WO2023032225A1 - Hot-rolled steel sheet - Google Patents
Hot-rolled steel sheet Download PDFInfo
- Publication number
- WO2023032225A1 WO2023032225A1 PCT/JP2021/032729 JP2021032729W WO2023032225A1 WO 2023032225 A1 WO2023032225 A1 WO 2023032225A1 JP 2021032729 W JP2021032729 W JP 2021032729W WO 2023032225 A1 WO2023032225 A1 WO 2023032225A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hot
- less
- rolled steel
- steel sheet
- ferrite
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/02—Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/13—Modifying the physical properties of iron or steel by deformation by hot working
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to hot-rolled steel sheets. Specifically, it relates to a hot-rolled steel sheet having high strength and excellent fatigue strength, toughness and ductility.
- the metal structure has a surface layer region having a ferrite phase as a main phase and an inner region having a bainite phase as a main phase, and the ratio of the surface layer region in the thickness direction of the steel sheet is
- a high-strength hot-rolled steel sheet having excellent bending workability has been proposed in which each of the front and back surfaces of the steel sheet has a total thickness of 1.0 to 5.0%.
- Patent Document 2 there is a central portion mainly composed of bainite and a surface layer portion mainly composed of polygonal ferrite, and the surface layer portion is formed at least in a region from both surfaces of the steel plate to a depth of 0.2 mm.
- a high-strength hot-rolled steel sheet with excellent toughness has been proposed.
- Patent Document 3 proposes a high-strength steel sheet with excellent bendability in which the average Vickers hardness from the surface layer to the half thickness position and the standard deviation of hardness are kept low.
- Patent Document 4 proposes a hot-rolled steel sheet with improved fatigue properties and surface machinability by controlling the area fraction of martensite and Vickers hardness within a predetermined range for each thickness direction. It is
- the surface layer has ferrite as the main phase and is softened, leaving room for further improvement in fatigue properties.
- the surface layer is softened, and there is room for further improvement in fatigue strength. Furthermore, since precipitation strengthening is carried out inside the plate thickness, dislocation movement in ferrite is hindered, and from this point of view, there is room for further improvement in toughness.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a hot-rolled steel sheet having high strength and excellent fatigue strength and toughness. Another object of the present invention is to provide a hot-rolled steel sheet having the above properties and excellent ductility, which is generally required for hot-rolled steel sheets applied to automotive parts. do.
- the precipitation-strengthened structure inhibits dislocation movement, so it has excellent fatigue strength. Therefore, precipitation-strengthened structures are often used in automotive underbody parts.
- dislocation motion is suppressed, plastic deformation is less likely to occur, resulting in deterioration of impact properties (particularly toughness). Therefore, it is presumed that the fatigue strength and impact properties are in a conflicting relationship.
- the present inventors analyzed the deformation mechanisms of fatigue strength and impact strength in detail.
- the present inventors found that the metallographic structure and hardness of the surface layer region of the hot-rolled steel sheet have a great effect on the fatigue strength, and the metallographic structure and hardness of the internal region of the hot-rolled steel plate have a great effect on the propagation of cracks. I thought it would work.
- the gist of the present invention made based on the above knowledge is as follows.
- the hot-rolled steel sheet according to one aspect of the present invention has a chemical composition, in mass%, C: 0.02 to 0.30%, Si: 0.10 to 2.00%, Mn: 0.5-3.0%, sol.
- Al 0.10 to 1.00%, Ti: 0.06-0.20%, P: 0.1000% or less, S: 0.0100% or less, N: 0.0100% or less, Nb: 0 to 0.100%, Ca: 0 to 0.0060%, Mo: 0-0.50%, Cr: 0 to 1.00%, V: 0 to 0.40%, Ni: 0 to 0.40%, Cu: 0-0.40%, B: 0 to 0.0020%, and Sn: 0 to 0.20%,
- the balance consists of Fe and impurities
- the metal structure of the internal region contains, in terms of area ratio, 40 to 80% in total of one or two of martensite and bainite, and 20 to 60% ferrite, and the area ratio of the remaining structure is less than 5%.
- ⁇ s/ ⁇ c which is the ratio of the ferrite area ratio ⁇ s of the surface layer region to the ferrite area ratio ⁇ c of the internal region, is 1.15 to 2.50;
- a hardness difference ratio (1-Hvs/Hvc) between the Vickers hardness Hvs of the surface region and the Vickers hardness Hvc of the inner region is 0.20 or less, Tensile strength is 980 MPa or more.
- the chemical composition is, in mass%, Nb: 0.010 to 0.100%, Ca: 0.0005 to 0.0060%, Mo: 0.02-0.50%, Cr: 0.02 to 1.00%, V: 0.01 to 0.40%, Ni: 0.01 to 0.40%, Cu: 0.01 to 0.40%, B: 0.0001-0.0020%, and Sn: 0.01-0.20% It may contain one or more selected from the group consisting of.
- This hot-rolled steel sheet has a high industrial value because it can reduce the weight and improve the durability of the body of an automobile or the like.
- a hot-rolled steel sheet according to an embodiment of the present invention (hereinafter sometimes referred to as a hot-rolled steel sheet according to this embodiment) will be described.
- the present invention is not limited to the configuration disclosed in this embodiment, and various modifications can be made without departing from the gist of the present invention.
- the hot-rolled steel sheet according to the present embodiment has a chemical composition in mass% of C: 0.02 to 0.30%, Si: 0.10 to 2.00%, Mn: 0.5 to 3.0%. , sol. Al: 0.10 to 1.00%, Ti: 0.06 to 0.20%, P: 0.1000% or less, S: 0.0100% or less, N: 0.0100% or less, and the balance: Contains Fe and impurities.
- C 0.02 to 0.30%
- Si 0.10 to 2.00%
- Mn 0.5 to 3.0%.
- sol. Al 0.10 to 1.00%
- Ti 0.06 to 0.20%
- P 0.1000% or less
- S 0.0100% or less
- N 0.0100% or less
- C is an important element for improving the strength of hot-rolled steel sheets.
- the C content should be 0.02% or more. Preferably it is 0.04% or more.
- the C content is made 0.30% or less. Preferably, it is 0.20% or less.
- Si is an element that has the effect of suppressing the formation of carbides during ferrite transformation and improving the toughness of the hot-rolled steel sheet.
- the Si content is set to 0.10% or more. Preferably, it is 0.20% or more or 0.50% or more.
- the Si content is set to 2.00% or less. Preferably, it is 1.50% or less.
- Mn is an element effective in improving the strength of hot-rolled steel sheets by improving hardenability and solid-solution strengthening.
- the Mn content is set to 0.5% or more. Preferably it is 1.0% or more.
- MnS is generated which is harmful to toughness and fatigue strength. Therefore, the Mn content is set to 3.0% or less. Preferably, it is 2.5% or less or 2.0% or less.
- Al 0.10 to 1.00%> Al is an important element for controlling ferrite transformation.
- the Al content is set to 0.10% or more. Preferably, it is 0.15% or more or 0.20% or more.
- the Al content is set to 1.00% or less. Preferably, it is 0.80% or less or 0.50% or less.
- sol. Al means acid-soluble Al, and indicates solid-solution Al present in steel in a solid-solution state.
- Ti is an element that strengthens ferrite by precipitation and is an important element for controlling ferrite transformation to obtain a desired amount of ferrite.
- the Ti content is made 0.06% or more. Preferably it is 0.08% or more.
- the Ti content is set to 0.20% or less. Preferably, it is 0.16% or less or 0.13% or less.
- P is an impurity, and the lower the P content, the better.
- the P content is made 0.1000% or less.
- it is 0.0500% or less or 0.0200% or less.
- the lower limit of the P content does not have to be specified, it is preferably 0.0010% or more from the viewpoint of refining cost.
- S is an impurity, and the lower the S content, the better.
- the S content is made 0.0100% or less.
- the S content is preferably 0.0060% or less. More preferably, it is 0.0050% or less.
- the lower limit of the S content does not have to be specified, it is preferably 0.0001% or more from the viewpoint of refining cost.
- N is an impurity. If the N content exceeds 0.0100%, coarse Ti nitrides are formed in the high temperature range, which deteriorates the toughness of the hot-rolled steel sheet. Therefore, the N content is set to 0.0100% or less. Preferably, it is 0.0060% or less or 0.0050% or less. Although the lower limit of the N content does not have to be specified, it is preferably 0.0001% or more from the viewpoint of refining cost.
- the hot-rolled steel sheet according to the present embodiment may contain the chemical components described above, with the balance being Fe and impurities.
- impurities refers to ores used as raw materials, scraps, or impurities that are mixed from the manufacturing environment, etc., and/or those that are allowed within a range that does not adversely affect the hot-rolled steel sheet according to the present embodiment. do.
- the following optional elements may be included in order to reduce manufacturing variations and further improve the strength of the hot-rolled steel sheet.
- the lower limit of the content of these elements is 0%.
- the content of each arbitrary element is less than the lower limit of the content explained below, it can be regarded as an impurity.
- Nb is an element that has the effect of increasing the strength of the hot-rolled steel sheet by refining the crystal grain size of the hot-rolled steel sheet and strengthening the precipitation of NbC.
- the Nb content is preferably 0.010% or more.
- the Nb content exceeds 0.100%, the above effect is saturated. Therefore, even when Nb is contained, the Nb content is set to 0.100% or less. Preferably, it is 0.060% or less.
- Ca is an element that has the effect of dispersing a large number of fine oxides during deoxidation of molten steel and refining the structure of the hot-rolled steel sheet.
- Ca is an element that fixes S in steel as spherical CaS, suppresses the formation of elongated inclusions such as MnS, and improves the hole expandability of hot-rolled steel sheets.
- the Ca content is preferably 0.0005% or more.
- the Ca content is made 0.0060% or less. Preferably, it is 0.0040% or less.
- Mo is an element effective for precipitation strengthening of ferrite.
- the Mo content is preferably 0.02% or more. More preferably, it is 0.10% or more.
- the Mo content is made 0.50% or less. Preferably, it is 0.30% or less.
- Cr 0.02 to 1.00%> Cr is an effective element for improving the strength of the hot-rolled steel sheet.
- the Cr content is preferably 0.02% or more. More preferably, it is 0.10% or more.
- the Cr content is set to 1.00% or less. Preferably, it is 0.80% or less.
- V improves the strength of hot-rolled steel sheets through strengthening by precipitates, grain refinement strengthening by suppressing the growth of ferrite grains, and dislocation strengthening by suppressing recrystallization.
- the V content is preferably 0.01% or more.
- the V content is set to 0.40% or less. Preferably, it is 0.20% or less.
- Ni suppresses phase transformation at high temperatures and improves the strength of the hot-rolled steel sheet.
- the Ni content is preferably 0.01% or more.
- the Ni content is set to 0.40% or less. Preferably, it is 0.20% or less.
- Cu exists in steel in the form of fine particles and improves the strength of hot-rolled steel sheets.
- the Cu content is preferably 0.01% or more.
- the Cu content is set to 0.40% or less. Preferably, it is 0.20% or less.
- ⁇ B 0.0001 to 0.0020%> B suppresses phase transformation at high temperatures and improves the strength of the hot-rolled steel sheet.
- the B content is preferably 0.0001% or more.
- the B content is set to 0.0020% or less. Preferably, it is 0.0005% or less.
- Sn is an element that suppresses the coarsening of crystal grains and improves the strength of the hot-rolled steel sheet.
- the Sn content is preferably 0.01% or more.
- the Sn content is set to 0.20% or less. Preferably, it is 0.10% or less.
- the chemical composition of the hot-rolled steel sheet mentioned above can be measured by a general analytical method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
- sol. Al can be measured by ICP-AES using the filtrate obtained by thermally decomposing the sample with acid.
- C and S may be measured using the combustion-infrared absorption method, and N may be measured using the inert gas fusion-thermal conductivity method.
- the metal structure of the hot-rolled steel sheet according to this embodiment contains 40 to 80% in total of one or two of martensite and bainite, 20 to 60% ferrite, and the balance is The area ratio of the structure is less than 5%, the ratio ⁇ s/ ⁇ c of the ferrite area ratio ⁇ s of the surface layer region to the ferrite area ratio ⁇ c of the internal region is 1.15 to 2.50, and the surface layer region and the Vickers hardness Hvc of the inner region (1-Hvs/Hvc) is 0.20 or less.
- the internal region is defined as a depth of 1/8 of the plate thickness from the surface of the hot-rolled steel plate to 3/ of the plate thickness from the surface, centering on the 1/4 depth position of the plate thickness from the surface of the hot-rolled steel plate. It refers to an area of 8 depths.
- the surface layer region means a region from the surface of the hot-rolled steel sheet to a depth of 20 ⁇ m from the surface.
- the structure mainly composed of martensite and bainite has a fine structure and excellent toughness.
- steel having a structure mainly composed of martensite and bainite exhibits fatigue resistance compared to precipitation-strengthened steel and composite structure (DP) steel of ferrite and martensite. It is known to be inferior in strength.
- precipitation-strengthened steel and DP steel are inferior in fatigue strength and toughness because high-speed dislocation movement in ferrite is inhibited.
- a steel plate structure has been created according to the required properties, but as the strength is further increased, it is becoming difficult to obtain both high fatigue strength and toughness.
- the hot-rolled steel sheet according to the present embodiment utilizes a composite structure of ferrite and martensite with excellent fatigue strength and precipitation strengthening by increasing the amount of ferrite in the surface layer region.
- a metal structure mainly composed of one or both of martensite and bainite, which are excellent in toughness is utilized in the inner region.
- high strength of 980 MPa or more and excellent fatigue strength, toughness and ductility can be obtained.
- the metallographic structure of the internal region of the hot-rolled steel sheet has a great effect on the toughness of the hot-rolled steel sheet. Therefore, the metal structure of the inner region is mainly composed of a low-temperature transformation structure.
- the low temperature transformation structure is martensite and bainite. If the total area ratio of these structures is less than 40%, the toughness of the hot-rolled steel sheet is inferior. Therefore, the total area ratio of martensite and bainite is set to 40% or more. It is preferably 45% or more, more preferably 50% or more.
- the total area ratio of martensite and bainite exceeds 80%, the fatigue strength of the hot-rolled steel sheet is inferior due to the large difference in hardness from the metal structure of the surface layer region. Therefore, the total area ratio of martensite and bainite is set to 80% or less. It is preferably 75% or less, more preferably 70% or less.
- the metal structure of the inner region contains only one of martensite and bainite
- the content of only one of martensite and bainite may be within the range described above.
- the total content of both martensite and bainite should be within the range described above.
- the area ratio of ferrite is set to 20% or more. It is preferably 25% or more, more preferably 30% or more.
- the area ratio of ferrite is set to 60% or less. It is preferably 55% or less, more preferably 50% or less.
- the area ratio of the metal structure in the internal region is less than 5% of the residual structure.
- the residual structure is one or more of pearlite and retained austenite.
- the residual tissue is preferably less than 3%, more preferably 2.5% or less, even more preferably 2% or less.
- ⁇ s/ ⁇ c which is the ratio of the ferrite area ratio ⁇ s of the surface layer region to the ferrite area ratio ⁇ c of the internal region, is less than 1.15, dislocations in ferrite Suppression of movement becomes insufficient, and the fatigue strength of the hot-rolled steel sheet becomes inferior. Therefore, ⁇ s/ ⁇ c is set to 1.15 or more. It is preferably 1.20 or more or 1.30 or more, more preferably 1.50 or more.
- ⁇ s/ ⁇ c is set to 2.50 or less. It is preferably 2.20 or less, more preferably 2.00 or less.
- ⁇ s/ ⁇ c which is the ratio of the total area ratio ⁇ s of martensite and bainite in the surface region to the total area ratio ⁇ c of martensite and bainite in the inner region, is 0.0. It is preferably between 30 and 0.90. When ⁇ s/ ⁇ c is 0.90 or less, dislocation motion in martensite and bainite is sufficiently suppressed, and the fatigue strength of the hot-rolled steel sheet is increased. ⁇ s/ ⁇ c is more preferably 0.85 or less, and even more preferably 0.80 or less.
- ⁇ s/ ⁇ c is 0.30 or more, it is suppressed that carbon is concentrated inside the sheet thickness during the transformation of martensite and bainite, and that the difference in hardness from the metal structure in the inner region becomes large.
- the toughness and fatigue strength of the rolled steel sheet are enhanced.
- ⁇ s/ ⁇ c is more preferably 0.40 or more, still more preferably 0.45 or more, and still more preferably 0.50 or more.
- the metallographic structure of the surface layer region may contain 30 to 80% ferrite in area ratio.
- the metal structure of the surface layer region may contain one or more of bainite, martensite, pearlite and retained austenite in an area ratio of 20 to 70% in total as a residual structure other than ferrite.
- Metal structure measurement method A sample is cut from a hot-rolled steel sheet so that a thickness cross-section perpendicular to the surface can be observed. After polishing the plate thickness cross section of this sample using #600 to #1500 silicon carbide paper, a diamond powder with a particle size of 1 to 6 ⁇ m is dispersed in a diluted solution such as alcohol or pure water to make a mirror surface. Finish and apply nital etching. Next, photographs of multiple fields of view are taken at arbitrary positions in the longitudinal direction of the cross section of the sample using a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL). An equidistant grid is drawn on the photograph to identify the tissue at the grid points.
- JSM-7001F thermal field emission scanning electron microscope
- the area ratio of each tissue is obtained by calculating the number of grid points corresponding to each tissue and dividing it by the total number of grid points. The larger the total number of grid points, the more accurately the area ratio can be obtained.
- the grid spacing is 2 ⁇ m ⁇ 2 ⁇ m, and the total number of grid points is 1,500.
- the area where cementite is precipitated in lamellar form inside the grain is judged to be pearlite.
- a region with low brightness and no substructure is judged to be ferrite.
- Regions with high brightness and in which the substructure is not revealed by etching are judged to be martensite and retained austenite.
- a region that does not correspond to any of the above is determined to be bainite.
- the area ratio of martensite is obtained by subtracting the area ratio of retained austenite obtained by EBSD analysis, which will be described later, from the area ratio of martensite and retained austenite obtained from photographed photographs.
- a sample is cut from the same position as the above measurement so that a thickness cross-section perpendicular to the surface can be observed.
- a diamond powder with a particle size of 1 to 6 ⁇ m is dispersed in a diluted solution such as alcohol or pure water to make a mirror surface. to finish.
- the sample is polished for 8 minutes with colloidal silica containing no alkaline solution at room temperature to remove strain introduced into the surface layer of the sample. Crystallographic orientation information is obtained by electron backscatter diffraction measurements at arbitrary positions in the longitudinal direction of the sample cross section at intervals of 0.1 ⁇ m.
- an EBSD apparatus composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used.
- the degree of vacuum in the EBSD apparatus is 9.6 ⁇ 10 ⁇ 5 Pa or less
- the acceleration voltage is 15 kV
- the irradiation current level is 13
- the electron beam irradiation level is 62.
- the obtained crystal orientation information is used to calculate the area ratio of retained austenite using the "Phase Map" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analysis device. It should be noted that a crystal structure of fcc is determined to be retained austenite.
- the hardness difference ratio between the Vickers hardness of the surface region and the Vickers hardness of the internal region 0.20 or less
- the hardness difference ratio between the Vickers hardness Hvs of the surface region and the Vickers hardness Hvc of the internal region (1-Hvs/Hvc) ) is more than 0.20, the surface region is softened and the fatigue strength of the hot-rolled steel sheet is inferior. Therefore, the hardness difference ratio between Hvs and Hvc (1-Hvs/Hvc) is set to 0.20 or less. It is preferably 0.15 or less, more preferably 0.10 or less.
- the hardness difference ratio between Hvs and Hvc (1-Hvs/Hvc) is preferably as small as possible, but from the viewpoint of manufacturing, it may be -0.10 or more, 0.00 or more, or 0.01 or more.
- Measurement method of Vickers hardness A test piece is cut out from a hot-rolled steel sheet so that a thickness cross-section perpendicular to the surface can be observed. After polishing the plate thickness cross section of the test piece using #600 to #1500 silicon carbide paper, a mirror surface is obtained by using a liquid in which diamond powder with a particle size of 1 to 6 ⁇ m is dispersed in a diluted solution such as alcohol or pure water. to finish. Let this plate thickness section be the measurement surface. Using a micro Vickers hardness tester, on the measurement surface, in the area from the surface to the depth of 1/8 of the plate thickness to the depth of 3/8 of the plate thickness from the surface, at a load of 1 kgf at intervals of 3 times or more of the indentation.
- the Vickers hardness Hvc of the metal structure of the internal region is obtained.
- the Vickers hardness is measured in a region from the surface to a depth of 20 ⁇ m from the surface of the measurement surface, and the average value of 20 points is calculated to obtain the Vickers hardness Hvs of the metal structure of the surface layer region.
- (1 ⁇ Hvs/Hvc) is calculated to obtain the Vickers hardness height difference ratio.
- the hot-rolled steel sheet according to this embodiment has a tensile (maximum) strength of 980 MPa or more. It is preferably 1000 MPa or more. If the tensile strength is less than 980 MPa, the applicable parts are limited and the contribution to vehicle weight reduction is small. Although the upper limit is not particularly limited, it may be 1500 MPa or less or 1300 MPa or less from the viewpoint of mold wear suppression. In addition, the hot-rolled steel sheet according to the present embodiment may have a total elongation of 10% or more, an absorbed energy at ⁇ 20° C. of 80 J/cm 2 or more, and a fatigue limit ratio (fatigue strength/ tensile strength) may be 0.48 or more.
- Tensile strength and total elongation are evaluated by performing a tensile test according to JIS Z 2241:2011.
- the test piece shall be JIS Z 2241:2011 No. 5 test piece.
- a tensile test piece is taken from a quarter portion from the edge in the width direction of the sheet, and the direction perpendicular to the rolling direction is taken as the longitudinal direction.
- a 2.5 mm sub-sized V-notch test piece specified in JIS Z 2242:2018 is sampled from a position close to the sampling position of the test piece used in the tensile test. Absorbed energy is measured by performing a C-direction notch Charpy impact test at ⁇ 20° C. using this test piece.
- the test is performed on the full thickness.
- Fatigue strength is measured using a Schenk plane bending fatigue tester in accordance with JIS Z 2275:1978. The stress load at the time of measurement is set at a test speed of 30 Hz in both swings, and the fatigue strength is measured at 107 cycles. Then, the fatigue limit ratio (fatigue strength/tensile strength) is calculated by dividing the fatigue strength at 107 cycles by the tensile strength measured by the tensile test described above.
- the thickness of the hot-rolled steel sheet according to this embodiment is not particularly limited, but may be 1.2 to 8.0 mm. If the thickness of the hot-rolled steel sheet is less than 1.2 mm, it may become difficult to ensure the rolling completion temperature and the rolling load may become excessive, making hot rolling difficult. Therefore, the thickness of the hot-rolled steel sheet according to this embodiment may be 1.2 mm or more. Preferably, it is 1.4 mm or more. On the other hand, if the plate thickness exceeds 8.0 mm, it may be difficult to obtain the metal structure described above after hot rolling. Therefore, the plate thickness may be 8.0 mm or less. Preferably, it is 6.0 mm or less.
- the hot-rolled steel sheet according to the present embodiment having the above-described chemical composition and metallographic structure may be provided with a plating layer on the surface for the purpose of improving corrosion resistance, etc., and may be used as a surface-treated steel sheet.
- the plating layer may be an electroplating layer or a hot dipping layer.
- the electroplating layer include electrogalvanizing and electroplating of Zn—Ni alloy.
- hot-dip coating layers include hot-dip galvanizing, hot-dip galvannealing, hot-dip aluminum plating, hot-dip Zn--Al alloy plating, hot-dip Zn--Al--Mg alloy plating, and hot-dip Zn--Al--Mg--Si alloy plating. be.
- the amount of plating deposited is not particularly limited, and may be the same as the conventional one. Further, it is possible to further improve the corrosion resistance by applying an appropriate chemical conversion treatment (for example, applying a silicate-based chromium-free chemical conversion treatment solution and drying) after plating.
- an appropriate chemical conversion treatment for example, applying a silicate-based chromium-free chemical conversion treatment solution and drying
- the hot-rolled steel sheet according to the present embodiment has the above-described chemical composition and metallographic structure, regardless of the manufacturing method. However, according to the manufacturing method described below, the hot-rolled steel sheet according to the present embodiment can be stably obtained, which is preferable.
- strain is imparted to the surface layer region by performing bending during finish rolling of hot rolling to promote ferrite transformation in the surface layer region.
- martensite and bainite are generated in addition to ferrite in the inner region. Therefore, it is possible to reduce the difference in hardness between the precipitation-strengthened surface layer region and the internal region where the low temperature transformation structure is generated without precipitation strengthening.
- the heating temperature of hot-rolled slabs has a great effect on the elimination of solution and elemental segregation.
- the heating temperature of the slab By setting the heating temperature of the slab to 1100° C. or higher, it is possible to prevent insufficient elimination of solution treatment and elemental segregation, and as a result, it is possible to prevent deterioration of the tensile properties and toughness of the product.
- the heating temperature of the slab by setting the heating temperature of the slab to 1350° C. or less, the effects of solutionization and elimination of elemental segregation can be saturated. Therefore, it is preferable to set the heating temperature of the slab to 1100 to 1350.degree. More preferably, it is 1150 to 1300°C.
- the temperature of the slab and the temperature of the steel plate in this embodiment refer to the surface temperature of the slab and the surface temperature of the steel plate.
- the slab is continuously passed through a rolling stand for finish rolling a plurality of times.
- the temperature of the hot-rolled steel sheet after the final pass is the lowest temperature in finish rolling performed by a plurality of stands.
- the rolling reduction after the final pass is ⁇ (t 0 ⁇ t 1 )/t 0 ⁇ 100 ( %).
- the Ar 3 point is represented by the following formula (1).
- Ar 3 points 901 ⁇ 325 ⁇ C+33 ⁇ Si ⁇ 92 ⁇ Mn+287 ⁇ P+40 ⁇ sol.
- Al... Formula (1) Each element symbol in the above formula (1) indicates the content (% by mass) of each element. If the element is not contained, 0 is substituted.
- the temperature (finishing temperature) of the hot-rolled steel sheet after the final pass of finish rolling is set to Ar 3 or more, the formation of ferrite during finish rolling can be suppressed, and as a result, the desired metal structure and properties can be obtained. can be done.
- the rolling reduction in the final pass of the finish rolling By setting the rolling reduction in the final pass of the finish rolling to 12% or more, recrystallization can be promoted in the finish rolling, the metal structure of the inner region and the surface layer region can be preferably controlled, and excellent fatigue strength can be obtained. can. Further, by setting the rolling reduction of the final pass to 45% or less, it is possible to suppress an increase in the load on the rolling stand and deterioration in the shape of the hot-rolled steel sheet after finish rolling. Therefore, it is preferable that the draft of the final pass in the finish rolling is 12 to 45%. More preferably, it is 15-45%.
- the surface layer region of the hot-rolled steel sheet (area from surface to 20 ⁇ m deep from the surface) has a thickness of 0.002 to 0.020. Straining is preferred.
- the strain during bending is preferably 0.002 or more. It is more preferably 0.003 or more or 0.004 or more.
- the strain during bending is 0.020 or less, it is possible to suppress the loss of production stability due to the tendency of buckling to occur during finish rolling.
- the strain during bending is preferably 0.020 or less. It is more preferably 0.015 or less or 0.010 or less.
- Bending is performed by a method such as pushing up the steel sheet from below with rolls between stands, and the strain during bending can be controlled by adjusting the bending angle by adjusting the amount of pushing up and the diameter of the rolls.
- the amount of strain during bending can be obtained from the following equation (2).
- the elapsed time from the end of finish rolling to the start of cooling is preferably 1.6 seconds or less.
- the elapsed time from the completion of finish rolling to the start of cooling is preferably 1.6 seconds or less.
- the steel sheet After the finish rolling is completed, it is preferable to cool the steel sheet to a temperature range of 600 to 750° C. at an average cooling rate of 40° C./second or more as primary cooling, and then air-cool for 2 to 6 seconds.
- the cooling rate during air cooling is 2 to 10° C./sec.
- the average cooling rate is a value obtained by dividing the temperature drop width of the steel sheet from the start of cooling to the end of cooling by the time required from the start of cooling to the end of cooling.
- some cooling facilities have no air-cooling section on the way, and some have one or more air-cooling sections on the way.
- any cooling equipment may be used. Even in the case of using a cooling facility having an air-cooling section, the average cooling rate from the start of cooling to the end of cooling should be within the range described above.
- the coiling temperature is almost equal to the secondary cooling stop temperature.
- the hot-rolled steel sheet may be temper-rolled according to a conventional method, or may be pickled to remove scales formed on the surface.
- plating such as the hot-dip galvanizing or electro-galvanizing described above may be formed, and further chemical conversion treatment may be performed.
- a steel having the chemical composition shown in Table 1 was melted, and a slab having a thickness of 240 to 300 mm was produced by continuous casting.
- hot-rolled steel sheets shown in Tables 4 and 5 were obtained under the manufacturing conditions shown in Tables 2 and 3.
- the bending process was performed by pushing up the steel plate from below between stands with a roll.
- the amount of strain during bending was controlled by adjusting the bending angle with the amount of pushing up and the diameter of the rolls. At this time, the amount of strain during bending was determined by the above formula (2).
- the area fraction, Vickers hardness, tensile strength, total elongation, absorbed energy at -20 ° C. and fatigue limit ratio of the metal structure of the inner region and the surface layer region were measured by the above-described method. asked.
- the measurement results obtained are shown in Tables 4 and 5.
- the hot-rolled steel sheet was judged to have excellent ductility and was judged as acceptable. On the other hand, when the total elongation was less than 10%, it was determined that the hot-rolled steel sheet did not have excellent ductility and was rejected. If the absorbed energy at ⁇ 20° C. was 80 J/cm 2 or more, the hot-rolled steel sheet was determined to be excellent in toughness and judged to be acceptable. On the other hand, when the absorbed energy at ⁇ 20° C. was less than 80 J/cm 2 , it was determined that the hot-rolled steel sheet did not have excellent toughness and was rejected.
- the fatigue limit ratio was 0.48 or more, the hot-rolled steel sheet was judged to have excellent fatigue strength and was judged to be acceptable. On the other hand, when the fatigue limit ratio was less than 0.48, it was determined that the hot-rolled steel sheet did not have excellent fatigue strength and was rejected.
- the hot-rolled steel sheets according to the examples of the present invention have high strength and excellent toughness, fatigue strength and ductility.
- the hot-rolled steel sheets according to the comparative examples are inferior in at least one of strength, toughness and fatigue strength.
- the above aspect of the present invention it is possible to provide a hot-rolled steel sheet having high strength and excellent fatigue strength, toughness and ductility. According to this hot-rolled steel sheet, it is possible to reduce the weight of the body of an automobile, etc., integrally mold parts, shorten the processing process, etc., and improve fuel efficiency and reduce manufacturing costs. Good value.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、熱延鋼板に関する。具体的には、高い強度、並びに優れた疲労強度、靱性および延性を有する熱延鋼板に関する。 The present invention relates to hot-rolled steel sheets. Specifically, it relates to a hot-rolled steel sheet having high strength and excellent fatigue strength, toughness and ductility.
近年、自動車の耐久性向上および衝突安全性の向上を目的として、自動車部材への高強度鋼板の適用が盛んに検討されている。しかしながら、鋼板を高強度化すると一般的に靱性は劣化する。そのため、高強度鋼板の開発においては、材料特性を劣化させずに高強度化を図ることが重要な課題である。特に、自動車部材へ適用される高強度鋼板においては、部品の疲労耐久性を確保することが重要となる。部品に加工される際には、打ち抜き面等から亀裂が進展し、高強度鋼板を用いたとしても部品の疲労耐久性が必ずしも向上するとは限らなかった。 In recent years, the application of high-strength steel sheets to automobile parts has been actively studied with the aim of improving the durability and collision safety of automobiles. However, increasing the strength of a steel sheet generally degrades its toughness. Therefore, in the development of high-strength steel sheets, it is an important issue to increase the strength without deteriorating the material properties. In particular, in high-strength steel sheets applied to automobile members, it is important to ensure the fatigue durability of the parts. When it is processed into parts, cracks develop from the punched surface or the like, and even if a high-strength steel plate is used, the fatigue durability of the parts does not necessarily improve.
これに対し、特許文献1では、金属組織が、フェライト相を主相とする表層領域と、ベイナイト相を主相とする内部領域とを有し、表層領域の鋼板厚さ方向に占める割合を、鋼板の表裏面のそれぞれ全板厚の1.0~5.0%とした曲げ加工性に優れた高強度熱延鋼板が提案されている。 On the other hand, in Patent Document 1, the metal structure has a surface layer region having a ferrite phase as a main phase and an inner region having a bainite phase as a main phase, and the ratio of the surface layer region in the thickness direction of the steel sheet is A high-strength hot-rolled steel sheet having excellent bending workability has been proposed in which each of the front and back surfaces of the steel sheet has a total thickness of 1.0 to 5.0%.
特許文献2では、ベイナイトを主体とする中心部と、ポリゴナルフェライトを主体とする表層部とを有し、表層部が少なくとも鋼板の両表面から0.2mm深さまでの領域に形成された、加工性に優れた高強度熱延鋼板が提案されている。 In Patent Document 2, there is a central portion mainly composed of bainite and a surface layer portion mainly composed of polygonal ferrite, and the surface layer portion is formed at least in a region from both surfaces of the steel plate to a depth of 0.2 mm. A high-strength hot-rolled steel sheet with excellent toughness has been proposed.
特許文献3では、表層から板厚1/2位置までの平均ビッカース硬さおよび硬さの標準偏差を低く抑えた、曲げ性に優れた高強度鋼板が提案されている。 Patent Document 3 proposes a high-strength steel sheet with excellent bendability in which the average Vickers hardness from the surface layer to the half thickness position and the standard deviation of hardness are kept low.
特許文献4には、板厚の深さ方向ごとに、マルテンサイトの面積分率およびビッカース硬度を所定の範囲に制御することで、疲労特性および表層被削性を向上させた熱延鋼板が提案されている。 Patent Document 4 proposes a hot-rolled steel sheet with improved fatigue properties and surface machinability by controlling the area fraction of martensite and Vickers hardness within a predetermined range for each thickness direction. It is
しかしながら、特許文献1~3に記載の熱延鋼板では、表層がフェライトを主相とし、軟質化しており、疲労特性について更に改善の余地があった。 However, in the hot-rolled steel sheets described in Patent Documents 1 to 3, the surface layer has ferrite as the main phase and is softened, leaving room for further improvement in fatigue properties.
また、特許文献4に記載の発明では、表層が軟質化しており、疲労強度について更に改善の余地があった。さらに、板厚内部において析出強化させていることから、フェライトにおける転位運動が阻害されており、この観点から靱性について更に改善の余地があった。 In addition, in the invention described in Patent Document 4, the surface layer is softened, and there is room for further improvement in fatigue strength. Furthermore, since precipitation strengthening is carried out inside the plate thickness, dislocation movement in ferrite is hindered, and from this point of view, there is room for further improvement in toughness.
近年では、自動車のさらなる軽量化の要求、部品形状の複雑化等を背景に、更に高い疲労強度および靱性を有する高強度の熱延鋼板が求められている。
本発明は上記の課題に鑑みてなされたものであり、高い強度、並びに優れた疲労強度および靱性を有する熱延鋼板を提供することを課題とする。また、本発明は、上記諸特性を有した上で、自動車部材に適用される熱延鋼板に一般的に要求される特性である、優れた延性を有する熱延鋼板を提供することを目的とする。
In recent years, against the background of demand for further weight reduction of automobiles, complicated shapes of parts, and the like, there is a demand for high-strength hot-rolled steel sheets having higher fatigue strength and toughness.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a hot-rolled steel sheet having high strength and excellent fatigue strength and toughness. Another object of the present invention is to provide a hot-rolled steel sheet having the above properties and excellent ductility, which is generally required for hot-rolled steel sheets applied to automotive parts. do.
析出強化させた組織は、転位運動を阻害するため、疲労強度に優れる。そのため、析出強化させた組織は、自動車足回り部品に多く利用されている。一方で、転位運動を抑制した場合、塑性変形が生じにくくなるため、衝撃特性(特に靱性)が劣化する。したがって、疲労強度と衝撃特性とは相反する関係であると推定される。本発明者らは、疲労強度および靭性の両方を向上させるため、疲労強度および衝撃強度それぞれの変形機構を詳細に解析した。その結果、本発明者らは、熱延鋼板の表層領域の金属組織および硬さが疲労強度に大きく影響を及ぼし、熱延鋼板の内部領域の金属組織および硬さが亀裂の進展に大きく影響を及ぼすと考えた。 The precipitation-strengthened structure inhibits dislocation movement, so it has excellent fatigue strength. Therefore, precipitation-strengthened structures are often used in automotive underbody parts. On the other hand, when dislocation motion is suppressed, plastic deformation is less likely to occur, resulting in deterioration of impact properties (particularly toughness). Therefore, it is presumed that the fatigue strength and impact properties are in a conflicting relationship. In order to improve both fatigue strength and toughness, the present inventors analyzed the deformation mechanisms of fatigue strength and impact strength in detail. As a result, the present inventors found that the metallographic structure and hardness of the surface layer region of the hot-rolled steel sheet have a great effect on the fatigue strength, and the metallographic structure and hardness of the internal region of the hot-rolled steel plate have a great effect on the propagation of cracks. I thought it would work.
上記知見に基づいてなされた本発明の要旨は、以下の通りである。
(1)本発明の一態様に係る熱延鋼板は、化学組成が、質量%で、
C:0.02~0.30%、
Si:0.10~2.00%、
Mn:0.5~3.0%、
sol.Al:0.10~1.00%、
Ti:0.06~0.20%、
P:0.1000%以下、
S:0.0100%以下、
N:0.0100%以下、
Nb:0~0.100%、
Ca:0~0.0060%、
Mo:0~0.50%、
Cr:0~1.00%、
V:0~0.40%、
Ni:0~0.40%、
Cu:0~0.40%、
B:0~0.0020%、および
Sn:0~0.20%を含有し、
残部がFeおよび不純物からなり、
内部領域の金属組織が、面積率で、マルテンサイトおよびベイナイトの1種または2種を合計で40~80%、フェライトを20~60%含有し、且つ残部組織の面積率が5%未満であり、
表層領域のフェライト面積率αsと、前記内部領域のフェライト面積率αcとの比であるαs/αcが1.15~2.50であり、
前記表層領域のビッカース硬さHvsと、前記内部領域のビッカース硬さHvcとの硬度差割合である(1-Hvs/Hvc)が0.20以下であり、
引張強さが980MPa以上である。
(2)上記(1)に記載の熱延鋼板では、前記化学組成が、質量%で、
Nb:0.010~0.100%、
Ca:0.0005~0.0060%、
Mo:0.02~0.50%、
Cr:0.02~1.00%、
V:0.01~0.40%、
Ni:0.01~0.40%、
Cu:0.01~0.40%、
B:0.0001~0.0020%、および
Sn:0.01~0.20%
からなる群から選択される1種または2種以上を含有してもよい。
The gist of the present invention made based on the above knowledge is as follows.
(1) The hot-rolled steel sheet according to one aspect of the present invention has a chemical composition, in mass%,
C: 0.02 to 0.30%,
Si: 0.10 to 2.00%,
Mn: 0.5-3.0%,
sol. Al: 0.10 to 1.00%,
Ti: 0.06-0.20%,
P: 0.1000% or less,
S: 0.0100% or less,
N: 0.0100% or less,
Nb: 0 to 0.100%,
Ca: 0 to 0.0060%,
Mo: 0-0.50%,
Cr: 0 to 1.00%,
V: 0 to 0.40%,
Ni: 0 to 0.40%,
Cu: 0-0.40%,
B: 0 to 0.0020%, and Sn: 0 to 0.20%,
The balance consists of Fe and impurities,
The metal structure of the internal region contains, in terms of area ratio, 40 to 80% in total of one or two of martensite and bainite, and 20 to 60% ferrite, and the area ratio of the remaining structure is less than 5%. ,
αs/αc, which is the ratio of the ferrite area ratio αs of the surface layer region to the ferrite area ratio αc of the internal region, is 1.15 to 2.50;
A hardness difference ratio (1-Hvs/Hvc) between the Vickers hardness Hvs of the surface region and the Vickers hardness Hvc of the inner region is 0.20 or less,
Tensile strength is 980 MPa or more.
(2) In the hot-rolled steel sheet described in (1) above, the chemical composition is, in mass%,
Nb: 0.010 to 0.100%,
Ca: 0.0005 to 0.0060%,
Mo: 0.02-0.50%,
Cr: 0.02 to 1.00%,
V: 0.01 to 0.40%,
Ni: 0.01 to 0.40%,
Cu: 0.01 to 0.40%,
B: 0.0001-0.0020%, and Sn: 0.01-0.20%
It may contain one or more selected from the group consisting of.
本発明に係る上記態様によれば、高い強度、並びに優れた疲労強度、靱性および延性を有する熱延鋼板を提供することができる。この熱延鋼板によれば、自動車などの車体の軽量化および耐久性向上を図ることができるので、工業的価値が高い。 According to the above aspect of the present invention, it is possible to provide a hot-rolled steel sheet having high strength and excellent fatigue strength, toughness and ductility. This hot-rolled steel sheet has a high industrial value because it can reduce the weight and improve the durability of the body of an automobile or the like.
本発明の一実施形態に係る熱延鋼板(以下、本実施形態に係る熱延鋼板と言う場合がある。)について、説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。 A hot-rolled steel sheet according to an embodiment of the present invention (hereinafter sometimes referred to as a hot-rolled steel sheet according to this embodiment) will be described. However, the present invention is not limited to the configuration disclosed in this embodiment, and various modifications can be made without departing from the gist of the present invention.
以下に本発明の個々の構成要件について詳細に説明する。まず、本実施形態に係る熱延鋼板の化学組成の限定理由について述べる。
以下に「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」または「超」と示す数値には、その値が数値範囲に含まれない。以下の説明において、化学組成に関する%は特に指定しない限り質量%である。
Each constituent element of the present invention will be described in detail below. First, reasons for limiting the chemical composition of the hot-rolled steel sheet according to the present embodiment will be described.
The numerical limits described below with "-" in between include the lower limit and the upper limit. Any numerical value indicated as "less than" or "greater than" excludes that value from the numerical range. In the following description, % regarding chemical composition is mass % unless otherwise specified.
本実施形態に係る熱延鋼板は、化学組成が、質量%で、C:0.02~0.30%、Si:0.10~2.00%、Mn:0.5~3.0%、sol.Al:0.10~1.00%、Ti:0.06~0.20%、P:0.1000%以下、S:0.0100%以下、N:0.0100%以下、並びに、残部:Feおよび不純物を含有する。以下に各元素について詳細に説明する。 The hot-rolled steel sheet according to the present embodiment has a chemical composition in mass% of C: 0.02 to 0.30%, Si: 0.10 to 2.00%, Mn: 0.5 to 3.0%. , sol. Al: 0.10 to 1.00%, Ti: 0.06 to 0.20%, P: 0.1000% or less, S: 0.0100% or less, N: 0.0100% or less, and the balance: Contains Fe and impurities. Each element will be described in detail below.
<C:0.02~0.30%>
Cは熱延鋼板の強度を向上させるために重要な元素である。所望の強度を得るために、C含有量を0.02%以上とする。好ましくは0.04%以上である。
一方、C含有量が0.30%超であると熱延鋼板の靭性が劣化する。そのため、C含有量を0.30%以下とする。好ましくは0.20%以下である。
<C: 0.02 to 0.30%>
C is an important element for improving the strength of hot-rolled steel sheets. In order to obtain the desired strength, the C content should be 0.02% or more. Preferably it is 0.04% or more.
On the other hand, if the C content exceeds 0.30%, the toughness of the hot-rolled steel sheet deteriorates. Therefore, the C content is made 0.30% or less. Preferably, it is 0.20% or less.
<Si:0.10~2.00%>
Siはフェライト変態中の炭化物の生成を抑制し、熱延鋼板の靭性を向上させる効果を有する元素である。この効果を得るため、Si含有量を0.10%以上とする。好ましくは、0.20%以上または0.50%以上である。
一方、Si含有量が2.00%超であると、熱延鋼板の靭性が劣化する。そのため、Si含有量を2.00%以下とする。好ましくは1.50%以下である。
<Si: 0.10 to 2.00%>
Si is an element that has the effect of suppressing the formation of carbides during ferrite transformation and improving the toughness of the hot-rolled steel sheet. In order to obtain this effect, the Si content is set to 0.10% or more. Preferably, it is 0.20% or more or 0.50% or more.
On the other hand, if the Si content exceeds 2.00%, the toughness of the hot-rolled steel sheet deteriorates. Therefore, the Si content is set to 2.00% or less. Preferably, it is 1.50% or less.
<Mn:0.5~3.0%>
Mnは焼入れ性の向上および固溶強化によって熱延鋼板の強度を向上させるのに有効な元素である。この効果を得るため、Mn含有量を0.5%以上とする。好ましくは1.0%以上である。
一方、Mn含有量が3.0%超であると、靭性および疲労強度に有害なMnSが生成する。そのため、Mn含有量を3.0%以下とする。好ましくは、2.5%以下または2.0%以下である。
<Mn: 0.5 to 3.0%>
Mn is an element effective in improving the strength of hot-rolled steel sheets by improving hardenability and solid-solution strengthening. To obtain this effect, the Mn content is set to 0.5% or more. Preferably it is 1.0% or more.
On the other hand, when the Mn content exceeds 3.0%, MnS is generated which is harmful to toughness and fatigue strength. Therefore, the Mn content is set to 3.0% or less. Preferably, it is 2.5% or less or 2.0% or less.
<sol.Al:0.10~1.00%>
Alはフェライト変態を制御するために重要な元素である。この効果を得るため、sol.Al含有量を0.10%以上とする。好ましくは、0.15%以上または0.20%以上である。
一方、sol.Al含有量が1.00%を超えると、クラスタ状に析出したアルミナが生成し、熱延鋼板の靭性が劣化する。そのため、sol.Al含有量を1.00%以下とする。好ましくは、0.80%以下または0.50%以下である。
なお、sol.Alとは酸可溶性Alを意味し、固溶状態で鋼中に存在する固溶Alのことを示す。
<sol. Al: 0.10 to 1.00%>
Al is an important element for controlling ferrite transformation. To obtain this effect, sol. The Al content is set to 0.10% or more. Preferably, it is 0.15% or more or 0.20% or more.
On the other hand, sol. If the Al content exceeds 1.00%, alumina precipitates in clusters and the toughness of the hot-rolled steel sheet deteriorates. Therefore, sol. The Al content is set to 1.00% or less. Preferably, it is 0.80% or less or 0.50% or less.
In addition, sol. Al means acid-soluble Al, and indicates solid-solution Al present in steel in a solid-solution state.
<Ti:0.06~0.20%>
Tiはフェライトを析出強化させる元素であるとともに、フェライト変態を制御して所望量のフェライトを得るために重要な元素である。析出強化およびフェライト変態の制御によって優れた疲労強度を得るために、Ti含有量を0.06%以上とする。好ましくは0.08%以上である。
一方、Ti含有量が0.20%超であると、TiNを起因とした介在物が生成し、熱延鋼板の靱性が劣化する。そのため、Ti含有量を0.20%以下とする。好ましくは、0.16%以下または0.13%以下である。
<Ti: 0.06 to 0.20%>
Ti is an element that strengthens ferrite by precipitation and is an important element for controlling ferrite transformation to obtain a desired amount of ferrite. In order to obtain excellent fatigue strength by controlling precipitation strengthening and ferrite transformation, the Ti content is made 0.06% or more. Preferably it is 0.08% or more.
On the other hand, when the Ti content exceeds 0.20%, inclusions caused by TiN are formed, and the toughness of the hot-rolled steel sheet deteriorates. Therefore, the Ti content is set to 0.20% or less. Preferably, it is 0.16% or less or 0.13% or less.
<P:0.1000%以下>
Pは不純物であり、P含有量は低いほど好ましい。特に、P含有量が0.1000%超であると、熱延鋼板の加工性および溶接性の低下が著しくなり、また疲労強度も低下する。そのため、P含有量を0.1000%以下とする。好ましくは、0.0500%以下または0.0200%以下である。
P含有量の下限は特に規定する必要はないが、精錬コストの観点から、0.0010%以上とすることが好ましい。
<P: 0.1000% or less>
P is an impurity, and the lower the P content, the better. In particular, when the P content exceeds 0.1000%, the workability and weldability of the hot-rolled steel sheet are remarkably lowered, and the fatigue strength is also lowered. Therefore, the P content is made 0.1000% or less. Preferably, it is 0.0500% or less or 0.0200% or less.
Although the lower limit of the P content does not have to be specified, it is preferably 0.0010% or more from the viewpoint of refining cost.
<S:0.0100%以下>
Sは不純物であり、S含有量は低いほど好ましい。特に、S含有量が、0.0100%を超えると、靭性の等方性に有害なMnS等の介在物が多量に生成される。そのため、S含有量を0.0100%以下とする。より優れた靭性が要求される場合には、S含有量を0.0060%以下とすることが好ましい。より好ましくは、0.0050%以下である。
S含有量の下限は特に規定する必要はないが、精錬コストの観点から、0.0001%以上とすることが好ましい。
<S: 0.0100% or less>
S is an impurity, and the lower the S content, the better. In particular, when the S content exceeds 0.0100%, a large amount of inclusions such as MnS, which is harmful to the isotropy of toughness, is produced. Therefore, the S content is made 0.0100% or less. If higher toughness is required, the S content is preferably 0.0060% or less. More preferably, it is 0.0050% or less.
Although the lower limit of the S content does not have to be specified, it is preferably 0.0001% or more from the viewpoint of refining cost.
<N:0.0100%以下>
Nは不純物である。N含有量が0.0100%超であると、高温域において粗大なTi窒化物が形成されるため、熱延鋼板の靭性が劣化する。したがって、N含有量を0.0100%以下とする。好ましくは、0.0060%以下または0.0050%以下である。
N含有量の下限は特に規定する必要はないが、精錬コストの観点から、0.0001%以上とすることが好ましい。
<N: 0.0100% or less>
N is an impurity. If the N content exceeds 0.0100%, coarse Ti nitrides are formed in the high temperature range, which deteriorates the toughness of the hot-rolled steel sheet. Therefore, the N content is set to 0.0100% or less. Preferably, it is 0.0060% or less or 0.0050% or less.
Although the lower limit of the N content does not have to be specified, it is preferably 0.0001% or more from the viewpoint of refining cost.
本実施形態に係る熱延鋼板は、上記の化学成分を含有し、残部がFe及び不純物からなっていてもよい。本実施形態において、不純物とは、原料としての鉱石、スクラップ、または製造環境等から混入されるもの、および/または本実施形態に係る熱延鋼板に悪影響を与えない範囲で許容されるものを意味する。 The hot-rolled steel sheet according to the present embodiment may contain the chemical components described above, with the balance being Fe and impurities. In the present embodiment, the term “impurities” refers to ores used as raw materials, scraps, or impurities that are mixed from the manufacturing environment, etc., and/or those that are allowed within a range that does not adversely affect the hot-rolled steel sheet according to the present embodiment. do.
所望の特性を備えさせるために必須ではないが、製造ばらつきを低減させたり、熱延鋼板の強度をより向上させたりするために、以下の任意元素を含有させてもよい。ただし、これらの元素を含有させることは必須ではないので、これらの元素の含有量の下限は0%である。なお、各任意元素の含有量が、以下に説明する含有量の下限値未満であれば、不純物であるとみなすことができる。 Although not essential for providing the desired properties, the following optional elements may be included in order to reduce manufacturing variations and further improve the strength of the hot-rolled steel sheet. However, since it is not essential to contain these elements, the lower limit of the content of these elements is 0%. In addition, if the content of each arbitrary element is less than the lower limit of the content explained below, it can be regarded as an impurity.
<Nb:0.010~0.100%>
Nbは熱延鋼板の結晶粒径の微細化およびNbCの析出強化により、熱延鋼板の強度を高める効果を有する元素である。この効果を確実に得る場合、Nb含有量を0.010%以上とすることが好ましい。
一方、Nb含有量が0.100%超では上記効果は飽和する。そのため、Nbを含有させる場合でも、Nb含有量を0.100%以下とする。好ましくは0.060%以下である。
<Nb: 0.010 to 0.100%>
Nb is an element that has the effect of increasing the strength of the hot-rolled steel sheet by refining the crystal grain size of the hot-rolled steel sheet and strengthening the precipitation of NbC. To reliably obtain this effect, the Nb content is preferably 0.010% or more.
On the other hand, if the Nb content exceeds 0.100%, the above effect is saturated. Therefore, even when Nb is contained, the Nb content is set to 0.100% or less. Preferably, it is 0.060% or less.
<Ca:0.0005~0.0060%>
Caは溶鋼の脱酸時に微細な酸化物を多数分散させ、熱延鋼板の組織を微細化する効果を有する元素である。また、Caは、鋼中のSを球形のCaSとして固定し、MnSなどの延伸介在物の生成を抑制して、熱延鋼板の穴拡げ性を向上させる元素である。これらの効果を確実に得る場合、Ca含有量を0.0005%以上とすることが好ましい。
一方、Ca含有量が0.0060%を超えても上記効果は飽和する。そのため、Caを含有させる場合でも、Ca含有量を0.0060%以下とする。好ましくは0.0040%以下である。
<Ca: 0.0005 to 0.0060%>
Ca is an element that has the effect of dispersing a large number of fine oxides during deoxidation of molten steel and refining the structure of the hot-rolled steel sheet. In addition, Ca is an element that fixes S in steel as spherical CaS, suppresses the formation of elongated inclusions such as MnS, and improves the hole expandability of hot-rolled steel sheets. To reliably obtain these effects, the Ca content is preferably 0.0005% or more.
On the other hand, even if the Ca content exceeds 0.0060%, the above effect is saturated. Therefore, even when Ca is contained, the Ca content is made 0.0060% or less. Preferably, it is 0.0040% or less.
<Mo:0.02~0.50%>
Moはフェライトの析出強化に有効な元素である。この効果を確実に得る場合、Mo含有量を0.02%以上とすることが好ましい。より好ましくは0.10%以上である。
一方、Mo含有量が過剰になるとスラブの割れ感受性が高まり、スラブの取り扱いが困難になる。そのため、Moを含有させる場合でも、Mo含有量を0.50%以下とする。好ましくは0.30%以下である。
<Mo: 0.02 to 0.50%>
Mo is an element effective for precipitation strengthening of ferrite. In order to reliably obtain this effect, the Mo content is preferably 0.02% or more. More preferably, it is 0.10% or more.
On the other hand, if the Mo content is excessive, the slab becomes more susceptible to cracking and becomes difficult to handle. Therefore, even when Mo is contained, the Mo content is made 0.50% or less. Preferably, it is 0.30% or less.
<Cr:0.02~1.00%>
Crは熱延鋼板の強度を向上させるのに有効な元素である。この効果を確実に得る場合、Cr含有量を0.02%以上とすることが好ましい。より好ましくは0.10%以上である。
一方、Cr含有量が過剰になると熱延鋼板の延性が低下する。そのため、Crを含有させる場合でも、Cr含有量を1.00%以下とする。好ましくは0.80%以下である。
<Cr: 0.02 to 1.00%>
Cr is an effective element for improving the strength of the hot-rolled steel sheet. To reliably obtain this effect, the Cr content is preferably 0.02% or more. More preferably, it is 0.10% or more.
On the other hand, if the Cr content is excessive, the ductility of the hot-rolled steel sheet is lowered. Therefore, even when Cr is contained, the Cr content is set to 1.00% or less. Preferably, it is 0.80% or less.
<V:0.01~0.40%>
Vは、析出物による強化、フェライト結晶粒の成長抑制による細粒化強化および再結晶の抑制による転位強化によって、熱延鋼板の強度を向上させる。これらの効果を確実に得る場合、V含有量を0.01%以上とすることが好ましい。
一方、V含有量が過剰であると、炭窒化物が多量に析出して熱延鋼板の成形性が低下する。そのため、V含有量は0.40%以下とする。好ましくは0.20%以下である。
<V: 0.01 to 0.40%>
V improves the strength of hot-rolled steel sheets through strengthening by precipitates, grain refinement strengthening by suppressing the growth of ferrite grains, and dislocation strengthening by suppressing recrystallization. In order to reliably obtain these effects, the V content is preferably 0.01% or more.
On the other hand, if the V content is excessive, a large amount of carbonitrides precipitate and the formability of the hot-rolled steel sheet deteriorates. Therefore, the V content is set to 0.40% or less. Preferably, it is 0.20% or less.
<Ni:0.01~0.40%>
Niは、高温での相変態を抑制し、熱延鋼板の強度を向上させる。この効果を確実に得る場合、Ni含有量を0.01%以上とすることが好ましい。
一方、Ni含有量が過剰であると、熱延鋼板の溶接性が低下する。そのため、Ni含有量は0.40%以下とする。好ましくは0.20%以下である。
<Ni: 0.01 to 0.40%>
Ni suppresses phase transformation at high temperatures and improves the strength of the hot-rolled steel sheet. In order to reliably obtain this effect, the Ni content is preferably 0.01% or more.
On the other hand, when the Ni content is excessive, the weldability of the hot-rolled steel sheet deteriorates. Therefore, the Ni content is set to 0.40% or less. Preferably, it is 0.20% or less.
<Cu:0.01~0.40%>
Cuは、微細な粒子の形態で鋼中に存在し、熱延鋼板の強度を向上させる。この効果を確実に得る場合、Cu含有量を0.01%以上とすることが好ましい。
一方、Cu含有量が過剰であると、熱延鋼板の溶接性が低下する。そのため、Cu含有量は0.40%以下とする。好ましくは0.20%以下である。
<Cu: 0.01 to 0.40%>
Cu exists in steel in the form of fine particles and improves the strength of hot-rolled steel sheets. In order to reliably obtain this effect, the Cu content is preferably 0.01% or more.
On the other hand, if the Cu content is excessive, the weldability of the hot-rolled steel sheet deteriorates. Therefore, the Cu content is set to 0.40% or less. Preferably, it is 0.20% or less.
<B:0.0001~0.0020%>
Bは、高温での相変態を抑制し、熱延鋼板の強度を向上させる。この効果を確実に得る場合、B含有量を0.0001%以上とすることが好ましい。
一方、B含有量が過剰であると、B析出物が生成して熱延鋼板の強度が低下する。そのため、B含有量は0.0020%以下とする。好ましくは0.0005%以下である。
<B: 0.0001 to 0.0020%>
B suppresses phase transformation at high temperatures and improves the strength of the hot-rolled steel sheet. To reliably obtain this effect, the B content is preferably 0.0001% or more.
On the other hand, when the B content is excessive, B precipitates are formed and the strength of the hot-rolled steel sheet is lowered. Therefore, the B content is set to 0.0020% or less. Preferably, it is 0.0005% or less.
<Sn:0.01~0.20%>
Snは、結晶粒の粗大化を抑制し、熱延鋼板の強度を向上させる元素である。この効果を確実に得る場合、Sn含有量を0.01%以上とすることが好ましい。
一方、Sn含有量が過剰になると、鋼が脆化して圧延時に破断し易くなる。そのため、Sn含有量は0.20%以下とする。好ましくは0.10%以下である。
<Sn: 0.01 to 0.20%>
Sn is an element that suppresses the coarsening of crystal grains and improves the strength of the hot-rolled steel sheet. In order to reliably obtain this effect, the Sn content is preferably 0.01% or more.
On the other hand, if the Sn content becomes excessive, the steel becomes embrittled and easily broken during rolling. Therefore, the Sn content is set to 0.20% or less. Preferably, it is 0.10% or less.
上述した熱延鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。 The chemical composition of the hot-rolled steel sheet mentioned above can be measured by a general analytical method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). In addition, sol. Al can be measured by ICP-AES using the filtrate obtained by thermally decomposing the sample with acid. C and S may be measured using the combustion-infrared absorption method, and N may be measured using the inert gas fusion-thermal conductivity method.
次に、本実施形態に係る熱延鋼板の金属組織について説明する。
本実施形態に係る熱延鋼板は、内部領域の金属組織が、面積率で、マルテンサイトおよびベイナイトの1種または2種を合計で40~80%、フェライトを20~60%含有し、且つ残部組織の面積率が5%未満であり、表層領域のフェライト面積率αsと、前記内部領域のフェライト面積率αcとの比であるαs/αcが1.15~2.50であり、前記表層領域のビッカース硬さHvsと、前記内部領域のビッカース硬さHvcとの硬度差割合である(1-Hvs/Hvc)が0.20以下である。
Next, the metal structure of the hot-rolled steel sheet according to this embodiment will be described.
In the hot-rolled steel sheet according to the present embodiment, the metal structure of the inner region contains 40 to 80% in total of one or two of martensite and bainite, 20 to 60% ferrite, and the balance is The area ratio of the structure is less than 5%, the ratio αs/αc of the ferrite area ratio αs of the surface layer region to the ferrite area ratio αc of the internal region is 1.15 to 2.50, and the surface layer region and the Vickers hardness Hvc of the inner region (1-Hvs/Hvc) is 0.20 or less.
なお、内部領域とは、熱延鋼板の表面から板厚の1/4深さ位置を中心とした、熱延鋼板の表面から板厚の1/8深さ~前記表面から板厚の3/8深さの領域のことをいう。また、表層領域とは、熱延鋼板の表面~前記表面から20μm深さの領域のことをいう。 The internal region is defined as a depth of 1/8 of the plate thickness from the surface of the hot-rolled steel plate to 3/ of the plate thickness from the surface, centering on the 1/4 depth position of the plate thickness from the surface of the hot-rolled steel plate. It refers to an area of 8 depths. Further, the surface layer region means a region from the surface of the hot-rolled steel sheet to a depth of 20 μm from the surface.
マルテンサイトおよびベイナイトを主体とする組織は、組織が微細であり、靱性に優れる。また、そのメカニズムについては不明な点が多いが、マルテンサイトおよびベイナイトを主体とする組織を有する鋼は、析出強化鋼、並びに、フェライトおよびマルテンサイトの複合組織(DP)鋼と比較して、疲労強度が劣位であることが知られている。一方、析出強化鋼およびDP鋼では、フェライトにおける高速な転位運動が阻害されるため、疲労強度および靱性が劣位となる。従来、自動車用部品では、要求される特性によって鋼板組織を作りこんでいたが、更なる高強度化が進むにつれて、高い疲労強度および靱性の両方を得ることが難しくなっている。そこで、本実施形態に係る熱延鋼板は、従来技術とは異なり、表層領域では、表層領域のフェライト量を高めることで、疲労強度に優れたフェライトおよびマルテンサイトの複合組織、並びに析出強化を活用し、内部領域では、靱性に優れたマルテンサイトおよびベイナイトの1種または2種を主体とする金属組織を活用する。これにより、980MPa以上の高強度、並びに、優れた疲労強度、靭性および延性を得ることができる。 The structure mainly composed of martensite and bainite has a fine structure and excellent toughness. In addition, although there are many unclear points about the mechanism, steel having a structure mainly composed of martensite and bainite exhibits fatigue resistance compared to precipitation-strengthened steel and composite structure (DP) steel of ferrite and martensite. It is known to be inferior in strength. On the other hand, precipitation-strengthened steel and DP steel are inferior in fatigue strength and toughness because high-speed dislocation movement in ferrite is inhibited. Conventionally, in automotive parts, a steel plate structure has been created according to the required properties, but as the strength is further increased, it is becoming difficult to obtain both high fatigue strength and toughness. Therefore, unlike the conventional technology, the hot-rolled steel sheet according to the present embodiment utilizes a composite structure of ferrite and martensite with excellent fatigue strength and precipitation strengthening by increasing the amount of ferrite in the surface layer region. On the other hand, in the inner region, a metal structure mainly composed of one or both of martensite and bainite, which are excellent in toughness, is utilized. As a result, high strength of 980 MPa or more and excellent fatigue strength, toughness and ductility can be obtained.
内部領域の金属組織
熱延鋼板の内部領域の金属組織は、熱延鋼板の靱性に大きな影響を及ぼす。そのため、内部領域の金属組織は、低温変態組織を主体とする。低温変態組織とは、マルテンサイトおよびベイナイトのことである。これらの組織の面積率の合計が40%未満では、熱延鋼板の靱性が劣位となる。そのため、マルテンサイトおよびベイナイトの面積率の合計は40%以上とする。好ましくは45%以上であり、より好ましくは50%以上である。
Metallographic Structure of Internal Region The metallographic structure of the internal region of the hot-rolled steel sheet has a great effect on the toughness of the hot-rolled steel sheet. Therefore, the metal structure of the inner region is mainly composed of a low-temperature transformation structure. The low temperature transformation structure is martensite and bainite. If the total area ratio of these structures is less than 40%, the toughness of the hot-rolled steel sheet is inferior. Therefore, the total area ratio of martensite and bainite is set to 40% or more. It is preferably 45% or more, more preferably 50% or more.
一方、マルテンサイトおよびベイナイトの面積率の合計が80%を超えると、表層領域の金属組織との硬度差が大きくなることで、熱延鋼板の疲労強度が劣位となる。そのため、マルテンサイトおよびベイナイトの面積率の合計は80%以下とする。好ましくは75%以下であり、より好ましくは70%以下である。 On the other hand, if the total area ratio of martensite and bainite exceeds 80%, the fatigue strength of the hot-rolled steel sheet is inferior due to the large difference in hardness from the metal structure of the surface layer region. Therefore, the total area ratio of martensite and bainite is set to 80% or less. It is preferably 75% or less, more preferably 70% or less.
本実施形態では、内部領域の金属組織が、マルテンサイトまたはベイナイトのいずれか1種のみを含む場合、マルテンサイトまたはベイナイトのいずれか1種のみの含有量が上述した範囲内であればよく、マルテンサイトおよびベイナイトの両方を含む場合、マルテンサイトおよびベイナイトの両方の含有量の合計が上述した範囲内であればよい。 In the present embodiment, when the metal structure of the inner region contains only one of martensite and bainite, the content of only one of martensite and bainite may be within the range described above. When both site and bainite are included, the total content of both martensite and bainite should be within the range described above.
内部領域の金属組織において、フェライトの面積率が20%未満であると、表層領域の金属組織との硬度差が大きくなることで、熱延鋼板の疲労強度が劣位となる。そのため、フェライトの面積率は20%以上とする。好ましくは25%以上、より好ましくは30%以上である。 If the area ratio of ferrite is less than 20% in the metal structure of the inner region, the fatigue strength of the hot-rolled steel sheet is inferior due to the large difference in hardness from the metal structure of the surface layer region. Therefore, the area ratio of ferrite is set to 20% or more. It is preferably 25% or more, more preferably 30% or more.
一方、フェライトの面積率が60%を超えると、析出強化したフェライト粒により歪が緩和されない場合および加工性が確保できない場合があり、熱延鋼板の靱性が劣化する。そのため、フェライトの面積率は60%以下とする。好ましくは55%以下であり、より好ましくは50%以下である。 On the other hand, if the ferrite area ratio exceeds 60%, the precipitation-strengthened ferrite grains may not alleviate the strain and may not ensure workability, resulting in deterioration of the toughness of the hot-rolled steel sheet. Therefore, the area ratio of ferrite is set to 60% or less. It is preferably 55% or less, more preferably 50% or less.
内部領域の金属組織は、面積率で、残部組織が5%未満である。残部組織は、パーライトおよび残留オーステナイトの1種以上である。残部組織は、好ましくは3%未満であり、より好ましくは2.5%以下であり、より一層好ましくは2%以下である。 The area ratio of the metal structure in the internal region is less than 5% of the residual structure. The residual structure is one or more of pearlite and retained austenite. The residual tissue is preferably less than 3%, more preferably 2.5% or less, even more preferably 2% or less.
表層領域の金属組織
熱延鋼板の表層領域の金属組織において、表層領域のフェライト面積率αsと、内部領域のフェライト面積率αcとの比であるαs/αcが1.15未満では、フェライトにおける転位運動の抑制が不十分となり、熱延鋼板の疲労強度が劣位となる。そのため、αs/αcは1.15以上とする。好ましくは1.20以上または1.30以上であり、より好ましくは1.50以上である。
Metallographic structure of surface region In the metallographic structure of the surface region of the hot-rolled steel sheet, if αs/αc, which is the ratio of the ferrite area ratio αs of the surface layer region to the ferrite area ratio αc of the internal region, is less than 1.15, dislocations in ferrite Suppression of movement becomes insufficient, and the fatigue strength of the hot-rolled steel sheet becomes inferior. Therefore, αs/αc is set to 1.15 or more. It is preferably 1.20 or more or 1.30 or more, more preferably 1.50 or more.
一方、αs/αcが2.50超であると、フェライト変態中に炭素が板厚内部に濃化し、内部領域の金属組織との硬度差が大きくなることで、熱延鋼板の靱性および/または疲労強度が劣位となる。そのため、αs/αcは2.50以下とする。好ましくは2.20以下であり、より好ましくは2.00以下である。 On the other hand, when αs/αc is more than 2.50, carbon is concentrated inside the plate thickness during ferrite transformation, and the difference in hardness from the metal structure in the inner region increases, so that the toughness and / or Fatigue strength becomes inferior. Therefore, αs/αc is set to 2.50 or less. It is preferably 2.20 or less, more preferably 2.00 or less.
熱延鋼板の表層領域の金属組織において、表層領域のマルテンサイトおよびベイナイトの合計の面積率βsと、内部領域のマルテンサイトおよびベイナイトの合計の面積率βcとの比であるβs/βcは0.30~0.90であることが好ましい。βs/βcが0.90以下であることで、マルテンサイトおよびベイナイトにおける転位運動が十分に抑制され、熱延鋼板の疲労強度が高められる。βs/βcは、より好ましくは0.85以下であり、より一層好ましくは0.80以下である。 In the metallographic structure of the surface region of the hot-rolled steel sheet, βs/βc, which is the ratio of the total area ratio βs of martensite and bainite in the surface region to the total area ratio βc of martensite and bainite in the inner region, is 0.0. It is preferably between 30 and 0.90. When βs/βc is 0.90 or less, dislocation motion in martensite and bainite is sufficiently suppressed, and the fatigue strength of the hot-rolled steel sheet is increased. βs/βc is more preferably 0.85 or less, and even more preferably 0.80 or less.
一方、βs/βcが0.30以上であることで、マルテンサイトおよびベイナイトの変態中に炭素が板厚内部に濃化して内部領域の金属組織との硬度差が大きくなることが抑制され、熱延鋼板の靱性および疲労強度が高められる。βs/βcは、より好ましくは0.40以上であり、より一層好ましくは0.45以上であり、より一層好ましくは0.50以上である。 On the other hand, when βs/βc is 0.30 or more, it is suppressed that carbon is concentrated inside the sheet thickness during the transformation of martensite and bainite, and that the difference in hardness from the metal structure in the inner region becomes large. The toughness and fatigue strength of the rolled steel sheet are enhanced. βs/βc is more preferably 0.40 or more, still more preferably 0.45 or more, and still more preferably 0.50 or more.
表層領域の金属組織は、面積率で、フェライトを30~80%含んでもよい。また、表層領域の金属組織は、フェライト以外の残部組織として、面積率で、合計で20~70%のベイナイト、マルテンサイト、パーライトおよび残留オーステナイトの1種または2種以上を含んでもよい。 The metallographic structure of the surface layer region may contain 30 to 80% ferrite in area ratio. In addition, the metal structure of the surface layer region may contain one or more of bainite, martensite, pearlite and retained austenite in an area ratio of 20 to 70% in total as a residual structure other than ferrite.
金属組織の測定方法
熱延鋼板から、表面に直角な板厚断面が観察できるようにサンプルを切り出す。このサンプルの板厚断面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液や純水に分散させた液体を使用して鏡面に仕上げ、ナイタールエッチングを施す。次いで、サンプル断面の長手方向の任意の位置において、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)を用いて複数視野の写真を撮影する。撮影写真上に等間隔の格子を描き、格子点における組織を同定する。各組織に該当する格子点数を求め、総格子点数で除することにより、各組織の面積率を得る。総格子点数が多いほど面積率を正確に求めることができる。本実施形態では、格子間隔は2μm×2μmとし、総格子点数は1500点とする。
Metal structure measurement method A sample is cut from a hot-rolled steel sheet so that a thickness cross-section perpendicular to the surface can be observed. After polishing the plate thickness cross section of this sample using #600 to #1500 silicon carbide paper, a diamond powder with a particle size of 1 to 6 μm is dispersed in a diluted solution such as alcohol or pure water to make a mirror surface. Finish and apply nital etching. Next, photographs of multiple fields of view are taken at arbitrary positions in the longitudinal direction of the cross section of the sample using a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL). An equidistant grid is drawn on the photograph to identify the tissue at the grid points. The area ratio of each tissue is obtained by calculating the number of grid points corresponding to each tissue and dividing it by the total number of grid points. The larger the total number of grid points, the more accurately the area ratio can be obtained. In this embodiment, the grid spacing is 2 μm×2 μm, and the total number of grid points is 1,500.
粒内にセメンタイトがラメラ状に析出している領域をパーライトと判断する。輝度が小さく、かつ下部組織が認められない領域をフェライトと判断する。輝度が大きく、かつ下部組織がエッチングにより現出されていない領域をマルテンサイトおよび残留オーステナイトと判断する。上記のいずれにも該当しない領域をベイナイトと判断する。マルテンサイトの面積率については、撮影写真から求めたマルテンサイトおよび残留オーステナイトの面積率から、後述のEBSD解析により求めた残留オーステナイトの面積率を差し引くことで得る。 The area where cementite is precipitated in lamellar form inside the grain is judged to be pearlite. A region with low brightness and no substructure is judged to be ferrite. Regions with high brightness and in which the substructure is not revealed by etching are judged to be martensite and retained austenite. A region that does not correspond to any of the above is determined to be bainite. The area ratio of martensite is obtained by subtracting the area ratio of retained austenite obtained by EBSD analysis, which will be described later, from the area ratio of martensite and retained austenite obtained from photographed photographs.
上述の測定と同様の位置から、表面に直角な板厚断面が観察できるようにサンプルを切り出す。このサンプルの板厚断面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液や純水に分散させた液体を使用して鏡面に仕上げる。次に、室温においてアルカリ性溶液を含まないコロイダルシリカを用いて8分間研磨し、サンプルの表層に導入されたひずみを除去する。サンプル断面の長手方向の任意の位置において、0.1μmの測定間隔で電子後方散乱回折法により測定して結晶方位情報を得る。測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製DVC5型検出器)とで構成されたEBSD装置を用いる。この際、EBSD装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13、電子線の照射レベルは62とする。得られた結晶方位情報をEBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Phase Map」機能を用いて、残留オーステナイトの面積率を算出する。なお、結晶構造がfccであるものを残留オーステナイトと判断する。 A sample is cut from the same position as the above measurement so that a thickness cross-section perpendicular to the surface can be observed. After polishing the plate thickness cross section of this sample using #600 to #1500 silicon carbide paper, a diamond powder with a particle size of 1 to 6 μm is dispersed in a diluted solution such as alcohol or pure water to make a mirror surface. to finish. Next, the sample is polished for 8 minutes with colloidal silica containing no alkaline solution at room temperature to remove strain introduced into the surface layer of the sample. Crystallographic orientation information is obtained by electron backscatter diffraction measurements at arbitrary positions in the longitudinal direction of the sample cross section at intervals of 0.1 μm. For the measurement, an EBSD apparatus composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used. At this time, the degree of vacuum in the EBSD apparatus is 9.6×10 −5 Pa or less, the acceleration voltage is 15 kV, the irradiation current level is 13, and the electron beam irradiation level is 62. The obtained crystal orientation information is used to calculate the area ratio of retained austenite using the "Phase Map" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analysis device. It should be noted that a crystal structure of fcc is determined to be retained austenite.
上記それぞれの測定を、表面から板厚の1/8深さ~表面から板厚の3/8深さの領域、および熱延鋼板の表面~前記表面から20μm深さの領域について行うことで、内部領域および表層領域のそれぞれにおける金属組織の面積率を得る。 By performing each of the above measurements on a region from the surface to a depth of 1/8 of the plate thickness to a depth of 3/8 of the plate thickness from the surface, and a region from the surface of the hot-rolled steel sheet to a depth of 20 μm from the surface, Obtain the area ratio of the metallographic structure in each of the internal region and the surface layer region.
表層領域のビッカース硬さと内部領域のビッカース硬さとの硬度差割合:0.20以下
表層領域のビッカース硬さHvsと、内部領域のビッカース硬さHvcとの硬度差割合である(1-Hvs/Hvc)が0.20超であると、表層領域が軟質化し、熱延鋼板の疲労強度が劣位となる。そのため、HvsとHvcとの硬度差割合である(1-Hvs/Hvc)は0.20以下とする。好ましくは0.15以下であり、より好ましくは0.10以下である。
HvsとHvcとの硬度差割合である(1-Hvs/Hvc)は小さい程好ましいが、製造上の観点から、-0.10以上、0.00以上、または0.01以上としてもよい。
The hardness difference ratio between the Vickers hardness of the surface region and the Vickers hardness of the internal region: 0.20 or less The hardness difference ratio between the Vickers hardness Hvs of the surface region and the Vickers hardness Hvc of the internal region (1-Hvs/Hvc) ) is more than 0.20, the surface region is softened and the fatigue strength of the hot-rolled steel sheet is inferior. Therefore, the hardness difference ratio between Hvs and Hvc (1-Hvs/Hvc) is set to 0.20 or less. It is preferably 0.15 or less, more preferably 0.10 or less.
The hardness difference ratio between Hvs and Hvc (1-Hvs/Hvc) is preferably as small as possible, but from the viewpoint of manufacturing, it may be -0.10 or more, 0.00 or more, or 0.01 or more.
ビッカース硬さの測定方法
熱延鋼板から、表面に直角な板厚断面が観察できるように試験片を切り出す。試験片の板厚断面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液や純水に分散させた液体を使用して鏡面に仕上げる。この板厚断面を測定面とする。マイクロビッカース硬さ試験機を用いて、測定面の、表面から板厚の1/8深さ~表面から板厚の3/8深さの領域において、荷重1kgfで圧痕の3倍以上の間隔でビッカース硬さを測定する。合計で20点測定し、それらの平均値を算出することで、内部領域の金属組織のビッカース硬さHvcを得る。同様に、測定面の、表面~表面から20μm深さの領域においてビッカース硬さを測定し、20点の平均値を算出することで、表層領域の金属組織のビッカース硬さHvsを得る。得られたHvsおよびHvcを用いて、(1-Hvs/Hvc)を算出することで、ビッカース硬さの高度差割合を得る。
Measurement method of Vickers hardness A test piece is cut out from a hot-rolled steel sheet so that a thickness cross-section perpendicular to the surface can be observed. After polishing the plate thickness cross section of the test piece using #600 to #1500 silicon carbide paper, a mirror surface is obtained by using a liquid in which diamond powder with a particle size of 1 to 6 μm is dispersed in a diluted solution such as alcohol or pure water. to finish. Let this plate thickness section be the measurement surface. Using a micro Vickers hardness tester, on the measurement surface, in the area from the surface to the depth of 1/8 of the plate thickness to the depth of 3/8 of the plate thickness from the surface, at a load of 1 kgf at intervals of 3 times or more of the indentation. Measure the Vickers hardness. By measuring 20 points in total and calculating their average value, the Vickers hardness Hvc of the metal structure of the internal region is obtained. Similarly, the Vickers hardness is measured in a region from the surface to a depth of 20 μm from the surface of the measurement surface, and the average value of 20 points is calculated to obtain the Vickers hardness Hvs of the metal structure of the surface layer region. Using the obtained Hvs and Hvc, (1−Hvs/Hvc) is calculated to obtain the Vickers hardness height difference ratio.
本実施形態に係る熱延鋼板は、引張(最大)強さが980MPa以上である。好ましくは1000MPa以上である。引張強さが980MPa未満であると、適用部品が限定され、車体軽量化の寄与が小さい。上限は特に限定する必要は無いが、金型摩耗抑制の観点から、1500MPa以下または1300MPa以下としてもよい。
また、本実施形態に係る熱延鋼板は、全伸びが10%以上であってもよく、-20℃での吸収エネルギーが80J/cm2以上であってもよく、疲労限度比(疲労強度/引張強さ)が0.48以上であってもよい。
The hot-rolled steel sheet according to this embodiment has a tensile (maximum) strength of 980 MPa or more. It is preferably 1000 MPa or more. If the tensile strength is less than 980 MPa, the applicable parts are limited and the contribution to vehicle weight reduction is small. Although the upper limit is not particularly limited, it may be 1500 MPa or less or 1300 MPa or less from the viewpoint of mold wear suppression.
In addition, the hot-rolled steel sheet according to the present embodiment may have a total elongation of 10% or more, an absorbed energy at −20° C. of 80 J/cm 2 or more, and a fatigue limit ratio (fatigue strength/ tensile strength) may be 0.48 or more.
引張強さおよび全伸びは、JIS Z 2241:2011に準拠して引張試験を行うことで評価する。試験片はJIS Z 2241:2011の5号試験片とする。引張試験片の採取位置は、板幅方向の端部から1/4部分とし、圧延方向に垂直な方向を長手方向とすればよい。
靭性は、まず、引張試験で使用した試験片の採取位置と近接する位置から、JIS Z 2242:2018で規定される2.5mmサブサイズのVノッチ試験片を採取する。この試験片を用いて、-20℃でC方向ノッチのシャルピー衝撃試験を行うことで、吸収エネルギーを測定する。熱延鋼板の板厚が2.5mm未満のものについては、全厚で試験を行う。
疲労強度は、JIS Z 2275:1978に準拠し、シェンク式平面曲げ疲労試験機を用いて測定する。測定時の応力負荷は、両振りで試験の速度を30Hzとして設定し、107サイクルでの疲労強度を測定する。そして、107サイクルでの疲労強度を、前述した引張試験により測定された引張強さで除することで、疲労限度比(疲労強度/引張強さ)を算出する。
Tensile strength and total elongation are evaluated by performing a tensile test according to JIS Z 2241:2011. The test piece shall be JIS Z 2241:2011 No. 5 test piece. A tensile test piece is taken from a quarter portion from the edge in the width direction of the sheet, and the direction perpendicular to the rolling direction is taken as the longitudinal direction.
For toughness, first, a 2.5 mm sub-sized V-notch test piece specified in JIS Z 2242:2018 is sampled from a position close to the sampling position of the test piece used in the tensile test. Absorbed energy is measured by performing a C-direction notch Charpy impact test at −20° C. using this test piece. If the thickness of the hot-rolled steel sheet is less than 2.5 mm, the test is performed on the full thickness.
Fatigue strength is measured using a Schenk plane bending fatigue tester in accordance with JIS Z 2275:1978. The stress load at the time of measurement is set at a test speed of 30 Hz in both swings, and the fatigue strength is measured at 107 cycles. Then, the fatigue limit ratio (fatigue strength/tensile strength) is calculated by dividing the fatigue strength at 107 cycles by the tensile strength measured by the tensile test described above.
本実施形態に係る熱延鋼板の板厚は特に限定されないが、1.2~8.0mmとしてもよい。熱延鋼板の板厚が1.2mm未満では、圧延完了温度の確保が困難になるとともに圧延荷重が過大となって、熱間圧延が困難となる場合がある。したがって、本実施形態に係る熱延鋼板の板厚は1.2mm以上としてもよい。好ましくは1.4mm以上である。一方、板厚が8.0mm超では、熱間圧延後において上述した金属組織を得ることが困難となる場合がある。したがって、板厚は8.0mm以下としてもよい。好ましくは6.0mm以下である。 The thickness of the hot-rolled steel sheet according to this embodiment is not particularly limited, but may be 1.2 to 8.0 mm. If the thickness of the hot-rolled steel sheet is less than 1.2 mm, it may become difficult to ensure the rolling completion temperature and the rolling load may become excessive, making hot rolling difficult. Therefore, the thickness of the hot-rolled steel sheet according to this embodiment may be 1.2 mm or more. Preferably, it is 1.4 mm or more. On the other hand, if the plate thickness exceeds 8.0 mm, it may be difficult to obtain the metal structure described above after hot rolling. Therefore, the plate thickness may be 8.0 mm or less. Preferably, it is 6.0 mm or less.
上述した化学組成および金属組織を有する本実施形態に係る熱延鋼板は、表面に耐食性の向上等を目的としてめっき層を備えさせて表面処理鋼板としてもよい。めっき層は電気めっき層であってもよく溶融めっき層であってもよい。電気めっき層としては、電気亜鉛めっき、電気Zn-Ni合金めっき等が例示される。溶融めっき層としては、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、溶融Zn-Al合金めっき、溶融Zn-Al-Mg合金めっき、溶融Zn-Al-Mg-Si合金めっき等が例示される。めっき付着量は特に制限されず、従来と同様としてよい。また、めっき後に適当な化成処理(例えば、シリケート系のクロムフリー化成処理液の塗布と乾燥)を施して、耐食性をさらに高めることも可能である。 The hot-rolled steel sheet according to the present embodiment having the above-described chemical composition and metallographic structure may be provided with a plating layer on the surface for the purpose of improving corrosion resistance, etc., and may be used as a surface-treated steel sheet. The plating layer may be an electroplating layer or a hot dipping layer. Examples of the electroplating layer include electrogalvanizing and electroplating of Zn—Ni alloy. Examples of hot-dip coating layers include hot-dip galvanizing, hot-dip galvannealing, hot-dip aluminum plating, hot-dip Zn--Al alloy plating, hot-dip Zn--Al--Mg alloy plating, and hot-dip Zn--Al--Mg--Si alloy plating. be. The amount of plating deposited is not particularly limited, and may be the same as the conventional one. Further, it is possible to further improve the corrosion resistance by applying an appropriate chemical conversion treatment (for example, applying a silicate-based chromium-free chemical conversion treatment solution and drying) after plating.
本実施形態に係る熱延鋼板は、製造方法によらず、上記の化学組成および金属組織を有することでその効果が得られる。しかしながら、以下に示す製造方法によれば、本実施形態に係る熱延鋼板を安定的に得られるため好ましい。 The hot-rolled steel sheet according to the present embodiment has the above-described chemical composition and metallographic structure, regardless of the manufacturing method. However, according to the manufacturing method described below, the hot-rolled steel sheet according to the present embodiment can be stably obtained, which is preferable.
本実施形態に係る熱延鋼板の好ましい製造方法では、熱間圧延の仕上圧延中に曲げ加工を行うことで、表層領域にひずみを付与し、表層領域におけるフェライト変態を促進させる。表層領域に析出強化したフェライトを晶出させた後、急冷することで、内部領域には、フェライトに加えてマルテンサイトおよびベイナイトが生成される。そのため、析出強化された表層領域と、析出強化されずに、低温変態組織が生された内部領域との間で硬度差を小さくすることができる。 In the preferred method of manufacturing the hot-rolled steel sheet according to the present embodiment, strain is imparted to the surface layer region by performing bending during finish rolling of hot rolling to promote ferrite transformation in the surface layer region. By crystallizing precipitation-strengthened ferrite in the surface layer region and then quenching, martensite and bainite are generated in addition to ferrite in the inner region. Therefore, it is possible to reduce the difference in hardness between the precipitation-strengthened surface layer region and the internal region where the low temperature transformation structure is generated without precipitation strengthening.
熱間圧延
スラブの加熱温度は、溶体化および元素偏析の解消に大きな影響を与える。スラブの加熱温度を1100℃以上とすることで、溶体化および元素偏析の解消が不十分となることを抑制でき、結果として、製品の引張特性および靱性の劣化を抑制することができる。また、スラブの加熱温度を1350℃以下とすることで、溶体化および元素偏析の解消の効果が飽和することができる。したがって、スラブの加熱温度は1100~1350℃とすることが好ましい。より好ましくは1150~1300℃である。
なお、本実施形態におけるスラブの温度および鋼板の温度は、スラブの表面温度および鋼板の表面温度のことをいう。
The heating temperature of hot-rolled slabs has a great effect on the elimination of solution and elemental segregation. By setting the heating temperature of the slab to 1100° C. or higher, it is possible to prevent insufficient elimination of solution treatment and elemental segregation, and as a result, it is possible to prevent deterioration of the tensile properties and toughness of the product. Further, by setting the heating temperature of the slab to 1350° C. or less, the effects of solutionization and elimination of elemental segregation can be saturated. Therefore, it is preferable to set the heating temperature of the slab to 1100 to 1350.degree. More preferably, it is 1150 to 1300°C.
The temperature of the slab and the temperature of the steel plate in this embodiment refer to the surface temperature of the slab and the surface temperature of the steel plate.
仕上圧延では、仕上圧延用の圧延スタンドにスラブを複数回に渡って連続して通過させる圧延を行う。仕上圧延では、最終パス後の熱延鋼板の温度(仕上温度)をAr3点以上とし、且つ最終パスの圧下率を12~45%とすることが好ましい。
なお、最終パス後の熱延鋼板の温度は、複数のスタンドにより圧延される仕上圧延における最低温度である。最終パス後の圧下率とは、最終パス前の入口板厚をt0とし、最終パス後の出口板厚をt1としたとき、{(t0-t1)/t0}×100(%)で表すことができる。また、Ar3点は、下記式(1)により表される。
In the finish rolling, the slab is continuously passed through a rolling stand for finish rolling a plurality of times. In the finish rolling, it is preferable to set the temperature of the hot-rolled steel sheet after the final pass (finishing temperature) to Ar 3 point or higher and the rolling reduction of the final pass to 12 to 45%.
The temperature of the hot-rolled steel sheet after the final pass is the lowest temperature in finish rolling performed by a plurality of stands. The rolling reduction after the final pass is { (t 0 −t 1 )/t 0 }× 100 ( %). Also, the Ar 3 point is represented by the following formula (1).
Ar3点=901-325×C+33×Si―92×Mn+287×P+40×sol.Al ・・・式(1)
上記式(1)中の各元素記号は、各元素の含有量(質量%)を示す。当該元素を含有しない場合は0を代入する。
Ar 3 points=901−325×C+33×Si−92×Mn+287×P+40×sol. Al... Formula (1)
Each element symbol in the above formula (1) indicates the content (% by mass) of each element. If the element is not contained, 0 is substituted.
仕上圧延の最終パス後の熱延鋼板の温度(仕上温度)をAr3点以上とすることで、仕上圧延中にフェライトが生じることを抑制でき、結果として、所望の金属組織および特性を得ることができる。 By setting the temperature (finishing temperature) of the hot-rolled steel sheet after the final pass of finish rolling to Ar 3 or more, the formation of ferrite during finish rolling can be suppressed, and as a result, the desired metal structure and properties can be obtained. can be done.
仕上圧延の最終パスの圧下率を12%以上とすることで、仕上圧延において再結晶を促進でき、内部領域および表層領域の金属組織を好ましく制御することができ、優れた疲労強度を得ることができる。また、最終パスの圧下率を45%以下とすることで、圧延スタンドの負荷が上昇すること、および仕上圧延後の熱延鋼板の形状が悪化することを抑制することができる。従って、仕上圧延における最終パスの圧下率は12~45%とすることが好ましい。より好ましくは、15~45%である。 By setting the rolling reduction in the final pass of the finish rolling to 12% or more, recrystallization can be promoted in the finish rolling, the metal structure of the inner region and the surface layer region can be preferably controlled, and excellent fatigue strength can be obtained. can. Further, by setting the rolling reduction of the final pass to 45% or less, it is possible to suppress an increase in the load on the rolling stand and deterioration in the shape of the hot-rolled steel sheet after finish rolling. Therefore, it is preferable that the draft of the final pass in the finish rolling is 12 to 45%. More preferably, it is 15-45%.
仕上圧延の最終パスとその1段前のパスとの間において、曲げ加工を行うことで、熱延鋼板の表層領域(表面~表面から20μm深さの領域)に0.002~0.020のひずみを付与することが好ましい。曲げ加工時のひずみを0.002以上とすることで、表層領域に所望の金属組織を作りこむことができる。そのため、曲げ加工時のひずみは0.002以上とすることが好ましい。より好ましくは0.003以上または0.004以上である。
また、曲げ加工時のひずみを0.020以下とすることで、仕上圧延中に座屈が起きやすくなり、製造安定性が失われることを抑制することができる。また、曲げ加工時のひずみを0.020以下とすることで、表層領域および内部領域の金属組織を好ましく制御することができる。そのため、曲げ加工時のひずみは0.020以下とすることが好ましい。より好ましくは0.015以下または0.010以下である。
By performing bending between the final pass of finish rolling and the pass one stage before that, the surface layer region of the hot-rolled steel sheet (area from surface to 20 μm deep from the surface) has a thickness of 0.002 to 0.020. Straining is preferred. By setting the strain during bending to 0.002 or more, it is possible to create a desired metal structure in the surface layer region. Therefore, the strain during bending is preferably 0.002 or more. It is more preferably 0.003 or more or 0.004 or more.
In addition, by setting the strain during bending to 0.020 or less, it is possible to suppress the loss of production stability due to the tendency of buckling to occur during finish rolling. Also, by setting the strain during bending to 0.020 or less, it is possible to preferably control the metal structure of the surface layer region and the inner region. Therefore, the strain during bending is preferably 0.020 or less. It is more preferably 0.015 or less or 0.010 or less.
なお、曲げ加工はスタンド間で鋼板の下からロールで押し上げる方法等の方法で行い、曲げ加工時のひずみはその押し上げる量やロールの直径で曲げ角度を調整して制御することができる。
例えば、スタンド間で鋼板の下からロールで押し上げる方法により曲げ加工を行う場合は、曲げ加工時のひずみ量は、下記式(2)により求めることができる。
Bending is performed by a method such as pushing up the steel sheet from below with rolls between stands, and the strain during bending can be controlled by adjusting the bending angle by adjusting the amount of pushing up and the diameter of the rolls.
For example, when bending is performed by pushing up a steel plate from below between stands with rolls, the amount of strain during bending can be obtained from the following equation (2).
ひずみ量=1.5×(板厚)×(押し上げ量)/(押し上げ装置先端の直径)2 ・・・式(2) Strain amount = 1.5 x (plate thickness) x (push-up amount) / (diameter at the tip of the push-up device) 2 Equation (2)
仕上圧延終了後、冷却開始までの経過時間は1.6秒以下とすることが好ましい。仕上圧延完了から冷却開始までの経過時間を1.6秒以下とすることで、曲げ加工および圧延のひずみが回復することを抑制でき、表層領域の金属組織を好ましく制御することができる。 The elapsed time from the end of finish rolling to the start of cooling is preferably 1.6 seconds or less. By setting the elapsed time from the completion of finish rolling to the start of cooling to 1.6 seconds or less, it is possible to suppress recovery from bending and rolling strains, and to preferably control the metal structure of the surface layer region.
仕上圧延完了後は、一次冷却として、40℃/秒以上の平均冷却速度で、600~750℃の温度域まで冷却し、その後、2~6秒間空冷することが好ましい。なお、一般的に、空冷時の冷却速度は2~10℃/秒である。
40℃/秒以上の平均冷却速度での冷却の停止温度を600~750℃の温度域とし、その後空冷を行うことで、フェライト変態を促進することができ、所望量のフェライトを得ることができる。
After the finish rolling is completed, it is preferable to cool the steel sheet to a temperature range of 600 to 750° C. at an average cooling rate of 40° C./second or more as primary cooling, and then air-cool for 2 to 6 seconds. In general, the cooling rate during air cooling is 2 to 10° C./sec.
By setting the cooling stop temperature at an average cooling rate of 40° C./second or more to a temperature range of 600 to 750° C. and then performing air cooling, ferrite transformation can be promoted and a desired amount of ferrite can be obtained. .
空冷後、二次冷却として、60℃/秒以上の平均冷却速度で200℃以下の温度域まで冷却し、その後コイル状に巻き取ることが好ましい。200℃以下の温度域までの平均冷却速度を60℃/秒以上とすることで、マルテンサイト変態を促進でき、所望量のマルテンサイトおよびベイナイトを得ることができる。 After air cooling, as secondary cooling, it is preferable to cool to a temperature range of 200°C or less at an average cooling rate of 60°C/second or more, and then coil it. By setting the average cooling rate to a temperature range of 200° C. or lower at 60° C./second or more, martensite transformation can be promoted, and desired amounts of martensite and bainite can be obtained.
ここで、平均冷却速度とは、冷却開始時から冷却終了時までの鋼板の温度降下幅を、冷却開始時から冷却終了時までの所要時間で除した値とする。 Here, the average cooling rate is a value obtained by dividing the temperature drop width of the steel sheet from the start of cooling to the end of cooling by the time required from the start of cooling to the end of cooling.
また、冷却設備には、途中に空冷区間がない設備や、途中に1以上の空冷区間を有する設備がある。本実施形態では、いずれの冷却設備を用いてもよい。空冷区間を有する冷却設備を用いる場合であっても、冷却開始から冷却終了までの平均冷却速度が上述した範囲であればよい。 In addition, some cooling facilities have no air-cooling section on the way, and some have one or more air-cooling sections on the way. In this embodiment, any cooling equipment may be used. Even in the case of using a cooling facility having an air-cooling section, the average cooling rate from the start of cooling to the end of cooling should be within the range described above.
二次冷却後に直ちに熱延鋼板の巻取りが行われるため、巻取温度は二次冷却の冷却停止温度にほぼ等しい。巻取温度を200℃以下とすることで、ポリゴナルフェライト又はベイナイトが多量に生成することを抑制でき、所望の金属組織および特性を得ることができる。 Since the hot-rolled steel sheet is coiled immediately after secondary cooling, the coiling temperature is almost equal to the secondary cooling stop temperature. By setting the coiling temperature to 200° C. or less, it is possible to suppress the formation of a large amount of polygonal ferrite or bainite, and to obtain the desired metal structure and properties.
なお、巻取り後、熱延鋼板には常法に従って調質圧延を施してもよく、また、酸洗を施して表面に形成されたスケールを除去してもよい。或いは、上述した溶融亜鉛めっき、または電気亜鉛めっき等のめっきを形成してもよく、更には化成処理を施してもよい。 After the coiling, the hot-rolled steel sheet may be temper-rolled according to a conventional method, or may be pickled to remove scales formed on the surface. Alternatively, plating such as the hot-dip galvanizing or electro-galvanizing described above may be formed, and further chemical conversion treatment may be performed.
上記の製造方法によれば、上述した金属組織を有する熱延鋼板を安定的に製造することができる。そのため、高い強度、並びに優れた疲労強度および靱性を有する熱延鋼板を安定的に製造することが可能である。 According to the manufacturing method described above, it is possible to stably manufacture a hot-rolled steel sheet having the metal structure described above. Therefore, it is possible to stably produce a hot-rolled steel sheet having high strength and excellent fatigue strength and toughness.
次に、実施例により本発明の一態様の効果を更に具体的に説明するが、実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明はこの一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, the effects of one aspect of the present invention will be described in more detail with reference to examples. The present invention is not limited to this one conditional example. Various conditions can be adopted in the present invention as long as the objects of the present invention are achieved without departing from the gist of the present invention.
表1に示す化学組成を有する鋼を溶製し、連続鋳造により厚みが240~300mmのスラブを製造した。得られたスラブを用いて、表2および3に示す製造条件により、表4および5に示す熱延鋼板を得た。
なお、曲げ加工はスタンド間で鋼板の下からロールで押し上げることで行った。曲げ加工時のひずみ量は、その押し上げる量およびロールの直径で曲げ角度を調整することで、制御した。このとき、曲げ加工時のひずみ量は上記式(2)により求めた。
A steel having the chemical composition shown in Table 1 was melted, and a slab having a thickness of 240 to 300 mm was produced by continuous casting. Using the obtained slabs, hot-rolled steel sheets shown in Tables 4 and 5 were obtained under the manufacturing conditions shown in Tables 2 and 3.
The bending process was performed by pushing up the steel plate from below between stands with a roll. The amount of strain during bending was controlled by adjusting the bending angle with the amount of pushing up and the diameter of the rolls. At this time, the amount of strain during bending was determined by the above formula (2).
得られた熱延鋼板に対し、上述の方法により、内部領域および表層領域の金属組織の面積分率およびビッカース硬さ、引張強さ、全伸び、-20℃での吸収エネルギーおよび疲労限度比を求めた。得られた測定結果を表4および5に示す。 For the obtained hot-rolled steel sheet, the area fraction, Vickers hardness, tensile strength, total elongation, absorbed energy at -20 ° C. and fatigue limit ratio of the metal structure of the inner region and the surface layer region were measured by the above-described method. asked. The measurement results obtained are shown in Tables 4 and 5.
熱延鋼板の特性の評価方法
引張強さTSが980MPa以上であった場合、強度に優れた熱延鋼板であるとして合格と判定した。一方、引張強さTSが980MPa未満であった場合、強度に優れた熱延鋼板でないとして不合格と判定した。
Evaluation Method of Properties of Hot-Rolled Steel Sheet When the tensile strength TS was 980 MPa or more, the hot-rolled steel sheet was determined to be excellent in strength and judged to pass. On the other hand, when the tensile strength TS was less than 980 MPa, it was determined that the hot-rolled steel sheet did not have excellent strength and was rejected.
全伸びが10%以上であった場合、延性に優れた熱延鋼板であるとして合格と判定した。一方、全伸びが10%未満であった場合、延性に優れた熱延鋼板でないとして不合格と判定した。
-20℃での吸収エネルギーが80J/cm2以上であった場合、靭性に優れた熱延鋼板であるとして合格と判定した。一方、-20℃での吸収エネルギーが80J/cm2未満であった場合、靭性に優れた熱延鋼板でないとして不合格と判定した。
疲労限度比が0.48以上であった場合、疲労強度に優れた熱延鋼板であるとして合格と判定した。一方、疲労限度比が0.48未満であった場合、疲労強度に優れた熱延鋼板でないとして不合格と判定した。
When the total elongation was 10% or more, the hot-rolled steel sheet was judged to have excellent ductility and was judged as acceptable. On the other hand, when the total elongation was less than 10%, it was determined that the hot-rolled steel sheet did not have excellent ductility and was rejected.
If the absorbed energy at −20° C. was 80 J/cm 2 or more, the hot-rolled steel sheet was determined to be excellent in toughness and judged to be acceptable. On the other hand, when the absorbed energy at −20° C. was less than 80 J/cm 2 , it was determined that the hot-rolled steel sheet did not have excellent toughness and was rejected.
When the fatigue limit ratio was 0.48 or more, the hot-rolled steel sheet was judged to have excellent fatigue strength and was judged to be acceptable. On the other hand, when the fatigue limit ratio was less than 0.48, it was determined that the hot-rolled steel sheet did not have excellent fatigue strength and was rejected.
表4および5を見ると、本発明例に係る熱延鋼板は、高い強度、並びに優れた靭性、疲労強度および延性を有することが分かる。
一方、比較例に係る熱延鋼板は、強度、靭性および疲労強度のいずれか1つ以上が劣ることが分かる。
From Tables 4 and 5, it can be seen that the hot-rolled steel sheets according to the examples of the present invention have high strength and excellent toughness, fatigue strength and ductility.
On the other hand, it can be seen that the hot-rolled steel sheets according to the comparative examples are inferior in at least one of strength, toughness and fatigue strength.
本発明に係る上記態様によれば、高い強度、並びに優れた疲労強度、靱性および延性を有する熱延鋼板を提供することができる。この熱延鋼板によれば、自動車などの車体の軽量化、部品の一体成型化、および加工工程の短縮等が可能であり、燃費の向上および製造コストの低減を図ることができるため、工業的価値が高い。 According to the above aspect of the present invention, it is possible to provide a hot-rolled steel sheet having high strength and excellent fatigue strength, toughness and ductility. According to this hot-rolled steel sheet, it is possible to reduce the weight of the body of an automobile, etc., integrally mold parts, shorten the processing process, etc., and improve fuel efficiency and reduce manufacturing costs. Good value.
Claims (2)
C:0.02~0.30%、
Si:0.10~2.00%、
Mn:0.5~3.0%、
sol.Al:0.10~1.00%、
Ti:0.06~0.20%、
P:0.1000%以下、
S:0.0100%以下、
N:0.0100%以下、
Nb:0~0.100%、
Ca:0~0.0060%、
Mo:0~0.50%、
Cr:0~1.00%、
V:0~0.40%、
Ni:0~0.40%、
Cu:0~0.40%、
B:0~0.0020%、および
Sn:0~0.20%を含有し、
残部がFeおよび不純物からなり、
内部領域の金属組織が、面積率で、マルテンサイトおよびベイナイトの1種または2種を合計で40~80%、フェライトを20~60%含有し、且つ残部組織の面積率が5%未満であり、
表層領域のフェライト面積率αsと、前記内部領域のフェライト面積率αcとの比であるαs/αcが1.15~2.50であり、
前記表層領域のビッカース硬さHvsと、前記内部領域のビッカース硬さHvcとの硬度差割合である(1-Hvs/Hvc)が0.20以下であり、
引張強さが980MPa以上である
ことを特徴とする熱延鋼板。 The chemical composition, in mass %,
C: 0.02 to 0.30%,
Si: 0.10 to 2.00%,
Mn: 0.5-3.0%,
sol. Al: 0.10 to 1.00%,
Ti: 0.06-0.20%,
P: 0.1000% or less,
S: 0.0100% or less,
N: 0.0100% or less,
Nb: 0 to 0.100%,
Ca: 0 to 0.0060%,
Mo: 0-0.50%,
Cr: 0 to 1.00%,
V: 0 to 0.40%,
Ni: 0 to 0.40%,
Cu: 0-0.40%,
B: 0 to 0.0020%, and Sn: 0 to 0.20%,
The balance consists of Fe and impurities,
The metal structure of the internal region contains, in terms of area ratio, 40 to 80% in total of one or two of martensite and bainite, and 20 to 60% ferrite, and the area ratio of the remaining structure is less than 5%. ,
αs/αc, which is the ratio of the ferrite area ratio αs of the surface layer region to the ferrite area ratio αc of the internal region, is 1.15 to 2.50;
A hardness difference ratio (1-Hvs/Hvc) between the Vickers hardness Hvs of the surface region and the Vickers hardness Hvc of the inner region is 0.20 or less,
A hot-rolled steel sheet having a tensile strength of 980 MPa or more.
Nb:0.010~0.100%、
Ca:0.0005~0.0060%、
Mo:0.02~0.50%、
Cr:0.02~1.00%、
V:0.01~0.40%、
Ni:0.01~0.40%、
Cu:0.01~0.40%、
B:0.0001~0.0020%、および
Sn:0.01~0.20%からなる群から選択される1種または2種以上を含有する
ことを特徴とする請求項1に記載の熱延鋼板。 The chemical composition, in mass %,
Nb: 0.010 to 0.100%,
Ca: 0.0005 to 0.0060%,
Mo: 0.02-0.50%,
Cr: 0.02 to 1.00%,
V: 0.01 to 0.40%,
Ni: 0.01 to 0.40%,
Cu: 0.01 to 0.40%,
B: 0.0001 to 0.0020%, and Sn: 0.01 to 0.20%, characterized by containing one or more selected from the group consisting of 0.01 to 0.20% Heat according to claim 1 Rolled steel plate.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/681,260 US20250230514A1 (en) | 2021-09-06 | 2021-09-06 | Hot-rolled steel sheet |
JP2023544999A JP7705065B2 (en) | 2021-09-06 | 2021-09-06 | hot rolled steel plate |
PCT/JP2021/032729 WO2023032225A1 (en) | 2021-09-06 | 2021-09-06 | Hot-rolled steel sheet |
CN202180101291.1A CN117795112A (en) | 2021-09-06 | 2021-09-06 | hot rolled steel plate |
KR1020247003390A KR20240028459A (en) | 2021-09-06 | 2021-09-06 | hot rolled steel plate |
EP21956107.3A EP4400613A4 (en) | 2021-09-06 | 2021-09-06 | HOT ROLLED STEEL SHEET |
MX2024001551A MX2024001551A (en) | 2021-09-06 | 2021-09-06 | Hot-rolled steel sheet. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/032729 WO2023032225A1 (en) | 2021-09-06 | 2021-09-06 | Hot-rolled steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023032225A1 true WO2023032225A1 (en) | 2023-03-09 |
Family
ID=85411026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/032729 WO2023032225A1 (en) | 2021-09-06 | 2021-09-06 | Hot-rolled steel sheet |
Country Status (7)
Country | Link |
---|---|
US (1) | US20250230514A1 (en) |
EP (1) | EP4400613A4 (en) |
JP (1) | JP7705065B2 (en) |
KR (1) | KR20240028459A (en) |
CN (1) | CN117795112A (en) |
MX (1) | MX2024001551A (en) |
WO (1) | WO2023032225A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001279378A (en) | 2000-03-31 | 2001-10-10 | Kobe Steel Ltd | High strength hot rolled steel sheet excellent in workability |
WO2014171057A1 (en) | 2013-04-15 | 2014-10-23 | Jfeスチール株式会社 | High strength hot rolled steel sheet and method for producing same |
JP2015124410A (en) * | 2013-12-26 | 2015-07-06 | 新日鐵住金株式会社 | Hot rolled steel sheet |
JP2016050335A (en) * | 2014-08-29 | 2016-04-11 | 新日鐵住金株式会社 | Hot rolled steel sheet |
JP2017186634A (en) | 2016-04-08 | 2017-10-12 | 新日鐵住金株式会社 | Hot rolled steel sheet and manufacturing method therefor |
WO2018151331A1 (en) | 2017-02-20 | 2018-08-23 | 新日鐵住金株式会社 | High strength steel plate |
WO2020196326A1 (en) * | 2019-03-22 | 2020-10-01 | 日本製鉄株式会社 | High-strength steel sheet and method for manufacturing same |
WO2021124203A1 (en) * | 2019-12-19 | 2021-06-24 | Arcelormittal | Hot rolled and heat-treated steel sheet and method of manufacturing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014171427A1 (en) * | 2013-04-15 | 2014-10-23 | 新日鐵住金株式会社 | Hot-rolled steel sheet |
US20200024679A1 (en) * | 2017-03-31 | 2020-01-23 | Nippon Steel Corporation | Hot rolled steel sheet, steel forged part and production method therefor |
TWI679285B (en) * | 2017-07-07 | 2019-12-11 | 日商日本製鐵股份有限公司 | Hot-rolled steel sheet and method for producing same |
-
2021
- 2021-09-06 CN CN202180101291.1A patent/CN117795112A/en active Pending
- 2021-09-06 EP EP21956107.3A patent/EP4400613A4/en active Pending
- 2021-09-06 KR KR1020247003390A patent/KR20240028459A/en active Pending
- 2021-09-06 US US18/681,260 patent/US20250230514A1/en active Pending
- 2021-09-06 MX MX2024001551A patent/MX2024001551A/en unknown
- 2021-09-06 WO PCT/JP2021/032729 patent/WO2023032225A1/en active Application Filing
- 2021-09-06 JP JP2023544999A patent/JP7705065B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001279378A (en) | 2000-03-31 | 2001-10-10 | Kobe Steel Ltd | High strength hot rolled steel sheet excellent in workability |
WO2014171057A1 (en) | 2013-04-15 | 2014-10-23 | Jfeスチール株式会社 | High strength hot rolled steel sheet and method for producing same |
JP2015124410A (en) * | 2013-12-26 | 2015-07-06 | 新日鐵住金株式会社 | Hot rolled steel sheet |
JP2016050335A (en) * | 2014-08-29 | 2016-04-11 | 新日鐵住金株式会社 | Hot rolled steel sheet |
JP2017186634A (en) | 2016-04-08 | 2017-10-12 | 新日鐵住金株式会社 | Hot rolled steel sheet and manufacturing method therefor |
WO2018151331A1 (en) | 2017-02-20 | 2018-08-23 | 新日鐵住金株式会社 | High strength steel plate |
WO2020196326A1 (en) * | 2019-03-22 | 2020-10-01 | 日本製鉄株式会社 | High-strength steel sheet and method for manufacturing same |
WO2021124203A1 (en) * | 2019-12-19 | 2021-06-24 | Arcelormittal | Hot rolled and heat-treated steel sheet and method of manufacturing the same |
Non-Patent Citations (1)
Title |
---|
See also references of EP4400613A4 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023032225A1 (en) | 2023-03-09 |
US20250230514A1 (en) | 2025-07-17 |
KR20240028459A (en) | 2024-03-05 |
EP4400613A1 (en) | 2024-07-17 |
CN117795112A (en) | 2024-03-29 |
EP4400613A4 (en) | 2024-11-06 |
MX2024001551A (en) | 2024-02-13 |
JP7705065B2 (en) | 2025-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3214196B1 (en) | High-strength steel sheet and method for manufacturing same | |
EP3214197B1 (en) | High-strength steel sheet and method for manufacturing same | |
EP3214199B1 (en) | High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same | |
EP3214193A1 (en) | High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same | |
WO2019186989A1 (en) | Steel sheet | |
JP6485549B2 (en) | High strength hot rolled steel sheet | |
JP7284428B2 (en) | Steel sheet, steel sheet manufacturing method, and plated steel sheet | |
US11332804B2 (en) | High-strength cold-rolled steel sheet, high-strength coated steel sheet, and method for producing the same | |
WO2013121963A1 (en) | Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet | |
JP6274360B2 (en) | High-strength galvanized steel sheet, high-strength member, and method for producing high-strength galvanized steel sheet | |
JP7216933B2 (en) | Steel plate and its manufacturing method | |
EP2759613A1 (en) | High-tensile-strength hot-rolled steel sheet and method for producing same | |
EP3498876B1 (en) | Cold-rolled high-strength steel sheet, and production method therefor | |
CN115151673B (en) | Steel sheet, member, and method for producing same | |
US20220090247A1 (en) | Steel sheet, member, and methods for producing them | |
US12258647B2 (en) | Steel sheet, member, and methods for manufacturing the same | |
CN115210398B (en) | Steel plates, components and their manufacturing methods | |
JP7348573B2 (en) | hot rolled steel plate | |
JP7705065B2 (en) | hot rolled steel plate | |
JP6119894B2 (en) | High strength steel plate with excellent workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21956107 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023544999 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20247003390 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202417005710 Country of ref document: IN Ref document number: 1020247003390 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2024/001551 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180101291.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401000792 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021956107 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021956107 Country of ref document: EP Effective date: 20240408 |