WO2023026633A1 - Semiconductor film and composite substrate - Google Patents
Semiconductor film and composite substrate Download PDFInfo
- Publication number
- WO2023026633A1 WO2023026633A1 PCT/JP2022/023323 JP2022023323W WO2023026633A1 WO 2023026633 A1 WO2023026633 A1 WO 2023026633A1 JP 2022023323 W JP2022023323 W JP 2022023323W WO 2023026633 A1 WO2023026633 A1 WO 2023026633A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor film
- film
- less
- peak
- substrate
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 182
- 239000000758 substrate Substances 0.000 title claims description 80
- 239000002131 composite material Substances 0.000 title claims description 10
- 239000013078 crystal Substances 0.000 claims abstract description 50
- 238000001237 Raman spectrum Methods 0.000 claims abstract description 30
- 239000006104 solid solution Substances 0.000 claims abstract description 11
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 10
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 78
- 230000002093 peripheral effect Effects 0.000 claims description 16
- 239000012535 impurity Substances 0.000 abstract description 22
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 abstract description 6
- 238000000034 method Methods 0.000 description 38
- 239000003595 mist Substances 0.000 description 38
- 239000007789 gas Substances 0.000 description 35
- 230000015572 biosynthetic process Effects 0.000 description 28
- 239000002994 raw material Substances 0.000 description 23
- 238000005229 chemical vapour deposition Methods 0.000 description 21
- 239000000243 solution Substances 0.000 description 18
- 239000002585 base Substances 0.000 description 17
- 239000012159 carrier gas Substances 0.000 description 15
- 150000004820 halides Chemical class 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 239000002019 doping agent Substances 0.000 description 10
- 239000010410 layer Substances 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 9
- 229910052733 gallium Inorganic materials 0.000 description 9
- -1 gallium halide Chemical class 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000001887 electron backscatter diffraction Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 150000002500 ions Chemical group 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 229910052800 carbon group element Inorganic materials 0.000 description 6
- 229910052736 halogen Inorganic materials 0.000 description 6
- 150000002367 halogens Chemical class 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 238000000927 vapour-phase epitaxy Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 5
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 230000002269 spontaneous effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 229910001195 gallium oxide Inorganic materials 0.000 description 3
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 241000334993 Parma Species 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- CKHJYUSOUQDYEN-UHFFFAOYSA-N gallium(3+) Chemical compound [Ga+3] CKHJYUSOUQDYEN-UHFFFAOYSA-N 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910000039 hydrogen halide Inorganic materials 0.000 description 2
- 239000012433 hydrogen halide Substances 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical class C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- FOXXZZGDIAQPQI-XKNYDFJKSA-N Asp-Pro-Ser-Ser Chemical compound OC(=O)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O FOXXZZGDIAQPQI-XKNYDFJKSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910005267 GaCl3 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
Definitions
- the present invention relates to an ⁇ -Ga 2 O 3 -based semiconductor film and a composite substrate including the same.
- gallium oxide (Ga 2 O 3 ) has attracted attention as a semiconductor material.
- Gallium oxide is known to have five crystal forms ⁇ , ⁇ , ⁇ , ⁇ and ⁇ , among which ⁇ -Ga 2 O 3 has a bandgap of about 5 eV and is It has high stability up to and can control the bandgap by forming a mixed crystal.
- HEMT high electron mobility transistor
- HEMT high electron mobility transistor
- ⁇ -Ga 2 O 3 has a crystal structure that exhibits spontaneous polarization, it has a high withstand voltage and low power consumption. It is attracting a great deal of attention as a next-generation power semiconductor material.
- ⁇ -Ga 2 O 3 is a metastable phase, and a single crystal substrate has not been put to practical use, and is produced by heteroepitaxial growth on a heterogeneous substrate.
- Patent Document 1 Patent No. 6436538 discloses an ⁇ -Ga 2 O 3 single crystal with a low impurity concentration, which is applicable to semiconductor devices and which is produced using the HVPE method (halide vapor phase epitaxy method). ing.
- Non-Patent Document 1 Yamaichi Oshima et al. "Epitaxial growth of phase-pure ⁇ -Ga 2 O 3 by halide vapor phase epitaxy" J. Appl. Phys, 118, 085301 (2015)
- a GaN substrate is prepared by the HVPE method.
- Patent Document 2 Japanese Patent Application Laid-Open No.
- 2019-46984 describes a first semiconductor film containing a semiconductor crystal having a metastable crystal structure as a main component, and are different in composition and contain semiconductor crystals having a hexagonal crystal structure as the main component (the main component is ⁇ -Ga 2 O 3 ), thereby manufacturing a semiconductor device having excellent semiconductor characteristics.
- a method of making is disclosed.
- ⁇ -Ga 2 O 3 has ferroelectric properties and a crystal structure that generates spontaneous polarization, it is expected to be applied to HEMTs like GaN.
- Properties such as conductivity of such semiconductors are generally controlled by doping. For example, a method of including a dopant in the film-forming raw material and a method of ion implantation are used.
- the film may contain contamination from the film deposition chamber or impurities derived from the raw material. Since such impurities can cause variations in various characteristics of the semiconductor film, it is desirable to reduce them as much as possible.
- the semiconductor film contains transition metal elements such as Fe and Ti, alkali metals such as Na, and halogen elements such as F, the semiconductor film tends to vary in characteristics.
- Raman spectroscopy is known as a technique for evaluating the crystallinity of a semiconductor film.
- the crystallinity of a substance can be evaluated by irradiating the substance with light to cause scattering, and obtaining a Raman spectrum by analyzing the scattered light. For example, when the half width of a predetermined Raman peak in the Raman spectrum of a substance is small, the substance can be evaluated as having high crystallinity.
- Non-Patent Document 2 Francesco Boschi, "Growth and Investigation of Different Gallium Oxide Polymorphs," UNIVERSITA DEGLI STUDI DI PARMA, Dottorato di Ricerca in Fisica, Ciclo XXIX, 2017
- a film formed on a c-plane sapphire substrate Although the Raman spectrum of the ⁇ -Ga 2 O 3 film has been reported, the half width of the peak near 250 cm ⁇ 1 was relatively broad and the crystallinity of the film was low.
- ⁇ -Ga 2 O 3 has ferroelectric properties, has a crystal structure that generates spontaneous polarization, and has the advantage of being able to control the bandgap by forming a mixed crystal. It is expected to be applied to high electron mobility transistors (HEMTs) in the near future.
- HEMTs high electron mobility transistors
- impurities may be contained in the film, which causes variations in various characteristics of the semiconductor film.
- the inventors of the present invention have recently developed an ⁇ -Ga 2 O 3 based semiconductor film by increasing the crystallinity of the ⁇ -Ga 2 O 3 based semiconductor film by controlling the half width of the peak near 250 cm ⁇ 1 in the Raman spectrum. It was found that the impurity concentration of
- an object of the present invention is to provide an ⁇ -Ga 2 O 3 -based semiconductor film with a low impurity concentration.
- a semiconductor film whose main phase is a crystal composed of ⁇ -Ga 2 O 3 or an ⁇ -Ga 2 O 3 -based solid solution, A semiconductor film, wherein the half width of the peak near 250 cm ⁇ 1 in the Raman spectrum of the semiconductor film measured by laser Raman spectroscopy is 10 cm ⁇ 1 or less.
- Aspect 2 The semiconductor film measured by laser Raman spectroscopy at the center point X of the largest circle inscribed in the outer periphery of the semiconductor film and each of the four outer peripheral points A, B, C and D on the surface of the semiconductor film.
- the half width of the peak near 250 cm -1 in the Raman spectrum of is 10 cm -1 or less, i) a straight line connecting the outer peripheral points A and C and a straight line connecting the outer peripheral points B and D intersect at right angles at the center point X; and ii) each of the shortest distances of the perimeter points A, B, C, and D from the outer edge of the semiconductor film is determined to be 1 ⁇ 5 of the radius of the semiconductor film.
- Aspect 3 Aspect 1 , wherein in the Raman spectrum of the semiconductor film, the peak intensity ratio I 250 /I 260 of the peak intensity I 250 near 250 cm ⁇ 1 to the peak intensity I 260 near 260 cm ⁇ 1 is 2.0 or more. 3. or the semiconductor film according to 2.
- Aspect 8 The semiconductor film according to any one of Modes 1 to 7, wherein the semiconductor film has a surface F concentration of 2.0 ⁇ 10 15 atoms/cm 3 or less.
- Aspect 9 The semiconductor film according to any one of Modes 1 to 8, wherein the surface Si concentration of the semiconductor film is 1.0 ⁇ 10 16 atoms/cm 3 or less.
- a composite substrate comprising a GaN single crystal substrate and the semiconductor film according to any one of aspects 1 to 9 formed on the GaN single crystal substrate.
- FIG. 2 is a diagram for explaining the positions of a central point X and four peripheral points A, B, C and D on the surface of the semiconductor film of the present invention; It is a schematic cross-sectional view showing the configuration of an HVPE (halide vapor phase epitaxy) apparatus. It is a schematic cross section which shows the structure of a mist CVD (chemical vapor deposition) apparatus. 2 is a Raman spectrum measured in the semiconductor film produced in Example 1.
- FIG. 1 is a diagram for explaining the positions of a central point X and four peripheral points A, B, C and D on the surface of the semiconductor film of the present invention. It is a schematic cross-sectional view showing the configuration of an HVPE (halide vapor phase epitaxy) apparatus. It is a schematic cross section which shows the structure of a mist CVD (chemical vapor deposition) apparatus. 2 is a Raman spectrum measured in the semiconductor film produced in Example 1.
- FIG. 1 is a diagram for explaining the positions of a central point X and four peripheral points
- the semiconductor film according to the present invention has a main phase of crystals composed of ⁇ -Ga 2 O 3 or ⁇ -Ga 2 O 3 solid solution. Therefore, the semiconductor film according to the present invention can be called an ⁇ -Ga 2 O 3 -based semiconductor film.
- this semiconductor film has a Raman spectrum of the semiconductor film having a half width of 10 cm ⁇ 1 or less at around 250 cm ⁇ 1 .
- the impurity concentration of the ⁇ -Ga 2 O 3 -based semiconductor film can be reduced. can be reduced.
- “near” a wavenumber (Raman shift) in the Raman spectrum typically means a range of ⁇ 5.0 cm ⁇ 1 from that wavenumber.
- a “peak around 250 cm ⁇ 1 ” typically means a “peak between 245 and 255 cm ⁇ 1 ”.
- ⁇ -Ga 2 O 3 has ferroelectric properties, has a crystal structure that generates spontaneous polarization, and has the advantage of being able to control the bandgap by forming a mixed crystal. It is expected to be applied to high electron mobility transistors (HEMTs) in the near future.
- HEMTs high electron mobility transistors
- impurities may be contained in the film, which causes variations in various characteristics of the semiconductor film.
- the impurity concentration of the ⁇ -Ga 2 O 3 based semiconductor film can be reduced by increasing the crystallinity of the film, so the above-described problems can be conveniently solved.
- This semiconductor film is measured at the central point X of the maximum circle (hereinafter referred to as the maximum inscribed circle) inscribed in the outer periphery of the semiconductor film on the film surface and at each of the four outer peripheral points A, B, C and D.
- the half width of the peak near 250 cm ⁇ 1 in the Raman spectrum of the semiconductor film measured by spectroscopy is preferably 10 cm ⁇ 1 or less.
- perimeter points A, B, C and D are such that: i) a straight line connecting perimeter points A and C and a straight line connecting perimeter points B and D intersect at right angles at center point X, and ii) Each shortest distance from the outer edge of the semiconductor film to the perimeter points A, B, C and D is determined to be 1/5 of the radius of the semiconductor film.
- the semiconductor film is preferably circular, in which case the maximum inscribed circle of the semiconductor film 10 can coincide with the outer periphery, as shown in FIG.
- the ⁇ -Ga 2 O 3 -based semiconductor film in which the half width of the peak near 250 cm ⁇ 1 in the Raman spectrum is 10 cm ⁇ 1 or less at five points sufficiently separated from each other, extends from the center to the outer periphery of the film. It can be said that the half-value width is small over a wide range of up to, and such a semiconductor film has high crystallinity and low impurity concentration.
- the half width of the peak near 250 cm ⁇ 1 in Raman spectrum is 10 cm ⁇ 1 or less, preferably 8.0 cm ⁇ 1 or less, more preferably 7.0 cm ⁇ 1 or less.
- the lower limit of the half-width of the peak near 250 cm -1 in the Raman spectrum is not particularly limited. It is typically 0.1 cm ⁇ 1 or more, more typically 1.0 cm ⁇ 1 or more.
- the semiconductor film of the present invention has a peak intensity I 250 near 250 cm ⁇ 1 in the Raman spectrum (preferably at the center point X of the largest inscribed circle and at each of the outer peripheral points A, B, C and D) at 260 cm ⁇ 1 .
- the peak intensity ratio I 250 /I 260 to the peak intensity I 260 near 1 is preferably 2.0 or more, more preferably 5.0 or more, and still more preferably 8.0 or more.
- the upper limit of I 250 /I 260 is preferably 50 or less, although the upper limit is not particularly limited because the higher the better.
- “ around 260 cm ⁇ 1 ” typically means a wavenumber obtained by adding 10 cm ⁇ 1 to the peak wavenumber around 250 cm ⁇ 1 .
- the peak “around 260 cm ⁇ 1 ” means the peak at 255 cm ⁇ 1 .
- the half width of the peak near 113 cm -1 in the Raman spectrum (preferably at the center point X of the maximum inscribed circle and each of the outer peripheral points A, B, C and D) is 10 cm -1 or less. is preferably 8.0 cm -1 or less, and even more preferably 6.0 cm -1 or less. From the viewpoint of reducing the impurity concentration, the smaller the half width of the peak near 113 cm -1 in the Raman spectrum, the better. Therefore, the lower limit of the half width of the peak near 113 cm -1 in the Raman spectrum is not particularly limited, It is typically 0.1 cm ⁇ 1 or more, more typically 1.0 cm ⁇ 1 or more.
- the semiconductor film of the present invention has high crystallinity, impurities that can be contained can be reduced. That is, the Ti concentration on the surface of the semiconductor film is preferably 1.0 ⁇ 10 15 atoms/cm 3 or less, more preferably 1.0 ⁇ 10 14 atoms/cm 3 or less, further preferably 1.0 ⁇ 10 14 atoms/cm 3 or less. 13 atoms/cm 3 or less.
- the Fe concentration on the surface of the semiconductor film is preferably 1.0 ⁇ 10 15 atoms/cm 3 or less, more preferably 1.0 ⁇ 10 14 atoms/cm 3 or less, and still more preferably 1.0 ⁇ 10 13 atoms/cm 3 . / cm 3 or less.
- the Na concentration on the surface of the semiconductor film is preferably 2.0 ⁇ 10 13 atoms/cm 3 or less, more preferably 1.0 ⁇ 10 12 atoms/cm 3 or less, still more preferably 1.0 ⁇ 10 11 atoms/cm 3 . / cm 3 or less.
- the F concentration on the surface of the semiconductor film is preferably 2.0 ⁇ 10 15 atoms/cm 3 or less, more preferably 1.0 ⁇ 10 14 atoms/cm 3 or less, and still more preferably 1.0 ⁇ 10 13 atoms/cm 3 . / cm 3 or less.
- the Si concentration on the surface of the semiconductor film is preferably 1.0 ⁇ 10 16 atoms/cm 3 or less, more preferably 1.0 ⁇ 10 15 atoms/cm 3 or less, and still more preferably 1.0 ⁇ 10 15 atoms/cm 3 or less. It is 10 14 atoms/cm 3 or less. Since the lower the concentration of each element of Ti, Fe, Na, F, and Si in the surface of the semiconductor film, the better, the lower limit is not particularly limited.
- Si may also be used as a dopant for a semiconductor film, and in that case, the Si concentration on the surface of the semiconductor film may exceed the upper limit of the preferred range, for example, 1.0 ⁇ 10 15 to 1.0 ⁇ 10 15 . It can be 10 21 atoms/cm 3 .
- the semiconductor film of the present invention has a main phase of crystals composed of ⁇ -Ga 2 O 3 or ⁇ -Ga 2 O 3 solid solution.
