[go: up one dir, main page]

WO2023026670A1 - Antireflective glass - Google Patents

Antireflective glass Download PDF

Info

Publication number
WO2023026670A1
WO2023026670A1 PCT/JP2022/025359 JP2022025359W WO2023026670A1 WO 2023026670 A1 WO2023026670 A1 WO 2023026670A1 JP 2022025359 W JP2022025359 W JP 2022025359W WO 2023026670 A1 WO2023026670 A1 WO 2023026670A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
index layer
mass
parts
glass
Prior art date
Application number
PCT/JP2022/025359
Other languages
French (fr)
Japanese (ja)
Inventor
翔一 横山
翔一 石川
Original Assignee
フクビ化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フクビ化学工業株式会社 filed Critical フクビ化学工業株式会社
Priority to JP2023543724A priority Critical patent/JPWO2023026670A1/ja
Priority to CN202280040382.3A priority patent/CN117425632A/en
Publication of WO2023026670A1 publication Critical patent/WO2023026670A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Definitions

  • the present invention relates to antireflection glass imparted with a high degree of antireflection performance, which is suitably used for manufacturing antireflection tempered glass.
  • Tempered glass with enhanced glass strength is widely used for applications such as window glass in automobiles and houses, but recently it has been used in various applications such as full-face protective panels for capacitive touch panels, digital cameras, and mobile phones. It is also used for applications such as mobile device displays. Tempered glass for the latter use has a small and complicated shape, and requires shape processing such as cutting, edge processing, and drilling. However, since it is difficult to process these shapes after tempering, tempering treatment has been performed after preliminarily processing the glass substrate into the final product shape.
  • the physical strengthening method is intended for glass having a thickness of several mm or more, and is not effective for thin glass substrates. Therefore, the chemical strengthening method is generally adopted for thin glasses such as the protective panels and displays.
  • Chemical strengthening by ion exchange is performed by replacing metal ions with a small ionic radius (eg sodium ions) contained in the glass with metal ions with a larger ionic radius (eg potassium ions). That is, by substituting metal ions having a smaller ionic radius with metal ions having a larger ionic radius, a compressive stress layer is formed on the glass surface. As a result, in order to break this glass, in addition to the force to break the bonds between molecules, the force to remove the compressive stress on the surface is required, and the strength is significantly improved compared to ordinary glass. .
  • metal ions with a small ionic radius eg sodium ions
  • metal ions with a larger ionic radius eg potassium ions
  • an antireflection film with a low refractive index may be formed on the glass surface.
  • Methods for forming such an antireflection film are roughly classified into a vapor deposition method and a sol-gel method. Because the vapor deposition method requires extremely expensive equipment, it is not widely used industrially. Currently, a coating liquid containing fine particles is applied and heat-treated to form an anti-reflection film that gels. The sol-gel method is predominant due to its low production cost and high yield.
  • an antireflection film formed by such a sol-gel method for example, one containing a hydrolytic condensate of a silicon compound, a metal chelate compound, and silica particles with a low refractive index is known (see Patent Document 1). .
  • a method of chemically strengthening the glass after forming an antireflection film has been proposed.
  • One is a method of strengthening glass by ion exchange using the interstitial spaces (hereinafter referred to as voids) between the particles of the inorganic fine particles contained in the antireflection film formed on the surface (Patent Reference 2).
  • this method has the problem that it is difficult to control the voids that allow ion exchange.
  • a method has been proposed in which hollow particles having a space inside are used and ion exchange is performed through the internal space instead of using the gaps between particles (Patent Document 3).
  • a multi-layer antireflection film in which a high refractive index layer and a medium refractive index layer are provided in addition to the low refractive index layer.
  • Zirconium oxide particles and titanium oxide particles having a higher refractive index than silica particles must be blended in these high refractive index layers and medium refractive index layers in order to develop a predetermined refractive index.
  • ion exchange using the internal space of the particles cannot be performed. It was difficult to strengthen the glass by ion exchange through multiple refractive index layers after the formation of the protective film.
  • the inventors of the present application have previously studied and proposed a method for producing antireflection tempered glass having such a multi-layered antireflection film (Patent Document 4).
  • the inventors of the present application faced the following problems in the process of developing antireflection tempered glass.
  • the purpose of tempered glass is to remove organic and inorganic substances adhering to the surface of the glass in order to improve the adhesion between the tempered glass and the anti-reflection film.
  • An alkaline cleaning step is required to prevent loss (burning prevention).
  • alkali cleaning is performed for various purposes such as removing impurities adhered during tempering of the glass.
  • discoloration includes blue discoloration, which is a phenomenon of lack of alkali ions on the glass surface due to moisture erosion in the air, and a phenomenon in which carbonic acid compounds are generated by dry concentration of moisture containing alkali ions on the glass surface and carbon dioxide gas. There is white discoloration.
  • the inventors of the present application have investigated the cause of deterioration of the antireflection film due to washing with alkali, and found that the presence of aluminum salt hydrate in the antireflection film develops alkali resistance and prevents deterioration of the antireflection film. The discovery led to the completion of the present invention.
  • an antireflection glass comprising a glass substrate, an antireflection film and a protective layer in this order, The antireflection film, from the glass substrate side, a medium-to-low refractive index layer having a refractive index of 1.36 to 1.45 and a layer thickness of 150 to 210 nm; a medium refractive index layer having a refractive index of 1.56 to 1.79 and a layer thickness of 90 to 140 nm; a high refractive index layer having a refractive index of 1.75 to 1.87 and a layer thickness of 30 to 50 nm; A low refractive index layer having a refractive index of 1.27 to 1.35 and a layer thickness of 70 to 75 nm.
  • the protective layer has a refractive index of 1.43 to 1.48 and a layer thickness of 20 to 30 nm
  • the high refractive index layer, the low refractive index layer and the protective layer contain (A) an aluminum salt hydrate,
  • the above antireflection glass is characterized by having an average luminous reflectance of 0.6% or less on both surfaces at a wavelength of 380 to 780 nm and an average luminous transmittance of 98% or more at a wavelength of 380 to 780 nm.
  • the medium-low refractive index layer and the medium-low refractive index layer further contain (A) an aluminum salt hydrate; 2) With respect to 100 parts by mass of a binder component in which the protective layer is (B) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, R n —Si(OR 1 ) 4-n (1) (Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.) (A) 3 to 25 parts by mass of an aluminum salt hydrate and (C) a cured product of a protective layer composition containing 1 to 20 parts by mass of a metal chelate compound; 3) With respect to 100 parts by mass of a binder component in which the low refractive index layer is (B) an alkoxysilane compound represented by the following formula (1) (Wherein, R is an al
  • a binder component in which the high refractive index layer is (B) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, R n —Si(OR 1 ) 4-n (1) (Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.) (A) 1 to 15 parts by mass of aluminum salt hydrate, and (E) 40 to 130 parts by mass of metal oxide particles.
  • R is an alkyl group, alkenyl group or alkoxyalkyl group
  • R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom
  • n is an integer of 1 or 2.
  • a binder component in which the medium refractive index layer is (B) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, R n —Si(OR 1 ) 4-n (1) (Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.) (A) 1 to 15 parts by mass of aluminum salt hydrate, and (E) 40 to 130 parts by mass of metal oxide particles.
  • R is an alkyl group, alkenyl group or alkoxyalkyl group
  • R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom
  • n is an integer of 1 or 2.
  • a binder component in which the medium-to-low refractive index layer is (B) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof, R n —Si(OR 1 ) 4-n (1) (Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.) (A) 3 to 25 parts by mass of aluminum salt hydrate, (C) 1 to 20 parts by mass of a metal chelate compound, and (D) 25 to 90 parts by mass of silica particles.
  • R is an alkyl group, alkenyl group or alkoxyalkyl group
  • R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom
  • n is an integer of 1 or 2.
  • the glass substrate is alkali aluminosilicate glass; 8) It is preferable that the antireflection glass is alkali-resistant antireflection glass for chemical strengthening.
  • the mass part of the silica particles in each layer is either one of the solid silica particles and the hollow silica particles, or the total value. Further, the parts by mass of the metal oxide particles in each layer may be the value of parts by mass of one type of metal oxide particles, or the total value of parts by mass of two or more different types of metal oxide particles. good.
  • antireflection strengthening characterized by including a step of chemically strengthening the antireflection glass in an ion-exchange metal salt melt, and a step of alkali washing before or after the chemical treatment step.
  • the antireflection glass provided by the present invention is preferably used for manufacturing antireflection tempered glass with high antireflection performance. Specifically, after forming an antireflection film on the surface of a glass substrate, it is possible to strengthen the glass by washing with alkali and batch tempering treatment, and it is useful for industrial production of high-quality antireflection tempered glass that is smooth and has excellent transparency. Glass strengthening by chemical treatment makes it possible to strengthen by a batch treatment using internal cavities such as hollow silica particles or interstitial spaces between oxide particles.
  • the antireflection glass has excellent alkali resistance, the antireflection performance deteriorates due to nonuniformity of the antireflection film and reduction in the film thickness even after the alkali cleaning process necessary for smoothing the glass surface and preventing burning. can be prevented.
  • a high-quality anti-reflection tempered glass product having high anti-reflection performance, excellent smoothness and no deterioration in transparency can be produced with extremely high productivity and at low cost.
  • the obtained antireflection tempered glass has a multi-layered antireflection film, and therefore has a low reflectance and excellent antireflection performance against light of a wide range of wavelengths.
  • Such antireflection tempered glass products are suitably used for products with thin glass substrates, such as front protective panels for capacitive touch panels, and displays for various mobile devices such as digital cameras and mobile phones.
  • the antireflection glass of the present invention basically comprises a glass substrate, an antireflection film and a protective layer, which are laminated in this order.
  • the antireflection film from the glass substrate side, a medium-to-low refractive index layer having a refractive index of 1.36 to 1.45 and a layer thickness of 150 to 210 nm; a medium refractive index layer having a refractive index of 1.56 to 1.79 and a layer thickness of 90 to 140 nm; a high refractive index layer having a refractive index of 1.75 to 1.87 and a layer thickness of 30 to 50 nm; A low refractive index layer having a refractive index of 1.27 to 1.35 and a layer thickness of 70 to 75 nm is formed in this order, and the refractive index of the high refractive index layer is set higher than that of the medium refractive index layer.
  • the protective layer has a refractive index of 1.43-1.48 and a layer thickness of 20-30 nm.
  • the antireflection glass is characterized by an average luminous reflectance of 0.6% or less on both surfaces at a wavelength of 380 to 780 nm and an average luminous transmittance of 98% or more at a wavelength of 380 to 780 nm.
  • the greatest feature of the present invention is that the high refractive index layer, the low refractive index layer and the protective layer contain (A) an aluminum salt hydrate. By including (A) aluminum salt hydrate in these layers, the antireflection glass exhibits alkali resistance, and deterioration and damage of the antireflection film can be prevented.
  • (A) aluminum salt hydrate should be present in at least the high refractive index layer, the low refractive index layer and the protective layer, and further the medium refractive index layer and the medium low refractive index layer. If it is also present, it is preferable because the alkali resistance is remarkably improved.
  • the glass substrate is not particularly limited as long as it has a composition that can be strengthened by chemical treatment, but glass containing alkali metal ions or alkaline earth metal ions with a smaller ionic radius is suitable.
  • glass containing alkali metal ions or alkaline earth metal ions with a smaller ionic radius is suitable.
  • soda-lime silicate glass, alkali aluminosilicate glass, alkali borosilicate glass, etc. may be mentioned.
  • those containing sodium ions are preferable, and contain 5% by weight or more of sodium ions.
  • Glass is most preferred.
  • Alkali aluminosilicate glasses are preferably used because of their high substitution of potassium ions, resulting in deeper reinforcing layers, and their high transparency.
  • the thickness of the glass substrate is usually 2 mm to 0.2 mm.
  • the area of the substrate is not particularly limited, and is arbitrarily determined according to the size of the final product and the limitations of the manufacturing process.
  • An anti-reflection film is usually laminated on the glass substrate.
  • an antistatic layer, a silica particle layer, a primer layer, or a smoke layer may be provided between any of the following adjacent refractive index layers.
  • the antireflection film in the present invention is a multilayer antireflection film composed of four refractive index layers having the following properties.
  • Medium-low refractive index layer refractive index of 1.36 to 1.45, layer thickness of 150 to 210 nm
  • Medium refractive index layer a refractive index of 1.56 to 1.79 and a layer thickness of 90 to 140 nm
  • High refractive index layer a refractive index of 1.75 to 1.87 and a layer thickness of 30 to 50 nm
  • Low refractive index layer a refractive index of 1.27 to 1.35 and a layer thickness of 70 to 75 nm
  • the refractive index of the high refractive index layer is set higher than that of the medium refractive index layer.
  • the four refractive index layers are arranged in the order from the glass substrate side: medium-low refractive index layer, medium refractive index layer, high refractive index layer, and low refractive index layer.
  • the average luminous reflectance on both sides of the antireflection glass and antireflection tempered glass at a wavelength of 380 to 780 nm is 0.6% or less, and the average luminous transmission at a wavelength of 380 to 780 nm.
  • the values of the average luminous reflectance and the average luminous transmittance are values before the glass is tempered, but they are maintained and expressed after the glass is tempered.
  • ⁇ Medium-low refractive index layer> This is the refractive index layer positioned at the bottom layer (on the side of the glass substrate) of the antireflection film. It is usually laminated on a glass substrate.
  • the medium-to-low refractive index layer has a refractive index of 1.36 to 1.45 and a layer thickness of 150 to 210 nm.
  • the refractive index is between 1.38 and 1.43 and the layer thickness is between 170 and 205 nm.
  • the medium-to-low refractive index layer needs to be strengthened by chemical treatment after the formation of the antireflection film and the protective layer, a solution of the medium-to-low refractive index layer composition containing the following components is prepared, and the solution is coated. , drying, and heating.
  • Alkoxysilane compound or its hydrolyzate It is a component that serves as a binder for forming a dense, high-strength film that has good adhesion to a glass substrate, and is represented by the above formula (1).
  • R is an alkyl group, alkenyl group or alkoxyalkyl group.
  • the number of carbon atoms in the alkyl group is preferably 1-9, more preferably 1-5.
  • alkyl groups include methyl, ethyl, trimethyl, propyl, butyl, tetramethyl, pentyl, and hexyl groups.
  • the number of carbon atoms in the alkenyl group is preferably 1-9, more preferably 1-5.
  • Alkenyl groups include ethenyl, propenyl, butenyl, pennyl, and hexenyl groups.
  • the number of carbon atoms in the alkoxyalkyl group is preferably 1-9, more preferably 1-5.
  • the alkoxy group of the alkoxyalkyl group includes a methoxy group, an ethoxy group, a propoxy group and the like. Examples of the alkyl group of the alkoxyalkyl group include methyl group, ethyl group, trimethyl group, propyl group, butyl group, tetramethyl group, pentyl group and hexyl group.
  • R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom.
  • Alkyl groups and alkoxyalkyl groups are the same as those of R.
  • the number of carbon atoms in the acyloxy group is preferably 1-9, more preferably 1-5.
  • the acyloxy group includes an acetyloxy group, a benzoyloxy group and the like.
  • Halogen atoms include fluorine, chlorine, bromine, and iodine.
  • the aluminum salt hydrate In order for the antireflection glass of the present invention to exhibit alkali resistance, the aluminum salt hydrate should be present in the low refractive index layer and the high refractive index layer located above the protective layer and the reflective film (on the viewing side). is required. Furthermore, an aspect in which the aluminum salt hydrate is present in the medium refractive index layer and the medium low refractive index layer positioned below the reflective film (on the side of the glass substrate) is preferable because the alkali resistance is extremely high.
  • An aluminum salt hydrate is a hydrated compound in which water molecules are added to an aluminum salt in the form of water of crystallization or coordination water. If it is not a hydrate, it may aggregate or sediment during mixing due to poor affinity with other components.
  • the medium-to-low refractive index composition solution described later reacts with moisture in the air during coating, making it difficult to form a medium-to-low refractive index layer.
  • other metal salt hydrates exhibit poor alkali resistance.
  • Aluminum salt hydrates are used for the same reason in other refractive index layers.
  • Aluminum is a metal that can be coordinated with the binder component, and is presumed to exhibit alkali resistance because aluminum oxide, which is resistant to alkali attack, is formed in the refractive index layer.
  • Aluminum salt hydrates typically include aluminum chloride trihydrate, aluminum chloride hexahydrate, aluminum bromide hexahydrate, aluminum nitrate hexahydrate, aluminum nitrate nonahydrate, aluminum hydroxide trihydrate, Aluminum acetate n-hydrate, aluminum sulfate n-hydrate and the like can be mentioned, and aluminum chloride trihydrate and aluminum chloride hexahydrate are particularly preferred from the standpoint of developing alkali resistance and scratch resistance.
  • the content is 3 to 25 parts by mass with respect to 100 parts by mass of the alkoxysilane compound or the like. If it is less than 3 parts by mass, the effect is not obtained. If it exceeds 25 parts by mass, the bonding strength of the alkoxysilane compound and the like and the hardness of the medium-to-low refractive index layer are lowered, which is not preferable.
  • Metal chelate compound It is a component that functions as a cross-linking agent and makes the formed refractive index layer more dense.
  • the metal chelate compound (C) is a compound in which a chelating agent, typically a bidentate ligand, is coordinated to a metal such as titanium, zirconium or aluminum.
  • the metal chelate compound is used in an amount of 1 to 20 parts by weight, preferably 3 to 15 parts by weight, per 100 parts by weight of the alkoxysilane compound (B). If it exceeds 20 parts by mass, the metal chelate compound tends to precipitate in the medium-to-low refractive index layer, resulting in deterioration of antireflection performance and poor appearance. If the amount is less than 1 part by mass, the strength and hardness of the medium-to-low refractive index layer tend to decrease.
  • silica particles are used to control the refractive index to 1.36-1.45.
  • silica particles the following two types of silica particles, solid silica particles and hollow silica particles, are used.
  • Solid silica particles are typically composed mainly of silicon dioxide, have a density of 1.9 or more, an average particle size of 5 to 500 nm, and a refractive index of 1.44 to 1.5. These are particles that do not have cavities inside.
  • the average particle size refers to the particle size when the cumulative volume is 50% in the particle size distribution measured by the laser diffraction/scattering method.
  • Hollow silica particles are particles made of silicon dioxide having cavities inside, and are usually fine hollow particles having a particle size of 5 to 150 nm and an outer shell layer having a thickness of about 1 to 15 nm. Ion exchange is performed using the internal cavity, and it is also a component for forming a layer with a refractive index of 1.36 to 1.45 and exhibiting excellent antireflection performance. Therefore, it is preferable to select hollow silica particles having a refractive index in the range of 1.20 to 1.38.
  • the hollow silica particles are known, for example, from Japanese Patent Application Laid-Open No. 2001-233611. should be obtained and used.
  • the silica particles are 25 to 90 parts by mass, preferably 25 to 60 parts by mass of the solid silica particles and 0 to 30 parts by mass of the hollow silica particles, based on 100 parts by mass of the (B) alkoxysilane compound, etc.
  • the material is appropriately selected and used so as to satisfy the predetermined refractive index.
  • inclusion of solid silica particles is preferable from the viewpoint of suppressing shrinkage of the alkoxysilane compound or the like due to thermal history.
  • Medium-low refractive index layer-forming solution Each of the above components constituting the medium-low refractive index layer is dissolved in the following organic solvent for the purpose of viscosity adjustment and easy coating in addition to optional components as necessary to form the medium-low refractive index layer. It is used as a solution for forming a layer.
  • an aqueous acid solution such as an aqueous hydrochloric acid solution can be added to the solution.
  • Organic solvents include alcohol solvents such as methanol, ethanol, isopropanol, ethyl cellosolve, and ethylene glycol; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone and methyl ethyl ketone; Aromatic solvents are used. Alcoholic solvents are particularly preferred.
  • alcohol solvents such as methanol, ethanol, isopropanol, ethyl cellosolve, and ethylene glycol
  • ester solvents such as ethyl acetate and butyl acetate
  • ketone solvents such as acetone and methyl ethyl ketone
  • Aromatic solvents are used.
  • Alcoholic solvents are particularly preferred.
  • the amount of the organic solvent to be used may be such that the viscosity of the forming solution does not cause sagging, etc., and is within a range suitable for coating. Generally, the organic solvent should be used in such an amount that the total solids concentration is 0.1 to 20% by weight of the total weight.
  • the amount of organic solvent is a value including the amount of dispersion medium such as silica particles.
  • the medium-to-low refractive index layer-forming solution is applied onto the glass substrate, dried, and then cured by heating to form the medium-to-low refractive index layer.
  • the heat-curing step by heating can be performed collectively after coating and drying the medium refractive index layer, high refractive index layer and low refractive index layer described later in the same manner. is preferable from the viewpoint of adhesion of Furthermore, it is particularly preferable to heat and cure all layers of the antireflection film and the protective layer at once after applying and drying the protective layer in the same manner.
  • the coating method is not particularly limited, and methods such as dip coating, roll coating, die coating, flow coating, and spraying are employed, but the dip coating method is preferable from the viewpoint of appearance quality and layer thickness control.
  • Drying is usually carried out in the atmosphere at a temperature of 70 to 100° C. for 0.25 to 1 hour.
  • Heating for thermosetting is usually carried out at 300 to 500° C. in the atmosphere for 0.5 to 2 hours.
  • ⁇ Medium refractive index layer> It is a refractive index layer laminated on the medium-to-low refractive index layer (visual field side).
  • the medium refractive index layer has a refractive index of 1.56 to 1.79 and a layer thickness of 90 to 140 nm.
  • the refractive index is between 1.58 and 1.76 and the layer thickness is between 95 and 135 nm.
  • the medium refractive index layer needs to be glass-strengthened by chemical treatment after the formation of the antireflection film and the protective layer, a solution of the medium refractive index layer composition containing the following components is prepared, and the solution is coated and dried. , is preferably formed by heating.
  • (B) With respect to 100 parts by mass of a binder component composed of an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof (hereinafter referred to as "alkoxysilane compound, etc.”), R n —Si(OR 1 ) 4-n (1) (wherein R is an alkyl group, an alkenyl group or an alkoxyalkyl group, R1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom, and n is an integer of 1 or 2) (A) 1 to 15 parts by mass of aluminum salt hydrate, and (E) 40 to 130 parts by mass of metal oxide particles, when (A) aluminum salt hydrate is not contained in the medium refractive index layer (A) the aluminum salt hydrate may be excluded from the composition.
  • alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof
  • Alkoxysilane compound or its hydrolyzate It is a compound represented by the formula (1) and is as described in the section of the medium-low refractive index layer.
  • An alkoxysilane compound or the like used for forming a medium-to-low refractive index layer can be similarly used for the same purpose.
  • the aluminum salt hydrate which is a component that contributes to the development of alkali resistance, is preferably present in the medium refractive index layer as well as in the medium low refractive index layer.
  • the aluminum salt hydrates used to form the medium and low refractive index layers can be used as well.
  • aluminum salt hydrate is contained in the medium refractive index layer, it is contained in an amount of 1 to 15 parts by mass based on 100 parts by mass of the alkoxysilane compound and the like. If it is less than 1 part by mass, the effect is not obtained. If it exceeds 15 parts by mass, it is not preferable because it becomes difficult to form a layer due to a tendency to react with moisture in the air during coating.
  • Metal oxide particles are blended in the medium refractive index layer in order to control the refractive index to the predetermined value.
  • metal oxide particles those having a refractive index of 1.50 or more can be used.
  • zirconium metal oxide particles, titanium oxide particles (refractive index 2.71), composite titanium metal oxide in which the refractive index is adjusted by combining titanium oxide with other oxides such as silicon oxide and zirconium oxide at the molecular level particles are used.
  • a desired refractive index is adjusted by appropriately combining these metal oxide particles.
  • Such particles are known per se and commercially available.
  • the average particle size of the metal oxide particles is preferably 1-100 nm, more preferably 1-70 nm.
  • the refractive index of the metal oxide particles is preferably 1.70-2.80, more preferably 1.90-2.50.
  • the content of the metal oxide particles in the medium refractive index layer composition is 40 to 130 parts by mass, preferably 40 to 90 parts by mass of zirconium oxide particles and 0 parts by mass of titanium oxide particles, based on 100 parts by mass of the alkoxysilane compound and the like. It is appropriately selected from the range of up to 40 parts by mass so as to satisfy the predetermined refractive index in consideration of changes in the refractive index due to thermal history.
  • inclusion of zirconium oxide particles is preferable from the viewpoint of suppressing shrinkage of the alkoxysilane compound due to thermal history.
  • Each of the components constituting the medium-low refractive index layer is dissolved in an optional component such as an acid aqueous solution, if necessary, and the organic solvent to form a solution for forming a medium-refractive index layer.
  • the medium refractive index layer-forming solution is applied onto the medium-low refractive index layer, dried, and then cured by heating to form the medium refractive index layer.
  • the coating method, drying conditions, heating conditions, etc. conform to the method for forming the medium-to-low refractive index layer.
  • the thermosetting step by heating may be performed collectively after the application and drying of the four layers constituting the antireflection film, or further after the application and drying of the protective layer. is preferable from the viewpoint of
  • High refractive index layer It is a refractive index layer laminated on the medium refractive index layer (viewing side) and has a higher refractive index than the medium refractive index layer.
  • the high refractive index layer has a refractive index of 1.75 to 1.87 and a layer thickness of 30 to 50 nm.
  • the refractive index is 1.77-1.85 and the layer thickness is 35-45 nm
  • a solution of a high refractive index layer composition containing the following components is prepared, the solution is coated, and dried. , is preferably formed by heating.
  • alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof (hereinafter referred to as "alkoxysilane compound, etc.”), R n —Si(OR 1 ) 4-n (1) (wherein R is an alkyl group, an alkenyl group or an alkoxyalkyl group, R1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom, and n is an integer of 1 or 2) (A) 1 to 15 parts by mass of aluminum salt hydrate, and (E) 40 to 130 parts by mass of metal oxide particles. The presence of aluminum salt hydrate is required.
  • Alkoxysilane compound or its hydrolyzate It is a compound represented by the formula (1) and is as described in the section of the medium-low refractive index layer.
  • An alkoxysilane compound or the like used for forming a medium-to-low refractive index layer can be similarly used for the same purpose.
  • the aluminum salt hydrate which is a component that contributes to the development of alkali resistance in the present invention and must be present in the high refractive index layer as well as the low refractive index layer and the protective layer.
  • the content of the aluminum salt hydrate in the high refractive index layer is 1 to 15 parts by mass with respect to 100 parts by mass of the alkoxysilane compound and the like. If it is less than 1 part by mass, the effect is not obtained. If it exceeds 15 parts by mass, it is not preferable because it becomes difficult to form a layer due to a tendency to react with moisture in the air during coating.
  • Metal oxide particles are blended in the high refractive index layer in order to control the refractive index to the predetermined value.
  • the metal oxide particles the metal particles used for forming the medium refractive index layer are similarly used.
  • the content of the metal oxide particles in the high refractive index layer composition is 40 to 130 parts by mass, preferably 0 to 40 parts by mass of the zirconium oxide particles and 40 parts by mass of the titanium oxide particles, based on 100 parts by mass of the alkoxysilane compound and the like. It is appropriately selected from the range of up to 90 parts by mass so as to satisfy the predetermined refractive index in consideration of changes in the refractive index due to thermal history. In particular, it is preferable to contain titanium oxide particles in order to achieve a high refractive index.
  • the high refractive index layer-forming solution is applied onto the medium refractive index layer, dried, and then cured by heating to form a high refractive index layer.
  • the coating method, drying conditions, heating conditions, etc. conform to the method for forming the medium-to-low refractive index layer.
  • the thermosetting step by heating may be performed collectively after the application and drying of the four layers constituting the antireflection film, or further after the application and drying of the protective layer. is preferable from the viewpoint of
  • ⁇ Low refractive index layer> It is a refractive index layer located on the outermost layer (visual field side) of the antireflection film, and is the layer that contributes most to the antireflection performance.
  • the low refractive index layer has a refractive index of 1.27 to 1.35 and a layer thickness of 70 to 75 nm.
  • the refractive index is between 1.28 and 1.32 and the layer thickness is between 71 and 74 nm.
  • the low refractive index layer needs to be glass-strengthened by chemical treatment after forming the antireflection film and the protective layer, prepare a solution of a low refractive index layer composition containing the following components, coat the solution, and dry it. , is preferably formed by heating.
  • (B) With respect to 100 parts by mass of a binder component composed of an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof (hereinafter referred to as "alkoxysilane compound, etc.”), R n —Si(OR 1 ) 4-n (1) (wherein R is an alkyl group, an alkenyl group or an alkoxyalkyl group, R1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom, and n is an integer of 1 or 2) (A) 3 to 25 parts by mass of aluminum salt hydrate, (C) 1 to 20 parts by mass of a metal chelate compound, and (D) 25 to 90 parts by mass of silica particles. The existence of things is necessary.
  • Alkoxysilane compound or its hydrolyzate It is a compound represented by the formula (1) and is as described in the section of the medium-low refractive index layer.
  • An alkoxysilane compound or the like used for forming a medium-to-low refractive index layer can be similarly used for the same purpose.
  • the aluminum salt hydrate which is a component that contributes to the development of alkali resistance in the present invention and must be present in the low refractive index layer together with the high refractive index layer and the protective layer.
  • As the aluminum salt hydrate used for forming the medium-to-low refractive index layer can be used as well.
  • the content of the aluminum salt hydrate in the low refractive index layer is 3 to 25 parts by mass with respect to 100 parts by mass of the alkoxysilane compound and the like. If it is less than 3 parts by mass, the effect is not obtained. If it exceeds 25 parts by mass, the bonding strength of the alkoxysilane compound and the like and the hardness of the low refractive index layer are lowered, which is not preferable.
  • Metal chelate compound A metal chelate used for forming the medium-to-low refractive index layer can be used without any limitation for the same purpose.
  • the metal chelate compound is used in an amount of 1 to 20 parts by weight, preferably 3 to 18 parts by weight, per 100 parts by weight of the alkoxysilane compound (B). If it exceeds 20 parts by mass, the metal chelate compound tends to precipitate in the low refractive index layer and cause poor appearance. If the amount is less than 1 part by mass, the strength and hardness of the low refractive index layer tend to decrease.
  • Silica particles used for forming the medium-to-low refractive index layer can be used without any limitation for the same purpose.
  • the silica particles are 25 to 90 parts by mass, preferably 0 to 30 parts by mass of the solid silica particles and 25 to 60 parts by mass of the hollow silica particles, based on 100 parts by mass of the (B) alkoxysilane compound, etc.
  • the low refractive index layer is appropriately selected and used so as to satisfy the predetermined refractive index.
  • inclusion of hollow silica particles is preferable in that a low refractive index can be achieved and high antireflection performance can be achieved.
  • the low refractive index layer-forming solution is applied onto the high refractive index layer, dried, and then cured by heating to form the low refractive index layer.
  • the coating method, drying conditions, heating conditions, etc. conform to the method for forming the medium-to-low refractive index layer.
  • the thermosetting step by heating may be performed collectively after the application and drying of the four layers constituting the antireflection film, or further after the application and drying of the protective layer. is preferable from the viewpoint of
  • a protective layer is placed on the antireflection film (on the viewing side) to prevent the antireflection film from being damaged by external impacts such as scratches, and also to prevent damage due to ion collisions to the antireflection film during chemical strengthening.
  • the protective layer has a refractive index of 1.43 to 1.48 and a layer thickness of 20 to 30 nm.
  • the refractive index is between 1.44 and 1.46 and the layer thickness is between 20 and 25 nm.
  • a solution of a protective layer composition containing the following components is prepared, and the solution is coated, dried, and heated. It is preferred to form (B) With respect to 100 parts by mass of a binder component composed of an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof (hereinafter referred to as "alkoxysilane compound, etc.”), R n —Si(OR 1 ) 4-n (1) (Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.) (A) 3 to 25 parts by mass of aluminum salt hydrate, and (C) 1 to 20 parts by mass of metal chelate compound In order for the antireflective glass of the present invention to exhibit alkali resistance, the protective layer contains (B) With respect to 100 parts by mass of a binder component composed of an alkoxysilane
  • Alkoxysilane compound or its hydrolyzate It is a compound represented by the formula (1) and is as described in the section of the medium-low refractive index layer.
  • An alkoxysilane compound or the like used for forming a medium-to-low refractive index layer can be similarly used for the same purpose.
  • the aluminum salt hydrate which is a component that contributes to the development of alkali resistance in the present invention and must be present in the protective layer as well as in the low refractive index layer and the high refractive index layer.
  • the content of the aluminum salt hydrate is 3 to 25 parts by mass with respect to 100 parts by mass of the alkoxysilane compound and the like. If it is less than 3 parts by mass, the effect is not obtained. If the amount exceeds 25 parts by mass, the bonding strength of the alkoxysilane compound and the like and the hardness of the protective layer are lowered, which is not preferable.
  • Metal chelate compound A metal chelate used for forming the medium-to-low refractive index layer can be used without any limitation for the same purpose.
  • the metal chelate compound is used in an amount of 1 to 20 parts by weight, preferably 3 to 18 parts by weight, per 100 parts by weight of the alkoxysilane compound (B). If it exceeds 20 parts by mass, the metal chelate compound tends to precipitate in the protective layer and cause poor appearance. If the amount is less than 1 part by mass, the strength and hardness of the protective layer are lowered, and the chemical strengthening treatment of the glass substrate tends to be insufficient.
  • the protective layer-forming solution is coated on the low refractive index layer, dried, and then cured by heating to form a protective layer.
  • the coating method, drying conditions, heating conditions, etc. conform to the method for forming the medium-to-low refractive index layer.
  • the heat curing step by heating is preferably carried out collectively after the application and drying of the four layers constituting the antireflection film, followed by the application and drying of the protective layer.
  • the antireflection glass of the present invention is glass-strengthened by chemical treatment.
  • chemical treatment method a conventionally known method is employed.
  • an unstrengthened antireflection glass is brought into contact with a metal salt melt of a potassium salt such as potassium nitrate at a temperature in the range of 390° C. to 450° C. for 3 to 16 hours to convert sodium ions having a small ionic radius into ions.
  • a high-strength tempered glass is obtained by replacing potassium ions with large radii.
  • Alkaline cleaning is commercially available as an alkaline cleaning solution with a pH of about 12 to 13, which is obtained by dissolving a strong alkaline compound such as sodium hydroxide or potassium hydroxide, or a surfactant in an alcohol solvent or water.
  • the cleaning solution is appropriately diluted with water or the like according to the conditions.
  • Alkaline cleaning is usually carried out at room temperature to 55° C. for about 0.1 to 0.5 hours, and then washed with water or an organic solvent to wash off the alkaline cleaning solution.
  • Each refractive index layer-forming solution was coated on a glass substrate to a thickness of 100 nm and cured to form each refractive index layer or protective layer.
  • the reflectance of each layer was measured using a "spectrophotometer V-650" manufactured by JASCO Corporation to calculate the refractive index.
  • the average luminous reflectance of both surfaces was measured by the following method. Measured at 380 nm to 780 nm using "UV-visible spectrophotometer V-650" manufactured by JASCO Corporation, and calculated by multiplying the weight coefficient based on JIS Z 8722.
  • the object to be measured is an antireflection glass in which an antireflection film and a protective film are formed on both sides of a glass substrate. It should be noted that these measured values are the values of the antireflection glass before tempering the glass, but it was confirmed that these values after tempering the glass hardly changed.
  • the visual average transmittance was measured by the following method. Measured at 380 nm to 780 nm using "UV-visible spectrophotometer V-650" manufactured by JASCO Corporation, and calculated by multiplying the weight coefficient based on JIS Z 8722. It should be noted that these measured values are the values of the antireflection glass before tempering the glass, but it was confirmed that these values after tempering the glass hardly changed.
  • M-1 to M-7 medium refractive index layer-forming solutions
  • M-4 is a solution containing no (A) aluminum salt hydrate
  • M-6 and 7 are solutions containing metal salt hydrates other than aluminum.
  • H-6 is a solution containing no (A) aluminum salt hydrate
  • H-8 and 9 are solutions containing metal salt hydrates other than aluminum.
  • Co-1 to Co-5 Components shown in Table 9 were mixed in the amounts shown in the same table to prepare protective layer forming solutions (Co-1 to Co-5).
  • Co-2 is a solution containing no (A) aluminum salt hydrate
  • Co-4 and 5 are solutions containing metal salt hydrates other than aluminum.
  • Example 1 The aluminosilicate glass (glass substrate) is dipped in a solution for forming a medium-low refractive index layer (ML-6) and then dried at 100° C. for 15 minutes to form an uncured medium-low refractive index layer having a layer thickness of 197 nm. It was formed on a glass substrate. It is thought that the medium-to-low refractive index layer is in an insufficiently cured state due to drying under the above conditions, and the following layers are the same. In addition, the layer thickness was adjusted by the pulling speed from the dipped medium-low refractive index layer forming solution. The same applies to each of the following layers.
  • ML-6 medium-low refractive index layer
  • the glass substrate is dipped in the medium refractive index layer forming solution (M-4), dried at 100 ° C. for 15 minutes, and an uncured medium refractive index layer having a layer thickness of 109 nm is formed. formed on the layer.
  • the glass substrate is dipped in the solution for forming a high refractive index layer (H-1), dried at 100° C. for 15 minutes, and an uncured high refractive index layer having a layer thickness of 36 nm is formed into an uncured medium refractive index layer. formed above.
  • the glass substrate is dipped in the low refractive index layer forming solution (L-1), dried at 100 ° C.
  • the glass substrate was dipped in the protective layer forming solution (Co-1) and dried at 100° C. for 15 minutes to form an uncured protective layer having a layer thickness of 25 nm on the uncured low refractive index layer. .
  • the glass substrate laminated with the uncured antireflection film and the protective layer was heated at 500° C. for 30 minutes for thermal curing to prepare the antireflection glass of the present invention.
  • the glass was immersed in a potassium nitrate melt at 410° C. for 3 hours for chemical strengthening treatment to obtain an antireflection tempered glass.
  • the other glass was first subjected to chemical strengthening treatment under the same conditions, and then washed with an alkali under the same conditions to obtain an antireflection tempered glass.
  • the glass strength and the alkali resistance of the antireflection film after alkali washing of the above two types of antireflection tempered glasses were measured according to the methods described above. The results are shown in Table 10.
  • Examples 2-9 Two types of antireflection tempered glass were produced in the same manner as in Example 1, except that each refractive index layer forming solution and protective layer forming solution were used in the combinations shown in Table 10.
  • Table 10 shows the average luminous reflectance and average luminous transmittance of both sides of the antireflection tempered glass, the layer thickness and refractive index of each layer, the glass strength of the antireflection tempered glass, and the alkali resistance of the antireflection film. .
  • the antireflection tempered glasses (Examples 2 to 6 and 8) containing aluminum chloride hexahydrate in all layers of the antireflection film and protective layer exhibit sufficient glass strength and excellent alkali resistance.
  • Comparative Examples 1-10 Two types of antireflection tempered glass were produced in the same manner as in Example 1, except that each refractive index layer forming solution and protective layer forming solution were used in the combinations shown in Table 11.
  • Table 11 shows the average luminous reflectance and average luminous transmittance of both sides of the antireflection glass, the layer thickness and refractive index of each layer, the glass strength of the antireflection tempered glass, and the alkali resistance of the antireflection film. rice field.
  • Comparative Example 1 is a case where no aluminum salt hydrate is present in the entire antireflection film and protective layer, and the alkali resistance is extremely poor.
  • Comparative Example 2 is a case where no aluminum salt hydrate is present in the high refractive index layer, the medium refractive index layer and the medium low refractive index layer, and the alkali resistance is extremely poor.
  • Comparative Example 3 is a case where no aluminum salt hydrate is present in the low refractive index layer, the medium refractive index layer, and the medium low refractive index layer, and the alkali resistance is poor.
  • Comparative Example 4 is a case in which no aluminum salt hydrate is present in the protective layer, the medium refractive index layer, and the medium to low refractive index layer, and the alkali resistance is poor.
  • Comparative Examples 5 and 6 are cases where the layer thickness of the refractive index layer does not satisfy the range of the present invention, and the alkali resistance is good, but the optical properties of the average luminous reflectance and the average luminous transmittance are inferior.
  • Comparative Examples 7 and 8 are cases where the refractive index of the refractive index layer does not satisfy the range of the present invention, and the alkali resistance is good, but the optical properties of the average luminous reflectance and the average luminous transmittance are inferior.
  • Comparative Examples 9 and 10 are cases where metal salt hydrates other than aluminum salt hydrates are used for all layers of the antireflection film and the protective layer, and the alkali resistance is extremely poor.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Provided is an antireflective glass comprising a glass substrate, an antireflective film and a protective layer in this order, in which the antireflective film is composed of a medium-to-small refractive index layer having a refractive index of 1.36 to 1.45 and a thickness of 150 to 210 nm, a medium refractive index layer having a refractive index of 1.56 to 1.79 and a thickness of 90 to 140 nm, a large refractive index layer having a refractive index of 1.75 to 1.87 and a thickness of 30 to 50 nm, and a small refractive index layer having a refractive index of 1.27 to 1.35 and a thickness of 70 to 75 nm in this order when observed from the glass substrate side, the refractive index of the large refractive index layer is larger than that of the medium refractive index layer, the protective layer has a refractive index of 1.43 to 1.48 and a thickness of 20 to 30 nm, each of the large refractive index layer, the small refractive index layer and the protective layer contains (A) an aluminum salt hydrate, the luminous average reflectance of each surface is 0.6% or less at a wavelength of 380 to 780 nm, and the luminous average transmittance of each surface is 98% or more at a wavelength of 380 to 780 nm. The antireflective glass has high antireflective performance and excellent alkali resistance, and can be used suitably for the production of an antireflective hardened glass.

