WO2023027034A1 - 回路シート、センサシート及び皮膜形成組成物 - Google Patents
回路シート、センサシート及び皮膜形成組成物 Download PDFInfo
- Publication number
- WO2023027034A1 WO2023027034A1 PCT/JP2022/031597 JP2022031597W WO2023027034A1 WO 2023027034 A1 WO2023027034 A1 WO 2023027034A1 JP 2022031597 W JP2022031597 W JP 2022031597W WO 2023027034 A1 WO2023027034 A1 WO 2023027034A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- sheet
- thermoplastic resin
- resin
- circuit
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D171/00—Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
- C09D171/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C09D171/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C09D171/12—Polyphenylene oxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D131/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid, or of a haloformic acid; Coating compositions based on derivatives of such polymers
- C09D131/02—Homopolymers or copolymers of esters of monocarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/02—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D129/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
- C09D129/14—Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D171/00—Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
- C09D171/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C09D171/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/036—Multilayers with layers of different types
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/28—Applying non-metallic protective coatings
- H05K3/282—Applying non-metallic protective coatings for inhibiting the corrosion of the circuit, e.g. for preserving the solderability
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/28—Applying non-metallic protective coatings
- H05K3/285—Permanent coating compositions
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0284—Details of three-dimensional rigid printed circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/032—Organic insulating material consisting of one material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/0108—Transparent
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/0129—Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0145—Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0158—Polyalkene or polyolefin, e.g. polyethylene [PE], polypropylene [PP]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/032—Materials
- H05K2201/0323—Carbon
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/032—Materials
- H05K2201/0326—Inorganic, non-metallic conductor, e.g. indium-tin oxide [ITO]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/032—Materials
- H05K2201/0329—Intrinsically conductive polymer [ICP]; Semiconductive polymer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10151—Sensor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/108—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by semi-additive methods; masks therefor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
- H05K3/1241—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
- H05K3/125—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing
Definitions
- the present disclosure relates to a film-forming composition that forms a film used as a protective layer on a circuit sheet, a sensor sheet, or the like, and a circuit sheet or a sensor sheet provided with the film.
- Some of the conductive lines placed on the circuit sheet or the sensor electrodes placed on the sensor sheet are made of a silver paste containing silver or a transparent conductive polymer called PEDOT/PSS.
- a circuit sheet or a sensor sheet is provided with a highly transparent protective layer covering the surface thereof in order to protect these conductive lines or sensor electrodes from disconnection, corrosion, and the like.
- Patent Document 1 A technique for covering a conductive wire with a protective layer is described in, for example, Japanese Patent No. 6167103 (Patent Document 1).
- the present disclosure aims to improve the protective performance of circuit sheets or sensor sheets.
- One aspect of the present disclosure includes a base sheet, circuit wiring containing silver, copper or a conductive polymer and provided on the base sheet, and an electrically insulating protective layer covering the circuit wiring,
- the protective layer has a hydrogen-bonding functional group, and at least epoxy resin, phenoxy resin, polyvinyl alcohol, polyvinyl acetal, polyvinyl butyral, and ethylene-vinyl alcohol copolymer having a glass transition temperature Tg of 70°C or higher and 150°C or lower.
- the conductive protective layer covering the circuit wiring has a hydrogen-bonding functional group and has a glass transition temperature Tg of 70° C. or higher and 150° C.
- the circuit sheet wherein the hydrogen-bonding functional group of the thermoplastic resin is a hydroxyl group, and the hydroxyl value is 180 mgKOH/g or more and 330 mgKOH/g or less.
- the hydrogen-bonding functional group of the thermoplastic resin is a hydroxyl group, and the hydroxyl value is 180 mgKOH/g or more and 330 mgKOH/g or less. It is a circuit sheet covered with a thin film.
- the thermoplastic resin has a number average molecular weight Mn of 2,000 or more and 130,000 or less, or a film-forming composition having a weight average molecular weight Mw of 5,000 or more and 200,000 or less. is.
- the number average molecular weight Mn of the thermoplastic resin is 2,000 or more and 130,000 or less, or the weight average molecular weight Mw is 5,000 or more and 200,000 or less, so the glass transition temperature Tg It is a circuit sheet covered with a film having a relatively high resistance and excellent robustness.
- another aspect is a circuit sheet in which the protective layer does not contain a cross-linking agent.
- the protective layer since it does not contain a cross-linking agent, it is a circuit sheet covered with a protective layer made of a film that does not cause problems such as coloring caused by containing a cross-linking agent that deteriorates or reacts. be.
- thermoplastic resin is a bisphenol A type phenoxy resin.
- thermoplastic resin is a circuit sheet having a protective layer with excellent resistance to sulfurization because the protective layer is formed of a bisphenol A type phenoxy resin.
- thermoplastic resin is a polyvinyl butyral resin having a hydroxyl value of 280 mgKOH/g or more and 330 mgKOH/g or less.
- thermoplastic resin is a polyvinyl butyral resin having a hydroxyl value of 280 mgKOH/g or more and 330 mgKOH/g or less to form the protective layer, so that the circuit sheet has a protective layer excellent in sulfuration resistance.
- the protective layer contains at least one additive selected from a moisture resistance improver, a sulfurization resistance improver, a gas barrier property improver, a light resistance improver, an ultraviolet inhibitor, and an adhesion improver.
- a circuit sheet containing 0.1% by volume or more and 15% by volume or less.
- the protective layer contains 0 additive for at least one of a moisture resistance improver, a sulfurization resistance improver, a gas barrier property improver, a light resistance improver, an ultraviolet inhibitor, and an adhesion improver.
- another aspect is a circuit sheet having the protective layer that is bent or stretched.
- the protective layer since the protective layer is bent or stretched, it is possible to protect the three-dimensionally arranged circuit wiring. Moreover, it can be set as a three-dimensional circuit sheet. If the circuit sheet has a three-dimensional shape with a curved surface, the circuit sheet can be formed along the space to which it is applied, increasing the degree of freedom in designing devices using the circuit sheet.
- another aspect is a circuit sheet in which the base sheet has a glass transition temperature Tg of 100° C. or higher and 150° C. or lower.
- Tg of the substrate sheet is 100° C. or more and 150° C. or less, when the circuit sheet is heated to be bent or stretched to be three-dimensionally molded, distortion, deformation, Cracks are less likely to occur.
- another aspect has any of the circuit sheets described above and a sensor electrode containing silver, copper, or a conductive polymer and provided on a base sheet, wherein the protective layer contained in the circuit sheet is
- the sensor sheet is an electrically insulating protective layer that covers the circuit wiring included in the circuit sheet and the sensor electrodes.
- the conductive protective layer covering the circuit wiring has a hydrogen-bonding functional group and has a glass transition temperature Tg of 70° C. to 150° C.
- the circuit wiring that contains silver, copper, or a conductive polymer and is provided on the base sheet is difficult to sulfurize.
- a sensor electrode containing silver, copper, or a conductive polymer is not easily deteriorated by sulfurization, water vapor, ultraviolet light, or the like. Therefore, it is possible to obtain a sensor sheet with improved protection performance.
- another aspect is a sensor sheet having the protective layer that is bent or stretched.
- the protection layer since the protection layer is bent or stretched, it is possible to protect the three-dimensionally arranged circuit wiring or sensor electrodes.
