit 10, the calculation unit 13, the measurement unit 14, the determination unit 15, and the brake control unit 17 are constructed in a computer program format, by operating the arithmetic processing unit according to this computer program, the functions of each unit can be realized.
  • a computer program for executing each process of the motor control unit 10, the calculation unit 13, the measurement unit 14, the determination unit 15, and the brake control unit 17 is stored in a computer-readable medium such as a semiconductor memory, a magnetic recording medium, or an optical recording medium. It may be provided in a form recorded on a recording medium.
  • the motor control unit 10, the calculation unit 13, the measurement unit 14, the determination unit 15, and the brake control unit 17 may be realized as semiconductor integrated circuits in which computer programs for realizing the functions of each unit are written.
  • the storage unit 11 is an electrically erasable and recordable nonvolatile memory such as EEPROM (registered trademark), or a random access memory such as DRAM or SRAM that can be read and written at high speed. may be configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

This motor drive device comprises: a storage unit for storing the prespecified parameters of a registered motor; a dynamic braking circuit; a calculation unit for calculating, using the rotational speed per unit time of a driven motor when the dynamic braking circuit starts braking and the parameters stored in the storage unit, information about an estimated value of dynamic braking current flowing while the dynamic braking circuit is braking; a measurement unit for obtaining information about the measured value of the dynamic braking current during braking by the dynamic braking circuit; and a determination unit for determining, on the basis of the result of the comparison between the information about the estimated value of the dynamic braking current and the information about the measured value of the dynamic braking current, whether the driven motor is consistent with the registered motor or not.