Description

反射防止ガラスanti-reflection glass
 本発明は、反射防止強化ガラスの製造に好適に使用される、高度の反射防止性能が付与されている反射防止ガラスに関する。 The present invention relates to antireflection glass imparted with a high degree of antireflection performance, which is suitably used for manufacturing antireflection tempered glass.
 ガラスの強度が高められた強化ガラスは、自動車や家屋の窓ガラスなどの用途に広く使用されているが、最近では、静電容量式タッチパネルの全面保護パネルや、デジタルカメラ、携帯電話などの各種モバイル機器のディスプレイなどの用途にも使用されている。
 後者用途の強化ガラスは、形状が小さくかつ複雑であり、切断、端面加工、穴あけ加工などの形状加工を必要とする。しかしながら、強化後には、これらの形状加工が困難であるため、予めガラス基板を最終の製品形状に加工した後に強化処理が行われていた。
Tempered glass with enhanced glass strength is widely used for applications such as window glass in automobiles and houses, but recently it has been used in various applications such as full-face protective panels for capacitive touch panels, digital cameras, and mobile phones. It is also used for applications such as mobile device displays.
Tempered glass for the latter use has a small and complicated shape, and requires shape processing such as cutting, edge processing, and drilling. However, since it is difficult to process these shapes after tempering, tempering treatment has been performed after preliminarily processing the glass substrate into the final product shape.
 ガラスの強化方法としては、急冷による物理強化法やイオン交換による化学強化法が知られている。物理強化法は厚みが数mm以上のガラスを対象とし、厚みの薄いガラス基板に対しては効果的でない。従って、上記保護パネルやディスプレイなどの薄肉ガラスについては、化学強化法が一般に採用されている。 As methods for strengthening glass, physical strengthening by rapid cooling and chemical strengthening by ion exchange are known. The physical strengthening method is intended for glass having a thickness of several mm or more, and is not effective for thin glass substrates. Therefore, the chemical strengthening method is generally adopted for thin glasses such as the protective panels and displays.
 イオン交換による化学強化法は、ガラス中に含まれる小さなイオン半径の金属イオン(例えばナトリウムイオン)を、より大きなイオン半径の金属イオン(例えばカリウムイオン)で置換することによって行われる。即ち、イオン半径の小さな金属イオンを、これよりも大きなイオン半径を有する金属イオンで置換することにより、ガラス表面には圧縮応力層を形成する。
 この結果、このガラスが破壊されるには、分子間の結合を破壊する力に加えて表面の圧縮応力を取り除く力も必要となり、通常のガラスに比して、その強度が著しく向上するわけである。
Chemical strengthening by ion exchange is performed by replacing metal ions with a small ionic radius (eg sodium ions) contained in the glass with metal ions with a larger ionic radius (eg potassium ions). That is, by substituting metal ions having a smaller ionic radius with metal ions having a larger ionic radius, a compressive stress layer is formed on the glass surface.
As a result, in order to break this glass, in addition to the force to break the bonds between molecules, the force to remove the compressive stress on the surface is required, and the strength is significantly improved compared to ordinary glass. .
 ところで、イオン交換による化学処理によって強化された強化ガラスにおいても、反射防止機能その他の機能を要求される場合があり、特に、前出の保護パネルや各種のディスプレイなどにおいては、高い反射防止機能が要求されている。
 反射防止機能を付与するためには、ガラス表面に低屈折率の反射防止膜を形成すればよい。このような反射防止膜の形成手段としては、大きく分けて、蒸着法とゾルゲル法による方法とが知られている。
 蒸着法は極めてコストの高い装置が必要となるため、工業的にはあまり実施されておらず、現在では、微細粒子を含むコーティング液を塗布し、加熱処理によるゲル化によって反射防止膜を形成するゾルゲル法が、生産コストが低く、生産も高いために主流となっている。
 このようなゾルゲル法により形成される反射防止膜としては、例えばケイ素化合物の加水分解縮合物、金属キレート化合物、および低屈折率のシリカ粒子とを含むものが知られている(特許文献1参照)。
By the way, even tempered glass strengthened by chemical treatment by ion exchange may be required to have an antireflection function and other functions. requested.
In order to impart an antireflection function, an antireflection film with a low refractive index may be formed on the glass surface. Methods for forming such an antireflection film are roughly classified into a vapor deposition method and a sol-gel method.
Because the vapor deposition method requires extremely expensive equipment, it is not widely used industrially. Currently, a coating liquid containing fine particles is applied and heat-treated to form an anti-reflection film that gels. The sol-gel method is predominant due to its low production cost and high yield.
As an antireflection film formed by such a sol-gel method, for example, one containing a hydrolytic condensate of a silicon compound, a metal chelate compound, and silica particles with a low refractive index is known (see Patent Document 1). .
 化学処理によって得られる強化ガラスの表面に反射防止膜を形成するには、解決しなければならない大きな課題があった。
 従来、反射防止膜を形成した後では、カリウムイオンをガラス内部に浸透させることができなかったため強化処理ができず、形状加工次いで強化処理した製品毎に反射防止膜の形成を行う必要があった。この場合、大面積の処理が可能なゾルゲル法の利点が完全に失われ生産性が著しく低下する。
Forming an antireflection film on the surface of tempered glass obtained by chemical treatment had a major problem that had to be solved.
In the past, after forming an antireflection film, potassium ions could not permeate the inside of the glass, making it impossible to strengthen the glass. . In this case, the advantage of the sol-gel method, which is capable of processing a large area, is completely lost, resulting in a marked drop in productivity.
 上記課題を解決するために、反射防止膜を形成した後に化学処理でガラス強化をする方法が提案された。
 一つは、表面に形成された反射防止膜中に含まれる無機微粒子の、粒子と粒子との間隙空間(以下、空隙という)を利用して、イオン交換を行いガラス強化する方法である(特許文献2)。しかしながら、この方法においては、イオン交換が可能となる空隙の制御が難しいという問題があった。
 上記問題に対して、粒子と粒子との空隙を利用するのではなく、内部に空間を有する中空粒子を用いてその内部空間を介してイオン交換する方法が提案された(特許文献3)。この方法は、予め所定の空間容積を有する粒子を利用するので、上記空隙法に比べて、イオン交換の条件設定が容易であった。しかし、一方では、中空の無機粒子は多くは存在しないし工業的な製法は限られていたので、利用できる無機粒子の種類が限定されていた。
In order to solve the above problems, a method of chemically strengthening the glass after forming an antireflection film has been proposed.
One is a method of strengthening glass by ion exchange using the interstitial spaces (hereinafter referred to as voids) between the particles of the inorganic fine particles contained in the antireflection film formed on the surface (Patent Reference 2). However, this method has the problem that it is difficult to control the voids that allow ion exchange.
To solve the above problem, a method has been proposed in which hollow particles having a space inside are used and ion exchange is performed through the internal space instead of using the gaps between particles (Patent Document 3). Since this method uses particles having a predetermined spatial volume in advance, it was easier to set conditions for ion exchange than the above-described void method. On the other hand, however, there are not many hollow inorganic particles and industrial production methods are limited, so the types of inorganic particles that can be used are limited.
 ところで、反射防止膜は、その反射防止性能を向上させるためには、低屈折率層に加えて高屈折率層、更には中屈折率層を設けた多層反射防止膜が開発されている。
 これらの高屈折率層や中屈折率層には、所定の屈折率を発現させるために、シリカ粒子に比べて高屈折率の酸化ジルコニウム粒子や酸化チタニウム粒子を配合しなければならない。ところが、これら高屈折率粒子では中空の粒子は入手が困難であるため、前出の粒子の内部空間を利用したイオン交換ができなく、反射防止膜が多層である場合は、通常の条件では反射防止膜を形成した後に複数の屈折率層を通してのイオン交換によるガラス強化処理が難しかった。
 本願発明者らは、先に、このような多層からなる反射防止膜を有する反射防止強化ガラスの製造方法について鋭意検討し提案した(特許文献4)。
By the way, in order to improve the antireflection performance of the antireflection film, a multi-layer antireflection film has been developed in which a high refractive index layer and a medium refractive index layer are provided in addition to the low refractive index layer.
Zirconium oxide particles and titanium oxide particles having a higher refractive index than silica particles must be blended in these high refractive index layers and medium refractive index layers in order to develop a predetermined refractive index. However, since it is difficult to obtain hollow particles of these high refractive index particles, ion exchange using the internal space of the particles cannot be performed. It was difficult to strengthen the glass by ion exchange through multiple refractive index layers after the formation of the protective film.
The inventors of the present application have previously studied and proposed a method for producing antireflection tempered glass having such a multi-layered antireflection film (Patent Document 4).
特開2002-221602号公報Japanese Patent Application Laid-Open No. 2002-221602 特開2002-234754号公報JP-A-2002-234754 特開2011-88765号公報JP 2011-88765 A 特開2017-178634号公報JP 2017-178634 A
 本願発明者らは、反射防止強化ガラスの開発過程において以下の問題に直面した。
 強化ガラスは、強化ガラスと反射防止膜との密着性を向上させるためにガラス表面に付着した有機・無機物質の除去を目的として、更に、製品化後に強化ガラスが摺りガラス状化して透明性を失うことを防止(ヤケ防止)する目的で、アルカリ洗浄工程が必要とされる。更にまた、ガラス強化時に付着した不純物質等の除去など様々な目的で、アルカリ洗浄が行われる。
 ヤケとしては、具体的には、空気中の水分浸食によるガラス表面のアルカリイオン欠乏現象である青ヤケと、ガラス表面のアルカリイオンを含む水分の乾燥濃縮及び炭酸ガスにより炭酸化合物などを生成する現象である白ヤケとがある。これらのヤケは、一度発生してしまうと物理的な表面研磨をしない限り修復が困難な現象である。
 ところが、当該アルカリ洗浄を行うことにより、ガラス表面に形成した反射防止膜が損傷を受けてマダラ状になって不均一になったり膜厚が減少して、所望の反射防止性能が発現しない、或いは色味が変化して製品価値を失うという問題が生じた。
The inventors of the present application faced the following problems in the process of developing antireflection tempered glass.
The purpose of tempered glass is to remove organic and inorganic substances adhering to the surface of the glass in order to improve the adhesion between the tempered glass and the anti-reflection film. An alkaline cleaning step is required to prevent loss (burning prevention). Furthermore, alkali cleaning is performed for various purposes such as removing impurities adhered during tempering of the glass.
Specifically, discoloration includes blue discoloration, which is a phenomenon of lack of alkali ions on the glass surface due to moisture erosion in the air, and a phenomenon in which carbonic acid compounds are generated by dry concentration of moisture containing alkali ions on the glass surface and carbon dioxide gas. There is white discoloration. Once these scorching occurs, it is a phenomenon that is difficult to repair unless the surface is physically polished.
However, by carrying out the alkali cleaning, the antireflection film formed on the glass surface is damaged, becomes mottled and becomes uneven, or the film thickness is reduced, and the desired antireflection performance is not exhibited, or There was a problem that the color changed and the product value was lost.
 本願発明者らは、反射防止膜のアルカリ洗浄による劣化原因を検討した結果、反射防止膜中にアルミニウム塩水和物を存在させることにより、耐アルカリ性が発現して反射防止膜の劣化を防止できることを見出し、本発明を完成するに至った。
 即ち、本発明によって、ガラス基板、反射防止膜および保護層をこの順に含んでなる反射防止ガラスであって、
 前記反射防止膜は、前記ガラス基板側から、
 屈折率が1.36~1.45で、層厚が150~210nmの中低屈折率層、
 屈折率が1.56~1.79で、層厚が90~140nmの中屈折率層、
 屈折率が1.75~1.87で、層厚が30~50nmの高屈折率層、
 屈折率が1.27~1.35で、層厚が70~75nmの低屈折率層
の順で構成され、当該高屈折率層の屈折率は、中屈折率層の屈折率より高
 く、
 前記保護層は、屈折率が1.43~1.48で、層厚が20~30nmであり、
 前記高屈折率層、低屈折率層および保護層が、(A)アルミニウム塩水和物を含有し、
 波長380~780nmにおける両面の視感平均反射率が0.6%以下で、波長380~780nmにおける視感平均透過率が98%以上であることを特徴とする前記反射防止ガラスが提供される。
The inventors of the present application have investigated the cause of deterioration of the antireflection film due to washing with alkali, and found that the presence of aluminum salt hydrate in the antireflection film develops alkali resistance and prevents deterioration of the antireflection film. The discovery led to the completion of the present invention.
That is, according to the present invention, an antireflection glass comprising a glass substrate, an antireflection film and a protective layer in this order,
The antireflection film, from the glass substrate side,
a medium-to-low refractive index layer having a refractive index of 1.36 to 1.45 and a layer thickness of 150 to 210 nm;
a medium refractive index layer having a refractive index of 1.56 to 1.79 and a layer thickness of 90 to 140 nm;
a high refractive index layer having a refractive index of 1.75 to 1.87 and a layer thickness of 30 to 50 nm;
A low refractive index layer having a refractive index of 1.27 to 1.35 and a layer thickness of 70 to 75 nm.
The protective layer has a refractive index of 1.43 to 1.48 and a layer thickness of 20 to 30 nm,
The high refractive index layer, the low refractive index layer and the protective layer contain (A) an aluminum salt hydrate,
The above antireflection glass is characterized by having an average luminous reflectance of 0.6% or less on both surfaces at a wavelength of 380 to 780 nm and an average luminous transmittance of 98% or more at a wavelength of 380 to 780 nm.
 上記反射防止ガラスの発明において、
1)更に、前記中低屈折率層および中屈折率層が、(A)アルミニウム塩水和物を含有すること、
2)前記保護層が、(B)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、
 R-Si(OR4-n (1)
(式中、Rはアルキル基、アルケニル基またはアルコキシアルキル基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の整数である。)
 (A)アルミニウム塩水和物3~25質量部、および(C)金属キレート化合物1~20質量部を含有してなる保護層組成物の硬化物からなること、
3)前記低屈折率層が、(B)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、
 R-Si(OR4-n (1)
(式中、Rはアルキル基、アルケニル基またはアルコキシアルキル基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の整数である。)
 (A)アルミニウム塩水和物3~25質量部、(C)金属キレート化合物1~20質量部、および(D)シリカ粒子25~90質量部を含有してなる低屈率層組成物の硬化物からなること、
4)前記高屈折率層が、(B)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、
 R-Si(OR4-n (1)
(式中、Rはアルキル基、アルケニル基またはアルコキシアルキル基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の整数である。)
 (A)アルミニウム塩水和物1~15質量部、および(E)金属酸化物粒子40~130質量部を含有してなる高屈率層組成物の硬化物からなること、
5)前記中屈折率層が、(B)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、
 R-Si(OR4-n (1)
(式中、Rはアルキル基、アルケニル基またはアルコキシアルキル基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の整数である。)
 (A)アルミニウム塩水和物1~15質量部、および(E)金属酸化物粒子40~130質量部を含有してなる中屈率層組成物の硬化物からなること、
6)前記中低屈折率層が、(B)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、
 R-Si(OR4-n (1)
(式中、Rはアルキル基、アルケニル基またはアルコキシアルキル基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の整数である。)
 (A)アルミニウム塩水和物3~25質量部、(C)金属キレート化合物を1~20質量部、および(D)シリカ粒子25~90質量部を含有してなる中低屈率層組成物の硬化物からなること、
7)前記ガラス基板が、アルカリアルミノケイ酸塩ガラスであること、
8)前記反射防止ガラスが、耐アルカリ性化学強化用反射防止ガラスであることが好適である。
 なお、上記各層のシリカ粒子の質量部は、中実シリカ粒子及び中空シリカ粒子のいずれか一方或いは合計値である。また、上記各層の金属酸化物粒子の質量部は、一種類の金属酸化物粒子の質量部の値でもよいし、二以上の異なる種類の金属酸化物粒子の質量部の合計値であってもよい。
In the antireflection glass invention,
1) the medium-low refractive index layer and the medium-low refractive index layer further contain (A) an aluminum salt hydrate;
2) With respect to 100 parts by mass of a binder component in which the protective layer is (B) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof,
R n —Si(OR 1 ) 4-n (1)
(Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.)
(A) 3 to 25 parts by mass of an aluminum salt hydrate and (C) a cured product of a protective layer composition containing 1 to 20 parts by mass of a metal chelate compound;
3) With respect to 100 parts by mass of a binder component in which the low refractive index layer is (B) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof,
R n —Si(OR 1 ) 4-n (1)
(Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.)
(A) 3 to 25 parts by mass of aluminum salt hydrate, (C) 1 to 20 parts by mass of metal chelate compound, and (D) 25 to 90 parts by mass of silica particles. consisting of
4) With respect to 100 parts by mass of a binder component in which the high refractive index layer is (B) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof,
R n —Si(OR 1 ) 4-n (1)
(Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.)
(A) 1 to 15 parts by mass of aluminum salt hydrate, and (E) 40 to 130 parts by mass of metal oxide particles.
5) With respect to 100 parts by mass of a binder component in which the medium refractive index layer is (B) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof,
R n —Si(OR 1 ) 4-n (1)
(Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.)
(A) 1 to 15 parts by mass of aluminum salt hydrate, and (E) 40 to 130 parts by mass of metal oxide particles.
6) With respect to 100 parts by mass of a binder component in which the medium-to-low refractive index layer is (B) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof,
R n —Si(OR 1 ) 4-n (1)
(Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.)
(A) 3 to 25 parts by mass of aluminum salt hydrate, (C) 1 to 20 parts by mass of a metal chelate compound, and (D) 25 to 90 parts by mass of silica particles. consisting of a cured product;
7) the glass substrate is alkali aluminosilicate glass;
8) It is preferable that the antireflection glass is alkali-resistant antireflection glass for chemical strengthening.
The mass part of the silica particles in each layer is either one of the solid silica particles and the hollow silica particles, or the total value. Further, the parts by mass of the metal oxide particles in each layer may be the value of parts by mass of one type of metal oxide particles, or the total value of parts by mass of two or more different types of metal oxide particles. good.
 更に、上記反射防止ガラスを、イオン交換用金属塩融解液中で化学強化処理を行う工程、および当該化学処理工程の前工程又は後工程でアルカリ洗浄する工程を含むことを特徴とする反射防止強化ガラスの製造方法を特徴とする発明が提供される。 Furthermore, antireflection strengthening characterized by including a step of chemically strengthening the antireflection glass in an ion-exchange metal salt melt, and a step of alkali washing before or after the chemical treatment step. An invention is provided that features a method of making glass.
 本発明により提供される反射防止ガラスは、高度の反射防止性能を有する反射防止強化ガラスの製造に好適に使用される。詳しくは、ガラス基板表面に反射防止膜を形成した後にアルカリ洗浄並びに一括強化処理でガラス強化が可能となり、平滑で透明性に優れた高品質の反射防止強化ガラスの工業的製造に有用である。
 化学処理によるガラス強化は、中空シリカ粒子などの内部空洞或いは酸化物粒子と粒子との間隙空間を利用して一括処理で強化を可能とするものである。更に、当該反射防止ガラスは耐アルカリ性に優れるので、ガラス表面の平滑化やヤケ防止に必要なアルカリ洗浄工程を経ても、反射防止膜の不均一化や膜厚の減少によって生じる反射防止性能の低下を防止できる。
 この結果、高度の反射防止性能を有し且つ平滑性に優れ透明性の低下のない高品質の反射防止強化ガラス製品を、生産性が極めて高く、しかも低コストで製造することができる。得られた反射防止強化ガラスは、多層からなる反射防止膜を有するので、反射率が低く且つ広範囲の波長の光に対する反射防止性能に優れる。
 このような反射防止強化ガラス製品は、ガラス基板が薄い製品、例えば静電容量式タッチパネルの前面保護パネル、デジタルカメラや携帯電話などの各種モバイル機器のディスプレイなどの用途に好適に使用される。
The antireflection glass provided by the present invention is preferably used for manufacturing antireflection tempered glass with high antireflection performance. Specifically, after forming an antireflection film on the surface of a glass substrate, it is possible to strengthen the glass by washing with alkali and batch tempering treatment, and it is useful for industrial production of high-quality antireflection tempered glass that is smooth and has excellent transparency.
