[go: up one dir, main page]

WO2023037408A1 - Seawater desalination ship using wind power - Google Patents

Seawater desalination ship using wind power Download PDF

Info

Publication number
WO2023037408A1
WO2023037408A1 PCT/JP2021/032838 JP2021032838W WO2023037408A1 WO 2023037408 A1 WO2023037408 A1 WO 2023037408A1 JP 2021032838 W JP2021032838 W JP 2021032838W WO 2023037408 A1 WO2023037408 A1 WO 2023037408A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
wind power
ship
screw pump
reverse osmosis
Prior art date
Application number
PCT/JP2021/032838
Other languages
French (fr)
Japanese (ja)
Inventor
加森紀良
Original Assignee
加森紀良
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加森紀良 filed Critical 加森紀良
Priority to PCT/JP2021/032838 priority Critical patent/WO2023037408A1/en
Priority to JP2022552693A priority patent/JP7257087B1/en
Publication of WO2023037408A1 publication Critical patent/WO2023037408A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J1/00Arrangements of installations for producing fresh water, e.g. by evaporation and condensation of sea water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a seawater desalination ship that uses a vessel such as a tanker and uses wind power to generate freshwater from seawater.
  • seawater desalination equipment has been used to desalinate seawater as a method of resolving water shortages in such areas.
  • This seawater desalination device usually uses a powerful electric motor to desalinate seawater by passing it through a reverse osmosis membrane.
  • Seawater desalination vessels using hulls are also known.
  • a tanker is equipped with seawater desalination equipment, and the tanker's existing equipment is used to produce freshwater from seawater, and the freshwater is stored in cargo oil tanks.
  • a seawater desalination ship that can be landed is disclosed (see, for example, Patent Document 1).
  • a seawater desalination ship equipped with a multi-stage flash evaporator that desalinates seawater cooled in the LNG supply section using residual heat of steam after power generation, and a tank that stores condensed water obtained by this multi-stage flash evaporator. has also been disclosed (see, for example, Patent Document 2).
  • seawater desalination vessel and a seawater desalination apparatus capable of reducing the use of fossil fuels, more preferably without using fossil fuels at all, and capable of generating sufficient freshwater from seawater is realized.
  • the present invention has been made in view of the above problems, and is a seawater desalination ship that uses wind power to produce a sufficient amount of freshwater from seawater without using fossil fuels and with minimal impact on ecosystems. intended to provide
  • a seawater desalination ship using wind power has a hull and a sail provided on the top of the hull for receiving the wind.
  • a wind blade part that obtains rotational power
  • a shaft that supports the wind blade part and serves as a rotating shaft that transmits the rotational power of the wind blade part
  • a screw pump part that pressurizes seawater using the rotational power of the shaft.
  • a reverse osmosis membrane device connected to the screw pump unit via an outflow pipe and separating seawater into fresh water and high-salinity wastewater by injecting seawater pressurized using the screw pump unit; It is characterized by having
  • a pump section for pumping up seawater using a water intake pipe, a surge tank for storing seawater drawn up by the pump section, the reverse osmosis membrane device, and freshwater piping a freshwater tank connected to the reverse osmosis membrane device for storing freshwater separated in the reverse osmosis membrane device, wherein the screw pump unit is provided between the surge tank and the seawater for supplying seawater Seawater is preferably supplied through a pipe.
  • the outflow pipe includes a pressure regulating valve for regulating the pressure of seawater flowing into the reverse osmosis membrane device.
  • the water intake pipe is preferably a water intake hose for pumping up deep water from a depth of 200 m or more.
  • a plurality of screw portions are arranged in parallel in the screw pump portion, the shaft is inserted through the center of the screw portion, and the screw portion rotates as the shaft rotates. preferably.
  • a seawater desalination ship using wind power comprises a hull and a wind blade section having sails provided at the top of the hull for receiving wind power and obtaining rotational power using wind power.
  • a shaft as a rotating shaft that supports the wind blade portion and transmits the rotational power of the wind blade portion
  • a screw pump portion that pressurizes seawater using the rotational power of the shaft
  • the screw pump portion and the outflow pipe are connected.
  • a reverse osmosis membrane device that separates seawater into freshwater and high-salinity wastewater by injecting pressurized seawater using a screw pump section.
  • FIG. 1(a) and 1(b) are diagrams showing the overall configuration of a seawater desalination ship according to an embodiment of the present invention
  • FIG. It is a figure which shows the whole seawater desalination apparatus structure with which the same Shanghai water desalination ship is equipped. It is the schematic for demonstrating the same Shanghai water desalination apparatus. It is a perspective view which shows an example of the screw part with which the screw pump part of the same Shanghai water desalination apparatus is equipped.
  • FIG. 4 is a schematic diagram for explaining a pressurized state of seawater in the same screw pump section. The functional configuration diagram of the Shanghai water desalination vessel is shown.
  • a seawater desalination ship using wind power (hereinafter referred to as a seawater desalination ship) according to an embodiment of the present invention will be described with reference to the drawings.
  • a seawater desalination ship 1 shown in FIG. 1 is a hull used as, for example, a container ship or a passenger ship.
  • the hull more preferably without fossil fuel propulsion engines, is efficiently powered by wind power through a hull propulsion mechanism as shown in Applicant's US Patent No. 6856915 (US Patent No. 11,077,927B2). It is preferably used to provide hull propulsion.
  • the seawater desalination ship 1 includes a hull portion 2 having an unsinkable structure, a wind blade portion 3, a shaft 4, a screw pump portion 5, a reverse osmosis membrane device 6, a water intake pipe (water intake hose) 7, a surge It has a tank 8 , a fresh water tank 9 and an engine section 10 .
  • the hull section 2 is configured, for example, by attaching a steel plate to the surface of a metal (iron) skeleton.
  • the wind blade section 3 is provided on the top of the hull section 2, has a plurality of sails 3a for receiving wind power, and obtains rotational power using wind power.
  • the wind blades 3 are installed at four positions on the top surface of the hull 2, so that wind power for desalination can be obtained efficiently.
  • the shaft 4 is a rotating shaft that supports the wind blade portion 3 and transmits the rotational power of the wind blade portion 3 .
  • the screw pump unit 5 is a power unit for using the rotational power of the shaft 4 to pump seawater from the deep sea using a pump or the like, which will be described later, into the reverse osmosis membrane device 6 in a pressurized state above a certain level. be. That is, the seawater desalination ship 1 desalinates seawater while sailing a ship equipped with the reverse osmosis membrane device 6 , and uses wind power as the energy required for the reverse osmosis membrane device 6 .
  • the screw portion of the screw pump portion 5 is directly connected to the shaft 4 that rotates together with the wind blade portion 3 (wind rotor). , seawater can be desalinated with 100% natural energy.
  • the reverse osmosis membrane device 6 is a device for desalinating seawater containing salt by applying pressure. Generate.
  • the RO membrane has pores of about 0.0001 ⁇ m, and only water molecules pass through these ultra-fine pores, so it is possible to generate fresh water from which salt and impurities have been removed.
  • the water intake pipe 7 is, for example, a water intake hose for taking in seawater from the deep sea (approximately 200m or deeper), and pumps up a sufficient amount of seawater from the deep sea using a pump to be described later.
  • a water intake hose for taking in seawater from the deep sea (approximately 200m or deeper), and pumps up a sufficient amount of seawater from the deep sea using a pump to be described later.
  • the surge tank 8 is a tank for temporarily storing seawater (deep water) pumped up through the water intake pipe 7, and has a relatively large capacity.
  • the freshwater tanks 9 are tanks for storing water desalinated using the reverse osmosis membrane device 6 until the seawater desalination ship 1 returns to land. there is This makes it possible to unload enough fresh water at one time to support life in water-scarce areas.
  • the engine section 10 may obtain propulsion using fossil fuel, but more preferably, the above-described hull propulsion mechanism rotates the screw by the water pressure (high-pressure water flow) of water circulated using wind power. the propulsion of the hull.
  • the engine section 10 is normally provided at the bottom of the hull section 2 . As for the position where it is provided, it is usually on the rear side in the traveling direction of the hull section 2, but it can also be provided on the front side. In this embodiment, six engine sections 10 are arranged on the bottom of the hull section 2 .
  • the seawater desalination ship 1 can also be considered to sail with a pilotless and automatic steering system by using various sensors such as a GPS (Global Positioning System), an obstacle detection sensor using infrared rays, and a submarine sonar. .
  • GPS Global Positioning System
  • obstacle detection sensor using infrared rays
  • submarine sonar a submarine sonar
  • the seawater desalination vessel 1 does not require fuel tanks (ballasts) for fossil fuels and very large and heavy fossil fuel engines because it obtains propulsion from natural energy. realizable.
  • the hull section 2 has a size of L70m ⁇ W35m, Max (Height) 13m, a displacement of 7000t, a maximum load of 7500t, no engine, and complete automatic steering that does not require a pilot.
  • seawater is pressurized into the reverse osmosis membrane device 6 using a screw pump unit 5 incorporating a screw unit that interlocks with the shaft 4 as indicated by the solid arrow Y2, and the separated freshwater is stored in the freshwater tank 9. be done.
  • the seawater desalination ship 1 returns to land, the freshwater in the freshwater tank 9 is unloaded as indicated by the solid-line arrow Y3.
  • the seawater desalination apparatus M may be provided in a plurality of stages vertically, and a flywheel F may be attached to the shaft 4 in order to cancel unevenness in rotational motion.
  • the seawater desalination apparatus M includes a wind blade portion 3, a shaft 4, a screw pump portion 5, a reverse osmosis membrane device 6, a water intake pipe 7, a surge tank 8, and a pump 11. are connected via various pipes.
  • the screw pump section 5 is connected to the surge tank 8 via the seawater pipe 8a.
  • the reverse osmosis membrane device 6 is connected to the screw pump section 5 via an outflow pipe 5a, and separates the seawater into fresh water and high-salinity wastewater by pressurizing seawater from the screw pump section 5 .
  • a pressure regulating valve 5b for regulating the pressure of seawater flowing into the reverse osmosis membrane device 6 is arranged in the outflow pipe 5a.
  • the freshwater tank 9 is connected to the reverse osmosis membrane device 6 via freshwater piping 6a, and stores the freshwater separated by the reverse osmosis membrane device 6.
  • the reverse osmosis membrane device 6 is further connected to a high-concentration waste water pipe 6b for discharging the separated high-salinity waste water to the sea or the like.
  • FIG. 4 is a perspective view showing the structure of the screw portion 51 arranged in the screw pump portion 5.
  • the screw portion 51 includes a screw drum portion 51a and fins 51b, and the shaft 4 is inserted through the center portion thereof.
  • the screw drum portion 51a is a substantially cylindrical member that is rotatably supported on the inner wall of the screw pump portion 5 via a bearing or the like.
  • the fins 51b have one end side (outer end) 51c connected and fixed to the inner wall of the screw drum portion 51a, and the other end side (inner end) connected and fixed to the shaft 4, and are rotatable as the shaft 4 rotates.
  • a single fin is various, and is not limited to the shape shown in this figure.
  • the screw portion 51 will be described with reference to FIG. 5 regarding the pressurizing effect of continuously arranging a plurality of stages side by side inside the screw pump portion 5 .
  • the pressure of the seawater is gradually increased, and as a result, a very large pressure can be applied to the seawater.
  • the number of stages of the screw portion 51 is not limited to four as shown in FIG. 5, and a greater number of stages may be arranged side by side in order to obtain a greater pressing force.
  • the seawater desalination ship 1 may include a power generation section 60, an electricity storage section 61, an electric motor section 62, an operation section 63, and a starting motor section 64, in addition to the above-described configuration.
  • the power generation unit 60 uses the rotational power of the shaft 4 to generate power.
  • the power storage unit 61 stores electric power generated by the power generation unit 60 such as a lithium ion battery.
  • the electric motor unit 62 can press seawater into the reverse osmosis membrane device 6 using electric power stored in the power storage unit 61 .
  • the operation unit 63 has a function of controlling the reverse osmosis membrane device 6 and opening/closing control of the pressure regulating valve 5b, and adjusting the pressure of the seawater injected into the reverse osmosis membrane device 6 from the screw pump unit 5.
  • the starting motor unit 64 uses the electric power stored in the power storage unit 61 to provide starting rotational power for the window blade unit 3 .
  • the power generation section 60 is a 150 Kw generator
  • the power storage section 61 is a DC storage battery with a capacity of 3,000 Kw.
  • the operation unit 63 includes, for example, an input unit 63a, a display unit 63b, a calculation unit 63c, a transmission/reception unit 63d, and a memory unit 63e.
  • the input unit 63a receives commands from the user (for example, adjustment of seawater pressure to be injected into the reverse osmosis membrane device 6, adjustment of the opening/closing state of the pressure regulating valve 5b, etc.).
  • the display unit 63b is a display screen such as a liquid crystal display for the user to perform operation input via the operation unit 63a.
  • the arithmetic unit 63c is an arithmetic circuit such as a CPU, and adjusts the water pressure in the water discharge pipe 5a based on a predetermined program.
  • the transmitter/receiver 63d communicates control signals with the pressure regulating valve 5b.
  • the memory unit 13e is a non-volatile memory such as a ROM, and stores a program for controlling the pressure of seawater in the outflow pipe 5a.
  • the seawater desalination ship 1 using wind power has a hull section 2 and a sail 3a provided at the top of the hull section 2 for receiving the wind power.
  • a wind blade portion 3 that obtains rotational power using wind power
  • a shaft 4 that supports the wind blade portion 3 and is a rotating shaft that transmits the rotational power of the wind blade portion 3, and seawater using the rotational power of the shaft 4.
  • the screw pump unit 5 to be pressurized is connected to the screw pump unit 5 via the water discharge pipe 5a, and pressurized seawater is injected using the screw pump unit 5 to separate the seawater into fresh water and high-salinity wastewater. and a reverse osmosis membrane device 6 .
  • the seawater desalination ship 1 further includes a pump section 11 for pumping up seawater using the water intake pipe 7, a surge tank 8 for storing the seawater drawn up by the pump section 11, a reverse osmosis membrane device 6 and freshwater. and a freshwater tank 9 for storing freshwater separated in the reverse osmosis membrane device 6 connected via a pipe 6a for storage, and the screw pump unit 5 is provided between the surge tank 8 and the seawater Seawater is supplied through a seawater pipe 8a for supplying water to the .
  • the seawater desalination ship 1 uses wind power to generate a sufficient amount of freshwater from seawater without using fossil fuels and with minimal impact on the ecosystem. More specifically, the seawater desalination ship 1 is a treatment device using 100% natural energy, and since it is a vessel, desalination can be performed while moving. In addition, instead of taking water from the coast (seawater), it is possible to take in water from the deep sea (approximately 200 m or deeper), making it possible to secure raw water free of various bacteria. In addition, since the seawater desalination ship 1 moves on the sea, it can discharge high-salinity wastewater over a wide area, thereby minimizing the impact on the ecosystem. Therefore, the seawater desalination ship 1 that uses wind power does not generate carbon dioxide using fossil fuels, can reduce the environmental load, and can become an indispensable technology for realizing a decarbonized society in the future.
  • the seawater desalination vessel 1 can be a means of solving the water problems that many regions of the world currently face, such as no need for fossil fuels, reduction of environmental load, and cost reduction.
  • the seawater desalination apparatus M can be installed in a place where sufficient seawater and wind power can be obtained, and does not necessarily need to be mounted on the seawater desalination ship 1 .
  • a check valve may be provided in the water discharge pipe 5a to prevent the seawater from flowing back through the screw pump portion 5.
  • a channel switching unit may be provided to switch the route of the seawater pumped up by the pump 11 to the surge tank 8 or the screw pump unit 5 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

This seawater desalination ship 1 that uses wind power comprises: a hull part 2; a wind blade part 3 that has a sail 3a provided to the top portion of the hull part 2 to receive wind power and utilizes wind power to obtain a rotational force; a shaft 4 that is a rotating shaft supporting the wind blade part 3 and transmitting the rotational force of the wind blade part 3; a screw pump part 5 that uses the rotational force of the shaft 4 to pressurize seawater; and a reverse osmosis device 6 that is connected to the screw pump part 5 through water discharge piping and uses the screw pump part 5 to press in the pressurized seawater, thereby separating the seawater into fresh water and drainage having a high salt concentration. This configuration makes it possible for the seawater desalination ship 1 to generate a sufficient amount of fresh water from seawater without using fossil fuels while minimizing the impact on ecological systems.

Description

風力を利用した海水淡水化船Seawater desalination ship using wind power
 本発明は、タンカーなどの船舶を用い、風力を利用して海水から淡水を生成する海水淡水化船に関する。 The present invention relates to a seawater desalination ship that uses a vessel such as a tanker and uses wind power to generate freshwater from seawater.
 世界には飲み水に恵まれない多くの地域があり、近年、このような地域における水不足解消方法のため、海水を淡水化する海水淡水化装置が利用されている。この海水淡水化装置は、通常、強力な電力モータを利用し、海水を逆浸透膜に通して淡水化している。 There are many areas in the world that are not blessed with drinking water, and in recent years, seawater desalination equipment has been used to desalinate seawater as a method of resolving water shortages in such areas. This seawater desalination device usually uses a powerful electric motor to desalinate seawater by passing it through a reverse osmosis membrane.
 また、船体を利用した海水淡水化船も知られており、例えば、タンカーに海水淡水化設備を搭載し、タンカー既設の設備を利用して海水から淡水を製造し、淡水を貨油タンクに貯蔵し、陸上げし得る海水淡水化船が開示されている(例えば、特許文献1参照)。さらに、発電後のスチームの余熱を用いてLNG供給部で冷却した海水を淡水化する多段フラッシュ蒸発器と、この多段フラッシュ蒸発器で得た凝縮水を貯蔵するタンクとを備えた海水淡水化船も開示されている(例えば、特許文献2参照)。 Seawater desalination vessels using hulls are also known. For example, a tanker is equipped with seawater desalination equipment, and the tanker's existing equipment is used to produce freshwater from seawater, and the freshwater is stored in cargo oil tanks. However, a seawater desalination ship that can be landed is disclosed (see, for example, Patent Document 1). Furthermore, a seawater desalination ship equipped with a multi-stage flash evaporator that desalinates seawater cooled in the LNG supply section using residual heat of steam after power generation, and a tank that stores condensed water obtained by this multi-stage flash evaporator. has also been disclosed (see, for example, Patent Document 2).
特開昭59-20795号公報JP-A-59-20795 特開平8-198178号公報JP-A-8-198178
 しかしながら、上記従来の逆浸透膜を利用する海水淡水化装置は、強力な電力モータを使用するため、膨大な化石燃料の消費とそれに伴う排出温暖化ガスの増加、淡水化時に副生される高塩分濃度排水が同じ海域に放流されることが問題となっている。この結果、地球温暖化などの化石燃料の使用に起因した環境問題が深刻化すると共に、魚などの生態系に大きなダメージを与える事例がハワイや中東のペルシャ湾岸など非常に多くの地域で確認されている。 However, the above-mentioned conventional seawater desalination equipment using a reverse osmosis membrane uses a powerful electric motor, which consumes a huge amount of fossil fuels, which in turn increases greenhouse gas emissions. Discharge of salinity wastewater into the same sea area is a problem. As a result, environmental problems caused by the use of fossil fuels, such as global warming, have become more serious, and there have been many cases of severe damage to ecosystems such as fish in Hawaii and the Persian Gulf coast of the Middle East. ing.
 また、上記のような従来の海水淡水化船においては、船の推進力を得るためのエネルギー源や淡水化設備のエネルギー源として、石油などの化石燃料が使用されている。従って、化石燃料の使用を削減することのできる、より好ましくは化石燃料を全く使用せずに、海水から十分な淡水を生成することができる海水淡水化船(及び海水淡水化装置)を実現することには、今後膨大な需要があることは疑う余地がない。 In addition, in conventional seawater desalination ships such as those described above, fossil fuels such as petroleum are used as an energy source for obtaining the propulsion power of the ship and as an energy source for the desalination equipment. Therefore, a seawater desalination vessel (and a seawater desalination apparatus) capable of reducing the use of fossil fuels, more preferably without using fossil fuels at all, and capable of generating sufficient freshwater from seawater is realized. In particular, there is no doubt that there will be enormous demand in the future.
 本発明は上記課題に鑑みてなされたものであり、化石燃料を使用せず、且つ生態系に与える影響を最小限としながら海水から充分な量の淡水を生成できる風力を利用した海水淡水化船を提供することを目的とする。 The present invention has been made in view of the above problems, and is a seawater desalination ship that uses wind power to produce a sufficient amount of freshwater from seawater without using fossil fuels and with minimal impact on ecosystems. intended to provide
 上記目的を達成するために本発明に係る風力を利用した海水淡水化船は、船体部と、前記船体部の天部に設けられ、風力を受けるための帆を有し、風力を利用して回転動力を得るウインドブレード部と、前記ウインドブレード部を支持すると共に、前記ウインドブレード部の回転動力を伝える回転軸たるシャフトと、前記シャフトの回転動力を利用して海水を加圧するスクリューポンプ部と、前記スクリューポンプ部と出水配管を介して接続され、前記スクリューポンプ部を用いて加圧された海水を圧入することで、海水を淡水及び高塩分濃度排水に分離する逆浸透膜装置と、を備えることを特徴とする。 In order to achieve the above object, a seawater desalination ship using wind power according to the present invention has a hull and a sail provided on the top of the hull for receiving the wind. A wind blade part that obtains rotational power, a shaft that supports the wind blade part and serves as a rotating shaft that transmits the rotational power of the wind blade part, and a screw pump part that pressurizes seawater using the rotational power of the shaft. , a reverse osmosis membrane device connected to the screw pump unit via an outflow pipe and separating seawater into fresh water and high-salinity wastewater by injecting seawater pressurized using the screw pump unit; It is characterized by having
 この海水淡水化船において、さらに、取水管を用いて海水をくみ上げるためのポンプ部と、前記ポンプ部で引き揚げられた海水を貯留するサージタンクと、前記逆浸透膜装置と淡水用配管を介して接続され、前記逆浸透膜装置において分離された淡水を貯留するための淡水タンクと、を備え、前記スクリューポンプ部には、前記サージタンクとの間で設けられた海水を給水するための海水用配管を介して海水が給水されることが好ましい。 In this seawater desalination ship, furthermore, a pump section for pumping up seawater using a water intake pipe, a surge tank for storing seawater drawn up by the pump section, the reverse osmosis membrane device, and freshwater piping a freshwater tank connected to the reverse osmosis membrane device for storing freshwater separated in the reverse osmosis membrane device, wherein the screw pump unit is provided between the surge tank and the seawater for supplying seawater Seawater is preferably supplied through a pipe.
 この海水淡水化船において、前記出水配管は、前記逆浸透膜装置へ流入する海水の圧力を調整するための調圧弁を備えることが好ましい。 In this seawater desalination ship, it is preferable that the outflow pipe includes a pressure regulating valve for regulating the pressure of seawater flowing into the reverse osmosis membrane device.
 この海水淡水化船において、前記取水管は、200m以深の深層水を汲み上げるための取水ホースであることが好ましい。 In this seawater desalination ship, the water intake pipe is preferably a water intake hose for pumping up deep water from a depth of 200 m or more.
 この海水淡水化船において、前記スクリューポンプ部には、スクリュー部が複数並設されており、前記スクリュー部の中心部に前記シャフトが挿通し、且つ当該シャフトの回転に伴って前記スクリュー部が回転することが好ましい。 In this seawater desalination ship, a plurality of screw portions are arranged in parallel in the screw pump portion, the shaft is inserted through the center of the screw portion, and the screw portion rotates as the shaft rotates. preferably.
 本発明に係る風力を利用した海水淡水化船は、船体部と、船体部の天部に設けられて風力を受けるための帆を有して風力を利用して回転動力を得るウインドブレード部と、ウインドブレード部を支持すると共にウインドブレード部の回転動力を伝える回転軸たるシャフトと、シャフトの回転動力を利用して海水を加圧するスクリューポンプ部と、スクリューポンプ部と出水配管を介して接続されてスクリューポンプ部を用いて加圧された海水を圧入することで海水を淡水及び高塩分濃度排水に分離する逆浸透膜装置と、を備える。この構成により、本発明に係る海水淡水化船では、化石燃料を使用せず、且つ生態系に与える影響を最小限としながら海水から充分な量の淡水を生成できる。 A seawater desalination ship using wind power according to the present invention comprises a hull and a wind blade section having sails provided at the top of the hull for receiving wind power and obtaining rotational power using wind power. , a shaft as a rotating shaft that supports the wind blade portion and transmits the rotational power of the wind blade portion, a screw pump portion that pressurizes seawater using the rotational power of the shaft, and the screw pump portion and the outflow pipe are connected. and a reverse osmosis membrane device that separates seawater into freshwater and high-salinity wastewater by injecting pressurized seawater using a screw pump section. With this configuration, the seawater desalination ship according to the present invention can generate a sufficient amount of freshwater from seawater without using fossil fuels and with minimal impact on ecosystems.
(a)及び(b)本発明の実施の形態に係る海水淡水化船の全体構成を示す図である。1(a) and 1(b) are diagrams showing the overall configuration of a seawater desalination ship according to an embodiment of the present invention; FIG. 同上海水淡水化船に備わる海水淡水化装置の全体構成を示す図である。It is a figure which shows the whole seawater desalination apparatus structure with which the same Shanghai water desalination ship is equipped. 同上海水淡水化装置を説明するための概略図である。It is the schematic for demonstrating the same Shanghai water desalination apparatus. 同上海水淡水化装置のスクリューポンプ部内に備わるスクリュー部の一例を示す斜視図である。It is a perspective view which shows an example of the screw part with which the screw pump part of the same Shanghai water desalination apparatus is equipped. 同上スクリューポンプ部における海水の加圧状態を説明するための模式図である。FIG. 4 is a schematic diagram for explaining a pressurized state of seawater in the same screw pump section. 同上海水淡水化船の機能構成図を示す。The functional configuration diagram of the Shanghai water desalination vessel is shown.
 本発明の実施の形態に係る風力を利用した海水淡水化船(以下海水淡水化船と記載)に関して図面を参照しながら説明する。図1に示す海水淡水化船1は、例えば、コンテナ船、客船として用いられる船体である。この船体は、より好ましくは化石燃料で推進力を生じさせるエンジンを搭載せず、出願人の有する特許第6856915号(US Patent No.11,077,927B2)に示すような船体推進機構によって効率的に風力を利用して船体の推進力を得ることが好ましい。 A seawater desalination ship using wind power (hereinafter referred to as a seawater desalination ship) according to an embodiment of the present invention will be described with reference to the drawings. A seawater desalination ship 1 shown in FIG. 1 is a hull used as, for example, a container ship or a passenger ship. The hull, more preferably without fossil fuel propulsion engines, is efficiently powered by wind power through a hull propulsion mechanism as shown in Applicant's US Patent No. 6856915 (US Patent No. 11,077,927B2). It is preferably used to provide hull propulsion.
 最初に、本実施の形態に係る海水淡水化船1の全体構造に関して図1を参照して説明する。海水淡水化船1は、不沈構造となる船体部2と、ウインドブレード部3と、シャフト4と、スクリューポンプ部5と、逆浸透膜装置6と、取水管(取水ホース)7と、サージタンク8と、淡水タンク9と、エンジン部10とを備えている。 First, the overall structure of a seawater desalination ship 1 according to this embodiment will be described with reference to FIG. The seawater desalination ship 1 includes a hull portion 2 having an unsinkable structure, a wind blade portion 3, a shaft 4, a screw pump portion 5, a reverse osmosis membrane device 6, a water intake pipe (water intake hose) 7, a surge It has a tank 8 , a fresh water tank 9 and an engine section 10 .
 船体部2は、例えば金属製(鉄製)のスケルトンの表面に鋼板が張り付けられて構成されている。ウインドブレード部3は、船体部2の天部に設けられ、風力を受けるための複数の帆3aを有し、風力を利用して回転動力を得る。なお、本図ではウインドブレード部3が船体部2の天面の4か所において設置されており、このことにより効率的に淡水化のための風力を得ることができる。 The hull section 2 is configured, for example, by attaching a steel plate to the surface of a metal (iron) skeleton. The wind blade section 3 is provided on the top of the hull section 2, has a plurality of sails 3a for receiving wind power, and obtains rotational power using wind power. In this figure, the wind blades 3 are installed at four positions on the top surface of the hull 2, so that wind power for desalination can be obtained efficiently.
 シャフト4は、ウインドブレード部3を支持すると共に、ウインドブレード部3の回転動力を伝える回転軸である。スクリューポンプ部5は、シャフト4の回転動力を利用して、後述するポンプなどを用いて深海から汲み上げた海水を、一定以上の加圧状態で逆浸透膜装置6に圧入させるための動力部である。すなわち、海水淡水化船1は、逆浸透膜装置6を搭載した船舶を航行しながら海水の淡水化を行い、その逆浸透膜装置6に必要なエネルギーとして風力を利用する。そして、スクリューポンプ部5のスクリュー部がウインドブレード部3(風力ロータ)と共に回転するシャフト4に直結しており、スクリューポンプ部5において加圧された海水を逆浸透膜装置6に圧入することで、自然エネルギー100%で海水淡水化を行うことができる。 The shaft 4 is a rotating shaft that supports the wind blade portion 3 and transmits the rotational power of the wind blade portion 3 . The screw pump unit 5 is a power unit for using the rotational power of the shaft 4 to pump seawater from the deep sea using a pump or the like, which will be described later, into the reverse osmosis membrane device 6 in a pressurized state above a certain level. be. That is, the seawater desalination ship 1 desalinates seawater while sailing a ship equipped with the reverse osmosis membrane device 6 , and uses wind power as the energy required for the reverse osmosis membrane device 6 . The screw portion of the screw pump portion 5 is directly connected to the shaft 4 that rotates together with the wind blade portion 3 (wind rotor). , seawater can be desalinated with 100% natural energy.
 逆浸透膜装置6は、塩分を含んだ海水に圧力をかけて淡水化するための装置であって、例えばRO膜(Reverse Osmosis(逆浸透膜))に多種の水を逆浸透させて淡水を生成する。RO膜には0.0001μm程度の孔があり、この超微細な孔を水の分子だけが透過するため、塩分や不純物を取り除いた淡水を生成することができる。 The reverse osmosis membrane device 6 is a device for desalinating seawater containing salt by applying pressure. Generate. The RO membrane has pores of about 0.0001 μm, and only water molecules pass through these ultra-fine pores, so it is possible to generate fresh water from which salt and impurities have been removed.
 取水管7は、例えば深海(凡そ200m以深)からの海水を取水するための取水ホースであって、後述するポンプを用いて深海から充分な量の海水を汲み上げる。また、フィルターを用いて深海の生物を除去しながら取水でき、深層水を汲み上げることで雑菌の無い原水の確保が可能となる。 The water intake pipe 7 is, for example, a water intake hose for taking in seawater from the deep sea (approximately 200m or deeper), and pumps up a sufficient amount of seawater from the deep sea using a pump to be described later. In addition, it is possible to take in water while removing deep-sea organisms using a filter, and by pumping up deep-sea water, it is possible to secure raw water free of various germs.
 サージタンク8は、取水管7を介して汲み上げられた海水(深層水)を一時的に貯水するためのタンクであり比較的大きな容量を有する。淡水タンク9は、逆浸透膜装置6を用いて淡水化された水を、海水淡水化船1が陸地に戻るまで貯水するためのタンクであり、船体部2の底側に多数並設されている。このことで水不足の地域の生活に充分な量の淡水を一時に陸揚げできる。 The surge tank 8 is a tank for temporarily storing seawater (deep water) pumped up through the water intake pipe 7, and has a relatively large capacity. The freshwater tanks 9 are tanks for storing water desalinated using the reverse osmosis membrane device 6 until the seawater desalination ship 1 returns to land. there is This makes it possible to unload enough fresh water at one time to support life in water-scarce areas.
 エンジン部10は、化石燃料を利用して推進力を得ても良いが、より好ましくは上述の船体推進機構によって、風力を利用して循環される水の水圧(高圧水流)によりスクリューを回転させて船体の推進力を得ている。エンジン部10は、通常は船体部2の船底に設けられる。設けられる位置としては、船体部2の進行方向における後方側が通常であるが、前方側にも設けることもできる。本実施の形態においては、船体部2の船底に6つのエンジン部10が配置されている。 The engine section 10 may obtain propulsion using fossil fuel, but more preferably, the above-described hull propulsion mechanism rotates the screw by the water pressure (high-pressure water flow) of water circulated using wind power. the propulsion of the hull. The engine section 10 is normally provided at the bottom of the hull section 2 . As for the position where it is provided, it is usually on the rear side in the traveling direction of the hull section 2, but it can also be provided on the front side. In this embodiment, six engine sections 10 are arranged on the bottom of the hull section 2 .
 なお、海水淡水化船1は、GPS(Global Positioning System)、赤外線などを用いた障害物検出センサ、海底ソナーなどの各種センサを利用することでパイロット無し・自動操舵システムで航海することも考え得る。 The seawater desalination ship 1 can also be considered to sail with a pilotless and automatic steering system by using various sensors such as a GPS (Global Positioning System), an obstacle detection sensor using infrared rays, and a submarine sonar. .
 海水淡水化船1は、自然エネルギーから推進力をえることで、化石燃料用の燃料タンク(バラスト)や非常に大型で重量のある化石燃料系エンジンの装備が不要であり、かなりの軽量化を実現できる。例えば、船体部2は、そのサイズを例えばL70m×W35m,Max(Height)13m,排水量7000t、最大荷重7500t、機関無し、操縦士の要らない完全自動操舵が可能である。なお、船の推進力を決めるためのエンジン設計や船体設計は様々であり、これに限定されるものではない。 The seawater desalination vessel 1 does not require fuel tanks (ballasts) for fossil fuels and very large and heavy fossil fuel engines because it obtains propulsion from natural energy. realizable. For example, the hull section 2 has a size of L70m×W35m, Max (Height) 13m, a displacement of 7000t, a maximum load of 7500t, no engine, and complete automatic steering that does not require a pilot. There are various engine designs and hull designs for determining the propulsive force of the ship, and the design is not limited to these.
 次に、海水淡水化装置Mにおける海水及び淡水の流れに関して図2を参照しながら説明する。最初に図2の点線の矢印Y1に示すように、ポンプ11を用いて取水管7を介して汲み上げられた海水が複数のスクリューポンプ部5内に流入される。次に、実線の矢印Y2に示すようにシャフト4と連動するスクリュー部を内蔵するスクリューポンプ部5を用いて海水が逆浸透膜装置6に圧入されて、分離された淡水は淡水タンク9に貯水される。最後に、海水淡水化船1が陸地に戻った際には、実線矢印Y3に示すように、淡水タンク9内の淡水が陸揚げされる。なお、本図に示すように海水淡水化装置Mは上下に複数段で設けられ、シャフト4に回転運動のムラを打ち消すためにフライホイールFを装着しても良い。 Next, the flow of seawater and freshwater in the seawater desalination apparatus M will be described with reference to FIG. First, as indicated by the dotted arrow Y1 in FIG. Next, seawater is pressurized into the reverse osmosis membrane device 6 using a screw pump unit 5 incorporating a screw unit that interlocks with the shaft 4 as indicated by the solid arrow Y2, and the separated freshwater is stored in the freshwater tank 9. be done. Finally, when the seawater desalination ship 1 returns to land, the freshwater in the freshwater tank 9 is unloaded as indicated by the solid-line arrow Y3. As shown in this figure, the seawater desalination apparatus M may be provided in a plurality of stages vertically, and a flywheel F may be attached to the shaft 4 in order to cancel unevenness in rotational motion.
 次に、海水淡水化船1に備わる海水淡水化装置Mの詳細な構造に関して図3を参照しながら説明する。図3に示すように、海水淡水化装置Mは、ウインドブレード部3と、シャフト4と、スクリューポンプ部5と、逆浸透膜装置6と、取水管7と、サージタンク8と、ポンプ11とが各種配管を介して接続されている。 Next, the detailed structure of the seawater desalination device M provided on the seawater desalination ship 1 will be described with reference to FIG. As shown in FIG. 3, the seawater desalination apparatus M includes a wind blade portion 3, a shaft 4, a screw pump portion 5, a reverse osmosis membrane device 6, a water intake pipe 7, a surge tank 8, and a pump 11. are connected via various pipes.
 具体的には、スクリューポンプ部5は、サージタンク8と海水用配管8aを介して接続されている。逆浸透膜装置6は、スクリューポンプ部5と出水配管5aを介して接続され、スクリューポンプ部5からの海水を圧入することで海水を淡水及び高塩分濃度排水に分離する。この出水配管5aには、逆浸透膜装置6へ流入する海水の圧力を調整するための調圧弁5bが配置される。すなわち、この調圧弁5bを用いて流路や開閉状態を調整することで、一定の海水を排水配管5cから海側に排水して出水配管5aから逆浸透膜装置6に圧入される海水の圧力や量を調整する。 Specifically, the screw pump section 5 is connected to the surge tank 8 via the seawater pipe 8a. The reverse osmosis membrane device 6 is connected to the screw pump section 5 via an outflow pipe 5a, and separates the seawater into fresh water and high-salinity wastewater by pressurizing seawater from the screw pump section 5 . A pressure regulating valve 5b for regulating the pressure of seawater flowing into the reverse osmosis membrane device 6 is arranged in the outflow pipe 5a. That is, by adjusting the flow path and the opening/closing state using the pressure regulating valve 5b, a certain amount of seawater is discharged from the drainage pipe 5c to the sea side, and the pressure of the seawater pressure-injected from the water discharge pipe 5a into the reverse osmosis membrane device 6 or adjust the amount.
 淡水タンク9は、逆浸透膜装置6と淡水用配管6aを介して接続され、逆浸透膜装置6において分離された淡水を貯留する。逆浸透膜装置6には、さらに、分離後の高塩分濃度排水を海などに排水するための高濃度排水配管6bが接続されている。 The freshwater tank 9 is connected to the reverse osmosis membrane device 6 via freshwater piping 6a, and stores the freshwater separated by the reverse osmosis membrane device 6. The reverse osmosis membrane device 6 is further connected to a high-concentration waste water pipe 6b for discharging the separated high-salinity waste water to the sea or the like.
 次に、スクリューポンプ部5内に備わるスクリュー部に関して図4を参照しながら説明する。図4は、スクリューポンプ部5に配置されるスクリュー部51の構造を示す斜視図である。スクリュー部51は、スクリュードラム部51a、フィン51bを備え、中心部にシャフト4が挿通する。スクリュードラム部51aは、ベアリングなどを介してスクリューポンプ部5の内壁に対して回転可能に支持された略円筒形状の部材である。 Next, the screw portion provided within the screw pump portion 5 will be described with reference to FIG. 4 is a perspective view showing the structure of the screw portion 51 arranged in the screw pump portion 5. FIG. The screw portion 51 includes a screw drum portion 51a and fins 51b, and the shaft 4 is inserted through the center portion thereof. The screw drum portion 51a is a substantially cylindrical member that is rotatably supported on the inner wall of the screw pump portion 5 via a bearing or the like.
 フィン51bは、スクリュードラム部51aの内壁にその一端側(外側端)51cが接続固定され、シャフト4にその他端側(内側端)が接続固定され、シャフト4の回転に伴って回転可能な複数枚のフィンである。なお、フィン51bの形状は様々であり、本図に示す形状に限定されるものではない。このようにシャフト4の回転と連動するスクリュー部51をスクリューポンプ部5の内部に複数並設することで、海水を一定以上の加圧状態にして逆浸透膜装置6に圧入できる。 The fins 51b have one end side (outer end) 51c connected and fixed to the inner wall of the screw drum portion 51a, and the other end side (inner end) connected and fixed to the shaft 4, and are rotatable as the shaft 4 rotates. A single fin. Note that the shape of the fins 51b is various, and is not limited to the shape shown in this figure. By arranging a plurality of screw portions 51 interlocked with the rotation of the shaft 4 inside the screw pump portion 5 in this way, the seawater can be pressurized to a certain level or higher and pressurized into the reverse osmosis membrane device 6 .
 ここで、特に、スクリュー部51が、スクリューポンプ部5の内側に、複数段連続して並設される加圧効果に関して図5を参照して説明する。本図に示すように、スクリュー部51を複数段連続で並設することにより、海水の圧力を徐々に大きくし、結果として非常に大きな圧力を海水に加えることが可能となる。なお、スクリュー部51の段数は図5に示すような4つに限定されるものではなく、より大きな加圧力を得るためのより多くの段数を並設しても良い。 Here, in particular, the screw portion 51 will be described with reference to FIG. 5 regarding the pressurizing effect of continuously arranging a plurality of stages side by side inside the screw pump portion 5 . As shown in this figure, by continuously arranging the screw portions 51 in a plurality of stages, the pressure of the seawater is gradually increased, and as a result, a very large pressure can be applied to the seawater. Note that the number of stages of the screw portion 51 is not limited to four as shown in FIG. 5, and a greater number of stages may be arranged side by side in order to obtain a greater pressing force.
 次に、本実施の形態に係る海水淡水化船1の機能構成に関して図6を参照しながら説明する。海水淡水化船1は、上述した構成以外に、発電部60と、蓄電部61と、電力モータ部62と、操作部63と、始動モータ部64とを備えても良い。 Next, the functional configuration of the seawater desalination ship 1 according to this embodiment will be described with reference to FIG. The seawater desalination ship 1 may include a power generation section 60, an electricity storage section 61, an electric motor section 62, an operation section 63, and a starting motor section 64, in addition to the above-described configuration.
 発電部60は、シャフト4の回転動力を利用して発電を行う。蓄電部61は、リチウムイオン電池など発電部60で発電された電力を蓄電する。電力モータ部62は、蓄電部61に蓄電された電力を用いて逆浸透膜装置6に海水を圧入させることができる。 The power generation unit 60 uses the rotational power of the shaft 4 to generate power. The power storage unit 61 stores electric power generated by the power generation unit 60 such as a lithium ion battery. The electric motor unit 62 can press seawater into the reverse osmosis membrane device 6 using electric power stored in the power storage unit 61 .
 操作部63は、逆浸透膜装置6の制御及び調圧弁5bの開閉制御を行い、スクリューポンプ部5から逆浸透膜装置6に圧入される海水の圧力を調整する機能を有する。始動モータ部64は、蓄電部61に蓄電された電力を用いてウインドブレード部3の始動回転動力を与える。例えば、海水淡水化船1においては、発電部60は150Kw発電機、蓄電部61はDC蓄電器で容量3,000Kwなどである。 The operation unit 63 has a function of controlling the reverse osmosis membrane device 6 and opening/closing control of the pressure regulating valve 5b, and adjusting the pressure of the seawater injected into the reverse osmosis membrane device 6 from the screw pump unit 5. The starting motor unit 64 uses the electric power stored in the power storage unit 61 to provide starting rotational power for the window blade unit 3 . For example, in the seawater desalination ship 1, the power generation section 60 is a 150 Kw generator, and the power storage section 61 is a DC storage battery with a capacity of 3,000 Kw.
 次に、操作部63の機能構成に関して図6を参照しながら説明する。操作部63は、例えば、入力部63a、表示部63b、演算部63c、送受信部63d、及びメモリ部63eを備える。入力部63aは、ユーザからの指令(例えば逆浸透膜装置6へ圧入する海水圧力の調整や調圧弁5bの開閉状態の調整など)を受け付ける。表示部63bは、ユーザが操作部63aを介して操作入力を行うための液晶などの表示画面である。演算部63cは、CPUなどの演算回路であり、所定のプログラムに基づいて出水配管5a内の水圧を調整する。送受信部63dは、調圧弁5bとの間での制御信号の通信を行う。メモリ部13eは、ROMなどの不揮発性メモリであり、出水配管5a内の海水の圧力制御のためのプログラムなどを記憶する。 Next, the functional configuration of the operation unit 63 will be described with reference to FIG. The operation unit 63 includes, for example, an input unit 63a, a display unit 63b, a calculation unit 63c, a transmission/reception unit 63d, and a memory unit 63e. The input unit 63a receives commands from the user (for example, adjustment of seawater pressure to be injected into the reverse osmosis membrane device 6, adjustment of the opening/closing state of the pressure regulating valve 5b, etc.). The display unit 63b is a display screen such as a liquid crystal display for the user to perform operation input via the operation unit 63a. The arithmetic unit 63c is an arithmetic circuit such as a CPU, and adjusts the water pressure in the water discharge pipe 5a based on a predetermined program. The transmitter/receiver 63d communicates control signals with the pressure regulating valve 5b. The memory unit 13e is a non-volatile memory such as a ROM, and stores a program for controlling the pressure of seawater in the outflow pipe 5a.
 以上の説明のように、本実施の形態に係る風力を利用した海水淡水化船1は、船体部2と、船体部2の天部に設けられて風力を受けるための帆3aを有して風力を利用して回転動力を得るウインドブレード部3と、ウインドブレード部3を支持すると共にウインドブレード部3の回転動力を伝える回転軸たるシャフト4と、シャフト4の回転動力を利用して海水を加圧するスクリューポンプ部5と、スクリューポンプ部5と出水配管5aを介して接続されてスクリューポンプ部5を用いて加圧された海水を圧入することで海水を淡水及び高塩分濃度排水に分離する逆浸透膜装置6と、を備える。また、海水淡水化船1は、さらに、取水管7を用いて海水をくみ上げるためのポンプ部11と、ポンプ部11で引き揚げられた海水を貯留するサージタンク8と、逆浸透膜装置6と淡水用配管6aを介して接続されて逆浸透膜装置6において分離された淡水を貯留するための淡水タンク9と、を備え、スクリューポンプ部5には、サージタンク8との間で設けられた海水を給水するための海水用配管8aを介して海水が給水される。 As described above, the seawater desalination ship 1 using wind power according to the present embodiment has a hull section 2 and a sail 3a provided at the top of the hull section 2 for receiving the wind power. A wind blade portion 3 that obtains rotational power using wind power, a shaft 4 that supports the wind blade portion 3 and is a rotating shaft that transmits the rotational power of the wind blade portion 3, and seawater using the rotational power of the shaft 4. The screw pump unit 5 to be pressurized is connected to the screw pump unit 5 via the water discharge pipe 5a, and pressurized seawater is injected using the screw pump unit 5 to separate the seawater into fresh water and high-salinity wastewater. and a reverse osmosis membrane device 6 . In addition, the seawater desalination ship 1 further includes a pump section 11 for pumping up seawater using the water intake pipe 7, a surge tank 8 for storing the seawater drawn up by the pump section 11, a reverse osmosis membrane device 6 and freshwater. and a freshwater tank 9 for storing freshwater separated in the reverse osmosis membrane device 6 connected via a pipe 6a for storage, and the screw pump unit 5 is provided between the surge tank 8 and the seawater Seawater is supplied through a seawater pipe 8a for supplying water to the .
 この構成により、海水淡水化船1は、風力を利用することで化石燃料を使用せず、且つ生態系に与える影響を最小限としながら海水から充分な量の淡水を生成できる。より具体的には、海水淡水化船1は、先ず自然エネルギー100%の処理装置であり、船舶であるため移動しながら淡水化が行える。また沿岸からの取水(海水)ではなく、深海(凡そ200m以深)からの取水が可能で雑菌の無い原水確保が可能となる。また、海水淡水化船1は海上を移動するため、高塩分濃度排水も広範囲に行えるため生態系に与える影響を最小限にできる。従って、風力を利用する海水淡水化船1は、化石燃料を用いた二酸化炭素も発生させず、環境負荷を軽減でき、将来において脱炭素化社会の実現には欠かせない技術となり得る。 With this configuration, the seawater desalination ship 1 uses wind power to generate a sufficient amount of freshwater from seawater without using fossil fuels and with minimal impact on the ecosystem. More specifically, the seawater desalination ship 1 is a treatment device using 100% natural energy, and since it is a vessel, desalination can be performed while moving. In addition, instead of taking water from the coast (seawater), it is possible to take in water from the deep sea (approximately 200 m or deeper), making it possible to secure raw water free of various bacteria. In addition, since the seawater desalination ship 1 moves on the sea, it can discharge high-salinity wastewater over a wide area, thereby minimizing the impact on the ecosystem. Therefore, the seawater desalination ship 1 that uses wind power does not generate carbon dioxide using fossil fuels, can reduce the environmental load, and can become an indispensable technology for realizing a decarbonized society in the future.
 2017年のWHO/UNICEFのデータでは22億人、つまり世界の10人に3人は安全な水を飲めない状況にある。このような状況下において、海水淡水化船1は、化石燃料不要、環境負荷の軽減、コストダウンなど現在の世界の多くの地域が抱える水問題の解決手段となり得るものである。 According to WHO/UNICEF data in 2017, 2.2 billion people, or 3 out of 10 people in the world, cannot drink safe water. Under such circumstances, the seawater desalination vessel 1 can be a means of solving the water problems that many regions of the world currently face, such as no need for fossil fuels, reduction of environmental load, and cost reduction.
(変形例)
 本実施の形態の変形例について説明する。本変形例において、海水淡水化船1は、海上の気候データなどを自動で取得して、GPS、ソナー、障害物センサなどを用いて自動操舵で風力の大きな海域に到達する。次に、風力を用いて海水から多量の淡水を生成して淡水タンク9に貯水する。そして、十分な淡水化を終えた海水淡水化船1は、自動で港に帰航して、生成された淡水を供給する。海水淡水化船1は、自然エネルギーを利用するため、上述の実施の形態のように従来に比較して安価なコストで海水からの淡水を量産できる。
(Modification)
A modification of this embodiment will be described. In this modification, the seawater desalination ship 1 automatically acquires sea climate data and the like, and automatically steers using GPS, sonar, obstacle sensors, and the like to reach a sea area with a large wind force. Next, a large amount of fresh water is generated from seawater using wind power and stored in the fresh water tank 9 . After completing sufficient desalination, the seawater desalination ship 1 automatically returns to the port and supplies the produced freshwater. Since the seawater desalination ship 1 uses natural energy, it can mass-produce freshwater from seawater at a lower cost than in the past, as in the above-described embodiment.
 なお、本発明は、上記実施の形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、海水淡水化装置Mは充分な海水及び風力が得られる場所に設置でき、必ずしも海水淡水化船1に搭載される必要性はない。また、出水配管5aに海水がスクリューポンプ部5の逆流することを防止するために逆止弁を設けても良い。さらに、ポンプ11で汲み上げた海水の経路をサージタンク8又はスクリューポンプ部5に切り替えるために流路切替部を設けても良い。 It should be noted that the present invention is not limited to the configuration of the above-described embodiment, and various modifications are possible without changing the gist of the invention. For example, the seawater desalination apparatus M can be installed in a place where sufficient seawater and wind power can be obtained, and does not necessarily need to be mounted on the seawater desalination ship 1 . In addition, a check valve may be provided in the water discharge pipe 5a to prevent the seawater from flowing back through the screw pump portion 5. As shown in FIG. Furthermore, a channel switching unit may be provided to switch the route of the seawater pumped up by the pump 11 to the surge tank 8 or the screw pump unit 5 .
 1 海水淡水化船
 2 船体部
 3 ウインドブレード部
 3a 帆
 4 シャフト
 5 スクリューポンプ部
 5a 出水配管
 5b 調圧弁
 5c 排水配管
 6 逆浸透膜装置
 6a 淡水用配管
 6b 高濃度排水配管
 7 取水管(取水ホース)
 8 サージタンク
 8a 海水用配管
 9 淡水タンク
 10 エンジン部
 11 ポンプ
 51 スクリュー部
 51a スクリュードラム部
 51b フィン
 M 海水淡水化装置
1 Seawater Desalination Vessel 2 Hull Section 3 Wind Blade Section 3a Sail 4 Shaft 5 Screw Pump Section 5a Outflow Pipe 5b Pressure Regulating Valve 5c Drainage Pipe 6 Reverse Osmosis Membrane Device 6a Freshwater Pipe 6b High Concentration Drainage Pipe 7 Water Intake Pipe (Water Intake Hose)
8 surge tank 8a seawater pipe 9 freshwater tank 10 engine section 11 pump 51 screw section 51a screw drum section 51b fin M seawater desalination device

Claims (5)

  1.  船体部と、
     前記船体部の天部に設けられ、風力を受けるための帆を有し、風力を利用して回転動力を得るウインドブレード部と、
     前記ウインドブレード部を支持すると共に、前記ウインドブレード部の回転動力を伝える回転軸たるシャフトと、
     前記シャフトの回転動力を利用して海水を加圧するスクリューポンプ部と、
     前記スクリューポンプ部と出水配管を介して接続され、前記スクリューポンプ部を用いて加圧された海水を圧入することで、海水を淡水及び高塩分濃度排水に分離する逆浸透膜装置と、を備えることを特徴とする風力を利用した海水淡水化船。
    a hull;
    a wind blade section provided at the top of the hull section, having a sail for receiving wind power, and obtaining rotational power using wind power;
    a shaft serving as a rotating shaft that supports the wind blade portion and transmits rotational power of the wind blade portion;
    a screw pump unit that pressurizes seawater using the rotational power of the shaft;
    a reverse osmosis membrane device that is connected to the screw pump unit via an outflow pipe and separates seawater into fresh water and high-salinity wastewater by injecting seawater that has been pressurized using the screw pump unit. A seawater desalination ship using wind power, characterized by:
  2.  さらに、取水管を用いて海水をくみ上げるためのポンプ部と、
     前記ポンプ部で引き揚げられた海水を貯留するサージタンクと、
     前記逆浸透膜装置と淡水用配管を介して接続され、前記逆浸透膜装置において分離された淡水を貯留するための淡水タンクと、を備え、
     前記スクリューポンプ部には、前記サージタンクとの間で設けられた海水を給水するための海水用配管を介して海水が給水される、ことを特徴とする請求項1記載の風力を利用した海水淡水化船。
    Furthermore, a pump section for pumping up seawater using a water intake pipe,
    a surge tank for storing seawater drawn up by the pump;
    a freshwater tank connected to the reverse osmosis membrane device via a freshwater pipe for storing freshwater separated in the reverse osmosis membrane device;
    2. Seawater using wind power according to claim 1, wherein seawater is supplied to said screw pump unit through a seawater pipe provided between said surge tank and said surge tank. Desalination ship.
  3.  前記出水配管は、前記逆浸透膜装置へ流入する海水の圧力を調整するための調圧弁を備える、ことを特徴とする請求項1又は2記載の風力を利用した海水淡水化船。 The seawater desalination ship using wind power according to claim 1 or 2, characterized in that the water discharge pipe is provided with a pressure regulating valve for regulating the pressure of seawater flowing into the reverse osmosis membrane device.
  4.  前記取水管は、200m以深の深層水を汲み上げるための取水ホースである、ことを特徴とする請求項2又は3に記載の風力を利用した海水淡水化船。 The seawater desalination ship using wind power according to claim 2 or 3, characterized in that the water intake pipe is a water intake hose for pumping up deep-sea water at a depth of 200 m or more.
  5.  前記スクリューポンプ部には、スクリュー部が複数並設されており、
     前記スクリュー部の中心部に前記シャフトが挿通し、且つ当該シャフトの回転に伴って前記スクリュー部が回転する、ことを特徴とする請求項1乃至4の何れか記載の風力を利用した海水淡水化船。
    A plurality of screw portions are arranged in parallel in the screw pump portion,
    5. The desalination of seawater using wind power according to any one of claims 1 to 4, wherein the shaft is inserted through the center of the screw portion, and the screw portion rotates as the shaft rotates. ship.
PCT/JP2021/032838 2021-09-07 2021-09-07 Seawater desalination ship using wind power WO2023037408A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/032838 WO2023037408A1 (en) 2021-09-07 2021-09-07 Seawater desalination ship using wind power
JP2022552693A JP7257087B1 (en) 2021-09-07 2021-09-07 Seawater desalination ship using wind power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/032838 WO2023037408A1 (en) 2021-09-07 2021-09-07 Seawater desalination ship using wind power

Publications (1)

Publication Number Publication Date
WO2023037408A1 true WO2023037408A1 (en) 2023-03-16

Family

ID=85507284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032838 WO2023037408A1 (en) 2021-09-07 2021-09-07 Seawater desalination ship using wind power

Country Status (2)

Country Link
JP (1) JP7257087B1 (en)
WO (1) WO2023037408A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118529821B (en) * 2024-07-25 2024-09-27 潍坊市海洋发展研究院 Suspension type marine sea water desalination device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0871556A (en) * 1994-09-09 1996-03-19 Hitachi Zosen Corp Seawater desalination method by reverse osmosis
KR200351886Y1 (en) * 2004-02-26 2004-06-04 최무웅 A Sea Depth Water System Get Loading Type On Ship
JP2005143403A (en) * 2003-11-17 2005-06-09 Ouchi Ocean Consultant Inc Drifting installation for utilizing ocean deep water
US20070039860A1 (en) * 2005-05-31 2007-02-22 Krock Hans J Deep sea water harvesting method, apparatus, and product
JP2007513759A (en) * 2003-12-11 2007-05-31 ウォーター スタンダード カンパニー エルエルシー Movable desalination system and method
KR20110111340A (en) * 2011-08-29 2011-10-11 서희동 How to produce drinks from deep sea water
JP2015107794A (en) * 2013-10-21 2015-06-11 泰工技研工業株式会社 Compressed air fluid machine, continuously compressed fluid jetting propulsion apparatus and propulsion system for ship using the same, and propulsion apparatus using gas-liquid mixed fluid machine
CN107469624A (en) * 2017-09-11 2017-12-15 广东海洋大学深圳研究院 Marine fresh water production and feed system and device using regenerable marine energy direct drive
US20180050940A1 (en) * 2016-08-22 2018-02-22 Korea Institute Of Ocean Science & Technology Ballast water and fish farm treatment system
JP2018202334A (en) * 2017-06-06 2018-12-27 東洋紡エンジニアリング株式会社 Seawater desalination apparatus and method
WO2020026322A1 (en) * 2018-07-31 2020-02-06 紀良 加森 Hull propulsion mechanism
CN111362448A (en) * 2018-12-25 2020-07-03 烟台中集来福士海洋工程有限公司 desalination vessel

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0871556A (en) * 1994-09-09 1996-03-19 Hitachi Zosen Corp Seawater desalination method by reverse osmosis
JP2005143403A (en) * 2003-11-17 2005-06-09 Ouchi Ocean Consultant Inc Drifting installation for utilizing ocean deep water
JP2007513759A (en) * 2003-12-11 2007-05-31 ウォーター スタンダード カンパニー エルエルシー Movable desalination system and method
KR200351886Y1 (en) * 2004-02-26 2004-06-04 최무웅 A Sea Depth Water System Get Loading Type On Ship
US20070039860A1 (en) * 2005-05-31 2007-02-22 Krock Hans J Deep sea water harvesting method, apparatus, and product
KR20110111340A (en) * 2011-08-29 2011-10-11 서희동 How to produce drinks from deep sea water
JP2015107794A (en) * 2013-10-21 2015-06-11 泰工技研工業株式会社 Compressed air fluid machine, continuously compressed fluid jetting propulsion apparatus and propulsion system for ship using the same, and propulsion apparatus using gas-liquid mixed fluid machine
US20180050940A1 (en) * 2016-08-22 2018-02-22 Korea Institute Of Ocean Science & Technology Ballast water and fish farm treatment system
JP2018202334A (en) * 2017-06-06 2018-12-27 東洋紡エンジニアリング株式会社 Seawater desalination apparatus and method
CN107469624A (en) * 2017-09-11 2017-12-15 广东海洋大学深圳研究院 Marine fresh water production and feed system and device using regenerable marine energy direct drive
WO2020026322A1 (en) * 2018-07-31 2020-02-06 紀良 加森 Hull propulsion mechanism
CN111362448A (en) * 2018-12-25 2020-07-03 烟台中集来福士海洋工程有限公司 desalination vessel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AMIN ISLAM, ALI MOHAMED E.A., BAYOUMI SEIF, OTERKUS SELDA, SHAWKY HOSAM, OTERKUS ERKAN: "Conceptual Design and Numerical Analysis of a Novel Floating Desalination Plant Powered by Marine Renewable Energy for Egypt", JOURNAL OF MARINE SCIENCE AND ENGINEERING, vol. 8, no. 2, pages 95, XP093045391, DOI: 10.3390/jmse8020095 *
TAKUJI SHINTANI: "Large Scale Seawater Desalination and Municipal Reclamation Treatment by RO Membrane Process", MEMBRAME, KITAMI SHOBO, TOKYO., JP, vol. 36, no. 5, 1 January 2011 (2011-01-01), JP , pages 227 - 232, XP009544359, ISSN: 0385-1036, DOI: 10.5360/membrane.36.227 *

Also Published As

Publication number Publication date
JP7257087B1 (en) 2023-04-13
JPWO2023037408A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
AU2004303800B2 (en) Mobile desalination plants and systems, and methods for producing desalinated water
US7455778B2 (en) Intake for water desalination systems, and methods of use
US7081205B2 (en) Mobile desalination plants and systems, and methods for producing desalinated water
EP2407233B1 (en) Apparatus for osmotic power generation and desalination using salinity difference
US8778176B2 (en) Modular sand filtration—anchor system and wave energy water desalination system incorporating the same
AU2003268197B2 (en) Mobile desalination plants and methods for producing desalinated water
WO2013016440A1 (en) Method and system for conveying water on oil tanker ships to deliver drinkable water to destinations
CN112601601B (en) Centrifugal reverse osmosis system
US20140263005A1 (en) Deep ocean desalination system and methods of using same to produce potable water
JP7257087B1 (en) Seawater desalination ship using wind power
EP1199098A1 (en) A water purifying apparatus
US20070227962A1 (en) Intake for water desalination systems, and methods of use
ZA200503684B (en) Mobile desalination plants and systems, and methods for producing desalinated water.
GB2444709A (en) Device and methods for the desalination of brackish water
RU2837626C2 (en) Water propulsion
RU218228U1 (en) Water purification device for small boats
MXPA06006493A (en) Mobile desalination plants and systems, and methods for producing desalinated water
MXPA05003825A (en) Mobile desalination plants and methods for producing desalinated water
WO2004033372A1 (en) Mobile desalination plants and methods for producing desalinated water

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022552693

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21956707

Country of ref document: EP

Kind code of ref document: A1