Description

ダイナミックブレーキ回路を有するモータ駆動装置MOTOR DRIVE WITH DYNAMIC BRAKE CIRCUIT
 本発明は、ダイナミックブレーキ回路を有するモータ駆動装置に関する。 The present invention relates to a motor drive device having a dynamic braking circuit.
 工作機械やロボットなどの機械の動力になるモータを駆動するモータ駆動装置では、モータの入力端子間を短絡させ発電制動をかけるダイナミックブレーキが広く用いられている。 Dynamic braking, which short-circuits the input terminals of the motor and applies dynamic braking, is widely used in motor drive devices that drive motors that power machines such as machine tools and robots.
 例えば、筐体内部の絶縁基板上に電子部品が搭載され、前記筐体外部に備えられた三相交流電動機を制御するパワー半導体モジュールであって、前記絶縁基板上に、互いに直列接続された上段側素子と下段側素子のペアを有する複数組のスイッチング素子と、該スイッチング素子に逆並列に接続されたダイオード素子と、前記三相交流電動機のうちいずれか二相間に設けられたダイナミックブレーキ用スイッチング素子と、を備えることを特徴とするパワー半導体モジュールが知られている(例えば、特許文献1参照。)。 For example, a power semiconductor module in which electronic components are mounted on an insulating substrate inside a housing and controls a three-phase AC motor provided outside the housing, the upper stage connected to each other in series on the insulating substrate A plurality of sets of switching elements each having a pair of a side element and a lower side element, a diode element connected in anti-parallel to the switching elements, and dynamic brake switching provided between any two phases of the three-phase AC motor. There is known a power semiconductor module characterized by comprising an element and (see, for example, Patent Literature 1).
 例えば、直流電力を3相の交流電力に変換する電力変換手段と、上記電力変換手段の出力線に流れる電流を相別に検出する電流検出手段と、上記出力線に流れる電流により駆動されるモータと、上記モータの回転速度を検出する速度検出手段と、上記モータが駆動外状態にあるときにバック接点により上記出力線のそれぞれを直接または電流制限手段を介して短絡するリレーと、上記モータが回転している状態で上記モータが駆動外状態にあるときにおける上記電流検出手段の検出出力と上記速度検出手段の検出出力とにより、上記リレーまたは上記電流制限手段の故障を検出する故障検出手段と、を備えたサーボ装置が知られている(例えば、特許文献2参照。)。 For example, power conversion means for converting DC power into three-phase AC power, current detection means for detecting the current flowing in the output line of the power conversion means for each phase, and a motor driven by the current flowing in the output line. a speed detecting means for detecting the rotation speed of the motor; a relay for short-circuiting each of the output lines by a back contact directly or via a current limiting means when the motor is in a non-driving state; a failure detection means for detecting a failure of the relay or the current limiting means based on the detection output of the current detection means and the detection output of the speed detection means when the motor is in the non-driving state, is known (see, for example, Patent Document 2).
 例えば、モータに減速トルクを発生させるダイナミックブレーキ回路を有するモータ駆動装置であって、モータ回転数と、モータおよび前記ダイナミックブレーキ回路について予め規定されたパラメータと、に基づいて、前記ダイナミックブレーキ回路に流れるダイナミックブレーキ電流の値を計算するダイナミックブレーキ電流計算部と、前記ダイナミックブレーキ電流計算部により得られたダイナミックブレーキ電流の値に基づいて、ダイナミックブレーキ期間中に前記リレーの接点に印加されるダイナミックブレーキ電流によるジュール熱を計算するジュール熱計算部と、ダイナミックブレーキ開始時のダイナミックブレーキ電流の値と前記ダイナミックブレーキ開始時のダイナミックブレーキ電流の値に応じて前記リレーの接点近傍に発生するアークによるジュール熱との関係が規定されたテーブルが予め記憶された記憶部と、ダイナミックブレーキを実行するごとに、当該ダイナミックブレーキ開始時に前記ダイナミックブレーキ電流計算部により得られたダイナミックブレーキ電流の値に対応するものとして前記テーブルから取得されたアークによるジュール熱、当該ダイナミックブレーキ期間中に前記ジュール熱計算部により得られたダイナミックブレーキ電流によるジュール熱、または、これらアークによるジュール熱とダイナミックブレーキ電流によるジュール熱との合算値、を積算する積算部と、前記積算部により得られた積算値と予め設定された基準値とを比較し、比較結果を出力する比較部と、を備えることを特徴とするモータ駆動装置が知られている(例えば、特許文献3参照。)。 For example, in a motor drive device having a dynamic brake circuit that generates a deceleration torque in a motor, the torque flowing to the dynamic brake circuit is based on the motor rotation speed and the parameters defined in advance for the motor and the dynamic brake circuit. a dynamic braking current calculator for calculating a value of the dynamic braking current; and a dynamic braking current applied to the contacts of the relay during the dynamic braking period based on the value of the dynamic braking current obtained by the dynamic braking current calculator. a Joule heat calculation unit for calculating Joule heat by a dynamic braking current value at the start of dynamic braking; and the dynamic brake current value obtained by the dynamic brake current calculation unit at the start of the dynamic brake each time the dynamic brake is started. Joule heat due to the arc obtained from the table, Joule heat due to the dynamic braking current obtained by the Joule heat calculation unit during the dynamic braking period, or the sum of the Joule heat due to these arcs and the Joule heat due to the dynamic braking current and a comparison unit that compares the integrated value obtained by the integration unit with a preset reference value and outputs a comparison result. (See Patent Document 3, for example).
特開2010-098919号公報JP 2010-098919 A 特開2000-253687号公報JP-A-2000-253687 特開2017-022940号公報JP 2017-022940 A
 工作機械やロボットなどの機械においては、当該機械の動作に合わせて最適なモータが選定され、選定されたモータに合わせてモータ駆動装置が設計される。工作機械やロボットなどの機械は修理しながら長年にわたり使われる。機械の修理の際、機械の動力になるモータが、当初選定されていたモータとは異なるモータ、例えばメーカ純正のモータではなくサードパーティ製のモータやメーカ純正のモータであってもその機械の使用に適さないモータに交換されてしまうことがある。選定されたモータとは異なる仕様を有するモータに交換されてそのモータをモータ駆動装置に接続して動作させると、モータは想定外の動作をして当該機械、当該機械に組み込まれたモータ、及びそのモータを駆動するモータ駆動装置が故障したり、あるいは当該機械の周囲に悪影響を及ぼす。例えばモータに付与されたID情報に基づき機械の使用に適したメーカ純正のモータであるか否かを判定する方法が考えられるが、ID情報を記憶するための記憶部をモータに設ける必要があり、コスト高の要因となる。また、モータとモータ駆動装置との間でID情報を受け渡す処理など複雑な設計が必要であり、さらには、ID情報を記憶部に書き込む手間もかかる。したがって、想定通りのモータがついているか否かを要否に判定することができる低コストで製造容易なモータ駆動装置の実現が望まれている。 For machines such as machine tools and robots, the optimum motor is selected according to the operation of the machine, and the motor drive device is designed according to the selected motor. Machines such as machine tools and robots are used for many years while being repaired. When repairing a machine, use of the machine even if the motor that powers the machine is different from the motor that was originally selected, such as a third-party motor instead of the manufacturer's genuine motor, or a manufacturer's genuine motor. The motor may be replaced with a motor that is not suitable for If a motor with specifications different from the selected motor is replaced and the motor is connected to a motor drive device and operated, the motor will operate unexpectedly and damage the machine, the motor incorporated in the machine, and the motor. The motor driving device that drives the motor breaks down, or the surroundings of the machine are adversely affected. For example, it is conceivable to determine whether or not the motor is a manufacturer-genuine motor suitable for use in the machine based on the ID information given to the motor, but it is necessary to provide the motor with a storage unit for storing the ID information , which is a factor of high cost. In addition, a complicated design such as processing for passing ID information between the motor and the motor driving device is required, and moreover, it takes time and effort to write the ID information in the storage unit. Therefore, it is desired to realize a low-cost and easy-to-manufacture motor drive device that can determine whether or not an expected motor is attached.
 本開示の一態様によれば、モータ駆動装置は、登録モータに関して予め規定されたパラメータを記憶する記憶部と、駆動中モータの入力端子間をダイナミックブレーキ抵抗を介して短絡することで駆動中モータに減速トルクを発生させて駆動中モータを制動するダイナミックブレーキ回路と、ダイナミックブレーキ回路による制動開始時の駆動中モータの単位時間当たりの回転数と記憶部に記憶されているパラメータとを用いて、ダイナミックブレーキ回路による制動中に駆動中モータとダイナミックブレーキ回路との間を流れるダイナミックブレーキ電流の推定値に関する情報を計算する計算部と、ダイナミックブレーキ回路による制動中に駆動中モータとダイナミックブレーキ回路との間を流れるダイナミックブレーキ電流の測定値に関する情報を取得する測定部と、ダイナミックブレーキ電流の推定値に関する情報とダイナミックブレーキ電流の測定値に関する情報との比較結果に基づいて、駆動中モータが登録モータと一致するか否かを判定する判定部とを備える。 According to one aspect of the present disclosure, a motor drive device short-circuits a storage unit that stores predetermined parameters for a registered motor and an input terminal of the motor that is being driven through a dynamic brake resistance, thereby using a dynamic brake circuit that brakes the driving motor by generating a deceleration torque at a constant speed, the number of revolutions per unit time of the driving motor at the start of braking by the dynamic brake circuit, and the parameters stored in the storage unit, a calculation unit for calculating information about an estimated value of the dynamic braking current flowing between the motor being driven and the dynamic braking circuit during braking by the dynamic braking circuit; a measuring unit that acquires information about the measured value of the dynamic braking current flowing between the motor and the registered motor based on the result of comparison between the information about the estimated value of the dynamic braking current and the information about the measured value of the dynamic braking current; a determination unit that determines whether or not they match.
 本開示の一態様によれば、想定通りのモータがついているか否かを要否に判定することができる低コストで製造容易なモータ駆動装置を実現することができる。 According to one aspect of the present disclosure, it is possible to realize a low-cost and easy-to-manufacture motor drive device that can determine whether or not an expected motor is attached.
本開示の一実施形態によるモータ駆動装置を示す図である。1 illustrates a motor drive device according to an embodiment of the present disclosure; FIG. 本開示の一実施形態によるモータ駆動装置の動作フローを示すフローチャートである。4 is a flow chart showing the operation flow of the motor driving device according to the embodiment of the present disclosure; 本開示の一実施形態によるモータ駆動装置における計算部で計算されたダイナミックブレーキ電流の推定値の電流波形を例示する図である。FIG. 5 is a diagram illustrating a current waveform of an estimated value of dynamic brake current calculated by a calculator in the motor drive device according to the embodiment of the present disclosure;
 以下図面を参照して、ダイナミックブレーキ回路を有するモータ駆動装置について説明する。各図面において、同様の部材には同様の参照符号が付けられている。また、理解を容易にするために、これらの図面は縮尺を適宜変更している。図示される形態は実施をするための1つの例であり、これらの形態に限定されるものではない。 A motor drive device having a dynamic brake circuit will be described below with reference to the drawings. In each drawing, similar parts are provided with similar reference numerals. Also, to facilitate understanding, the scales of these drawings are appropriately changed. The illustrated forms are examples of implementations and are not limited to these forms.
 図1は、本開示の一実施形態によるモータ駆動装置を示す図である。 FIG. 1 is a diagram showing a motor drive device according to one embodiment of the present disclosure.
 本開示の一実施形態によるモータ駆動装置1により駆動されるモータを「駆動中モータ」と称する。また、モータ駆動装置1との接続が許可されるものとして予め登録されたモータを「登録モータ」を称する。駆動中モータ及び登録モータは、例えば誘導モータであっても同期モータであってもよい。例えば、登録モータは、設計時に工作機械やロボットなどの機械の動力として選定され当該機械に設けられたモータ駆動装置1との接続が許可されたモータとすることができ、あるいは純正メーカ製のモータとすることができる。登録モータとは異なるモータとしては、例えば純正メーカ製であっても設計当初の仕様とは異なるモータや、サードパーティ製のモータなどがある。 A motor driven by the motor driving device 1 according to one embodiment of the present disclosure is called a "driving motor". A motor that is registered in advance as being permitted to be connected to the motor drive device 1 is referred to as a "registered motor". The driving and registration motors may be, for example, induction motors or synchronous motors. For example, the registered motor may be a motor that is selected at the time of design as a power source for a machine such as a machine tool or a robot and is permitted to be connected to the motor drive device 1 provided in the machine, or a motor manufactured by a genuine manufacturer. can be Motors that are different from registered motors include, for example, motors manufactured by a genuine manufacturer whose specifications are different from those originally designed, and motors manufactured by third parties.
 本開示の一実施形態では、モータ駆動装置1との接続が許可されるモータを登録モータとしてあらかじめ登録しておき、駆動中モータに対するダイナミックブレーキ回路12による制動時に、駆動中モータが登録モータであるか否かを判定する。駆動中モータは登録モータと一致しないと判定された場合は、駆動中モータが、登録モータ(例えば、設計時に工作機械やロボットなどの機械の動力として予め選定されていたモータや純正メーカ製のモータなど)とは異なる想定外のモータ(例えば、純正メーカ製であっても設計当初の仕様とは異なるモータや、サードパーティ製のモータなど)であることから、作業者に対してその旨を報知する。 In one embodiment of the present disclosure, a motor permitted to be connected to the motor drive device 1 is registered in advance as a registered motor, and the motor being driven is the registered motor when the dynamic braking circuit 12 brakes the motor being driven. Determine whether or not If it is determined that the driving motor does not match the registered motor, the driving motor is the registered motor (for example, a motor that was selected in advance as a power source for a machine such as a machine tool or a robot at the time of design, or a motor manufactured by a genuine manufacturer. (e.g., motors made by a genuine manufacturer but different from the original design specifications, motors made by a third party, etc.), notify workers to that effect. do.