Glass strengthening by chemical treatment makes it possible to strengthen by a batch treatment using internal cavities such as hollow silica particles or interstitial spaces between oxide particles. Furthermore, since the antireflection glass has excellent alkali resistance, the antireflection performance deteriorates due to nonuniformity of the antireflection film and reduction in the film thickness even after the alkali cleaning process necessary for smoothing the glass surface and preventing burning. can be prevented.
As a result, a high-quality anti-reflection tempered glass product having high anti-reflection performance, excellent smoothness and no deterioration in transparency can be produced with extremely high productivity and at low cost. The obtained antireflection tempered glass has a multi-layered antireflection film, and therefore has a low reflectance and excellent antireflection performance against light of a wide range of wavelengths.
Such antireflection tempered glass products are suitably used for products with thin glass substrates, such as front protective panels for capacitive touch panels, and displays for various mobile devices such as digital cameras and mobile phones.
<反射防止ガラス>
 本発明の反射防止ガラスは、ガラス基板、反射防止膜および保護層から基本構成され、この順に積層されてなる。
 前記反射防止膜は、前記ガラス基板側から、
 屈折率が1.36~1.45で、層厚が150~210nmの中低屈折率層、
 屈折率が1.56~1.79で、層厚が90~140nmの中屈折率層、
 屈折率が1.75~1.87で、層厚が30~50nmの高屈折率層、
 屈折率が1.27~1.35で、層厚が70~75nmの低屈折率層
の順で構成され、当該高屈折率層の屈折率は、中屈折率層の屈折率より高く設定される。
 当該保護層は、屈折率が1.43~1.48で、層厚が20~30nmである。
 当該反射防止ガラスは、波長380~780nmにおける両面の視感平均反射率が0.6%以下で、波長380~780nmにおける視感平均透過率が98%以上であるという特徴を有する。
 本発明の最大の特徴は、前記高屈折率層、低屈折率層および保護層に、(A)アルミニウム塩水和物を含有することにある。これらの層に、(A)アルミニウム塩水和物を含有させることにより、反射防止ガラスの耐アルカリ性が発現し反射防止膜の劣化、損傷を防止できる。耐アルカリ性を付与するためには、少なくとも高屈折率層、低屈折率層および保護層に、(A)アルミニウム塩水和物を存在させれば良いが、更に中屈折率層および中低屈折率層にも存在させた場合、耐アルカリ性が著しく向上するので好適である。
<Anti-reflection glass>
The antireflection glass of the present invention basically comprises a glass substrate, an antireflection film and a protective layer, which are laminated in this order.
The antireflection film, from the glass substrate side,
a medium-to-low refractive index layer having a refractive index of 1.36 to 1.45 and a layer thickness of 150 to 210 nm;
a medium refractive index layer having a refractive index of 1.56 to 1.79 and a layer thickness of 90 to 140 nm;
a high refractive index layer having a refractive index of 1.75 to 1.87 and a layer thickness of 30 to 50 nm;
A low refractive index layer having a refractive index of 1.27 to 1.35 and a layer thickness of 70 to 75 nm is formed in this order, and the refractive index of the high refractive index layer is set higher than that of the medium refractive index layer. be.
The protective layer has a refractive index of 1.43-1.48 and a layer thickness of 20-30 nm.
The antireflection glass is characterized by an average luminous reflectance of 0.6% or less on both surfaces at a wavelength of 380 to 780 nm and an average luminous transmittance of 98% or more at a wavelength of 380 to 780 nm.
The greatest feature of the present invention is that the high refractive index layer, the low refractive index layer and the protective layer contain (A) an aluminum salt hydrate. By including (A) aluminum salt hydrate in these layers, the antireflection glass exhibits alkali resistance, and deterioration and damage of the antireflection film can be prevented. In order to impart alkali resistance, (A) aluminum salt hydrate should be present in at least the high refractive index layer, the low refractive index layer and the protective layer, and further the medium refractive index layer and the medium low refractive index layer. If it is also present, it is preferable because the alkali resistance is remarkably improved.
<ガラス基板>
 ガラス基板は、化学処理で強化可能な組成を有するガラスであれば特に制限はないが、イオン半径がより小さいアルカリ金属イオンやアルカリ土類金属イオンを含むガラスが好適である。
 具体的には、ソーダ石灰ケイ酸塩ガラス、アルカリアルミノケイ酸塩ガラス、アルカリホウ素ケイ酸塩ガラスなどが挙げられ、これらの中でもナトリウムイオンを含むものが好適であり、ナトリウムイオンを5重量%以上含むガラスが最も好適である。
 カリウムイオンの置換量が多くてより深い強化層が得られること、並びに透明性が高いことから、アルカリアルミノケイ酸塩ガラスが好適に使用される。
 ガラス基板の厚みは、通常、2mm~0.2mmである。2mmを超えると強化ガラスとしての強度が不足する場合があり、イオン交換法による化学強化に向かない。基板の面積は特に制限なく、最終製品の大きさや製造工程の制約から任意に決定される。
<Glass substrate>
The glass substrate is not particularly limited as long as it has a composition that can be strengthened by chemical treatment, but glass containing alkali metal ions or alkaline earth metal ions with a smaller ionic radius is suitable.
Specifically, soda-lime silicate glass, alkali aluminosilicate glass, alkali borosilicate glass, etc., may be mentioned. Among these, those containing sodium ions are preferable, and contain 5% by weight or more of sodium ions. Glass is most preferred.
Alkali aluminosilicate glasses are preferably used because of their high substitution of potassium ions, resulting in deeper reinforcing layers, and their high transparency.
The thickness of the glass substrate is usually 2 mm to 0.2 mm. If it exceeds 2 mm, the strength of the tempered glass may be insufficient, and it is not suitable for chemical strengthening by the ion exchange method. The area of the substrate is not particularly limited, and is arbitrarily determined according to the size of the final product and the limitations of the manufacturing process.
<反射防止膜>
 前記ガラス基板上に、通常、反射防止膜が積層されるが、帯電防止や防眩性、密着性向上、更には可視域光の無透過の目的で、ガラス基板と反射防止膜との間に或いは下記いずれかの隣接する屈折率層と屈折率層との間に、帯電防止層、シリカ粒子層、プライマー層、或いはスモーク層を設けても良い。
 本発明における反射防止膜は、下記特性を有する四つの屈折率層から構成される多層反射防止膜である。
 中低屈折率層:屈折率が1.36~1.45で、層厚が150~210
 nm
 中屈折率層:屈折率が1.56~1.79で、層厚が90~140nm
 高屈折率層:屈折率が1.75~1.87で、層厚が30~50nm
 低屈折率層:屈折率が1.27~1.35で、層厚が70~75nm
 なお、高屈折率層の屈折率は、中屈折率層の屈折率より高く設定される。
 上記四つの屈折率層は、ガラス基板側から、中低屈折率層、中屈折率層、高屈折率層、および低屈折率層の順に配置される。
 上記四層の反射防止膜とすることにより、反射防止ガラス、並びに反射防止強化ガラスの波長380~780nmにおける両面の視感平均反射率が0.6%以下、波長380~780nmにおける視感平均透過率が98%以上となって、高性能の反射防止品が得られる。
 上記視感平均反射率および視感平均透過率の各値はガラス強化前の値であるが、ガラス強化後も維持され発現する。
<Anti-reflection film>
An anti-reflection film is usually laminated on the glass substrate. Alternatively, an antistatic layer, a silica particle layer, a primer layer, or a smoke layer may be provided between any of the following adjacent refractive index layers.
The antireflection film in the present invention is a multilayer antireflection film composed of four refractive index layers having the following properties.
Medium-low refractive index layer: refractive index of 1.36 to 1.45, layer thickness of 150 to 210
nm
Medium refractive index layer: a refractive index of 1.56 to 1.79 and a layer thickness of 90 to 140 nm
High refractive index layer: a refractive index of 1.75 to 1.87 and a layer thickness of 30 to 50 nm
Low refractive index layer: a refractive index of 1.27 to 1.35 and a layer thickness of 70 to 75 nm
The refractive index of the high refractive index layer is set higher than that of the medium refractive index layer.
The four refractive index layers are arranged in the order from the glass substrate side: medium-low refractive index layer, medium refractive index layer, high refractive index layer, and low refractive index layer.
By using the four-layer antireflection film, the average luminous reflectance on both sides of the antireflection glass and antireflection tempered glass at a wavelength of 380 to 780 nm is 0.6% or less, and the average luminous transmission at a wavelength of 380 to 780 nm. When the ratio becomes 98% or more, a high-performance antireflection product can be obtained.
The values of the average luminous reflectance and the average luminous transmittance are values before the glass is tempered, but they are maintained and expressed after the glass is tempered.
<中低屈折率層>
 反射防止膜の最下層(ガラス基板側)に位置する屈折率層である。通常、ガラス基板上に積層されている。
 中低屈折率層の屈折率は1.36~1.45であり、層厚は150~210nmである。好ましくは、屈折率が1.38~1.43であり、層厚が170~205nmである。
<Medium-low refractive index layer>
This is the refractive index layer positioned at the bottom layer (on the side of the glass substrate) of the antireflection film. It is usually laminated on a glass substrate.
The medium-to-low refractive index layer has a refractive index of 1.36 to 1.45 and a layer thickness of 150 to 210 nm. Preferably, the refractive index is between 1.38 and 1.43 and the layer thickness is between 170 and 205 nm.
 中低屈折率層は、反射防止膜並びに保護層形成後に化学処理によってガラス強化をする必要があるため、下記成分を含んでなる中低屈率層組成物の溶液を用意し、当該溶液を被覆、乾燥、加熱して形成することが好適である。
(B)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物(以下、「アルコキシシラン化合物等」という)からなるバインダー成分100質量部に対して、
 R-Si(OR4-n (1)
(式中、Rはアルキル基、アルケニル基またはアルコキシアルキル基であり、
はアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の整数である)
(A)アルミニウム塩水和物3~25質量部、
(C)金属キレート化合物を1~20質量部、および
(D)シリカ粒子25~90質量部
 中低屈折率層に(A)アルミニウム塩水和物が含まれない場合は、上記中低屈率層組成物から(A)アルミニウム塩水和物を除外すればよい。
Since the medium-to-low refractive index layer needs to be strengthened by chemical treatment after the formation of the antireflection film and the protective layer, a solution of the medium-to-low refractive index layer composition containing the following components is prepared, and the solution is coated. , drying, and heating.
(B) With respect to 100 parts by mass of a binder component composed of an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof (hereinafter referred to as "alkoxysilane compound, etc."),
R n —Si(OR 1 ) 4-n (1)
(wherein R is an alkyl group, an alkenyl group or an alkoxyalkyl group,
R 1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom, and n is an integer of 1 or 2)
(A) 3 to 25 parts by mass of aluminum salt hydrate,
(C) 1 to 20 parts by mass of a metal chelate compound, and (D) 25 to 90 parts by mass of silica particles. (A) the aluminum salt hydrate may be excluded from the composition.
〔アルコキシシラン化合物またはその加水分解物〕
 ガラス基板に対して密着性が良好で且つ緻密で高強度の膜を形成するためのバインダーの役目をなす成分であり、上記式(1)で表される。
 式中Rは、アルキル基、アルケニル基またはアルコキシアルキル基である。
 アルキル基の炭素原子数は、好ましくは1~9、より好ましくは1~5である。アルキル基として、メチル基、エチル基、トリメチル基、プロピル基、ブチル基、テトラメチル基、ペンチル基、ヘキシル基などが挙げられる。
 アルケニル基の炭素原子数は、好ましくは1~9、より好ましくは1~5である。アルケニル基として、エテニル基、プロペニル基、ブテニル基、ペンニル基、ヘキセニル基などが挙げられる。
 アルコキシアルキル基の炭素原子数は、好ましくは1~9、より好ましくは1~5である。アルコキシアルキル基のアルコキシ基として、メトキシ基、エトキシ基、プロポキシ基などが挙げられる。アルコキシアルキル基のアルキル基として、メチル基、エチル基、トリメチル基、プロピル基、ブチル基、テトラメチル基、ペンチル基、ヘキシル基などが挙げられる。
 式中、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子である。
 アルキル基およびアルコキシアルキル基は、Rのそれらと同じである。
 アシルオキシ基の炭素原子数は、好ましくは1~9、より好ましくは1~5である。アシルオキシ基として、アセチルオキシ基、ベンゾイルオキシ基などが挙げられる。
 ハロゲン原子として、フッ素、塩素、臭素、ヨウ素などが挙げられる。
[Alkoxysilane compound or its hydrolyzate]
It is a component that serves as a binder for forming a dense, high-strength film that has good adhesion to a glass substrate, and is represented by the above formula (1).
In the formula, R is an alkyl group, alkenyl group or alkoxyalkyl group.
The number of carbon atoms in the alkyl group is preferably 1-9, more preferably 1-5. Examples of alkyl groups include methyl, ethyl, trimethyl, propyl, butyl, tetramethyl, pentyl, and hexyl groups.
The number of carbon atoms in the alkenyl group is preferably 1-9, more preferably 1-5. Alkenyl groups include ethenyl, propenyl, butenyl, pennyl, and hexenyl groups.
The number of carbon atoms in the alkoxyalkyl group is preferably 1-9, more preferably 1-5. The alkoxy group of the alkoxyalkyl group includes a methoxy group, an ethoxy group, a propoxy group and the like. Examples of the alkyl group of the alkoxyalkyl group include methyl group, ethyl group, trimethyl group, propyl group, butyl group, tetramethyl group, pentyl group and hexyl group.
In the formula, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom.
Alkyl groups and alkoxyalkyl groups are the same as those of R.
The number of carbon atoms in the acyloxy group is preferably 1-9, more preferably 1-5. The acyloxy group includes an acetyloxy group, a benzoyloxy group and the like.
Halogen atoms include fluorine, chlorine, bromine, and iodine.
〔アルミニウム塩水和物〕
 本発明の反射防止ガラスが耐アルカリ性を発現するためには、保護層並びに反射膜の上層(視野側)に位置する低屈折率層および高屈折率層に、当該アルミニウム塩水和物が存在することが必須である。更に、反射膜の下層(ガラス基板側)に位置する中屈折率層および中低屈折率層にもアルミニウム塩水和物が存在する態様は、耐アルカリ性が極めて高くなるため好ましい。
 アルミニウム塩水和物とは、アルミニウム塩に水分子が結晶水や配位水等の形式で付加した水和化合物である。水和物でない場合は、他の成分との親和性が乏しいため混合時に凝集または沈降してしまう場合がある。特に吸湿の性質を持つ無水物塩の場合、後述する中低屈折率組成物溶液が塗膜時に空気中の水分と反応してしまい均一になりにくく、中低屈折率層の形成が困難である。また、他の金属塩水和物では、耐アルカリ性の発現が乏しい。他の屈折率層においても、同じ理由で、アルミニウム塩水和物が使用される。
 アルミニウムは、前記バインダー成分が配位できる金属であり、しかも、アルカリに侵されにくい酸化アルミニウムが屈折率層中に生成するため、耐アルカリ性を発現するものと推察される。
 アルミニウム塩水和物としては、代表的には、塩化アルミニウム三水塩、塩化アルミニウム六水塩、臭化アルミニウム六水塩、硝酸アルミニウム六水塩、硝酸アルミニウム九水塩、水酸化アルミニウム三水塩、酢酸アルミニウムn水塩、硫酸アルミニウムn水塩などが挙げられ、耐アルカリ性の発現や耐擦傷性の点で、塩化アルミニウム3水塩や塩化アルミニウム6水塩が特に好ましい。
 中低屈折率層において、アルミニウム塩水和物を含有させる場合は、前記アルコキシシラン化合物等100質量部に対して、3~25質量部とする。3質量部より低い場合はその効果が出ない。25質量部を超えると、前記アルコキシラン化合物等の結合強度及び中低屈折率層の硬度が低下してしまうため好ましくない。
[Aluminum salt hydrate]
In order for the antireflection glass of the present invention to exhibit alkali resistance, the aluminum salt hydrate should be present in the low refractive index layer and the high refractive index layer located above the protective layer and the reflective film (on the viewing side). is required. Furthermore, an aspect in which the aluminum salt hydrate is present in the medium refractive index layer and the medium low refractive index layer positioned below the reflective film (on the side of the glass substrate) is preferable because the alkali resistance is extremely high.
An aluminum salt hydrate is a hydrated compound in which water molecules are added to an aluminum salt in the form of water of crystallization or coordination water. If it is not a hydrate, it may aggregate or sediment during mixing due to poor affinity with other components. In particular, in the case of an anhydride salt having hygroscopic properties, the medium-to-low refractive index composition solution described later reacts with moisture in the air during coating, making it difficult to form a medium-to-low refractive index layer. . In addition, other metal salt hydrates exhibit poor alkali resistance. Aluminum salt hydrates are used for the same reason in other refractive index layers.
Aluminum is a metal that can be coordinated with the binder component, and is presumed to exhibit alkali resistance because aluminum oxide, which is resistant to alkali attack, is formed in the refractive index layer.
Aluminum salt hydrates typically include aluminum chloride trihydrate, aluminum chloride hexahydrate, aluminum bromide hexahydrate, aluminum nitrate hexahydrate, aluminum nitrate nonahydrate, aluminum hydroxide trihydrate, Aluminum acetate n-hydrate, aluminum sulfate n-hydrate and the like can be mentioned, and aluminum chloride trihydrate and aluminum chloride hexahydrate are particularly preferred from the standpoint of developing alkali resistance and scratch resistance.
When aluminum salt hydrate is contained in the medium-to-low refractive index layer, the content is 3 to 25 parts by mass with respect to 100 parts by mass of the alkoxysilane compound or the like. If it is less than 3 parts by mass, the effect is not obtained. If it exceeds 25 parts by mass, the bonding strength of the alkoxysilane compound and the like and the hardness of the medium-to-low refractive index layer are lowered, which is not preferable.
〔金属キレート化合物〕
 架橋剤としての機能を有する成分であり、形成され屈折率層をより緻密なものとする。
 該金属キレート化合物(C)は、二座配位子を代表例とするキレート剤が、チタン、ジルコニウム、アルミニウムなどの金属に配位した化合物である。
 具体的には、トリエトキシ・モノ(アセチルアセトネート)チタン、ジエトキシ・ビス(アセチルアセトネート)チタン、モノエトキシ・トリス(アセチルアセトネート)チタン、テトラキス(アセチルアセトネート)チタン、トリエトキシ・モノ(エチルアセトアセテート)チタン、ジエトキシ・ビス(エチルアセトアセテート)チタン、モノエトキシ・トリス(エチルアセトアセテート)チタン、モノ(アセチルアセトネート)トリス(エチルアセトアセテート)チタン、ビス(アセチルアセトネート)ビス(エチルアセトアセテート)チタン、トリス(アセチルアセトネート)モノ(エチルアセトアセテート)チタン等のチタンキレート化合物;
 トリエトキシ・モノ(アセチルアセトネート)ジルコニウム、ジエトキシ・ビス(アセチルアセトネート)ジルコニウム、モノエトキシ・トリス(アセチルアセトネート)ジルコニウム、テトラキス(アセチルアセトネート)ジルコニウム、トリエトキシ・モノ(エチルアセトアセテート)ジルコニウム、ジエトキシ・ビス(エチルアセトアセテート)ジルコニウム、モノエトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、モノ(アセチルアセトネート)トリス(エチルアセトアセテート)ジルコニウム、ビス(アセチルアセトネート)ビス(エチルアセトアセテート)ジルコニウム、トリス(アセチルアセトネート)モノ(エチルアセトアセテート)ジルコニウム等のジルコニウムキレート化合物;
 ジエトキシ・モノ(アセチルアセトネート)アルミニウム、モノエトキシ・ビス(アセチルアセトネート)アルミニウム、ジ-i-プロポキシ・モノ(アセチルアセトネート)アルミニウム、モノエトキシ・ビス(エチルアセトアセテート)アルミニウム、ジエトキシ・モノ(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトネート)アルミニウム等のアルミニウムキレート化合物
などが挙げられる。
 上記金属キレート化合物は、(B)アルコキシシラン化合物等100質量部に対して、1~20質量部、好ましくは3~15質量部使用される。20質量部を超えると、金属キレート化合物が中低屈折率層中に析出し反射防止性能の低下や外観不良を引き起こす傾向にある。1質量部に満たない場合は、中低屈折率層の強度や硬度が低下する傾向にある。
[Metal chelate compound]
It is a component that functions as a cross-linking agent and makes the formed refractive index layer more dense.
The metal chelate compound (C) is a compound in which a chelating agent, typically a bidentate ligand, is coordinated to a metal such as titanium, zirconium or aluminum.
Specifically, triethoxy mono (acetylacetonate) titanium, diethoxy bis (acetylacetonate) titanium, monoethoxy tris (acetylacetonate) titanium, tetrakis (acetylacetonate) titanium, triethoxy mono (ethylacetonate) Acetate) titanium, diethoxy bis(ethylacetoacetate) titanium, monoethoxy tris(ethylacetoacetate) titanium, mono(acetylacetonate) tris(ethylacetoacetate) titanium, bis(acetylacetonate) bis(ethylacetoacetate) titanium ) titanium chelate compounds such as titanium, tris(acetylacetonate)mono(ethylacetoacetate)titanium;
Triethoxy mono(acetylacetonate) zirconium, diethoxy bis(acetylacetonate) zirconium, monoethoxy tris(acetylacetonate) zirconium, tetrakis(acetylacetonate) zirconium, triethoxy mono(ethylacetoacetate) zirconium, diethoxy・Bis(ethylacetoacetate) zirconium, monoethoxy tris(ethylacetoacetate) zirconium, tetrakis(ethylacetoacetate) zirconium, mono(acetylacetonate) tris(ethylacetoacetate) zirconium, bis(acetylacetonate) bis( zirconium chelate compounds such as ethylacetoacetate)zirconium, tris(acetylacetonate)mono(ethylacetoacetate)zirconium;
Diethoxy mono (acetylacetonate) aluminum, monoethoxy bis (acetylacetonate) aluminum, di-i-propoxy mono (acetylacetonate) aluminum, monoethoxy bis (ethylacetoacetate) aluminum, diethoxy mono ( and aluminum chelate compounds such as ethylacetoacetate)aluminum and tris(acetylacetonate)aluminum.