- “having a crystal composed of an ⁇ -Ga 2 O 3 or ⁇ -Ga 2 O 3 system solid solution as a main phase” means ⁇ -Ga 2 O 3 or ⁇ -Ga 2 O 3 system Crystals composed of a solid solution account for 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more, still more preferably 97% by weight or more, particularly preferably 99% by weight or more, and most preferably 100% by weight of the semiconductor film. % by weight.
- the ⁇ -Ga 2 O 3 solid solution is a solid solution of ⁇ -Ga 2 O 3 with other components.
- the semiconductor film of the present invention contains ⁇ -Ga 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , Ti 2 O 3 , V 2 O 3 , Ir 2 O 3 , Rh 2 O 3 , In 2 O 3 and Al 2 O 3 .
- the solid solution amount of these components can be appropriately changed according to the desired properties.
- the ⁇ -Ga 2 O 3 -based solid solution may contain, as other components, elements such as Si, Sn, Ge, N and Mg as dopants.
- Non-Patent Document 3 (Ildiko Cora et al., "The real structure of ⁇ -Ga 2 O 3 and its relation to ⁇ -phase," CrystEngComm, 2017, 19, 1509-1516) describes the resolution of probe technology Some have suggested that the crystal structure of ⁇ -Ga 2 O 3 (hexagonal) and the crystal structure of ⁇ -Ga 2 O 3 (rectangular) may be confused.
- ⁇ -Ga 2 O 3 refers not only to ⁇ -Ga 2 O 3 but also to ⁇ -Ga 2 O 3 . That is, in the present specification, even those identified as having the crystal structure of ⁇ -Ga 2 O 3 are regarded as “ ⁇ -Ga 2 O 3 ”, and are referred to as “ ⁇ -Ga 2 O 3 ”. shall be included in the term.
- the orientation of the ⁇ -Ga 2 O 3 -based semiconductor film of the present invention in the substantially normal direction is not particularly limited, but c-axis orientation is preferred.
- a typical ⁇ -Ga 2 O 3 -based semiconductor film is composed of ⁇ -Ga 2 O 3 or a mixed crystal of ⁇ -Ga 2 O 3 and a different material, and has It is oriented.
- the ⁇ -Ga 2 O 3 -based semiconductor film may be a mosaic crystal as long as it is biaxially oriented.
- Mosaic crystals are aggregates of crystals that do not have distinct grain boundaries but have slightly different crystal orientations in one or both of the c-axis and a-axis.
- a method for evaluating the biaxial orientation is not particularly limited, and known analysis techniques such as an EBSD (Electron Back Scatter Diffraction Patterns) method and an X-ray pole figure can be used.
- EBSD Electro Back Scatter Diffraction Patterns
- X-ray pole figure inverse pole figure mapping of the surface (film surface) of the biaxially oriented ⁇ -Ga 2 O 3 film or a cross section perpendicular to the film surface is measured.
- the approximate normal direction is in the approximate in-plane direction perpendicular to the normal direction.
- the film is oriented along two axes, ie, the approximate normal direction and the approximate film surface direction, when the two conditions are satisfied.
- the crystal is oriented along two axes, the c-axis and the a-axis.
- the substantially normal direction of the film surface is aligned with the c-axis
- the substantially in-plane direction of the film may be aligned with a specific direction (for example, the a-axis) perpendicular to the c-axis.
- the semiconductor film of the present invention may have a size such that the diameter of the largest circle inscribed in its outer periphery (i.e., the largest inscribed circle) is 5.08 cm (2 inches) or more, and the diameter of the largest inscribed circle may be 10.0 cm or more.
- the upper limit of the diameter of the maximum inscribed circle is not particularly limited, it is typically 30.0 cm or less, more typically 20.0 cm or less.
- a typical semiconductor film is circular in shape, in which case the diameter of the largest inscribed circle of semiconductor film 10 may match the diameter of semiconductor film 10, as shown in FIG.
- the “circular shape” does not have to be a perfect circular shape, and may be a substantially circular shape that can be recognized as a generally circular shape as a whole.
- the semiconductor film of the present invention is characterized in that the half width of the peak near 250 cm ⁇ 1 in the Raman spectrum is as small as 10 cm ⁇ 1 or less. , is merely defined for convenience as an example so that the representative peak half-value width of the entire semiconductor film can be evaluated.
- the shape of the semiconductor film is preferably circular. meaning does not change.
- the shape of the semiconductor film is square or rectangular (rectangular), it is included in the semiconductor film of the present invention as long as the half width of the peak near 250 cm ⁇ 1 of the semiconductor film is small.
- the maximum circle (maximum inscribed circle) inscribed in the outer periphery of the square or rectangular semiconductor film when viewed from above is defined as a virtual circle, and the center point of the virtual circle is defined as
- the positions of the outer peripheral points A, B, C and D can be determined from X and the diameter of the virtual circle (similarly to the circular semiconductor film described above). By evaluating the half-value widths of the peaks near 250 cm ⁇ 1 at the center point X and the peripheral points A, B, C, and D determined in this manner, the same evaluation as that for a circular semiconductor film can be performed.
- the semiconductor film of the present invention can contain a Group 14 element as a dopant.
- the group 14 element is a group 14 element according to the periodic table formulated by IUPAC (International Union of Pure and Applied Chemistry), specifically carbon (C), silicon (Si), germanium (Ge ), tin (Sn), and lead (Pb).
- the total content of C, Ge, Sn, and Pb is preferably 1.0 ⁇ 10 15 to 1.0 ⁇ 10 21 /cm 3 , more preferably 1.0. ⁇ 10 17 to 1.0 ⁇ 10 19 /cm 3 . It is preferable that these dopants are homogeneously distributed in the film and that the dopant concentrations on the front surface and the back surface of the semiconductor film are approximately the same.
- the thickness of the semiconductor film of the present invention may be appropriately adjusted from the viewpoint of cost and required characteristics. That is, if the thickness is too large, it takes a long time to form a film, so from the viewpoint of cost, it is preferable that the thickness is not extremely thick. On the other hand, in order to improve the crystal quality, it is preferable to make the film thick to some extent. In this manner, the film thickness may be appropriately adjusted according to desired characteristics.
- the semiconductor film of the present invention may be in the form of a self-supporting film.
- the semiconductor film formed over the base substrate for film formation may be separated and transferred to another supporting substrate.
- the material of the other support substrate is not particularly limited, but a suitable material may be selected from the viewpoint of material properties.
- metal substrates such as Cu, ceramic substrates such as SiC and AlN, and the like are preferable. It is also preferable to use a substrate having a coefficient of thermal expansion of 6 to 13 ppm/K at 25 to 400.degree.
- a supporting substrate having such a coefficient of thermal expansion By using a supporting substrate having such a coefficient of thermal expansion, it is possible to reduce the difference in thermal expansion from the semiconductor film, and as a result, it is possible to suppress the occurrence of cracks in the semiconductor film and film peeling due to thermal stress.
- An example of such a support substrate is a substrate composed of a Cu—Mo composite metal.
- the composite ratio of Cu and Mo can be appropriately selected in consideration of thermal expansion coefficient matching with the semiconductor film, thermal conductivity, electrical conductivity, and the like.
- the semiconductor film of the present invention can be preferably manufactured by using a GaN single crystal substrate as a base substrate and forming a film of an ⁇ -Ga 2 O 3 based material thereon.
- a method for forming the semiconductor layer can be a known method, and preferred examples include the mist CVD method (mist chemical vapor deposition method), the HVPE method (halide vapor phase epitaxy method), and the MBE method (molecular beam epitaxy method). , MOCVD (metal organic chemical vapor deposition), and hydrothermal synthesis, and mist CVD or HVPE is particularly preferred.
- the thickness of the underlying substrate is desirably thick from the viewpoint of suppressing warpage, preferably 0.5 mm or more, more preferably 0.8 mm or more, and even more preferably. is 1.4 mm or more.
- the thickness is desirably thinner from the viewpoint of cost, preferably 1.0 mm or less, more preferably 0.5 mm or less.
- the film thickness of the base substrate may be appropriately adjusted according to the desired characteristics.
- the upper limit of the thickness of the underlying substrate is not particularly limited, it is typically 5.0 mm or less, more typically 4.0 mm or less.
- the ⁇ -Ga 2 O 3 -based semiconductor film in which the half width of the peak near 250 cm ⁇ 1 is as small as 10 cm ⁇ 1 or less over a wide range from the center to the outer periphery of the film, is formed while rotating the underlying substrate.
- the half width of the peak near 250 cm ⁇ 1 is as small as 10 cm ⁇ 1 or less over a wide range from the center to the outer periphery of the film, is formed while rotating the underlying substrate.
- the HVPE method (halide vapor phase epitaxy) is a kind of CVD, and is a method applicable to film formation of compound semiconductors such as Ga 2 O 3 and GaN.
- a Ga raw material and a halide are reacted to generate a gallium halide gas, which is supplied onto a base substrate for film formation.
- O 2 gas is supplied onto the underlying substrate for film formation, and the gallium halide gas reacts with the O 2 gas to grow Ga 2 O 3 on the underlying substrate for film formation. It is a method that enables high-speed and thick film growth and has a proven track record in industry. Examples of film formation of not only ⁇ -Ga 2 O 3 but also ⁇ -Ga 2 O 3 and ⁇ -Ga 2 O 3 have been reported. It is
- FIG. 2 shows an example of a vapor phase growth apparatus (HVPE apparatus) using the HVPE method.
- the HVPE apparatus 20 includes a reactor 22, a susceptor 26 on which a base substrate 24 for film formation is placed, an oxygen raw material supply source 30, a carrier gas supply source 28, a GeCl 4 supply source 32, and a Ga raw material supply source 34. , a heater 36 and a gas discharge section 38 .
- Any reactor that does not react with the raw material is applied to the reactor 22, and is, for example, a quartz tube.
- Any heater capable of heating up to at least 700° C. (preferably 900° C. or higher) is applied as the heater 36, and is, for example, a resistance heating type heater.
- Metal Ga is placed inside the Ga raw material supply source 34, and halogen gas or hydrogen halide gas such as HCl is supplied.
- the halogen gas or halogenated gas is preferably Cl2 or HCl.
- the supplied halogen gas or halogenated gas reacts with metal Ga to generate gallium halide gas, which is supplied to the base substrate 24 for film formation.
- the gallium halide gas preferably contains GaCl and/or GaCl3 .
- Oxygen source supply 30 can supply an oxygen source selected from the group consisting of O2 , H2O and N2O , with O2 being preferred. These oxygen source gases are supplied to the base substrate at the same time as the gallium halide gas.
- a GeCl 4 source 32 supplies GeCl 4 vapor generated by bubbling the GeCl 4 liquid into the reactor 22 .
- the Ga source gas and the oxygen source gas may be supplied together with a carrier gas such as N2 or a rare gas.
- the gas discharge section 38 may be connected to a vacuum pump such as a diffusion pump or a rotary pump, for example, not only for discharging unreacted gas in the reactor 22 but also for controlling the pressure in the reactor 22. good. This can improve the suppression of gas phase reactions and the growth rate distribution.
- a vacuum pump such as a diffusion pump or a rotary pump
- ⁇ -Ga 2 O 3 is formed on the film formation base substrate 24 by heating the film formation base substrate 24 to a predetermined temperature using the heater 36 and simultaneously supplying the gallium halide gas and the oxygen source gas. be done.
- the film formation temperature is not particularly limited as long as ⁇ -Ga 2 O 3 is formed and impurities in the film are reduced, but is typically 250° C. to 900° C., for example.
- the partial pressures of the Ga raw material gas and the oxygen raw material gas are also not particularly limited.
- the partial pressure of the Ga source gas may be in the range of 0.05 kPa to 10 kPa
- the partial pressure of the oxygen source gas may be in the range of 0.25 kPa to 50 kPa.
- a separate supply source for example, the GeCl 4 supply source 32 in FIG. 2
- the GeCl 4 supply source 32 in FIG. 2 may be provided to supply the halides or the like, or the halides may be mixed and supplied from the Ga source supply source 34 .
- a material containing a Group 14 element, In, Al, or the like may be placed in the same location as the metal Ga, reacted with a halogen gas or a hydrogen halide gas, and supplied as a halide.
- These halide gases supplied to the base substrate 24 for film formation react with the oxygen source gas, like gallium halide, to form oxides, which are incorporated into the ⁇ -Ga 2 O 3 based semiconductor film.
- mist CVD a raw material solution is atomized or dropletized to generate mist or droplets, the mist or droplets are transported to a film formation chamber equipped with a substrate using a carrier gas, and the mist or droplets are generated in the film formation chamber. It is a method of thermally decomposing and chemically reacting droplets to form and grow a film on a substrate. It does not require a vacuum process and can produce a large amount of samples in a short time.
- FIG. 3 shows an example of a mist CVD apparatus.
- the 3 includes a mist generating chamber 42 for generating mist M from carrier gas G and raw material solution L, and mist M being sprayed onto substrate 56 to form semiconductor film 58 through thermal decomposition and chemical reaction.
- a film forming chamber 50 is provided.
- the mist generating chamber 42 includes a carrier gas inlet 44 through which carrier gas G is introduced, an ultrasonic vibrator 46 provided in the mist generating chamber 42, and a film forming chamber 50 through which the mist M generated in the mist generating chamber 42 is introduced. and a duct 48 for conveying to.
- a raw material solution L is accommodated in the mist generating chamber 42 .
- the ultrasonic vibrator 46 is configured to apply ultrasonic vibrations to the raw material solution L to generate the mist M together with the carrier gas G.
- the film forming chamber 50 includes a nozzle 52 for blowing the mist M introduced through the duct 48 onto the substrate 56, a stage 54 to which the substrate 56 is fixed, and the stage 54 and the substrate provided near the rear surface of the stage 54.
- a heater 62 for heating 56 and an exhaust port 64 for discharging the carrier gas G are provided.
- the raw material solution L used in the mist CVD method is not limited as long as it is a solution from which an ⁇ -Ga 2 O 3 based semiconductor film can be obtained.
- Examples include those obtained by dissolving an organic metal complex or a halide in a solvent.
- organometallic complexes include acetylacetonate complexes.
- a dopant component solution may be added to the raw material solution.
- an additive such as hydrochloric acid may be added to the raw material solution. Water, alcohol, or the like can be used as the solvent.
- the obtained raw material solution L is atomized or dropletized to generate a mist M or droplets.
- a preferred example of a method of atomizing or forming droplets is a method of vibrating the raw material solution L using an ultrasonic oscillator 46 .
- the obtained mist M or droplets are transported to the film forming chamber 50 using the carrier gas G.
- the carrier gas G is not particularly limited, but one or more of oxygen, ozone, inert gas such as nitrogen, and reducing gas such as hydrogen can be used.
- a substrate 56 is provided in the deposition chamber 50 .
- the mist M or droplets transported to the film forming chamber 50 are thermally decomposed and chemically reacted there to form a semiconductor film 58 on the substrate 56 .
- the reaction temperature varies depending on the type of raw material solution L, it is preferably 300 to 800°C, more preferably 400 to 700°C.
- the atmosphere in the film forming chamber 50 is not particularly limited as long as a desired semiconductor film can be obtained. is selected from either
- the semiconductor film thus obtained can be used as it is or divided into semiconductor elements.
- the semiconductor film may be peeled off from the underlying substrate to form a single film.
- a peeling layer may be provided in advance on the surface (film formation surface) of the underlying substrate. Examples of such a peeling layer include those in which a C-implanted layer or an H-implanted layer is provided on the surface of the underlying substrate.
- C or H may be injected into the film at the initial stage of film formation of the semiconductor film, and a peeling layer may be provided on the semiconductor film side.
- a supporting substrate (mounting substrate) different from the underlying substrate is adhered and bonded to the surface of the semiconductor film formed on the underlying substrate (that is, the surface opposite to the underlying substrate), and then the semiconductor film is separated from the underlying substrate. can be peeled off.
- a support substrate (mounting substrate) a substrate having a coefficient of thermal expansion of 6 to 13 ppm/K at 25 to 400° C., for example, a substrate composed of a Cu—Mo composite metal can be used.
- methods for bonding and bonding the semiconductor film and the support substrate (mounting substrate) include known methods such as brazing, soldering, and solid phase bonding.
- an ohmic electrode, an electrode such as a Schottky electrode, or another layer such as an adhesive layer may be provided between the semiconductor film and the support substrate.
- a functional layer such as drift layers are formed on semiconductor films.