 本開示の一実施形態によるモータ駆動装置1は、コンバータ101と、インバータ102と、DCリンクコンデンサ103と、モータ制御部10と、記憶部11と、ダイナミックブレーキ回路12と、計算部13と、測定部14と、判定部15と、位置検出器16と、ブレーキ制御部17とを備える。 A motor drive device 1 according to an embodiment of the present disclosure includes a converter 101, an inverter 102, a DC link capacitor 103, a motor control unit 10, a storage unit 11, a dynamic brake circuit 12, a calculation unit 13, a measurement A unit 14 , a determination unit 15 , a position detector 16 , and a brake control unit 17 are provided.
 コンバータ101は、交流電源2から供給される交流電力を直流電力に変換してDCリンクへ出力する。コンバータ101の例としては、ダイオード整流回路、120度通電型整流回路、及びPWMスイッチング制御方式の整流回路などがある。例えば、コンバータ101がPWMスイッチング制御方式の整流回路である場合は、スイッチング素子及びこれに逆並列に接続されたダイオードのブリッジ回路からなり、上位制御装置(図示せず)から受信した駆動指令に応じて各スイッチング素子がオンオフ制御されて交直双方向に電力変換を行う。半導体スイッチング素子の例としては、FETなどのユニポーラトランジスタ、バイポーラトランジスタ、IGBT、サイリスタ、GTOなどがあるが、半導体スイッチング素子の種類自体は本実施形態を限定するものではなく、その他の半導体スイッチング素子であってもよい。 The converter 101 converts the AC power supplied from the AC power supply 2 into DC power and outputs it to the DC link. Examples of the converter 101 include a diode rectifier circuit, a 120-degree conduction rectifier circuit, and a PWM switching control type rectifier circuit. For example, if the converter 101 is a PWM switching control rectifier circuit, it consists of a switching element and a bridge circuit of diodes connected in inverse parallel to the switching element. Each switching element is on/off-controlled to perform power conversion in both AC and DC directions. Examples of semiconductor switching elements include unipolar transistors such as FETs, bipolar transistors, IGBTs, thyristors, and GTOs. There may be.
 「DCリンク」とは、コンバータ101の直流出力側とインバータ102の直流入力側とを電気的に接続する回路部分のことを指し、「DCリンク部」、「直流リンク」、「直流リンク部」、「直流母線」あるいは「直流中間回路」などとも別称されることもある。DCリンクには、DCリンクコンデンサ103が設けられる。DCリンクコンデンサ103は、DCリンクにおいてエネルギー(直流電力)を蓄積する機能及びコンバータ101の直流側の出力の脈動分を抑える機能を有する。DCリンクコンデンサ103に電荷が充電されることにより、DCリンクに直流電力が蓄積されることになる。 A "DC link" refers to a circuit portion that electrically connects the DC output side of the converter 101 and the DC input side of the inverter 102. , ``DC bus'' or ``DC intermediate circuit''. A DC link capacitor 103 is provided in the DC link. The DC link capacitor 103 has a function of accumulating energy (DC power) in the DC link and a function of suppressing pulsation of the DC side output of the converter 101 . As the DC link capacitor 103 is charged, DC power is accumulated in the DC link.
 インバータ102は、DCリンクにおける直流電力と駆動中モータ3の駆動電力または回生電力である交流電力との間で電力変換を行う。インバータ102の例としては、内部に半導体スイッチング素子を備えるPWMインバータなどがある。半導体スイッチング素子は、例えば、FETなどのユニポーラトランジスタ、バイポーラトランジスタ、IGBT、サイリスタ、GTOなどで構成されるが、半導体スイッチング素子の種類自体は本実施形態を限定するものではなく、その他の半導体スイッチング素子であってもよい。 The inverter 102 performs power conversion between DC power in the DC link and AC power, which is drive power or regenerative power for the motor 3 being driven. Examples of the inverter 102 include a PWM inverter including semiconductor switching elements therein. The semiconductor switching element is composed of, for example, a unipolar transistor such as an FET, a bipolar transistor, an IGBT, a thyristor, a GTO, or the like. may be
 モータ制御部10は、インバータ102の各半導体スイッチング素子をオンオフ制御するための駆動指令を生成し、これをインバータ102へ出力する。モータ制御部10は、位置検出器16により検出された駆動中モータ3の回転速度(速度フィードバック)、測定部14により検出されたインバータ102と駆動中モータ3との間の動力線に流れる電流(電流フィードバック)、所定のトルク指令、及び駆動中モータ3の動作プログラムなどに基づいて、インバータ102の電力変換動作を制御する。駆動中モータ3は、インバータ102から供給される交流電力に基づいて、速度、トルクまたは回転子の位置が制御される。なお、ここで説明したモータ制御部10の構成はあくまでも一例であって、例えば、位置指令生成部、位置制御部、速度制御部、電流制御部、トルク指令作成部などの用語を含めてモータ制御部10の構成を規定してもよい。 The motor control unit 10 generates a drive command for on/off controlling each semiconductor switching element of the inverter 102 and outputs it to the inverter 102 . The motor control unit 10 detects the rotation speed (speed feedback) of the driving motor 3 detected by the position detector 16, and the current flowing in the power line between the inverter 102 and the driving motor 3 detected by the measuring unit 14 ( It controls the power conversion operation of the inverter 102 based on current feedback), a predetermined torque command, an operation program of the motor 3 during driving, and the like. The speed, torque, or position of the rotor of the motor 3 being driven is controlled based on the AC power supplied from the inverter 102 . Note that the configuration of the motor control unit 10 described here is merely an example, and terms such as a position command generation unit, a position control unit, a speed control unit, a current control unit, and a torque command generation unit are included in the motor control unit. A configuration of the unit 10 may be defined.
 記憶部11は、登録モータに関して予め規定されたパラメータを記憶する。記憶部11は、例えばEEPROM(登録商標)などのような電気的に消去・記録可能な不揮発性メモリ、または、例えばDRAM、SRAMなどのような高速で読み書きのできるランダムアクセスメモリなどで構成されてもよい。記憶部11にパラメータを記憶した後であっても必要に応じてパラメータを書き換えてもよい。パラメータには、登録モータに関するモータパラメータとして、機械摩擦Tf[kgm2]、逆起電力係数Kv[Vsec/rad]、モータ巻線抵抗の値Rm[Ω]、モータ極数p、モータインダクタンスLm[H]、及びロータ慣性モーメントJ[kgm2]のうちの少なくとも1つが含まれる。また、記憶部11には、ダイナミックブレーキ回路12に関するダイナミックブレーキ回路パラメータとして、ダイナミックブレーキ抵抗21の値RDB[Ω]も記憶される。 The storage unit 11 stores parameters defined in advance for registered motors. The storage unit 11 is composed of an electrically erasable/recordable nonvolatile memory such as EEPROM (registered trademark), or a random access memory such as DRAM or SRAM that can be read and written at high speed. good too. Even after the parameters are stored in the storage unit 11, the parameters may be rewritten as necessary. The parameters for the registered motor include mechanical friction T f [kgm 2 ], back electromotive force coefficient K v [Vsec/rad], motor winding resistance value R m [Ω], motor pole number p, motor At least one of inductance L m [H] and rotor inertia moment J [kgm 2 ] is included. The storage unit 11 also stores the value R DB [Ω] of the dynamic brake resistor 21 as a dynamic brake circuit parameter related to the dynamic brake circuit 12 .
 ダイナミックブレーキ(DB)回路12は、ダイナミックブレーキ抵抗21と、このダイナミックブレーキ抵抗21に直列に接続されるスイッチ22とを有する。図示のように、ダイナミックブレーキ抵抗21とスイッチ22とからなる直列回路は、駆動中モータ3の入力端子間(駆動中モータ3の巻線の相間)に設けられる。スイッチ22は、リレーや半導体スイッチング素子などで構成され、後述するブレーキ制御部17により生成されるブレーキ指令(オン/オフ指令)によりオンオフが制御される。ダイナミックブレーキ回路12により駆動中モータ3を制動する際は、インバータ102による駆動中モータ3への駆動電力の供給を遮断した上で、ブレーキ制御部17はブレーキ指令としてオン指令を出力し、ダイナミックブレーキ回路12においてスイッチ22をオンして駆動中モータ3の入力端子間をダイナミックブレーキ抵抗21を介して短絡する。その際、駆動中モータ3は電源から電気的に切り離されても界磁磁束が存在し、惰性により回転している駆動中モータ3は発電機として働くため、これにより発生したダイナミックブレーキ電流はオンしたスイッチ22を介してダイナミックブレーキ抵抗21に流れ込み、ダイナミックブレーキ抵抗21でジュール熱に変換されて消費され、その結果、駆動中モータ3に減速トルクが発生する。この減速トルクにより駆動中モータ3を制動し、最終的に駆動中モータ3は停止する。 The dynamic brake (DB) circuit 12 has a dynamic brake resistor 21 and a switch 22 connected in series with the dynamic brake resistor 21 . As shown, a series circuit consisting of a dynamic brake resistor 21 and a switch 22 is provided between the input terminals of the motor 3 during driving (between the winding phases of the motor 3 during driving). The switch 22 is composed of a relay, a semiconductor switching element, or the like, and is controlled to be turned on/off by a brake command (on/off command) generated by the brake control unit 17, which will be described later. When the dynamic brake circuit 12 brakes the driving motor 3, the drive power supply to the driving motor 3 by the inverter 102 is cut off, and then the brake control unit 17 outputs an ON command as a brake command to perform dynamic braking. In the circuit 12, the switch 22 is turned on to short-circuit the input terminals of the motor 3 through the dynamic brake resistor 21 during driving. At that time, even if the driving motor 3 is electrically disconnected from the power supply, the field magnetic flux exists, and the driving motor 3 rotating by inertia works as a generator, so the dynamic brake current generated by this is turned on. The heat flows into the dynamic brake resistor 21 through the switch 22 and is converted into Joule heat by the dynamic brake resistor 21 and consumed. As a result, deceleration torque is generated in the motor 3 during driving. This deceleration torque brakes the driving motor 3, and finally the driving motor 3 stops.
 計算部13は、ダイナミックブレーキ回路12による制動開始時に位置検出器16により検出された駆動中モータ3の単位時間当たりの回転数と記憶部11に記憶されているパラメータとを用いて、ダイナミックブレーキ回路12による制動中に駆動中モータ3とダイナミックブレーキ回路12との間を流れるダイナミックブレーキ電流の推定値に関する情報を計算する。 The calculation unit 13 uses the number of revolutions per unit time of the driving motor 3 detected by the position detector 16 when the dynamic brake circuit 12 starts braking, and the parameter stored in the storage unit 11, to calculate the dynamic brake circuit. Information about the estimated value of the dynamic braking current flowing between the motor 3 and the dynamic braking circuit 12 during driving by 12 is calculated.
 ダイナミックブレーキ電流の推定値に関する情報を計算する際に用いられる計算式としては、例えば以下のようにして導出された式を用いることができる。 As a calculation formula used when calculating information about the estimated value of the dynamic brake current, for example, a formula derived as follows can be used.
 駆動中モータ3に対してダイナミックブレーキ回路12による制動をかけるためにスイッチ22をオンしたとき、駆動中モータ3の制動のためのエネルギー消費に寄与するエネルギー消費寄与抵抗の値R[Ω]は、モータ巻線抵抗の値をRm[Ω]、ダイナミックブレーキ抵抗21の値をRDB[Ω]としたとき、式1のように表される。 When the switch 22 is turned on to apply braking to the motor 3 being driven by the dynamic brake circuit 12, the value R [Ω] of the energy consumption contribution resistance that contributes to the energy consumption for braking the motor 3 being driven is: Assuming that the value of the motor winding resistance is R m [Ω] and the value of the dynamic brake resistance 21 is R DB [Ω], it is expressed as Equation 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 駆動中モータ3の逆起電力定数をKv[Vsec/rad]、回転角速度をω[rad/sec]、モータ極数をpとして、駆動中モータ3の三相のうち1相目のステータ電圧をeI[V]を式2のように表す。 Assuming that the back electromotive force constant of the motor 3 being driven is Kv [Vsec/rad], the rotational angular velocity is ω [rad/sec], and the number of motor poles is p, the stator voltage of the first phase of the three phases of the motor 3 being driven is and e I [V] are expressed as in Equation 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 駆動中モータ3の三相のうち1相目の電流をiI[A]としたとき、式3の回路方程式が成り立つ。 When the current of the first phase of the three phases of the motor 3 being driven is i I [A], the circuit equation of Equation 3 holds.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 Dを微分演算子とすると、式3は式4のように表すことができる。 If D is a differential operator, Equation 3 can be expressed as Equation 4.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 Cを定数とする余関数として式5を定義する。  Formula 5 is defined as a cofunction with C as a constant.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
  しかし、式6が成立することからiIは周期関数であり、C=0である。 However, since Equation 6 holds, i I is a periodic function and C=0.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
  X及びYを定数として式7で表される特殊解が得られる。 A special solution represented by Equation 7 with X and Y as constants is obtained.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
  上記特殊解を式3に代入した式を式2と比較することで、式8及び式9が得られる。
Figure JPOXMLDOC01-appb-M000008