The metal chelate compound is used in an amount of 1 to 20 parts by weight, preferably 3 to 15 parts by weight, per 100 parts by weight of the alkoxysilane compound (B). If it exceeds 20 parts by mass, the metal chelate compound tends to precipitate in the medium-to-low refractive index layer, resulting in deterioration of antireflection performance and poor appearance. If the amount is less than 1 part by mass, the strength and hardness of the medium-to-low refractive index layer tend to decrease.
〔シリカ粒子〕
 本発明の中低屈折率層においては、屈折率を1.36~1.45に制御するためにシリカ粒子が使用される。当該シリカ粒子としては、以下の中実シリカ粒子と中空シリカ粒子との二種類のシリカ粒子が用いられる。
 中実シリカ粒子は、代表的には、二酸化珪素を主成分とする、密度が1.9以上であり、平均粒径が5~500nm、屈折率が1.44~1.5の範囲にある内部に空洞を有しない粒子である。なお、本発明において平均粒径とは、レーザー回折・散乱法により測定した粒度分布において、累積体積が50%の時の粒径をいう。
 中空シリカ粒子は、内部に空洞を有する二酸化珪素からなる粒子であり、通常その粒径が5~150nmで、外殻層の厚みが1~15nm程度の範囲にある微細な中空粒子である。その内部空洞を利用してイオン交換を行うが、屈折率が1.36~1.45の層を形成して優れた反射防止能を発揮するための成分でもある。このため、中空シリカ粒子の屈折率が、1.20~1.38の範囲のものを選択することが好適である。
 当該中空シリカ粒子は、例えば特開2001-233611号公報等により公知のものであるが、メタノール、エタノール、プロパノール等の低級アルコールに分散させた分散液の状態で一般に市販されているので、市販品を入手して利用することが好ましい。
 前記シリカ粒子は、(B)アルコキシシラン化合物等100質量部に対して、25~90質量部、好ましくは前記中実シリカ粒子25~60質量部および中空シリカ粒子0~30質量部の範囲から、熱履歴による屈折率変化や中屈折率層・高屈折率層との屈折率バランスなどを考慮して、前記所定の屈折率を満たすように適宜選択して用いられる。特に、中実シリカ粒子を含ませることは、熱履歴によるアルコキシシラン化合物等の収縮抑制の点で好適である。
[Silica particles]
In the medium to low refractive index layer of the present invention, silica particles are used to control the refractive index to 1.36-1.45. As the silica particles, the following two types of silica particles, solid silica particles and hollow silica particles, are used.
Solid silica particles are typically composed mainly of silicon dioxide, have a density of 1.9 or more, an average particle size of 5 to 500 nm, and a refractive index of 1.44 to 1.5. These are particles that do not have cavities inside. In the present invention, the average particle size refers to the particle size when the cumulative volume is 50% in the particle size distribution measured by the laser diffraction/scattering method.
Hollow silica particles are particles made of silicon dioxide having cavities inside, and are usually fine hollow particles having a particle size of 5 to 150 nm and an outer shell layer having a thickness of about 1 to 15 nm. Ion exchange is performed using the internal cavity, and it is also a component for forming a layer with a refractive index of 1.36 to 1.45 and exhibiting excellent antireflection performance. Therefore, it is preferable to select hollow silica particles having a refractive index in the range of 1.20 to 1.38.
The hollow silica particles are known, for example, from Japanese Patent Application Laid-Open No. 2001-233611. should be obtained and used.
The silica particles are 25 to 90 parts by mass, preferably 25 to 60 parts by mass of the solid silica particles and 0 to 30 parts by mass of the hollow silica particles, based on 100 parts by mass of the (B) alkoxysilane compound, etc. Considering changes in the refractive index due to thermal history, the refractive index balance between the medium refractive index layer and the high refractive index layer, etc., the material is appropriately selected and used so as to satisfy the predetermined refractive index. In particular, inclusion of solid silica particles is preferable from the viewpoint of suppressing shrinkage of the alkoxysilane compound or the like due to thermal history.
〔中低屈折率層形成用溶液〕
 中低屈折率層を構成する上記各成分は、必要に応じて任意成分と、粘度調整や易塗布性の目的で下記有機溶剤に溶解して中低屈折率層を形成するための中低屈折率層形成用溶液とする。当該溶液には、アルコキシシラン化合物等の加水分解、縮合を促進させるために、塩酸水溶液等の酸水溶液を適宜の量で配合することができる。
 代表的な有機溶剤としては、メタノール、エタノール、イソプロパノール、エチルセロソルブ、エチレングリコール等のアルコール系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤、アセトン、メチルエチルケトン等のケトン系溶剤;トルエン、キシレン等の芳香族系溶剤が使用される。特にアルコール系溶剤が好ましく使用される。なお、市販のシリカ粒子分散体を使用した時は、分散媒が中低屈折率層形成用溶液中に必然的に混入することになる。当該溶液中の分散媒並びに別途配合される有機溶剤は、後工程の乾燥並びに熱硬化工程において除去される。
 有機溶剤の使用量は、形成用溶液の粘度が垂れ等を生ぜず、コーティングに適した範囲となるような量であればよい。一般的には、全固形分濃度が全重量の0.1~20重量%になるような量で有機溶剤を使用すればよい。尚、当該有機溶剤量は、シリカ粒子等の分散媒の量を含めた値である。
[Medium-low refractive index layer-forming solution]
Each of the above components constituting the medium-low refractive index layer is dissolved in the following organic solvent for the purpose of viscosity adjustment and easy coating in addition to optional components as necessary to form the medium-low refractive index layer. It is used as a solution for forming a layer. In order to promote hydrolysis and condensation of the alkoxysilane compound and the like, an appropriate amount of an aqueous acid solution such as an aqueous hydrochloric acid solution can be added to the solution.
Representative organic solvents include alcohol solvents such as methanol, ethanol, isopropanol, ethyl cellosolve, and ethylene glycol; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone and methyl ethyl ketone; Aromatic solvents are used. Alcoholic solvents are particularly preferred. When a commercially available silica particle dispersion is used, the dispersion medium is inevitably mixed into the medium-to-low refractive index layer-forming solution. The dispersion medium in the solution and the separately blended organic solvent are removed in the subsequent drying and heat-curing steps.
The amount of the organic solvent to be used may be such that the viscosity of the forming solution does not cause sagging, etc., and is within a range suitable for coating. Generally, the organic solvent should be used in such an amount that the total solids concentration is 0.1 to 20% by weight of the total weight. The amount of organic solvent is a value including the amount of dispersion medium such as silica particles.
〔中低屈折率層の形成〕
 上記中低屈折率層形成用溶液を、前記ガラス基板の上に塗布、乾燥し、次いで加熱して硬化させて中低屈折率層を形成する。しかしながら、加熱による熱硬化工程は、後述する中屈折率層、高屈折率層および低屈折率層を、同様に塗布、乾燥まで実施した後に、一括して行うことが生産性並びに反射防止膜各層の密着性の観点から好ましい。更に、保護層まで、同様に塗布、乾燥した後に、反射防止膜の全層並びに保護層を、一括して加熱し熱硬化を行うことが特に好ましい。
 塗布方法は特に制限されず、ディップコート法、ロールコート法、ダイコート法、フローコート法、スプレー法等の方法が採用されるが、外観品位や層厚制御の観点からディップコート法が好適である。
 乾燥は、通常、大気中70~100℃の温度で、0.25~1時間行う。熱硬化のための加熱は、通常、大気中300~500℃で0.5~2時間行う。
[Formation of medium-low refractive index layer]
The medium-to-low refractive index layer-forming solution is applied onto the glass substrate, dried, and then cured by heating to form the medium-to-low refractive index layer. However, the heat-curing step by heating can be performed collectively after coating and drying the medium refractive index layer, high refractive index layer and low refractive index layer described later in the same manner. is preferable from the viewpoint of adhesion of Furthermore, it is particularly preferable to heat and cure all layers of the antireflection film and the protective layer at once after applying and drying the protective layer in the same manner.
The coating method is not particularly limited, and methods such as dip coating, roll coating, die coating, flow coating, and spraying are employed, but the dip coating method is preferable from the viewpoint of appearance quality and layer thickness control. .
Drying is usually carried out in the atmosphere at a temperature of 70 to 100° C. for 0.25 to 1 hour. Heating for thermosetting is usually carried out at 300 to 500° C. in the atmosphere for 0.5 to 2 hours.
<中屈折率層>
 前記中低屈折率層の上(視野側)に積層される屈折率層である。
 中屈折率層の屈折率は1.56~1.79であり、層厚は90~140nmである。好ましくは、屈折率が1.58~1.76であり、層厚が95~135nmである。
<Medium refractive index layer>
It is a refractive index layer laminated on the medium-to-low refractive index layer (visual field side).
The medium refractive index layer has a refractive index of 1.56 to 1.79 and a layer thickness of 90 to 140 nm. Preferably, the refractive index is between 1.58 and 1.76 and the layer thickness is between 95 and 135 nm.
 中屈折率層は、反射防止膜並びに保護層形成後に化学処理によってガラス強化をする必要があるため、下記成分を含んでなる中屈折率層組成物の溶液を用意し、当該溶液を被覆、乾燥、加熱して形成することが好適である。
(B)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物(以下、「アルコキシシラン化合物等」という)からなるバインダー成分100質量部に対して、
 R-Si(OR4-n (1)
(式中、Rはアルキル基、アルケニル基またはアルコキシアルキル基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の整数である)
(A)アルミニウム塩水和物1~15質量部、および
(E)金属酸化物粒子40~130質量部
 中屈折率層に(A)アルミニウム塩水和物が含まれない場合は、上記中屈率層組成物から(A)アルミニウム塩水和物を除外すればよい。
Since the medium refractive index layer needs to be glass-strengthened by chemical treatment after the formation of the antireflection film and the protective layer, a solution of the medium refractive index layer composition containing the following components is prepared, and the solution is coated and dried. , is preferably formed by heating.
(B) With respect to 100 parts by mass of a binder component composed of an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof (hereinafter referred to as "alkoxysilane compound, etc."),
R n —Si(OR 1 ) 4-n (1)
(wherein R is an alkyl group, an alkenyl group or an alkoxyalkyl group, R1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom, and n is an integer of 1 or 2)
(A) 1 to 15 parts by mass of aluminum salt hydrate, and (E) 40 to 130 parts by mass of metal oxide particles, when (A) aluminum salt hydrate is not contained in the medium refractive index layer (A) the aluminum salt hydrate may be excluded from the composition.
〔アルコキシシラン化合物またはその加水分解物〕
 前記式(1)で表される化合物であり、中低屈折率層の項で説明した通りである。中低屈折率層の形成に用いられるアルコキシシラン化合物等が、同様の目的で同様に使用することができる。
[Alkoxysilane compound or its hydrolyzate]
It is a compound represented by the formula (1) and is as described in the section of the medium-low refractive index layer. An alkoxysilane compound or the like used for forming a medium-to-low refractive index layer can be similarly used for the same purpose.
〔アルミニウム塩水和物〕
 本発明において耐アルカリ性の発現に寄与する成分であり、中低屈折率層と併せて中屈折率層にも、当該アルミニウム塩水和物が存在することが好ましい。中低屈折率層の形成に用いられるアルミニウム塩水和物が、同様に使用することができる。
 中屈折率層において、アルミニウム塩水和物を含有させる場合は、前記アルコキシシラン化合物等100質量部に対して1~15質量部の量で含有させる。1質量部より低い場合はその効果が出ない。15質量部を超えると、塗膜時に空気中の水分と反応しやすくなるため層形成が困難となるため好ましくない。
[Aluminum salt hydrate]
In the present invention, the aluminum salt hydrate, which is a component that contributes to the development of alkali resistance, is preferably present in the medium refractive index layer as well as in the medium low refractive index layer. The aluminum salt hydrates used to form the medium and low refractive index layers can be used as well.
When aluminum salt hydrate is contained in the medium refractive index layer, it is contained in an amount of 1 to 15 parts by mass based on 100 parts by mass of the alkoxysilane compound and the like. If it is less than 1 part by mass, the effect is not obtained. If it exceeds 15 parts by mass, it is not preferable because it becomes difficult to form a layer due to a tendency to react with moisture in the air during coating.
〔金属酸化物粒子〕
 中屈折率層には、前記所定の屈折率に制御するために金属酸化物粒子が配合される。
 金属酸化物粒子としては、屈折率が1.50以上のものを用いることができる。例えば、酸化チタニウム、酸化ジルコニウム、五酸化ニオブ、アンチモンドープ酸化錫(ATO)、酸化インジウム-酸化錫(ITO)、リンドープ酸化錫(PTO)、フッ素ドープ酸化錫(FTO)および五酸化アンチモンからなる群より選ばれる。
少なくとも一種の酸化物粒子であることが好ましい。
 具体的には、当該金属酸化物粒子として、酸化ジルコニウム粒子(屈折率=2.40)、酸化ジルコニウムと酸化ケイ素等の他の酸化物とを分子レベルで複合化させて屈折率を調整した複合ジルコニウム金属酸化物粒子、酸化チタニウム粒子(屈折率=2.71)、酸化チタニウムと酸化ケイ素や酸化ジルコニウム等の他の酸化物とを分子レベルで複合化させて屈折率を調整した複合チタニウム金属酸化物粒子などが使用される。これらの金属酸化物粒子を適宜組み合わせて、所望の屈折率に調整する。このような粒子はそれ自体公知であり、市販されている。
 金属酸化物粒子の平均粒径は、好ましくは1~100nm、より好ましくは1~70nmである。金属酸化物粒子の屈折率は、好ましくは1.70~2.80、より好ましくは1.90~2.50である。
 中屈折率層組成物中の金属酸化物粒子の含有量は、アルコキシシラン化合物等100質量部に対して、40~130質量部、好ましくは、酸化ジルコニウム粒子40~90質量部および酸化チタニウム粒子0~40質量部の範囲から、熱履歴による屈折率変化などを考慮して前記所定の屈折率を満たすように適宜選択される。特に、酸化ジルコニウム粒子を含有させることが、熱履歴によるアルコキシシラン化合物の収縮抑制の点で好適である。
[Metal oxide particles]
Metal oxide particles are blended in the medium refractive index layer in order to control the refractive index to the predetermined value.
As metal oxide particles, those having a refractive index of 1.50 or more can be used. For example, the group consisting of titanium oxide, zirconium oxide, niobium pentoxide, antimony-doped tin oxide (ATO), indium-tin oxide (ITO), phosphorus-doped tin oxide (PTO), fluorine-doped tin oxide (FTO) and antimony pentoxide. more chosen.
At least one kind of oxide particles is preferred.
Specifically, as the metal oxide particles, zirconium oxide particles (refractive index = 2.40), zirconium oxide and other oxides such as silicon oxide are combined at the molecular level to adjust the refractive index. Zirconium metal oxide particles, titanium oxide particles (refractive index = 2.71), composite titanium metal oxide in which the refractive index is adjusted by combining titanium oxide with other oxides such as silicon oxide and zirconium oxide at the molecular level particles are used. A desired refractive index is adjusted by appropriately combining these metal oxide particles. Such particles are known per se and commercially available.
The average particle size of the metal oxide particles is preferably 1-100 nm, more preferably 1-70 nm. The refractive index of the metal oxide particles is preferably 1.70-2.80, more preferably 1.90-2.50.
The content of the metal oxide particles in the medium refractive index layer composition is 40 to 130 parts by mass, preferably 40 to 90 parts by mass of zirconium oxide particles and 0 parts by mass of titanium oxide particles, based on 100 parts by mass of the alkoxysilane compound and the like. It is appropriately selected from the range of up to 40 parts by mass so as to satisfy the predetermined refractive index in consideration of changes in the refractive index due to thermal history. In particular, inclusion of zirconium oxide particles is preferable from the viewpoint of suppressing shrinkage of the alkoxysilane compound due to thermal history.
〔中屈折率層形成用溶液〕
 中低屈折率層を構成する上記各成分は、必要に応じて酸水溶液などの任意成分と、前記有機溶剤に溶解して中屈折率層形成用溶液とする。
[Medium refractive index layer forming solution]
Each of the components constituting the medium-low refractive index layer is dissolved in an optional component such as an acid aqueous solution, if necessary, and the organic solvent to form a solution for forming a medium-refractive index layer.
〔中屈折率層の形成〕
 上記中屈折率層形成用溶液を、中低屈折率層の上に塗布、乾燥し、次いで加熱して硬化させて中屈折率層を形成する。
 塗布方法、乾燥条件、加熱条件等は、中低屈折率層の形成方法に準じる。また同様に、加熱による熱硬化工程は、反射防止膜を構成する四層の塗布、乾燥後に、或いは更に保護層の塗布、乾燥後に一括して行うことが生産性および得られる反射防止膜の性状の観点から好ましい。
[Formation of Middle Refractive Index Layer]
The medium refractive index layer-forming solution is applied onto the medium-low refractive index layer, dried, and then cured by heating to form the medium refractive index layer.
The coating method, drying conditions, heating conditions, etc. conform to the method for forming the medium-to-low refractive index layer. Similarly, the thermosetting step by heating may be performed collectively after the application and drying of the four layers constituting the antireflection film, or further after the application and drying of the protective layer. is preferable from the viewpoint of
<高屈折率層>
 前記中屈折率層の上(視野側)に積層される屈折率層であり、中屈折率層の屈折率より高い屈折率を有する。
 高屈折率層の屈折率は1.75~1.87であり、層厚は30~50nmである。好ましくは、屈折率が1.77~1.85であり、層厚が35~45nmである
<High refractive index layer>
It is a refractive index layer laminated on the medium refractive index layer (viewing side) and has a higher refractive index than the medium refractive index layer.
The high refractive index layer has a refractive index of 1.75 to 1.87 and a layer thickness of 30 to 50 nm. Preferably, the refractive index is 1.77-1.85 and the layer thickness is 35-45 nm
 高屈折率層は、反射防止膜並びに保護層形成後に化学処理によってガラス強化をする必要があるため、下記成分を含んでなる高屈率層組成物の溶液を用意し、当該溶液を被覆、乾燥、加熱して形成することが好適である。
(B)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物(以下、「アルコキシシラン化合物等」という)からなるバインダー成分100質量部に対して、
 R-Si(OR4-n (1)
(式中、Rはアルキル基、アルケニル基またはアルコキシアルキル基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の整数である)
(A)アルミニウム塩水和物1~15質量部、および
(E)金属酸化物粒子40~130質量部
 本発明の反射防止ガラスが耐アルカリ性を発現するために、高屈折率層には(A)アルミニウム塩水和物の存在が必要である。
Since the high refractive index layer needs to be strengthened by chemical treatment after forming the antireflection film and the protective layer, a solution of a high refractive index layer composition containing the following components is prepared, the solution is coated, and dried. , is preferably formed by heating.
(B) With respect to 100 parts by mass of a binder component composed of an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof (hereinafter referred to as "alkoxysilane compound, etc."),
R n —Si(OR 1 ) 4-n (1)
(wherein R is an alkyl group, an alkenyl group or an alkoxyalkyl group, R1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom, and n is an integer of 1 or 2)
(A) 1 to 15 parts by mass of aluminum salt hydrate, and (E) 40 to 130 parts by mass of metal oxide particles. The presence of aluminum salt hydrate is required.
〔アルコキシシラン化合物またはその加水分解物〕
 前記式(1)で表される化合物であり、中低屈折率層の項で説明した通りである。中低屈折率層の形成に用いられるアルコキシシラン化合物等が、同様の目的で同様に使用することができる。
[Alkoxysilane compound or its hydrolyzate]
It is a compound represented by the formula (1) and is as described in the section of the medium-low refractive index layer. An alkoxysilane compound or the like used for forming a medium-to-low refractive index layer can be similarly used for the same purpose.
〔アルミニウム塩水和物〕
 本発明において耐アルカリ性の発現に寄与する成分であり、低屈折率層及び保護層と併せて高屈折率層にも、当該アルミニウム塩水和物が存在することが必要である、当該アルミニウム塩水和物としては、中低屈折率層の形成に用いられるアルミニウム塩水和物が、同様に使用することができる。
 高屈折率層において、アルミニウム塩水和物の含有量は、前記アルコキシシラン化合物等100質量部に対して1~15質量部である。1質量部より低い場合はその効果が出ない。15質量部を超えると、塗膜時に空気中の水分と反応しやすくなるため層形成が困難となるため好ましくない。 
[Aluminum salt hydrate]
The aluminum salt hydrate, which is a component that contributes to the development of alkali resistance in the present invention and must be present in the high refractive index layer as well as the low refractive index layer and the protective layer. As the aluminum salt hydrate used for forming the medium-to-low refractive index layer can be used as well.
The content of the aluminum salt hydrate in the high refractive index layer is 1 to 15 parts by mass with respect to 100 parts by mass of the alkoxysilane compound and the like. If it is less than 1 part by mass, the effect is not obtained. If it exceeds 15 parts by mass, it is not preferable because it becomes difficult to form a layer due to a tendency to react with moisture in the air during coating.
〔金属酸化物粒子〕
 高屈折率層には、前記所定の屈折率に制御するために金属酸化物粒子が配合される。
 金属酸化物粒子としては、中屈折率層の形成に用いられた金属粒子が同様に使用される。
 高屈折率層組成物中の金属酸化物粒子の含有量は、アルコキシシラン化合物等100質量部に対して、40~130質量部、好ましくは、酸化ジルコニウム粒子0~40質量部および酸化チタニウム粒子40~90質量部の範囲から、熱履歴による屈折率変化などを考慮して前記所定の屈折率を満たすように適宜選択される。特に、高い屈折率を達成するために、酸化チタニウム粒子を含有させることが好適である。
[Metal oxide particles]
Metal oxide particles are blended in the high refractive index layer in order to control the refractive index to the predetermined value.
As the metal oxide particles, the metal particles used for forming the medium refractive index layer are similarly used.
The content of the metal oxide particles in the high refractive index layer composition is 40 to 130 parts by mass, preferably 0 to 40 parts by mass of the zirconium oxide particles and 40 parts by mass of the titanium oxide particles, based on 100 parts by mass of the alkoxysilane compound and the like. It is appropriately selected from the range of up to 90 parts by mass so as to satisfy the predetermined refractive index in consideration of changes in the refractive index due to thermal history. In particular, it is preferable to contain titanium oxide particles in order to achieve a high refractive index.
〔高屈折率層形成用溶液〕
 高屈折率層を構成する上記各成分は、必要に応じて酸水溶液などの任意成分と、前記有機溶剤に溶解して高屈折率層形成用溶液とする。
[Solution for forming high refractive index layer]
Each of the above components constituting the high refractive index layer is dissolved in an optional component such as an acid aqueous solution, if necessary, and the organic solvent to obtain a solution for forming a high refractive index layer.
〔高屈折率層の形成〕
 上記高屈折率層形成用溶液を、中屈折率層の上に塗布、乾燥し、次いで加熱して硬化させて高屈折率層を形成する。
 塗布方法、乾燥条件、加熱条件等は、中低屈折率層の形成方法に準じる。また同様に、加熱による熱硬化工程は、反射防止膜を構成する四層の塗布、乾燥後に、或いは更に保護層の塗布、乾燥後に一括して行うことが生産性および得られる反射防止膜の性状の観点から好ましい。
[Formation of high refractive index layer]
The high refractive index layer-forming solution is applied onto the medium refractive index layer, dried, and then cured by heating to form a high refractive index layer.
The coating method, drying conditions, heating conditions, etc. conform to the method for forming the medium-to-low refractive index layer. Similarly, the thermosetting step by heating may be performed collectively after the application and drying of the four layers constituting the antireflection film, or further after the application and drying of the protective layer. is preferable from the viewpoint of
<低屈折率層>
 反射防止膜の最外層(視野側)に位置する屈折率層であり、反射防止性能に最も寄与する層である。
 低屈折率層の屈折率は1.27~1.35であり、層厚は70~75nmである。好ましくは、屈折率が1.28~1.32であり、層厚が71~74nmである。
<Low refractive index layer>
It is a refractive index layer located on the outermost layer (visual field side) of the antireflection film, and is the layer that contributes most to the antireflection performance.
The low refractive index layer has a refractive index of 1.27 to 1.35 and a layer thickness of 70 to 75 nm. Preferably, the refractive index is between 1.28 and 1.32 and the layer thickness is between 71 and 74 nm.
 低屈折率層は、反射防止膜並びに保護層形成後に化学処理によってガラス強化をする必要があるため、下記成分を含んでなる低屈率層組成物の溶液を用意し、当該溶液を被覆、乾燥、加熱して形成することが好適である。
(B)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物(以下、「アルコキシシラン化合物等」という)からなるバインダー成分100質量部に対して、
 R-Si(OR4-n (1)
(式中、Rはアルキル基、アルケニル基またはアルコキシアルキル基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の整数である)
(A)アルミニウム塩水和物3~25質量部、
(C)金属キレート化合物1~20質量部、および
(D)シリカ粒子25~90質量部
 本発明の反射防止ガラスが耐アルカリ性を発現するために、低屈折率層には(A)アルミニウム塩水和物の存在が必要である。
Since the low refractive index layer needs to be glass-strengthened by chemical treatment after forming the antireflection film and the protective layer, prepare a solution of a low refractive index layer composition containing the following components, coat the solution, and dry it. , is preferably formed by heating.
(B) With respect to 100 parts by mass of a binder component composed of an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof (hereinafter referred to as "alkoxysilane compound, etc."),
R n —Si(OR 1 ) 4-n (1)
(wherein R is an alkyl group, an alkenyl group or an alkoxyalkyl group, R1 is an alkyl group, an alkoxyalkyl group, an acyloxy group or a halogen atom, and n is an integer of 1 or 2)
(A) 3 to 25 parts by mass of aluminum salt hydrate,
(C) 1 to 20 parts by mass of a metal chelate compound, and (D) 25 to 90 parts by mass of silica particles. The existence of things is necessary.
〔アルコキシシラン化合物またはその加水分解物〕
 前記式(1)で表される化合物であり、中低屈折率層の項で説明した通りである。中低屈折率層の形成に用いられるアルコキシシラン化合物等が、同様の目的で同様に使用することができる。
[Alkoxysilane compound or its hydrolyzate]
It is a compound represented by the formula (1) and is as described in the section of the medium-low refractive index layer. An alkoxysilane compound or the like used for forming a medium-to-low refractive index layer can be similarly used for the same purpose.
〔アルミニウム塩水和物〕
 本発明において耐アルカリ性の発現に寄与する成分であり、高屈折率層及び保護層と併せて低屈折率層にも、当該アルミニウム塩水和物が存在することが必要である、当該アルミニウム塩水和物としては、中低屈折率層の形成に用いられるアルミニウム塩水和物が、同様に使用することができる。
 低屈折率層において、アルミニウム塩水和物の含有量は、前記アルコキシシラン化合物等100質量部に対して3~25質量部である。3質量部より低い場合はその効果が出ない。25質量部を超えると、前記アルコキシシラン化合物等の結合強度及び低屈折率層の硬度が低下してしまうため好ましくない。
[Aluminum salt hydrate]
The aluminum salt hydrate, which is a component that contributes to the development of alkali resistance in the present invention and must be present in the low refractive index layer together with the high refractive index layer and the protective layer. As the aluminum salt hydrate used for forming the medium-to-low refractive index layer can be used as well.
The content of the aluminum salt hydrate in the low refractive index layer is 3 to 25 parts by mass with respect to 100 parts by mass of the alkoxysilane compound and the like. If it is less than 3 parts by mass, the effect is not obtained. If it exceeds 25 parts by mass, the bonding strength of the alkoxysilane compound and the like and the hardness of the low refractive index layer are lowered, which is not preferable.
〔金属キレート化合物〕
 中低屈折率層の形成に用いられる金属キレートが、同様の目的で何ら制限なく使用できる。
 金属キレート化合物は、(B)アルコキシシラン化合物等100質量部に対して、1~20質量部、好ましくは3~18質量部使用される。20質量部を超えると、金属キレート化合物が低屈折率層中に析出、外観不良を引き起こす傾向にある。1質量部に満たない場合は、低屈折率層の強度や硬度が低下する傾向にある。
[Metal chelate compound]
A metal chelate used for forming the medium-to-low refractive index layer can be used without any limitation for the same purpose.
The metal chelate compound is used in an amount of 1 to 20 parts by weight, preferably 3 to 18 parts by weight, per 100 parts by weight of the alkoxysilane compound (B). If it exceeds 20 parts by mass, the metal chelate compound tends to precipitate in the low refractive index layer and cause poor appearance. If the amount is less than 1 part by mass, the strength and hardness of the low refractive index layer tend to decrease.
〔シリカ粒子〕
 中低屈折率層の形成に用いられるシリカ粒子が、同様の目的で何ら制限なく使用することができる。
 当該シリカ粒子は、(B)アルコキシシラン化合物等100質量部に対して、25~90質量部、好ましくは前記中実シリカ粒子0~30質量部および中空シリカ粒子25~60質量部の範囲から、熱履歴による屈折率変化などを考慮して低屈折率層が前記所定の屈折率を満たすように適宜選択して用いられる。特に、中空シリカ粒子を含ませることは、低屈折率を達成して高い反射防止性能を実現できる点で好適である。
[Silica particles]
Silica particles used for forming the medium-to-low refractive index layer can be used without any limitation for the same purpose.
The silica particles are 25 to 90 parts by mass, preferably 0 to 30 parts by mass of the solid silica particles and 25 to 60 parts by mass of the hollow silica particles, based on 100 parts by mass of the (B) alkoxysilane compound, etc. Considering changes in the refractive index due to heat history, the low refractive index layer is appropriately selected and used so as to satisfy the predetermined refractive index. In particular, inclusion of hollow silica particles is preferable in that a low refractive index can be achieved and high antireflection performance can be achieved.
〔低屈折率層形成用溶液〕
 低屈折率層を構成する上記各成分は、必要に応じて酸水溶液などの任意成分と、前記有機溶剤に溶解して低屈折率層形成用溶液とする。
[Solution for Forming Low Refractive Index Layer]
Each of the above components constituting the low refractive index layer is dissolved in an optional component such as an acid aqueous solution, if necessary, and the organic solvent to form a low refractive index layer forming solution.
〔低屈折率層の形成〕
 上記低屈折率層形成用溶液を、高屈折率層の上に塗布、乾燥し、次いで加熱して硬化させて低屈折率層を形成する。
 塗布方法、乾燥条件、加熱条件等は、中低屈折率層の形成方法に準じる。また同様に、加熱による熱硬化工程は、反射防止膜を構成する四層の塗布、乾燥後に、或いは更に保護層の塗布、乾燥後に一括して行うことが生産性および得られる反射防止膜の性状の観点から好ましい。
[Formation of low refractive index layer]
The low refractive index layer-forming solution is applied onto the high refractive index layer, dried, and then cured by heating to form the low refractive index layer.
The coating method, drying conditions, heating conditions, etc. conform to the method for forming the medium-to-low refractive index layer. Similarly, the thermosetting step by heating may be performed collectively after the application and drying of the four layers constituting the antireflection film, or further after the application and drying of the protective layer. is preferable from the viewpoint of
<保護層>
 反射防止膜の上(視野側)に、擦傷等の外部衝撃によって反射防止膜が損傷することを防ぐために、更に、化学強化時の反射防止膜へのイオン衝突によるダメージを防ぐために、保護層が設けられる。
 保護層の屈折率は1.43~1.48であり、層厚は20~30nmである。好ましくは、屈折率が1.44~1.46であり、層厚が20~25nmである。
<Protective layer>
A protective layer is placed on the antireflection film (on the viewing side) to prevent the antireflection film from being damaged by external impacts such as scratches, and also to prevent damage due to ion collisions to the antireflection film during chemical strengthening. be provided.
The protective layer has a refractive index of 1.43 to 1.48 and a layer thickness of 20 to 30 nm. Preferably, the refractive index is between 1.44 and 1.46 and the layer thickness is between 20 and 25 nm.
 保護層は、反射防止膜並びに保護層形成後に化学処理によりガラス強化をする必要があるため、下記成分を含んでなる保護層組成物の溶液を用意し、当該溶液を被覆、乾燥、加熱して形成することが好適である。
(B)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物(以下、「アルコキシシラン化合物等」という)からなるバインダー成分100質量部に対して、
 R-Si(OR4-n (1)
(式中、Rはアルキル基、アルケニル基またはアルコキシアルキル基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の整数である。)
(A)アルミニウム塩水和物3~25質量部、および
(C)金属キレート化合物1~20質量部
 本発明の反射防止ガラスが耐アルカリ性を発現するために、保護層には(A)アルミニウム塩水和物の存在が必要である。
Since the protective layer needs to be strengthened by chemical treatment after forming the antireflection film and the protective layer, a solution of a protective layer composition containing the following components is prepared, and the solution is coated, dried, and heated. It is preferred to form
(B) With respect to 100 parts by mass of a binder component composed of an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof (hereinafter referred to as "alkoxysilane compound, etc."),
R n —Si(OR 1 ) 4-n (1)
(Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.)
(A) 3 to 25 parts by mass of aluminum salt hydrate, and (C) 1 to 20 parts by mass of metal chelate compound In order for the antireflective glass of the present invention to exhibit alkali resistance, the protective layer contains (A) aluminum salt hydrate. The existence of things is necessary.
〔アルコキシシラン化合物またはその加水分解物〕
 前記式(1)で表される化合物であり、中低屈折率層の項で説明した通りである。中低屈折率層の形成に用いられるアルコキシシラン化合物等が、同様の目的で同様に使用することができる。
[Alkoxysilane compound or its hydrolyzate]
It is a compound represented by the formula (1) and is as described in the section of the medium-low refractive index layer. An alkoxysilane compound or the like used for forming a medium-to-low refractive index layer can be similarly used for the same purpose.
〔アルミニウム塩水和物〕
 本発明において耐アルカリ性の発現に寄与する成分であり、低屈折率層及び高屈折率層と併せて保護層にも、当該アルミニウム塩水和物が存在することが必要である、当該アルミニウム塩水和物としては、中低屈折率層の形成に用いられるアルミニウム塩水和物が、同様に使用することができる。
 保護層において、アルミニウム塩水和物の含有量は、前記アルコキシシラン化合物等100質量部に対して3~25質量部である。3質量部より低い場合はその効果が出ない。25質量部を超えると、アルコキシシラン化合物等の結合強度及び保護層の硬度が低下してしまうため好ましくない。 
[Aluminum salt hydrate]
The aluminum salt hydrate, which is a component that contributes to the development of alkali resistance in the present invention and must be present in the protective layer as well as in the low refractive index layer and the high refractive index layer. As the aluminum salt hydrate used for forming the medium-to-low refractive index layer can be used as well.
In the protective layer, the content of the aluminum salt hydrate is 3 to 25 parts by mass with respect to 100 parts by mass of the alkoxysilane compound and the like. If it is less than 3 parts by mass, the effect is not obtained. If the amount exceeds 25 parts by mass, the bonding strength of the alkoxysilane compound and the like and the hardness of the protective layer are lowered, which is not preferable.
〔金属キレート化合物〕
 中低屈折率層の形成に用いられる金属キレートが、同様の目的で何ら制限なく使用できる。
 金属キレート化合物は、(B)アルコキシシラン化合物等100質量部に対して、1~20質量部、好ましくは3~18質量部使用される。20質量部を超えると、金属キレート化合物が保護層中に析出、外観不良を引き起こす傾向にある。1質量部に満たない場合は、保護層の強度や硬度が低下しガラス基板の化学強化処理が不十分になる傾向にある。
[Metal chelate compound]
A metal chelate used for forming the medium-to-low refractive index layer can be used without any limitation for the same purpose.
The metal chelate compound is used in an amount of 1 to 20 parts by weight, preferably 3 to 18 parts by weight, per 100 parts by weight of the alkoxysilane compound (B). If it exceeds 20 parts by mass, the metal chelate compound tends to precipitate in the protective layer and cause poor appearance. If the amount is less than 1 part by mass, the strength and hardness of the protective layer are lowered, and the chemical strengthening treatment of the glass substrate tends to be insufficient.
〔保護層形成用溶液〕
 保護層を構成する上記各成分は、必要に応じて酸水溶液などの任意成分と、前記有機溶剤に溶解して保護層形成用溶液とする。
[Solution for Forming Protective Layer]
Each of the above components constituting the protective layer is dissolved in an optional component such as an acid aqueous solution, if necessary, and the above organic solvent to form a protective layer forming solution.
〔保護層の形成〕
 上記保護層形成用溶液を、低屈折率層の上に塗布、乾燥し、次いで加熱して硬化させて保護層を形成する。
 塗布方法、乾燥条件、加熱条件等は、中低屈折率層の形成方法に準じる。また加熱による熱硬化工程は、反射防止膜を構成する四層の塗布、乾燥、次いで保護層の塗布、乾燥後に一括して行うことが生産性および得られる反射防止膜の性状の観点から好ましい。
[Formation of protective layer]
The protective layer-forming solution is coated on the low refractive index layer, dried, and then cured by heating to form a protective layer.
The coating method, drying conditions, heating conditions, etc. conform to the method for forming the medium-to-low refractive index layer. From the viewpoint of productivity and the properties of the obtained antireflection film, the heat curing step by heating is preferably carried out collectively after the application and drying of the four layers constituting the antireflection film, followed by the application and drying of the protective layer.
<化学処理によるガラス強化>
 本発明の反射防止ガラスは、化学処理によってガラス強化がなされる。反射防止膜を構成する各四層の組成成分を選択することにより、前記した通り、粒子の内部空間及び粒子と粒子の間隙空間を同時に利用してイオン交換し、ガラスが強化される。
 化学処理方法としては、従来公知の方法で採用される。代表的には、未強化の反射防止ガラスを、硝酸カリウム等のカリウム塩の金属塩融液と、390℃~450℃の範囲で3~16時間接触させることにより、イオン半径の小さなナトリウムイオンをイオン半径の大きなカリウムイオンに置換して高強度の強化ガラスとする。
<Glass strengthening by chemical treatment>
The antireflection glass of the present invention is glass-strengthened by chemical treatment. By selecting the compositional components of each of the four layers constituting the antireflection film, as described above, the internal spaces of the particles and the interstitial spaces between the particles are simultaneously used for ion exchange to strengthen the glass.
As a chemical treatment method, a conventionally known method is employed. Typically, an unstrengthened antireflection glass is brought into contact with a metal salt melt of a potassium salt such as potassium nitrate at a temperature in the range of 390° C. to 450° C. for 3 to 16 hours to convert sodium ions having a small ionic radius into ions. A high-strength tempered glass is obtained by replacing potassium ions with large radii.
<アルカリ洗浄>
 上記ガラス強化工程の前工程或いは後工程で、ガラス表面に付着した有機・無機物質の除去目的、ガラスが摺りガラス状化して透明性を失うことを防止(ヤケ防止)する目的その他の理由で、アルカリ洗浄が行われる。
 アルカリ洗浄は、水酸化ナトリウム、水酸化カリウムなどの強アルカリ化合物や界面活性剤等をアルコール系溶剤や水に溶解したpH12~13程度のアルカリ洗浄液が市販されているので、アルカリ洗浄目的やアルカリ洗浄条件に合わせて、当該洗浄液を水等で適宜希釈して実施される。
 アルカリ洗浄は、通常、室温~55℃で0.1~0.5時間程度実施され、その後水や有機溶媒で洗浄して、アルカリ洗浄液を洗い落す。
<Alkaline cleaning>
In the pre-process or post-process of the glass strengthening process, for the purpose of removing organic and inorganic substances adhering to the glass surface, the purpose of preventing the glass from becoming frosted and losing transparency (preventing burning), and other reasons, Alkaline cleaning is performed.
Alkaline cleaning is commercially available as an alkaline cleaning solution with a pH of about 12 to 13, which is obtained by dissolving a strong alkaline compound such as sodium hydroxide or potassium hydroxide, or a surfactant in an alcohol solvent or water. The cleaning solution is appropriately diluted with water or the like according to the conditions.
Alkaline cleaning is usually carried out at room temperature to 55° C. for about 0.1 to 0.5 hours, and then washed with water or an organic solvent to wash off the alkaline cleaning solution.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。また、実施例の中で説明されている特徴の組み合わせすべてが本発明の解決手段に必須のものとは限らない。
 以下の実施例及び比較例で用いた各種成分と略号、並びに試験方法は、次の通りである。
EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples. Also, not all combinations of features described in the embodiments are essential for the solution of the present invention.
Various components, abbreviations, and test methods used in the following examples and comparative examples are as follows.
(A)アルミニウム塩水和物
 AlCl・6HO:塩化アルミニウム6水塩
 Al(NO・9HO:硝酸アルミニウム9水塩
(B)アルコキシシラン化合物等
 TEOS:テトラエトキシシラン
(C)金属キレート化合物
 AlTA:トリス(アセチルアセトネート)アルミニウム
(D)シリカ粒子
中空シリカ粒子
  平均粒径:40nm、屈折率:1.25、固形分20重量%、
  分散溶媒:IPA
中実シリカ粒子
  平均粒径:7nm、屈折率:1.45、固形分20重量%、
  分散溶媒:IPA
(E)金属酸化物粒子
 酸化ジルコニウム粒子
  平均粒径:61.9nm、屈折率:2.40、固形分:30重量%、
  分散溶媒:メタノール
 酸化チタニウム粒子: 
  平均粒径:108.8nm、屈折率:2.71、固形分:15重量%、
  分散溶媒:メタノール
(有機溶剤)
 IPA:イソプロピルアルコール
 エタコール:エチルアルコール/イソプロピルアルコール混合物
 NPA:ノルマルプロピルアルコール
 SBAC:酢酸s-ブチルエステル
(加水分解触媒)
 HCl:0.05N塩酸
(ガラス基板)
 ソーダ石灰ケイ酸塩ガラス(50mm×88mm×1.1mm)
(他の金属塩水和物)
 Ni(NO・6HO:硝酸ニッケル6水塩
 Co(NO・6HO:硝酸コバルト6水塩
(A) Aluminum salt hydrate AlCl 3.6H 2 O: Aluminum chloride hexahydrate Al(NO 3 ) 3.9H 2 O: Aluminum nitrate nonahydrate (B) Alkoxysilane compounds, etc. TEOS: Tetraethoxysilane ( C) Metal chelate compound AlTA: Tris (acetylacetonate) aluminum (D) silica particles Hollow silica particles Average particle size: 40 nm, refractive index: 1.25, solid content 20% by weight,
Dispersion solvent: IPA
Solid silica particles Average particle size: 7 nm, refractive index: 1.45, solid content 20% by weight,
Dispersion solvent: IPA
(E) Metal oxide particles Zirconium oxide particles Average particle size: 61.9 nm, refractive index: 2.40, solid content: 30% by weight,
Dispersion solvent: Methanol Titanium oxide particles:
Average particle size: 108.8 nm, refractive index: 2.71, solid content: 15% by weight,
Dispersion solvent: Methanol (organic solvent)
IPA: isopropyl alcohol Ethacol: ethyl alcohol/isopropyl alcohol mixture NPA: normal propyl alcohol SBAC: s-butyl acetate (hydrolysis catalyst)
HCl: 0.05N hydrochloric acid (glass substrate)
Soda lime silicate glass (50 mm x 88 mm x 1.1 mm)
(other metal salt hydrates)
Ni(NO 3 ) 2.6H 2 O: Nickel nitrate hexahydrate Co(NO 3 ) 2.6H 2 O: Cobalt nitrate hexahydrate
〔各屈折率層の屈折率〕
 各屈折率層の形成用溶液をガラス基板上に100nmの厚さで塗布、硬化させ各屈折率層或いは保護層を形成した。日本分光社製「分光光度計V-650」を用いて各層の反射率を測定し屈折率を算出した。
[Refractive index of each refractive index layer]
Each refractive index layer-forming solution was coated on a glass substrate to a thickness of 100 nm and cured to form each refractive index layer or protective layer. The reflectance of each layer was measured using a "spectrophotometer V-650" manufactured by JASCO Corporation to calculate the refractive index.
〔両面の視感平均反射率〕
 両面の視感平均反射率(以下、視感平均反射率ともいう)は、以下の方法で測定した。
 日本分光社製「紫外可視分光光度計V-650」を使用し、380nm~780nmで測定し、JIS Z 8722に基づき重価係数を掛けることで算出した。測定対象品は、ガラス基板の両面に反射防止膜並びに保護膜を形成した反射防止ガラスである。なお、これらの測定値は、ガラス強化前の反射防止ガラスの値であるが、ガラス強化後のこの値は、ほとんど変化しないことを確認した。
[Double-sided luminous average reflectance]
The average luminous reflectance of both surfaces (hereinafter also referred to as average luminous reflectance) was measured by the following method.
Measured at 380 nm to 780 nm using "UV-visible spectrophotometer V-650" manufactured by JASCO Corporation, and calculated by multiplying the weight coefficient based on JIS Z 8722. The object to be measured is an antireflection glass in which an antireflection film and a protective film are formed on both sides of a glass substrate. It should be noted that these measured values are the values of the antireflection glass before tempering the glass, but it was confirmed that these values after tempering the glass hardly changed.
〔視感平均透過率〕
 視感平均透過率は、以下の方法で測定した。日本分光社製「紫外可視分光光度計V-650」を使用し、380nm~780nmで測定し、JIS Z 8722に基づき重価係数を掛けることで算出した。なお、これらの測定値は、ガラス強化前の反射防止ガラスの値であるが、ガラス強化後のこの値は、ほとんど変化しないことを確認した。
[Average luminous transmittance]
The visual average transmittance was measured by the following method. Measured at 380 nm to 780 nm using "UV-visible spectrophotometer V-650" manufactured by JASCO Corporation, and calculated by multiplying the weight coefficient based on JIS Z 8722. It should be noted that these measured values are the values of the antireflection glass before tempering the glass, but it was confirmed that these values after tempering the glass hardly changed.
〔反射防止膜の耐アルカリ性〕
 アルカリ洗浄による反射防止膜のアルカリ耐性を調べるために、アルカリ洗浄前とアルカリ洗浄後とでの反射防止ガラス板の色の変化を肉眼で観察し、下記基準で評価した。基本となる反射防止ガラス(未硬化)の色は無色透明である。評価は、強化後の反射防止強化ガラスに対して行った。なお、「強化前」とはガラス強化前にアルカリ洗浄した時の耐アルカリ性を、「強化後」とは、ガラス強化後にアルカリ洗浄した時の耐アルカリ性である
 「◎」と「〇」である場合は、反射防止膜がアルカリ洗浄によって光学的に変質してないことを示す。「×」は明らかに反射防止膜の剥がれが生じた。
◎:変化なし
○:色味が若干変化した(薄っすら色がついている)
△:色味が変化した(濃色になった)
×:膜剥がれが起こった
[Alkali resistance of antireflection film]
In order to examine the alkali resistance of the antireflection film due to alkali washing, the change in color of the antireflection glass plate before and after alkali washing was observed with the naked eye and evaluated according to the following criteria. The base anti-reflective glass (uncured) color is clear and colorless. The evaluation was performed on the antireflection tempered glass after tempering. “Before tempering” means the alkali resistance when the glass is washed with alkali before tempering, and “after tempering” means the alkali resistance when the glass is tempered and then washed with alkali. indicates that the antireflection film is not optically altered by alkali washing. "X" indicates that the antireflection film was clearly peeled off.
◎: No change ○: Color slightly changed (slightly colored)
△: Color changed (became darker)
×: film peeling occurred
〔ガラス強度;圧縮応力値測定〕
 折原製作所社製「FSM-6000LE」を使用して、化学強化ガラス表面の屈折率差(イオン置換起因)による表面応力CS(MPa)及び応力層深さDOL(μm)を測定した。CS及びDOL値は大きいほど強化度が大きいことを示す。DOL値が10μm程度あれば十分強化ガラスとして機能する。
[Glass strength; compression stress value measurement]
Using "FSM-6000LE" manufactured by Orihara Seisakusho Co., Ltd., the surface stress CS (MPa) and stress layer depth DOL (μm) due to the refractive index difference (due to ion substitution) of the chemically strengthened glass surface were measured. Higher CS and DOL values indicate greater reinforcement. If the DOL value is about 10 μm, it functions sufficiently as a tempered glass.
〔中低屈折率層形成用溶液の調製〕
 表1、2に示す成分を、同表に示す配合量で混合し、中低屈折率層形成用溶液(ML-1~ML-9)を調製した。
 ML-6は、(A)アルミニウム塩水和物を含まない溶液であり、ML-8および9は、アルミニウム以外の金属塩水和物を含む溶液である。
[Preparation of medium-low refractive index layer-forming solution]
The components shown in Tables 1 and 2 were mixed in the amounts shown in the same tables to prepare medium-to-low refractive index layer-forming solutions (ML-1 to ML-9).
ML-6 is a solution containing no (A) aluminum salt hydrate, and ML-8 and 9 are solutions containing metal salt hydrates other than aluminum.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔中屈折率層形成用溶液の調製〕
 表3,4に示す成分を、同表に示す配合量で混合し、中屈折率層形成用溶液(M-1~M-7)を調製した。
 M-4は、(A)アルミニウム塩水和物を含まない溶液であり、M-6および7は、アルミニウム以外の金属塩水和物を含む溶液である。
[Preparation of medium refractive index layer forming solution]
The components shown in Tables 3 and 4 were mixed in the amounts shown in the same tables to prepare medium refractive index layer-forming solutions (M-1 to M-7).
M-4 is a solution containing no (A) aluminum salt hydrate, and M-6 and 7 are solutions containing metal salt hydrates other than aluminum.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
〔高屈折率層形成用溶液の調製〕
 表5、6に示す成分を、同表に示す配合量で混合し、高屈折率層形成用溶液(H-1~H-9)を調製した。
 H-6は、(A)アルミニウム塩水和物を含まない溶液であり、H-8および9は、アルミニウム以外の金属塩水和物を含む溶液である。
[Preparation of Solution for Forming High Refractive Index Layer]
The components shown in Tables 5 and 6 were mixed in the amounts shown in the same tables to prepare high refractive index layer-forming solutions (H-1 to H-9).
H-6 is a solution containing no (A) aluminum salt hydrate, and H-8 and 9 are solutions containing metal salt hydrates other than aluminum.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
〔低屈折率層形成用溶液の調製〕
 表7、8に示す成分を、同表に示す配合量で混合し、低屈折率層形成用溶液(L-1~L-9)を調製した。
 L-6は、(A)アルミニウム塩水和物を含まない溶液であり、L-8および9は、アルミニウム以外の金属塩水和物を含む溶液である。
[Preparation of Solution for Forming Low Refractive Index Layer]
The components shown in Tables 7 and 8 were mixed in the amounts shown in the same tables to prepare low refractive index layer forming solutions (L-1 to L-9).
L-6 is a solution containing no (A) aluminum salt hydrate, and L-8 and 9 are solutions containing metal salt hydrates other than aluminum.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
〔保護層形成用溶液の調製〕
 表9に示す成分を、同表に示す配合量で混合し、保護層形成用溶液(Co-1~Co―5)を調製した。
 Co-2は、(A)アルミニウム塩水和物を含まない溶液であり、Co-4および5は、アルミニウム以外の金属塩水和物を含む溶液である。
[Preparation of Protective Layer Forming Solution]
Components shown in Table 9 were mixed in the amounts shown in the same table to prepare protective layer forming solutions (Co-1 to Co-5).
Co-2 is a solution containing no (A) aluminum salt hydrate, and Co-4 and 5 are solutions containing metal salt hydrates other than aluminum.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
実施例1
 前記アルミノケイ酸塩ガラス(ガラス基板)を、中低屈折率層形成用溶液(ML-6)にディップした後、100℃で15分間乾燥し、層厚が197nmの未硬化中低屈折率層をガラス基板上に形成した。上記条件下の乾燥によって、中低屈折率層は不十分な硬化状態になっているものと考えられ、以下の各層も同様である。なお、層厚は、ディップした中低屈折率層形成用溶液からの引き上げ速度により調整した。以下の各層も同じである。
 次いで、上記ガラス基板を、中屈折率層形成用溶液(M-4)にディップした後、100℃で15分間乾燥し、層厚が109nmの未硬化中屈折率層を未硬化中低屈折率層上に形成した。
 次いで、上記ガラス基板を、高屈折率層形成用溶液(H-1)にディップした後、100℃で15分間乾燥し、層厚が36nmの未硬化高屈折率層を未硬化中屈折率層上に形成した。
 次いで、上記ガラス基板を、低屈折率層形成用溶液(L-1)にディップした後、100℃で15分間乾燥し、層厚が75nmの未硬化低屈折率層を未硬化高屈折率層上に形成した。
 次いで、上記ガラス基板を、保護層形成用溶液(Co-1)にディップした後、100℃で15分間乾燥し、層厚が25nmの未硬化保護層を未硬化低屈折率層上に形成した。
 上記未硬化の反射防止膜と保護層とを積層したガラス基板を、500℃で30分間加熱して熱硬化を行い、本発明の反射防止ガラスを作製した。得られた反射防止ガラスの両面の視感平均反射率と視感平均透過率を、前述の方法に従って測定し、各層の層厚、屈折率と併せて表10に示した。
 更に、以下の二つの方法で、上記反射防止ガラスのアルカリ洗浄並びにガラス強化を行った。
 一方は、上記反射防止ガラスを、先ず、横浜油脂工業社製「セミクリーンMG;pH=12.4」を水で5wt%希釈した希釈液に、超音波下に40℃で10分間浸漬してアルカリ洗浄し、その後温水およびIPAで洗浄液を洗い流した。次いで、硝酸カリウムの溶融液中に410℃で3時間浸漬して化学強化処理を行い反射防止強化ガラスとした。他方は、先ず、同じ条件で化学強化処理を行い、その後、同じ条件でアルカリ洗浄を実施して反射防止強化ガラスとしたものである。
 上記二種類の反射防止強化ガラスの、ガラス強度とアルカリ洗浄による反射防止膜の耐アルカリ性について、前述の方法に従って測定した。結果は表10に示した。
Example 1
The aluminosilicate glass (glass substrate) is dipped in a solution for forming a medium-low refractive index layer (ML-6) and then dried at 100° C. for 15 minutes to form an uncured medium-low refractive index layer having a layer thickness of 197 nm. It was formed on a glass substrate. It is thought that the medium-to-low refractive index layer is in an insufficiently cured state due to drying under the above conditions, and the following layers are the same. In addition, the layer thickness was adjusted by the pulling speed from the dipped medium-low refractive index layer forming solution. The same applies to each of the following layers.
Next, the glass substrate is dipped in the medium refractive index layer forming solution (M-4), dried at 100 ° C. for 15 minutes, and an uncured medium refractive index layer having a layer thickness of 109 nm is formed. formed on the layer.
Next, the glass substrate is dipped in the solution for forming a high refractive index layer (H-1), dried at 100° C. for 15 minutes, and an uncured high refractive index layer having a layer thickness of 36 nm is formed into an uncured medium refractive index layer. formed above.
Next, the glass substrate is dipped in the low refractive index layer forming solution (L-1), dried at 100 ° C. for 15 minutes, and an uncured low refractive index layer having a layer thickness of 75 nm is replaced with an uncured high refractive index layer. formed above.
Next, the glass substrate was dipped in the protective layer forming solution (Co-1) and dried at 100° C. for 15 minutes to form an uncured protective layer having a layer thickness of 25 nm on the uncured low refractive index layer. .
The glass substrate laminated with the uncured antireflection film and the protective layer was heated at 500° C. for 30 minutes for thermal curing to prepare the antireflection glass of the present invention. The average luminous reflectance and the average luminous transmittance of both surfaces of the obtained antireflection glass were measured according to the method described above, and are shown in Table 10 together with the layer thickness and refractive index of each layer.
Further, the antireflection glass was washed with alkali and strengthened by the following two methods.
On the other hand, the antireflection glass was first immersed in a diluted solution obtained by diluting "Semi-clean MG; pH = 12.4" manufactured by Yokohama Yushi Kogyo Co., Ltd. by 5 wt% with water at 40°C for 10 minutes under ultrasonic waves. Alkaline cleaning was performed, and then the cleaning liquid was washed away with warm water and IPA. Then, the glass was immersed in a potassium nitrate melt at 410° C. for 3 hours for chemical strengthening treatment to obtain an antireflection tempered glass. The other glass was first subjected to chemical strengthening treatment under the same conditions, and then washed with an alkali under the same conditions to obtain an antireflection tempered glass.
The glass strength and the alkali resistance of the antireflection film after alkali washing of the above two types of antireflection tempered glasses were measured according to the methods described above. The results are shown in Table 10.
実施例2~9
 表10に示す組み合わせで、各屈折率層形成用溶液と保護層形成用溶液を用いた以外は実施例1と同様にして、二種類の反射防止強化ガラスを作製した。
 反射防止強化ガラスの両面の視感平均反射率と視感平均透過率、各層の層厚、屈折率、更に、反射防止強化ガラスのガラス強度と反射防止膜の耐アルカリ性を、表10に示した。
 塩化アルミニウム6水塩を反射防止膜及び保護層の全層に含有させた反射防止強化ガラス(実施例2~6および8)は、十分なガラス強度とともに、優れた耐アルカリを示す。中低屈折率層および中屈折率層に塩化アルミニウム6水塩が存在しない場合(実施例1)、中屈折率層に塩化アルミニウム6水塩が存在しない場合(実施例7)、反射防止膜及び保護層の全層に硝酸アルミニウム9水塩を含有させた場合(実施例9)は、色味が若干変化したが十分な耐アルカリ性を示す。
Examples 2-9
Two types of antireflection tempered glass were produced in the same manner as in Example 1, except that each refractive index layer forming solution and protective layer forming solution were used in the combinations shown in Table 10.
Table 10 shows the average luminous reflectance and average luminous transmittance of both sides of the antireflection tempered glass, the layer thickness and refractive index of each layer, the glass strength of the antireflection tempered glass, and the alkali resistance of the antireflection film. .
The antireflection tempered glasses (Examples 2 to 6 and 8) containing aluminum chloride hexahydrate in all layers of the antireflection film and protective layer exhibit sufficient glass strength and excellent alkali resistance. When aluminum chloride hexahydrate does not exist in the medium-low refractive index layer and the medium refractive index layer (Example 1), when aluminum chloride hexahydrate does not exist in the medium refractive index layer (Example 7), the antireflection film and When aluminum nitrate nonahydrate was contained in all layers of the protective layer (Example 9), although the color changed slightly, sufficient alkali resistance was exhibited.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
比較例1~10
 表11に示す組み合わせで、各屈折率層形成用溶液と保護層形成用溶液を用いた以外は実施例1と同様にして、二種類の反射防止強化ガラスを作製した。
 反射防止ガラスの両面の視感平均反射率と視感平均透過率、各層の層厚、屈折率、更に、反射防止強化ガラスのガラス強度と反射防止膜の耐アルカリ性を、併せて表11に示した。
 比較例1は、反射防止膜及び保護層の全層にアルミニウム塩水和物が存在しない場合であり、耐アルカリ性が極めて悪い。比較例2は、高屈折率層、中屈折率層及び中低屈折率層にアルミニウム塩水和物が存在しない場合であり、耐アルカリ性が極めて悪い。
 比較例3は、低屈折率層、中屈折率層及び中低屈折率層にアルミニウム塩水和物が存在しない場合であり、耐アルカリ性が悪い。比較例4は、保護層、中屈折率層及び中低屈折率層にアルミニウム塩水和物が存在しない場合であり、耐アルカリ性が悪い。
 比較例5,6は、屈折率層の層厚が本発明の範囲を満たさない場合であり、耐アルカリ性は良いが、視感平均反射率および視感平均透過率の光学特性に劣る。
 比較例7、8は、屈折率層の屈折率が本発明の範囲を満たさない場合であり、耐アルカリ性は良いが、視感平均反射率および視感平均透過率の光学特性に劣る。
 比較例9,10は、反射防止膜及び保護層の全層にアルミニウム塩水和物以外の金属塩水和物使用した場合であり、耐アルカリ性が極めて悪い。
Comparative Examples 1-10
Two types of antireflection tempered glass were produced in the same manner as in Example 1, except that each refractive index layer forming solution and protective layer forming solution were used in the combinations shown in Table 11.
Table 11 shows the average luminous reflectance and average luminous transmittance of both sides of the antireflection glass, the layer thickness and refractive index of each layer, the glass strength of the antireflection tempered glass, and the alkali resistance of the antireflection film. rice field.
Comparative Example 1 is a case where no aluminum salt hydrate is present in the entire antireflection film and protective layer, and the alkali resistance is extremely poor. Comparative Example 2 is a case where no aluminum salt hydrate is present in the high refractive index layer, the medium refractive index layer and the medium low refractive index layer, and the alkali resistance is extremely poor.
Comparative Example 3 is a case where no aluminum salt hydrate is present in the low refractive index layer, the medium refractive index layer, and the medium low refractive index layer, and the alkali resistance is poor. Comparative Example 4 is a case in which no aluminum salt hydrate is present in the protective layer, the medium refractive index layer, and the medium to low refractive index layer, and the alkali resistance is poor.
Comparative Examples 5 and 6 are cases where the layer thickness of the refractive index layer does not satisfy the range of the present invention, and the alkali resistance is good, but the optical properties of the average luminous reflectance and the average luminous transmittance are inferior.
Comparative Examples 7 and 8 are cases where the refractive index of the refractive index layer does not satisfy the range of the present invention, and the alkali resistance is good, but the optical properties of the average luminous reflectance and the average luminous transmittance are inferior.
Comparative Examples 9 and 10 are cases where metal salt hydrates other than aluminum salt hydrates are used for all layers of the antireflection film and the protective layer, and the alkali resistance is extremely poor.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