- known methods are possible, and preferred examples include mist CVD, HVPE, MBE, MOCVD, and hydrothermal synthesis. HVPE methods are particularly preferred.
- the semiconductor film of the present invention can be produced by preferably using a GaN single crystal substrate as a base substrate and forming a film of an ⁇ -Ga 2 O 3 based material thereon. That is, according to the present invention, there is provided a composite substrate comprising a GaN single crystal substrate and the above-described semiconductor film formed on the GaN single crystal substrate.
- Example 1 Fabrication of ⁇ -Ga 2 O 3 -based semiconductor film by mist CVD method (1a) Preparation of base substrate A c-plane GaN single crystal having a thickness of about 0.4 mm and a diameter of 5.08 cm (2 inches) was used as the base substrate. Prepared the substrate.
- a mist CVD apparatus 40 having the configuration shown in FIG. 3 was prepared.
- the configuration of the mist CVD apparatus 40 is as described above.
- the raw material solution L obtained in (1b) above was accommodated in the mist generating chamber .
- a c-plane GaN substrate having a diameter of 5.08 cm (2 inches) was set on the stage 54 as the substrate 56, and the distance between the tip of the nozzle 52 and the substrate 56 was set to 120 mm.
- the temperature of the stage 54 was raised to 520° C. by the heater 62 and held for 30 minutes for temperature stabilization.
- a flow control valve (not shown) was opened to supply nitrogen gas as the carrier gas G into the film forming chamber 50 through the mist generating chamber 42, and the atmosphere in the film forming chamber 50 was sufficiently replaced with the carrier gas G. After that, the flow rate of carrier gas G was adjusted to 1.7 L/min.
- the Ga oxide film had a biaxially oriented crystal structure in which the c-axis was oriented in the substrate normal direction and the in-plane orientation was also oriented. From these results, it was confirmed that the obtained semiconductor film was an oriented film with a crystal structure composed of ⁇ -Ga 2 O 3 .
- the measurement of the Raman spectrum for the semiconductor film 58 was carried out by adjusting the laser output to 24 mW, the hole (confocal hole diameter) to 400 ⁇ m, the center wave number of the spectrometer to 520 cm ⁇ 1 , the slit to 100 ⁇ m, the grating to 1800 gr/mm, and the objective lens to Magnified by 100x and run in point analysis mode.
- the exposure time was 60 seconds, the number of times of accumulation was 2, and the wavenumber range was 100 to 900 cm ⁇ 1 .
- the neutral density filter was appropriately set so that the count of the strongest peak was 3000 or more and 50000 or less.
- the Ne lamp was used during the measurement, and the obtained spectrum was corrected so that the wave number of the peak top of the peak caused by the Ne lamp emission line was 278.28 cm ⁇ 1 .
- Baseline correction is performed by setting “Type” to “Lines”, “Degree” to “5”, “Attach” to “No”, “Style” to “-”, and selecting “Auto ' and went.
- the spectrum thus obtained is shown in FIG.
- the wavenumbers of the peak tops of the peaks near 250 cm ⁇ 1 at the central point X and the peripheral points A, B, C and D are N X , N A , N B , N C and N D
- the peak top wavenumbers of the peaks near 113 cm ⁇ 1 were defined as N X , N A , N B , N C and N D
- the half widths at wavenumbers NX , NA , NB , NC and ND were defined as WX , WA , WB , WC and WD .
- the peak intensity I 250 at the center point X and the peripheral points A, B, C and D with peak tops near 250 cm ⁇ 1 to the peak intensity I 260 at 260 cm ⁇ 1 The peak intensity ratio I 250 /I 260 was determined.
- the wavenumber N X at the peak top of the peak near 250 cm ⁇ 1 is 251.1 cm ⁇ 1
- the half width W X for this peak is calculated to be 8.8 cm ⁇ 1 , which is crystalline. It was found to be high ⁇ -Ga 2 O 3 . The results were as shown in Table 2.
- Example 2 when forming a film by the mist CVD method, the temperature of the stage 54 is stabilized at 500° C. before film formation is started, and the temperature is raised to 520° C. over 20 minutes.
- a semiconductor film was prepared and various evaluations were performed in the same manner as in Example 1, except that the film was made to have the same thickness.
- the peak top wavenumber N X of the peak near 250 cm ⁇ 1 is 246.8 cm ⁇ 1 , and the half width W X for this peak was calculated to be 6.7 cm ⁇ 1 . From this, it was found that the peak near 250 cm -1 was a sharp peak. Also, this semiconductor film had a low impurity concentration. The results were as shown in Tables 1 and 2.
- Example 3 Various evaluations were performed in the same manner as in Example 1, except that the ⁇ -Ga 2 O 3 -based semiconductor film was produced by the HVPE method described below instead of the mist CVD method (above (1)).
- the peak top wavenumber N X of the peak near 250 cm ⁇ 1 is 248.3 cm ⁇ 1 , and the half width W X for this peak was calculated to be 7.0 cm ⁇ 1 . From this, it was found that the peak near 250 cm -1 was a sharp peak. Also, this semiconductor film had a low impurity concentration. The results were as shown in Tables 1 and 2.
- HVPE apparatus 20 having the configuration shown in FIG. 2 was prepared.
- the configuration of the HVPE device 20 is as described above.
- Metallic Ga was placed in reactor 22 and hydrogen chloride gas (HCl) was supplied.
- Metal Ga and hydrogen chloride were thereby reacted to produce a Ga halide, which was supplied to the base substrate 24 for film formation.
- O 2 gas as an oxygen source and N 2 gas as a carrier gas were introduced into the reactor 22 .
- film formation by the HVPE method was performed at a growth temperature of 550° C. for 15 minutes to obtain the base substrate 24 for film formation and the semiconductor film formed thereon as a composite material.
- Example 4 In the above (1b') in the HVPE method, the film formation was started after the growth temperature was stabilized at 550 ° C., and the temperature was raised to 580 ° C. over 30 minutes. A semiconductor film was produced and various evaluations were performed. The peak top wave number N X of the peak near 250 cm ⁇ 1 is 254.9 cm ⁇ 1 , and the half width W X for this peak was calculated to be 5.9 cm ⁇ 1 . From this, it was found that the peak near 250 cm -1 was a sharp peak. Also, this semiconductor film had a low impurity concentration. The results were as shown in Tables 1 and 2.
- Example 5 Comparison
- the semiconductor film was produced and various evaluations were performed in the same manner as in Example 1. gone.
- the peak top wavenumber N X of the peak near 250 cm ⁇ 1 is 251.9 cm ⁇ 1
- the half width W X for this peak was calculated to be 16.5 cm ⁇ 1 . From this, it was found that the peak near 250 cm ⁇ 1 was a broad peak. In addition, this semiconductor film had a high impurity concentration. The results were as shown in Tables 1 and 2.
- Example 6 (Comparison) A semiconductor film was prepared and various evaluations were performed in the same manner as in Example 3, except that the growth temperature was stabilized at 500° C. in (1b′) above in the HVPE method.
- the peak top wavenumber N X of the peak near 250 cm ⁇ 1 is 251.7 cm ⁇ 1
- the half width W X for this peak was calculated to be 14.3 cm ⁇ 1 . From this, it was found that the peak near 250 cm ⁇ 1 was a broad peak.
- this semiconductor film had a high impurity concentration. The results were as shown in Tables 1 and 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Provided is an ε-Ga2O3-based semiconductor film having a low impurity concentration. The semiconductor film contains crystals each composed of ε-Ga2O3 or an ε-Ga2O3-based solid solution as a main phase, in which the half width of a peak appearing at around 250 cm-1 in a Raman spectrum of the semiconductor film as measured by laser Raman spectroscopy is 10 cm-1 or less.
Description
本発明は、ε-Ga2O3系半導体膜及びそれを含む複合基板に関する。
The present invention relates to an ε-Ga 2 O 3 -based semiconductor film and a composite substrate including the same.
近年、酸化ガリウム(Ga2O3)が半導体用材料として着目されている。酸化ガリウムはα、β、γ、δ及びεの5つの結晶形を有することが知られているが、この中で、ε-Ga2O3は約5eVのバンドギャップを有し、約870℃までの高い安定性を有すると共に、混晶形成によるバンドギャップ制御が可能である。また、高電子移動度トランジスタ(HEMT)への適用には二次元電子ガスの生成が必要であるところ、ε-Ga2O3は自発分極を示す結晶構造を有するため、高耐圧かつ低消費電力の次世代パワー半導体材料等として大きな注目を集めている。ε-Ga2O3は準安定相であり単結晶基板は実用化されておらず、異種基板上へのヘテロエピタキシャル成長により作製される。
In recent years, gallium oxide (Ga 2 O 3 ) has attracted attention as a semiconductor material. Gallium oxide is known to have five crystal forms α, β, γ, δ and ε, among which ε-Ga 2 O 3 has a bandgap of about 5 eV and is It has high stability up to and can control the bandgap by forming a mixed crystal. In addition, application to a high electron mobility transistor (HEMT) requires the generation of a two-dimensional electron gas, and since ε-Ga 2 O 3 has a crystal structure that exhibits spontaneous polarization, it has a high withstand voltage and low power consumption. It is attracting a great deal of attention as a next-generation power semiconductor material. ε-Ga 2 O 3 is a metastable phase, and a single crystal substrate has not been put to practical use, and is produced by heteroepitaxial growth on a heterogeneous substrate.
例えば、特許文献1(特許第6436538号)には、HVPE法(ハライド気相成長法)を用いて作製した、半導体素子に適用可能な不純物濃度の低いε-Ga2O3単結晶が開示されている。非特許文献1(Yuichi Oshima et al. "Epitaxial growth of phase-pure ε-Ga2O3 by halide vapor phase epitaxy" J. Appl. Phys, 118, 085301 (2015))には、HVPE法によりGaN基板やAlN基板上に形成したε-Ga2O3半導体膜が開示されている。特許文献2(特開2019-46984号公報)には、ミストCVD法により、準安定の結晶構造を有する半導体結晶を主成分として含む第1の半導体膜、及び第1の半導体膜の主成分とは組成が異なり、六方晶の結晶構造を有する半導体結晶を主成分として含む第2の半導体膜(主成分がε-Ga2O3)をそれぞれ形成することにより、半導体特性に優れた半導体装置を製造する方法が開示されている。
For example, Patent Document 1 (Patent No. 6436538) discloses an ε-Ga 2 O 3 single crystal with a low impurity concentration, which is applicable to semiconductor devices and which is produced using the HVPE method (halide vapor phase epitaxy method). ing. In Non-Patent Document 1 (Yuichi Oshima et al. "Epitaxial growth of phase-pure ε-Ga 2 O 3 by halide vapor phase epitaxy" J. Appl. Phys, 118, 085301 (2015)), a GaN substrate is prepared by the HVPE method. and ε-Ga 2 O 3 semiconductor films formed on AlN substrates. Patent Document 2 (Japanese Patent Application Laid-Open No. 2019-46984) describes a first semiconductor film containing a semiconductor crystal having a metastable crystal structure as a main component, and are different in composition and contain semiconductor crystals having a hexagonal crystal structure as the main component (the main component is ε-Ga 2 O 3 ), thereby manufacturing a semiconductor device having excellent semiconductor characteristics. A method of making is disclosed.
ε-Ga2O3は強誘電体特性を持ち、自発分極を生成する結晶構造を有するため、GaNと同様にHEMTへの応用が期待されている。こうした半導体の導電性等の特性は一般にドーピングにより制御される。例えば、成膜原料にドーパントを含ませる手法や、イオン注入といった手法が行われる。一方で、こうした意図的なドーピングとは異なり、成膜容器からのコンタミネーションや原料に由来した不純物が膜中に含まれることがある。こうした不純物は半導体膜の諸特性のバラツキ要因となりうることから、可能な限り低減させることが望ましい。特にFe、Ti等の遷移金属元素、Na等のアルカリ金属、F等のハロゲン元素が半導体膜に含まれると、半導体膜の諸特性のバラツキが生じやすい。
Since ε-Ga 2 O 3 has ferroelectric properties and a crystal structure that generates spontaneous polarization, it is expected to be applied to HEMTs like GaN. Properties such as conductivity of such semiconductors are generally controlled by doping. For example, a method of including a dopant in the film-forming raw material and a method of ion implantation are used. On the other hand, unlike such intentional doping, the film may contain contamination from the film deposition chamber or impurities derived from the raw material. Since such impurities can cause variations in various characteristics of the semiconductor film, it is desirable to reduce them as much as possible. In particular, if the semiconductor film contains transition metal elements such as Fe and Ti, alkali metals such as Na, and halogen elements such as F, the semiconductor film tends to vary in characteristics.
ところで、半導体膜の結晶性を評価する手法としてラマン分光法が知られている。ラマン分光法では物質に光を照射して散乱を生じさせ、その散乱光を分光してラマンスペクトルを得ることで、物質の結晶性を評価することができる。例えば、ある物質のラマンスペクトルにおける所定のラマンピークの半値幅が小さい場合、その物質の結晶性は高いものと評価することができる。例えば、非特許文献2(Francesco Boschi, "Growth and Investigation of Different Gallium Oxide Polymorphs," UNIVERSITA DEGLI STUDI DI PARMA, Dottorato di Ricerca in Fisica, Ciclo XXIX, 2017)には、c面サファイア基板上に成膜されたε-Ga2O3膜のラマンスペクトルが報告されているが、250cm-1付近のピークの半値幅は比較的ブロードであり、膜の結晶性は低かった。
By the way, Raman spectroscopy is known as a technique for evaluating the crystallinity of a semiconductor film. In Raman spectroscopy, the crystallinity of a substance can be evaluated by irradiating the substance with light to cause scattering, and obtaining a Raman spectrum by analyzing the scattered light. For example, when the half width of a predetermined Raman peak in the Raman spectrum of a substance is small, the substance can be evaluated as having high crystallinity. For example, Non-Patent Document 2 (Francesco Boschi, "Growth and Investigation of Different Gallium Oxide Polymorphs," UNIVERSITA DEGLI STUDI DI PARMA, Dottorato di Ricerca in Fisica, Ciclo XXIX, 2017) describes a film formed on a c-plane sapphire substrate. Although the Raman spectrum of the ε-Ga 2 O 3 film has been reported, the half width of the peak near 250 cm −1 was relatively broad and the crystallinity of the film was low.
上述したように、ε-Ga2O3は強誘電体特性を持ち、自発分極を生成する結晶構造を有し、混晶形成によるバンドギャップ制御が可能であるという利点を有するため、GaNと同様に高電子移動度トランジスタ(HEMT)への応用が期待されている。しかし、不純物が膜中に含まれることがあり、これにより半導体膜の諸特性のバラツキが生じてしまうという問題がある。このように、従来は不純物が少ないε-Ga2O3系半導体膜を得ることが困難であった。
As described above, ε-Ga 2 O 3 has ferroelectric properties, has a crystal structure that generates spontaneous polarization, and has the advantage of being able to control the bandgap by forming a mixed crystal. It is expected to be applied to high electron mobility transistors (HEMTs) in the near future. However, there is a problem that impurities may be contained in the film, which causes variations in various characteristics of the semiconductor film. Thus, conventionally, it has been difficult to obtain an ε-Ga 2 O 3 -based semiconductor film containing few impurities.
本発明者らは、今般、ラマンスペクトルにおける250cm-1付近のピークの半値幅を制御してε-Ga2O3系半導体膜の結晶性を高めることにより、ε-Ga2O3系半導体膜の不純物濃度を低減できるとの知見を得た。
The inventors of the present invention have recently developed an ε-Ga 2 O 3 based semiconductor film by increasing the crystallinity of the ε-Ga 2 O 3 based semiconductor film by controlling the half width of the peak near 250 cm −1 in the Raman spectrum. It was found that the impurity concentration of
したがって、本発明の目的は、不純物濃度が低いε-Ga2O3系半導体膜を提供することにある。
Accordingly, an object of the present invention is to provide an ε-Ga 2 O 3 -based semiconductor film with a low impurity concentration.