Equations 8 and 9 are obtained by comparing equations obtained by substituting the above special solution into equation 3 with equation 2.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、X及びYは、式10及び式11のように表される。 Here, X and Y are expressed as in Equations 10 and 11.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 上記格式を整理すると、1相目の電流をiI[A]は、式12のように表すことができる。 By arranging the above formula, the first phase current i I [A] can be expressed as shown in Equation 12.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 ここで、θαは式13のように表される。 Here, θ α is expressed as in Equation 13.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 2相目のステータ電圧eII及び電流iII、3相目のステータ電圧eIII及び電流iIIIは1相目のステータ電圧eI及び電流iIと位相が2/3π、-2/3πずつずれているので、ステータ電力P[W]は式14のように表すことができる。 The stator voltage e II and current i II of the second phase, the stator voltage e III and current i III of the third phase, and the stator voltage e I and current i I of the first phase are 2/3π and -2/3π respectively. Since there is a deviation, the stator power P[W] can be expressed as shown in Equation 14.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 ここで、トルク定数Kt[N・m/Ap]は式15のように表される。 Here, the torque constant K t [N·m/Ap] is represented by Equation 15.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 cosθαは式16のように表すことができる。 cos θ α can be expressed as in Equation 16.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 式14に式15及び式16を代入すると、式17で表すような駆動中モータ3のステータの電力P[W]が得られる。 By substituting Equations 15 and 16 into Equation 14, the power P [W] of the stator of the driving motor 3 as expressed by Equation 17 is obtained.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 駆動中モータ3のステータに加えられたエネルギーとロータのエネルギーは等しいので(トルク×角度=電力×時間)、式18が成り立つ。式18において、駆動中モータ3のロータのトルクをT[N]とし、ロータの回転角をθ[rad]とする。 Since the energy applied to the stator of the motor 3 during driving is equal to the energy of the rotor (torque x angle = power x time), Equation 18 holds. In Equation 18, the torque of the rotor of the motor 3 being driven is T [N], and the rotation angle of the rotor is θ [rad].
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
  式18に式17を代入して整理すると式19が得られる。ロータの回転角速度をω[rad/sec]とする。   Formula 19 is obtained by substituting formula 17 into formula 18 and arranging it. Let ω [rad/sec] be the rotational angular velocity of the rotor.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
  駆動中モータ3のロータの運動方程式は式20で表される。 The equation of motion of the rotor of the driving motor 3 is expressed by Equation 20.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
  式20に式19で表されるトルクT[N]を代入して解くと、式21が得られる。 By substituting the torque T[N] represented by Equation 19 into Equation 20 and solving, Equation 21 is obtained.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 ここで、A、B、α、β、δ、及びγは式22のように表される。 Here, A, B, α, β, δ, and γ are expressed as in Equation 22.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 以上より、式23の方程式が得られる。 From the above, the equation of formula 23 is obtained.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 C1を積分定数として式23の両辺を積分すると式24が得られる。 Equation 24 is obtained by integrating both sides of Equation 23 with C 1 as the integration constant.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 式24において、ダイナミックブレーキ回路12による制動開始時の時刻をt=0とし、このときの回転角速度をω0[rad/sec]としたとき、数初期条件t=0でω=ω0より積分定数C1は式25のように表される。 In Equation 24, assuming that the time at which the dynamic brake circuit 12 starts braking is t=0 and the rotational angular velocity at this time is ω 0 [rad/sec], the initial condition t=0 and ω=ω 0 are integrated. A constant C 1 is expressed as in Equation 25.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 ダイナミックブレーキ回路12による制動開始時の駆動中モータ3の回転角速度ω0[rad/sec]は、ダイナミックブレーキ回路12による制動開始時の駆動中モータ3の単位時間当たりの回転数N0[rotation/sec]を用いて式26のように表される。 The rotational angular velocity ω 0 [rad/sec] of the driving motor 3 when the dynamic braking circuit 12 starts braking is the rotation speed N 0 [rotation/sec] of the driving motor 3 per unit time when the dynamic braking circuit 12 starts braking. sec] is expressed as in Equation 26.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 式24に式25を代入して整理すると、式27が得られる。 By substituting Equation 25 into Equation 24 and rearranging, Equation 27 is obtained.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 以上まとめると、ダイナミックブレーキ回路12による制動開始時の時刻をt=0としたとき、駆動中モータ3とダイナミックブレーキ回路12との間を流れる各時刻tにおけるダイナミックブレーキ電流の推定値iDB(ωt)[A]は、式12に基づいて、式28のように表すことができる。式28において、θαは式29で表される。 In summary, assuming that the time when the dynamic brake circuit 12 starts braking is t=0, the estimated value of the dynamic brake current i DB (ωt )[A] can be expressed as Equation 28 based on Equation 12. In Equation 28, θ α is represented by Equation 29.
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 また、ダイナミックブレーキ回路12による制動開始後の駆動中モータ3の回転角速度ω[rad/sec]と時刻tとの関係は、式27に基づいて、式30のように表すことができる。 Also, the relationship between the rotational angular velocity ω [rad/sec] of the driving motor 3 after the start of braking by the dynamic brake circuit 12 and the time t can be expressed as in Equation 30 based on Equation 27.
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 式30において、各定数は式31で表される。 In Equation 30, each constant is represented by Equation 31.
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 式28に基づき、式32に示すダイナミックブレーキ電流の推定値の電流ピーク値iDBpeak[A]が得られる。 Based on Equation 28, the current peak value i DBpeak [A] of the estimated value of the dynamic braking current shown in Equation 32 is obtained.
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 また、ダイナミックブレーキ回路12による制動開始時(t=0)から駆動中モータ3の単位時間当たりの回転数が所定の閾値以下になるまでに要する時間である静定時間推定値tset[sec]は、式30においてω=0を代入することで、式33のように表すことができる。ここで、所定の閾値は、0に近い微小値に設定される。駆動中モータ3の単位時間当たりの回転数が所定の閾値以下になる(0に近い値になる)ことは、すなわちダイナミックブレーキ電流が0に近い値になったことと等価とみなしてもよい。 Estimated static time t set [sec], which is the time required for the number of rotations per unit time of the motor 3 being driven to become equal to or less than a predetermined threshold value from the start of braking by the dynamic brake circuit 12 (t=0). can be expressed as Equation 33 by substituting ω=0 in Equation 30. Here, the predetermined threshold is set to a minute value close to zero. When the number of revolutions per unit time of the motor 3 being driven becomes equal to or less than a predetermined threshold value (becomes close to 0), it may be considered equivalent to that the dynamic brake current becomes close to 0.
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
 計算部13は、ダイナミックブレーキ回路12による制動開始時に位置検出器16により検出された駆動中モータ3の単位時間当たりの回転数と記憶部11に記憶されているパラメータとを用いて、ダイナミックブレーキ回路12による制動の際に発生するダイナミックブレーキ電流の推定値に関する情報として、式32に示す推定値の電流ピーク値iDBpeak[A]、式33に示す静定時間推定値tset[sec]、または、各時刻tにおけるダイナミックブレーキ電流の推定値の電流波形を示す式28に示すダイナミックブレーキ電流の推定値iDB(ωt)[A]のいずれかを計算する。図3は、本開示の一実施形態によるモータ駆動装置における計算部で計算されたダイナミックブレーキ電流の推定値の電流波形を例示する図である。図示の例では、ダイナミックブレーキ回路12による制動開始時である時刻t=0から0.668[sec]後にダイナミックブレーキ電流の推定値がゼロになっているので、静定時間推定値tset[sec]は0.668[sec]である。 The calculation unit 13 uses the number of revolutions per unit time of the driving motor 3 detected by the position detector 16 when the dynamic brake circuit 12 starts braking, and the parameter stored in the storage unit 11, to calculate the dynamic brake circuit. 12, the current peak value i DBpeak [A] of the estimated value shown in Equation 32, the estimated static time t set [sec] shown in Equation 33, or , or the estimated value i DB (ωt) [A] of the dynamic braking current shown in Equation 28 representing the current waveform of the estimated value of the dynamic braking current at each time t. FIG. 3 is a diagram illustrating a current waveform of an estimated value of dynamic braking current calculated by a calculator in the motor drive device according to the embodiment of the present disclosure. In the illustrated example, the estimated value of the dynamic brake current becomes zero after 0.668 [sec] from time t=0, which is the time when the dynamic brake circuit 12 starts braking. ] is 0.668 [sec].
 なお、上述したダイナミックブレーキ電流の推定値に関する情報を計算する際に用いられる計算式は一例であって、これ以外の計算式を用いてダイナミックブレーキ電流の推定値に関する情報を計算してもよい。 It should be noted that the calculation formula used for calculating the information regarding the estimated value of the dynamic braking current described above is an example, and the information regarding the estimated value of the dynamic braking current may be calculated using a calculation formula other than this.
 測定部14は、ダイナミックブレーキ回路12による制動中に駆動中モータ3とダイナミックブレーキ回路12との間を流れるダイナミックブレーキ電流の測定値に関する情報を取得する。駆動中モータ3とダイナミックブレーキ回路12との間を結ぶ動力線に設けられた電流センサによって、ダイナミックブレーキ電流の測定値はダイナミックブレーキ回路12による制動開始時から微小時間ごとに逐次測定され、電流波形としてメモリ(図示せず)に逐次記憶される。測定部14は、メモリに記憶された電流波形から、ダイナミックブレーキ電流の測定値の電流ピーク値、ダイナミックブレーキ回路12による制動開始時から駆動中モータ3の単位時間当たりの回転数が所定の閾値以下になるまでに要する時間である静定時間測定値、または、各時刻tにおけるダイナミックブレーキ電流の測定値(電流波形)のいずれかを取得する。測定部14によるダイナミックブレーキ電流の測定値に関する情報の取得は、ダイナミックブレーキ回路12による制動開始時t=0から、駆動中モータ3とダイナミックブレーキ回路12との間を流れるダイナミックブレーキ電流の測定値の振幅が所定の振幅閾値以下になるまでの間、実行される。振幅閾値は、0(ゼロ)に近い微小値に設定することで、ダイナミックブレーキ回路12による駆動中モータ3の制動により駆動中モータ3が停止してダイナミックブレーキ電流が0になったことを検知することができる。 The measuring unit 14 acquires information about the measured value of the dynamic braking current flowing between the motor 3 and the dynamic braking circuit 12 during braking by the dynamic braking circuit 12 . A current sensor provided in the power line connecting the motor 3 and the dynamic brake circuit 12 during driving sequentially measures the dynamic brake current at minute intervals from the start of braking by the dynamic brake circuit 12, and the current waveform is are sequentially stored in a memory (not shown). The measurement unit 14 determines from the current waveform stored in the memory, the current peak value of the measured value of the dynamic brake current, and the rotation speed per unit time of the motor 3 being driven from the start of braking by the dynamic brake circuit 12 is equal to or less than a predetermined threshold value. Either the measured settling time, which is the time required to reach , or the measured value (current waveform) of the dynamic brake current at each time t is acquired. Acquisition of information on the measured value of the dynamic brake current by the measuring unit 14 is performed by measuring the measured value of the dynamic brake current flowing between the motor 3 and the dynamic brake circuit 12 during driving from t=0 when the dynamic brake circuit 12 starts braking. This is done until the amplitude is below a predetermined amplitude threshold. By setting the amplitude threshold value to a minute value close to 0 (zero), it is detected that the motor 3 being driven is stopped by the braking of the motor 3 being driven by the dynamic brake circuit 12 and the dynamic brake current becomes 0. be able to.
 判定部15は、計算部13により計算されたダイナミックブレーキ電流の推定値に関する情報と測定部14により取得されたダイナミックブレーキ電流の測定値に関する情報との比較結果に基づいて、駆動中モータ3が登録モータと一致するか否かを判定する。すなわち、判定部15は、ダイナミックブレーキ電流の推定値に関する情報とダイナミックブレーキ電流の測定値に関する情報とが一致する場合は、駆動中モータ3が登録モータと一致すると判定し、ダイナミックブレーキ電流の推定値に関する情報とダイナミックブレーキ電流の測定値に関する情報とが一致しない場合は、駆動中モータ3が登録モータと一致しないと判定する。 The determination unit 15 determines whether the driving motor 3 is registered based on the result of comparison between the information regarding the estimated value of the dynamic braking current calculated by the calculating unit 13 and the information regarding the measured value of the dynamic braking current obtained by the measuring unit 14. Determine whether or not it matches the motor. That is, when the information about the estimated value of the dynamic braking current and the information about the measured value of the dynamic braking current match, the determination unit 15 determines that the motor 3 being driven matches the registered motor, and the estimated value of the dynamic braking current and the information about the measured value of the dynamic brake current do not match, it is determined that the motor 3 being driven does not match the registered motor.
 判定部15による判定結果は、表示部(図示せず)に送られ、表示部は、判定結果として、「駆動中モータは登録モータと一致しないこと」または「駆動中モータは登録モータと一致すること」を表示する。表示部の例としては、単体のディスプレイ装置、モータ駆動装置1に付属のディスプレイ装置、上位制御装置(図示せず)に付属のディスプレイ装置、並びに、パソコン及び携帯端末に付属のディスプレイ装置、LEDやランプなどの発光機器などがある。また例えば、表示部がLEDやランプなどの発光機器で構成される場合は、発光機器はアラーム受信時に発光することで、「駆動中モータは登録モータと一致しないこと」または「駆動中モータは登録モータと一致すること」を作業者に報知する。また例えば、判定部15による判定結果は、例えば音響機器(図示せず)に送られ、音響機器は例えば音声、スピーカ、ブザー、チャイムなどのような音を発することで、「駆動中モータは登録モータと一致しないこと」または「駆動中モータは登録モータと一致すること」を作業者に報知する。判定部15による判定結果により、作業者は、駆動中モータ3が登録モータと一致しているか否かを容易に把握することができる。 The determination result by the determination unit 15 is sent to a display unit (not shown), and the display unit displays, as the determination result, "the motor being driven does not match the registered motor" or "the motor being driven matches the registered motor". to display Examples of the display unit include a single display device, a display device attached to the motor drive device 1, a display device attached to a host controller (not shown), a display device attached to a personal computer and a mobile terminal, an LED, There are light-emitting devices such as lamps. Also, for example, if the display unit is composed of a light-emitting device such as an LED or a lamp, the light-emitting device emits light when an alarm is received. It notifies the operator that it matches the motor. Further, for example, the determination result by the determination unit 15 is sent to, for example, an acoustic device (not shown), and the acoustic device emits a sound such as voice, speaker, buzzer, chime, etc., so that "the driving motor is registered. The operator is informed that "the motor does not match" or "the motor being driven matches the registered motor". Based on the determination result by the determination unit 15, the operator can easily grasp whether or not the motor 3 being driven matches the registered motor.
 また、判定部15による判定結果はモータ制御部10に送られ、モータ制御部10は、判定部15により駆動中モータ3が登録モータと一致しないと判定された場合は、インバータ102に対して停止するよう制御するようにしてもよい。 Further, the determination result by the determination unit 15 is sent to the motor control unit 10, and the motor control unit 10 stops the inverter 102 when the determination unit 15 determines that the motor 3 being driven does not match the registered motor. You may make it control so that it may carry out.
 このように、本開示の一実施形態によれば、駆動中モータ3が、登録モータ(例えば、設計時に工作機械やロボットなどの機械の動力として予め選定されていたモータや純正メーカ製のモータなど)とは異なる想定外のモータ(例えば、純正メーカ製であっても設計当初の仕様とは異なるモータや、サードパーティ製のモータなど)であるか否かを判定することができる。本開示の一実施形態によれば、駆動中モータ3を駆動するモータ駆動装置1内に設けられたダイナミックブレーキ回路12の機能に付随して、駆動中モータ3が登録モータと一致するか否かを判定するので、モータに付与されたID情報に基づき判定処理を行う場合に比べ、製造が容易であり、低コストである。 Thus, according to an embodiment of the present disclosure, the driving motor 3 is a registered motor (for example, a motor that has been selected in advance as a power source for a machine such as a machine tool or a robot at the time of design, a motor manufactured by a genuine manufacturer, or the like). ) (for example, a motor manufactured by a genuine manufacturer but different from the specifications at the time of design, a motor manufactured by a third party, etc.). According to one embodiment of the present disclosure, whether or not the motor 3 being driven matches the registered motor is associated with the function of the dynamic braking circuit 12 provided in the motor driving device 1 that drives the motor 3 being driven. is determined, manufacturing is easier and the cost is lower than when determination processing is performed based on the ID information assigned to the motor.
 ここで、判定部15による判定処理の形態について、いくつか列記する。 Here, some forms of determination processing by the determination unit 15 are listed.
 第1の形態による判定処理は、ダイナミックブレーキ電流の電流ピーク値に基づいて、駆動中モータ3が登録モータと一致するか否かを判定するものである。計算部13は、ダイナミックブレーキ電流の推定値に関する情報として、例えば式32に従って、ダイナミックブレーキ電流の推定値の電流ピーク値を計算する。測定部14は、ダイナミックブレーキ電流の測定値に関する情報として、ダイナミックブレーキ電流の測定値の電流ピーク値を取得する。判定部15は、ダイナミックブレーキ電流の推定値の電流ピーク値とダイナミックブレーキ電流の測定値の電流ピーク値との差が、所定の範囲外である場合は駆動中モータ3は登録モータと一致しないと判定し、所定の範囲内である場合は駆動中モータ3は登録モータと一致すると判定する。ここで、上記所定の範囲は、ダイナミックブレーキ電流の電流ピーク値の例えば±30%程度に設定されてもよいが、ここで挙げた数値はあくまでも一例であってその他の数値であってもよい。なお、上記所定の範囲については、書き換え可能な記憶部(図示せず)に記憶されて外部機器によって書き換え可能であってもよく、上記所定の範囲を一旦設定した後であっても、必要に応じて適切な値に変更することができる。 The determination process according to the first form determines whether or not the motor 3 being driven matches the registered motor based on the current peak value of the dynamic brake current. The calculating unit 13 calculates the current peak value of the estimated value of the dynamic braking current according to the equation 32, for example, as information related to the estimated value of the dynamic braking current. The measurement unit 14 acquires the current peak value of the measured value of the dynamic braking current as information about the measured value of the dynamic braking current. If the difference between the current peak value of the estimated value of the dynamic braking current and the current peak value of the measured value of the dynamic braking current is outside a predetermined range, the determination unit 15 determines that the motor 3 being driven does not match the registered motor. If it is within a predetermined range, it is determined that the driving motor 3 matches the registered motor. Here, the predetermined range may be set to, for example, about ±30% of the current peak value of the dynamic brake current. Note that the predetermined range may be stored in a rewritable storage unit (not shown) and rewritable by an external device. It can be changed to an appropriate value depending on the situation.
 第2の形態による判定処理は、ダイナミックブレーキ回路12による制動開始時(t=0)から駆動中モータ3の単位時間当たりの回転数が所定の閾値以下になるまでに要する時間である静定時間に基づいて、駆動中モータ3が登録モータと一致するか否かを判定するものである。計算部13は、ダイナミックブレーキ電流の推定値に関する情報として、例えば式33に従って、ダイナミックブレーキ回路12による制動開始時から駆動中モータ3の単位時間当たりの回転数が所定の閾値以下になるまでに要する時間である静定時間推定値を計算する。測定部14は、ダイナミックブレーキ電流の測定値に関する情報として、ダイナミックブレーキ回路12による制動開始時から駆動中モータ3の単位時間当たりの回転数が所定の閾値以下になるまでに要する時間である静定時間測定値を取得する。判定部15は、静定時間推定値と静定時間測定値との差が、所定の範囲外である場合は駆動中モータ3は登録モータと一致しないと判定し、所定の範囲内である場合は駆動中モータ3は登録モータと一致すると判定する。ここで、所定の範囲は、静定時間推定値の例えば±30%程度に設定されてもよいが、ここで挙げた数値はあくまでも一例であってその他の数値であってもよい。なお、上記所定の範囲については、書き換え可能な記憶部(図示せず)に記憶されて外部機器によって書き換え可能であってもよく、上記所定の範囲を一旦設定した後であっても、必要に応じて適切な値に変更することができる。 The determination process according to the second mode is a settling time, which is the time required from the start of braking by the dynamic brake circuit 12 (t=0) until the number of revolutions per unit time of the driven motor 3 becomes equal to or less than a predetermined threshold value. , it is determined whether or not the driving motor 3 matches the registered motor. The calculation unit 13 calculates the estimated value of the dynamic brake current as information related to the estimated value of the dynamic brake current, for example, according to Equation 33, from the start of braking by the dynamic brake circuit 12 until the number of rotations per unit time of the motor 3 being driven becomes equal to or less than a predetermined threshold value. Calculate the static time estimate, which is time. The measuring unit 14, as information on the measured value of the dynamic braking current, measures the time required from the start of braking by the dynamic braking circuit 12 until the number of revolutions per unit time of the motor 3 being driven becomes equal to or less than a predetermined threshold value. Get time measurements. If the difference between the estimated settling time value and the measured settling time value is outside the predetermined range, the determining unit 15 determines that the driving motor 3 does not match the registered motor, and if the difference is within the predetermined range. determines that the driving motor 3 matches the registered motor. Here, the predetermined range may be set to, for example, about ±30% of the settling time estimated value, but the numerical values given here are only examples, and other numerical values may be used. Note that the predetermined range may be stored in a rewritable storage unit (not shown) and rewritable by an external device. It can be changed to an appropriate value depending on the situation.
 第3の形態による判定処理は、ダイナミックブレーキ回路12による制動中のダイナミックブレーキ電流の電流波形に基づいて、駆動中モータ3が登録モータと一致するか否かを判定するものである。計算部13は、ダイナミックブレーキ電流の推定値に関する情報として、例えば式28に従って、ダイナミックブレーキ電流の推定値の電流波形を計算する。測定部14は、ダイナミックブレーキ電流の測定値に関する情報として、ダイナミックブレーキ電流の測定値の電流波形を取得する。判定部15は、ダイナミックブレーキ電流の推定値の電流波形とダイナミックブレーキ電流の測定値の電流波形との差を微小時間ごとに比較していき、例えば数ミリ秒にわたって所定の範囲外である場合は駆動中モータ3は登録モータと一致しないと判定し、例えば数ミリ秒にわたって所定の範囲内である場合は駆動中モータ3は登録モータと一致すると判定する。ここで、所定の範囲は、ダイナミックブレーキ電流の振幅の例えば±30%程度に設定されてもよいが、ここで挙げた数値はあくまでも一例であってその他の数値であってもよい。なお、上記所定の範囲については、書き換え可能な記憶部(図示せず)に記憶されて外部機器によって書き換え可能であってもよく、上記所定の範囲を一旦設定した後であっても、必要に応じて適切な値に変更することができる。 The determination process according to the third mode determines whether or not the driving motor 3 matches the registered motor based on the current waveform of the dynamic brake current during braking by the dynamic brake circuit 12 . The calculation unit 13 calculates the current waveform of the estimated value of the dynamic braking current according to, for example, Equation 28 as information about the estimated value of the dynamic braking current. The measuring unit 14 acquires the current waveform of the measured value of the dynamic braking current as information about the measured value of the dynamic braking current. The determination unit 15 compares the difference between the current waveform of the estimated value of the dynamic braking current and the current waveform of the measured value of the dynamic braking current at minute intervals. It is determined that the driving motor 3 does not match the registered motor. For example, if it is within a predetermined range for several milliseconds, it is determined that the driving motor 3 matches the registered motor. Here, the predetermined range may be set to, for example, about ±30% of the amplitude of the dynamic brake current, but the numerical values given here are only examples and other numerical values may be used. Note that the predetermined range may be stored in a rewritable storage unit (not shown) and rewritable by an external device. It can be changed to an appropriate value depending on the situation.
 図2は、本開示の一実施形態によるモータ駆動装置の動作フローを示すフローチャートである。 FIG. 2 is a flow chart showing the operation flow of the motor drive device according to one embodiment of the present disclosure.
 モータ制御部10の制御によりインバータ102から供給される交流電流にて駆動中モータ3を駆動している状態において(ステップS101)、ステップS102において、計算部13及び測定部14は、ダイナミックブレーキ回路12により駆動中モータ3を制動が開始されたか否かを判定する。ダイナミックブレーキ回路12により駆動中モータ3を制動が開始されたことは、ブレーキ制御部から出力されるブレーキ指令がオフ指令からオン指令に切り替わったことをもって判定することができる。ダイナミックブレーキ回路12により駆動中モータ3を制動が開始されると、モータ制御部10はインバータ102に対して駆動中モータ3への駆動電力の供給を遮断するよう制御し、また、ダイナミックブレーキ回路12はスイッチ22をオンして駆動中モータ3の入力端子間をダイナミックブレーキ抵抗21を介して短絡する。これにより発生したダイナミックブレーキ電流はオンしたスイッチ22を介してダイナミックブレーキ抵抗21に流れ込み、ダイナミックブレーキ抵抗21でジュール熱に変換されて消費され、その結果、駆動中モータ3に減速トルクが発生する。この減速トルクにより駆動中モータ3を制動する。 While the motor 3 is being driven by the alternating current supplied from the inverter 102 under the control of the motor control unit 10 (step S101), in step S102, the calculation unit 13 and the measurement unit 14 operate the dynamic brake circuit 12 determines whether or not braking of the motor 3 during driving has started. The fact that the dynamic brake circuit 12 has started braking the motor 3 during driving can be determined by the fact that the brake command output from the brake control unit has been switched from the OFF command to the ON command. When the dynamic brake circuit 12 starts braking the motor 3 during driving, the motor control unit 10 controls the inverter 102 to cut off the supply of driving power to the motor 3 during driving. turns on the switch 22 to short-circuit the input terminals of the motor 3 through the dynamic brake resistor 21 during driving. The dynamic brake current generated thereby flows into the dynamic brake resistor 21 via the switch 22 that is turned on, where it is converted into Joule heat and consumed, resulting in the generation of deceleration torque in the motor 3 during driving. This deceleration torque brakes the motor 3 during driving.