- it can be set as a three-dimensional sensor sheet. If the sensor sheet has a three-dimensional shape with a curved surface, the sensor sheet can be formed along the space to which it is applied, increasing the degree of freedom in designing devices that use the circuit sheet.
- the base sheet is a three-dimensional molded body
- the circuit sheet has a three-dimensional shape
- the protective layer has a bending portion, a curved portion, and an extending portion along the three-dimensional shape.
- the protective layer has at least one of a bent portion, a curved portion, and an extended portion along the three-dimensional shape, it is possible to protect the three-dimensionally arranged circuit wiring or sensor electrodes. can be done.
- it can be set as a three-dimensional sensor sheet. If the sensor sheet has a three-dimensional shape with a curved surface, the sensor sheet can be formed along the space to which it is applied, increasing the degree of freedom in designing devices that use the circuit sheet.
- thermoplastic resin having a glass transition temperature Tg of 70° C. or higher and 150° C. or lower and a solvent
- the thermoplastic resin includes epoxy resin, phenoxy resin, polyvinyl alcohol,
- a film-forming composition comprising at least one of polyvinyl acetal, polyvinyl butyral, and ethylene-vinyl alcohol copolymer and having a hydrogen-bonding functional group.
- a circuit sheet or a sensor sheet with improved protection performance can be formed.
- the term "sulfuration resistance” refers to a property in which deterioration due to combination with sulfur components contained in the air is unlikely to occur.
- the film-forming composition wherein the hydrogen-bonding functional group of the thermoplastic resin is a hydroxyl group, and the hydroxyl value is 180 mgKOH/g or more and 330 mgKOH/g or less.
- the hydrogen-bonding functional group of the thermoplastic resin is a hydroxyl group, and the hydroxyl value is 180 mgKOH/g or more and 330 mgKOH/g or less. Since it has suitable properties, it is excellent in printability and can form a thin film with good quality such as resistance to sulfurization.
- the thermoplastic resin has a number average molecular weight Mn of 2,000 or more and 130,000 or less, or a film-forming composition having a weight average molecular weight Mw of 5,000 or more and 200,000 or less. is.
- the number average molecular weight Mn of the thermoplastic resin is 2,000 or more and 130,000 or less, or the weight average molecular weight Mw is 5,000 or more and 200,000 or less, so the glass transition temperature Tg is relatively high and can form a film with excellent toughness.
- Yet another aspect is a film-forming composition that does not contain a cross-linking agent in the composition.
- a cross-linking agent since it does not contain a cross-linking agent, problems such as coloring caused by containing a cross-linking agent that deteriorates or reacts with the cross-linking agent do not occur.
- the thermoplastic resin since the thermoplastic resin remains as it is without cross-linking, the film (protective film) obtained can be bent or stretched by heating, and can be easily three-dimensionally molded.
- thermoplastic resin is a bisphenol A type phenoxy resin.
- thermoplastic resin is a film-forming composition that is a bisphenol A type phenoxy resin, even if the circuit sheet or sensor sheet after the film formation is subjected to a three-dimensional molding process, the sulfuration resistance is maintained. Hard to deteriorate.
- thermoplastic resin is a polyvinyl butyral resin having a hydroxyl value of 280 mgKOH/g or more and 330 mgKOH/g or less.
- thermoplastic resin is a polyvinyl butyral resin having a hydroxyl value of 280 mgKOH/g or more and 330 mgKOH/g or less, it is possible to form a film having excellent sulfuration resistance.
- a printable film-forming composition can be provided. According to one aspect of the present disclosure, it is possible to provide a coating excellent in sulfuration resistance. According to one aspect of the present disclosure, it is possible to provide a circuit sheet or a sensor sheet having a coating with excellent resistance to sulfurization.
- FIG. 1A is a front view and FIG. 1B is a plan view of a circuit sheet according to one aspect of the present disclosure
- FIG. 2A is a front view and FIG. 2B is a plan view of a sensor sheet according to one aspect of the present disclosure
- FIG. 3A is a schematic view of a sensor sheet according to another aspect of the present disclosure, FIG. 3A being a cross-sectional view taken along line IIIA-IIIA of FIG. 3B, and FIG. 3B being a plan view
- 4A is a schematic view of a sensor sheet according to another aspect of the present disclosure, FIG. 4A being a cross-sectional view taken along line IVA-IVA of FIG. 4B, and FIG. 4B being a plan view;
- the film-forming composition described as the present embodiment is applied to a substrate sheet such as a circuit sheet or a sensor sheet, and is used for applications such as a protective layer that protects circuit wiring (conductive wires) or sensor electrodes. It is highly durable and has high protection performance for the object to be covered.
- This film-forming composition is a composition containing a thermoplastic resin having a glass transition temperature Tg of 70° C. or higher and 150° C. or lower and a solvent, and the thermoplastic resin includes epoxy resin, phenoxy resin, polyvinyl alcohol, At least one of polyvinyl acetal, polyvinyl butyral, and ethylene-vinyl alcohol copolymer, having a hydrogen-bonding functional group.
- the film-forming composition contains a thermoplastic resin that is at least one of epoxy resin, phenoxy resin, polyvinyl alcohol, polyvinyl acetal, polyvinyl butyral, and ethylene/vinyl alcohol copolymer, and has a glass transition temperature Tg is 70° C. or higher and 150° C. or lower.
- thermoplastic resin is used because even if the circuit sheet or the sensor sheet is three-dimensionally molded, it is adaptable to deformation stress during three-dimensional molding and has high adhesion to the base sheet. In addition, there is no need to contain a cross-linking agent used in the case of a thermosetting resin, and there is no risk of causing problems such as reaction with other additives or deterioration due to inclusion of a cross-linking agent. Since the glass transition temperature Tg is 70°C or higher and 150°C or lower, the sulfuration resistance is excellent. If the glass transition temperature Tg is 70° C. or higher and 110° C. or lower, properties such as sulfurization resistance are enhanced, which is more preferable. Furthermore, if the glass transition temperature Tg is 80° C.
- the glass transition temperature Tg can be measured using thermomechanical analysis (TMA), differential scanning calorimetry (DSC), differential thermal analysis (DTA), thermogravimetric analysis (TGA), or the like.
- the thermoplastic resin preferably has a hydrogen-bonding functional group.
- Hydrogen-bonding functional groups form intramolecular and intermolecular hydrogen bonds, which can have a positive effect on sulfurization resistance. The more hydrogen-bonding functional groups, the higher the glass transition temperature Tg of the thermoplastic resin.
- Hydrogen-bonding functional groups include, for example, hydroxyl groups, amino groups, carboxyl groups, ketone groups, aldehyde groups, nitro groups, sulfo groups, amide bonds, urethane bonds, urea bonds, ether bonds, and the like.
- a hydrogen bond is formed between a functional group acting as a hydrogen bond donor and a functional group acting as a hydrogen bond acceptor.
- the hydrogen-bonding functional group of the thermoplastic resin is a hydroxyl group
- the hydroxyl value is preferably 180 mgKOH/g or more and 330 mgKOH/g or less.
- the hydroxyl value is the number of mg of potassium hydroxide equivalent to the hydroxyl group in 1 g of the sample. It also increases the number of bonds, which can have a positive effect on the resistance to sulfurization. Moreover, since it has a hydroxyl group, it is possible to improve the adhesion to the base sheet.