本発明によれば、以下の態様が提供される。
[態様1]
ε-Ga2O3、又はε-Ga2O3系固溶体で構成される結晶を主相とする、半導体膜であって、
レーザーラマン分光法により測定される、前記半導体膜のラマンスペクトルにおける250cm-1付近のピークの半値幅が10cm-1以下である、半導体膜。
[態様2]
前記半導体膜の表面の、前記半導体膜の外周縁に内接する最大円の中心点X並びに4つの外周点A、B、C及びDの各々において、レーザーラマン分光法により測定される、前記半導体膜のラマンスペクトルにおける250cm-1付近のピークの半値幅が10cm-1以下であり、
前記外周点A、B、C及びDが、i)前記外周点A及び前記外周点Cを結ぶ直線と、前記外周点B及び前記外周点Dを結ぶ直線とが前記中心点Xで直角に交わり、かつ、ii)前記外周点A、B、C及びDの前記半導体膜の外縁からの各最短距離が前記半導体膜の半径の1/5となるように定められる、態様1に記載の半導体膜。
[態様3]
前記半導体膜のラマンスペクトルにおいて、250cm-1付近でのピーク強度I250の、260cm-1付近でのピーク強度I260に対するピーク強度比I250/I260が、2.0以上である、態様1又は2に記載の半導体膜。
[態様4]
前記半導体膜のラマンスペクトルにおける113cm-1付近のピークの半値幅が10cm-1以下である、態様1~3のいずれか一つに記載の半導体膜。
[態様5]
前記半導体膜の表面のTi濃度が1.0×1015atoms/cm3以下である、態様1~4のいずれか一つに記載の半導体膜。
[態様6]
前記半導体膜の表面のFe濃度が1.0×1015atoms/cm3以下である、態様1~5のいずれか一つに記載の半導体膜。
[態様7]
前記半導体膜の表面のNa濃度が2.0×1013atoms/cm3以下である、態様1~6のいずれか一つに記載の半導体膜。
[態様8]
前記半導体膜の表面のF濃度が2.0×1015atoms/cm3以下である、態様1~7のいずれか一つに記載の半導体膜。
[態様9]
前記半導体膜の表面のSi濃度が1.0×1016atoms/cm3以下である、態様1~8のいずれか一つに記載の半導体膜。
[態様10]
GaN単結晶基板と、前記GaN単結晶基板上に形成された態様1~9のいずれか一つに記載の半導体膜とを備えた、複合基板。 According to the present invention, the following aspects are provided.
[Aspect 1]
A semiconductor film whose main phase is a crystal composed of ε-Ga 2 O 3 or an ε-Ga 2 O 3 -based solid solution,
A semiconductor film, wherein the half width of the peak near 250 cm −1 in the Raman spectrum of the semiconductor film measured by laser Raman spectroscopy is 10 cm −1 or less.
[Aspect 2]
The semiconductor film measured by laser Raman spectroscopy at the center point X of the largest circle inscribed in the outer periphery of the semiconductor film and each of the four outer peripheral points A, B, C and D on the surface of the semiconductor film. The half width of the peak near 250 cm -1 in the Raman spectrum of is 10 cm -1 or less,
i) a straight line connecting the outer peripheral points A and C and a straight line connecting the outer peripheral points B and D intersect at right angles at the center point X; and ii) each of the shortest distances of the perimeter points A, B, C, and D from the outer edge of the semiconductor film is determined to be ⅕ of the radius of the semiconductor film. .
[Aspect 3]
Aspect 1 , wherein in the Raman spectrum of the semiconductor film, the peak intensity ratio I 250 /I 260 of the peak intensity I 250 near 250 cm −1 to the peak intensity I 260 near 260 cm −1 is 2.0 or more. 3. or the semiconductor film according to 2.
[Aspect 4]
The semiconductor film according to any one ofModes 1 to 3, wherein the half width of the peak near 113 cm −1 in the Raman spectrum of the semiconductor film is 10 cm −1 or less.
[Aspect 5]
The semiconductor film according to any one ofModes 1 to 4, wherein the surface Ti concentration of the semiconductor film is 1.0×10 15 atoms/cm 3 or less.
[Aspect 6]
The semiconductor film according to any one ofModes 1 to 5, wherein the surface Fe concentration of the semiconductor film is 1.0×10 15 atoms/cm 3 or less.
[Aspect 7]
The semiconductor film according to any one ofModes 1 to 6, wherein the surface Na concentration of the semiconductor film is 2.0×10 13 atoms/cm 3 or less.
[Aspect 8]
The semiconductor film according to any one ofModes 1 to 7, wherein the semiconductor film has a surface F concentration of 2.0×10 15 atoms/cm 3 or less.
[Aspect 9]
The semiconductor film according to any one ofModes 1 to 8, wherein the surface Si concentration of the semiconductor film is 1.0×10 16 atoms/cm 3 or less.
[Aspect 10]
A composite substrate comprising a GaN single crystal substrate and the semiconductor film according to any one ofaspects 1 to 9 formed on the GaN single crystal substrate.
[態様1]
ε-Ga2O3、又はε-Ga2O3系固溶体で構成される結晶を主相とする、半導体膜であって、
レーザーラマン分光法により測定される、前記半導体膜のラマンスペクトルにおける250cm-1付近のピークの半値幅が10cm-1以下である、半導体膜。
[態様2]
前記半導体膜の表面の、前記半導体膜の外周縁に内接する最大円の中心点X並びに4つの外周点A、B、C及びDの各々において、レーザーラマン分光法により測定される、前記半導体膜のラマンスペクトルにおける250cm-1付近のピークの半値幅が10cm-1以下であり、
前記外周点A、B、C及びDが、i)前記外周点A及び前記外周点Cを結ぶ直線と、前記外周点B及び前記外周点Dを結ぶ直線とが前記中心点Xで直角に交わり、かつ、ii)前記外周点A、B、C及びDの前記半導体膜の外縁からの各最短距離が前記半導体膜の半径の1/5となるように定められる、態様1に記載の半導体膜。
[態様3]
前記半導体膜のラマンスペクトルにおいて、250cm-1付近でのピーク強度I250の、260cm-1付近でのピーク強度I260に対するピーク強度比I250/I260が、2.0以上である、態様1又は2に記載の半導体膜。
[態様4]
前記半導体膜のラマンスペクトルにおける113cm-1付近のピークの半値幅が10cm-1以下である、態様1~3のいずれか一つに記載の半導体膜。
[態様5]
前記半導体膜の表面のTi濃度が1.0×1015atoms/cm3以下である、態様1~4のいずれか一つに記載の半導体膜。
[態様6]
前記半導体膜の表面のFe濃度が1.0×1015atoms/cm3以下である、態様1~5のいずれか一つに記載の半導体膜。
[態様7]
前記半導体膜の表面のNa濃度が2.0×1013atoms/cm3以下である、態様1~6のいずれか一つに記載の半導体膜。
[態様8]
前記半導体膜の表面のF濃度が2.0×1015atoms/cm3以下である、態様1~7のいずれか一つに記載の半導体膜。
[態様9]
前記半導体膜の表面のSi濃度が1.0×1016atoms/cm3以下である、態様1~8のいずれか一つに記載の半導体膜。
[態様10]
GaN単結晶基板と、前記GaN単結晶基板上に形成された態様1~9のいずれか一つに記載の半導体膜とを備えた、複合基板。 According to the present invention, the following aspects are provided.
[Aspect 1]
A semiconductor film whose main phase is a crystal composed of ε-Ga 2 O 3 or an ε-Ga 2 O 3 -based solid solution,
A semiconductor film, wherein the half width of the peak near 250 cm −1 in the Raman spectrum of the semiconductor film measured by laser Raman spectroscopy is 10 cm −1 or less.
[Aspect 2]
The semiconductor film measured by laser Raman spectroscopy at the center point X of the largest circle inscribed in the outer periphery of the semiconductor film and each of the four outer peripheral points A, B, C and D on the surface of the semiconductor film. The half width of the peak near 250 cm -1 in the Raman spectrum of is 10 cm -1 or less,
i) a straight line connecting the outer peripheral points A and C and a straight line connecting the outer peripheral points B and D intersect at right angles at the center point X; and ii) each of the shortest distances of the perimeter points A, B, C, and D from the outer edge of the semiconductor film is determined to be ⅕ of the radius of the semiconductor film. .
[Aspect 3]
Aspect 1 , wherein in the Raman spectrum of the semiconductor film, the peak intensity ratio I 250 /I 260 of the peak intensity I 250 near 250 cm −1 to the peak intensity I 260 near 260 cm −1 is 2.0 or more. 3. or the semiconductor film according to 2.
[Aspect 4]
The semiconductor film according to any one of
[Aspect 5]
The semiconductor film according to any one of
[Aspect 6]
The semiconductor film according to any one of
[Aspect 7]
The semiconductor film according to any one of
[Aspect 8]
The semiconductor film according to any one of
[Aspect 9]
The semiconductor film according to any one of
[Aspect 10]
A composite substrate comprising a GaN single crystal substrate and the semiconductor film according to any one of
半導体膜
本発明による半導体膜は、ε-Ga2O3、又はε-Ga2O3系固溶体で構成される結晶を主相とするものである。したがって、本発明による半導体膜は、ε-Ga2O3系半導体膜と称することができる。また、この半導体膜は、レーザーラマン分光法により測定される、半導体膜のラマンスペクトルにおける250cm-1付近のピークの半値幅が10cm-1以下である。このように、ラマンスペクトルにおける250cm-1付近のピークの半値幅を制御してε-Ga2O3系半導体膜の結晶性を高めることにより、ε-Ga2O3系半導体膜の不純物濃度を低減できる。ここで、ラマンスペクトルにおける波数(ラマンシフト)の「付近」とは、典型的にはその波数から±5.0cm-1の範囲を意味する。例えば、「250cm-1付近のピーク」とは、典型的には「245~255cm-1のピーク」を意味する。 Semiconductor Film The semiconductor film according to the present invention has a main phase of crystals composed of ε-Ga 2 O 3 or ε-Ga 2 O 3 solid solution. Therefore, the semiconductor film according to the present invention can be called an ε-Ga 2 O 3 -based semiconductor film. In addition, this semiconductor film has a Raman spectrum of the semiconductor film having a half width of 10 cm −1 or less at around 250 cm −1 . Thus, by controlling the half-value width of the peak near 250 cm −1 in the Raman spectrum to increase the crystallinity of the ε-Ga 2 O 3 -based semiconductor film, the impurity concentration of the ε-Ga 2 O 3 -based semiconductor film can be reduced. can be reduced. Here, “near” a wavenumber (Raman shift) in the Raman spectrum typically means a range of ±5.0 cm −1 from that wavenumber. For example, a “peak around 250 cm −1 ” typically means a “peak between 245 and 255 cm −1 ”.
本発明による半導体膜は、ε-Ga2O3、又はε-Ga2O3系固溶体で構成される結晶を主相とするものである。したがって、本発明による半導体膜は、ε-Ga2O3系半導体膜と称することができる。また、この半導体膜は、レーザーラマン分光法により測定される、半導体膜のラマンスペクトルにおける250cm-1付近のピークの半値幅が10cm-1以下である。このように、ラマンスペクトルにおける250cm-1付近のピークの半値幅を制御してε-Ga2O3系半導体膜の結晶性を高めることにより、ε-Ga2O3系半導体膜の不純物濃度を低減できる。ここで、ラマンスペクトルにおける波数(ラマンシフト)の「付近」とは、典型的にはその波数から±5.0cm-1の範囲を意味する。例えば、「250cm-1付近のピーク」とは、典型的には「245~255cm-1のピーク」を意味する。 Semiconductor Film The semiconductor film according to the present invention has a main phase of crystals composed of ε-Ga 2 O 3 or ε-Ga 2 O 3 solid solution. Therefore, the semiconductor film according to the present invention can be called an ε-Ga 2 O 3 -based semiconductor film. In addition, this semiconductor film has a Raman spectrum of the semiconductor film having a half width of 10 cm −1 or less at around 250 cm −1 . Thus, by controlling the half-value width of the peak near 250 cm −1 in the Raman spectrum to increase the crystallinity of the ε-Ga 2 O 3 -based semiconductor film, the impurity concentration of the ε-Ga 2 O 3 -based semiconductor film can be reduced. can be reduced. Here, “near” a wavenumber (Raman shift) in the Raman spectrum typically means a range of ±5.0 cm −1 from that wavenumber. For example, a “peak around 250 cm −1 ” typically means a “peak between 245 and 255 cm −1 ”.
前述したように、ε-Ga2O3は強誘電体特性を持ち、自発分極を生成する結晶構造を有し、混晶形成によるバンドギャップ制御が可能であるという利点を有するため、GaNと同様に高電子移動度トランジスタ(HEMT)への応用が期待されている。しかし、不純物が膜中に含まれることがあり、これにより半導体膜の諸特性のバラツキが生じてしまうという問題がある。このように、従来は不純物が少ないε-Ga2O3系半導体膜を得ることが困難であった。この点、本発明の半導体膜によれば、膜の結晶性を高めることにより、ε-Ga2O3系半導体膜の不純物濃度を低減できるため、上述した問題を好都合に解消することができる。
As described above, ε-Ga 2 O 3 has ferroelectric properties, has a crystal structure that generates spontaneous polarization, and has the advantage of being able to control the bandgap by forming a mixed crystal. It is expected to be applied to high electron mobility transistors (HEMTs) in the near future. However, there is a problem that impurities may be contained in the film, which causes variations in various characteristics of the semiconductor film. Thus, conventionally, it has been difficult to obtain an ε-Ga 2 O 3 -based semiconductor film containing few impurities. In this respect, according to the semiconductor film of the present invention, the impurity concentration of the ε-Ga 2 O 3 based semiconductor film can be reduced by increasing the crystallinity of the film, so the above-described problems can be conveniently solved.
この半導体膜は、膜表面の、半導体膜の外周縁に内接する最大円(以下、最大内接円という)の中心点X並びに4つの外周点A、B、C及びDの各々において、レーザーラマン分光法により測定される、半導体膜のラマンスペクトルにおける250cm-1付近のピークの半値幅が10cm-1以下であるのが好ましい。このとき、外周点A、B、C及びDが、i)外周点A及び外周点Cを結ぶ直線と、外周点B及び外周点Dを結ぶ直線とが中心点Xで直角に交わり、かつ、ii)外周点A、B、C及びDの半導体膜の外縁からの各最短距離が半導体膜の半径の1/5となるように定められる。また、この半導体膜は円形状であるのが好ましく、その場合は図1に示されるように半導体膜10の最大内接円は外周縁と一致しうる。このように互いに十分に離れた5点においてラマンスペクトルにおける250cm-1付近のピークの半値幅が10cm-1以下であるε-Ga2O3系半導体膜は、膜の中心部から外周部に至るまでの広範囲にわたって、上記半値幅が小さいものということができ、そのような半導体膜は結晶性が高く不純物濃度が低い。
This semiconductor film is measured at the central point X of the maximum circle (hereinafter referred to as the maximum inscribed circle) inscribed in the outer periphery of the semiconductor film on the film surface and at each of the four outer peripheral points A, B, C and D. The half width of the peak near 250 cm −1 in the Raman spectrum of the semiconductor film measured by spectroscopy is preferably 10 cm −1 or less. At this time, perimeter points A, B, C and D are such that: i) a straight line connecting perimeter points A and C and a straight line connecting perimeter points B and D intersect at right angles at center point X, and ii) Each shortest distance from the outer edge of the semiconductor film to the perimeter points A, B, C and D is determined to be 1/5 of the radius of the semiconductor film. Also, the semiconductor film is preferably circular, in which case the maximum inscribed circle of the semiconductor film 10 can coincide with the outer periphery, as shown in FIG. The ε-Ga 2 O 3 -based semiconductor film, in which the half width of the peak near 250 cm −1 in the Raman spectrum is 10 cm −1 or less at five points sufficiently separated from each other, extends from the center to the outer periphery of the film. It can be said that the half-value width is small over a wide range of up to, and such a semiconductor film has high crystallinity and low impurity concentration.
本発明の半導体膜は、ラマンスペクトルにおける250cm-1付近のピークの半値幅が10cm-1以下であり、好ましくは8.0cm-1以下であり、より好ましくは7.0cm-1以下である。不純物濃度の低減の観点から、ラマンスペクトルにおける250cm-1付近のピークの半値幅は小さければ小さい方が良いため、ラマンスペクトルにおける250cm-1付近のピークの半値幅の下限値は特に限定されないが、典型的には0.1cm-1以上、より典型的には1.0cm-1以上である。
In the semiconductor film of the present invention, the half width of the peak near 250 cm −1 in Raman spectrum is 10 cm −1 or less, preferably 8.0 cm −1 or less, more preferably 7.0 cm −1 or less. From the viewpoint of reducing the impurity concentration, the smaller the half-width of the peak near 250 cm -1 in the Raman spectrum, the better. Therefore, the lower limit of the half-width of the peak near 250 cm -1 in the Raman spectrum is not particularly limited. It is typically 0.1 cm −1 or more, more typically 1.0 cm −1 or more.
本発明の半導体膜は、(好ましくは最大内接円の中心点X並びに外周点A、B、C及びDの各々における)ラマンスペクトルにおいて、250cm-1付近でのピーク強度I250の、260cm-1付近でのピーク強度I260に対するピーク強度比I250/I260が、2.0以上であるのが好ましく、より好ましくは5.0以上であり、さらに好ましくは8.0以上である。I250/I260は、高い方が良いためその上限値は特に限定されないが、典型的には50以下である。ここで、「260cm-1付近」とは、典型的には250cm-1付近でのピークの波数に10cm-1を足した波数を意味する。例えば、250cm-1付近のピークのピークトップが245cm-1であった場合、「260cm-1付近」のピークとは255cm-1のピークを意味する。
The semiconductor film of the present invention has a peak intensity I 250 near 250 cm −1 in the Raman spectrum (preferably at the center point X of the largest inscribed circle and at each of the outer peripheral points A, B, C and D) at 260 cm −1 . The peak intensity ratio I 250 /I 260 to the peak intensity I 260 near 1 is preferably 2.0 or more, more preferably 5.0 or more, and still more preferably 8.0 or more. The upper limit of I 250 /I 260 is preferably 50 or less, although the upper limit is not particularly limited because the higher the better. Here, “ around 260 cm −1 ” typically means a wavenumber obtained by adding 10 cm −1 to the peak wavenumber around 250 cm −1 . For example, when the peak top of the peak around 250 cm −1 is 245 cm −1 , the peak “around 260 cm −1 ” means the peak at 255 cm −1 .
本発明の半導体膜は、(好ましくは最大内接円の中心点X並びに外周点A、B、C及びDの各々における)ラマンスペクトルにおける113cm-1付近のピークの半値幅が10cm-1以下であるのが好ましく、より好ましくは8.0cm-1以下であり、さらに好ましくは6.0cm-1以下である。不純物濃度の低減の観点から、ラマンスペクトルにおける113cm-1付近のピークの半値幅は小さければ小さい方が良いため、ラマンスペクトルにおける113cm-1付近のピークの半値幅の下限値は特に限定されないが、典型的には0.1cm-1以上、より典型的には1.0cm-1以上である。
In the semiconductor film of the present invention, the half width of the peak near 113 cm -1 in the Raman spectrum (preferably at the center point X of the maximum inscribed circle and each of the outer peripheral points A, B, C and D) is 10 cm -1 or less. is preferably 8.0 cm -1 or less, and even more preferably 6.0 cm -1 or less. From the viewpoint of reducing the impurity concentration, the smaller the half width of the peak near 113 cm -1 in the Raman spectrum, the better. Therefore, the lower limit of the half width of the peak near 113 cm -1 in the Raman spectrum is not particularly limited, It is typically 0.1 cm −1 or more, more typically 1.0 cm −1 or more.
上述したように、特にFe、Ti等の遷移金属元素、Na等のアルカリ金属、F等のハロゲン元素が半導体膜に含まれると、半導体膜の諸特性のバラツキが生じやすい。この点、本発明の半導体膜は結晶性が高いため含まれうる不純物を少なくすることができる。すなわち、半導体膜の表面のTi濃度は1.0×1015atoms/cm3以下であるのが好ましく、より好ましくは1.0×1014atoms/cm3以下、さらに好ましくは1.0×1013atoms/cm3以下である。半導体膜の表面のFe濃度は1.0×1015atoms/cm3以下であるのが好ましく、より好ましくは1.0×1014atoms/cm3以下、さらに好ましくは1.0×1013atoms/cm3以下である。半導体膜の表面のNa濃度は2.0×1013atoms/cm3以下であるのが好ましく、より好ましくは1.0×1012atoms/cm3以下、さらに好ましくは1.0×1011atoms/cm3以下である。半導体膜の表面のF濃度は2.0×1015atoms/cm3以下であるのが好ましく、より好ましくは1.0×1014atoms/cm3以下、さらに好ましくは1.0×1013atoms/cm3以下である。同様に、半導体膜の表面のSi濃度は1.0×1016atoms/cm3以下であるのが好ましく、より好ましくは1.0×1015atoms/cm3以下、さらに好ましくは1.0×1014atoms/cm3以下である。半導体膜表面におけるTi、Fe、Na、F及びSiの各元素の濃度は低い方が良いため、その下限は特に限定されない。
As described above, especially when the semiconductor film contains transition metal elements such as Fe and Ti, alkali metals such as Na, and halogen elements such as F, variations in various characteristics of the semiconductor film tend to occur. In this respect, since the semiconductor film of the present invention has high crystallinity, impurities that can be contained can be reduced. That is, the Ti concentration on the surface of the semiconductor film is preferably 1.0×10 15 atoms/cm 3 or less, more preferably 1.0×10 14 atoms/cm 3 or less, further preferably 1.0×10 14 atoms/cm 3 or less. 13 atoms/cm 3 or less. The Fe concentration on the surface of the semiconductor film is preferably 1.0×10 15 atoms/cm 3 or less, more preferably 1.0×10 14 atoms/cm 3 or less, and still more preferably 1.0×10 13 atoms/cm 3 . / cm 3 or less. The Na concentration on the surface of the semiconductor film is preferably 2.0×10 13 atoms/cm 3 or less, more preferably 1.0×10 12 atoms/cm 3 or less, still more preferably 1.0×10 11 atoms/cm 3 . / cm 3 or less. The F concentration on the surface of the semiconductor film is preferably 2.0×10 15 atoms/cm 3 or less, more preferably 1.0×10 14 atoms/cm 3 or less, and still more preferably 1.0×10 13 atoms/cm 3 . / cm 3 or less. Similarly, the Si concentration on the surface of the semiconductor film is preferably 1.0×10 16 atoms/cm 3 or less, more preferably 1.0×10 15 atoms/cm 3 or less, and still more preferably 1.0×10 15 atoms/cm 3 or less. It is 10 14 atoms/cm 3 or less. Since the lower the concentration of each element of Ti, Fe, Na, F, and Si in the surface of the semiconductor film, the better, the lower limit is not particularly limited.
もっとも、Siは半導体膜へのドーパントとして用いられることもあり、その場合、半導体膜の表面のSi濃度は上記好ましい範囲の上限を超えてもよく、例えば1.0×1015~1.0×1021atoms/cm3でありうる。
However, Si may also be used as a dopant for a semiconductor film, and in that case, the Si concentration on the surface of the semiconductor film may exceed the upper limit of the preferred range, for example, 1.0×10 15 to 1.0×10 15 . It can be 10 21 atoms/cm 3 .
上述のとおり、本発明の半導体膜は、ε-Ga2O3、又はε-Ga2O3系固溶体で構成される結晶を主相とするものである。本明細書において「ε-Ga2O3、又はε-Ga2O3系固溶体で構成される結晶を主相とする」とは、ε-Ga2O3、又はε-Ga2O3系固溶体で構成される結晶が半導体膜の80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上、さらに好ましくは97重量%以上、特に好ましくは99重量%以上、最も好ましくは100重量%を占めていることを意味する。ε-Ga2O3系固溶体は、ε-Ga2O3に他の成分が固溶したものである。例えば、本発明の半導体膜は、ε-Ga2O3に、Cr2O3、Fe2O3、Ti2O3、V2O3、Ir2O3、Rh2O3、In2O3及びAl2O3からなる群から選択される1種以上の成分が固溶したε-Ga2O3系固溶体で構成されるものとすることができる。また、これらの成分を固溶させることで半導体膜のバンドギャップ、電気特性、及び/又は格子定数を制御することが可能となる。これらの成分の固溶量は所望の特性に合わせて適宜変更することができる。また、ε-Ga2O3系固溶体には、その他の成分として、Si、Sn、Ge、N、Mg等の元素がドーパントとして含まれていてもよい。
As described above, the semiconductor film of the present invention has a main phase of crystals composed of ε-Ga 2 O 3 or ε-Ga 2 O 3 solid solution. In the present specification, "having a crystal composed of an ε-Ga 2 O 3 or ε-Ga 2 O 3 system solid solution as a main phase" means ε-Ga 2 O 3 or ε-Ga 2 O 3 system Crystals composed of a solid solution account for 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more, still more preferably 97% by weight or more, particularly preferably 99% by weight or more, and most preferably 100% by weight of the semiconductor film. % by weight. The ε-Ga 2 O 3 solid solution is a solid solution of ε-Ga 2 O 3 with other components. For example, the semiconductor film of the present invention contains ε-Ga 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , Ti 2 O 3 , V 2 O 3 , Ir 2 O 3 , Rh 2 O 3 , In 2 O 3 and Al 2 O 3 . In addition, it is possible to control the bandgap, electrical properties, and/or lattice constant of the semiconductor film by dissolving these components. The solid solution amount of these components can be appropriately changed according to the desired properties. In addition, the ε-Ga 2 O 3 -based solid solution may contain, as other components, elements such as Si, Sn, Ge, N and Mg as dopants.
ところで、ε-Ga2O3の結晶構造は、現在の技術水準では十分に解明されていないこともあり、結晶構造解析で、κ-Ga2O3と同定されるものがε-Ga2O3としても同定されたり、あるいはε-Ga2O3と同定されるものがκ-Ga2O3としても同定されたりすることが起こりうる。例えば、非特許文献3(Ildiko Cora et al., "The real structure of ε-Ga2O3 and its relation to κ-phase," CrystEngComm, 2017, 19, 1509-1516)には、プローブ技術の分解能によっては、ε-Ga2O3の結晶構造(六方晶)とκ-Ga2O3の結晶構造(直方晶)とが混同される可能性があることが示唆されている。したがって、本明細書において「ε-Ga2O3」という用語は、ε-Ga2O3のみを指すものではなく、κ-Ga2O3をも指すものとする。すなわち、本明細書において、κ-Ga2O3の結晶構造を有すると同定されるものであっても、「ε-Ga2O3」とみなすものとし、「ε-Ga2O3」なる用語に包含されるものとする。
By the way, the crystal structure of ε-Ga 2 O 3 has not been sufficiently elucidated at the current state of the art . 3 , or what is identified as ε-Ga 2 O 3 may also be identified as κ-Ga 2 O 3 . For example, Non-Patent Document 3 (Ildiko Cora et al., "The real structure of ε-Ga 2 O 3 and its relation to κ-phase," CrystEngComm, 2017, 19, 1509-1516) describes the resolution of probe technology Some have suggested that the crystal structure of ε-Ga 2 O 3 (hexagonal) and the crystal structure of κ-Ga 2 O 3 (rectangular) may be confused. Therefore, the term “ε-Ga 2 O 3 ” herein refers not only to ε-Ga 2 O 3 but also to κ-Ga 2 O 3 . That is, in the present specification, even those identified as having the crystal structure of κ-Ga 2 O 3 are regarded as “ε-Ga 2 O 3 ”, and are referred to as “ε-Ga 2 O 3 ”. shall be included in the term.
本発明のε-Ga2O3系半導体膜の略法線方向の配向方位は特に限定されないが、c軸配向であることが好ましい。もっとも、典型的なε-Ga2O3系半導体膜は、ε-Ga2O3、又はε-Ga2O3と異種材料の混晶で構成され、c軸及びa軸の2軸方向に配向しているものである。2軸配向している限り、ε-Ga2O3系半導体膜は、モザイク結晶であってもよい。モザイク結晶とは、明瞭な粒界は有しないが、結晶の配向方位がc軸及びa軸の一方又は両方がわずかに異なる結晶の集まりになっているものをいう。2軸配向の評価方法は、特に限定されるものではないが、例えばEBSD(Electron Back Scatter Diffraction Patterns)法やX線極点図等の公知の分析手法を用いることができる。例えば、EBSD法を用いる場合、2軸配向ε-Ga2O3膜の表面(膜面)、又は膜面と直交する断面の逆極点図マッピングを測定する。得られた逆極点図マッピングにおいて、(A)膜面の略法線方向に特定方位に配向していること、かつ、(B)法線方向と直交する略膜面内方向に略法線方向の配向方位と直交する軸に配向していること、という2つの条件を満たすときに略法線方向と略膜面方向の2軸に配向していると定義できる。言い換えると、上記2つの条件を満たしている場合に、c軸及びa軸の2軸に配向していると判断する。例えば膜面の略法線方向がc軸に配向している場合、略膜面内方向がc軸と直交する特定方位(例えばa軸)に配向していればよい。
The orientation of the ε-Ga 2 O 3 -based semiconductor film of the present invention in the substantially normal direction is not particularly limited, but c-axis orientation is preferred. However, a typical ε-Ga 2 O 3 -based semiconductor film is composed of ε-Ga 2 O 3 or a mixed crystal of ε-Ga 2 O 3 and a different material, and has It is oriented. The ε-Ga 2 O 3 -based semiconductor film may be a mosaic crystal as long as it is biaxially oriented. Mosaic crystals are aggregates of crystals that do not have distinct grain boundaries but have slightly different crystal orientations in one or both of the c-axis and a-axis. A method for evaluating the biaxial orientation is not particularly limited, and known analysis techniques such as an EBSD (Electron Back Scatter Diffraction Patterns) method and an X-ray pole figure can be used. For example, when using the EBSD method, inverse pole figure mapping of the surface (film surface) of the biaxially oriented ε-Ga 2 O 3 film or a cross section perpendicular to the film surface is measured. In the obtained inverse pole figure mapping, (A) it is oriented in a specific direction in the approximate normal direction of the film surface, and (B) the approximate normal direction is in the approximate in-plane direction perpendicular to the normal direction. It can be defined that the film is oriented along two axes, ie, the approximate normal direction and the approximate film surface direction, when the two conditions are satisfied. In other words, when the above two conditions are satisfied, it is determined that the crystal is oriented along two axes, the c-axis and the a-axis. For example, when the substantially normal direction of the film surface is aligned with the c-axis, the substantially in-plane direction of the film may be aligned with a specific direction (for example, the a-axis) perpendicular to the c-axis.
本発明の半導体膜は、その外周縁に内接する最大円の直径(すなわち最大内接円)が5.08cm(2インチ)以上となるサイズを有していてもよく、最大内接円の直径は10.0cm以上であってもよい。最大内接円の直径の上限値は特に限定されないが、典型的には30.0cm以下、より典型的には20.0cm以下である。典型的な半導体膜は円形状であり、その場合は図1に示されるように半導体膜10の最大内接円の直径は半導体膜10の直径と一致しうる。なお、本明細書において、「円形状」とは、完全な円形状である必要はなく、全体として概ね円形と認識されうる略円形状であってもよい。例えば、円形の一部が結晶方位の特定又はその他の目的のために切り欠かれた形状や円形の一部にスリットが設けられた形状であってもよく、その場合は切り欠かれた外周縁やスリットを除いた外周縁に内接する最大円の直径に基づきサイズを決定すればよい。ところで、本発明の半導体膜はラマンスペクトルにおける250cm-1付近のピークの半値幅が10cm-1以下と小さいことを特徴としたものであり、中心点X並びに外周点A、B、C及びDは、半導体膜全体の代表的なピーク半値幅を評価できるよう、一つの例として便宜的に規定したものにすぎない。したがって、中心点X並びに外周点A、B、C及びDの位置を一義的に決定するため、半導体膜の形状を好ましくは円形と述べたが、半導体膜の形状が円形でなくても本質的な意味は何ら変わらない。例えば、半導体膜の形状が正方形や矩形(長方形)であっても、半導体膜の250cm-1付近のピークの半値幅が小さいものであれば本発明の半導体膜に包含される。このような形状の半導体膜においては、正方形や矩形の半導体膜を上面視したときに膜の外周縁に内接する最大円(最大内接円)を仮想円として規定し、その仮想円の中心点Xと仮想円の直径から(上述した円形状の半導体膜の場合と同様にして)外周点A、B、C及びDの位置を決定すればよい。こうして決定した中心点X並びに外周点A、B、C及びDにおける250cm-1付近のピークの半値幅を評価することで、円形状の半導体膜と同様の評価を実施することができる。なお、正方形や矩形の半導体膜の一部にスリットが設けられていたとしても、正方形や矩形の半導体膜を上面視したときに膜の外周縁に内接する最大円(最大内接円)を仮想円として規定することに変わりはない。
The semiconductor film of the present invention may have a size such that the diameter of the largest circle inscribed in its outer periphery (i.e., the largest inscribed circle) is 5.08 cm (2 inches) or more, and the diameter of the largest inscribed circle may be 10.0 cm or more. Although the upper limit of the diameter of the maximum inscribed circle is not particularly limited, it is typically 30.0 cm or less, more typically 20.0 cm or less. A typical semiconductor film is circular in shape, in which case the diameter of the largest inscribed circle of semiconductor film 10 may match the diameter of semiconductor film 10, as shown in FIG. In this specification, the “circular shape” does not have to be a perfect circular shape, and may be a substantially circular shape that can be recognized as a generally circular shape as a whole. For example, it may be a shape in which a part of the circle is notched for specifying the crystal orientation or for other purposes, or a shape in which a part of the circle is provided with a slit. The size can be determined based on the diameter of the maximum circle inscribed in the outer periphery excluding the slits. By the way, the semiconductor film of the present invention is characterized in that the half width of the peak near 250 cm −1 in the Raman spectrum is as small as 10 cm −1 or less. , is merely defined for convenience as an example so that the representative peak half-value width of the entire semiconductor film can be evaluated. Therefore, in order to uniquely determine the positions of the central point X and the peripheral points A, B, C and D, the shape of the semiconductor film is preferably circular. meaning does not change. For example, even if the shape of the semiconductor film is square or rectangular (rectangular), it is included in the semiconductor film of the present invention as long as the half width of the peak near 250 cm −1 of the semiconductor film is small. In such a semiconductor film, the maximum circle (maximum inscribed circle) inscribed in the outer periphery of the square or rectangular semiconductor film when viewed from above is defined as a virtual circle, and the center point of the virtual circle is defined as The positions of the outer peripheral points A, B, C and D can be determined from X and the diameter of the virtual circle (similarly to the circular semiconductor film described above). By evaluating the half-value widths of the peaks near 250 cm −1 at the center point X and the peripheral points A, B, C, and D determined in this manner, the same evaluation as that for a circular semiconductor film can be performed. Note that even if a slit is provided in a part of a square or rectangular semiconductor film, the maximum circle (maximum inscribed circle) that inscribes the outer edge of the square or rectangular semiconductor film when viewed from above is assumed. There is no change in defining as a circle.
本発明の半導体膜は、ドーパントとして14族元素を含むことができる。ここで、14族元素はIUPAC(国際純正・応用化学連合)が策定した周期律表による第14族元素のことであり、具体的には、炭素(C)、珪素(Si)、ゲルマニウム(Ge)、錫(Sn)及び鉛(Pb)のいずれかの元素である。半導体膜におけるドーパント(14族元素)として、C、Ge、Sn、及びPbの合計含有量は、好ましくは1.0×1015~1.0×1021/cm3、より好ましくは1.0×1017~1.0×1019/cm3である。これらのドーパントは膜中に均質に分布し、半導体膜の表面と裏面のドーパント濃度は同程度であることが好ましい。
The semiconductor film of the present invention can contain a Group 14 element as a dopant. Here, the group 14 element is a group 14 element according to the periodic table formulated by IUPAC (International Union of Pure and Applied Chemistry), specifically carbon (C), silicon (Si), germanium (Ge ), tin (Sn), and lead (Pb). As dopants (group 14 elements) in the semiconductor film, the total content of C, Ge, Sn, and Pb is preferably 1.0×10 15 to 1.0×10 21 /cm 3 , more preferably 1.0. ×10 17 to 1.0×10 19 /cm 3 . It is preferable that these dopants are homogeneously distributed in the film and that the dopant concentrations on the front surface and the back surface of the semiconductor film are approximately the same.
本発明の半導体膜の厚さは、コスト面及び要求される特性の観点から適宜調整すればよい。すなわち、厚すぎると成膜に時間がかかるため、コスト面からは極端に厚くない方が好ましい。一方、結晶品質を高くするためには、ある程度厚い膜とすることが好ましい。このように所望の特性に合わせて膜厚を適宜調整すればよい。
The thickness of the semiconductor film of the present invention may be appropriately adjusted from the viewpoint of cost and required characteristics. That is, if the thickness is too large, it takes a long time to form a film, so from the viewpoint of cost, it is preferable that the thickness is not extremely thick. On the other hand, in order to improve the crystal quality, it is preferable to make the film thick to some extent. In this manner, the film thickness may be appropriately adjusted according to desired characteristics.
本発明の半導体膜は、膜単独の自立膜の形態であってもよい。また、成膜用下地基板上に作製した半導体膜を分離し、別の支持基板に転載してもよい。別の支持基板の材質は特に限定はないが、材料物性の観点から好適なものを選択すればよい。例えば、熱伝導率の観点では、Cu等の金属基板、SiC、AlN等のセラミックス基板等が好ましい。また、25~400℃での熱膨張率が6~13ppm/Kである基板を用いるのも好ましい。このような熱膨張率を有する支持基板を用いることで、半導体膜との熱膨張差を小さくすることができ、その結果、熱応力による半導体膜中のクラック発生や膜剥がれ等を抑制できる。このような支持基板の例としては、Cu-Mo複合金属で構成される基板が挙げられる。CuとMoの複合比率は、半導体膜との熱膨張率マッチング、熱伝導率、導電率等を勘案して、適宜選択することができる。
The semiconductor film of the present invention may be in the form of a self-supporting film. Alternatively, the semiconductor film formed over the base substrate for film formation may be separated and transferred to another supporting substrate. The material of the other support substrate is not particularly limited, but a suitable material may be selected from the viewpoint of material properties. For example, from the viewpoint of thermal conductivity, metal substrates such as Cu, ceramic substrates such as SiC and AlN, and the like are preferable. It is also preferable to use a substrate having a coefficient of thermal expansion of 6 to 13 ppm/K at 25 to 400.degree. By using a supporting substrate having such a coefficient of thermal expansion, it is possible to reduce the difference in thermal expansion from the semiconductor film, and as a result, it is possible to suppress the occurrence of cracks in the semiconductor film and film peeling due to thermal stress. An example of such a support substrate is a substrate composed of a Cu—Mo composite metal. The composite ratio of Cu and Mo can be appropriately selected in consideration of thermal expansion coefficient matching with the semiconductor film, thermal conductivity, electrical conductivity, and the like.
半導体膜の製造方法
本発明の半導体膜は、下地基板としてGaN単結晶基板を用いて、その上にε-Ga2O3系材料を成膜することにより、好ましく製造することができる。半導体層の形成手法は公知の手法が可能であるが、好ましい例としては、ミストCVD法(ミスト化学気相成長法)、HVPE法(ハライド気相成長法)、MBE法(分子線エピタキシー法)、MOCVD法(有機金属気相成長法)、及び水熱合成法が挙げられ、ミストCVD法又はHVPE法が特に好ましい。ミストCVD法やHVPE法等の気相成長法の場合、下地基板の厚さは、反りを抑制する観点では厚い方が望ましく、好ましくは0.5mm以上、より好ましくは0.8mm以上、さらに好ましくは1.4mm以上である。一方で、この厚さは、コストの観点では薄い方が望ましく、好ましくは1.0mm以下、より好ましくは0.5mm以下である。このように所望の特性に合わせて下地基板の膜さを適宜調整すればよい。下地基板の厚さの上限は特に限定されないが、典型的には5.0mm以下、より典型的には4.0mm以下である。また、膜の中心部から外周部に至るまでの広範囲にわたって250cm-1付近のピークの半値幅が10cm-1以下と小さいε-Ga2O3系半導体膜は、下地基板を回転させながら成膜を行うことにより好ましく実現することができる。 Manufacturing Method of Semiconductor Film The semiconductor film of the present invention can be preferably manufactured by using a GaN single crystal substrate as a base substrate and forming a film of an ε-Ga 2 O 3 based material thereon. A method for forming the semiconductor layer can be a known method, and preferred examples include the mist CVD method (mist chemical vapor deposition method), the HVPE method (halide vapor phase epitaxy method), and the MBE method (molecular beam epitaxy method). , MOCVD (metal organic chemical vapor deposition), and hydrothermal synthesis, and mist CVD or HVPE is particularly preferred. In vapor phase growth methods such as mist CVD and HVPE, the thickness of the underlying substrate is desirably thick from the viewpoint of suppressing warpage, preferably 0.5 mm or more, more preferably 0.8 mm or more, and even more preferably. is 1.4 mm or more. On the other hand, the thickness is desirably thinner from the viewpoint of cost, preferably 1.0 mm or less, more preferably 0.5 mm or less. In this manner, the film thickness of the base substrate may be appropriately adjusted according to the desired characteristics. Although the upper limit of the thickness of the underlying substrate is not particularly limited, it is typically 5.0 mm or less, more typically 4.0 mm or less. In addition, the ε-Ga 2 O 3 -based semiconductor film, in which the half width of the peak near 250 cm −1 is as small as 10 cm −1 or less over a wide range from the center to the outer periphery of the film, is formed while rotating the underlying substrate. can be preferably realized by performing
本発明の半導体膜は、下地基板としてGaN単結晶基板を用いて、その上にε-Ga2O3系材料を成膜することにより、好ましく製造することができる。半導体層の形成手法は公知の手法が可能であるが、好ましい例としては、ミストCVD法(ミスト化学気相成長法)、HVPE法(ハライド気相成長法)、MBE法(分子線エピタキシー法)、MOCVD法(有機金属気相成長法)、及び水熱合成法が挙げられ、ミストCVD法又はHVPE法が特に好ましい。ミストCVD法やHVPE法等の気相成長法の場合、下地基板の厚さは、反りを抑制する観点では厚い方が望ましく、好ましくは0.5mm以上、より好ましくは0.8mm以上、さらに好ましくは1.4mm以上である。一方で、この厚さは、コストの観点では薄い方が望ましく、好ましくは1.0mm以下、より好ましくは0.5mm以下である。このように所望の特性に合わせて下地基板の膜さを適宜調整すればよい。下地基板の厚さの上限は特に限定されないが、典型的には5.0mm以下、より典型的には4.0mm以下である。また、膜の中心部から外周部に至るまでの広範囲にわたって250cm-1付近のピークの半値幅が10cm-1以下と小さいε-Ga2O3系半導体膜は、下地基板を回転させながら成膜を行うことにより好ましく実現することができる。 Manufacturing Method of Semiconductor Film The semiconductor film of the present invention can be preferably manufactured by using a GaN single crystal substrate as a base substrate and forming a film of an ε-Ga 2 O 3 based material thereon. A method for forming the semiconductor layer can be a known method, and preferred examples include the mist CVD method (mist chemical vapor deposition method), the HVPE method (halide vapor phase epitaxy method), and the MBE method (molecular beam epitaxy method). , MOCVD (metal organic chemical vapor deposition), and hydrothermal synthesis, and mist CVD or HVPE is particularly preferred. In vapor phase growth methods such as mist CVD and HVPE, the thickness of the underlying substrate is desirably thick from the viewpoint of suppressing warpage, preferably 0.5 mm or more, more preferably 0.8 mm or more, and even more preferably. is 1.4 mm or more. On the other hand, the thickness is desirably thinner from the viewpoint of cost, preferably 1.0 mm or less, more preferably 0.5 mm or less. In this manner, the film thickness of the base substrate may be appropriately adjusted according to the desired characteristics. Although the upper limit of the thickness of the underlying substrate is not particularly limited, it is typically 5.0 mm or less, more typically 4.0 mm or less. In addition, the ε-Ga 2 O 3 -based semiconductor film, in which the half width of the peak near 250 cm −1 is as small as 10 cm −1 or less over a wide range from the center to the outer periphery of the film, is formed while rotating the underlying substrate. can be preferably realized by performing
以下、特に好ましい成膜方法であるHVPE法及びミストCVD法について説明する。
The HVPE method and the mist CVD method, which are particularly preferable film forming methods, will be described below.
HVPE法(ハライド気相成長法)はCVDの一種であり、Ga2O3やGaN等の化合物半導体の成膜に適用可能な方法である。この方法では、Ga原料とハロゲン化物を反応させてハロゲン化ガリウムガスを発生させ、成膜用下地基板上に供給する。同時にO2ガスを成膜用下地基板上に供給し、ハロゲン化ガリウムガスとO2ガスが反応することで成膜用下地基板上にGa2O3が成長する。高速及び厚膜成長が可能であり、工業的にも広く実績を有する方法であり、ε-Ga2O3だけでなくα-Ga2O3、β-Ga2O3の成膜例が報告されている。
The HVPE method (halide vapor phase epitaxy) is a kind of CVD, and is a method applicable to film formation of compound semiconductors such as Ga 2 O 3 and GaN. In this method, a Ga raw material and a halide are reacted to generate a gallium halide gas, which is supplied onto a base substrate for film formation. At the same time, O 2 gas is supplied onto the underlying substrate for film formation, and the gallium halide gas reacts with the O 2 gas to grow Ga 2 O 3 on the underlying substrate for film formation. It is a method that enables high-speed and thick film growth and has a proven track record in industry. Examples of film formation of not only ε-Ga 2 O 3 but also α-Ga 2 O 3 and β-Ga 2 O 3 have been reported. It is
図2にHVPE法を用いた気相成長装置(HVPE装置)の一例を示す。HVPE装置20は、リアクタ22と、成膜用下地基板24を載置するサセプタ26と、酸素原料供給源30と、キャリアガス供給源28と、GeCl4供給源32と、Ga原料供給源34と、ヒータ36と、ガス排出部38を備えている。リアクタ22は、原料と反応しない任意のリアクタが適用され、例えば石英管である。ヒータ36は少なくとも700℃(好ましくは900℃以上)まで加熱可能な任意のヒータが適用され、例えば抵抗加熱式のヒータである。
FIG. 2 shows an example of a vapor phase growth apparatus (HVPE apparatus) using the HVPE method. The HVPE apparatus 20 includes a reactor 22, a susceptor 26 on which a base substrate 24 for film formation is placed, an oxygen raw material supply source 30, a carrier gas supply source 28, a GeCl 4 supply source 32, and a Ga raw material supply source 34. , a heater 36 and a gas discharge section 38 . Any reactor that does not react with the raw material is applied to the reactor 22, and is, for example, a quartz tube. Any heater capable of heating up to at least 700° C. (preferably 900° C. or higher) is applied as the heater 36, and is, for example, a resistance heating type heater.
Ga原料供給源34には内部に金属Gaが載置されており、ハロゲンガス又はハロゲン化水素ガス、例えばHClが供給される。ハロゲンガス又はハロゲン化ガスは好ましくはCl2又はHClである。供給されたハロゲンガス又はハロゲン化ガスは金属Gaと反応し、ハロゲン化ガリウムガスが生じ、成膜用下地基板24に供給される。ハロゲン化ガリウムガスは、好ましくはGaCl及び又はGaCl3を含む。酸素原料供給源30は、O2、H2O及びN2Oからなる群から選択される酸素源が供給可能だが、O2が好ましい。これらの酸素原料ガスは、ハロゲン化ガリウムガスと同時に下地基板に供給される。GeCl4供給源32は、GeCl4液体をバブリングして発生するGeCl4蒸気をリアクタ22内に供給する。なお、Ga原料や酸素原料ガスはN2や希ガス等のキャリアガスとともに供給してもよい。
Metal Ga is placed inside the Ga raw material supply source 34, and halogen gas or hydrogen halide gas such as HCl is supplied. The halogen gas or halogenated gas is preferably Cl2 or HCl. The supplied halogen gas or halogenated gas reacts with metal Ga to generate gallium halide gas, which is supplied to the base substrate 24 for film formation. The gallium halide gas preferably contains GaCl and/or GaCl3 . Oxygen source supply 30 can supply an oxygen source selected from the group consisting of O2 , H2O and N2O , with O2 being preferred. These oxygen source gases are supplied to the base substrate at the same time as the gallium halide gas. A GeCl 4 source 32 supplies GeCl 4 vapor generated by bubbling the GeCl 4 liquid into the reactor 22 . Note that the Ga source gas and the oxygen source gas may be supplied together with a carrier gas such as N2 or a rare gas.
ガス排出部38は、例えば、拡散ポンプ、ロータリーポンプ等の真空ポンプに接続されていてもよく、リアクタ22内の未反応のガスの排出だけでなく、リアクタ22内を減圧下に制御してもよい。これにより、気相反応の抑制、及び成長速度分布が改善され得る。
The gas discharge section 38 may be connected to a vacuum pump such as a diffusion pump or a rotary pump, for example, not only for discharging unreacted gas in the reactor 22 but also for controlling the pressure in the reactor 22. good. This can improve the suppression of gas phase reactions and the growth rate distribution.
ヒータ36を用いて所定の温度まで成膜用下地基板24を加熱し、ハロゲン化ガリウムガスと酸素原料ガスを同時に供給することで、成膜用下地基板24上にε-Ga2O3が形成される。成膜温度はε-Ga2O3が成膜され、膜中の不純物が少なくなる限り特に限定されないが、例えば250℃~900℃が典型的である。Ga原料ガスや酸素原料ガスの分圧も特に限定はされない。例えば、Ga原料ガス(ハロゲン化ガリウムガス)の分圧は0.05kPa以上10kPa以下の範囲としてもよく、酸素原料ガスの分圧は0.25kPa以上50kPa以下の範囲としてもよい。
ε-Ga 2 O 3 is formed on the film formation base substrate 24 by heating the film formation base substrate 24 to a predetermined temperature using the heater 36 and simultaneously supplying the gallium halide gas and the oxygen source gas. be done. The film formation temperature is not particularly limited as long as ε-Ga 2 O 3 is formed and impurities in the film are reduced, but is typically 250° C. to 900° C., for example. The partial pressures of the Ga raw material gas and the oxygen raw material gas are also not particularly limited. For example, the partial pressure of the Ga source gas (gallium halide gas) may be in the range of 0.05 kPa to 10 kPa, and the partial pressure of the oxygen source gas may be in the range of 0.25 kPa to 50 kPa.
ドーパントとして14族元素を含有するε-Ga2O3系半導体膜を成膜する場合や、InやAlの酸化物等を含むε-Ga2O3との混晶膜を成膜する場合は、別途供給源(例えば図2ではGeCl4供給源32)を設けてそれらのハロゲン化物等を供給してもよいし、Ga原料供給源34からハロゲン化物を混合して供給してもよい。また、金属Gaと同じ箇所に14族元素やIn、Al等を含有する材料を載置し、ハロゲンガス又はハロゲン化水素ガスと反応させ、ハロゲン化物として供給してもよい。成膜用下地基板24に供給されたそれらのハロゲン化物ガスは、ハロゲン化ガリウムと同様、酸素原料ガスと反応して酸化物となり、ε-Ga2O3系半導体膜中に取り込まれる。
When depositing an ε-Ga 2 O 3 -based semiconductor film containing a group 14 element as a dopant, or when depositing a mixed crystal film with ε-Ga 2 O 3 containing oxides of In or Al, etc. Alternatively, a separate supply source (for example, the GeCl 4 supply source 32 in FIG. 2) may be provided to supply the halides or the like, or the halides may be mixed and supplied from the Ga source supply source 34 . Alternatively, a material containing a Group 14 element, In, Al, or the like may be placed in the same location as the metal Ga, reacted with a halogen gas or a hydrogen halide gas, and supplied as a halide. These halide gases supplied to the base substrate 24 for film formation react with the oxygen source gas, like gallium halide, to form oxides, which are incorporated into the ε-Ga 2 O 3 based semiconductor film.
ミストCVD法は、原料溶液を霧化又は液滴化してミスト又は液滴を発生させ、キャリアガスを用いてミスト又は液滴を基板を備えた成膜室に搬送し、成膜室内でミスト又は液滴を熱分解及び化学反応させて基板上に膜を形成及び成長させる手法であり、真空プロセスを必要とせず、短時間で大量のサンプルを作製することができる。図3にミストCVD装置の一例を示す。図3に示されるミストCVD装置40は、キャリアガスG及び原料溶液LからミストMを発生させるミスト発生室42と、ミストMを基板56に吹き付けて熱分解及び化学反応を経て半導体膜58を形成する成膜室50とを有する。ミスト発生室42は、キャリアガスGが導入されるキャリアガス導入口44と、ミスト発生室42内に設けられる超音波振動子46と、ミスト発生室42内で発生したミストMを成膜室50に搬送するダクト48とを備えている。ミスト発生室42内には原料溶液Lが収容される。超音波振動子46は、原料溶液Lに超音波振動を与えてキャリアガスGとともにミストMを発生できるように構成される。成膜室50は、ダクト48を介して導入されるミストMを基板56に吹き付けるためのノズル52と、基板56が固定されるステージ54と、ステージ54の裏面近傍に設けられてステージ54及び基板56を加熱するためのヒータ62と、キャリアガスGを排出するための排気口64とを備える。
In the mist CVD method, a raw material solution is atomized or dropletized to generate mist or droplets, the mist or droplets are transported to a film formation chamber equipped with a substrate using a carrier gas, and the mist or droplets are generated in the film formation chamber. It is a method of thermally decomposing and chemically reacting droplets to form and grow a film on a substrate. It does not require a vacuum process and can produce a large amount of samples in a short time. FIG. 3 shows an example of a mist CVD apparatus. The mist CVD apparatus 40 shown in FIG. 3 includes a mist generating chamber 42 for generating mist M from carrier gas G and raw material solution L, and mist M being sprayed onto substrate 56 to form semiconductor film 58 through thermal decomposition and chemical reaction. A film forming chamber 50 is provided. The mist generating chamber 42 includes a carrier gas inlet 44 through which carrier gas G is introduced, an ultrasonic vibrator 46 provided in the mist generating chamber 42, and a film forming chamber 50 through which the mist M generated in the mist generating chamber 42 is introduced. and a duct 48 for conveying to. A raw material solution L is accommodated in the mist generating chamber 42 . The ultrasonic vibrator 46 is configured to apply ultrasonic vibrations to the raw material solution L to generate the mist M together with the carrier gas G. As shown in FIG. The film forming chamber 50 includes a nozzle 52 for blowing the mist M introduced through the duct 48 onto the substrate 56, a stage 54 to which the substrate 56 is fixed, and the stage 54 and the substrate provided near the rear surface of the stage 54. A heater 62 for heating 56 and an exhaust port 64 for discharging the carrier gas G are provided.
ミストCVD法に用いる原料溶液Lとしては、ε-Ga2O3系半導体膜が得られる溶液であれば、限定されるものではないが、例えば、Ga及び/又はGaと固溶体を形成する金属の有機金属錯体やハロゲン化物を溶媒に溶解させたものが挙げられる。有機金属錯体の例としては、アセチルアセトナート錯体が挙げられる。また、半導体層にドーパントを加える場合には、原料溶液にドーパント成分の溶液を加えてもよい。さらに、原料溶液には塩酸等の添加剤を加えてもよい。溶媒としては水やアルコール等を使用することができる。
The raw material solution L used in the mist CVD method is not limited as long as it is a solution from which an ε-Ga 2 O 3 based semiconductor film can be obtained. Examples include those obtained by dissolving an organic metal complex or a halide in a solvent. Examples of organometallic complexes include acetylacetonate complexes. Moreover, when a dopant is added to the semiconductor layer, a dopant component solution may be added to the raw material solution. Furthermore, an additive such as hydrochloric acid may be added to the raw material solution. Water, alcohol, or the like can be used as the solvent.
次に、得られた原料溶液Lを霧化又は液滴化してミストM又は液滴を発生させる。霧化又は液滴化する方法の好ましい例としては、超音波振動子46を用いて原料溶液Lを振動させる手法が挙げられる。その後、得られたミストM又は液滴を、キャリアガスGを用いて成膜室50に搬送する。キャリアガスGとしては特に限定されるものではないが、酸素、オゾン、窒素等の不活性ガス、及び水素等の還元ガスの一種又は二種以上を用いることができる。
Next, the obtained raw material solution L is atomized or dropletized to generate a mist M or droplets. A preferred example of a method of atomizing or forming droplets is a method of vibrating the raw material solution L using an ultrasonic oscillator 46 . After that, the obtained mist M or droplets are transported to the film forming chamber 50 using the carrier gas G. FIG. The carrier gas G is not particularly limited, but one or more of oxygen, ozone, inert gas such as nitrogen, and reducing gas such as hydrogen can be used.
成膜室50には基板56が備えられている。成膜室50に搬送されたミストM又は液滴は、そこで熱分解及び化学反応されて、基板56上に半導体膜58を形成する。反応温度は原料溶液Lの種類に応じて異なるが、好ましくは300~800℃、より好ましくは400~700℃である。また、成膜室50内の雰囲気は、所望の半導体膜が得られる限り特に限定されるものではなく、典型的には、酸素ガス雰囲気、不活性ガス雰囲気、真空雰囲気、還元雰囲気、及び大気雰囲気のいずれかから選択される。
A substrate 56 is provided in the deposition chamber 50 . The mist M or droplets transported to the film forming chamber 50 are thermally decomposed and chemically reacted there to form a semiconductor film 58 on the substrate 56 . Although the reaction temperature varies depending on the type of raw material solution L, it is preferably 300 to 800°C, more preferably 400 to 700°C. The atmosphere in the film forming chamber 50 is not particularly limited as long as a desired semiconductor film can be obtained. is selected from either
このようにして得られた半導体膜は、そのままの形態又は分割して半導体素子とすることが可能である。あるいは、半導体膜を下地基板から剥離して膜単体の形態としてもよい。この場合、下地基板からの剥離を容易にするために、下地基板の表面(成膜面)に予め剥離層を設けたものを用いてもよい。このような剥離層は、下地基板表面にC注入層やH注入層を設けたものが挙げられる。また、半導体膜の成膜初期にCやHを膜中に注入させ、半導体膜側に剥離層を設けてもよい。さらに、下地基板上に成膜された半導体膜の表面(すなわち下地基板とは反対側の面)に下地基板とは異なる支持基板(実装基板)を接着及び接合し、その後、半導体膜から下地基板を剥離除去することも可能である。このような支持基板(実装基板)として、25~400℃での熱膨張率が6~13ppm/Kであるもの、例えばCu-Mo複合金属で構成される基板を用いることができる。また、半導体膜と支持基板(実装基板)を接着及び接合する手法の例としては、ロウ付け、半田、固相接合等の公知の手法を挙げることができる。さらに、半導体膜と支持基板との間に、オーミック電極、ショットキー電極等の電極、又は接着層等の他の層を設けてもよい。
The semiconductor film thus obtained can be used as it is or divided into semiconductor elements. Alternatively, the semiconductor film may be peeled off from the underlying substrate to form a single film. In this case, in order to facilitate peeling from the underlying substrate, a peeling layer may be provided in advance on the surface (film formation surface) of the underlying substrate. Examples of such a peeling layer include those in which a C-implanted layer or an H-implanted layer is provided on the surface of the underlying substrate. Alternatively, C or H may be injected into the film at the initial stage of film formation of the semiconductor film, and a peeling layer may be provided on the semiconductor film side. Further, a supporting substrate (mounting substrate) different from the underlying substrate is adhered and bonded to the surface of the semiconductor film formed on the underlying substrate (that is, the surface opposite to the underlying substrate), and then the semiconductor film is separated from the underlying substrate. can be peeled off. As such a support substrate (mounting substrate), a substrate having a coefficient of thermal expansion of 6 to 13 ppm/K at 25 to 400° C., for example, a substrate composed of a Cu—Mo composite metal can be used. Examples of methods for bonding and bonding the semiconductor film and the support substrate (mounting substrate) include known methods such as brazing, soldering, and solid phase bonding. Furthermore, an ohmic electrode, an electrode such as a Schottky electrode, or another layer such as an adhesive layer may be provided between the semiconductor film and the support substrate.
パワーデバイス等の半導体素子の製造においては、半導体膜上にドリフト層等の機能層が形成されることになる。ドリフト層等の機能層の形成についても、公知の手法が可能であり、好ましい例としては、ミストCVD法、HVPE法、MBE法、MOCVD法、及び水熱合成法が挙げられ、ミストCVD法又はHVPE法が特に好ましい。
In the manufacture of semiconductor elements such as power devices, functional layers such as drift layers are formed on semiconductor films. For the formation of a functional layer such as a drift layer, known methods are possible, and preferred examples include mist CVD, HVPE, MBE, MOCVD, and hydrothermal synthesis. HVPE methods are particularly preferred.
複合基板
本発明の半導体膜は、下地基板として好ましくはGaN単結晶基板を用いて、その上にε-Ga2O3系材料を成膜することにより製造することができる。すなわち、本発明によれば、GaN単結晶基板と、GaN単結晶基板上に形成された上述した半導体膜とを備えた、複合基板が提供される。 Composite Substrate The semiconductor film of the present invention can be produced by preferably using a GaN single crystal substrate as a base substrate and forming a film of an ε-Ga 2 O 3 based material thereon. That is, according to the present invention, there is provided a composite substrate comprising a GaN single crystal substrate and the above-described semiconductor film formed on the GaN single crystal substrate.
本発明の半導体膜は、下地基板として好ましくはGaN単結晶基板を用いて、その上にε-Ga2O3系材料を成膜することにより製造することができる。すなわち、本発明によれば、GaN単結晶基板と、GaN単結晶基板上に形成された上述した半導体膜とを備えた、複合基板が提供される。 Composite Substrate The semiconductor film of the present invention can be produced by preferably using a GaN single crystal substrate as a base substrate and forming a film of an ε-Ga 2 O 3 based material thereon. That is, according to the present invention, there is provided a composite substrate comprising a GaN single crystal substrate and the above-described semiconductor film formed on the GaN single crystal substrate.
本発明を以下の例によってさらに具体的に説明する。
The present invention will be explained more specifically by the following examples.
例1
(1)ミストCVD法によるε-Ga2O3系半導体膜の作製
(1a)下地基板の準備
下地基板として、厚さ約0.4mmで直径5.08cm(2インチ)のc面GaN単結晶基板を準備した。 Example 1
(1) Fabrication of ε-Ga 2 O 3 -based semiconductor film by mist CVD method (1a) Preparation of base substrate A c-plane GaN single crystal having a thickness of about 0.4 mm and a diameter of 5.08 cm (2 inches) was used as the base substrate. Prepared the substrate.
(1)ミストCVD法によるε-Ga2O3系半導体膜の作製
(1a)下地基板の準備
下地基板として、厚さ約0.4mmで直径5.08cm(2インチ)のc面GaN単結晶基板を準備した。 Example 1
(1) Fabrication of ε-Ga 2 O 3 -based semiconductor film by mist CVD method (1a) Preparation of base substrate A c-plane GaN single crystal having a thickness of about 0.4 mm and a diameter of 5.08 cm (2 inches) was used as the base substrate. Prepared the substrate.
(1b)原料溶液の作製
塩酸に金属Gaを添加して室温で3週間撹拌することで、ガリウムイオン濃度が3mol/Lの塩化ガリウム溶液を得た。得られた塩化ガリウム溶液に水を加えてガリウムイオン濃度が55mmol/Lとなるように水溶液を調整した。この水溶液に水酸化アンモニウムを添加してpHを4.0となるように調整し、原料溶液とした。 (1b) Preparation of Raw Material Solution Metal Ga was added to hydrochloric acid and the mixture was stirred at room temperature for 3 weeks to obtain a gallium chloride solution with a gallium ion concentration of 3 mol/L. Water was added to the resulting gallium chloride solution to prepare an aqueous solution having a gallium ion concentration of 55 mmol/L. Ammonium hydroxide was added to this aqueous solution to adjust the pH to 4.0 to obtain a raw material solution.
塩酸に金属Gaを添加して室温で3週間撹拌することで、ガリウムイオン濃度が3mol/Lの塩化ガリウム溶液を得た。得られた塩化ガリウム溶液に水を加えてガリウムイオン濃度が55mmol/Lとなるように水溶液を調整した。この水溶液に水酸化アンモニウムを添加してpHを4.0となるように調整し、原料溶液とした。 (1b) Preparation of Raw Material Solution Metal Ga was added to hydrochloric acid and the mixture was stirred at room temperature for 3 weeks to obtain a gallium chloride solution with a gallium ion concentration of 3 mol/L. Water was added to the resulting gallium chloride solution to prepare an aqueous solution having a gallium ion concentration of 55 mmol/L. Ammonium hydroxide was added to this aqueous solution to adjust the pH to 4.0 to obtain a raw material solution.
(1c)成膜準備
図3に示される構成のミストCVD装置40を準備した。ミストCVD装置40の構成については前述したとおりである。ミストCVD装置40において、上記(1b)で得られた原料溶液Lをミスト発生室42内に収容した。基板56として直径5.08cm(2インチ)のc面GaN基板をステージ54にセットし、ノズル52の先端と基板56の間の距離を120mmとした。ヒータ62により、ステージ54の温度を520℃にまで昇温させ、温度安定化のため30分保持した。流量調節弁(図示せず)を開いてキャリアガスGとしての窒素ガスを、ミスト発生室42を経て成膜室50内に供給し、成膜室50の雰囲気をキャリアガスGで十分置換した。その後、キャリアガスGの流量を1.7L/minに調節した。 (1c) Film formation preparation Amist CVD apparatus 40 having the configuration shown in FIG. 3 was prepared. The configuration of the mist CVD apparatus 40 is as described above. In the mist CVD apparatus 40, the raw material solution L obtained in (1b) above was accommodated in the mist generating chamber . A c-plane GaN substrate having a diameter of 5.08 cm (2 inches) was set on the stage 54 as the substrate 56, and the distance between the tip of the nozzle 52 and the substrate 56 was set to 120 mm. The temperature of the stage 54 was raised to 520° C. by the heater 62 and held for 30 minutes for temperature stabilization. A flow control valve (not shown) was opened to supply nitrogen gas as the carrier gas G into the film forming chamber 50 through the mist generating chamber 42, and the atmosphere in the film forming chamber 50 was sufficiently replaced with the carrier gas G. After that, the flow rate of carrier gas G was adjusted to 1.7 L/min.
図3に示される構成のミストCVD装置40を準備した。ミストCVD装置40の構成については前述したとおりである。ミストCVD装置40において、上記(1b)で得られた原料溶液Lをミスト発生室42内に収容した。基板56として直径5.08cm(2インチ)のc面GaN基板をステージ54にセットし、ノズル52の先端と基板56の間の距離を120mmとした。ヒータ62により、ステージ54の温度を520℃にまで昇温させ、温度安定化のため30分保持した。流量調節弁(図示せず)を開いてキャリアガスGとしての窒素ガスを、ミスト発生室42を経て成膜室50内に供給し、成膜室50の雰囲気をキャリアガスGで十分置換した。その後、キャリアガスGの流量を1.7L/minに調節した。 (1c) Film formation preparation A
(1d)成膜
超音波振動子46によって原料溶液Lを霧化し、発生したミストMをキャリアガスGによって成膜室50内に導入した。ミストMを成膜室50内、特に基板56(具体的にはGaN基板)の表面で反応させることによって、基板56上に半導体膜58を60分にわたって形成した。下地基板及び成膜の条件を表1に示す。 (1d) Film Formation The raw material solution L was atomized by theultrasonic vibrator 46, and the generated mist M was introduced into the film formation chamber 50 by the carrier gas G. As shown in FIG. A semiconductor film 58 was formed on the substrate 56 for 60 minutes by allowing the mist M to react in the deposition chamber 50, particularly on the surface of the substrate 56 (specifically, the GaN substrate). Table 1 shows the base substrate and film formation conditions.
超音波振動子46によって原料溶液Lを霧化し、発生したミストMをキャリアガスGによって成膜室50内に導入した。ミストMを成膜室50内、特に基板56(具体的にはGaN基板)の表面で反応させることによって、基板56上に半導体膜58を60分にわたって形成した。下地基板及び成膜の条件を表1に示す。 (1d) Film Formation The raw material solution L was atomized by the
(2)半導体膜の評価
(2a)表面EDX
得られた膜表面のEDX測定を行った結果、Ga及びOのみが検出され、得られた膜はGa酸化物であることが分かった。 (2) Evaluation of semiconductor film (2a) Surface EDX
As a result of EDX measurement of the obtained film surface, only Ga and O were detected, and it was found that the obtained film was Ga oxide.
(2a)表面EDX
得られた膜表面のEDX測定を行った結果、Ga及びOのみが検出され、得られた膜はGa酸化物であることが分かった。 (2) Evaluation of semiconductor film (2a) Surface EDX
As a result of EDX measurement of the obtained film surface, only Ga and O were detected, and it was found that the obtained film was Ga oxide.
(2b)表面EBSD
電子線後方散乱回折装置(EBSD)(オックスフォード・インストゥルメンツ社製Nordlys Nano)を取り付けたSEM(日立ハイテクノロジーズ社製、SU-5000)にてGa酸化物膜表面の逆極点図方位マッピングを約25μm×20μmの視野で実施した。装置に付属したソフトウエア(Twist)を用いて、非特許文献4(F. Mezzadri, et al., "Crystal Structure and Ferroelectric Properties of ε-Ga2O3 Films Grown on (0001)-Sapphire," Inorg. Chem. 2016, 55, 12079-12084)に記載のε-Ga2O3(六方晶)の空間群、単位格子パラメータ(辺及び角度)、原子位置の結晶情報をデータベース登録し、これを用いてEBSD測定を行った。 (2b) Surface EBSD
An inverse pole figure orientation mapping of the Ga oxide film surface was performed using an SEM (SU-5000, manufactured by Hitachi High-Technologies Corporation) equipped with an electron beam backscatter diffraction device (EBSD) (Nordlys Nano, manufactured by Oxford Instruments). It was performed with a field of view of 25 μm×20 μm. Using the software (Twist) attached to the device, non-patent document 4 (F. Mezzadri, et al., "Crystal Structure and Ferroelectric Properties of ε-Ga 2 O 3 Films Grown on (0001)-Sapphire," Inorg Chem. 2016, 55, 12079-12084), the space group of ε-Ga 2 O 3 (hexagonal crystal), unit cell parameters (sides and angles), and crystal information on atomic positions are registered in a database and used. EBSD measurement was performed using
電子線後方散乱回折装置(EBSD)(オックスフォード・インストゥルメンツ社製Nordlys Nano)を取り付けたSEM(日立ハイテクノロジーズ社製、SU-5000)にてGa酸化物膜表面の逆極点図方位マッピングを約25μm×20μmの視野で実施した。装置に付属したソフトウエア(Twist)を用いて、非特許文献4(F. Mezzadri, et al., "Crystal Structure and Ferroelectric Properties of ε-Ga2O3 Films Grown on (0001)-Sapphire," Inorg. Chem. 2016, 55, 12079-12084)に記載のε-Ga2O3(六方晶)の空間群、単位格子パラメータ(辺及び角度)、原子位置の結晶情報をデータベース登録し、これを用いてEBSD測定を行った。 (2b) Surface EBSD
An inverse pole figure orientation mapping of the Ga oxide film surface was performed using an SEM (SU-5000, manufactured by Hitachi High-Technologies Corporation) equipped with an electron beam backscatter diffraction device (EBSD) (Nordlys Nano, manufactured by Oxford Instruments). It was performed with a field of view of 25 μm×20 μm. Using the software (Twist) attached to the device, non-patent document 4 (F. Mezzadri, et al., "Crystal Structure and Ferroelectric Properties of ε-Ga 2 O 3 Films Grown on (0001)-Sapphire," Inorg Chem. 2016, 55, 12079-12084), the space group of ε-Ga 2 O 3 (hexagonal crystal), unit cell parameters (sides and angles), and crystal information on atomic positions are registered in a database and used. EBSD measurement was performed using
このEBSD測定の諸条件は以下のとおりとした。
<EBSD測定条件>
・加速電圧:15kV
・スポット強度:70
・ワーキングディスタンス:22.5mm
・ステップサイズ:0.5μm
・試料傾斜角:70°
・測定プログラム:Aztec(version 3.3) The conditions for this EBSD measurement were as follows.
<EBSD measurement conditions>
・Acceleration voltage: 15 kV
・Spot intensity: 70
・Working distance: 22.5mm
・Step size: 0.5 μm
・Sample tilt angle: 70°
・Measurement program: Aztec (version 3.3)
<EBSD測定条件>
・加速電圧:15kV
・スポット強度:70
・ワーキングディスタンス:22.5mm
・ステップサイズ:0.5μm
・試料傾斜角:70°
・測定プログラム:Aztec(version 3.3) The conditions for this EBSD measurement were as follows.
<EBSD measurement conditions>
・Acceleration voltage: 15 kV
・Spot intensity: 70
・Working distance: 22.5mm
・Step size: 0.5 μm
・Sample tilt angle: 70°
・Measurement program: Aztec (version 3.3)
得られた逆極点図方位マッピングから、Ga酸化物膜は、基板法線方向にc軸配向し、面内も配向した2軸配向の結晶構造を有することが分かった。これらの結果から、得られた半導体膜はε-Ga2O3で構成される結晶構造の配向膜であることが確認された。
From the obtained inverse pole figure orientation mapping, it was found that the Ga oxide film had a biaxially oriented crystal structure in which the c-axis was oriented in the substrate normal direction and the in-plane orientation was also oriented. From these results, it was confirmed that the obtained semiconductor film was an oriented film with a crystal structure composed of ε-Ga 2 O 3 .
(2c)ラマンスペクトル
半導体膜58の膜面の中心点X、並びに外周点A、B、C及びDにおけるラマンスペクトルを、堀場製作所製レーザーラマン分光測定装置LabRAM ARAMISを用い、操作ソフトウェアLabSpec(Ver.5.78)を用いて測定した。光学系はツェルニターナ型分光系、後方散乱方式であり、光源として半導体励起固体レーザー(DPSS、532nm)を用いた。サンプルの測定前にはSiウェハを用い、校正を行った。半導体膜58に対するラマンスペクトルの測定は、レーザー出力を24mWに調整しHole(コンフォーカルホール径)を400μm、分光器の中心波数を520cm-1、Slitを100μm、グレーティングを1800gr/mm、対物レンズを100倍とし、点分析モードで行った。露光時間は60秒、積算回数を2回とし、波数範囲は100~900cm-1とした。減光フィルターは最強ピークのカウントが3000以上50000以下となるように適宜設定した。また、測定時にNeランプを使用し、得られたスペクトルに対し、Neランプ輝線に起因するピークのピークトップの波数が278.28cm-1となるように、スペクトルを補正した。ベースラインの補正は、ソフトウェアLabSpec上の機能にて「Type」を「Lines」、「Degree」を「5」、「Attach」を「No」、「Style」を「-」に設定し、「Auto」にして行った。このように得られたスペクトルを図4に示す。得られたスペクトルに対し、中心点X、並びに外周点A、B、C及びDにおける、250cm-1付近のピークのピークトップの波数をNX、NA、NB、NC及びND、並びに113cm-1付近のピークのピークトップの波数をNX、NA、NB、NC及びNDとした。また、波数NX、NA、NB、NC及びNDにおける半値幅を、WX、WA、WB、WC及びWDとした。さらに、中心点X、並びに外周点A、B、C及びDにおける、250cm-1付近にピークトップを持つピークでのピーク強度I250の、260cm-1でのピーク強度I260に対するピーク強度比I250/I260を求めた。本例では、例えば、250cm-1付近のピークのピークトップの波数NXが251.1cm-1であり、このピークに対する半値幅WXを算出したところ、8.8cm-1となり、結晶性の高いε-Ga2O3であることがわかった。結果は、表2に示されるとおりであった。 (2c) Raman spectrum The Raman spectrum at the center point X of the film surface of thesemiconductor film 58 and the outer peripheral points A, B, C and D was measured using a laser Raman spectrometer LabRAM ARAMIS manufactured by Horiba, Ltd., using operation software LabSpec (Ver. 5.78). The optical system was a Zernite-Turner type spectroscopic system of a backscattering system, and a semiconductor-pumped solid-state laser (DPSS, 532 nm) was used as a light source. A Si wafer was used for calibration before the sample measurement. The measurement of the Raman spectrum for the semiconductor film 58 was carried out by adjusting the laser output to 24 mW, the hole (confocal hole diameter) to 400 μm, the center wave number of the spectrometer to 520 cm −1 , the slit to 100 μm, the grating to 1800 gr/mm, and the objective lens to Magnified by 100x and run in point analysis mode. The exposure time was 60 seconds, the number of times of accumulation was 2, and the wavenumber range was 100 to 900 cm −1 . The neutral density filter was appropriately set so that the count of the strongest peak was 3000 or more and 50000 or less. In addition, the Ne lamp was used during the measurement, and the obtained spectrum was corrected so that the wave number of the peak top of the peak caused by the Ne lamp emission line was 278.28 cm −1 . Baseline correction is performed by setting “Type” to “Lines”, “Degree” to “5”, “Attach” to “No”, “Style” to “-”, and selecting “Auto ' and went. The spectrum thus obtained is shown in FIG. For the obtained spectrum, the wavenumbers of the peak tops of the peaks near 250 cm −1 at the central point X and the peripheral points A, B, C and D are N X , N A , N B , N C and N D , And the peak top wavenumbers of the peaks near 113 cm −1 were defined as N X , N A , N B , N C and N D . Further, the half widths at wavenumbers NX , NA , NB , NC and ND were defined as WX , WA , WB , WC and WD . Furthermore, the peak intensity I 250 at the center point X and the peripheral points A, B, C and D with peak tops near 250 cm −1 to the peak intensity I 260 at 260 cm −1 The peak intensity ratio I 250 /I 260 was determined. In this example, for example, the wavenumber N X at the peak top of the peak near 250 cm −1 is 251.1 cm −1 , and the half width W X for this peak is calculated to be 8.8 cm −1 , which is crystalline. It was found to be high ε-Ga 2 O 3 . The results were as shown in Table 2.
半導体膜58の膜面の中心点X、並びに外周点A、B、C及びDにおけるラマンスペクトルを、堀場製作所製レーザーラマン分光測定装置LabRAM ARAMISを用い、操作ソフトウェアLabSpec(Ver.5.78)を用いて測定した。光学系はツェルニターナ型分光系、後方散乱方式であり、光源として半導体励起固体レーザー(DPSS、532nm)を用いた。サンプルの測定前にはSiウェハを用い、校正を行った。半導体膜58に対するラマンスペクトルの測定は、レーザー出力を24mWに調整しHole(コンフォーカルホール径)を400μm、分光器の中心波数を520cm-1、Slitを100μm、グレーティングを1800gr/mm、対物レンズを100倍とし、点分析モードで行った。露光時間は60秒、積算回数を2回とし、波数範囲は100~900cm-1とした。減光フィルターは最強ピークのカウントが3000以上50000以下となるように適宜設定した。また、測定時にNeランプを使用し、得られたスペクトルに対し、Neランプ輝線に起因するピークのピークトップの波数が278.28cm-1となるように、スペクトルを補正した。ベースラインの補正は、ソフトウェアLabSpec上の機能にて「Type」を「Lines」、「Degree」を「5」、「Attach」を「No」、「Style」を「-」に設定し、「Auto」にして行った。このように得られたスペクトルを図4に示す。得られたスペクトルに対し、中心点X、並びに外周点A、B、C及びDにおける、250cm-1付近のピークのピークトップの波数をNX、NA、NB、NC及びND、並びに113cm-1付近のピークのピークトップの波数をNX、NA、NB、NC及びNDとした。また、波数NX、NA、NB、NC及びNDにおける半値幅を、WX、WA、WB、WC及びWDとした。さらに、中心点X、並びに外周点A、B、C及びDにおける、250cm-1付近にピークトップを持つピークでのピーク強度I250の、260cm-1でのピーク強度I260に対するピーク強度比I250/I260を求めた。本例では、例えば、250cm-1付近のピークのピークトップの波数NXが251.1cm-1であり、このピークに対する半値幅WXを算出したところ、8.8cm-1となり、結晶性の高いε-Ga2O3であることがわかった。結果は、表2に示されるとおりであった。 (2c) Raman spectrum The Raman spectrum at the center point X of the film surface of the
(2d)各元素の濃度
二次イオン質量分析装置(SIMS)を用いて、ε-Ga2O3の膜表面の組成分析を行い、Fe、Ti、Na、F及びSiの濃度を測定した。このD-SIMS分析の諸条件は以下のとおりとした。結果は、表2に示されるとおりであった。 (2d) Concentration of Each Element A secondary ion mass spectrometer (SIMS) was used to analyze the composition of the ε-Ga 2 O 3 film surface, and the concentrations of Fe, Ti, