[go: up one dir, main page]

WO2023032920A1 - Polyester resin - Google Patents

Polyester resin Download PDF

Info

Publication number
WO2023032920A1
WO2023032920A1 PCT/JP2022/032421 JP2022032421W WO2023032920A1 WO 2023032920 A1 WO2023032920 A1 WO 2023032920A1 JP 2022032421 W JP2022032421 W JP 2022032421W WO 2023032920 A1 WO2023032920 A1 WO 2023032920A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
group
acid
mol
compound represented
Prior art date
Application number
PCT/JP2022/032421
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 吉田
洋祐 畑中
広朗 福島
耕輔 魚谷
浩尚 佐々木
英人 大橋
文章 西中
惠一朗 戸川
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2023545562A priority Critical patent/JPWO2023032920A1/ja
Publication of WO2023032920A1 publication Critical patent/WO2023032920A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds

Definitions

  • the present invention relates to a polyester resin that provides molded articles with excellent moldability, transparency, mechanical properties, heat resistance, and thermal oxidation stability. Specifically, the present invention provides improved moldability in extrusion molding, profile extrusion molding, direct blow molding, inflation molding, injection blow molding, and calendering molding that require high melt tension, as well as transparency and mechanical properties. , relates to a polyester resin that achieves improved heat and oxidation stability.
  • polyester resins for example, crystalline polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN) are used for heat-resistant parts by injection molding, films, sheets, and the like by extrusion molding. Blow-molded beverage bottles, melt-spun fibers, etc. are also used in various melt-molded products.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • the present invention was made against the background of such problems of the prior art, and an object of the present invention is to improve gelation suppression, moldability, surface smoothness, transparency, mechanical properties, heat resistance, and heat-oxidation stability.
  • An object of the present invention is to provide a polyester resin that gives excellent molded articles.
  • the present invention is excellent in gelation suppression, surface smoothness, transparency, mechanical properties, heat resistance, and thermal oxidation stability, and can be used in extrusion molding, profile extrusion molding, and direct molding, which require high melt tension.
  • a polyester resin which gives a molded product excellent in moldability in blow molding, inflation molding, injection blow molding and calendering molding.
  • the present invention has the following configurations.
  • the molded article of the polyester resin excellent in gelatinization suppression, moldability, surface smoothness, transparency, mechanical property, heat resistance, and heat-oxidation stability is obtained.
  • the moldability is excellent in extrusion molding, profile extrusion molding, direct blow molding, inflation molding, injection blow molding, and calendering molding, which require higher melt tension than conventional molding.
  • polyester resin of the present invention comprises terephthalic acid as a dicarboxylic acid component, ethylene glycol as an alcohol component, a bisphenol A-ethylene oxide adduct, and a compound represented by the following formula (I), and terephthalic acid is a dicarboxylic acid.
  • the acid component it is 85 to 100 mol%, and the ratio is 2 to 15 mol% of the bisphenol A-ethylene oxide adduct with respect to 85 to 98 mol% of ethylene glycol, and the compound represented by the following formula (I) is an alcohol component. It is 0.001 to 5% by mass in 100% by mass.
  • R 1 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms
  • R 2 , R 3 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the polyester resin of the present invention contains a polymer of a predetermined dicarboxylic acid component and an alcohol component, and is characterized by containing a predetermined amount of the compound represented by the formula (I) as the alcohol component.
  • the compound represented by formula (I) is a branching agent for polyester resins, and is used together with a commonly used diol component.
  • the compound represented by the formula (I) has two or more functional groups (hydroxyl groups) per molecule that can react with the carboxyl groups of the dicarboxylic acid component, and the polyester resin has a partially branched structure as a whole. can be introduced into
  • the polyester resin of the present invention uses the compound represented by formula (I), it is possible to suppress gelation, and during melt extrusion, the melt tension decreases as the temperature increases.
  • melt viscosity decreases under high shear, melt fracture does not occur during molding, and it is excellent in moldability, surface smoothness, transparency, mechanical properties, heat resistance, and thermal oxidation stability. Become.
  • R 1 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms
  • R 2 , R 3 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 1 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • Examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms represented by R 1 include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group, 2,5-dimethylphenyl group, 2,6-dimethylphenyl group, 3,4-dimethylphenyl group, 3,5- dimethylphenyl group, 4-vinylphenyl group, o-isopropylphenyl group, m-isopropylphenyl group, p-isopropylphenyl group, o-tert-butylphenyl group, m-tert-butylphenyl group, p-tert-butylphenyl group, 3,5-di(tert-butyl)phenyl group, 3,5-d
  • the number of carbon atoms in the aromatic hydrocarbon group is preferably 6-18, more preferably 6-15, still more preferably 6-12.
  • the aromatic hydrocarbon group is particularly preferably a phenyl group, an o-tolyl group, an m-tolyl group, or a p-tolyl group, most preferably a phenyl group.
  • R 2 , R 3 and R 4 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • alkyl groups having 1 to 10 carbon atoms represented by R 2 , R 3 and R 4 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, a linear alkyl group such as a decyl group; isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, 2-ethylbutyl group, 3,3-dimethylbutyl group, 1,1,3,3-tetramethylbutyl group, 1-methylbutyl group, 1-ethyl propyl group, 3-methylbutyl group, neopentyl group, 1,1-dimethylpropyl group, 2-methylpentyl group, 3-ethylpentyl group, 1,3-dimethylbutyl group, 2-propylpentyl group, 1-ethyl-1 , 2-
  • the number of carbon atoms in the alkyl group is preferably 1-8, more preferably 1-6, and still more preferably 1-4.
  • the alkyl group is particularly preferably a methyl group, an ethyl group, a propyl group, or a butyl group, most preferably a methyl group.
  • R 2 and R 3 are preferably C 1-10 alkyl groups, and R 4 is preferably a hydrogen atom.
  • l, m, and n are the ratios of the following copolymer components (L), (M), and (N) contained in one molecule, and the average number of each component contained in one molecule is Below is a value (ratio) expressed as an integer by rounding off to the nearest digit. The ratio and average number of each component contained in one molecule were obtained from 1 H-NMR analysis and 13 C-NMR analysis.
  • Each of m and n which may be the same or different, represents an integer of 1-1000, preferably an integer of 2-800, more preferably an integer of 5-600, still more preferably an integer of 10-400.
  • l is an integer of 0-1000, preferably an integer of 1-700, more preferably an integer of 2-400, and still more preferably an integer of 5-100.
  • the compound represented by formula (I) is a random copolymer obtained by randomly copolymerizing the copolymer components (L), (M), and (N), the copolymer components (L), ( A block copolymer in which at least one component of M) and (N) is a block may be used, but a random copolymer is preferred.
  • the polyester resin of the present invention may be one or more polyester resins as long as the above m, n, and l are satisfied.
  • Compounds of formula (I) can be prepared in two gallons of free-radical continuous water, see, for example, US Pat. It is possible to prepare in a conventional polymerization reactor system.
  • the content of the compound represented by formula (I) is 0.001 to 5% by mass, preferably 0.005 to 5% by mass, more preferably 0.005 to 5% by mass, in 100% by mass of the alcohol component, which is a constituent component of the polyester resin. is 0.01 to 4.5% by mass, more preferably 4% by mass or less, particularly preferably 3.5% by mass or less. If the content of the compound represented by formula (I) is less than 0.001% by mass, drawdown will occur during molding, and the molding will not be stable, or even if it can be molded, the molded product will tend to have uneven thickness. be.
  • the compound represented by formula (I) may have a predetermined weight average molecular weight, and the weight average molecular weight of the compound represented by formula (I) is preferably 200 or more and 500,000 or less, more preferably It is 500 or more, more preferably 700 or more, still more preferably 1000 or more, more preferably 300,000 or less, still more preferably 100,000 or less, and even more preferably 50,000 or less. If the weight average molecular weight of the compound represented by formula (I) is less than 200, the unreacted compound may bleed out onto the surface of the molded product, contaminating the surface of the molded product.
  • the weight average molecular weight can be determined, for example, by GPC in terms of standard polystyrene. Specifically, the weight average molecular weight is 0.2 ⁇ m after weighing 4 mg of a sample of the compound represented by formula (I) and dissolving it in 4 ml of a mixed solvent of chloroform and isofluoroisopropanol (60/40% by volume). It can be obtained by filtering with a membrane filter, subjecting the obtained sample solution to GPC, and converting to standard polystyrene.
  • the dicarboxylic acid component and alcohol component used in the present invention are as follows.
  • Dicarboxylic acid components include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 1, 3-cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc.
  • Saturated aliphatic dicarboxylic acids exemplified in or ester-forming derivatives thereof e.g., alkyl esters having 1 to 20 carbon atoms
  • fumaric acid e.g., maleic acid
  • unsaturated aliphatics exemplified by itaconic acid etc.
  • Dicarboxylic acids or ester-forming derivatives thereof for example, alkyl esters having 1 to 20 carbon atoms
  • orthophthalic acid isophthalic acid, terephthalic acid, 5-(alkali metal)sulfoisophthalic acid, diphenic acid, 1, 3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4 Aromatic dicarboxylic acids exemplified by '-biphenylsulfonedicarboxylic acid, 4,4'-biphenyletherdicarboxylic acid, 1,2-bis(phenoxy)ethane-p,p'-dicarboxylic acid, pamoic acid, anthracenedicarboxylic acid, etc. and ester-forming derivative
  • isophthalic acid isophthalic acid, terephthalic acid and naphthalenedicarboxylic acid are preferred, and terephthalic acid is particularly preferred in terms of the physical properties of the resulting polyester resin.
  • carboxylic acids may be used in small amounts.
  • carboxylic acid include ethanoic acid, tricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3′,4′-biphenyltetracarboxylic acid, and esters thereof. forming derivatives (for example, alkyl esters having 1 to 20 carbon atoms) and the like.
  • the alcohol component other than the compound represented by formula (I) is preferably a diol component.
  • the diol component is preferably 99.999 to 95% by mass, more preferably 99.995 to 95% by mass, still more preferably 99.99 to 95.5% by mass, and still more It is preferably 96% by mass or more, particularly preferably 96.5% by mass or more.
  • the diol component contains ethylene glycol and bisphenol A-ethylene oxide adduct (hereinafter referred to as bisphenol A-EO adduct).
  • Diols that may be used other than ethylene glycol and bisphenol A-EO adducts include 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3 -butylene glycol, 2,3-butylene glycol, 1,4-butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12- Dodecanediol, isosorbide, polyethylene glycol, polytrimethylene glycol, polyt
  • diol components tri- or tetrahydric alcohols, hydroxycarboxylic acids, cyclic esters, etc. may be used as diol components.
  • Examples of the alcohol include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, and hexanetriol.
  • the hydroxycarboxylic acids include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p-(2-hydroxyethoxy)benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or Ester-forming derivatives thereof (for example, alkyl esters having 1 to 20 carbon atoms) and the like can be mentioned.
  • Cyclic esters include ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -valerolactone, glycolide, lactide and the like.
  • the polyester resin of the present invention contains 85 to 100 mol% of terephthalic acid in 100 mol% of the dicarboxylic acid component, and 87 to 100 mol% of the total of ethylene glycol and bisphenol A-EO adduct in 100 mol% of the diol component.
  • Terephthalic acid is contained in 100 mol% of the dicarboxylic acid component, more preferably 90 to 100 mol%, more preferably 95 to 100 mol%
  • the total of ethylene glycol and bisphenol A-EO adduct is in 100 mol% of the diol component. , more preferably 90 to 100 mol %, more preferably 95 to 100 mol %.
  • the ratio of ethylene glycol to bisphenol A-EO adduct is 85-98 mol % of ethylene glycol and 2-15 mol % of bisphenol A-EO adduct. It may be considered that 85 to 98 mol % of ethylene glycol and 2 to 15 mol % of bisphenol A-EO adduct are contained in 100 mol % of the diol component. It is preferable that the bisphenol A-EO adduct is 3 to 13 mol% with respect to 87 to 97 mol% of ethylene glycol, and the bisphenol A-EO adduct is 4 to 11 mol% with respect to 89 to 96 mol% of ethylene glycol. is more preferable.
  • the polyester resin of the present invention is preferably a copolymerized polyethylene terephthalate resin.
  • the polyester resin of the present invention is a crystalline polyester resin and has a branched structure, and can improve processability such as moldability due to the "melt strength enhancement effect" of increasing molecular weight, and can adjust melt viscosity and melt tension. , the whitening resistance on bending of the molded product and the bleeding out of unreacted substances to the surface layer of the molded product can be suppressed. If the content of terephthalic acid and ethylene glycol is out of the above range, the polyester resin becomes amorphous and the viscosity cannot be increased by solid-phase polymerization, and there is a possibility that a molded article having high mechanical properties cannot be obtained.
  • the polyester resin of the present invention may have a given intrinsic viscosity IV.
  • the intrinsic viscosity IV is preferably 0.40 to 2.10 dl/g, more preferably 0.50 to 1.90 dl/g, still more preferably 0.60 to 1.70 dl/g.
  • the intrinsic viscosity can be measured at 30° C. using an Ostwald viscometer after dissolving the polyester resin in a mixed solvent of parachlorophenol/tetrachloroethane (3/1: weight ratio).
  • the acid value (AV) of the polyester resin used in the present invention is preferably 100 eq/10 6 g (ton) or less, more preferably 60 eq/10 6 g or less, still more preferably 50 eq/10 6 g or less.
  • the lower the lower limit the more preferable, and the closer to 0 eq/10 6 g the more preferable.
  • the acid value can be obtained by dissolving a polyester resin sample in an alcohol and/or ether solution and titrating with an alcoholic sodium hydroxide solution or an alcoholic potassium hydroxide solution using a phenolphthalein reagent as an indicator. can.
  • a specific method for measuring the acid value is as shown in Examples.
  • the polyester resin of the present invention may have a predetermined melting point, and the melting point of the polyester resin is preferably 190 to 300°C, more preferably 195 to 280°C, still more preferably 210 to 260°C, still more preferably. is above 220°C.
  • the melting point can be measured with a differential scanning calorimeter (DSC) at a heating rate of 20° C./min up to 310° C., and the maximum peak temperature of the heat of fusion can be determined as the crystalline melting point.
  • DSC differential scanning calorimeter
  • the polyester resin of the present invention is preferably produced via a polymerization catalyst containing at least an aluminum compound and a phosphorus compound, and may have an aluminum content of 3 to 1000 ppm and a phosphorus content of 5 to 10000 ppm derived from the polymerization catalyst. preferable.
  • a polymerization catalyst containing at least an aluminum compound and a phosphorus compound, and may have an aluminum content of 3 to 1000 ppm and a phosphorus content of 5 to 10000 ppm derived from the polymerization catalyst.
  • another polymerization catalyst one or more selected from titanium compounds and germanium compounds may be used.
  • the aluminum compound is preferably at least one selected from aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, and aluminum hydroxychloride, and at least one selected from aluminum acetate and basic aluminum acetate. is more preferred, and aluminum acetate is even more preferred.
  • the amount of aluminum is preferably 3 to 1000 ppm, more preferably 5 to 800 ppm, and even more preferably 8 to 500 ppm as aluminum atoms relative to the total mass of the polyester resin. If the amount of aluminum is too small, the polymerization activity may decrease, and if the amount of aluminum is too large, a large amount of aluminum-derived foreign matter may be generated.
  • the phosphorus compound is preferably at least one selected from phosphonic acid compounds and phosphinic acid compounds, more preferably phosphonic acid compounds.
  • Phosphorus compound preferably has a phenol structure in the same molecule, more preferably at least one selected from phosphonic acid compounds and phosphinic acid compounds having a phenol structure in the same molecule, in the same molecule A phosphonic acid compound having a phenol structure is more preferred.
  • Phosphorus compounds having a phenol structure in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, bis(p-hydroxyphenyl ) phosphinic acid, methyl bis(p-hydroxyphenyl)phosphinate, phenyl bis(p-hydroxyphenyl)phosphinate, p-hydroxyphenylphenylphosphinic acid, methyl p-hydroxyphenylphenylphosphinate, p-hydroxyphenylphenylphosphinic acid phenyl, p-hydroxyphenylphosphinate, methyl p-hydroxyphenylphosphinate, phenyl p-hydroxyphenylphosphinate, diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate and the like.
  • the phosphorus compound is particularly preferably diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate.
  • a phosphorus compound for example, Irgamod (registered trademark) 295 (manufactured by BASF) can be used.
  • the amount of phosphorus is preferably 5 to 10000 ppm, more preferably 8 to 8000 ppm, and even more preferably 10 to 6000 ppm as phosphorus atoms relative to the total mass of the polyester resin. If the amount of phosphorus is small, the polymerization activity may be lowered, and a large amount of foreign matter derived from aluminum may be generated. If the amount of phosphorus is large, the catalyst cost may increase.
  • Titanium compounds include tetrabutyltitanium, tetrabenzyltitanium, tetra-n-propyltitanate, tetraisopropyltitanate, tetra-n-butyltitanate, tetraisobutyltitanate, tetra-tert-butyltitanate, tetracyclohexyltitanate, tetraphenyltitanate, tetra Benzyl titanate, lithium oxalate titanate, potassium oxalate titanate, ammonium oxalate titanate, titanium oxide, composite oxides of titanium and silicon, zirconium, alkali metals, alkaline earth metals, etc., titanium orthoesters or condensed orthoesters, a reaction product of titanium orthoester or condensed orthoester and hydroxycarboxylic acid, a reaction product of titanium orthoester or condensed orthoester
  • the amount of titanium is preferably 1 to 300 ppm, more preferably 2 to 200 ppm, and still more preferably 3 to 100 ppm as titanium atoms relative to the total mass of the polyester resin.
  • Germanium compounds include germanium dioxide, germanium acetate and the like.
  • the amount of germanium is preferably 1 to 500 ppm, more preferably 2 to 400 ppm, and still more preferably 3 to 300 ppm as titanium atoms relative to the total mass of the polyester resin.
  • the amount of atoms may be calculated, for example, by fluorescent X-ray analysis.
  • the polyester resin of the present invention preferably has a predetermined melt tension and melt viscosity when melted.
  • the polyester resin of the present invention has the property that the higher the temperature is above 250°C, the lower the melt tension.
  • the melt tension is preferably 15 mN or more at a temperature of 270° C., a take-up speed of 100 m/min, and a shear rate of 243 s ⁇ 1 , more preferably 15 mN or more, from the viewpoint of exhibiting performance equal to or higher than that of high-density polyethylene or the like. It is 17 mN or more, more preferably 19 mN or more, and the upper limit of the melt tension is, for example, 170 mN or less or 120 mN or less.
  • the melt tension can be measured, for example, using a capillary rheometer under predetermined conditions (capillary length 10 mm, capillary diameter 1 mm, temperature 270° C., shear rate 243 s ⁇ 1 , maximum take-up speed 200 m/min, take-up start speed 10 m/min, or take-up speed 100 m /min (constant), take-up time 90 seconds).
  • a capillary rheometer under predetermined conditions (capillary length 10 mm, capillary diameter 1 mm, temperature 270° C., shear rate 243 s ⁇ 1 , maximum take-up speed 200 m/min, take-up start speed 10 m/min, or take-up speed 100 m /min (constant), take-up time 90 seconds).
  • the polyester resin of the present invention has a property that at a shear rate of 2000 s -1 during melting, the melt viscosity decreases as the temperature rises above 250°C.
  • the melt viscosity is 26000 dPa s or more at a temperature of 270 ° C. and a shear rate of 30 s -1 at a temperature of 270 ° C. and a shear rate of 2000 s -1 . , 6500 dPa ⁇ s or less.
  • the polyester resin of the present invention exhibits thixotropy at high temperatures during melting, can suppress the occurrence of melt fracture, and provides good moldability.
  • the melt viscosity at a temperature of 270° C. and a shear rate of 30 s ⁇ 1 is preferably 26000 dPa ⁇ s or more, more preferably 28000 dPa ⁇ s or more, and still more preferably 30000 dPa ⁇ s or more. s or less or 45000 dPa ⁇ s or less.
  • melt viscosity can be measured, for example, based on JIS K7199.
  • the melt viscosity at a temperature of 270° C. and a shear rate of 2000 s ⁇ 1 is preferably 6500 dPa s or less, more preferably 6300 dPa s or less, and still more preferably 6200 dPa s or less. It is 5500 dPa ⁇ s or more.
  • the melt viscosity can be determined, for example, using a capillary rheometer under predetermined conditions (capillary length 10 mm, capillary diameter 1 mm, temperature 270° C., shear rate 30 s ⁇ 1 or 2000 s ⁇ 1 ).
  • the polyester resin of the present invention may have a predetermined thermal oxidation decomposition parameter (TOD) and a predetermined thermal decomposition parameter (TD).
  • the thermal oxidative decomposition parameter (TOD) of the polyester resin is preferably 0.390 or less.
  • the TOD can be calculated by the method described in the Examples section below.
  • the TOD is more preferably 0.385 or less, still more preferably 0.380 or less, particularly preferably 0.375 or less, and most preferably 0.370 or less.
  • the lower limit of the TOD is, for example, 0.010 or more or 0.020 or more. When the TOD is more than 0.390, the moldability during drawdown tends to be deteriorated.
  • the thermal decomposition parameter (TD) of the polyester resin is preferably 0.55 or less.
  • TD can be calculated by the method described in the Examples section below.
  • TD is more preferably 0.54 or less, more preferably 0.53 or less, particularly preferably 0.52 or less, and most preferably 0.50 or less.
  • the lower limit of the TD is, for example, 0.18 or more or 0.20 or more. When the TD is more than 0.50, the moldability during drawdown tends to be deteriorated.
  • the polyester resin of the present invention may contain additives such as organic, inorganic, and organometallic toners and fluorescent brighteners. By containing one or more of these additives, coloring such as yellowing of the polyester resin can be suppressed to a more excellent level. It also contains other optional polymers, antistatic agents, antifoaming agents, dyeability improvers, dyes, pigments, matting agents, optical brighteners, stabilizers, antioxidants, and other additives. good too. As antioxidants, antioxidants such as aromatic amines and phenols can be used. is available.
  • the polyester resin is directly introduced into the molding process in a molten state after the melt polycondensation process is completed as described above, or in a chip state after the treatment such as solid phase polymerization is completed. Molded bodies can also be used.
  • a predetermined amount of additives such as crystallization property improvers, aldehyde reducers, color improvers, stabilizers, etc. are added to any reactor or transport pipe in the production process of the melt polycondensation polymer, and the desired results are obtained.
  • the product can be directly introduced into the molding process to obtain a molded product, either as it is, or after finishing treatment such as solid phase polymerization.
  • a polyester resin molded article made from the polyester resin of the present invention may have a predetermined three-dimensional roughness center plane average (SRa).
  • the SRa of the polyester resin molded product is preferably less than 0.15 ⁇ m, more preferably 0.14 ⁇ m or less, still more preferably 0.13 ⁇ m or less, even more preferably 0.12 ⁇ m or less, and preferably 0.01 ⁇ m or more. Or it is 0.02 ⁇ m or more.
  • the center plane average (SRa) of the three-dimensional roughness can be obtained, for example, using a surface roughness measuring instrument (fine shape measuring instrument, Surfcoder ET4000A manufactured by Kosaka Laboratory Ltd.).
  • the polyester resin of the present invention can be produced by a conventionally known method. For example, when producing PET, terephthalic acid, ethylene glycol and, if necessary, other copolymerization components are directly reacted to effect esterification by distilling off water, followed by polycondensation under reduced pressure by a direct esterification method. Alternatively, dimethyl terephthalate, ethylene glycol and, if necessary, other copolymer components are reacted to distill off the methyl alcohol and transesterify, followed by polycondensation under reduced pressure. be. Further, solid state polymerization may be carried out to increase the intrinsic viscosity, if necessary.
  • the melt-polymerized polyester may be made to absorb moisture and then heated to crystallize, or water vapor may be blown directly onto the polyester chips to crystallize by heating.
  • the method of adding the compound represented by formula (I) it is preferably added during polymerization.
  • the compound represented by the formula (I) may be dispersed and added at the time of addition.
  • the polycondensation reaction may be carried out in a batch reactor or a continuous reactor.
  • the esterification reaction or transesterification reaction may be carried out in one step, or may be carried out in multiple steps.
  • the polycondensation reaction may be carried out in one step, or may be carried out in multiple steps.
  • the solid-phase polymerization reaction can be carried out in a batch system or a continuous system, like the polycondensation reaction. Polycondensation and solid phase polymerization may be carried out continuously or separately. An example of a preferred continuous production method will be described below, taking PET as an example of the polyester resin.
  • the esterification reaction is carried out using a multi-stage apparatus in which 1 to 3 esterification reactors are connected in series, and under the condition that ethylene glycol is refluxed, the water or alcohol produced by the reaction is removed in a rectification column. It is carried out while removing it from the system.
  • the temperature of the first-stage esterification reaction is preferably 240 to 270°C, more preferably 245 to 265°C, and the pressure is preferably 0.2 to 3 kg/cm 2 G, more preferably 0.5 to 2 kg/cm. 2G .
  • the temperature of the final esterification reaction is usually 250 to 290°C, preferably 255 to 275°C, and the pressure is usually 0 to 1.5 kg/cm 2 G, preferably 0 to 1.3 kg/cm 2 G. be.
  • the reaction conditions for the esterification reaction in the intermediate stage are the conditions between the reaction conditions in the first stage and the reaction conditions in the final stage. These esterification reaction rate increases are preferably distributed smoothly in each stage. It is desired that the final esterification reaction rate reaches preferably 90% or more, more preferably 93% or more. A low order condensate having a molecular weight of about 500 to 5,000 is obtained by these esterification reactions.
  • the above esterification reaction can be carried out without a catalyst due to the catalytic action of terephthalic acid as an acid, but it may be carried out in the presence of a polycondensation catalyst.
  • tertiary amines such as triethylamine, tri-n-butylamine and benzyldimethylamine
  • quaternary ammonium hydroxides such as tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide and trimethylbenzylammonium hydroxide
  • lithium carbonate sodium carbonate, potassium carbonate, sodium acetate, etc.
  • the ratio of dioxyethylene terephthalate component units in the main chain of polyethylene terephthalate is reduced to a relatively low level ( 5 mol % or less relative to the total diol component), which is preferable.
  • the transesterification reaction is carried out using an apparatus in which 1 to 2 transesterification reactors are connected in series, and under conditions where ethylene glycol is refluxed, the methanol produced by the reaction is removed from the system in a rectification column. Carry out while removing.
  • the temperature of the first-stage transesterification reaction is preferably 180 to 250°C, more preferably 200 to 240°C.
  • the temperature of the transesterification reaction in the final stage is usually 230 to 270°C, preferably 240 to 265°C.
  • Pb, Zn, Sb, Ge oxide, or the like may be used.
  • a low order condensate having a molecular weight of about 200 to 500 is obtained by these transesterification reactions.
  • the obtained low-order condensate is then supplied to a multistage liquid-phase polycondensation process.
  • the reaction temperature of the first stage polycondensation is preferably 250 to 290° C., more preferably 260 to 280° C.
  • the pressure is preferably 500 to 20 Torr, more preferably 200 to 30 Torr
  • the temperature of the polycondensation reaction in the final stage is preferably 265-300° C., more preferably 275-295° C.
  • the pressure is preferably 10-0.1 Torr, more preferably 5-0.5 Torr.
  • the reaction conditions for the polycondensation reaction in the intermediate stage are the conditions between the reaction conditions in the first stage and the reaction conditions in the final stage.
  • the degree of increase in intrinsic viscosity achieved in each of these polycondensation reaction steps is smooth.
  • the polycondensed polyester resin thus obtained is then solid phase polymerized.
  • the above polyester resin is solid-phase polymerized by a conventionally known method.
  • the polyester resin to be subjected to solid phase polymerization is preliminarily heated at a temperature of 100 to 190° C. for 1 to 5 hours under an inert gas or under reduced pressure, or in an atmosphere of steam or steam-containing inert gas. Crystallized. Solid phase polymerization is then carried out at a temperature of 190 to 230° C. for 1 to 50 hours in an inert gas atmosphere or under reduced pressure.
  • the catalyst used in the present invention has catalytic activity not only in polycondensation reactions but also in esterification reactions and transesterification reactions.
  • a catalyst can be used in the transesterification reaction between a dicarboxylic acid alkyl ester such as dimethyl terephthalate and a glycol such as ethylene glycol.
  • the catalyst used in the present invention has catalytic activity not only in melt polymerization but also in solid phase polymerization and solution polymerization, and polyester resin can be produced by any method.
  • the polymerization catalyst used in the present invention can be added to the reaction system at any stage of the polymerization reaction.
  • it can be added to the reaction system before the start of the esterification reaction or transesterification reaction, at any stage during the reaction, immediately before the start of the polycondensation reaction, or at any stage during the polycondensation reaction.
  • it is preferable to add aluminum or an aluminum compound immediately before starting the polycondensation reaction.
  • the addition method of the polymerization catalyst other than the phosphorus compound used in the present invention may be addition in the form of powder or neat, or addition in the form of slurry or solution of a solvent such as ethylene glycol.
  • a solvent such as ethylene glycol.
  • aluminum or an aluminum compound or a phosphorus compound and other components may be premixed and added as a mixture, or they may be added separately.
  • aluminum, an aluminum compound or a phosphorus compound and other components may be added to the polymerization system at the same time of addition, or each component may be added at different times of addition.
  • the total amount of the catalyst may be added at once or may be added in multiple portions.
  • the polyester resin of the present invention is preferably subjected to blow molding (preferably direct blow molding) after polycondensation and solid phase polymerization.
  • blow molding preferably direct blow molding
  • a precursor having a bottom generally called a preform
  • this preform may be blow-stretched in a mold and heat-set.
  • Methods such as compression molding and injection molding are used to manufacture the preform.
  • a preform can be obtained by heating and melting to 260 to 350° C. and injecting it into a preform mold.
  • the preform has a thick-walled test-tube shape with a gate at the bottom and a screw for capping at the mouth.
  • the spout of the obtained preform may be crystallized. Crystallization can prevent deformation of the spout even when high-temperature contents are filled. Crystallization of the spout is preferably carried out by heating to 130 to 200°C, more preferably 140 to 190°C. As a heating method, an infrared heater, hot air, induction heating, immersion in an oil bath, or the like can be used, and the use of an infrared heater is preferable from the viewpoint of productivity. The heat crystallization of the spout may be performed after the blow molding.
  • a preform is heated, stretched in the bottle length direction (longitudinal direction) and blow-molded in the circumferential direction to obtain a bottle. It is stretched in the longitudinal direction with a rod-shaped stretching rod, and in the circumferential direction, a pressurized gas such as air or nitrogen is used.
  • the pressurized gas is preferably 1-10 MPa.
  • a method of simultaneously stretching in the longitudinal direction and the circumferential direction by blowing pressurized gas while inserting a stretching rod is preferred, but stretching in the longitudinal direction may be followed by stretching in the circumferential direction.
  • An infrared heater, hot air, induction heating, or the like is used for heating. The heating temperature is usually 80-130°C, preferably 90-120°C.
  • the lower limit of the draw ratio in the bottle length direction is preferably 1.5 times, more preferably 2 times. If it is less than the above, stretching may be uneven.
  • the upper limit of the draw ratio in the bottle length direction is preferably 6 times, more preferably 5 times, and still more preferably 4 times. If the above is exceeded, tearing or the like is likely to occur.
  • the lower limit of the draw ratio in the bottle circumferential direction is preferably 2 times, more preferably 2.5 times. If it is less than the above, stretching may be uneven.
  • the upper limit of the stretch ratio in the bottle circumferential direction is preferably 6 times, more preferably 5 times, and still more preferably 4 times. If the above is exceeded, tearing or the like is likely to occur.
  • the lower limit of the mold temperature for blow molding is preferably 80° C., more preferably 120° C., still more preferably 130° C., most preferably 140°C. If it is less than the above range, the subsequent heat setting may not promote sufficient crystallization, resulting in insufficient heat resistance, or the need to take a long heat setting time, which may lead to a decrease in productivity.
  • the upper limit of the mold temperature is preferably 350°C, more preferably 340°C, still more preferably 330°C, particularly preferably 320°C, and the lower limit of the mold temperature is preferably 280°C, It is more preferably 290°C, still more preferably 300°C. Since the polyester resin of the present invention has the property that the melt tension decreases as the temperature increases during melting, when the mold temperature is increased, the melt tension decreases when the mold and the polyester resin contact each other. While the occurrence of fractures is reduced, after ejection from the mold, the melt tension will be higher and the occurrence of drawdown will be reduced.
  • the blow-molded bottle continues to be heat-set in the mold.
  • the lower limit of the heat setting time is preferably 0.5 seconds, more preferably 1 second, still more preferably 1.5 seconds. If it is less than the above, sufficient crystallization may not be promoted, resulting in insufficient heat resistance.
  • the upper limit of the heat setting time is preferably 15 seconds, more preferably 10 seconds, and even more preferably 5 seconds. A long heat setting time not only results in poor productivity, but also requires a large number of molds in the case of a rotary blow molding machine, which may result in poor economic efficiency if the apparatus is large. After heat setting in the mold, additional heat setting may be performed by further heating with infrared rays, hot air, induction heating, or the like.
  • the blow molding apparatus may be equipped with one mold, but in the case of mass production, it is equipped with a plurality of molds. It is preferable to use a system that sequentially moves between a place for heat setting, a place for heat setting, and a place for ejecting bottles.
  • the content of the bottle to be molded is preferably 200 mL to 6 L, more preferably 300 mL to 2 L.
  • the shape of the bottle body can be any shape such as circular, square (including shapes with cut corners), hexagons, and the like.
  • the polyester resin of the present invention is subjected to blow molding (preferably direct blow molding) and is suitably used for containers (for example, bottles) for cosmetics, detergents, beverages, and the like.
  • composition of the polyester resin was determined by 1 H-NMR analysis in heavy chloroform solvent using RUKER's AVANCE 500 Fourier transform nuclear magnetic resonance spectrometer and from the integral ratio thereof.
  • Polyester resin was heated to a melting point +20 ° C in a stainless steel circular ring with a thickness of 5 mm and an inner diameter of 50 mm to prepare a sample piece. Elemental amounts were determined by fluorescent X-ray analysis and displayed in ppm. In determining the amount, a calibration curve obtained in advance from samples with known amounts of each element was used.
  • a sizing mold is installed, and the product is molded by a profile extrusion molding facility equipped with a take-up machine via a water tank, and the drawdown during molding and the mechanical properties, surface smoothness, and transparency of the molded product are evaluated according to the following criteria. was evaluated according to Table 2 shows the results.
  • SRa center plane average
  • a molded plate having a thickness of 7 mm was molded under the following conditions.
  • the polyester resin was preliminarily dried under reduced pressure using a vacuum dryer Model DP61 manufactured by Yamato Scientific, and the inside of the molding material hopper was purged with a dry inert gas (nitrogen gas) in order to prevent moisture absorption during molding.
  • the injection speed and pressure holding speed were adjusted to 20%, and the injection pressure and holding pressure were adjusted so that the weight of the molded product was 146 ⁇ 0.2 g. It was adjusted.
  • the upper limits of the injection time and pressure holding time are set to 10 seconds and 7 seconds, respectively, and the cooling time is set to 50 seconds. Cooling water having a temperature of 10°C is constantly introduced into the mold for temperature control, but the mold surface temperature is around 22°C when the molding is stable.
  • the molded plate for evaluation was arbitrarily selected from stable molded plates at 11th to 18th shots from the start of molding after the introduction of the molding material and replacement with the resin.
  • the HAZE of the molded plate was measured with a haze meter, model NDH2000, manufactured by Nippon Denshoku Co., Ltd., and the transparency was evaluated according to the following criteria. ⁇ : HAZE is less than 5% ⁇ : HAZE is 5% or more and less than 8% ⁇ ⁇ ⁇ : HAZE is 8% or more and less than 10% ⁇ : HAZE is 10% or more
  • Synthesis Examples 1 to 6 (Preparation of Compound (Branching Agent) Represented by Formula (I)) Compounds of formula (I) are prepared in a two gallon free radical continuous polymerization reaction as described in US Pat. prepared in situ. The compositions and weight-average molecular weights of the compounds represented by Formula (I) obtained in Synthesis Examples 1 to 6 are shown in Table 1 below. The weight average molecular weight of the compound represented by formula (I) was calculated by GPC in terms of standard polystyrene.
  • l, m and n of the compound represented by formula (I) were determined by 1H-NMR and 13C-NMR analyses. That is, l, m, and n were expressed as integers by rounding off one decimal place as the average number. Specifically, a sample of the compound represented by formula (I) was prepared in a mixed solvent of deuterated chloroform/trifluoroacetic acid (85/15 by volume) for 1H-NMR, and deuterated chloroform or a heavy solvent for 13C-NMR.
  • the compound represented by formula (I) used in the synthesis examples has the following methacrylic monomer structural unit (hereinafter abbreviated as DEMA-E structural unit) (* indicates other monomer structural unit (for example, styrene structural unit unit, represents a bond with the methyl methacrylate structural unit)).
  • DEMA-E structural unit methacrylic monomer structural unit
  • a compound containing this DEMA-E structural unit can be obtained by a method of synthesizing glycidyl methacrylate by ring-opening reaction with water and adding a diol, a method of synthesizing by adding a diol to methacrylic acid, or the like.
  • copolymers of styrene and glycidyl methacrylate and/or methyl methacrylate are synthesized according to US Patent Application Nos. 09/354,350 and 09/614,402, followed by ring-opening with water. It may be subjected to a method of synthesizing by adding a diol.
  • STY styrene
  • MMA methyl methacrylate
  • DEMA-E methacrylic monomer structural unit of the above chemical formula.
  • Example 1 2432 g of terephthalic acid (Mitsui Chemicals Co., Ltd.), 1772 g of ethylene glycol (Nippon Shokubai Co., Ltd.), bisphenol A-EO adduct (Sanyo Kasei BPE-20F ) and 4 g of triethylamine (manufactured by Nacalai Tesque) were charged, and esterification was carried out at 240° C. for 3.0 hours under a pressure of 0.35 MPa.
  • the compound represented by the formula (I) obtained in Synthesis Example 1 was continuously added to 0.2% by mass with respect to 100% by mass of the alcohol component of the resulting polyester resin while controlling the flow rate. , allowing the reaction to proceed stepwise.
  • the polyester resin With respect to the mass of the polyester resin, add 30 ppm of aluminum acetate as an aluminum atom and 72 ppm of Irgamod 295 (manufactured by BASF) as a phosphorus atom as a polycondensation catalyst, and then add 1 ppm of Solvent Blue 45 (manufactured by Clariant) to the polyester resin.
  • the mixture was stirred at 260° C. for 5 minutes under normal pressure in a nitrogen atmosphere. After that, the pressure of the reaction system was gradually lowered to 13.3 Pa (0.1 Torr) while the temperature was raised to 280° C. over 60 minutes, and polycondensation reaction was further carried out at 280° C. and 13.3 Pa.
  • the resin under slight pressure was extruded into cold water in the form of a strand, rapidly cooled, held in cold water for 20 seconds, and cut to obtain cylindrical pellets with a length of about 3 mm and a diameter of about 2 mm. rice field.
  • the polyester pellets obtained by melt polymerization were dried under reduced pressure (13.3 Pa or less, 80°C, 12 hours), and then subjected to crystallization treatment (13.3 Pa or less, 130°C, 3 hours, further 13.3 Pa or less, 160° C., 3 hours) was performed.
  • the polyester pellets after standing to cool are solid-phase polymerized in a solid-phase polymerization reactor while maintaining the system at 13.3 Pa or less and 200° C. to 220° C. to obtain polyester pellets having an IV of 1.11 dl / g. rice field.
  • the ratio of the diol component of the polyester resin was 95 mol % of ethylene glycol and 5 mol % of the bisphenol A-EO adduct. Table 2 shows the results of each evaluation.
  • Example 2 In Example 1, the addition amount of the compound represented by formula (I) obtained in Synthesis Example 1 was changed to 0.001% by mass, and polymerization was performed under the same conditions as in Example 1 to obtain polyester pellets. .
  • Example 3 In Example 1, the addition amount of the compound represented by formula (I) obtained in Synthesis Example 1 was changed to 4% by mass, and polymerization was performed under the same conditions as in Example 1 to obtain polyester pellets.
  • Example 4 In Example 1, the compound represented by Formula (I) obtained in Synthesis Example 1 was changed to the compound represented by Formula (I) obtained in Synthesis Example 2, and polymerized under the same conditions as in Example 1. was performed to obtain polyester pellets.
  • Example 5 In Example 1, the compound represented by Formula (I) obtained in Synthesis Example 1 was changed to the compound represented by Formula (I) obtained in Synthesis Example 3, and polymerized under the same conditions as in Example 1. was performed to obtain polyester pellets.
  • Example 6 In Example 1, the compound represented by Formula (I) obtained in Synthesis Example 1 was changed to the compound represented by Formula (I) obtained in Synthesis Example 4, and polymerized under the same conditions as in Example 1. was performed to obtain polyester pellets.
  • Example 7 In Example 1, the compound represented by Formula (I) obtained in Synthesis Example 1 was changed to the compound represented by Formula (I) obtained in Synthesis Example 5, and polymerized under the same conditions as in Example 1. was performed to obtain polyester pellets.
  • Example 8 In Example 1, the compound represented by Formula (I) obtained in Synthesis Example 1 was changed to the compound represented by Formula (I) obtained in Synthesis Example 6, and polymerized under the same conditions as in Example 1. was performed to obtain polyester pellets.
  • Example 9 Polymerization was carried out under the same conditions as in Example 1 except that the esterification time was changed to 1.5 hours to obtain polyester pellets.
  • Example 10 Polymerization was carried out under the same conditions as in Example 1 except that the amount of ethylene glycol charged was changed to 1002 g and the esterification time was changed to 1.0 hour to obtain polyester pellets.
  • Example 11 In Example 1, germanium dioxide as a polycondensation catalyst was changed to 100 ppm of germanium atoms relative to the mass of the polyester resin, and triethyl phosphate was changed to 30 ppm of phosphorus atoms relative to the mass of the polyester resin. Polymerization was carried out under the same conditions as in Example 1 to obtain polyester pellets.
  • Example 12 In Example 1, tetrabutyl titanium as a polycondensation catalyst is changed so that the titanium atom atom is 10 ppm relative to the mass of the polyester resin, and triethyl phosphate is changed so that the phosphorus atom atom is 100 ppm relative to the mass of the polyester resin. , Polymerization was carried out under the same conditions as in Example 1 to obtain polyester pellets.
  • Example 13 In Example 1, the conditions were the same as in Example 1, except that the charging amount was changed so that the diol component of the polyester resin had a ratio of 2 mol% of the bisphenol A-EO adduct with respect to 98 mol% of ethylene glycol. Polymerization was carried out to obtain polyester pellets.
  • Example 14 In Example 1, the conditions were the same as in Example 1, except that the charging amount was changed so that the ratio of the diol component of the polyester resin was 15 mol% of the bisphenol A-EO adduct with respect to 85 mol% of ethylene glycol. Polymerization was carried out to obtain polyester pellets.
  • Comparative example 1 In Example 1, without adding the compound represented by formula (I), as a polycondensation catalyst, germanium dioxide was added to the polyester resin so that the germanium atom was 100 ppm with respect to the mass of the polyester resin, and triethyl phosphate was added to the polyester resin. Polymerization was carried out under the same conditions as in Example 1, except that the amount of phosphorus atoms was changed to 30 ppm with respect to the mass, to obtain polyester pellets.
  • the compound represented by formula (I) as a polycondensation catalyst
  • Comparative example 2 In Example 1, the amount of the compound represented by Formula (I) obtained in Synthesis Example 1 was changed to 0.0001% by mass, and germanium dioxide was added as a polycondensation catalyst to the mass of the polyester resin. Polymerization was carried out under the same conditions as in Example 1, except that the amount of triethyl phosphate was changed to 30 ppm of phosphorus atoms with respect to the mass of the polyester resin so as to obtain 100 ppm atoms, to obtain polyester pellets.
  • Comparative example 3 In Example 1, the addition amount of the compound represented by Formula (I) obtained in Synthesis Example 1 was changed to 6% by mass, and germanium dioxide was used as a polycondensation catalyst in an amount of germanium atom 100 ppm with respect to the mass of the polyester resin. Polymerization was carried out under the same conditions as in Example 1, except that triethyl phosphate was changed to 30 ppm of phosphorus atoms with respect to the mass of the polyester resin, to obtain polyester pellets.
  • Comparative example 4 In Example 1, as the polycondensation catalyst, germanium dioxide was changed so that the germanium atom was 100 ppm relative to the mass of the polyester resin, and triethyl phosphate was changed so that the phosphorus atom was 30 ppm relative to the mass of the polyester resin. Polymerization was carried out under the same conditions as in Example 1, except that the charging amount was changed so that the diol component of the polyester resin had a ratio of 1 mol% of the bisphenol A-EO adduct to 99 mol% of ethylene glycol. A pellet was obtained.
  • Example 1 As the polycondensation catalyst, germanium dioxide was changed so that the germanium atom was 100 ppm relative to the mass of the polyester resin, and triethyl phosphate was changed so that the phosphorus atom was 30 ppm relative to the mass of the polyester resin. Polymerization was carried out under the same conditions as in Example 1, except that the charging amount was changed so that the diol component of the polyester resin had a ratio of 16 mol% of the bisphenol A-EO adduct to 84 mol% of ethylene glycol. A pellet was obtained.
  • melt viscosity was 26000 dPa ⁇ s or more at a temperature of 270° C. and a shear rate of 30 s ⁇ 1 and was 6500 dPa ⁇ s or less at a temperature of 270° C. and a shear rate of 2000 s ⁇ 1 .
  • the polyester resin of the present invention has improved moldability in extrusion molding, profile extrusion molding, direct blow molding, inflation molding, injection blow molding, calendering molding, which requires high melt tension, and mechanical properties while maintaining transparency. It is expected that the improvement of characteristics can be realized and that it will greatly contribute to the industrial world.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The purpose of the present invention is to provide a polyester resin or the like that has excellent gelling suppression, moldability, surface smoothness, transparency, mechanical properties, heat resistance, and thermal oxidation resistance stability. The present invention relates to a polyester resin that is characterized by having, as constituent components thereof, terephthalic acid as a dicarboxylic acid component, and ethylene glycol, a bisphenol A-ethylene oxide adduct, and a compound represented by a specific structure as alcohol components, wherein the terephthalic acid is 85-100 mol% of the dicarboxylic acid component or components, the proportion of ethylene glycol is 85-98 mol% whereas that of the bisphenol A-ethylene oxide adduct is 2-15 mol%, and the compound represented by the specific structure is 0.001-5 mass% within 100 mass% of the alcohol components. (In the formula, m and n each represent 1-1000, l represents 0-1000, R1 represents a C6-20 aromatic hydrocarbon group, and R2, R3, and R4 each represent a hydrogen atom or a C1-10 alkyl group.)

Description

ポリエステル樹脂polyester resin
 本発明は、成形性、透明性、機械的特性、耐熱性、耐熱酸化安定性に優れた成形品をもたらすポリエステル樹脂に関する。詳しくは、本発明は、高い溶融張力を必要とされる押出し成形、異形押出し成形、ダイレクトブロー成形、インフレーション成形、インジェクションブロー成形、カレンダー加工成形における成形性の改良に加え、透明性、機械的特性、耐熱酸化安定性の改良を実現するポリエステル樹脂に関する。 The present invention relates to a polyester resin that provides molded articles with excellent moldability, transparency, mechanical properties, heat resistance, and thermal oxidation stability. Specifically, the present invention provides improved moldability in extrusion molding, profile extrusion molding, direct blow molding, inflation molding, injection blow molding, and calendering molding that require high melt tension, as well as transparency and mechanical properties. , relates to a polyester resin that achieves improved heat and oxidation stability.
 近年、例えば環境影響の問題より塩化ビニル系樹脂を他の素材に置き換える傾向があり、数ある代替素材の内、ポリエステル樹脂は、物理的特性、環境適性、接着特性、価格等の面から有力な素材として検討されている。 In recent years, for example, there is a tendency to replace vinyl chloride resin with other materials due to the problem of environmental impact. considered as a material.
 なかでも、ポリエステル樹脂のうち、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等の結晶性ポリエステル樹脂は、射出成形による耐熱部品、押出し成形によるフィルム、シート、ブロー成形による飲料用ボトル、溶融紡糸による繊維等も様々な溶融成形製品に使用されている。 Among polyester resins, for example, crystalline polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN) are used for heat-resistant parts by injection molding, films, sheets, and the like by extrusion molding. Blow-molded beverage bottles, melt-spun fibers, etc. are also used in various melt-molded products.
 しかしながら、これら結晶性ポリエステル樹脂を用いた成形品の透明性や柔軟性を向上させる為には、加工時の冷却条件の制御や延伸加工処理等の様々な技術が必要となる。
 また、高い溶融張力が必要とされる異形押出し成形、ダイレクトブロー成形、インフレーション成形に対してはドローダウン現象が顕著となり、予備成形品乃至成形品が垂れ下がり、成形品の厚みのムラやバリが大きくなる為、良品率、連続生産安定性が低下する問題があった。
However, in order to improve the transparency and flexibility of molded articles using these crystalline polyester resins, various techniques such as control of cooling conditions during processing and stretching processing are required.
In addition, for profile extrusion molding, direct blow molding, and inflation molding, which require high melt tension, the drawdown phenomenon becomes remarkable, preforms or molded products sag, unevenness in the thickness of the molded product, and large burrs. Therefore, there was a problem that the good product rate and the stability of continuous production decreased.
 一方、かかるドローダウン現象という問題点を解決すべく樹脂骨格内に分岐構造(分岐剤)を導入することで、高い溶融張力が必要とされるダイレクトブロー成形の成形性を改善させる発明が開示されている(例えば、特許文献1~3)。 On the other hand, in order to solve the problem of such a drawdown phenomenon, an invention has been disclosed in which a branching structure (branching agent) is introduced into the resin skeleton to improve moldability in direct blow molding, which requires high melt tension. (For example, Patent Documents 1 to 3).
特許第5931061号公報Japanese Patent No. 5931061 特許第5941843号公報Japanese Patent No. 5941843 特開2016-56384号公報JP 2016-56384 A
 しかしながら、特許文献1~3の技術では、分岐構造(分岐剤)同士の反応性が高くカルボン酸化合物と混合してポリエステル樹脂の構成成分と反応させたとしてもゲル化物が発生し、ポリエステル樹脂の構成成分との溶解性が低下し、得られるポリエステル樹脂成形品は、良好な表面平滑性をもたらすことができないという問題があった。
 加えて、特許文献1~3において、ドローダウン現象は改良されるものの、高すぎる溶融張力のため、成形時にダイスから樹脂が吐出される際にメルトフラクチャーの発生により成形品の表面平滑性が低減し、成形品の透明性が低下する問題もあった。この他、ポリエステル樹脂の成形品は、耐熱性等も求められる。
However, in the techniques of Patent Documents 1 to 3, the reactivity between the branched structures (branching agents) is high, and gelation occurs even when mixed with a carboxylic acid compound and reacted with the constituent components of the polyester resin. There is a problem that the solubility with the constituent components is lowered, and the resulting polyester resin molded article cannot have good surface smoothness.
In addition, although the drawdown phenomenon is improved in Patent Documents 1 to 3, the surface smoothness of the molded product is reduced due to the occurrence of melt fracture when the resin is discharged from the die during molding due to the excessively high melt tension. However, there is also a problem that the transparency of the molded product is lowered. In addition, polyester resin molded articles are required to have heat resistance and the like.
 本発明は、かかる従来技術の課題を背景になされたものであり、本発明の目的は、ゲル化抑制、成形性、表面平滑性、透明性、機械的特性、耐熱性、耐熱酸化安定性に優れた成形品をもたらすポリエステル樹脂を提供することである。 The present invention was made against the background of such problems of the prior art, and an object of the present invention is to improve gelation suppression, moldability, surface smoothness, transparency, mechanical properties, heat resistance, and heat-oxidation stability. An object of the present invention is to provide a polyester resin that gives excellent molded articles.
 より詳細には、本発明は、ゲル化抑制、表面平滑性、透明性、機械的特性、耐熱性、耐熱酸化安定性に優れ、高い溶融張力を必要とされる押出し成形、異形押出し成形、ダイレクトブロー成形、インフレーション成形、インジェクションブロー成形、カレンダー加工成形における成形性に優れた成形品をもたらすポリエステル樹脂を提供することにある。 More specifically, the present invention is excellent in gelation suppression, surface smoothness, transparency, mechanical properties, heat resistance, and thermal oxidation stability, and can be used in extrusion molding, profile extrusion molding, and direct molding, which require high melt tension. To provide a polyester resin which gives a molded product excellent in moldability in blow molding, inflation molding, injection blow molding and calendering molding.
 本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。すなわち、本発明は、以下の構成を有する。 As a result of diligent studies, the present inventors have found that the above problems can be solved by the means shown below, and have arrived at the present invention. That is, the present invention has the following configurations.
[1]ジカルボン酸成分としてテレフタル酸、アルコール成分としてエチレングリコール、ビスフェノールA-エチレンオキサイド付加物、及び下記式(I)で表される化合物を構成成分とし、テレフタル酸がジカルボン酸成分中、85~100mol%であり、エチレングリコール85~98mol%に対し、ビスフェノールA-エチレンオキサイド付加物2~15mol%の比率であり、下記式(I)で表される化合物は、アルコール成分100質量%中、0.001~5質量%であることを特徴とするポリエステル樹脂。
Figure JPOXMLDOC01-appb-C000002
(式中、m及びnはそれぞれ、1~1000の整数、lは0~1000の整数を示し、R1は、炭素数6~20の芳香族炭化水素基を示し、R2、R3、R4はそれぞれ、水素原子又は炭素数1~10のアルキル基を示す。)
[2]式(I)で表される化合物の重量平均分子量が200以上50万以下である[1]に記載のポリエステル樹脂。
[3]溶融張力が、温度270℃、引取速度100m/min、剪断速度243s-1で、15mN以上である[1]又は[2]のいずれかに記載のポリエステル樹脂。
[4]溶融粘度が、温度270℃、剪断速度30s-1で、26000dPa・s以上、温度270℃、剪断速度2000s-1で、6500dPa・s以下である[1]~[3]のいずれかに記載のポリエステル樹脂。
[1] Constituting terephthalic acid as a dicarboxylic acid component, ethylene glycol, a bisphenol A-ethylene oxide adduct as an alcohol component, and a compound represented by the following formula (I), and 85 to 85% of terephthalic acid in the dicarboxylic acid component. 100 mol%, and the ratio of 2 to 15 mol% of bisphenol A-ethylene oxide adduct to 85 to 98 mol% of ethylene glycol, and the compound represented by the following formula (I) is 0 in 100% by mass of the alcohol component. .001 to 5% by weight of a polyester resin.
Figure JPOXMLDOC01-appb-C000002
(wherein m and n are each an integer of 1 to 1000, l is an integer of 0 to 1000, R 1 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms, R 2 , R 3 , Each R 4 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)
[2] The polyester resin according to [1], wherein the weight average molecular weight of the compound represented by formula (I) is 200 or more and 500,000 or less.
[3] The polyester resin according to any one of [1] or [2], which has a melt tension of 15 mN or more at a temperature of 270°C, a take-up speed of 100 m/min, and a shear rate of 243 s -1 .
[4] Any one of [1] to [3] having a melt viscosity of 26000 dPa s or more at a temperature of 270° C. and a shear rate of 30 s −1 or 6500 dPa s or less at a temperature of 270° C. and a shear rate of 2000 s −1 The polyester resin described in .
 本発明によれば、ゲル化抑制、成形性、表面平滑性、透明性、機械的特性、耐熱性、耐熱酸化安定性に優れたポリエステル樹脂の成形品が得られる。
 特に、成形性は、従来に比べて、高い溶融張力を必要とされる押出し成形、異形押出し成形、ダイレクトブロー成形、インフレーション成形、インジェクションブロー成形、カレンダー加工成形で優れる。
ADVANTAGE OF THE INVENTION According to this invention, the molded article of the polyester resin excellent in gelatinization suppression, moldability, surface smoothness, transparency, mechanical property, heat resistance, and heat-oxidation stability is obtained.
In particular, the moldability is excellent in extrusion molding, profile extrusion molding, direct blow molding, inflation molding, injection blow molding, and calendering molding, which require higher melt tension than conventional molding.
1.ポリエステル樹脂
 本発明のポリエステル樹脂は、ジカルボン酸成分としてテレフタル酸、アルコール成分としてエチレングリコール、ビスフェノールA-エチレンオキサイド付加物、及び下記式(I)で表される化合物を構成成分とし、テレフタル酸がジカルボン酸成分中、85~100mol%であり、エチレングリコール85~98mol%に対し、ビスフェノールA-エチレンオキサイド付加物2~15mol%の比率であり、下記式(I)で表される化合物は、アルコール成分100質量%中、0.001~5質量%である。
1. Polyester Resin The polyester resin of the present invention comprises terephthalic acid as a dicarboxylic acid component, ethylene glycol as an alcohol component, a bisphenol A-ethylene oxide adduct, and a compound represented by the following formula (I), and terephthalic acid is a dicarboxylic acid. In the acid component, it is 85 to 100 mol%, and the ratio is 2 to 15 mol% of the bisphenol A-ethylene oxide adduct with respect to 85 to 98 mol% of ethylene glycol, and the compound represented by the following formula (I) is an alcohol component. It is 0.001 to 5% by mass in 100% by mass.
Figure JPOXMLDOC01-appb-C000003
(式中、m及びnはそれぞれ、1~1000の整数、lは0~1000の整数を示し、R1は、炭素数6~20の芳香族炭化水素基を示し、R2、R3、R4はそれぞれ、水素原子又は炭素数1~10のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000003
(wherein m and n are each an integer of 1 to 1000, l is an integer of 0 to 1000, R 1 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms, R 2 , R 3 , Each R 4 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)
 本発明のポリエステル樹脂は、所定のジカルボン酸成分とアルコール成分との重合体を含み、アルコール成分として式(I)で表される化合物の含有率が所定量であるところに特徴がある。
 本発明において、式(I)で表される化合物は、ポリエステル樹脂に対する分岐剤であり、通常使用されるジオール成分と共に用いられる。
 また、式(I)で表される化合物は、ジカルボン酸成分が有するカルボキシル基と反応し得る官能基(水酸基)が分子内1分子あたり2個以上有し、ポリエステル樹脂全体に分岐構造を部分的に導入することができる。
The polyester resin of the present invention contains a polymer of a predetermined dicarboxylic acid component and an alcohol component, and is characterized by containing a predetermined amount of the compound represented by the formula (I) as the alcohol component.
In the present invention, the compound represented by formula (I) is a branching agent for polyester resins, and is used together with a commonly used diol component.
Further, the compound represented by the formula (I) has two or more functional groups (hydroxyl groups) per molecule that can react with the carboxyl groups of the dicarboxylic acid component, and the polyester resin has a partially branched structure as a whole. can be introduced into
 この様に、本発明のポリエステル樹脂は、式(I)で表される化合物を使用していることから、ゲル化を抑制でき、溶融押出時において、溶融張力が高温になる程低下することから、また、溶融粘度が高剪断下で低下することから、成形時にメルトフラクチャーが発生せず、成形性、表面平滑性、透明性、機械的特性、耐熱性、耐熱酸化安定性にも優れることになる。 As described above, since the polyester resin of the present invention uses the compound represented by formula (I), it is possible to suppress gelation, and during melt extrusion, the melt tension decreases as the temperature increases. In addition, since the melt viscosity decreases under high shear, melt fracture does not occur during molding, and it is excellent in moldability, surface smoothness, transparency, mechanical properties, heat resistance, and thermal oxidation stability. Become.
 式(I)で表される化合物は、以下の通りである。
Figure JPOXMLDOC01-appb-C000004
The compounds represented by formula (I) are as follows.
Figure JPOXMLDOC01-appb-C000004
(式中、m及びnはそれぞれ、1~1000の整数、lは0~1000の整数を示し、R1は、炭素数6~20の芳香族炭化水素基を示し、R2、R3、R4はそれぞれ、水素原子又は炭素数1~10のアルキル基を示す。) (wherein m and n are each an integer of 1 to 1000, l is an integer of 0 to 1000, R 1 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms, R 2 , R 3 , Each R 4 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)
 R1は、炭素数6~20の芳香族炭化水素基を示す。 R 1 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms.
 R1で表される炭素数6~20の芳香族炭化水素基としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、2-エチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、2,6-ジメチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、4-ビニルフェニル基、o-イソプロピルフェニル基、m-イソプロピルフェニル基、p-イソプロピルフェニル基、o-tert-ブチルフェニル基、m-tert-ブチルフェニル基、p-tert-ブチルフェニル基、3,5-ジ(tert-ブチル)フェニル基、3,5-ジ(tert-ブチル)-4-メチルフェニル基、4-ブチルフェニル基、4-ペンチルフェニル基、2,6-ビス(1-メチルエチル)フェニル基、2,4,6-トリス(1-メチルエチル)フェニル基、4-シクロヘキシルフェニル基、2,4,6-トリメチルフェニル基、4-オクチルフェニル基、4-(1,1,3,3-テトラメチルブチル)フェニル基、1-ナフチル基、2-ナフチル基、5,6,7,8-テトラヒドロ-1-ナフチル基、5,6,7,8-テトラヒドロ-2-ナフチル基、フルオレニル基等が挙げられる。 Examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms represented by R 1 include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group, 2,5-dimethylphenyl group, 2,6-dimethylphenyl group, 3,4-dimethylphenyl group, 3,5- dimethylphenyl group, 4-vinylphenyl group, o-isopropylphenyl group, m-isopropylphenyl group, p-isopropylphenyl group, o-tert-butylphenyl group, m-tert-butylphenyl group, p-tert-butylphenyl group, 3,5-di(tert-butyl)phenyl group, 3,5-di(tert-butyl)-4-methylphenyl group, 4-butylphenyl group, 4-pentylphenyl group, 2,6-bis( 1-methylethyl)phenyl group, 2,4,6-tris(1-methylethyl)phenyl group, 4-cyclohexylphenyl group, 2,4,6-trimethylphenyl group, 4-octylphenyl group, 4-(1 , 1,3,3-tetramethylbutyl)phenyl group, 1-naphthyl group, 2-naphthyl group, 5,6,7,8-tetrahydro-1-naphthyl group, 5,6,7,8-tetrahydro-2 - naphthyl group, fluorenyl group and the like.
 芳香族炭化水素基の炭素数は、好ましくは6~18、より好ましくは6~15、さらに好ましくは6~12である。 The number of carbon atoms in the aromatic hydrocarbon group is preferably 6-18, more preferably 6-15, still more preferably 6-12.
 なかでも、芳香族炭化水素基はフェニル基、o-トリル基、m-トリル基、p-トリル基であることが特に好ましく、最も好ましくはフェニル基である。 Among them, the aromatic hydrocarbon group is particularly preferably a phenyl group, an o-tolyl group, an m-tolyl group, or a p-tolyl group, most preferably a phenyl group.
 R2、R3、R4は、水素原子又は炭素数1~10のアルキル基を示す。 R 2 , R 3 and R 4 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
 R2、R3、R4で表される炭素数1~10のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の直鎖状アルキル基;
 イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、2-エチルブチル基、3,3-ジメチルブチル基、1,1,3,3-テトラメチルブチル基、1-メチルブチル基、1-エチルプロピル基、3-メチルブチル基、ネオペンチル基、1,1-ジメチルプロピル基、2-メチルペンチル基、3-エチルペンチル基、1,3-ジメチルブチル基、2-プロピルペンチル基、1-エチル-1,2-ジメチルプロピル基、1-メチルペンチル基、4-メチルペンチル基、4-メチルヘキシル基、5-メチルヘキシル基、2-エチルヘキシル基、1-メチルヘキシル基、1-エチルペンチル基、1-プロピルブチル基、3-エチルヘプチル基、2,2-ジメチルヘプチル基、1-メチルヘプチル基、1-エチルヘキシル基、1-プロピルペンチル基、1-メチルオクチル基、1-エチルヘプチル基、1-プロピルヘキシル基、1-ブチルペンチル基、1-メチルノニル基、1-エチルオクチル基、1-プロピルヘプチル基及び1-ブチルヘキシル基等の分枝鎖状アルキル基;
 シクロプロピル基、1-メチルシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、1-メチルシクロヘキシル基、2-メチルシクロヘキシル基、3-メチルシクロヘキシル基、4-メチルシクロヘキシル基、1,2-ジメチルシクロヘキシル基、1,3-ジメチルシクロヘキシル基、1,4-ジメチルシクロヘキシル基、2,3-ジメチルシクロヘキシル基、2,4-ジメチルシクロヘキシル基、2,5-ジメチルシクロヘキシル基、2,6-ジメチルシクロヘキシル基、3,4-ジメチルシクロヘキシル基、3,5-ジメチルシクロヘキシル基、2,2-ジメチルシクロヘキシル基、3,3-ジメチルシクロヘキシル基、4,4-ジメチルシクロヘキシル基、シクロオクチル基、2,4,6-トリメチルシクロヘキシル基、2,2,6,6-テトラメチルシクロヘキシル基、3,3,5,5-テトラメチルシクロヘキシル基等のシクロアルキル基等が挙げられる。
Examples of alkyl groups having 1 to 10 carbon atoms represented by R 2 , R 3 and R 4 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, a linear alkyl group such as a decyl group;
isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, 2-ethylbutyl group, 3,3-dimethylbutyl group, 1,1,3,3-tetramethylbutyl group, 1-methylbutyl group, 1-ethyl propyl group, 3-methylbutyl group, neopentyl group, 1,1-dimethylpropyl group, 2-methylpentyl group, 3-ethylpentyl group, 1,3-dimethylbutyl group, 2-propylpentyl group, 1-ethyl-1 , 2-dimethylpropyl group, 1-methylpentyl group, 4-methylpentyl group, 4-methylhexyl group, 5-methylhexyl group, 2-ethylhexyl group, 1-methylhexyl group, 1-ethylpentyl group, 1- propylbutyl group, 3-ethylheptyl group, 2,2-dimethylheptyl group, 1-methylheptyl group, 1-ethylhexyl group, 1-propylpentyl group, 1-methyloctyl group, 1-ethylheptyl group, 1-propyl branched chain alkyl groups such as hexyl group, 1-butylpentyl group, 1-methylnonyl group, 1-ethyloctyl group, 1-propylheptyl group and 1-butylhexyl group;
cyclopropyl group, 1-methylcyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, 1-methylcyclohexyl group, 2-methylcyclohexyl group, 3-methylcyclohexyl group, 4-methylcyclohexyl group, 1, 2-dimethylcyclohexyl group, 1,3-dimethylcyclohexyl group, 1,4-dimethylcyclohexyl group, 2,3-dimethylcyclohexyl group, 2,4-dimethylcyclohexyl group, 2,5-dimethylcyclohexyl group, 2,6- dimethylcyclohexyl group, 3,4-dimethylcyclohexyl group, 3,5-dimethylcyclohexyl group, 2,2-dimethylcyclohexyl group, 3,3-dimethylcyclohexyl group, 4,4-dimethylcyclohexyl group, cyclooctyl group, 2, Cycloalkyl groups such as a 4,6-trimethylcyclohexyl group, a 2,2,6,6-tetramethylcyclohexyl group, and a 3,3,5,5-tetramethylcyclohexyl group are included.
 アルキル基の炭素数は、好ましくは1~8、より好ましくは1~6、さらに好ましくは1~4である。 The number of carbon atoms in the alkyl group is preferably 1-8, more preferably 1-6, and still more preferably 1-4.
 なかでも、アルキル基は、メチル基、エチル基、プロピル基、ブチル基であることが特に好ましく、最も好ましくはメチル基である。 Among them, the alkyl group is particularly preferably a methyl group, an ethyl group, a propyl group, or a butyl group, most preferably a methyl group.
 R2及びR3は、炭素数1~10のアルキル基であることが好ましく、R4は水素原子であることが好ましい。 R 2 and R 3 are preferably C 1-10 alkyl groups, and R 4 is preferably a hydrogen atom.
 前記l、m、nは、1分子中に含まれる下記共重合体成分(L)、(M)、(N)の比であり、かつ1分子中に含まれる各成分の平均個数を、小数点以下一桁を四捨五入して整数で表した値(比)である。1分子中に含まれる各成分の比、及び平均個数は、1H-NMR分析及び13C-NMR分析から求めたものである。
Figure JPOXMLDOC01-appb-C000005
The above l, m, and n are the ratios of the following copolymer components (L), (M), and (N) contained in one molecule, and the average number of each component contained in one molecule is Below is a value (ratio) expressed as an integer by rounding off to the nearest digit. The ratio and average number of each component contained in one molecule were obtained from 1 H-NMR analysis and 13 C-NMR analysis.
Figure JPOXMLDOC01-appb-C000005
 m及びnはそれぞれ、同一でもよく異なっていてもよく、1~1000の整数、好ましくは2~800の整数、より好ましくは5~600の整数、さらに好ましくは10~400の整数を示す。
 lは、0~1000の整数、好ましくは1~700の整数、より好ましくは2~400の整数、さらに好ましくは5~100の整数である。
Each of m and n, which may be the same or different, represents an integer of 1-1000, preferably an integer of 2-800, more preferably an integer of 5-600, still more preferably an integer of 10-400.
l is an integer of 0-1000, preferably an integer of 1-700, more preferably an integer of 2-400, and still more preferably an integer of 5-100.
 式(I)で表される化合物は、共重合体成分(L)、(M)、(N)がランダムに共重合したランダム共重合体であっても、共重合体成分(L)、(M)、(N)のうち少なくとも一つの成分がブロックとなるブロック共重合体であっても良いが、ランダム共重合体であることが好ましい。
 本発明のポリエステル樹脂は、上記m、n、lを満たす限り、1種又は2種以上のポリエステル樹脂であってもよい。
Even if the compound represented by formula (I) is a random copolymer obtained by randomly copolymerizing the copolymer components (L), (M), and (N), the copolymer components (L), ( A block copolymer in which at least one component of M) and (N) is a block may be used, but a random copolymer is preferred.
The polyester resin of the present invention may be one or more polyester resins as long as the above m, n, and l are satisfied.
 式(I)で表される化合物は、例えば、特許文献1~3、米国特許出願第09/354350号及び米国特許出願第09/614402号等の記載を参照して、2ガロンのフリーラジカル連続式重合反応器系内で調製することが可能である。 Compounds of formula (I) can be prepared in two gallons of free-radical continuous water, see, for example, US Pat. It is possible to prepare in a conventional polymerization reactor system.
 式(I)で表される化合物の含有率は、ポリエステル樹脂の構成成分であるアルコール成分100質量%中、0.001~5質量%であり、好ましくは0.005~5質量%、さらに好ましくは0.01~4.5質量%、さらにより好ましくは4質量%以下、特に好ましくは3.5質量%以下である。
 式(I)で表される化合物の含有率が0.001質量%未満では、成形時にドローダウンを起こし、成形が安定しないか、成形できたとしても偏肉を起こした成形品となる傾向にある。他方、式(I)で表される化合物の含有率が5質量%を超えると、ゲル化が発生し、成形時にメルトフラクチャーが発生し、表面平滑性が不良となり、失透した成形品となる。また、ゲルを含んだ品質が低い成形品となる傾向がある。
The content of the compound represented by formula (I) is 0.001 to 5% by mass, preferably 0.005 to 5% by mass, more preferably 0.005 to 5% by mass, in 100% by mass of the alcohol component, which is a constituent component of the polyester resin. is 0.01 to 4.5% by mass, more preferably 4% by mass or less, particularly preferably 3.5% by mass or less.
If the content of the compound represented by formula (I) is less than 0.001% by mass, drawdown will occur during molding, and the molding will not be stable, or even if it can be molded, the molded product will tend to have uneven thickness. be. On the other hand, when the content of the compound represented by the formula (I) exceeds 5% by mass, gelation occurs, melt fracture occurs during molding, surface smoothness becomes poor, and a devitrified molded product is obtained. . In addition, there is a tendency for the molded article to contain gel and to be of low quality.
 式(I)で表される化合物は、所定の重量平均分子量を有していてもよく、式(I)で表される化合物の重量平均分子量は、好ましくは200以上50万以下、より好ましくは500以上、さらに好ましくは700以上、さらにより好ましくは1000以上、より好ましくは30万以下、さらに好ましくは10万以下、さらにより好ましくは5万以下である。
 式(I)で表される化合物の重量平均分子量が200未満であると未反応の化合物が成形品の表面にブリードアウトし、成形品の表面が汚染される虞がある。一方、式(I)で表される化合物の重量平均分子量が50万を超えると、ポリエステル樹脂からなる成形品の折り曲げ時に、当該化合物とポリエステル間の相溶性が悪くなりボイドが発生し、白化する虞がある。
 当該重量平均分子量は、例えば標準ポリスチレン換算のGPCにより求めることができる。
 具体的に、当該重量平均分子量は、式(I)で表される化合物の試料4mgを秤量し、4mlのクロロホルムとイソフルオロイソプロパノールの混合溶媒(60/40体積%)に溶解後、0.2μmのメンブレンフィルターでろ過し、得られた試料溶液をGPCに供し、標準ポリスチレンに換算することにより求めることができる。
The compound represented by formula (I) may have a predetermined weight average molecular weight, and the weight average molecular weight of the compound represented by formula (I) is preferably 200 or more and 500,000 or less, more preferably It is 500 or more, more preferably 700 or more, still more preferably 1000 or more, more preferably 300,000 or less, still more preferably 100,000 or less, and even more preferably 50,000 or less.
If the weight average molecular weight of the compound represented by formula (I) is less than 200, the unreacted compound may bleed out onto the surface of the molded product, contaminating the surface of the molded product. On the other hand, when the weight-average molecular weight of the compound represented by formula (I) exceeds 500,000, the compatibility between the compound and the polyester deteriorates when the molded article made of the polyester resin is bent, causing voids and whitening. There is fear.
The weight average molecular weight can be determined, for example, by GPC in terms of standard polystyrene.
Specifically, the weight average molecular weight is 0.2 μm after weighing 4 mg of a sample of the compound represented by formula (I) and dissolving it in 4 ml of a mixed solvent of chloroform and isofluoroisopropanol (60/40% by volume). It can be obtained by filtering with a membrane filter, subjecting the obtained sample solution to GPC, and converting to standard polystyrene.
 本発明で使用されるジカルボン酸成分とアルコール成分は以下の通りである。 The dicarboxylic acid component and alcohol component used in the present invention are as follows.
 ジカルボン酸成分としては、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、1,3-シクロブタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2,5-ノルボルナンジカルボン酸、ダイマー酸等に例示される飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体(例えば、これらの炭素原子数1以上20以下のアルキルエステル)、フマル酸、マレイン酸、イタコン酸等に例示される不飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体(例えば、これらの炭素原子数1以上20以下のアルキルエステル)、オルソフタル酸、イソフタル酸、テレフタル酸、5-(アルカリ金属)スルホイソフタル酸、ジフェン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4'-ビフェニルジカルボン酸、4,4'-ビフェニルスルホンジカルボン酸、4,4'-ビフェニルエーテルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p'-ジカルボン酸、パモイン酸、アントラセンジカルボン酸等に例示される芳香族ジカルボン酸又はこれらのエステル形成性誘導体(例えば、これらの炭素原子数1以上20以下のアルキルエステル、好ましくはテレフタル酸ジメチル)が挙げられる。 Dicarboxylic acid components include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 1, 3-cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc. Saturated aliphatic dicarboxylic acids exemplified in or ester-forming derivatives thereof (e.g., alkyl esters having 1 to 20 carbon atoms), fumaric acid, maleic acid, unsaturated aliphatics exemplified by itaconic acid, etc. Dicarboxylic acids or ester-forming derivatives thereof (for example, alkyl esters having 1 to 20 carbon atoms), orthophthalic acid, isophthalic acid, terephthalic acid, 5-(alkali metal)sulfoisophthalic acid, diphenic acid, 1, 3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4 Aromatic dicarboxylic acids exemplified by '-biphenylsulfonedicarboxylic acid, 4,4'-biphenyletherdicarboxylic acid, 1,2-bis(phenoxy)ethane-p,p'-dicarboxylic acid, pamoic acid, anthracenedicarboxylic acid, etc. and ester-forming derivatives thereof (for example, alkyl esters having 1 to 20 carbon atoms, preferably dimethyl terephthalate).
 これらのジカルボン酸成分のうち、イソフタル酸、テレフタル酸およびナフタレンジカルボン酸が好ましく、テレフタル酸が、得られるポリエステル樹脂の物性等の点で特に好ましい。 Of these dicarboxylic acid components, isophthalic acid, terephthalic acid and naphthalenedicarboxylic acid are preferred, and terephthalic acid is particularly preferred in terms of the physical properties of the resulting polyester resin.
 上記ジカルボン酸に加えて3~4価のカルボン酸を少量で使用してもよい。
 当該カルボン酸としては、エタン酸、トリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3,4,3’,4’-ビフェニルテトラカルボン酸、これらのエステル形成性誘導体(例えば、これらの炭素原子数1以上20以下のアルキルエステル)等が挙げられる。
In addition to the above dicarboxylic acids, tri- or tetravalent carboxylic acids may be used in small amounts.
Examples of the carboxylic acid include ethanoic acid, tricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3′,4′-biphenyltetracarboxylic acid, and esters thereof. forming derivatives (for example, alkyl esters having 1 to 20 carbon atoms) and the like.
 アルコール成分として、式(I)で表される化合物以外は、ジオール成分であることが好ましい。アルコール成分100質量%中、ジオール成分は、99.999~95質量%であることが好ましく、より好ましくは99.995~95質量%、さらに好ましくは99.99~95.5質量%、さらにより好ましくは96質量%以上、特に好ましくは96.5質量%以上である。
 ジオール成分は、エチレングリコールとビスフェノールA-エチレンオキサイド付加物(以下、ビスフェノールA-EO付加物と記す)を含む。
 エチレングリコールやビスフェノールA-EO付加物以外で使用してもよいジオールとしては、1,2-プロピレングリコール、1,3-プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、1,10-デカメチレングリコール、1,12-ドデカンジオール、イソソルビド、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール、フルオレンジオール等に例示される脂肪族グリコール、ヒドロキノン、4,4'-ジヒドロキシビスフェノール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールF、ビスフェノールS、ビスフェノールC、2,5-ナフタレンジオール、これらのグリコールにエチレンオキシドが付加したグリコールやビスフェノールA、F、S、Cに水添加した物等に例示される芳香族グリコールが挙げられる。
The alcohol component other than the compound represented by formula (I) is preferably a diol component. In 100% by mass of the alcohol component, the diol component is preferably 99.999 to 95% by mass, more preferably 99.995 to 95% by mass, still more preferably 99.99 to 95.5% by mass, and still more It is preferably 96% by mass or more, particularly preferably 96.5% by mass or more.
The diol component contains ethylene glycol and bisphenol A-ethylene oxide adduct (hereinafter referred to as bisphenol A-EO adduct).
Diols that may be used other than ethylene glycol and bisphenol A-EO adducts include 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3 -butylene glycol, 2,3-butylene glycol, 1,4-butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12- Dodecanediol, isosorbide, polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol, aliphatic glycols exemplified by fluorenediol, hydroquinone, 4,4′-dihydroxybisphenol, 1,4-bis(β-hydroxyethoxy ) benzene, 1,4-bis(β-hydroxyethoxyphenyl)sulfone, bis(p-hydroxyphenyl)ether, bis(p-hydroxyphenyl)sulfone, bis(p-hydroxyphenyl)methane, 1,2-bis( p-hydroxyphenyl)ethane, bisphenol F, bisphenol S, bisphenol C, 2,5-naphthalenediol, glycols obtained by adding ethylene oxide to these glycols, and products obtained by adding water to bisphenols A, F, S, and C. aromatic glycols.
 上記ジオール成分に加え、3~4価のアルコール、ヒドロキシカルボン酸、環状エステル等をジオール成分として使用してもよい。 In addition to the above diol components, tri- or tetrahydric alcohols, hydroxycarboxylic acids, cyclic esters, etc. may be used as diol components.
 当該アルコールとしては、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオール等が挙げられる。 Examples of the alcohol include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, and hexanetriol.
 当該ヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4-ヒドロキシシクロヘキサンカルボン酸、又はこれらのエステル形成性誘導体(例えば、これらの炭素原子数1以上20以下のアルキルエステル)等が挙げられる。 The hydroxycarboxylic acids include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p-(2-hydroxyethoxy)benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or Ester-forming derivatives thereof (for example, alkyl esters having 1 to 20 carbon atoms) and the like can be mentioned.
 環状エステルとしては、ε-カプロラクトン、β-プロピオラクトン、β-メチル-β-プロピオラクトン、δ-バレロラクトン、グリコリド、ラクチド等が挙げられる。 Cyclic esters include ε-caprolactone, β-propiolactone, β-methyl-β-propiolactone, δ-valerolactone, glycolide, lactide and the like.
 本発明のポリエステル樹脂は、テレフタル酸をジカルボン酸成分100モル%中85~100モル%含み、エチレングリコールとビスフェノールA-EO付加物の合計をジオール成分100モル%中87~100モル%含むことが好ましい。
 テレフタル酸は、ジカルボン酸成分100モル%中、より好ましくは90~100モル%、さらに好ましくは95~100モル%含み、エチレングリコールとビスフェノールA-EO付加物の合計は、ジオール成分100モル%中、より好ましくは90~100モル%、さらに好ましくは95~100モル%含む。
 エチレングリコールとビスフェノールA-EO付加物の比率は、エチレングリコール85~98モル%に対し、ビスフェノールA-EO付加物2~15モル%である。ジオール成分100モル%中、エチレングリコール85~98モル%、ビスフェノールA-EO付加物2~15モル%を含むと考えても良い。エチレングリコール87~97モル%に対し、ビスフェノールA-EO付加物3~13モル%であることが好ましく、エチレングリコール89~96モル%に対し、ビスフェノールA-EO付加物4~11モル%であることがより好ましい。ビスフェノールA-EO付加物が2モル%未満では、透明性が低下する傾向にある。またビスフェノールA-EO付加物が15モル%を超えると耐熱酸化安定性、耐熱性、成形性が低下する傾向にある。
 本発明のポリエステル樹脂は、共重合ポリエチレンテレフタレート樹脂であることが好ましい。
The polyester resin of the present invention contains 85 to 100 mol% of terephthalic acid in 100 mol% of the dicarboxylic acid component, and 87 to 100 mol% of the total of ethylene glycol and bisphenol A-EO adduct in 100 mol% of the diol component. preferable.
Terephthalic acid is contained in 100 mol% of the dicarboxylic acid component, more preferably 90 to 100 mol%, more preferably 95 to 100 mol%, and the total of ethylene glycol and bisphenol A-EO adduct is in 100 mol% of the diol component. , more preferably 90 to 100 mol %, more preferably 95 to 100 mol %.
The ratio of ethylene glycol to bisphenol A-EO adduct is 85-98 mol % of ethylene glycol and 2-15 mol % of bisphenol A-EO adduct. It may be considered that 85 to 98 mol % of ethylene glycol and 2 to 15 mol % of bisphenol A-EO adduct are contained in 100 mol % of the diol component. It is preferable that the bisphenol A-EO adduct is 3 to 13 mol% with respect to 87 to 97 mol% of ethylene glycol, and the bisphenol A-EO adduct is 4 to 11 mol% with respect to 89 to 96 mol% of ethylene glycol. is more preferable. If the bisphenol A-EO adduct is less than 2 mol %, the transparency tends to decrease. Further, when the bisphenol A-EO adduct exceeds 15 mol %, the thermal oxidation stability, heat resistance and moldability tend to deteriorate.
The polyester resin of the present invention is preferably a copolymerized polyethylene terephthalate resin.
 本発明のポリエステル樹脂は、結晶性ポリエステル樹脂であり、かつ分岐構造を有し、分子量増加の「溶融強度増強効果」により成形性等の加工性を改善できると共に、溶融粘度及び溶融張力を調節でき、成形品の耐折り曲げ白化性及び未反応物の成形品の表層へのブリードアウトを抑制できる。
 上記テレフタル酸とエチレングリコールの含有率の範囲を外れると非晶性のポリエステル樹脂となり固相重合による高粘度化ができなくなり、高い機械的物性を持つ成形品を得ることができない虞がある。
The polyester resin of the present invention is a crystalline polyester resin and has a branched structure, and can improve processability such as moldability due to the "melt strength enhancement effect" of increasing molecular weight, and can adjust melt viscosity and melt tension. , the whitening resistance on bending of the molded product and the bleeding out of unreacted substances to the surface layer of the molded product can be suppressed.
If the content of terephthalic acid and ethylene glycol is out of the above range, the polyester resin becomes amorphous and the viscosity cannot be increased by solid-phase polymerization, and there is a possibility that a molded article having high mechanical properties cannot be obtained.
 本発明のポリエステル樹脂は、所定の固有粘度IVを有していてもよい。
 当該固有粘度IVは、好ましくは0.40~2.10dl/g、より好ましくは0.50~1.90dl/g、さらに好ましくは0.60~1.70dl/gである。
 当該固有粘度は、パラクロロフェノール/テトラクロロエタン(3/1:重量比)混合溶媒にポリエステル樹脂を溶解し、オストワルド粘度計を用いて30℃で測定することが可能である。
The polyester resin of the present invention may have a given intrinsic viscosity IV.
The intrinsic viscosity IV is preferably 0.40 to 2.10 dl/g, more preferably 0.50 to 1.90 dl/g, still more preferably 0.60 to 1.70 dl/g.
The intrinsic viscosity can be measured at 30° C. using an Ostwald viscometer after dissolving the polyester resin in a mixed solvent of parachlorophenol/tetrachloroethane (3/1: weight ratio).
 本発明に用いられるポリエステル樹脂の酸価(AV)は、好ましくは100eq/106g(ton)以下、より好ましくは60eq/106g以下、さらに好ましくは50eq/106g以下である。一方下限は低ければ低いほど好ましく、0eq/106gに近いものほど好ましい。酸価が100eq/106gを超えると、ゲルが発生し、表面性やヘイズが低下する傾向にある。
 当該酸価は、ポリエステル樹脂の試料をアルコール及び/又はエーテル溶液に溶解し、フェノールフタレイン試薬を指示薬として用いアルコール性水酸化ナトリウム溶液又はアルコール性水酸化カリウム溶液で滴定することにより、求めることができる。具体的な酸価の測定方法は、実施例に示す通りである。
The acid value (AV) of the polyester resin used in the present invention is preferably 100 eq/10 6 g (ton) or less, more preferably 60 eq/10 6 g or less, still more preferably 50 eq/10 6 g or less. On the other hand, the lower the lower limit, the more preferable, and the closer to 0 eq/10 6 g the more preferable. When the acid value exceeds 100 eq/10 6 g, gel tends to occur and the surface properties and haze tend to deteriorate.
The acid value can be obtained by dissolving a polyester resin sample in an alcohol and/or ether solution and titrating with an alcoholic sodium hydroxide solution or an alcoholic potassium hydroxide solution using a phenolphthalein reagent as an indicator. can. A specific method for measuring the acid value is as shown in Examples.
 本発明のポリエステル樹脂は、所定の融点を有していてもよく、ポリエステル樹脂の融点は、好ましくは190~300℃、より好ましくは195~280℃、さらに好ましくは210~260℃、さらにより好ましくは220℃以上である。
 当該融点は、示差走査熱量分析計(DSC)を用い、310℃まで昇温速度20℃/分にて測定し、融解熱の最大ピーク温度を結晶融点として求めることができる。
The polyester resin of the present invention may have a predetermined melting point, and the melting point of the polyester resin is preferably 190 to 300°C, more preferably 195 to 280°C, still more preferably 210 to 260°C, still more preferably. is above 220°C.
The melting point can be measured with a differential scanning calorimeter (DSC) at a heating rate of 20° C./min up to 310° C., and the maximum peak temperature of the heat of fusion can be determined as the crystalline melting point.
 本発明のポリエステル樹脂は、アルミニウム化合物及びリン化合物を少なくとも含む重合触媒を介して製造されることが好ましく、係る重合触媒に由来して、アルミニウム量3~1000ppm、リン量5~10000ppmを有することが好ましい。
 他の重合触媒として、チタン化合物及びゲルマニウム化合物から選ばれる1種以上を使用してもよい。
The polyester resin of the present invention is preferably produced via a polymerization catalyst containing at least an aluminum compound and a phosphorus compound, and may have an aluminum content of 3 to 1000 ppm and a phosphorus content of 5 to 10000 ppm derived from the polymerization catalyst. preferable.
As another polymerization catalyst, one or more selected from titanium compounds and germanium compounds may be used.
 アルミニウム化合物は、酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、及び水酸化塩化アルミニウムから選ばれる少なくとも1種であることが好ましく、酢酸アルミニウム及び塩基性酢酸アルミニウムから選ばれる少なくとも1種であることがより好ましく、酢酸アルミニウムであることがさらに好ましい。
 アルミニウム量は、ポリエステル樹脂の全質量に対し、アルミニウム原子として、好ましくは3~1000ppm、より好ましくは5~800ppm、さらに好ましくは8~500ppmである。アルミニウム量が少ないと重合活性が低下する虞があり、アルミニウム量が多いとアルミニウム由来の異物が多く発生する虞がある。
The aluminum compound is preferably at least one selected from aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, and aluminum hydroxychloride, and at least one selected from aluminum acetate and basic aluminum acetate. is more preferred, and aluminum acetate is even more preferred.
The amount of aluminum is preferably 3 to 1000 ppm, more preferably 5 to 800 ppm, and even more preferably 8 to 500 ppm as aluminum atoms relative to the total mass of the polyester resin. If the amount of aluminum is too small, the polymerization activity may decrease, and if the amount of aluminum is too large, a large amount of aluminum-derived foreign matter may be generated.
 リン化合物は、ホスホン酸系化合物及びホスフィン酸系化合物から選ばれる少なくとも1種であることが好ましく、ホスホン酸系化合物であることがより好ましい。 The phosphorus compound is preferably at least one selected from phosphonic acid compounds and phosphinic acid compounds, more preferably phosphonic acid compounds.
 リン化合物は、同一分子内にフェノール構造を有することが好ましく、同一分子内にフェノール構造を有するホスホン酸系化合物及びホスフィン酸系化合物から選ばれる少なくとも1種であることがより好ましく、同一分子内にフェノール構造を有するホスホン酸系化合物であることがさらに好ましい。 Phosphorus compound preferably has a phenol structure in the same molecule, more preferably at least one selected from phosphonic acid compounds and phosphinic acid compounds having a phenol structure in the same molecule, in the same molecule A phosphonic acid compound having a phenol structure is more preferred.
 同一分子内にフェノール構造を有するリン化合物としては、p-ヒドロキシフェニルホスホン酸、p-ヒドロキシフェニルホスホン酸ジメチル、p-ヒドロキシフェニルホスホン酸ジエチル、p-ヒドロキシフェニルホスホン酸ジフェニル、ビス(p-ヒドロキシフェニル)ホスフィン酸、ビス(p-ヒドロキシフェニル)ホスフィン酸メチル、ビス(p-ヒドロキシフェニル)ホスフィン酸フェニル、p-ヒドロキシフェニルフェニルホスフィン酸、p-ヒドロキシフェニルフェニルホスフィン酸メチル、p-ヒドロキシフェニルフェニルホスフィン酸フェニル、p-ヒドロキシフェニルホスフィン酸、p-ヒドロキシフェニルホスフィン酸メチル、p-ヒドロキシフェニルホスフィン酸フェニル、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチル等が挙げられる。 Phosphorus compounds having a phenol structure in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, bis(p-hydroxyphenyl ) phosphinic acid, methyl bis(p-hydroxyphenyl)phosphinate, phenyl bis(p-hydroxyphenyl)phosphinate, p-hydroxyphenylphenylphosphinic acid, methyl p-hydroxyphenylphenylphosphinate, p-hydroxyphenylphenylphosphinic acid phenyl, p-hydroxyphenylphosphinate, methyl p-hydroxyphenylphosphinate, phenyl p-hydroxyphenylphosphinate, diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate and the like.
 中でも、リン化合物は、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチルであることが特に好ましい。かかるリン化合物は、例えばIrgamod(登録商標)295(BASF製)等を使用することができる。 Among them, the phosphorus compound is particularly preferably diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate. As such a phosphorus compound, for example, Irgamod (registered trademark) 295 (manufactured by BASF) can be used.
 リン量は、ポリエステル樹脂の全質量に対し、リン原子として、好ましくは5~10000ppm、より好ましくは8~8000ppm、さらに好ましくは10~6000ppmである。リン量が少ないと、重合活性が低下し、アルミニウムに由来する異物が多く発生する虞があり、リン量が多いと、触媒コストが増大する虞がある。 The amount of phosphorus is preferably 5 to 10000 ppm, more preferably 8 to 8000 ppm, and even more preferably 10 to 6000 ppm as phosphorus atoms relative to the total mass of the polyester resin. If the amount of phosphorus is small, the polymerization activity may be lowered, and a large amount of foreign matter derived from aluminum may be generated. If the amount of phosphorus is large, the catalyst cost may increase.
 チタン化合物は、テトラブチルチタン、テトラベンジルチタン、テトラ-n-プロピルチタネート、テトライソプロピルチタネート、テトラ-n-ブチルチタネート、テトライソブチルチタネート、テトラ-tert-ブチルチタネート、テトラシクロヘキシルチタネート、テトラフェニルチタネート、テトラベンジルチタネート、蓚酸チタン酸リチウム、蓚酸チタン酸カリウム、蓚酸チタン酸アンモニウム、酸化チタン、チタンとケイ素やジルコニウムやアルカリ金属やアルカリ土類金属などとの複合酸化物、チタンのオルトエステルまたは縮合オルトエステル、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸からなる反応生成物、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸とリン化合物からなる反応生成物、チタンのオルトエステルまたは縮合オルトエステルと少なくとも2個のヒドロキシル基を有する多価アルコール、2-ヒドロキシカルボン酸および塩基からなる反応生成物などが挙げられ、このうち、チタンとケイ素の複合酸化物、チタンとマグネシウムの複合酸化物、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸とリン化合物からなる反応生成物が好ましい。
 チタン量は、ポリエステル樹脂の全質量に対し、チタン原子として、好ましくは1~300ppm、より好ましくは2~200ppm、さらに好ましくは3~100ppmである。
 ゲルマニウム化合物は、二酸化ゲルマニウム、酢酸ゲルマニウム等が挙げられる。
 ゲルマニウム量は、ポリエステル樹脂の全質量に対し、チタン原子として、好ましくは1~500ppm、より好ましくは2~400ppm、さらに好ましくは3~300ppmである。
 上記原子の量は、例えば蛍光X線分析により算出してもよい。
Titanium compounds include tetrabutyltitanium, tetrabenzyltitanium, tetra-n-propyltitanate, tetraisopropyltitanate, tetra-n-butyltitanate, tetraisobutyltitanate, tetra-tert-butyltitanate, tetracyclohexyltitanate, tetraphenyltitanate, tetra Benzyl titanate, lithium oxalate titanate, potassium oxalate titanate, ammonium oxalate titanate, titanium oxide, composite oxides of titanium and silicon, zirconium, alkali metals, alkaline earth metals, etc., titanium orthoesters or condensed orthoesters, a reaction product of titanium orthoester or condensed orthoester and hydroxycarboxylic acid, a reaction product of titanium orthoester or condensed orthoester, hydroxycarboxylic acid and a phosphorus compound, titanium orthoester or condensed orthoester and at least two Polyhydric alcohols having 1 hydroxyl group, reaction products composed of 2-hydroxycarboxylic acids and bases, among which titanium and silicon composite oxides, titanium and magnesium composite oxides, titanium orthoesters Alternatively, a reaction product consisting of a condensed orthoester, a hydroxycarboxylic acid and a phosphorus compound is preferred.
The amount of titanium is preferably 1 to 300 ppm, more preferably 2 to 200 ppm, and still more preferably 3 to 100 ppm as titanium atoms relative to the total mass of the polyester resin.
Germanium compounds include germanium dioxide, germanium acetate and the like.
The amount of germanium is preferably 1 to 500 ppm, more preferably 2 to 400 ppm, and still more preferably 3 to 300 ppm as titanium atoms relative to the total mass of the polyester resin.
The amount of atoms may be calculated, for example, by fluorescent X-ray analysis.
 本発明のポリエステル樹脂は、溶融時に所定の溶融張力及び溶融粘度を有することが好ましい。 The polyester resin of the present invention preferably has a predetermined melt tension and melt viscosity when melted.
 本発明のポリエステル樹脂は、温度が250℃以上で高くなる程、溶融張力が低下する性質を有する。
 本発明において、高密度ポリエチレン等と同等以上の性能を呈する観点から、溶融張力は、温度270℃、引取速度100m/min、剪断速度243s-1で、15mN以上であることが好ましく、より好ましくは17mN以上、さらに好ましくは19mN以上であり、溶融張力の上限は、例えば170mN以下又は120mN以下である。
 当該溶融張力は、例えばキャピラリーレオメーターを所定条件下(キャピラリー長10mm、キャピラリー径1mm、温度270℃、剪断速度243s-1、引取最大速度200m/min、引取開始速度10m/min、又は引取速度100m/min(一定)、引取時間90秒)で使用することにより、求めることができる。
The polyester resin of the present invention has the property that the higher the temperature is above 250°C, the lower the melt tension.
In the present invention, the melt tension is preferably 15 mN or more at a temperature of 270° C., a take-up speed of 100 m/min, and a shear rate of 243 s −1 , more preferably 15 mN or more, from the viewpoint of exhibiting performance equal to or higher than that of high-density polyethylene or the like. It is 17 mN or more, more preferably 19 mN or more, and the upper limit of the melt tension is, for example, 170 mN or less or 120 mN or less.
The melt tension can be measured, for example, using a capillary rheometer under predetermined conditions (capillary length 10 mm, capillary diameter 1 mm, temperature 270° C., shear rate 243 s −1 , maximum take-up speed 200 m/min, take-up start speed 10 m/min, or take-up speed 100 m /min (constant), take-up time 90 seconds).
 本発明のポリエステル樹脂は、溶融時の剪断速度2000s-1で、温度が250℃以上で高くなる程、溶融粘度が低下する性質を有する。
 本発明において、溶融押出時のメルトフラクチャーの発生を抑制する等の観点から、溶融粘度は、温度270℃、剪断速度30s-1で、26000dPa・s以上、温度270℃、剪断速度2000s-1で、6500dPa・s以下であることが好ましい。本発明のポリエステル樹脂は、溶融時の高温下でチキソトロピー性を示すものであり、メルトフラクチャーの発生を抑えることができ、良好な成形性をもたらす。
The polyester resin of the present invention has a property that at a shear rate of 2000 s -1 during melting, the melt viscosity decreases as the temperature rises above 250°C.
In the present invention, from the viewpoint of suppressing the occurrence of melt fracture during melt extrusion, the melt viscosity is 26000 dPa s or more at a temperature of 270 ° C. and a shear rate of 30 s -1 at a temperature of 270 ° C. and a shear rate of 2000 s -1 . , 6500 dPa·s or less. The polyester resin of the present invention exhibits thixotropy at high temperatures during melting, can suppress the occurrence of melt fracture, and provides good moldability.
 溶融粘度は、温度270℃、剪断速度30s-1で、26000dPa・s以上であることが好ましく、より好ましくは28000dPa・s以上、さらに好ましくは30000dPa・s以上、溶融粘度の上限は、例えば50000dPa・s以下又は45000dPa・s以下である。 The melt viscosity at a temperature of 270° C. and a shear rate of 30 s −1 is preferably 26000 dPa·s or more, more preferably 28000 dPa·s or more, and still more preferably 30000 dPa·s or more. s or less or 45000 dPa·s or less.
 溶融粘度は、例えばJIS K7199に基づいて測定することができる。
 溶融粘度は、温度270℃、剪断速度2000s-1で、6500dPa・s以下であることが好ましく、より好ましくは6300dPa・s以下、さらに好ましくは6200dPa・s以下であり、溶融粘度の下限は、例えば5500dPa・s以上である。
Melt viscosity can be measured, for example, based on JIS K7199.
The melt viscosity at a temperature of 270° C. and a shear rate of 2000 s −1 is preferably 6500 dPa s or less, more preferably 6300 dPa s or less, and still more preferably 6200 dPa s or less. It is 5500 dPa·s or more.
 溶融粘度は、例えばキャピラリーレオメーターを所定条件(キャピラリー長10mm、キャピラリー径1mm、温度270℃、剪断速度30s-1又は2000s-1)で使用して求めることができる。 The melt viscosity can be determined, for example, using a capillary rheometer under predetermined conditions (capillary length 10 mm, capillary diameter 1 mm, temperature 270° C., shear rate 30 s −1 or 2000 s −1 ).
 本発明のポリエステル樹脂は、耐熱性の観点から、所定の耐熱酸化分解パラメーター(TOD)、所定の耐熱分解パラメーター(TD)を有していてもよい。ポリエステル樹脂の耐熱酸化分解パラメーター(TOD)は、0.390以下であることが好ましい。TODは、下記実施例の項目に記載の方法により算出できる。TODは、0.385以下がより好ましく、0.380以下がさらに好ましく、0.375以下が特に好ましく、0.370以下が最も好ましい。当該TODの下限は、例えば0.010以上又は0.020以上である。当該TODが0.390超であると、ドローダウン時の成形性が低下する傾向にある。
 また、ポリエステル樹脂の耐熱分解パラメーター(TD)は、0.55以下であることが好ましい。TDは、下記実施例の項目に記載の方法により算出できる。TDは、0.54以下がより好ましく、0.53以下がさらに好ましく、0.52以下が特に好ましく、0.50以下が最も好ましい。当該TDの下限は、例えば0.18以上又は0.20以上である。当該TDが0.50超であると、ドローダウン時の成形性が低下する傾向にある。
From the viewpoint of heat resistance, the polyester resin of the present invention may have a predetermined thermal oxidation decomposition parameter (TOD) and a predetermined thermal decomposition parameter (TD). The thermal oxidative decomposition parameter (TOD) of the polyester resin is preferably 0.390 or less. The TOD can be calculated by the method described in the Examples section below. The TOD is more preferably 0.385 or less, still more preferably 0.380 or less, particularly preferably 0.375 or less, and most preferably 0.370 or less. The lower limit of the TOD is, for example, 0.010 or more or 0.020 or more. When the TOD is more than 0.390, the moldability during drawdown tends to be deteriorated.
Moreover, the thermal decomposition parameter (TD) of the polyester resin is preferably 0.55 or less. TD can be calculated by the method described in the Examples section below. TD is more preferably 0.54 or less, more preferably 0.53 or less, particularly preferably 0.52 or less, and most preferably 0.50 or less. The lower limit of the TD is, for example, 0.18 or more or 0.20 or more. When the TD is more than 0.50, the moldability during drawdown tends to be deteriorated.
 本発明のポリエステル樹脂には、有機系、無機系、及び有機金属系のトナー、ならびに蛍光増白剤等の添加剤を含んでいてもよい。これら添加剤を一種もしくは二種以上含有することによって、ポリエステル樹脂の黄み等の着色をさらに優れたレベルにまで抑えることができる。また他の任意の重合体や制電剤、消泡剤、染色性改良剤、染料、顔料、艶消剤、蛍光増白剤、安定剤、酸化防止剤、その他の添加剤が含有されていてもよい。酸化防止剤としては、芳香族アミン系、フェノール系等の酸化防止剤が使用可能であり、安定剤としては、リン酸やリン酸エステル系等のリン系、硫黄系、アミン系等の安定剤が使用可能である。 The polyester resin of the present invention may contain additives such as organic, inorganic, and organometallic toners and fluorescent brighteners. By containing one or more of these additives, coloring such as yellowing of the polyester resin can be suppressed to a more excellent level. It also contains other optional polymers, antistatic agents, antifoaming agents, dyeability improvers, dyes, pigments, matting agents, optical brighteners, stabilizers, antioxidants, and other additives. good too. As antioxidants, antioxidants such as aromatic amines and phenols can be used. is available.
 また、ポリエステル樹脂は、前記のようにして溶融重縮合工程を終了したあと溶融状態のままで、あるいは、さらに固相重合などの処理を終了したあと、チップ状態で、直接成形工程に導入して成形体とすることもできる。また、溶融重縮合ポリマ一の製造工程の任意の反応器や輸送配管に所定量の添加物、例えば、結晶化特性改良剤、アルデヒド低減剤、着色改良剤、安定剤等を添加し、目的とする特性を持つように溶融重縮合したあと、そのままか、あるいは、さらに固相重合などの処理を終了したあと、直接成形工程に導入して成形体とすることもできる。 In addition, the polyester resin is directly introduced into the molding process in a molten state after the melt polycondensation process is completed as described above, or in a chip state after the treatment such as solid phase polymerization is completed. Molded bodies can also be used. In addition, a predetermined amount of additives such as crystallization property improvers, aldehyde reducers, color improvers, stabilizers, etc. are added to any reactor or transport pipe in the production process of the melt polycondensation polymer, and the desired results are obtained. After the melt polycondensation is performed so as to have the properties to obtain the desired properties, the product can be directly introduced into the molding process to obtain a molded product, either as it is, or after finishing treatment such as solid phase polymerization.
 本発明のポリエステル樹脂から作製されるポリエステル樹脂成形品は、所定の三次元粗さの中心面平均(SRa)を有していてもよい。ポリエステル樹脂成形品のSRaは、好ましくは0.15μm未満であり、より好ましくは0.14μm以下、さらに好ましくは0.13μm以下、さらにより好ましくは0.12μm以下であり、好ましくは0.01μm以上又は0.02μm以上である。
 係る三次元粗さの中心面平均(SRa)は、例えば表面粗さ測定器(微細形状測定器、小坂研究所製 サーフコーダET4000A)を使用して求めることができる。
A polyester resin molded article made from the polyester resin of the present invention may have a predetermined three-dimensional roughness center plane average (SRa). The SRa of the polyester resin molded product is preferably less than 0.15 μm, more preferably 0.14 μm or less, still more preferably 0.13 μm or less, even more preferably 0.12 μm or less, and preferably 0.01 μm or more. Or it is 0.02 μm or more.
The center plane average (SRa) of the three-dimensional roughness can be obtained, for example, using a surface roughness measuring instrument (fine shape measuring instrument, Surfcoder ET4000A manufactured by Kosaka Laboratory Ltd.).
2.ポリエステル樹脂の製造方法
 本発明のポリエステル樹脂は、従来公知の方法で製造することができる。例えば、PETを製造する場合は、テレフタル酸とエチレングリコ-ル及び必要により他の共重合成分を直接反応させて水を留去しエステル化した後、減圧下に重縮合を行う直接エステル化法、または、テレフタル酸ジメチルとエチレングリコ-ル及び必要により他の共重合成分を反応させてメチルアルコ-ルを留去しエステル交換させた後、減圧下に重縮合を行うエステル交換法により製造される。さらに必要に応じて極限粘度を増大させる為に固相重合を行ってもよい。固相重合前の結晶化促進のため、溶融重合ポリエステルを吸湿させたあと加熱結晶化させたり、また水蒸気を直接ポリエステルチップに吹きつけて加熱結晶化させたりしてもよい。
 式(I)で表される化合物の添加方法に関しては重合時に添加することが好ましい。
 式(I)で表される化合物は添加時に分散して添加してもよい。
2. Production Method of Polyester Resin The polyester resin of the present invention can be produced by a conventionally known method. For example, when producing PET, terephthalic acid, ethylene glycol and, if necessary, other copolymerization components are directly reacted to effect esterification by distilling off water, followed by polycondensation under reduced pressure by a direct esterification method. Alternatively, dimethyl terephthalate, ethylene glycol and, if necessary, other copolymer components are reacted to distill off the methyl alcohol and transesterify, followed by polycondensation under reduced pressure. be. Further, solid state polymerization may be carried out to increase the intrinsic viscosity, if necessary. In order to promote crystallization before solid-phase polymerization, the melt-polymerized polyester may be made to absorb moisture and then heated to crystallize, or water vapor may be blown directly onto the polyester chips to crystallize by heating.
As for the method of adding the compound represented by formula (I), it is preferably added during polymerization.
The compound represented by the formula (I) may be dispersed and added at the time of addition.
 前記重縮合反応は、回分式反応装置で行っても良いし、また連続式反応装置で行っても良い。これらいずれの方式においても、エステル化反応、あるいはエステル交換反応は1段階で行っても良いし、また多段階に分けて行っても良い。重縮合反応は1段階で行っても良いし、また多段階に分けて行っても良い。固相重合反応は、重縮合反応と同様、回分式装置や連続式装置で行うことが出来る。重縮合と固相重合は連続で行っても良いし、分割して行ってもよい。
 以下、ポリエステル樹脂としてPETを例にして連続式の好ましい製造方法の一例について説明する。
The polycondensation reaction may be carried out in a batch reactor or a continuous reactor. In any of these methods, the esterification reaction or transesterification reaction may be carried out in one step, or may be carried out in multiple steps. The polycondensation reaction may be carried out in one step, or may be carried out in multiple steps. The solid-phase polymerization reaction can be carried out in a batch system or a continuous system, like the polycondensation reaction. Polycondensation and solid phase polymerization may be carried out continuously or separately.
An example of a preferred continuous production method will be described below, taking PET as an example of the polyester resin.
 エステル化反応は、1~3個のエステル化反応器を直列に連結した多段式装置を用いてエチレングリコ-ルが還流する条件下で、反応によって生成した水またはアルコ-ルを精留塔で系外に除去しながら実施する。第1段目のエステル化反応の温度は好ましくは240~270℃、より好ましくは245~265℃、圧力は好ましくは0.2~3kg/cm2G、より好ましくは0.5~2kg/cm2Gである。最終段目のエステル化反応の温度は通常250~290℃、好ましくは255~275℃であり、圧力は通常0~1.5kg/cm2G、好ましくは0~1.3kg/cm2Gである。3段階以上で実施する場合には、中間段階のエステル化反応の反応条件は、上記第1段目の反応条件と最終段目の反応条件の間の条件である。これらのエステル化反応の反応率の上昇は、それぞれの段階で滑らかに分配されることが好ましい。最終的にはエステル化反応率は好ましくは90%以上、より好ましくは93%以上に達することが望ましい。これらのエステル化反応により分子量500~5000程度の低次縮合物が得られる。 The esterification reaction is carried out using a multi-stage apparatus in which 1 to 3 esterification reactors are connected in series, and under the condition that ethylene glycol is refluxed, the water or alcohol produced by the reaction is removed in a rectification column. It is carried out while removing it from the system. The temperature of the first-stage esterification reaction is preferably 240 to 270°C, more preferably 245 to 265°C, and the pressure is preferably 0.2 to 3 kg/cm 2 G, more preferably 0.5 to 2 kg/cm. 2G . The temperature of the final esterification reaction is usually 250 to 290°C, preferably 255 to 275°C, and the pressure is usually 0 to 1.5 kg/cm 2 G, preferably 0 to 1.3 kg/cm 2 G. be. When the reaction is carried out in three or more stages, the reaction conditions for the esterification reaction in the intermediate stage are the conditions between the reaction conditions in the first stage and the reaction conditions in the final stage. These esterification reaction rate increases are preferably distributed smoothly in each stage. It is desired that the final esterification reaction rate reaches preferably 90% or more, more preferably 93% or more. A low order condensate having a molecular weight of about 500 to 5,000 is obtained by these esterification reactions.
 上記エステル化反応は原料としてテレフタル酸を用いる場合は、テレフタル酸の酸としての触媒作用により無触媒でも反応させることができるが、重縮合触媒の共存下に実施してもよい。 When terephthalic acid is used as a raw material, the above esterification reaction can be carried out without a catalyst due to the catalytic action of terephthalic acid as an acid, but it may be carried out in the presence of a polycondensation catalyst.
 また、トリエチルアミン、トリ-n-ブチルアミン、ベンジルジメチルアミン等の第3級アミン、水酸化テトラエチルアンモニウム、水酸化テトラ-n-ブチルアンモニウム、水酸化トリメチルベンジルアンモニウム等の水酸化第4級アンモニウム及び炭酸リチウム、炭酸ナトリウム、炭酸カリウム、酢酸ナトリウム等の塩基性化合物を少量添加して重縮合すると、ポリエチレンテレフタレ-トの主鎖中のジオキシエチレンテレフタレ-ト成分単位の割合を比較的低水準(全ジオール成分に対して5モル%以下)に保持できるので好ましい。 In addition, tertiary amines such as triethylamine, tri-n-butylamine and benzyldimethylamine, quaternary ammonium hydroxides such as tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide and trimethylbenzylammonium hydroxide, and lithium carbonate. , sodium carbonate, potassium carbonate, sodium acetate, etc., by adding a small amount of a basic compound to polycondensation, the ratio of dioxyethylene terephthalate component units in the main chain of polyethylene terephthalate is reduced to a relatively low level ( 5 mol % or less relative to the total diol component), which is preferable.
 次に、エステル交換反応によって低重合体を製造する場合は、テレフタル酸ジメチル1モルに対して好ましくは1.1~3.0モル、より好ましくは1.2~2.5モルのエチレングリコ-ルが含まれた溶液を調製し、これをエステル交換反応工程に連続的に供給する。 Next, when producing a low polymer by transesterification, preferably 1.1 to 3.0 mol, more preferably 1.2 to 2.5 mol of ethylene glycol per 1 mol of dimethyl terephthalate. A solution containing mol is prepared and continuously supplied to the transesterification reaction step.
 エステル交換反応は、1~2個のエステル交換反応器を直列に連結した装置を用いてエチレングリコ-ルが還留する条件下で、反応によって生成したメタノ-ルを精留塔で系外に除去しながら実施する。第1段目のエステル交換反応の温度は好ましくは180~250℃、より好ましくは200~240℃である。最終段目のエステル交換反応の温度は通常230~270℃、好ましくは240~265℃であり、エステル交換触媒として、Zn、Cd、Mg、Mn、Co、Ca、Ba等の脂肪酸塩、炭酸塩やPb、Zn、Sb、Ge酸化物等を用いてもよい。これらのエステル交換反応により分子量約200~500程度の低次縮合物が得られる。 The transesterification reaction is carried out using an apparatus in which 1 to 2 transesterification reactors are connected in series, and under conditions where ethylene glycol is refluxed, the methanol produced by the reaction is removed from the system in a rectification column. Carry out while removing. The temperature of the first-stage transesterification reaction is preferably 180 to 250°C, more preferably 200 to 240°C. The temperature of the transesterification reaction in the final stage is usually 230 to 270°C, preferably 240 to 265°C. , Pb, Zn, Sb, Ge oxide, or the like may be used. A low order condensate having a molecular weight of about 200 to 500 is obtained by these transesterification reactions.
 次いで得られた低次縮合物は多段階の液相縮重合工程に供給される。重縮合反応条件は、第1段階目の重縮合の反応温度は好ましくは250~290℃、より好ましくは260~280℃であり、圧力は好ましくは500~20Torr、より好ましくは200~30Torrで、最終段階の重縮合反応の温度は好ましくは265~300℃、より好ましくは275~295℃であり、圧力は好ましくは10~0.1Torr、より好ましくは5~0.5Torrである。3段階以上で実施する場合には、中間段階の重縮合反応の反応条件は、上記第1段目の反応条件と最終段目の反応条件の間の条件である。これらの重縮合反応工程の各々において到達される極限粘度の上昇の度合は滑らかであることが好ましい。 The obtained low-order condensate is then supplied to a multistage liquid-phase polycondensation process. As for the polycondensation reaction conditions, the reaction temperature of the first stage polycondensation is preferably 250 to 290° C., more preferably 260 to 280° C., the pressure is preferably 500 to 20 Torr, more preferably 200 to 30 Torr, The temperature of the polycondensation reaction in the final stage is preferably 265-300° C., more preferably 275-295° C., and the pressure is preferably 10-0.1 Torr, more preferably 5-0.5 Torr. When the reaction is carried out in three or more stages, the reaction conditions for the polycondensation reaction in the intermediate stage are the conditions between the reaction conditions in the first stage and the reaction conditions in the final stage. Preferably, the degree of increase in intrinsic viscosity achieved in each of these polycondensation reaction steps is smooth.
 このようにして得られた重縮合されたポリエステル樹脂は次に固相重合される。前記のポリエステル樹脂を従来公知の方法によって固相重合する。まず固相重合に供される前記のポリエステル樹脂は、不活性ガス下又は減圧下、或いは水蒸気又は水蒸気含有不活性ガス雰囲気下において、例えば100~190℃の温度で1~5時間加熱して予備結晶化される。次いで不活性ガス雰囲気下又は減圧下に190~230℃の温度で1~50時間の固相重合を行う。 The polycondensed polyester resin thus obtained is then solid phase polymerized. The above polyester resin is solid-phase polymerized by a conventionally known method. First, the polyester resin to be subjected to solid phase polymerization is preliminarily heated at a temperature of 100 to 190° C. for 1 to 5 hours under an inert gas or under reduced pressure, or in an atmosphere of steam or steam-containing inert gas. crystallized. Solid phase polymerization is then carried out at a temperature of 190 to 230° C. for 1 to 50 hours in an inert gas atmosphere or under reduced pressure.
 本発明で使用される触媒は、重縮合反応のみならずエステル化反応及びエステル交換反応でも触媒活性を有する。例えば、テレフタル酸ジメチル等のジカルボン酸のアルキルエステルとエチレングリコール等のグリコールとのエステル交換反応の際に触媒を用いることもできる。また、本発明で使用される触媒は、溶融重合のみならず固相重合や溶液重合においても触媒活性を有しており、いずれの方法によってもポリエステル樹脂を製造することが可能である。 The catalyst used in the present invention has catalytic activity not only in polycondensation reactions but also in esterification reactions and transesterification reactions. For example, a catalyst can be used in the transesterification reaction between a dicarboxylic acid alkyl ester such as dimethyl terephthalate and a glycol such as ethylene glycol. Moreover, the catalyst used in the present invention has catalytic activity not only in melt polymerization but also in solid phase polymerization and solution polymerization, and polyester resin can be produced by any method.
 本発明で使用する重合触媒は、重合反応の任意の段階で反応系に添加することができる。例えばエステル化反応、エステル交換反応の開始前、反応途中の任意の段階、重縮合反応の開始直前、又は重縮合反応途中の任意の段階で反応系に添加できる。特に、アルミニウム又はアルミニウム化合物は重縮合反応の開始直前に添加することが好ましい。 The polymerization catalyst used in the present invention can be added to the reaction system at any stage of the polymerization reaction. For example, it can be added to the reaction system before the start of the esterification reaction or transesterification reaction, at any stage during the reaction, immediately before the start of the polycondensation reaction, or at any stage during the polycondensation reaction. In particular, it is preferable to add aluminum or an aluminum compound immediately before starting the polycondensation reaction.
 本発明で使用されるリン化合物以外の重合触媒の添加方法は、粉末状ないしはニート状での添加であってもよいし、エチレングリコール等の溶媒のスラリー状もしくは溶液状での添加であってもよく、特に限定されない。また、アルミニウム又はアルミニウム化合物あるいはリン化合物と他の成分とを予め混合した混合物として添加してもよいし、これらを別々に添加してもよい。また、アルミニウム又はアルミニウム化合物あるいはリン化合物と他の成分を同じ添加時期に重合系に添加してもよく、それぞれの成分を別々の添加時期に添加してもよい。また、触媒の全量を一度に添加しても、複数回に分けて添加してもよい。 The addition method of the polymerization catalyst other than the phosphorus compound used in the present invention may be addition in the form of powder or neat, or addition in the form of slurry or solution of a solvent such as ethylene glycol. Well, not particularly limited. Alternatively, aluminum or an aluminum compound or a phosphorus compound and other components may be premixed and added as a mixture, or they may be added separately. Further, aluminum, an aluminum compound or a phosphorus compound and other components may be added to the polymerization system at the same time of addition, or each component may be added at different times of addition. Moreover, the total amount of the catalyst may be added at once or may be added in multiple portions.
 本発明のポリエステル樹脂は、重縮合、固相重合した後、ブロー成形(好ましくはダイレクトブロー成形)に供されることが好ましい。耐熱性ボトルのブロー成形では一般にはプリフォームと呼ばれる有底の前駆体を作製し、このプリフォームを金型内でブロー延伸し、さらにヒートセットされてもよい。プリフォームの製造は、圧縮成形、射出成形等の方法が用いられる。射出成形を例にすると、260~350℃に加熱溶融し、プリフォームの金型内に射出することでプリフォームを得ることができる。通常、プリフォームは肉厚の試験管状の形状で底部にゲート部を持ち、口栓部にはキャップ用のスクリューが刻まれている。 The polyester resin of the present invention is preferably subjected to blow molding (preferably direct blow molding) after polycondensation and solid phase polymerization. In the blow molding of heat-resistant bottles, a precursor having a bottom, generally called a preform, is prepared, and this preform may be blow-stretched in a mold and heat-set. Methods such as compression molding and injection molding are used to manufacture the preform. Taking injection molding as an example, a preform can be obtained by heating and melting to 260 to 350° C. and injecting it into a preform mold. Usually, the preform has a thick-walled test-tube shape with a gate at the bottom and a screw for capping at the mouth.
 耐熱性ボトルでは得られたプリフォームの口栓部を結晶化させてもよい。結晶化させることで高温の内容物を充填する場合であっても、口栓部が変形することを防ぐことができる。口栓部の結晶化は好ましくは130~200℃、より好ましくは140~190℃に加熱して行う。加熱方法としては、赤外線ヒーター、熱風、誘導加熱、オイルバスへの浸漬など用いることができ、赤外線ヒーターを用いることが生産性の面などから好ましい。なお、口栓部の加熱結晶化はブロー成形後でもよい。 For heat-resistant bottles, the spout of the obtained preform may be crystallized. Crystallization can prevent deformation of the spout even when high-temperature contents are filled. Crystallization of the spout is preferably carried out by heating to 130 to 200°C, more preferably 140 to 190°C. As a heating method, an infrared heater, hot air, induction heating, immersion in an oil bath, or the like can be used, and the use of an infrared heater is preferable from the viewpoint of productivity. The heat crystallization of the spout may be performed after the blow molding.
 プリフォームを加熱し、このプリフォームをボトル長さ方向(縦方向)に延伸すると共に周方向にブロー成形してボトルを得る。長さ方向には通常棒状の延伸ロッドで延伸され、周方向には空気、窒素等の加圧ガスを用いる。加圧ガスは1~10MPaが好ましい。延伸ロッドを挿入しながら加圧ガスを吹き込み、長さ方向と周方向の同時に延伸する方法が好ましいが、長さ方向に延伸した後、周方向に延伸してもよい。加熱は赤外線ヒーター、熱風、誘導加熱等が用いられる。加熱温度は通常80~130℃であり、好ましくは90~120℃である。 A preform is heated, stretched in the bottle length direction (longitudinal direction) and blow-molded in the circumferential direction to obtain a bottle. It is stretched in the longitudinal direction with a rod-shaped stretching rod, and in the circumferential direction, a pressurized gas such as air or nitrogen is used. The pressurized gas is preferably 1-10 MPa. A method of simultaneously stretching in the longitudinal direction and the circumferential direction by blowing pressurized gas while inserting a stretching rod is preferred, but stretching in the longitudinal direction may be followed by stretching in the circumferential direction. An infrared heater, hot air, induction heating, or the like is used for heating. The heating temperature is usually 80-130°C, preferably 90-120°C.
 ボトル長さ方向の延伸倍率の下限は好ましくは1.5倍であり、より好ましくは2倍である。上記未満であると延伸むらとなることがある。ボトル長さ方向の延伸倍率の上限は好ましくは6倍であり、より好ましくは5倍であり、さらに好ましくは4倍である。上記を超えると破れ等が起こりやすくなる。 The lower limit of the draw ratio in the bottle length direction is preferably 1.5 times, more preferably 2 times. If it is less than the above, stretching may be uneven. The upper limit of the draw ratio in the bottle length direction is preferably 6 times, more preferably 5 times, and still more preferably 4 times. If the above is exceeded, tearing or the like is likely to occur.
 ボトル周方向の延伸倍率の下限は好ましくは2倍であり、より好ましくは2.5倍である。上記未満であると延伸むらとなることがある。ボトル周方向の延伸倍率の上限は好ましくは6倍であり、より好ましくは5倍であり、さらに好ましくは4倍である。上記を超えると破れ等が起こりやすくなる。 The lower limit of the draw ratio in the bottle circumferential direction is preferably 2 times, more preferably 2.5 times. If it is less than the above, stretching may be uneven. The upper limit of the stretch ratio in the bottle circumferential direction is preferably 6 times, more preferably 5 times, and still more preferably 4 times. If the above is exceeded, tearing or the like is likely to occur.
 ブロー成形の後引き続き同一金型内でヒートセットする場合、ブロー成形の金型温度の下限は好ましくは80℃であり、より好ましくは120℃であり、さらに好ましくは130℃であり、最も好ましくは140℃である。上記未満であると後に行われるヒートセットで充分な結晶促進が行われず耐熱性が不足したり、ヒートセット時間を長く取る必要があり生産性低下となったりすることがある。 When the blow molding is followed by heat setting in the same mold, the lower limit of the mold temperature for blow molding is preferably 80° C., more preferably 120° C., still more preferably 130° C., most preferably 140°C. If it is less than the above range, the subsequent heat setting may not promote sufficient crystallization, resulting in insufficient heat resistance, or the need to take a long heat setting time, which may lead to a decrease in productivity.
 金型温度の上限は、好ましくは350℃であり、より好ましくは340℃であり、さらに好ましくは330℃、特に好ましくは320℃であり、金型温度の下限は、好ましくは280℃であり、より好ましくは290℃であり、さらに好ましくは300℃である。
 本発明のポリエステル樹脂は、溶融時に高温になる程、溶融張力が低下する性質を有することから、金型温度を高くする場合、溶融張力は、金型とポリエステル樹脂との接触時に低下してメルトフラクチャーの発生が低減される一方で、金型から吐出した後は、溶融張力が高くなってドローダウンの発生が低減されることになる。
The upper limit of the mold temperature is preferably 350°C, more preferably 340°C, still more preferably 330°C, particularly preferably 320°C, and the lower limit of the mold temperature is preferably 280°C, It is more preferably 290°C, still more preferably 300°C.
Since the polyester resin of the present invention has the property that the melt tension decreases as the temperature increases during melting, when the mold temperature is increased, the melt tension decreases when the mold and the polyester resin contact each other. While the occurrence of fractures is reduced, after ejection from the mold, the melt tension will be higher and the occurrence of drawdown will be reduced.
 ブロー成形されたボトルは引き続き金型内でヒートセットされる。ヒートセット時間の下限は好ましくは0.5秒であり、より好ましくは1秒であり、さらに好ましくは1.5秒である。上記未満であると充分な結晶促進が行われず耐熱性が不十分となることがある。ヒートセット時間の上限は好ましくは15秒であり、より好ましくは10秒であり、さらに好ましくは5秒である。長時間のヒートセット時間は生産性が劣るだけでなく、ロータリー式のブロー成形機の場合は金型を多く揃える必要があり、装置が大型になると経済性に劣ることがある。なお、金型内でのヒートセットの後、さらに赤外線、熱風、誘導加熱等で加熱して追加ヒートセットを行ってもよい。 The blow-molded bottle continues to be heat-set in the mold. The lower limit of the heat setting time is preferably 0.5 seconds, more preferably 1 second, still more preferably 1.5 seconds. If it is less than the above, sufficient crystallization may not be promoted, resulting in insufficient heat resistance. The upper limit of the heat setting time is preferably 15 seconds, more preferably 10 seconds, and even more preferably 5 seconds. A long heat setting time not only results in poor productivity, but also requires a large number of molds in the case of a rotary blow molding machine, which may result in poor economic efficiency if the apparatus is large. After heat setting in the mold, additional heat setting may be performed by further heating with infrared rays, hot air, induction heating, or the like.
 また、ブロー成形を5~50℃の金型内で行い、引き続き加熱金型内でヒートセットする方法も可能である。この場合、ヒートセット金型の温度は上記の場合の金型温度と同様である。 It is also possible to carry out blow molding in a mold at 5 to 50°C, followed by heat setting in a heated mold. In this case, the temperature of the heatset mold is similar to the mold temperature in the above case.
 ブロー成形の装置は一つの金型を備えたものであってもよいが、量産する場合は、複数の金型を備え、これら金型が、加熱したプリフォームを金型にセットする場所、延伸する場所、ヒートセットする場所、ボトルを排出する場所を順次移動していく方式のものが好ましい。
 なお、上記では冷却されたプリフォームを再加熱するコールドパリソン法を説明したが、プリフォームを完全に冷却しないでブロー成形を行うホットパリソン法も可能である。
The blow molding apparatus may be equipped with one mold, but in the case of mass production, it is equipped with a plurality of molds. It is preferable to use a system that sequentially moves between a place for heat setting, a place for heat setting, and a place for ejecting bottles.
Although the cold parison method of reheating the cooled preform has been described above, the hot parison method of performing blow molding without completely cooling the preform is also possible.
 成形するボトルの内容量は、200mL~6Lであることが好ましく、300mL~2Lであることがより好ましい。ボトル胴部の形状は円形、四角形(角部をカットした形状を含む)、六角形等の任意の形状が可能である。 The content of the bottle to be molded is preferably 200 mL to 6 L, more preferably 300 mL to 2 L. The shape of the bottle body can be any shape such as circular, square (including shapes with cut corners), hexagons, and the like.
 本発明のポリエステル樹脂は、ブロー成形(好ましくはダイレクトブロー成形)に供され、化粧品、洗剤、飲料等の容器(例えばボトル)に好適に使用される。 The polyester resin of the present invention is subjected to blow molding (preferably direct blow molding) and is suitably used for containers (for example, bottles) for cosmetics, detergents, beverages, and the like.
 以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.
ポリエステル樹脂の固有粘度IVの測定
 パラクロロフェノール/テトラクロロエタン(3/1:重量比)混合溶媒にポリエステル樹脂を溶解し、オストワルド粘度計を用いて30℃で測定した。
Measurement of Intrinsic Viscosity IV of Polyester Resin A polyester resin was dissolved in a mixed solvent of parachlorophenol/tetrachloroethane (3/1: weight ratio) and measured at 30° C. using an Ostwald viscometer.
ポリエステル樹脂の組成の測定
 ポリエステル樹脂の組成は、重クロロホルム溶媒中でRUKER製AVANCE500フーリエ変換核磁気共鳴装置を用いて、1H-NMR分析を行い、その積分比より決定した。
Measurement of Composition of Polyester Resin The composition of the polyester resin was determined by 1 H-NMR analysis in heavy chloroform solvent using RUKER's AVANCE 500 Fourier transform nuclear magnetic resonance spectrometer and from the integral ratio thereof.
ポリエステル樹脂の融点の測定
 ポリエステル樹脂5mgをアルミニウム製サンプルパンに入れて密封し、ティー・エイ・インスツルメント・ジャパン(株)製示差走査熱量分析計(DSC)DSC-Q100を用いて、300℃まで、昇温速度20℃/分にて測定し、融解熱の最大ピーク温度を結晶融点として求めた。
Measurement of melting point of polyester resin 5 mg of polyester resin is placed in an aluminum sample pan, sealed, and measured at 300 ° C. using a differential scanning calorimeter (DSC) DSC-Q100 manufactured by TA Instruments Japan Co., Ltd. The maximum peak temperature of the heat of fusion was determined as the crystalline melting point.
ゲルの評価
(1)中空成形体の成形
 ポリエステル樹脂を、脱湿空気を用いた乾燥機で乾燥し、名機製作所製M-150C-DM型射出成形機により樹脂温度290℃でプリフォームを成形した。このプリフォームの口栓部を自家製の口栓部結晶化装置で加熱結晶化させ、予備成形体とした。次にこの予備成形体をCORPOPLAST社製のLB-01E成形機で二軸延伸ブローし、引き続き約150℃に設定した金型内で約5秒間熱固定し、容量が1500ccの容器(中空成形体)を成形した。延伸温度は100℃にコントロールした。
(2)中空成形体の外観(ゲル異物の確認)
 前記の中空成形体100本を目視で観察し、下記のように評価した。
〇:透明で外観問題なし
△~〇:中空成形体100本あたりゲル異物のボトルが1本目視で確認出来る
△:中空成形体100本あたりゲル異物のボトルが2本目視で確認出来る
×:中空成形体100本あたりゲル異物のボトルが3本以上目視で確認出来る
Evaluation of gel (1) Molding of hollow molded body Polyester resin is dried with a dryer using dehumidified air, and a preform is molded at a resin temperature of 290 ° C. with an M-150C-DM type injection molding machine manufactured by Meiki Seisakusho. bottom. The plug portion of this preform was heated and crystallized by a home-made plug portion crystallizer to obtain a preform. Next, this preform is biaxially stretched and blown with an LB-01E molding machine manufactured by CORPOPLAST, followed by heat setting in a mold set at about 150° C. for about 5 seconds, and a container with a capacity of 1500 cc (blow molded article ) was molded. The stretching temperature was controlled at 100°C.
(2) Appearance of hollow molded body (confirmation of gel contaminants)
100 hollow molded articles were visually observed and evaluated as follows.
○: Transparent and no problem in appearance △ ~ ○: One bottle with gel foreign matter can be visually confirmed per 100 hollow molded bodies △: Two bottles with gel foreign matter can be visually confirmed per 100 hollow molded bodies ×: Hollow Three or more bottles with gel foreign matter can be visually confirmed per 100 molded products.
溶融張力の測定
 ポリエステル樹脂の成形時に以下の装置及び条件で溶融張力を測定した。
キャピラリーレオメーター(東洋精機製作所)
温度:270℃
キャピラリー長:10mm
キャピラリー径:1mm
せん断速度:243s-1
引取最大速度:200m/min
引取開始速度:10m/min
或いは引取速度:100m/min(一定)
引取時間:90sec
Measurement of Melt Tension Melt tension was measured using the following equipment and conditions during molding of the polyester resin.
Capillary rheometer (Toyo Seiki Seisakusho)
Temperature: 270°C
Capillary length: 10mm
Capillary diameter: 1 mm
Shear rate: 243s -1
Maximum pick-up speed: 200m/min
Pick-up start speed: 10m/min
Or take-up speed: 100m/min (constant)
Collection time: 90sec
溶融粘度の測定
 ポリエステル樹脂の成形時に以下の装置及び条件で溶融張力を測定した。
キャピラリーレオメーター(東洋精機製作所)
キャピラリー長:10mm
キャピラリー径:1mm
温度:270℃
せん断速度:30s-1又は2000s-1
Measurement of Melt Viscosity Melt tension was measured using the following equipment and conditions during molding of the polyester resin.
Capillary rheometer (Toyo Seiki Seisakusho)
Capillary length: 10mm
Capillary diameter: 1 mm
Temperature: 270°C
Shear rate: 30s -1 or 2000s -1
酸価(末端カルボキシル基濃度(単位:eq/ton、酸価として表す))の測定
 ベンジルアルコール25mlにポリエステル樹脂を0.5g溶解し、0.01モル/l水酸化ナトリウムのベンジルアルコール溶液を使用して滴定した。使用した指示薬は、フェノールフタレイン0.10gをエタノール50mlおよび水50mlの混合液に溶解した溶液であった。
Measurement of acid value (terminal carboxyl group concentration (unit: eq/ton, expressed as acid value)) Dissolve 0.5 g of polyester resin in 25 ml of benzyl alcohol, and use a benzyl alcohol solution of 0.01 mol/l sodium hydroxide. and titrated. The indicator used was a solution of 0.10 g of phenolphthalein dissolved in a mixture of 50 ml of ethanol and 50 ml of water.
ポリエステル樹脂中のアルミニウム原子、リン原子、ゲルマニウム原子、チタン原子の量の測定
 厚みが5mm、内径50mmのステンレス製円形リング中でポリエステル樹脂を融点+20℃に加熱して溶融させサンプルピースを作製し、蛍光X線分析により、元素量を求め、ppmで表示した。なお量の決定の際には予め各元素量既知のサンプルから求めた検量線を使用した。
Measurement of the amount of aluminum atoms, phosphorus atoms, germanium atoms, and titanium atoms in the polyester resin Polyester resin was heated to a melting point +20 ° C in a stainless steel circular ring with a thickness of 5 mm and an inner diameter of 50 mm to prepare a sample piece. Elemental amounts were determined by fluorescent X-ray analysis and displayed in ppm. In determining the amount, a calibration curve obtained in advance from samples with known amounts of each element was used.
異型押出し成形(成形性(ドローダウン)、機械的特性、表面平滑性、透明性の評価)
 ポリエステル樹脂をシリンダー温度270℃に設定し、単軸押出し機(L/D=30、フルフライトスクリュー、スクリュー径50mm)にダイリップを取り付け、次に冷却水槽の先端に異形押出し製品の最終寸法を決定するサイジング金型を取り付け、水槽を経由して、引取機を装備した異形押出し成形設備により成形し、その成形時のドローダウンと成形品の機械的特性、表面平滑性、透明性を以下の基準に従って評価した。結果を表2に示す。
Profile extrusion molding (evaluation of moldability (drawdown), mechanical properties, surface smoothness, transparency)
Set the polyester resin cylinder temperature to 270°C, attach a die lip to a single screw extruder (L/D = 30, full flight screw, screw diameter 50 mm), and then determine the final dimensions of the profile extruded product at the tip of the cooling water tank. A sizing mold is installed, and the product is molded by a profile extrusion molding facility equipped with a take-up machine via a water tank, and the drawdown during molding and the mechanical properties, surface smoothness, and transparency of the molded product are evaluated according to the following criteria. was evaluated according to Table 2 shows the results.
成形性(ドローダウン)の評価
 ドローダウンを以下の基準で評価した。
◎:成形時にポリエステル樹脂のたれが全く生じずに、形状保持している
○:成形時にポリエステル樹脂のわずかなたれが生じる
△:成形時にポリエステル樹脂のたれが生じて安定して量産できない
×:成形時にポリエステル樹脂のたれによりダイリップからサイジング金型へ樹脂を通すことができない
Evaluation of moldability (drawdown) Drawdown was evaluated according to the following criteria.
◎: The shape is maintained without dripping of the polyester resin at all during molding. ○: A slight dripping of the polyester resin is generated during molding. Sometimes it is not possible to pass the resin from the die lip to the sizing mold due to dripping polyester resin.
成形品の機械的特性(強度)の評価
 ポリエステル樹脂成形品を180°折曲げて以下の基準で評価した。
○:50倍のルーペで観察しひび割れなし
△:目視でひび割れないが、50倍のルーペで観察しひび割れ有り
×:目視でひび割れ有り
Evaluation of Mechanical Properties (Strength) of Molded Article A polyester resin molded article was bent at 180° and evaluated according to the following criteria.
○: No cracks observed with a 50x loupe △: No cracks visually observed, but cracks observed with a 50x loupe ×: Visually cracked
表面平滑性の評価
 ポリエステル樹脂成形品の外側表面凹凸状態をkosaka Laboratory製サーフコーダーEt4000Aを用いて測定し、三次元粗さの中心面平均(SRa)により以下の基準で比較した。
◎:SRaが0.10μm未満
○:SRaが0.10μm以上0.12μm未満
△~〇:SRaが0.12μm以上0.14μm未満
△:SRaが0.14μm以上0.15μm未満
×:SRaが0.15μm以上
Evaluation of surface smoothness The unevenness of the outer surface of the polyester resin molded product was measured using a Surfcoder Et4000A manufactured by Kosaka Laboratory, and compared with the following criteria based on the center plane average (SRa) of the three-dimensional roughness.
◎: SRa is less than 0.10 μm ○: SRa is 0.10 μm or more and less than 0.12 μm △ ~ ◯: SRa is 0.12 μm or more and less than 0.14 μm △: SRa is 0.14 μm or more and less than 0.15 μm ×: SRa is 0.15 μm or more
透明性の評価
 肉厚7mmの成形板を下記の条件にて成形した。
 ヤマト科学製真空乾燥器DP61型を用いて予め減圧乾燥したポリエステル樹脂を用い、成形中に吸湿を防止するために、成形材料ホッパー内は乾燥不活性ガス(窒素ガス)パージを行った。M-150C-DM射出成形機による可塑化条件としては、フィードスクリュウ回転数=70%、スクリュウ回転数=120rpm、背圧0.5MPa、シリンダー温度はホッパー直下から順に45℃、250℃、以降ノズルを含め290℃に設定した。射出条件は射出速度及び保圧速度は20%、また成形品重量が146±0.2gになるように射出圧力及び保圧を調整し、その際保圧は射出圧力に対して0.5MPa低く調整した。射出時間、保圧時間はそれぞれ上限を10秒、7秒,冷却時間は50秒に設定し、成形品取出時間も含めた全体のサイクルタイムは概ね75秒程度である。金型には常時、水温10℃の冷却水を導入し温度調節するが、成形安定時の金型表面温度は22℃前後である。評価用の成形板は、成形材料導入し樹脂置換を行った後、成形開始から11~18ショット目の安定した成形板の中から任意に選ぶものとした。
 成形板のHAZEを、日本電色(株)製ヘイズメ-タ-、modelNDH2000で測定し、透明性を下記基準で評価した。
◎:HAZEが5%未満
○:HAZEが5%以上8%未満
△~〇:HAZEが8%以上10%未満
×:HAZEが10%以上
Evaluation of Transparency A molded plate having a thickness of 7 mm was molded under the following conditions.
The polyester resin was preliminarily dried under reduced pressure using a vacuum dryer Model DP61 manufactured by Yamato Scientific, and the inside of the molding material hopper was purged with a dry inert gas (nitrogen gas) in order to prevent moisture absorption during molding. The conditions for plasticization by the M-150C-DM injection molding machine are feed screw rotation speed = 70%, screw rotation speed = 120 rpm, back pressure 0.5 MPa, cylinder temperature 45 ° C, 250 ° C in order from directly below the hopper, and nozzles thereafter. was set to 290° C. including The injection speed and pressure holding speed were adjusted to 20%, and the injection pressure and holding pressure were adjusted so that the weight of the molded product was 146 ± 0.2 g. It was adjusted. The upper limits of the injection time and pressure holding time are set to 10 seconds and 7 seconds, respectively, and the cooling time is set to 50 seconds. Cooling water having a temperature of 10°C is constantly introduced into the mold for temperature control, but the mold surface temperature is around 22°C when the molding is stable. The molded plate for evaluation was arbitrarily selected from stable molded plates at 11th to 18th shots from the start of molding after the introduction of the molding material and replacement with the resin.
The HAZE of the molded plate was measured with a haze meter, model NDH2000, manufactured by Nippon Denshoku Co., Ltd., and the transparency was evaluated according to the following criteria.
◎: HAZE is less than 5% ○: HAZE is 5% or more and less than 8% △ ~ 〇: HAZE is 8% or more and less than 10% ×: HAZE is 10% or more
熱酸化安定性(耐熱酸化分解パラメーター(TOD))の評価
 ポリエステル樹脂のレジンチップ([IV]i)を冷凍粉砕して20メッシュ以下の粉末にした。この粉末を130℃で12時間真空乾燥し、粉末300mgを内径約8mm、長さ約140mmのガラス試験管に入れ70℃で12時間真空乾燥した。次いで、シリカゲルを入れた乾燥管を試験管上部につけて乾燥した空気下で、200℃の硝酸塩バスに浸漬して15分間加熱した後の[IV]f1を測定した。TODは、下記のように求めた。ただし、[IV]iおよび[IV]f1はそれぞれ加熱試験前と加熱試験後のIV(dL/g)を指す。冷凍粉砕は、フリーザーミル(米国スペックス社製、6750型)を用いて行った。専用セルに約2gのレジンチップと専用のインパクターを入れた後、セルを装置にセットし液体窒素を装置に充填して約10分間保持し、次いでRATE10(インパクターが1秒間に約20回前後する)で5分間粉砕を行った。
TOD=0.245{[IV]f1 -1.47-[IV]i -1.47
 ポリエステル樹脂のTODは、値が小さい方が、熱酸化安定性が高いことを表す。
Evaluation of Thermal Oxidative Stability (Thermal Oxidative Degradation Parameter (TOD)) Resin chips ([IV] i ) of polyester resin were freeze-pulverized into powder of 20 mesh or less. This powder was vacuum-dried at 130° C. for 12 hours, and 300 mg of the powder was placed in a glass test tube having an inner diameter of about 8 mm and a length of about 140 mm and vacuum-dried at 70° C. for 12 hours. Next, a drying tube containing silica gel was attached to the upper part of the test tube, and the [IV] f1 was measured after being immersed in a nitrate bath at 200° C. for 15 minutes under dry air. TOD was determined as follows. However, [IV] i and [IV] f1 refer to IV (dL/g) before and after the heating test, respectively. Freeze pulverization was performed using a freezer mill (Model 6750, manufactured by Spex, Inc., USA). After putting about 2 g of resin chips and a dedicated impactor in the special cell, set the cell in the device, fill the device with liquid nitrogen, hold it for about 10 minutes, and then set it to RATE 10 (the impactor moves about 20 times per second). back and forth) for 5 minutes.
TOD = 0.245 {[IV] f1-1.47- [IV] i -1.47 }
A smaller TOD value of the polyester resin indicates higher thermal oxidation stability.
熱安定性(耐熱分解パラメーター(TD))の評価
 乾燥したポリエステル樹脂のチップ3gをガラス製試験管に入れ、窒素雰囲気下で280℃のオイルバスに120分浸漬させ溶融させた。加熱した後の[IV]f1を測定した。TDは、下記のように求めた。ただし、[IV]iおよび[IV]f1はそれぞれ加熱試験前と加熱試験後のIV(dL/g)を指す。
TD=0.245{[IV]f1 -1.47-[IV]i -1.47
 ポリエステル樹脂のTDは、値が小さい方が、熱安定性が高いことを表す。
Evaluation of thermal stability (thermal decomposition parameter (TD)) 3 g of dried polyester resin chips were placed in a glass test tube and immersed in an oil bath at 280°C for 120 minutes in a nitrogen atmosphere to melt. [IV] f1 was measured after heating. TD was determined as follows. However, [IV] i and [IV] f1 refer to IV (dL/g) before and after the heating test, respectively.
TD = 0.245 {[IV] f1-1.47- [IV] i -1.47 }
A smaller TD value of the polyester resin indicates higher thermal stability.
合成例1~6(式(I)で表される化合物(分岐剤)の調製)
 式(I)で表される化合物は、特許文献1~3、米国特許出願第09/354350号及び米国特許出願第09/614402号の記載を参照して、2ガロンのフリーラジカル連続式重合反応器系内で調製した。合成例1~6で得られた式(I)で表される化合物の組成及び重量平均分子量を下記の表1に示す。
 なお、式(I)で表される化合物の重量平均分子量は、標準ポリスチレン換算のGPCにより算出した。具体的には、式(I)で表される化合物の試料4mgを秤量し、4mlのクロロホルムとイソフルオロイソプロパノールの混合溶媒(60/40体積%)に溶解後、0.2μmのメンブレンフィルターでろ過し、得られた試料溶液をGPCで測定し、標準ポリスチレンに換算して重量平均分子量を求めた。
Synthesis Examples 1 to 6 (Preparation of Compound (Branching Agent) Represented by Formula (I))
Compounds of formula (I) are prepared in a two gallon free radical continuous polymerization reaction as described in US Pat. prepared in situ. The compositions and weight-average molecular weights of the compounds represented by Formula (I) obtained in Synthesis Examples 1 to 6 are shown in Table 1 below.
The weight average molecular weight of the compound represented by formula (I) was calculated by GPC in terms of standard polystyrene. Specifically, 4 mg of a sample of the compound represented by formula (I) is weighed, dissolved in 4 ml of a mixed solvent of chloroform and isofluoroisopropanol (60/40% by volume), and filtered through a 0.2 μm membrane filter. Then, the obtained sample solution was measured by GPC and converted to standard polystyrene to obtain the weight average molecular weight.
 また、式(I)で表される化合物のl、m、nは、1H-NMR、及び13C-NMR分析により求めた。
すなわち、l、m、nは、平均個数として小数点以下一桁を四捨五入して整数で表した。具体的には、式(I)で表される化合物の試料を1H-NMRでは重水素化クロロホルム/トリフルオロ酢酸混合溶媒(体積比は85/15)、13C-NMRでは重水素化クロロホルムまたは重水素化クロロホルム/ヘキサフルオロイソプロパノール混合溶媒(体積比は1/1)に溶解後、フーリエ変換核磁気共鳴装置(BRUKER製AVANCE NEO600)で、積算回数50~200回(1H-NMR)、10000回(13C-NMR)の条件、室温で測定した。1H-NMRと13C-NMRスペクトルにより、各成
分の比率、末端に位置する成分の割合を算出し、l、m、nを求めた。
l, m and n of the compound represented by formula (I) were determined by 1H-NMR and 13C-NMR analyses.
That is, l, m, and n were expressed as integers by rounding off one decimal place as the average number. Specifically, a sample of the compound represented by formula (I) was prepared in a mixed solvent of deuterated chloroform/trifluoroacetic acid (85/15 by volume) for 1H-NMR, and deuterated chloroform or a heavy solvent for 13C-NMR. After dissolving in a mixed solvent of hydrogenated chloroform/hexafluoroisopropanol (volume ratio is 1/1), with a Fourier transform nuclear magnetic resonance spectrometer (AVANCE NEO600 manufactured by BRUKER), the number of integration times is 50 to 200 (1H-NMR), 10000 times ( 13C-NMR) conditions, at room temperature. From the 1H-NMR and 13C-NMR spectra, the ratio of each component and the ratio of components positioned at the ends were calculated, and l, m and n were obtained.
 また、合成例で用いた式(I)で表される化合物は、以下のメタクリルモノマー構成単位(以下、DEMA-E構成単位と略す)を有する(*は、他のモノマー構成単位(例えばスチレン構成単位、メタクリル酸メチル構成単位)との結合手を表す)。例えば、このDEMA-E構成単位を含む化合物は、メタクリル酸グリシジルを水で開環反応させジオールを付加して合成する方法やメタクリル酸にジオールを付加反応させて合成する方法等により得ることができる。更に、スチレンとグリシジルメタアクリレート及び/又はメタクリル酸メチルの共重合体は、特許文献1~3、米国特許出願第09/354350号及び米国特許出願第09/614402号により合成した後に水で開環させジオールを付加して合成する方法等に供されてもよい。 In addition, the compound represented by formula (I) used in the synthesis examples has the following methacrylic monomer structural unit (hereinafter abbreviated as DEMA-E structural unit) (* indicates other monomer structural unit (for example, styrene structural unit unit, represents a bond with the methyl methacrylate structural unit)). For example, a compound containing this DEMA-E structural unit can be obtained by a method of synthesizing glycidyl methacrylate by ring-opening reaction with water and adding a diol, a method of synthesizing by adding a diol to methacrylic acid, or the like. . Further, copolymers of styrene and glycidyl methacrylate and/or methyl methacrylate are synthesized according to US Patent Application Nos. 09/354,350 and 09/614,402, followed by ring-opening with water. It may be subjected to a method of synthesizing by adding a diol.
<DEMA-E構成単位>
Figure JPOXMLDOC01-appb-C000006
<DEMA-E structural unit>
Figure JPOXMLDOC01-appb-C000006
 下記において使用した略号は、STY=スチレン、MMA=メタクリル酸メチル、DEMA-E=上記化学式のメタクリルモノマー構成単位である。 The abbreviations used below are STY = styrene, MMA = methyl methacrylate, DEMA-E = methacrylic monomer structural unit of the above chemical formula.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
実施例1
 攪拌機、温度計、流出用冷却器を装備した10リットルの圧力容器にテレフタル酸(三井化学製)2432g、エチレングリコール(日本触媒製)1772g、ビスフェノールA-EO付加物(三洋化成工業製BPE-20F)234g、トリエチルアミン(ナカライテスク製)4gを仕込み、0.35MPa加圧下、240℃で3.0時間エステル化を実施した。得られるポリエステル樹脂のアルコール成分100質量%に対して、合成例1で得られた式(I)で表される化合物を0.2質量%となるよう、流速を制御しつつ連続的に添加し、段階的に反応を進行させた。
Example 1
2432 g of terephthalic acid (Mitsui Chemicals Co., Ltd.), 1772 g of ethylene glycol (Nippon Shokubai Co., Ltd.), bisphenol A-EO adduct (Sanyo Kasei BPE-20F ) and 4 g of triethylamine (manufactured by Nacalai Tesque) were charged, and esterification was carried out at 240° C. for 3.0 hours under a pressure of 0.35 MPa. The compound represented by the formula (I) obtained in Synthesis Example 1 was continuously added to 0.2% by mass with respect to 100% by mass of the alcohol component of the resulting polyester resin while controlling the flow rate. , allowing the reaction to proceed stepwise.
ポリエステル樹脂の質量に対して、重縮合触媒として酢酸アルミニウムをアルミニウム原子として30ppmとIrgamod295(BASF製)をリン原子として72ppmを加え、次いで、ソルベントブルー45(クラリアント製)をポリエステル樹脂に対して1ppm添加し、窒素雰囲気下、常圧にて260℃で5分間攪拌した。その後、60分間かけて280℃まで昇温しつつ反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに280℃、13.3Paで重縮合反応を実施した。放圧に続き、微加圧下のレジンを冷水にストランド状に吐出して急冷し、その後20秒間冷水中で保持した後、カティングして長さ約3mm、直径約2mmのシリンダー形状のペレットを得た。 With respect to the mass of the polyester resin, add 30 ppm of aluminum acetate as an aluminum atom and 72 ppm of Irgamod 295 (manufactured by BASF) as a phosphorus atom as a polycondensation catalyst, and then add 1 ppm of Solvent Blue 45 (manufactured by Clariant) to the polyester resin. The mixture was stirred at 260° C. for 5 minutes under normal pressure in a nitrogen atmosphere. After that, the pressure of the reaction system was gradually lowered to 13.3 Pa (0.1 Torr) while the temperature was raised to 280° C. over 60 minutes, and polycondensation reaction was further carried out at 280° C. and 13.3 Pa. Following the pressure release, the resin under slight pressure was extruded into cold water in the form of a strand, rapidly cooled, held in cold water for 20 seconds, and cut to obtain cylindrical pellets with a length of about 3 mm and a diameter of about 2 mm. rice field.
 溶融重合で得られたポリエステルペレットを、減圧乾燥(13.3Pa以下、80℃、12時間)した後、引き続き結晶化処理(13.3Pa以下、130℃、3時間、さらに、13.3Pa以下、160℃、3時間)を行った。放冷後のこのポリエステルペレットを固相重合反応器内で、系内を13.3Pa以下、200℃~220℃に保ちながら固相重合を行い、IVが1.11dl/gのポリエステルペレットを得た。ポリエステル樹脂のジオール成分は、エチレングリコール95モル%に対し、ビスフェノールA-EO付加物5モル%の比率であった。各評価の結果を表2に記す。 The polyester pellets obtained by melt polymerization were dried under reduced pressure (13.3 Pa or less, 80°C, 12 hours), and then subjected to crystallization treatment (13.3 Pa or less, 130°C, 3 hours, further 13.3 Pa or less, 160° C., 3 hours) was performed. The polyester pellets after standing to cool are solid-phase polymerized in a solid-phase polymerization reactor while maintaining the system at 13.3 Pa or less and 200° C. to 220° C. to obtain polyester pellets having an IV of 1.11 dl / g. rice field. The ratio of the diol component of the polyester resin was 95 mol % of ethylene glycol and 5 mol % of the bisphenol A-EO adduct. Table 2 shows the results of each evaluation.
実施例2
 実施例1において、合成例1で得られた式(I)で表される化合物の添加量を0.001質量%に変更し、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Example 2
In Example 1, the addition amount of the compound represented by formula (I) obtained in Synthesis Example 1 was changed to 0.001% by mass, and polymerization was performed under the same conditions as in Example 1 to obtain polyester pellets. .
実施例3
 実施例1において、合成例1で得られた式(I)で表される化合物の添加量を4質量%に変更し、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Example 3
In Example 1, the addition amount of the compound represented by formula (I) obtained in Synthesis Example 1 was changed to 4% by mass, and polymerization was performed under the same conditions as in Example 1 to obtain polyester pellets.
実施例4
 実施例1において、合成例1で得られた式(I)で表される化合物を合成例2で得られた式(I)で表される化合物に変更し、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Example 4
In Example 1, the compound represented by Formula (I) obtained in Synthesis Example 1 was changed to the compound represented by Formula (I) obtained in Synthesis Example 2, and polymerized under the same conditions as in Example 1. was performed to obtain polyester pellets.
実施例5
 実施例1において、合成例1で得られた式(I)で表される化合物を合成例3で得られた式(I)で表される化合物に変更し、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Example 5
In Example 1, the compound represented by Formula (I) obtained in Synthesis Example 1 was changed to the compound represented by Formula (I) obtained in Synthesis Example 3, and polymerized under the same conditions as in Example 1. was performed to obtain polyester pellets.
実施例6
 実施例1において、合成例1で得られた式(I)で表される化合物を合成例4で得られた式(I)で表される化合物に変更し、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Example 6
In Example 1, the compound represented by Formula (I) obtained in Synthesis Example 1 was changed to the compound represented by Formula (I) obtained in Synthesis Example 4, and polymerized under the same conditions as in Example 1. was performed to obtain polyester pellets.
実施例7
 実施例1において、合成例1で得られた式(I)で表される化合物を合成例5で得られた式(I)で表される化合物に変更し、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Example 7
In Example 1, the compound represented by Formula (I) obtained in Synthesis Example 1 was changed to the compound represented by Formula (I) obtained in Synthesis Example 5, and polymerized under the same conditions as in Example 1. was performed to obtain polyester pellets.
実施例8
 実施例1において、合成例1で得られた式(I)で表される化合物を合成例6で得られた式(I)で表される化合物に変更し、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Example 8
In Example 1, the compound represented by Formula (I) obtained in Synthesis Example 1 was changed to the compound represented by Formula (I) obtained in Synthesis Example 6, and polymerized under the same conditions as in Example 1. was performed to obtain polyester pellets.
実施例9
 実施例1において、エステル化の時間を1.5時間に変更する以外は、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Example 9
Polymerization was carried out under the same conditions as in Example 1 except that the esterification time was changed to 1.5 hours to obtain polyester pellets.
実施例10
 実施例1において、エチレングリコールの仕込み量を1002gに、エステル化の時間を1.0時間に変更する以外は、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Example 10
Polymerization was carried out under the same conditions as in Example 1 except that the amount of ethylene glycol charged was changed to 1002 g and the esterification time was changed to 1.0 hour to obtain polyester pellets.
実施例11
 実施例1において、重縮合触媒として二酸化ゲルマニウムをポリエステル樹脂の質量に対してゲルマニウム原子100ppmとなるよう、トリエチルリン酸をポリエステル樹脂の質量に対してリン原子30ppmとなるように変更する以外は、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Example 11
In Example 1, germanium dioxide as a polycondensation catalyst was changed to 100 ppm of germanium atoms relative to the mass of the polyester resin, and triethyl phosphate was changed to 30 ppm of phosphorus atoms relative to the mass of the polyester resin. Polymerization was carried out under the same conditions as in Example 1 to obtain polyester pellets.
実施例12
 実施例1において、重縮合触媒としてテトラブチルチタンをポリエステル樹脂の質量に対してチタン原子原子10ppmとなるよう、トリエチルリン酸をポリエステル樹脂の質量に対してリン原子100ppmとなるように変更する以外は、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Example 12
In Example 1, tetrabutyl titanium as a polycondensation catalyst is changed so that the titanium atom atom is 10 ppm relative to the mass of the polyester resin, and triethyl phosphate is changed so that the phosphorus atom atom is 100 ppm relative to the mass of the polyester resin. , Polymerization was carried out under the same conditions as in Example 1 to obtain polyester pellets.
実施例13
 実施例1において、ポリエステル樹脂のジオール成分が、エチレングリコール98モル%に対し、ビスフェノールA-EO付加物2モル%の比率になるよう、仕込み量を変更する以外は、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Example 13
In Example 1, the conditions were the same as in Example 1, except that the charging amount was changed so that the diol component of the polyester resin had a ratio of 2 mol% of the bisphenol A-EO adduct with respect to 98 mol% of ethylene glycol. Polymerization was carried out to obtain polyester pellets.
実施例14
 実施例1において、ポリエステル樹脂のジオール成分が、エチレングリコール85モル%に対し、ビスフェノールA-EO付加物15モル%の比率になるよう、仕込み量を変更する以外は、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Example 14
In Example 1, the conditions were the same as in Example 1, except that the charging amount was changed so that the ratio of the diol component of the polyester resin was 15 mol% of the bisphenol A-EO adduct with respect to 85 mol% of ethylene glycol. Polymerization was carried out to obtain polyester pellets.
比較例1
 実施例1において、式(I)で表される化合物を添加せずに、重縮合触媒として、二酸化ゲルマニウムをポリエステル樹脂の質量に対してゲルマニウム原子100ppmとなるように、トリエチルリン酸をポリエステル樹脂の質量に対してリン原子30ppmとなるように変更する以外は、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Comparative example 1
In Example 1, without adding the compound represented by formula (I), as a polycondensation catalyst, germanium dioxide was added to the polyester resin so that the germanium atom was 100 ppm with respect to the mass of the polyester resin, and triethyl phosphate was added to the polyester resin. Polymerization was carried out under the same conditions as in Example 1, except that the amount of phosphorus atoms was changed to 30 ppm with respect to the mass, to obtain polyester pellets.
比較例2
 実施例1において、合成例1で得られた式(I)で表される化合物の添加量を0.0001質量%に変更し、重縮合触媒として、二酸化ゲルマニウムをポリエステル樹脂の質量に対してゲルマニウム原子100ppmとなるように、トリエチルリン酸をポリエステル樹脂の質量に対してリン原子30ppmとなるように変更する以外は、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Comparative example 2
In Example 1, the amount of the compound represented by Formula (I) obtained in Synthesis Example 1 was changed to 0.0001% by mass, and germanium dioxide was added as a polycondensation catalyst to the mass of the polyester resin. Polymerization was carried out under the same conditions as in Example 1, except that the amount of triethyl phosphate was changed to 30 ppm of phosphorus atoms with respect to the mass of the polyester resin so as to obtain 100 ppm atoms, to obtain polyester pellets.
比較例3
 実施例1において、合成例1で得られた式(I)で表される化合物の添加量を6質量%に変更し、重縮合触媒として、二酸化ゲルマニウムをポリエステル樹脂の質量に対してゲルマニウム原子100ppmとなるように、トリエチルリン酸をポリエステル樹脂の質量に対してリン原子30ppmとなるように変更する以外は、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Comparative example 3
In Example 1, the addition amount of the compound represented by Formula (I) obtained in Synthesis Example 1 was changed to 6% by mass, and germanium dioxide was used as a polycondensation catalyst in an amount of germanium atom 100 ppm with respect to the mass of the polyester resin. Polymerization was carried out under the same conditions as in Example 1, except that triethyl phosphate was changed to 30 ppm of phosphorus atoms with respect to the mass of the polyester resin, to obtain polyester pellets.
比較例4
 実施例1において、重縮合触媒として、二酸化ゲルマニウムをポリエステル樹脂の質量に対してゲルマニウム原子100ppmとなるように、トリエチルリン酸をポリエステル樹脂の質量に対してリン原子30ppmとなるように変更し、更にポリエステル樹脂のジオール成分が、エチレングリコール99モル%に対し、ビスフェノールA-EO付加物1モル%の比率になるよう、仕込み量を変更する以外は、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Comparative example 4
In Example 1, as the polycondensation catalyst, germanium dioxide was changed so that the germanium atom was 100 ppm relative to the mass of the polyester resin, and triethyl phosphate was changed so that the phosphorus atom was 30 ppm relative to the mass of the polyester resin. Polymerization was carried out under the same conditions as in Example 1, except that the charging amount was changed so that the diol component of the polyester resin had a ratio of 1 mol% of the bisphenol A-EO adduct to 99 mol% of ethylene glycol. A pellet was obtained.
比較例5
 実施例1において、重縮合触媒として、二酸化ゲルマニウムをポリエステル樹脂の質量に対してゲルマニウム原子100ppmとなるように、トリエチルリン酸をポリエステル樹脂の質量に対してリン原子30ppmとなるように変更し、更にポリエステル樹脂のジオール成分が、エチレングリコール84モル%に対し、ビスフェノールA-EO付加物16モル%の比率になるよう、仕込み量を変更する以外は、実施例1と同条件で重合を行い、ポリエステルペレットを得た。
Comparative example 5
In Example 1, as the polycondensation catalyst, germanium dioxide was changed so that the germanium atom was 100 ppm relative to the mass of the polyester resin, and triethyl phosphate was changed so that the phosphorus atom was 30 ppm relative to the mass of the polyester resin. Polymerization was carried out under the same conditions as in Example 1, except that the charging amount was changed so that the diol component of the polyester resin had a ratio of 16 mol% of the bisphenol A-EO adduct to 84 mol% of ethylene glycol. A pellet was obtained.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 なお、実施例1~14において、溶融粘度は、温度270℃、剪断速度30s-1で、26000dPa・s以上、温度270℃、剪断速度2000s-1で、6500dPa・s以下であった。 In Examples 1 to 14, the melt viscosity was 26000 dPa·s or more at a temperature of 270° C. and a shear rate of 30 s −1 and was 6500 dPa·s or less at a temperature of 270° C. and a shear rate of 2000 s −1 .
 本発明のポリエステル樹脂は、高い溶融張力を必要とされる押出し成形、異形押出し成形、ダイレクトブロー成形、インフレーション成形、インジェクションブロー成形、カレンダー加工成形における成形性の改良、および透明性を維持した機械的特性の改良を実現でき、産業界に大きく寄与することが期待される。

 
The polyester resin of the present invention has improved moldability in extrusion molding, profile extrusion molding, direct blow molding, inflation molding, injection blow molding, calendering molding, which requires high melt tension, and mechanical properties while maintaining transparency. It is expected that the improvement of characteristics can be realized and that it will greatly contribute to the industrial world.

Claims (4)

  1.  ジカルボン酸成分としてテレフタル酸、アルコール成分としてエチレングリコール、ビスフェノールA-エチレンオキサイド付加物、及び下記式(I)で表される化合物を構成成分とし、テレフタル酸がジカルボン酸成分中、85~100mol%であり、エチレングリコール85~98mol%に対し、ビスフェノールA-エチレンオキサイド付加物2~15mol%の比率であり、下記式(I)で表される化合物は、アルコール成分100質量%中、0.001~5質量%であることを特徴とするポリエステル樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式中、m及びnはそれぞれ、1~1000の整数、lは0~1000の整数を示し、R1は、炭素数6~20の芳香族炭化水素基を示し、R2、R3、R4はそれぞれ、水素原子又は炭素数1~10のアルキル基を示す。)
    Terephthalic acid as a dicarboxylic acid component, ethylene glycol, a bisphenol A-ethylene oxide adduct as an alcohol component, and a compound represented by the following formula (I) are constituent components, and terephthalic acid is 85 to 100 mol% in the dicarboxylic acid component. There is a ratio of 2 to 15 mol% of the bisphenol A-ethylene oxide adduct to 85 to 98 mol% of ethylene glycol, and the compound represented by the following formula (I) is 0.001 to 0.001 in 100% by mass of the alcohol component. A polyester resin characterized by comprising 5% by mass.
    Figure JPOXMLDOC01-appb-C000001
    (wherein m and n are each an integer of 1 to 1000, l is an integer of 0 to 1000, R 1 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms, R 2 , R 3 , Each R 4 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)
  2.  式(I)で表される化合物の重量平均分子量が200以上50万以下である請求項1に記載のポリエステル樹脂。 The polyester resin according to claim 1, wherein the compound represented by formula (I) has a weight average molecular weight of 200 or more and 500,000 or less.
  3.  溶融張力が、温度270℃、引取速度100m/min、剪断速度243s-1で15mN以上である請求項1又は2のいずれかに記載のポリエステル樹脂。 3. The polyester resin according to claim 1, which has a melt tension of 15 mN or more at a temperature of 270° C., a take-up speed of 100 m/min and a shear rate of 243 s −1 .
  4.  溶融粘度が、温度270℃、剪断速度30s-1で、26000dPa・s以上、温度270℃、剪断速度2000s-1で、6500dPa・s以下である請求項1又は2のいずれかに記載のポリエステル樹脂。

     
    3. The polyester resin according to claim 1, which has a melt viscosity of 26000 dPa·s or more at a temperature of 270° C. and a shear rate of 30 s −1 and 6500 dPa·s or less at a temperature of 270° C. and a shear rate of 2000 s −1 . .

PCT/JP2022/032421 2021-08-31 2022-08-29 Polyester resin WO2023032920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023545562A JPWO2023032920A1 (en) 2021-08-31 2022-08-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021141172 2021-08-31
JP2021-141172 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023032920A1 true WO2023032920A1 (en) 2023-03-09

Family

ID=85412757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032421 WO2023032920A1 (en) 2021-08-31 2022-08-29 Polyester resin

Country Status (3)

Country Link
JP (1) JPWO2023032920A1 (en)
TW (1) TW202323364A (en)
WO (1) WO2023032920A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505419A (en) * 1992-04-03 1995-06-15 ビーエーエスエフ アクチェンゲゼルシャフト Polyesters based on hydroxyl-containing prepolymers consisting of olefinically unsaturated monomers and their use as binders for electrophotographic toners
JP2013500355A (en) * 2009-07-21 2013-01-07 バスフ コーポレーション Process for the production of condensation polymers by in-reactor chain extension and products thereof
JP2015025098A (en) * 2013-07-29 2015-02-05 日本エステル株式会社 Polyester resin composition and direct blow molded article made of the same
WO2022131219A1 (en) * 2020-12-15 2022-06-23 東洋紡株式会社 Polyester resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505419A (en) * 1992-04-03 1995-06-15 ビーエーエスエフ アクチェンゲゼルシャフト Polyesters based on hydroxyl-containing prepolymers consisting of olefinically unsaturated monomers and their use as binders for electrophotographic toners
JP2013500355A (en) * 2009-07-21 2013-01-07 バスフ コーポレーション Process for the production of condensation polymers by in-reactor chain extension and products thereof
JP2015025098A (en) * 2013-07-29 2015-02-05 日本エステル株式会社 Polyester resin composition and direct blow molded article made of the same
WO2022131219A1 (en) * 2020-12-15 2022-06-23 東洋紡株式会社 Polyester resin

Also Published As

Publication number Publication date
TW202323364A (en) 2023-06-16
JPWO2023032920A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
JP2020524738A (en) Polyester container and manufacturing method thereof
US4264751A (en) Copolyester resin having minimal carboxyl terminated ends and method for producing the same
JP5598162B2 (en) Copolyester molded product
WO2022131219A1 (en) Polyester resin
TWI529195B (en) Polyester resin
JP4771204B2 (en) Polyester resin composition
JP3765197B2 (en)   Polyester manufacturing method
JP2012144737A (en) Polyester resin composition
JPH05255491A (en) Copolyester and hollow container and stretched film made of the same
TWI881193B (en) Polyester resin
EP4267651A1 (en) Improved polyester composition for extrusion blow molded containers
WO2022131220A1 (en) Polyester resin
JP2011088972A (en) Polyester resin composition and molded article comprising the same
JP2024038206A (en) Polyester resin and method for producing polyester resin
WO2023032920A1 (en) Polyester resin
WO2023048255A1 (en) Polyester resin
JP7528464B2 (en) Polyalkylene glycol copolymer polyester
JP4784213B2 (en) Polyester manufacturing method
JP2006193710A (en) Polyester resin composition
JP2011042778A (en) Polyester resin composition and method for producing the same
JP2011026405A (en) Polyester polymerization catalyst, method for producing polyester using the same, and polyester
WO2023114069A1 (en) Improved polyester composition for extrusion blow molded containers
JP2006083401A (en) Polyester and process for producing the same
JP2004002664A (en) Copolyester and molded article
JP2011063751A (en) Polyester resin composition, and molded article comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023545562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22864502

Country of ref document: EP

Kind code of ref document: A1