- the hydroxyl value is 190 mgKOH/g or more, properties such as sulfuration resistance are enhanced, which is more preferable.
- the hydroxyl value can be measured using the hydroxyl value measuring method described in JIS-K0070;1992.
- thermoplastic resins phenoxy resins and polyvinyl butyral resins are preferred. This is because these resins have excellent adhesiveness to the resin used as the base sheet and have excellent sulfuration resistance.
- the phenoxy resin is also called polyhydroxypolyether resin, and bisphenol A type, bisphenol AD type, bisphenol E type, bisphenol F type, and mixed types thereof can be used.
- a bisphenol A type phenoxy resin is more preferable because it has a relatively high glass transition point.
- Bisphenol A type phenoxy resin has excellent adhesion to the base sheet even if stress is applied to the protective layer by three-dimensionally molding the circuit sheet or sensor sheet after forming the protective layer on the base sheet.
- the thermoplastic resin is more preferably a polyvinyl butyral resin having a hydroxyl value of 280 KOH/g or more and 330 mg KOH/g or less.
- a high hydroxyl value can have a positive effect on sulfur resistance.
- it since it has a hydroxyl group, it has excellent adhesion to the resin used as the base sheet.
- Polyvinyl acetal resin is a general term for resins obtained by acetalizing polyvinyl alcohol with aldehyde in the presence of acid, and polyvinyl butyral resin is obtained by acetalizing with butanol (butyl alcohol) as aldehyde.
- the average molecular weight of the thermoplastic resin is preferably from 2,000 to 130,000 in terms of number average molecular weight Mn, and from 5,000 to 200,000 in terms of weight average molecular weight Mw. This is because, if the thermoplastic resin has such an average molecular weight range, the glass transition temperature Tg is relatively high and a film having excellent toughness can be formed.
- the blending amount of the thermoplastic resin in the film-forming composition is 5% by weight or more and 60% by weight or less, preferably 10% by weight or more and 40% by weight or less. It is preferable to set it as moderate viscosity. If the content of the thermoplastic resin in the film-forming composition is less than 5% by weight, it becomes difficult to form the desired thickness. On the other hand, if the blending amount exceeds 60% by weight, the viscosity becomes too high and the printability deteriorates. If the blending amount is 10% by weight or more and 40% by weight or less, the film-forming composition can have suitable printability.
- a solvent dissolves or disperses a thermoplastic resin and imparts an appropriate viscosity to the solution or dispersion, thereby providing a composition with properties suitable for a coating liquid.
- a solvent suitable for dissolving or decomposing the thermoplastic resin may be used depending on the type of the thermoplastic resin.
- diethylene glycol monobutyl ether can be used for phenoxy resin or polyvinyl butyral resin, and the combination of this thermoplastic resin and solvent is excellent in solvent volatility and thermoplastic resin solubility.
- the amount of the solvent to be blended is such that the thermoplastic resin and additives can be dissolved or dispersed, and the amount of solvent can be volatilized in a suitable time to form a film of desired thickness.
- Solvents other than those mentioned above can also be used.
- Alcohols such as acetone alcohol, terpenes such as ⁇ - or ⁇ -terpineol, ketones such as acetone, methyl ethyl ketone, cyclohexanone, and N-methyl-2-pyrrolidone, aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tri Glycol ethers such as ethylene glycol monomethyl ether and triethylene glycol monoethyl ether, ethyl acetate, butyl acetate
- Additives By adding various additives to the composition in which the thermoplastic resin is dissolved or dispersed, it is possible to give the composition properties that cannot be obtained by simply dissolving or dispersing the thermoplastic resin.
- Additives include viscosity adjusting agents such as plasticizers that adjust viscosity, thixotropic agents that impart thixotropic properties, foaming agents that suppress foaming during printing, etc. suppressing material, stringing suppressing material that suppresses stringing, wettability improving material that prevents repelling on the printing substrate and prevents the occurrence of uneven printing and mottled patterns, sharpness improving material that enables continuous printing, or film-forming composition coating liquid stabilizers such as silane coupling agents, polymerization inhibitors, or antioxidants for stabilizing the properties of
- Additives include smoothing agents that increase the surface smoothness of the film from the viewpoint of improving the quality of the film itself, as a film quality improving material that improves the film quality.
- a moisture resistance improving material that increases moisture resistance a sulfuration resistance improving material that increases sulfuration resistance, and gas permeability such as oxygen are used.
- moisture resistance improvers moisture resistance improvers, sulfuration resistance improvers, gas barrier improvers, heat resistance improvers, light resistance improvers, and ultraviolet inhibitors are included in the weather resistance improvers from the viewpoint of protective layers. And they can also be said to be the names that express one barrier property improving material in terms of function. One or more of these additives can be used as appropriate, if necessary.
- functional fillers such as titanium oxide or zinc oxide are moisture resistance improving materials that suppress water vapor permeability, ultraviolet light suppressing materials that suppress ultraviolet light transmission, sulfuration resistance improving materials that suppress gas permeability of sulfur gas, Alternatively, it functions as a film quality improving material such as a gas barrier property improving material. In addition, it functions as a printability improving material such as a viscosity adjusting material, a foaming suppressing material, or a thixotropy imparting material.
- the blending amount of the additive can be 0.1% by volume or more and 15% by volume or less, preferably 3% by volume or more and 10% by volume or less in the film-forming composition. This is because if the additive amount is less than 0.1% by volume, the printability may deteriorate, and if the amount exceeds 10% by volume, the film quality may deteriorate. When the blending amount is 3% by volume or more and 10% by volume or less, it has suitable printability and can form a film of good quality.
- the film-forming composition is prepared by dissolving or dispersing the thermoplastic resin in a solvent, adding additives as necessary, and mixing.
- the resulting film-forming composition preferably has a viscosity of 1 Pa ⁇ s or more and 300 Pa ⁇ s or less, as measured using a rotational viscometer at a rotational speed of 10 rpm and 25°C. If the viscosity of the film-forming composition is less than 1 Pa ⁇ s, the shape retention of the patterned circuit wiring may deteriorate. On the other hand, if the viscosity exceeds 300 Pa ⁇ s, clogging is likely to occur during, for example, screen printing, which is a typical coating method, and productivity may be reduced.
- the viscosity can be measured, for example, with a rotational viscometer (BROOKFIELD rotational viscometer DV-E) (spindle SC4-14, chamber SC4-6R/RP, rotation speed 5 rpm, measurement temperature 25° C.).
- a rotational viscometer BROOKFIELD rotational viscometer DV-E
- the film-forming composition as described above, it has an appropriate viscosity and printability on the base sheet.
- the film-forming composition can form a smooth film without causing pinholes or the like during coating such as printing.
- a high-quality film can be obtained as a protective layer.
- the film-forming composition can be applied to a base sheet made of a resin film or the like by screen printing or the like and solidified to form a film, thereby functioning as a protective layer for the base sheet.
- the protective layer is preferably a highly transparent film, and the average light transmittance of the protective layer in the visible light region of 400 nm to 800 nm is preferably 80% or more, more preferably 85% or more.
- the coating method in addition to screen printing, spray coating, coater printing, transfer printing, dipping, and the like can be used.
- the thickness of the film as a protective layer that protects circuit wiring or sensor electrodes can be 0.5 ⁇ m or more and 50 ⁇ m or less, preferably 3 ⁇ m or more and 30 ⁇ m or less, and more preferably 5 ⁇ m or more and 8 ⁇ m or less.
- the reason for this is that although the thickness of the film as a protective layer can exceed 10 ⁇ m, it is contrary to the demand for thinning, and if it is thinner than 3 ⁇ m, the protection of the circuit wiring or the sensor electrode is inadequate. This is because there is a risk that However, depending on the application, it is possible to increase the thickness by laminating films, and it is possible to increase the film thickness up to about 100 ⁇ m.
- the film is excellent in resistance to sulfurization, and can also be provided with moisture resistance, light resistance, sulfurization resistance, low reactivity to chemicals, and solvent barrier properties.
- the film itself should preferably be low volatility, non-bleeding, non-migratory to other members adhering to the surface of the film, non-resin attack, and low staining on these other members. be able to.
- a protective layer By forming such a film as a protective layer, the film can be made thinner and the protective performance of the object to be coated can be improved. If a circuit sheet or sensor sheet having this protective layer is formed, it can be expected to be thinner and have improved protective performance, and meet the demands of the market for thinner and lower costs.
- ⁇ Circuit sheet> An embodiment of a protective layer formed from a film-forming composition is shown in the front view of FIG. 1A and the plan view of FIG. 1B, respectively.
- the circuit sheet 10 shown in these figures is a protective layer 13 formed by applying a film forming composition so as to cover the conductive wires 12 provided on the base sheet 11.
- a circuit is formed. Only one conductive wire 12 is shown schematically. Note that in the drawings, the thickness is shown thicker than the width for the purpose of showing the layer structure in an easy-to-understand manner, so the aspect ratio is different from the actual aspect ratio.
- Base sheet It is preferable to use a transparent resin film for the base sheet 11, which is the base material of the circuit sheet.
- resin films include, for example, polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin, polycarbonate (PC) resin, methacrylic (PMMA) resin, polypropylene (PP) resin, polyurethane (PU) resin, polyamide ( PA) resin, polyether sulfone (PES) resin, polyether ether ketone (PEEK) resin, triacetyl cellulose (TAC) resin, thermoplastic resin (COP), and the like.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- PC polycarbonate
- PMMA methacrylic
- PP polypropylene
- PU polyurethane
- PA polyamide
- PA polyether sulfone
- PEEK polyether ether ketone
- TAC triacetyl cellulose
- COP thermoplastic resin
- the base sheet 11 a film made of a film-forming composition may also be used as the base sheet 11 .
- the base sheet 11 may be provided with a primer layer, a surface protective layer, or an overcoat layer for the purpose of antistatic or the like, which enhances adhesion to the conductive wires 12 or the protective layer 13, or may be subjected to corona treatment or plasma treatment. , UV irradiation treatment or the like may be used.
- Circuit wiring In FIG. 1, for convenience of explanation, only one conductive wire 12 constituting the circuit wiring is shown. to form a circuit (circuit wiring network).
- the material of the conductive wire 12 may be a conductive paste or a conductive paste containing a powder of a highly conductive metal such as copper, aluminum, silver, or an alloy containing these metals (powder) in a mixture of a synthetic resin as a vehicle and a solvent. Ink can be exemplified.
- these metals or alloys it is preferable to use a silver wiring that mainly uses silver because it has high conductivity and is more difficult to oxidize than copper.
- the conductive wire 12 may be a wiring using carbon powder such as graphite powder, carbon fiber, or carbon black, or a wiring made of a raw material in which these materials are mixed with metal.
- the conductive line 12 can also be a wiring made of a transparent conductive polymer.
- Transparent conductive polymers include polythiophene, polypyrrole, polyaniline, polyparaphenylene, and polyacetylene.
- PEDOT/PSS poly-3,4-ethylenedioxythiophene-polystyrenesulfonic acid
- the transparent conductive polymer commercially available printing ink can be used.
- wiring using conductive paste or conductive ink containing highly transparent materials among conductive paste or conductive ink, such as metal nanoparticles such as silver nanoparticles, carbon nanoparticles, or indium tin oxide (ITO) powder can also be
- circuit wiring is formed by providing a conductive portion on the base sheet 11 using metal vapor deposition and then removing unnecessary portions by etching or the like to create a circuit pattern.
- metal vapor deposition metals such as copper, aluminum, nickel, chromium, zinc and gold can be used. Among these, copper is preferable because of its low electrical resistance and low cost.
- the circuit sheet 10 is manufactured by printing circuit wiring (conductive lines 12) at predetermined locations on the transparent resin film that serves as the base sheet 11. Then, a film-forming composition is applied thereon and cured to form the protective layer 13 . Thus, the circuit sheet 10 can be obtained.
- the thermoplastic resin or additive in the film-forming composition contains a hydrogen-bonding functional group or a reactive functional group, it is possible to enhance the affinity with the base sheet or react with it. Further, the circuit sheet can be formed into a three-dimensional shape by bending or stretching in the same manner as the sensor sheet to be described later.
- ⁇ Sensor sheet> Another embodiment of the coating of the film-forming composition as a protective layer is shown in the front view of FIG. 2A and the plan view of FIG. 2B, respectively.
- the sensor sheet 20, such as the sensor sheet shown in these figures, has the protective layer 23 formed by coating the film-forming composition so as to cover the conductive wires 22 and the sensor electrodes 24 provided on the base sheet 21.
- the protective layer 23 formed by coating the film-forming composition so as to cover the conductive wires 22 and the sensor electrodes 24 provided on the base sheet 21.
- only one sensor electrode 24 is shown for the sake of convenience, and an example of the sensor sheet 20 having the sensor electrode 24 together with the circuit wiring will be described.
- the base sheet 21 or the conductive wire 22 that serves as the base of the sensor sheet 20 is the same as that used for the circuit sheet 10 .
- the sensor electrode 24 can be formed of a conductive paste or conductive ink with circuit wiring formed thereon, a metal deposition film, or the like, but can also be formed of a transparent conductive polymer. Using a material with high transparency allows the sensor position to emit light by transmitting backlight illumination.
- Transparent conductive polymers include polythiophene, polypyrrole, polyaniline, polyparaphenylene, and polyacetylene.
- PEDOT/PSS poly-3,4-ethylenedioxythiophene-polystyrenesulfonic acid
- the transparent conductive polymer commercially available printing ink can be used.
- the sensor sheet 20 is manufactured by printing the circuit wirings (the conductive wires 22) and the sensor electrodes 24 at predetermined locations on the transparent resin film that serves as the base sheet 21. Then, a film-forming composition is applied thereon, and the solvent is volatilized and cured to form the protective layer 23 . Thus, the sensor sheet 20 can be obtained.
- sensor sheet 30 Yet another embodiment of sensor sheet 30 is shown in the front view of FIG. 3A and the plan view of FIG. 3B, respectively.
- the circuit wiring (conductive wires 32) and the sensor electrodes 34 on the base sheet 31 are covered with the protective layer 33 formed by applying the film-forming composition as described above. It is the same as the sensor sheet 20 described above.
- the sensor sheet 30 of the present embodiment is different in that the sensor sheet 30 is formed into a three-dimensional shape by bending or stretching so that the side having the protective layer 33 protrudes.
- the raw material etc. of each member are the same.
- the sensor sheet 30 is formed by forming circuit wiring (conductive wires 32), sensor electrodes 34, and a protective layer 33 on a flat base sheet 31 in the same manner as the sensor sheet 20, and then thermally deforming the same.
- a method of forming the circuit wiring (the conductive wire 32), the sensor electrode 34, and the protective layer 33 by printing or vapor deposition on the base sheet 31 formed into a shape can be used.
- the glass transition temperature Tg of the thermoplastic resin contained in the film-forming composition that forms the protective layer 33 approaches the glass transition temperature Tg of the base sheet 31. preferably.
- the polycarbonate resin is preferable as the base sheet 31 .
- the polycarbonate resin has a glass transition temperature Tg of 150° C., and these resins have a glass transition temperature Tg of 150° C. This is because they are close to each other, and when the sensor sheet 30 is three-dimensionally molded, distortion, deformation, cracking, and the like are unlikely to occur.
- sensor sheet 40 Yet another embodiment of sensor sheet 40 is shown in the front view of FIG. 4A and the plan view of FIG. 4B, respectively.
- circuit wiring (conductive wires 42) and sensor electrodes 44 on a base sheet 41 are covered with a protective layer 43 formed by applying a film-forming composition as described above. It is the same as the sensor sheet 20 described above.
- the surface opposite to the surface having the protective layer 43 is bent or stretched to form a three-dimensional shape.
- the raw material etc. of each member are the same.
- the sensor sheet may be covered with a protective layer after being formed into a three-dimensional shape.
- a protective layer can be provided by applying a film-forming composition to a three-dimensional surface using a spray coating method or the like.
- a film-forming composition was prepared by mixing a thermoplastic resin and a solvent (diethylene glycol monobutyl ether) shown in the following table at a weight ratio of 25:75 and dissolving the thermoplastic composition in the solvent. to sample 11.
- a solvent diethylene glycol monobutyl ether
- silver paste (trade name: LS-610-3, manufactured by Asahi Kagaku Kenkyusho Co., Ltd.) was applied to the surface to form a conductive line with a thickness of 5 ⁇ m and a line width of 100 ⁇ m.
- the film-forming composition of any of Samples 1 to 11 was applied to the surface of the base sheet to form a protective layer having a thickness of 6 ⁇ m, and a test circuit sheet in which the conductive wires were covered with the protective layer was produced. Each resulting test circuit sheet was labeled with the same sample number as the applied film-forming composition.
- thermoplastic resins listed in Table 1 are as follows.
- FX-310 Nippon Steel Chemical & Material Co., Ltd.
- ⁇ Polyvinyl butyral BL-1 (manufactured by Sekisui Chemical Co., Ltd.)
- BL-S manufactured by Sekisui Chemical Co., Ltd.) BX-L
- Viscosity In order to evaluate printability from the viewpoint of viscosity, the viscosity of each sample was observed. The results are shown in the "Viscosity" column of Table 1. Viscosity is evaluated as “A” if the viscosity is within the range where screen printing can be performed without problems. The case was rated as “B”, and the case where the viscosity was so high that printing was not possible was rated as "C”.
- Adhesion In order to evaluate the film quality from the viewpoint of adhesion to the substrate sheet, each sample was subjected to an adhesion test. More specifically, the adhesion was evaluated by attaching an adhesive tape to the surface on which the protective layer was formed and quickly and strongly peeling it off. As the test tape, a cellophane adhesive tape stipulated in JIS Z1522:2009 and having a width of 15 mm was used.
- the adhesion was evaluated as "A” when the protective layer was in close contact with the base sheet and there was no change even after the adhesion test was performed. "B” was given when a slight change was observed between the layers of the protective layer, and “C” was given when the protective layer was peeled off from the substrate sheet.
- Sulfurization resistance 1 In order to evaluate the coating quality from the viewpoint of sulfurization resistance, a sulfurization resistance test was conducted. In the Sulfur Resistance 1 Test described herein, the test circuit sheet of each sample was placed in an enclosed space containing sulfur powder and left in a saturated sulfur vapor atmosphere at 85° C. for 288 hours. After 288 hours, the state of the conductive wire was observed visually and by measuring the resistance value. Sulfurization resistance is evaluated as "A” when there is no color change or breakage (insulation) in the conductive wire, "B” when there is no break in the conductive wire but color change is observed, and breakage of the conductive wire. "C” was given when
- the mold used had a flat cylindrical shape with a diameter of 48 mm, a height of 10 mm, and a side elevation angle of 87 degrees.
- the temperature of the mold was 90° C.
- the heating temperature of the circuit sheet was 180° C. (heated for 12 seconds with a heater of 350° C.).
- the glass transition temperature Tg ranged from 70°C to 150°C even if the hydroxyl value was in the range of 180 mgKOH/g or more and 330 mgKOH/g or less. It was found that it should be below °C. In addition, it was found that Sample 7, whose adhesion was B, had a hydroxyl value of less than 180 mgKOH/g. In particular, Samples 1, 4, and 5, in which bisphenol A type phenoxy resin was used as the thermoplastic resin, were evaluated as A in the sulfurization resistance test even after the circuit sheet was three-dimensionally molded, which was a very favorable result.
- circuit sheet 11 base sheet 12 conductive wire (circuit wiring) 13 Protective layer (film) 20 sensor sheet 21 base sheet 22 conductive wire (circuit wiring) 23 protective layer (film) 24 sensor electrode 30 sensor sheet 31 base sheet 32 conductive wire (circuit wiring) 33 protective layer (film) 34 sensor electrode 40 sensor sheet 41 base sheet 42 conductive wire (circuit wiring) 43 protective layer (film) 44 sensor electrode
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
- Non-Metallic Protective Coatings For Printed Circuits (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本開示の一態様によれば、回路配線を被覆する導電性の保護層が、水素結合性官能基を有し、ガラス転移温度Tgが70℃以上150℃以下のエポキシ樹脂、フェノキシ樹脂、ポリビニルアルコール、ポリビニルアセタール、ポリビニルブチラール、エチレン・ビニルアルコール共重合体の少なくとも何れかである熱可塑性樹脂を含有するため、銀、銅又は導電性高分子を含有し基材シートに設ける回路配線が硫化や、水蒸気、紫外光等による劣化がし難い。そのため、保護性能の向上した回路シートとすることができる。
この一態様によれば、熱可塑性樹脂の水素結合性官能基が水酸基であり、水酸基価が180mgKOH/g以上330mgKOH/g以下であるため、基材シートへの密着性や耐硫化性等の優れた皮膜で覆われた回路シートである。
この一態様によれば、熱可塑性樹脂の数平均分子量Mnが2,000以上130,000以下であるか、又は重量平均分子量Mwが5,000以上200,000以下であるため、ガラス転移温度Tgが比較的高く、堅牢性に優れた皮膜で覆われた回路シートである。
この一態様によれば、架橋剤を含まないため、架橋剤が劣化したり、反応したりする架橋剤を含むことによる着色等の不具合が生じない皮膜でなる保護層で覆われた回路シートである。
この一態様によれば、前記熱可塑性樹脂が、ビスフェノールA型のフェノキシ樹脂で保護層を形成するため耐硫化性に優れた保護層を有する回路シートである。
この一態様によれば、前記熱可塑性樹脂は水酸基価が280mgKOH/g以上330mgKOH/g以下のポリビニルブチラール樹脂で保護層を形成するため、耐硫化性に優れた保護層を有する回路シートである。
この一態様によれば、前記保護層に、耐湿性向上材、耐硫化性向上材、ガスバリヤ性向上材、耐光性向上材、紫外線抑制材、密着性向上材の少なくとも何れかの添加剤が0.1体積%以上15体積%以下含有しているため、耐湿性向上、耐硫化性向上、ガスバリヤ性向上、耐光性向上、紫外線抑制、密着性向上の少なくとも何れかの機能をさらに備え、保護層自体の品質が向上するとともに、保護層が被覆する導電部(回路配線やセンサ電極)の品質を保護する。
この一態様によれば、屈曲又は延伸された前記保護層を有するため、立体的に配置する回路配線を保護することができる。また、立体的な回路シートとすることができる。そして、回路シートが曲面を有する立体形状であれば、回路シートを、それを適用する空間により沿わせた形成とすることができ、回路シートを利用する機器の設計自由度が拡大する。
この一態様によれば、前記基材シートのガラス転移温度Tgが100℃以上150℃以下であるため、回路シートを加熱して屈曲や延伸をして、立体成形した際に、歪や変形、割れ等が生じにくい。
この一態様によれば、回路配線を被覆する導電性の保護層が、水素結合性官能基を有し、ガラス転移温度Tgが70℃以上150℃以下のエポキシ樹脂、フェノキシ樹脂、ポリビニルアルコール、ポリビニルアセタール、ポリビニルブチラール、エチレン・ビニルアルコール共重合体の少なくとも何れかである熱可塑性樹脂を含有するため、銀、銅又は導電性高分子を含有し基材シートに設ける回路配線が硫化し難く、さらに銀または銅あるいは導電性高分子を含有するセンサ電極が硫化や、水蒸気、紫外光等による劣化がし難い。そのため、保護性能の向上したセンサシートとすることができる。
この一態様によれば、屈曲又は延伸された前記保護層を有するため、立体的に配置する回路配線又はセンサ電極を保護することができる。また、立体的なセンサシートとすることができる。そして、センサシートが曲面を有する立体形状であれば、センサシートを、それを適用する空間により沿わせた形成とすることができ、回路シートを利用する機器の設計自由度が拡大する。
この一態様によれば、前記保護層が、前記立体形状に沿う屈曲する部位、湾曲する部位、延伸する部位の少なくとも何れかを有するため、立体的に配置する回路配線又はセンサ電極を保護することができる。また、立体的なセンサシートとすることができる。そして、センサシートが曲面を有する立体形状であれば、センサシートを、それを適用する空間により沿わせた形成とすることができ、回路シートを利用する機器の設計自由度が拡大する。
この一態様によれば、熱可塑性樹脂の水素結合性官能基が水酸基であり、水酸基価が180mgKOH/g以上330mgKOH/g以下であるため、基材シート等の被着体への濡れ性や密着性が適したものとなることから、印刷適性に優れ、薄膜で耐硫化性等の品質の良い皮膜を形成し得る。
この一態様によれば、熱可塑性樹脂の数平均分子量Mnが2,000以上130,000以下であるか、又は重量平均分子量Mwが5,000以上200,000以下であるため、ガラス転移温度Tgが比較的高く、堅牢性に優れた皮膜を形成し得る。
この一態様によれば、架橋剤を含まないため、架橋剤が劣化したり、反応したりする架橋剤を含むことによる着色等の不具合が生じない。また架橋されずに熱可塑性樹脂のままであるため、得られる皮膜(保護膜)は加熱して屈曲や延伸ができ、立体成形加工がしやすい。
この一態様によれば、前記熱可塑性樹脂が、ビスフェノールA型のフェノキシ樹脂である皮膜形成組成物であるため、皮膜形成後の回路シート又はセンサシートに立体成形加工を施しても耐硫化性が劣化し難い。
この一態様によれば、前記熱可塑性樹脂は水酸基価が280mgKOH/g以上330mgKOH/g以下のポリビニルブチラール樹脂であるため、耐硫化性に優れた皮膜を形成し得る。
本開示の一態様によれば、耐硫化性に優れた皮膜を提供できる。
本開示の一態様によれば、耐硫化性に優れた皮膜を有する回路シート又はセンサシートを提供できる。
本実施形態として説明する皮膜形成組成物は、回路シート又はセンサシート等の基材シートに塗布して、回路配線(導電線)又はセンサ電極を保護する保護層としての用途等に用いられ、透明性が高く被覆対象の保護性能が高い。この皮膜形成組成物は、ガラス転移温度Tgが70℃以上150℃以下である熱可塑性樹脂と、溶剤とを含有する組成物であり、前記熱可塑性樹脂が、エポキシ樹脂、フェノキシ樹脂、ポリビニルアルコール、ポリビニルアセタール、ポリビニルブチラール、エチレン・ビニルアルコール共重合体の少なくとも何れかであって、水素結合性官能基を有する。次に、皮膜形成組成物の組成について説明する。
ガラス転移温度Tgが70℃以上150℃以下であるため、耐硫化性に優れる一方で、70℃未満又は150℃を超えると成形性が悪化するおそれがある。ガラス転移温度Tgは70℃以上110℃以下であれば、耐硫化性等の特性が高まりより好ましい。さらに、ガラス転移温度Tgは80℃以上であれば、耐硫化性等の特性が高まりより好ましい。ガラス転移温度Tgの測定は、熱機械分析(TMA)、示差走査熱量測定(DSC)、示差熱分析(DTA)、熱重量分析(TGA)等を利用して行うことができる。
そして、こうした皮膜を保護層として形成すれば、薄膜化でき、被覆する対象の保護性能を向上することができる。そして、この保護層を有する回路シート又はセンサシートを形成すれば、薄膜化、保護性能の向上が期待でき、薄型化、低コスト化の市場の要請にも叶う。
皮膜形成組成物により形成した保護層としての実施形態について、図1Aの正面図、及び図1Bの平面図でそれぞれ示す。これらの図で示す回路シート10は、基材シート11上に設けた導電線12を被覆するように皮膜形成組成物を塗布して保護層13としたものであり、これらの図では回路を形成する導電線12を模式的に1本だけ示している。なお、図面においては層構成を分かり易く示すことを目的に横幅に比べて厚みを厚く表示しているため、その縦横比は実際とは異なる。
皮膜形成組成物からなる皮膜の保護層としての別の実施形態について、図2Aの正面図、及び図2Bの平面図にそれぞれ示す。これらの図で示すセンサシート等のセンサシート20は、基材シート21上に設けた導電線22及びセンサ電極24を被覆するように皮膜形成組成物を塗布して保護層23としたものである。ここではセンサ電極24を便宜的に1つだけ示し、回路配線とともにセンサ電極24を有するセンサシート20の例として説明する。
センサシート30のまた別の実施形態について、図3Aの正面図、及び図3Bの平面図にそれぞれ示す。これらの図で示すセンサシート30は、基材シート31上の回路配線(導電線32)及びセンサ電極34を、皮膜形成組成物を塗布して形成した保護層33で被覆する点では先に説明したセンサシート20と同じである。しかしながら、本実施形態のセンサシート30では、保護層33を有する面側が突出するように屈曲または延伸して立体形状に形成されている点が異なる。なお、各部材の原料等は同じである。
センサシート40のまた別の実施形態について、図4Aの正面図、及び図4Bの平面図にそれぞれ示す。これらの図で示すセンサシート40は、基材シート41上の回路配線(導電線42)及びセンサ電極44を、皮膜形成組成物を塗布して形成した保護層43で被覆する点では先に説明したセンサシート20と同じである。しかしながら、本実施形態のセンサシート40では、保護層43を有する面とは反対面側が突出するように屈曲または延伸して立体形状に形成されている。なお、各部材の原料等は同じである。
センサシートは、立体形状に形成されたあとに保護層を被覆したものでもよい。スプレー塗布法などを用いて、立体形状面に対して皮膜形成組成物を塗布することで保護層を設けることができる。
次に実施例(比較例)に基づいて本発明をさらに説明する。以下の表に示す熱可塑性樹脂と溶剤(ジエチレングリコールモノブチルエーテル)とを重量比で25:75の割合で混合し、溶剤に熱可塑性組成物を溶解させることで皮膜形成組成物を作製して試料1~試料11とした。
・フェノキシ樹脂:
JER1256(ビスフェノールA型 三菱ケミカル社製)
JER4250(ビスフェノールA/ビスフェノールF混合型 三菱ケミカル社製)
JER4275(ビスフェノールA/ビスフェノールF混合型 三菱ケミカル社製)
・フェノキシ樹脂:
YP-50(ビスフェノールA型 日鉄ケミカル&マテリアル社製)
YP-50S(ビスフェノールA型 日鉄ケミカル&マテリアル社製)
YP-70(ビスフェノールA/ビスフェノールF共重合型 日鉄ケミカル&マテリアル社製)
FX-310(日鉄ケミカル&マテリアル社製)
・ポリビニルブチラール:
BL-1(積水化学工業社製)
BL-S(積水化学工業社製)
BX-L(積水化学工業社製)
・アクリル樹脂:
CR-80T-2(塗料組成物 アサヒ化学研究所社製)
前記各試料について、以下に説明する各種試験を行った。
粘度に対する評価は、問題なくスクリーン印刷を行える範囲の粘度である場合を“A”、粘度がやや高くスクリーン印刷を行うことができても印刷スピードが上がらない等、量産化には厳しい粘度である場合を“B”、高粘度で印刷できない粘度である場合を“C”とした。
より具体的には、保護層形成面に粘着テープを貼り付け、これを急速にかつ強く引きはがすことによって密着性を評価した。試験用テープは、JIS Z1522:2009に規定されたセロハン粘着テープで、幅15mmのものを使用した。
耐硫化性の評価は、導電線の色味変化も破断(絶縁化)も無い場合を“A”、導電線の破断は無いが色味変化が見られる場合を“B”、導電線の破断が生じた場合を“C”とした。
なお、立体成形した立体試験回路シートは次のようにして作製した。また、耐硫化性の評価は耐硫化性1試験と同じである。
加熱した回路シートを、真空成形によって所望の突出形状を有する型に押し付けて屈曲や延伸による成形後、冷却して脱型することで、立体成形された回路シートを得た。型は平面上に直径48mm、高さ10mm、側面の立ち上がり角度87度の円柱形状を有するものを用いた。型の温度は90℃、回路シートの加熱温度は180℃(350℃のヒーターで12秒加熱した)とした。
熱可塑性樹脂にフェノキシ樹脂又はポリビニルブチラール樹脂を用いた各試料において、ガラス転移温度Tgが70℃未満、68℃以下である試料3と試料9、およびアクリル樹脂塗料である試料11では、2つの耐硫化性試験に対する好ましい結果が得られなかった。そうした一方で、ガラス転移温度Tgが70℃以上であり、水素結合性官能基を有する試料1,2,4~8,10では、2つの耐硫化性試験でB以上の好ましい結果が得られた。これら試料1,2,4~8,10ではまた、水酸基価が180mgKOH/g以上330mgKOH/g以下の範囲内にあった。しかし試料9で2つの耐硫化性試験に対する好ましい結果が得られなかったように、水酸基価が180mgKOH/g以上330mgKOH/g以下の範囲内であってもガラス転移温度Tgの範囲は70℃以上150℃以下である必要があることがわかった。また、密着性がBとなった試料7では水酸基価が180mgKOH/g未満であることがわかった。そして特に、熱可塑性樹脂としてビスフェノールA型のフェノキシ樹脂を用いた試料1,4,5では、回路シートに立体成形を施した後でも耐硫化性試験の結果でAとなり大変好ましい結果であった。
11 基材シート
12 導電線(回路配線)
13 保護層(皮膜)
20 センサシート
21 基材シート
22 導電線(回路配線)
23 保護層(皮膜)
24 センサ電極
30 センサシート
31 基材シート
32 導電線(回路配線)
33 保護層(皮膜)
34 センサ電極
40 センサシート
41 基材シート
42 導電線(回路配線)
43 保護層(皮膜)
44 センサ電極
Claims (16)
- 基材シートと、
銀、銅又は導電性高分子を含有し前記基材シートに設ける回路配線と、
前記回路配線を被覆する電気絶縁性の保護層とを有し、
前記保護層は、水素結合性官能基を有し、ガラス転移温度Tgが70℃以上150℃以下のエポキシ樹脂、フェノキシ樹脂、ポリビニルアルコール、ポリビニルアセタール、ポリビニルブチラール、エチレン・ビニルアルコール共重合体の少なくとも何れかである熱可塑性樹脂を含有する皮膜である
回路シート。 - 前記熱可塑性樹脂の水素結合性官能基が水酸基であり、水酸基価が180mgKOH/g以上330mgKOH/g以下である請求項1記載の回路シート。
- 前記熱可塑性樹脂の数平均分子量Mnが2,000以上130,000以下であるか、又は重量平均分子量Mwが5,000以上200,000以下である請求項1記載の回路シート。
- 前記保護層に架橋剤を含まない請求項1記載の回路シート。
- 前記熱可塑性樹脂が、ビスフェノールA型のフェノキシ樹脂である請求項1記載の回路シート。
- 前記熱可塑性樹脂が、水酸基価が280mgKOH/g以上330mgKOH/g以下のポリビニルブチラール樹脂である請求項1記載の回路シート。
- 前記保護層に、耐湿性向上材、耐硫化性向上材、ガスバリヤ性向上材、耐光性向上材、紫外線抑制材、密着性向上材の少なくとも何れかの添加剤が0.1体積%以上15体積%以下含有している請求項1記載の回路シート。
- 屈曲又は延伸された前記保護層を有する請求項1記載の回路シート。
- 前記基材シートのガラス転移温度Tgが100℃以上150℃以下である請求項1記載の回路シート。
- 請求項1~請求項9何れか1項記載の回路シートと、
銀、銅又は導電線高分子を含有し前記基材シートに設けるセンサ電極と、を有し、
前記回路シートに含まれる保護層が、前記回路シートに含まれる回路配線と、前記センサ電極とを被覆する電気絶縁性の保護層である
センサシート。 - ガラス転移温度Tgが70℃以上150℃以下である熱可塑性樹脂と、溶剤とを含有する組成物であり、前記熱可塑性樹脂が、エポキシ樹脂、フェノキシ樹脂、ポリビニルアルコール、ポリビニルアセタール、ポリビニルブチラール、エチレン・ビニルアルコール共重合体の少なくとも何れかであって、水素結合性官能基を有する、皮膜形成組成物。
- 前記熱可塑性樹脂の水素結合性官能基が水酸基であり、水酸基価が180mgKOH/g以上330mgKOH/g以下である請求項11記載の皮膜形成組成物。
- 前記熱可塑性樹脂の数平均分子量Mnが2,000以上130,000以下であるか、又は重量平均分子量Mwが5,000以上200,000以下である請求項11記載の皮膜形成組成物。
- 前記組成物に架橋剤を含まない請求項11記載の皮膜形成組成物。
- 前記熱可塑性樹脂が、ビスフェノールA型のフェノキシ樹脂である請求項11記載の皮膜形成組成物。
- 前記熱可塑性樹脂が、水酸基価が280mgKOH/g以上330mgKOH/g以下のポリビニルブチラール樹脂である請求項11記載の皮膜形成組成物。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22861322.0A EP4393995A1 (en) | 2021-08-25 | 2022-08-22 | Circuit sheet, sensor sheet, and film-forming composition |
US18/574,478 US20240182743A1 (en) | 2021-08-25 | 2022-08-22 | Circuit sheet, sensor sheet, and coating film-forming composition |
JP2023543908A JPWO2023027034A1 (ja) | 2021-08-25 | 2022-08-22 | |
CN202280031570.XA CN117242143A (zh) | 2021-08-25 | 2022-08-22 | 电路片材、传感器片材及覆膜形成组合物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-137254 | 2021-08-25 | ||
JP2021137254 | 2021-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023027034A1 true WO2023027034A1 (ja) | 2023-03-02 |
Family
ID=85323205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/031597 WO2023027034A1 (ja) | 2021-08-25 | 2022-08-22 | 回路シート、センサシート及び皮膜形成組成物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240182743A1 (ja) |
EP (1) | EP4393995A1 (ja) |
JP (1) | JPWO2023027034A1 (ja) |
CN (1) | CN117242143A (ja) |
WO (1) | WO2023027034A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11140147A (ja) * | 1997-11-06 | 1999-05-25 | Tdk Corp | 絶縁性塗膜形成樹脂および電子デバイス |
JP2001044474A (ja) * | 1999-08-04 | 2001-02-16 | Tdk Corp | 太陽電池モジュール |
JP2006227418A (ja) * | 2005-02-18 | 2006-08-31 | Seiko Epson Corp | 電気泳動表示装置及びその製造方法、電子機器 |
JP2016027097A (ja) * | 2014-06-30 | 2016-02-18 | 味の素株式会社 | 樹脂組成物 |
JP6167103B2 (ja) | 2012-06-14 | 2017-07-19 | ポリマテック・ジャパン株式会社 | 基板シートおよびタッチパネル |
JP2017124497A (ja) * | 2016-01-12 | 2017-07-20 | セーレン株式会社 | 導電性布帛 |
WO2018181386A1 (ja) * | 2017-03-27 | 2018-10-04 | 株式会社クラレ | 合わせガラス用のポリビニルアセタール樹脂フィルム |
-
2022
- 2022-08-22 EP EP22861322.0A patent/EP4393995A1/en active Pending
- 2022-08-22 CN CN202280031570.XA patent/CN117242143A/zh active Pending
- 2022-08-22 US US18/574,478 patent/US20240182743A1/en active Pending
- 2022-08-22 JP JP2023543908A patent/JPWO2023027034A1/ja active Pending
- 2022-08-22 WO PCT/JP2022/031597 patent/WO2023027034A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11140147A (ja) * | 1997-11-06 | 1999-05-25 | Tdk Corp | 絶縁性塗膜形成樹脂および電子デバイス |
JP2001044474A (ja) * | 1999-08-04 | 2001-02-16 | Tdk Corp | 太陽電池モジュール |
JP2006227418A (ja) * | 2005-02-18 | 2006-08-31 | Seiko Epson Corp | 電気泳動表示装置及びその製造方法、電子機器 |
JP6167103B2 (ja) | 2012-06-14 | 2017-07-19 | ポリマテック・ジャパン株式会社 | 基板シートおよびタッチパネル |
JP2016027097A (ja) * | 2014-06-30 | 2016-02-18 | 味の素株式会社 | 樹脂組成物 |
JP2017124497A (ja) * | 2016-01-12 | 2017-07-20 | セーレン株式会社 | 導電性布帛 |
WO2018181386A1 (ja) * | 2017-03-27 | 2018-10-04 | 株式会社クラレ | 合わせガラス用のポリビニルアセタール樹脂フィルム |
Also Published As
Publication number | Publication date |
---|---|
CN117242143A (zh) | 2023-12-15 |
JPWO2023027034A1 (ja) | 2023-03-02 |
EP4393995A1 (en) | 2024-07-03 |
US20240182743A1 (en) | 2024-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5370151B2 (ja) | 透明導電膜付き基材とその製造方法、およびそれを用いたタッチパネル | |
US11037696B2 (en) | Transparent electrodes and electronic devices including the same | |
JP7055096B2 (ja) | 展延性導電ペーストおよび曲面プリント配線板の製造方法 | |
KR20120082355A (ko) | 투명 도전막의 형성에 이용할 수 있는 도막 형성용 조성물 | |
JP2013196918A (ja) | 透明導電膜の形成に用いられる塗膜形成用組成物 | |
WO2012014481A1 (ja) | オフセット印刷用導電性ペースト | |
TWI729149B (zh) | 透明導電性膜及觸控面板 | |
CN110689995B (zh) | 银纳米线导电薄膜及其制备方法 | |
CN104884544A (zh) | 用于透明导电膜的稳定剂 | |
WO2023027034A1 (ja) | 回路シート、センサシート及び皮膜形成組成物 | |
WO2016129270A1 (ja) | 電極及びその製造方法、並びに前記電極を備えるタッチパネル及び有機el照明素子 | |
JP6510998B2 (ja) | フレキシブル配線基板およびその利用 | |
CN220796787U (zh) | 一体型密封片材和发光型电子构件 | |
JP7462408B2 (ja) | 接着剤組成物、接着フィルム及び接続構造体 | |
JP7101325B1 (ja) | 透明基板及びその製造方法 | |
WO2022210690A1 (ja) | 皮膜形成組成物、皮膜、回路シート及びセンサシート | |
US20190375906A1 (en) | Electrically-conductive copolyestercarbonate-based material | |
CN220796786U (zh) | 一体型密封片材和发光型电子构件 | |
WO2017213046A1 (ja) | 透明導電性フィルムおよびタッチパネル | |
KR102120359B1 (ko) | 오버코팅 조성물, 그를 이용한 오버코팅층 및 은나노와이어 투명전극 필름 | |
KR102300534B1 (ko) | 도전성 필름 | |
JP2011134869A (ja) | 電磁波シールド材 | |
WO2024070897A1 (ja) | 組成物、皮膜、回路シート及びセンサシート | |
JP2018079584A (ja) | 透明導電性フィルムおよびタッチパネル | |
CN116246822A (zh) | 一种银纳米线薄膜的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22861322 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280031570.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18574478 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023543908 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022861322 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022861322 Country of ref document: EP Effective date: 20240325 |