 ステップS102において、ダイナミックブレーキ回路12により駆動中モータ3を制動が開始されたと判定された場合はステップS103及びS105へ進み、ダイナミックブレーキ回路12により駆動中モータ3を制動が開始されたと判定されなかった場合はステップS101へ戻る。 If it is determined in step S102 that the dynamic brake circuit 12 has started braking the motor 3 during driving, the process proceeds to steps S103 and S105, and it is determined that the dynamic brake circuit 12 has not started braking the motor 3 during driving. If so, the process returns to step S101.
 計算部13は、ステップS103において、記憶部11に記憶されたパラメータを取得するとともに、位置検出器16からダイナミックブレーキ回路12による駆動中モータ3を制動開始時の単位時間当たりの回転数を取得する。次いで、計算部13は、ステップS104において、ダイナミックブレーキ回路12による制動開始時に位置検出器16により検出された駆動中モータ3の単位時間当たりの回転数と記憶部11に記憶されているパラメータとを用いて、ダイナミックブレーキ回路12による制動中に駆動中モータ3とダイナミックブレーキ回路12との間を流れるダイナミックブレーキ電流の推定値に関する情報を計算する。その後、ステップS107へ進む。 In step S103, the calculation unit 13 acquires the parameters stored in the storage unit 11, and acquires from the position detector 16 the number of rotations per unit time at the start of braking the motor 3 being driven by the dynamic brake circuit 12. . Next, in step S104, the calculation unit 13 calculates the number of revolutions per unit time of the driving motor 3 detected by the position detector 16 at the start of braking by the dynamic brake circuit 12 and the parameters stored in the storage unit 11. is used to compute information about an estimate of the dynamic braking current that flows between the motor 3 and the dynamic braking circuit 12 during braking by the dynamic braking circuit 12 . After that, the process proceeds to step S107.
 一方、測定部14は、ステップS105において、ダイナミックブレーキ回路12による制動中に駆動中モータ3とダイナミックブレーキ回路12との間を流れるダイナミックブレーキ電流の測定値に関する情報を取得する。次いで、測定部14は、ステップS106において、ダイナミックブレーキ電流の測定値の振幅が所定の振幅閾値以下になったか否かを判定する。ダイナミックブレーキ電流の測定値の振幅が所定の振幅閾値以下になったと判定された場合はステップS107へ進み、ダイナミックブレーキ電流の測定値の振幅が所定の振幅閾値以下になったと判定されなかった場合はステップS105へ戻る。ステップS105及びS106を経ることで、ダイナミックブレーキ回路12による制動開始時t=0から、駆動中モータ3とダイナミックブレーキ回路12との間を流れるダイナミックブレーキ電流の測定値の振幅が所定の振幅閾値以下になるまでの間、測定部14によるダイナミックブレーキ電流の測定値に関する情報の取得が実行されることになる。 On the other hand, in step S105, the measuring unit 14 acquires information about the measured value of the dynamic braking current flowing between the driving motor 3 and the dynamic braking circuit 12 during braking by the dynamic braking circuit 12 . Next, in step S106, the measurement unit 14 determines whether or not the amplitude of the measured value of the dynamic braking current has become equal to or less than a predetermined amplitude threshold. If it is determined that the amplitude of the measured value of the dynamic braking current is equal to or less than the predetermined amplitude threshold value, the process proceeds to step S107.If it is not determined that the amplitude of the measured value of the dynamic braking current is equal to or less than the predetermined amplitude threshold value Return to step S105. Through steps S105 and S106, the amplitude of the measured value of the dynamic brake current flowing between the driving motor 3 and the dynamic brake circuit 12 is less than or equal to a predetermined amplitude threshold from the time t=0 when the dynamic brake circuit 12 starts braking. Until , acquisition of information on the measured value of the dynamic brake current by the measurement unit 14 is executed.
 ステップS107において、判定部15は、計算部13により計算されたダイナミックブレーキ電流の推定値に関する情報と測定部14により取得されたダイナミックブレーキ電流の測定値に関する情報とが一致するか否かを判定する。ステップS107においてダイナミックブレーキ電流の推定値に関する情報とダイナミックブレーキ電流の測定値に関する情報とが一致すると判定された場合は、ステップS108において、判定部15は、駆動中モータは登録モータと一致すると判定する。ステップS107においてダイナミックブレーキ電流の推定値に関する情報とダイナミックブレーキ電流の測定値に関する情報とが一致しないと判定された場合は、ステップS108において、判定部15は、駆動中モータは登録モータと一致しないと判定する。判定部15による判定結果は、表示部(図示せず)に送られ、表示部は、判定結果として、「駆動中モータは登録モータと一致しないこと」または「駆動中モータは登録モータと一致すること」を表示する。また例えば、表示部がLEDやランプなどの発光機器で構成される場合は、発光機器はアラーム受信時に発光することで、「駆動中モータは登録モータと一致しないこと」または「駆動中モータは登録モータと一致すること」を作業者に報知する。また例えば、判定部15による判定結果は、例えば音響機器(図示せず)に送られ、音響機器は例えば音声、スピーカ、ブザー、チャイムなどのような音を発することで、「駆動中モータは登録モータと一致しないこと」または「駆動中モータは登録モータと一致すること」を作業者に報知する。これにより、作業者は、駆動中モータ3が登録モータと一致しているか否かを容易に把握することができる。 In step S107, the determining unit 15 determines whether or not the information regarding the estimated value of the dynamic braking current calculated by the calculating unit 13 and the information regarding the measured value of the dynamic braking current obtained by the measuring unit 14 match. . If it is determined in step S107 that the information regarding the estimated value of the dynamic braking current and the information regarding the measured value of the dynamic braking current match, the determination unit 15 determines that the motor being driven matches the registered motor in step S108. . If it is determined in step S107 that the information regarding the estimated value of the dynamic braking current and the information regarding the measured value of the dynamic braking current do not match, then in step S108 the determination unit 15 determines that the motor being driven does not match the registered motor. judge. The determination result by the determination unit 15 is sent to a display unit (not shown), and the display unit displays, as the determination result, "the motor being driven does not match the registered motor" or "the motor being driven matches the registered motor". to display Also, for example, if the display unit is composed of a light-emitting device such as an LED or a lamp, the light-emitting device emits light when an alarm is received. It notifies the operator that it matches the motor. Further, for example, the determination result by the determination unit 15 is sent to, for example, an acoustic device (not shown), and the acoustic device emits a sound such as a voice, a speaker, a buzzer, a chime, or the like to indicate that "the driving motor is registered. The operator is informed that "the motor does not match" or "the motor being driven matches the registered motor". Thereby, the operator can easily grasp whether or not the motor 3 being driven matches the registered motor.
 なお、ダイナミックブレーキ回路12による制動開始時の駆動中モータ3の単位時間あたりの回転数が低い場合は、ダイナミックブレーキ電流の推定値及び測定値の振幅が小さくなり、静定時間推定値及び静定時間測定値も短くなるため、判定部15による判定処理の精度が低下する可能性がある。そこで、ステップS102においてダイナミックブレーキ回路12により駆動中モータ3の制動が開始されたと判定された後に、ダイナミックブレーキ回路12による制動開始時の駆動中モータの回転数が所定の回転数閾値以上であるか否かを判定する処理を設け、ダイナミックブレーキ回路12による制動開始時の駆動中モータの回転数が所定の回転数閾値以上であると判定された場合にステップS103及びS105へ進み、ダイナミックブレーキ回路12による制動開始時の駆動中モータの回転数が所定の回転数閾値以上であると判定されなかった場合はそのままダイナミックブレーキ回路12による制動処理のみを実行して処理を終了するようにしてもよい。 When the number of revolutions per unit time of the motor 3 being driven at the start of braking by the dynamic brake circuit 12 is low, the amplitudes of the estimated value and the measured value of the dynamic brake current become small, and the estimated value of the settling time and the settling time Since the time measurement value is also shortened, there is a possibility that the accuracy of the determination processing by the determination unit 15 is lowered. Therefore, after it is determined in step S102 that the dynamic braking circuit 12 has started braking the driving motor 3, whether the number of rotations of the driving motor 3 at the start of braking by the dynamic braking circuit 12 is equal to or greater than a predetermined rotation number threshold. If it is determined that the number of revolutions of the motor being driven at the start of braking by the dynamic brake circuit 12 is equal to or greater than a predetermined number of revolutions threshold value, the process proceeds to steps S103 and S105, and the dynamic brake circuit 12 If it is not determined that the rotation speed of the driving motor at the start of braking by the dynamic brake circuit 12 is equal to or greater than a predetermined rotation speed threshold value, only the braking process by the dynamic brake circuit 12 may be executed as it is, and the process may end.
 また、モータパラメータのうち、ロータ慣性モーメントJ[kgm2]は、モータにかかる負荷によって値が異なるので、判定部15による判定処理の精度に影響を与える可能性がある。そこで、ステップS102においてダイナミックブレーキ回路12により駆動中モータ3の制動が開始されたと判定された後に、作業者に対して、表示部(図示せず)を介してロータ慣性モーメントJ[kgm2]の入力を要求する処理を設けてもよい。作業者は、ロータ慣性モーメントJ[kgm2]の入力が要求されたとき、ロータ慣性モーメントJ[kgm2]を入力部(図示せず)を介して入力して記憶部11に書き込み、その後、ステップS103及びS105へ進むようにする。これにより、判定部15による判定精度をより一層向上させることができる。 Among the motor parameters, the rotor moment of inertia J [kgm 2 ] has a different value depending on the load applied to the motor. Therefore, after it is determined in step S102 that the dynamic brake circuit 12 has started braking the motor 3 during driving, the operator is notified of the rotor inertia moment J [kgm 2 ] via a display unit (not shown). A process for requesting input may be provided. When the operator is requested to input the rotor inertia moment J [kgm 2 ], the operator inputs the rotor inertia moment J [kgm 2 ] via an input unit (not shown), writes it in the storage unit 11, and then The process proceeds to steps S103 and S105. Thereby, the determination accuracy by the determination unit 15 can be further improved.
 以上説明したモータ駆動装置1内には、演算処理装置(プロセッサ)が設けられる。演算処理装置としては、例えばIC、LSI、CPU、MPU、DSPなどがある。この演算処理装置は、モータ制御部10と、計算部13と、測定部14と、判定部15と、ブレーキ制御部17とを有する。演算処理装置が有するこれらの各部は、例えば、プロセッサ上で実行されるコンピュータプログラムにより実現される機能モジュールである。例えば、モータ制御部10、計算部13、測定部14、判定部15、及びブレーキ制御部17をコンピュータプログラム形式で構築する場合は、演算処理装置をこのコンピュータプログラムに従って動作させることで、各部の機能を実現することができる。モータ制御部10、計算部13、測定部14、判定部15、及びブレーキ制御部17の各処理を実行するためのコンピュータプログラムは、半導体メモリ、磁気記録媒体または光記録媒体といった、コンピュータ読取可能な記録媒体に記録された形で提供されてもよい。またあるいは、モータ制御部10、計算部13、測定部14、判定部15、及びブレーキ制御部17を、各部の機能を実現するコンピュータプログラムを書き込んだ半導体集積回路として実現してもよい。また、記憶部11は、例えばEEPROM(登録商標)などのような電気的に消去可能及び記録可能な不揮発性メモリ、または、例えばDRAM、SRAMなどのような高速で読み書きのできるランダムアクセスメモリなどで構成されてもよい。 An arithmetic processing unit (processor) is provided in the motor driving device 1 described above. Examples of arithmetic processing units include ICs, LSIs, CPUs, MPUs, and DSPs. This arithmetic processing unit has a motor control section 10 , a calculation section 13 , a measurement section 14 , a determination section 15 and a brake control section 17 . Each of these units of the arithmetic processing unit is, for example, a functional module realized by a computer program executed on the processor. For example, when the motor control unit 10, the calculation unit 13, the measurement unit 14, the determination unit 15, and the brake control unit 17 are constructed in a computer program format, by operating the arithmetic processing unit according to this computer program, the functions of each unit can be realized. A computer program for executing each process of the motor control unit 10, the calculation unit 13, the measurement unit 14, the determination unit 15, and the brake control unit 17 is stored in a computer-readable medium such as a semiconductor memory, a magnetic recording medium, or an optical recording medium. It may be provided in a form recorded on a recording medium. Alternatively, the motor control unit 10, the calculation unit 13, the measurement unit 14, the determination unit 15, and the brake control unit 17 may be realized as semiconductor integrated circuits in which computer programs for realizing the functions of each unit are written. The storage unit 11 is an electrically erasable and recordable nonvolatile memory such as EEPROM (registered trademark), or a random access memory such as DRAM or SRAM that can be read and written at high speed. may be configured.
 1  モータ駆動装置
 2  交流電源
 3  駆動中モータ
 10  モータ制御部
 11  記憶部
 12  ダイナミックブレーキ回路
 13  計算部
 14  測定部
 15  判定部
 16  位置検出器
 17  ブレーキ制御部
 21  ダイナミックブレーキ抵抗
 22  スイッチ
 101  コンバータ
 102  インバータ
 103  DCリンクコンデンサ
Reference Signs List 1 motor drive device 2 AC power supply 3 driving motor 10 motor control unit 11 storage unit 12 dynamic brake circuit 13 calculation unit 14 measurement unit 15 determination unit 16 position detector 17 brake control unit 21 dynamic brake resistance 22 switch 101 converter 102 inverter 103 DC link capacitor

Claims (7)

  1.  登録モータに関して予め規定されたパラメータを記憶する記憶部と、
     駆動中モータの入力端子間をダイナミックブレーキ抵抗を介して短絡することで前記駆動中モータに減速トルクを発生させて前記駆動中モータを制動するダイナミックブレーキ回路と、
     前記ダイナミックブレーキ回路による制動開始時の前記駆動中モータの単位時間当たりの回転数と前記記憶部に記憶されている前記パラメータとを用いて、前記ダイナミックブレーキ回路による制動中に前記駆動中モータと前記ダイナミックブレーキ回路との間を流れるダイナミックブレーキ電流の推定値に関する情報を計算する計算部と、
     前記ダイナミックブレーキ回路による制動中に前記駆動中モータと前記ダイナミックブレーキ回路との間を流れるダイナミックブレーキ電流の測定値に関する情報を取得する測定部と、
     前記ダイナミックブレーキ電流の推定値に関する情報と前記ダイナミックブレーキ電流の測定値に関する情報との比較結果に基づいて、前記駆動中モータが前記登録モータと一致するか否かを判定する判定部と、
    を備える、モータ駆動装置。
    a storage unit that stores predetermined parameters for registered motors;
    a dynamic brake circuit that short-circuits input terminals of a motor that is being driven through a dynamic brake resistor to generate deceleration torque in the motor that is being driven to brake the motor that is being driven;
    Using the number of rotations per unit time of the motor being driven at the start of braking by the dynamic brake circuit and the parameters stored in the storage unit, the motor being driven and the motor being driven are controlled during braking by the dynamic brake circuit. a calculation unit for calculating information about an estimated value of the dynamic braking current flowing to and from the dynamic braking circuit;
    a measuring unit that obtains information about a measured value of a dynamic braking current that flows between the driving motor and the dynamic braking circuit during braking by the dynamic braking circuit;
    a determination unit that determines whether the motor being driven matches the registered motor based on a comparison result between the information regarding the estimated value of the dynamic braking current and the information regarding the measured value of the dynamic braking current;
    A motor drive device.
  2.  前記測定部は、前記ダイナミックブレーキ回路による制動開始時から、前記駆動中モータと前記ダイナミックブレーキ回路との間を流れるダイナミックブレーキ電流の測定値の振幅が所定の振幅閾値以下になるまでの間、前記ダイナミックブレーキ電流の測定値に関する情報を取得する、請求項1に記載のモータ駆動装置。 The measuring unit measures the amplitude of the measured value of the dynamic braking current flowing between the driving motor and the dynamic braking circuit from when the dynamic braking circuit starts braking until the amplitude of a measured value of the dynamic braking current flowing between the motor being driven and the dynamic braking circuit becomes equal to or less than a predetermined amplitude threshold. 2. The motor drive device of claim 1, wherein the information regarding the measured value of the dynamic braking current is obtained.
  3.  前記計算部は、前記ダイナミックブレーキ電流の推定値に関する情報として、前記推定値の電流ピーク値を計算し、
     前記測定部は、前記ダイナミックブレーキ電流の測定値に関する情報として、前記測定値の電流ピーク値を取得し、
     前記判定部は、前記推定値の電流ピーク値と前記測定値の電流ピーク値との差が所定の範囲外である場合、前記駆動中モータは前記登録モータと一致しないと判定する、請求項1または2に記載のモータ駆動装置。
    The calculation unit calculates a current peak value of the estimated value as information related to the estimated value of the dynamic brake current,
    The measuring unit acquires a current peak value of the measured value as information related to the measured value of the dynamic brake current,
    2. When a difference between the current peak value of the estimated value and the current peak value of the measured value is outside a predetermined range, the determination unit determines that the motor being driven does not match the registered motor. 3. or the motor drive device according to 2.
  4.  前記計算部は、前記ダイナミックブレーキ電流の推定値に関する情報として、前記ダイナミックブレーキ回路による制動開始時から前記駆動中モータの単位時間当たりの回転数が所定の閾値以下になるまでに要する時間である静定時間推定値を計算し、
     前記測定部は、前記ダイナミックブレーキ電流の測定値に関する情報として、前記ダイナミックブレーキ回路による制動開始時から前記駆動中モータの単位時間当たりの回転数が所定の閾値以下になるまでに要する時間である静定時間測定値を取得し、
     前記判定部は、前記静定時間推定値と前記静定時間測定値との差が所定の範囲外である場合、前記駆動中モータは前記登録モータと一致しないと判定する、請求項1または2に記載のモータ駆動装置。
    The calculation unit calculates, as information related to the estimated value of the dynamic brake current, a static time, which is the time required for the number of revolutions per unit time of the motor being driven to become equal to or less than a predetermined threshold value after the start of braking by the dynamic brake circuit. compute a constant-time estimate,
    The measuring unit measures, as information about the measured value of the dynamic brake current, a static time that is the time required for the number of revolutions per unit time of the motor being driven to become equal to or less than a predetermined threshold value after the start of braking by the dynamic brake circuit. take timed measurements,
    3. The judging unit judges that the motor being driven does not match the registered motor when a difference between the estimated stationary time value and the measured stationary time value is outside a predetermined range. The motor drive device according to .
  5.  前記計算部は、前記ダイナミックブレーキ電流の推定値に関する情報として、前記推定値の電流波形を計算し、
     前記測定部は、前記ダイナミックブレーキ電流の測定値に関する情報として、前記測定値の電流波形を取得し、
     前記判定部は、前記推定値の電流波形と前記測定値の電流波形との差が所定の範囲外である場合、前記駆動中モータは前記登録モータと一致しないと判定する、請求項1または2に記載のモータ駆動装置。
    The calculation unit calculates a current waveform of the estimated value as information related to the estimated value of the dynamic brake current,
    The measurement unit acquires a current waveform of the measured value as information on the measured value of the dynamic brake current,
    3. When a difference between the current waveform of the estimated value and the current waveform of the measured value is outside a predetermined range, the determination unit determines that the motor being driven does not match the registered motor. The motor drive device according to .
  6.  前記パラメータは、前記登録モータに関する機械摩擦、逆起電力係数、モータ抵抗の値、モータ極数、モータインダクタンス、及びロータ慣性モーメントのうちの少なくとも1つを含む請求項1~5のいずれか一項に記載のモータ駆動装置。 6. The parameter includes at least one of mechanical friction, back electromotive force coefficient, motor resistance value, motor pole number, motor inductance, and rotor moment of inertia for the registered motor. The motor drive device according to .
  7.  前記登録モータは、当該モータ駆動装置との接続が許可されるものとして予め登録されたモータである、請求項1~6のいずれか一項に記載のモータ駆動装置。 The motor driving device according to any one of claims 1 to 6, wherein said registered motor is a motor registered in advance as being permitted to be connected to said motor driving device.
PCT/JP2021/034637 2021-09-21 2021-09-21 Motor drive device having dynamic braking circuit WO2023047468A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023549201A JP7640725B2 (en) 2021-09-21 2021-09-21 Motor drive device having dynamic braking circuit
PCT/JP2021/034637 WO2023047468A1 (en) 2021-09-21 2021-09-21 Motor drive device having dynamic braking circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/034637 WO2023047468A1 (en) 2021-09-21 2021-09-21 Motor drive device having dynamic braking circuit

Publications (1)

Publication Number Publication Date
WO2023047468A1 true WO2023047468A1 (en) 2023-03-30

Family

ID=85720269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034637 WO2023047468A1 (en) 2021-09-21 2021-09-21 Motor drive device having dynamic braking circuit

Country Status (2)

Country Link
JP (1) JP7640725B2 (en)
WO (1) WO2023047468A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168241A (en) * 2003-12-04 2005-06-23 Toshiba Corp Electric motor vehicle control device
JP2017022940A (en) * 2015-07-14 2017-01-26 ファナック株式会社 Motor driving device having dynamic brake circuit
JP2020044741A (en) * 2018-09-19 2020-03-26 富士ゼロックス株式会社 Image formation apparatus and image formation program
JP2020048283A (en) * 2018-09-18 2020-03-26 富士ゼロックス株式会社 Motor control device and image forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168241A (en) * 2003-12-04 2005-06-23 Toshiba Corp Electric motor vehicle control device
JP2017022940A (en) * 2015-07-14 2017-01-26 ファナック株式会社 Motor driving device having dynamic brake circuit
JP2020048283A (en) * 2018-09-18 2020-03-26 富士ゼロックス株式会社 Motor control device and image forming apparatus
JP2020044741A (en) * 2018-09-19 2020-03-26 富士ゼロックス株式会社 Image formation apparatus and image formation program

Also Published As

Publication number Publication date
JP7640725B2 (en) 2025-03-05
JPWO2023047468A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
US10090795B2 (en) Motor drive having function of protecting dynamic braking circuit
JP5630474B2 (en) Inverter
US9893674B2 (en) Motor control device including torque command limit unit
JP2017175747A (en) Power converter
JP4269770B2 (en) Three-phase voltage source inverter device
JP6802126B2 (en) Inverter controller
JP6833638B2 (en) Evaluation device and evaluation method for inverter circuits for electric motors
JP2008154431A (en) Motor controller
JP6768175B2 (en) Air conditioner
WO2023047468A1 (en) Motor drive device having dynamic braking circuit
JP2005304143A (en) Power converter
US9621098B2 (en) Voltage control device and voltage control method
JP2011244577A (en) Inverter circuit failure detection device
JP2007336639A (en) Wind power generation control system and inverter device
JP7605994B2 (en) Motor drive device having overvoltage protection circuit
JP5571987B2 (en) Braking method for brushless DC motor
WO2021111856A1 (en) Power conversion device, diagonosis device, and diagnosis method
JP5441951B2 (en) Rotating electric machine
JP2001224191A (en) Induction motor control device
JP2007053895A (en) Inverter device
JP2011217473A (en) Motor drive circuit having function of detecting failure in rush current suppression circuit and motor control device
JP2016185026A (en) Controller of generator-motor for vehicle
JP7203899B2 (en) motor generator controller
JP4631575B2 (en) Inverter device
JP2020174500A (en) Protection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958345

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549201

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21958345

Country of ref document: EP

Kind code of ref document: A1