Claims (10)

  1. ガラス基板、反射防止膜および保護層をこの順に含んでなる反射防止ガラスであって、
     前記反射防止膜は、前記ガラス基板側から、
     屈折率が1.36~1.45で、層厚が150~210nmの中低屈折率層、
     屈折率が1.56~1.79で、層厚が90~140nmの中屈折率層、
     屈折率が1.75~1.87で、層厚が30~50nmの高屈折率層、
     屈折率が1.27~1.35で、層厚が70~75nmの低屈折率層
    の順で構成され、当該高屈折率層の屈折率は、中屈折率層の屈折率より高く、
     前記保護層は、屈折率が1.43~1.48で、層厚が20~30nmであり、
     前記高屈折率層、低屈折率層および保護層が、(A)アルミニウム塩水和物を含有し、
     波長380~780nmにおける両面の視感平均反射率が0.6%以下で、波長380~780nmにおける視感平均透過率が98%以上であることを特徴とする前記反射防止ガラス。
    An antireflection glass comprising a glass substrate, an antireflection film and a protective layer in this order,
    The antireflection film, from the glass substrate side,
    a medium-to-low refractive index layer having a refractive index of 1.36 to 1.45 and a layer thickness of 150 to 210 nm;
    a medium refractive index layer having a refractive index of 1.56 to 1.79 and a layer thickness of 90 to 140 nm;
    a high refractive index layer having a refractive index of 1.75 to 1.87 and a layer thickness of 30 to 50 nm;
    A low refractive index layer having a refractive index of 1.27 to 1.35 and a layer thickness of 70 to 75 nm.
    The protective layer has a refractive index of 1.43 to 1.48 and a layer thickness of 20 to 30 nm,
    The high refractive index layer, the low refractive index layer and the protective layer contain (A) an aluminum salt hydrate,
    The antireflection glass having an average luminous reflectance of 0.6% or less on both surfaces at a wavelength of 380 to 780 nm and an average luminous transmittance of 98% or more at a wavelength of 380 to 780 nm.
  2.  更に、前記中低屈折率層および中屈折率層が、(A)アルミニウム塩水和物を含有することを特徴とする請求項1に記載の反射防止ガラス。 The antireflection glass according to claim 1, wherein the medium-low refractive index layer and the medium refractive index layer further contain (A) an aluminum salt hydrate.
  3.  前記保護層が、(B)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、
     R-Si(OR4-n (1)
    (式中、Rはアルキル基、アルケニル基またはアルコキシアルキル基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の整数である。)
     (A)アルミニウム塩水和物3~25質量部、および(C)金属キレート化合物1~20質量部を含有してなる保護層組成物の硬化物からなることを特徴とする請求項1に記載の反射防止ガラス。
    With respect to 100 parts by mass of a binder component in which the protective layer is (B) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof,
    R n —Si(OR 1 ) 4-n (1)
    (Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.)
    2. The protective layer composition according to claim 1, comprising a cured product of a protective layer composition containing (A) 3 to 25 parts by mass of an aluminum salt hydrate and (C) 1 to 20 parts by mass of a metal chelate compound. Anti-reflective glass.
  4.  前記低屈折率層が、(B)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、
     R-Si(OR4-n (1)
    (式中、Rはアルキル基、アルケニル基またはアルコキシアルキル基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の整数である。)
     (A)アルミニウム塩水和物3~25質量部、(C)金属キレート化合物1~20質量部、および(D)シリカ粒子25~90質量部を含有してなる低屈率層組成物の硬化物からなることを特徴とする請求項1に記載の反射防止ガラス。
    With respect to 100 parts by mass of a binder component in which the low refractive index layer is (B) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof,
    R n —Si(OR 1 ) 4-n (1)
    (Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.)
    (A) 3 to 25 parts by mass of aluminum salt hydrate, (C) 1 to 20 parts by mass of metal chelate compound, and (D) 25 to 90 parts by mass of silica particles. The antireflection glass according to claim 1, characterized by comprising:
  5.  前記高屈折率層が、(B)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、
     R-Si(OR4-n (1)
    (式中、Rはアルキル基、アルケニル基またはアルコキシアルキル基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の整数である。)
     (A)アルミニウム塩水和物1~15質量部、および(E)金属酸化物粒子40~130質量部を含有してなる高屈率層組成物の硬化物からなることを特徴とする請求項1に記載の反射防止ガラス。
    With respect to 100 parts by mass of a binder component in which the high refractive index layer is (B) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof,
    R n —Si(OR 1 ) 4-n (1)
    (Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.)
    (1) It comprises a cured product of a high refractive index layer composition containing (A) 1 to 15 parts by mass of aluminum salt hydrate and (E) 40 to 130 parts by mass of metal oxide particles. The anti-reflection glass described in .
  6.  前記中屈折率層が、(B)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、
     R-Si(OR4-n (1)
    (式中、Rはアルキル基、アルケニル基またはアルコキシアルキル基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の整数である。)
     (A)アルミニウム塩水和物1~15質量部、および(E)金属酸化物粒子40~130質量部を含有してなる中屈率層組成物の硬化物からなることを特徴とする請求項2に記載の反射防止ガラス。
    With respect to 100 parts by mass of a binder component in which the medium refractive index layer is (B) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof,
    R n —Si(OR 1 ) 4-n (1)
    (Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.)
    (A) 1 to 15 parts by mass of aluminum salt hydrate, and (E) 40 to 130 parts by mass of metal oxide particles. The anti-reflection glass described in .
  7.  前記中低屈折率層が、(B)下記式(1)で表されるアルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、
     R-Si(OR4-n (1)
    (式中、Rはアルキル基、アルケニル基またはアルコキシアルキル基であり、Rはアルキル基、アルコキシアルキル基、アシルオキシ基またはハロゲン原子であり、nは1または2の整数である。)
     (A)アルミニウム塩水和物3~25質量部、(C)金属キレート化合物を1~20質量部、および(D)シリカ粒子25~90質量部を含有してなる中低屈率層組成物の硬化物からなることを特徴とする請求項2に記載の反射防止ガラス。
    With respect to 100 parts by mass of a binder component in which the medium-to-low refractive index layer is (B) an alkoxysilane compound represented by the following formula (1) or a hydrolyzate thereof,
    R n —Si(OR 1 ) 4-n (1)
    (Wherein, R is an alkyl group, alkenyl group or alkoxyalkyl group, R1 is an alkyl group, alkoxyalkyl group, acyloxy group or halogen atom, and n is an integer of 1 or 2.)
    (A) 3 to 25 parts by mass of aluminum salt hydrate, (C) 1 to 20 parts by mass of a metal chelate compound, and (D) 25 to 90 parts by mass of silica particles. 3. The antireflection glass according to claim 2, which is made of a cured product.
  8.  前記ガラス基板が、アルカリアルミノケイ酸塩ガラスであることを特徴とする請求項1または2に記載の反射防止ガラス。 The antireflection glass according to claim 1 or 2, wherein the glass substrate is alkali aluminosilicate glass.
  9.  前記反射防止ガラスが、耐アルカリ性化学強化用反射防止ガラスであることを特徴とする請求項1または2に記載の反射防止ガラス。 The antireflection glass according to claim 1 or 2, wherein the antireflection glass is alkali-resistant antireflection glass for chemical strengthening.
  10.  請求項1または2に記載の反射防止ガラスを、イオン交換用金属塩融解液中で化学強化処理を行う工程、および当該化学処理工程の前工程又は後工程でアルカリ洗浄する工程を含むことを特徴とする反射防止強化ガラスの製造方法。 The antireflection glass according to claim 1 or 2 is subjected to a chemical strengthening treatment in an ion-exchange metal salt melt, and a step of alkali cleaning before or after the chemical treatment. A method for producing antireflection tempered glass.
PCT/JP2022/025359 2021-08-23 2022-06-24 Antireflective glass WO2023026670A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023543724A JPWO2023026670A1 (en) 2021-08-23 2022-06-24
CN202280040382.3A CN117425632A (en) 2021-08-23 2022-06-24 Anti-reflection glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-135870 2021-08-23
JP2021135870 2021-08-23

Publications (1)

Publication Number Publication Date
WO2023026670A1 true WO2023026670A1 (en) 2023-03-02

Family

ID=85322729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025359 WO2023026670A1 (en) 2021-08-23 2022-06-24 Antireflective glass

Country Status (4)

Country Link
JP (1) JPWO2023026670A1 (en)
CN (1) CN117425632A (en)
TW (1) TW202313511A (en)
WO (1) WO2023026670A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284622A (en) * 2006-04-19 2007-11-01 Asahi Kasei Corp Coating composition for surface protective layer
JP2009058954A (en) * 2007-08-08 2009-03-19 Toray Ind Inc Method for producing antireflection film and image display device
JP2012203150A (en) * 2011-03-24 2012-10-22 Fujifilm Corp Hydrophilic antireflection film
WO2016051750A1 (en) * 2014-09-30 2016-04-07 日本板硝子株式会社 Low reflection coating, glass plate, glass substrate and photoelectric conversion device
JP2017178634A (en) * 2016-03-28 2017-10-05 フクビ化学工業株式会社 Method for manufacturing high-level antireflection reinforced glass
JP2017530079A (en) * 2014-09-12 2017-10-12 ショット アクチエンゲゼルシャフトSchott AG Coated glass substrate or glass-ceramic substrate having multi-functional surface properties with resistance, method for producing the substrate and use of the substrate
WO2019187417A1 (en) * 2018-03-29 2019-10-03 富士フイルム株式会社 Antireflective film, optical member, and method for producing antireflective film
WO2019202942A1 (en) * 2018-04-19 2019-10-24 フクビ化学工業株式会社 Antireflective plate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284622A (en) * 2006-04-19 2007-11-01 Asahi Kasei Corp Coating composition for surface protective layer
JP2009058954A (en) * 2007-08-08 2009-03-19 Toray Ind Inc Method for producing antireflection film and image display device
JP2012203150A (en) * 2011-03-24 2012-10-22 Fujifilm Corp Hydrophilic antireflection film
JP2017530079A (en) * 2014-09-12 2017-10-12 ショット アクチエンゲゼルシャフトSchott AG Coated glass substrate or glass-ceramic substrate having multi-functional surface properties with resistance, method for producing the substrate and use of the substrate
WO2016051750A1 (en) * 2014-09-30 2016-04-07 日本板硝子株式会社 Low reflection coating, glass plate, glass substrate and photoelectric conversion device
JP2017178634A (en) * 2016-03-28 2017-10-05 フクビ化学工業株式会社 Method for manufacturing high-level antireflection reinforced glass
WO2019187417A1 (en) * 2018-03-29 2019-10-03 富士フイルム株式会社 Antireflective film, optical member, and method for producing antireflective film
WO2019202942A1 (en) * 2018-04-19 2019-10-24 フクビ化学工業株式会社 Antireflective plate

Also Published As

Publication number Publication date
CN117425632A (en) 2024-01-19
JPWO2023026670A1 (en) 2023-03-02
TW202313511A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
CN103492914B (en) Antireflective layered material
TWI476166B (en) Method for manufacturing anti - reflective tempered glass
CN103260870B (en) There are the article of low-reflection film
US8409663B2 (en) Method of making a coated glass substrate with heat treatable ultraviolet blocking characteristics
US9272949B2 (en) Coated glass substrate with heat treatable ultraviolet blocking characteristics
AU736533B2 (en) Coating liquid for forming hard coat film and substrate coated with such a film
JP5523066B2 (en) Method for manufacturing optical article
TW201604002A (en) Chemically toughened glass plate with function film, method for producing same, and article
KR100858049B1 (en) Low reflection film with colorless reflection and excellent scratch resistance
JP2015049319A (en) Article having transparent base material and antifouling-antireflection film and manufacturing method thereof
JP2008003122A (en) Antireflection film
JP6606451B2 (en) Manufacturing method of high antireflection tempered glass
WO2023026670A1 (en) Antireflective glass
JP2024050465A (en) Anti-reflective glass
JP6164120B2 (en) Base material and article with antireflection film
JP2000335940A (en) Low-reflecting glass article
JP2895746B2 (en) Reflection reduction glass
WO2014042129A1 (en) Product having low-reflection film
JPH095679A (en) Plastic lens for spectacles
WO2023058454A1 (en) Antireflection laminate
JP2895749B2 (en) Water-repellent reflection reducing glass
JPH11292570A (en) Reflection reducing glass
JPH11292571A (en) Water-repellent low-reflection glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543724

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280040382.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22860964

Country of ref document: EP

Kind code of ref document: A1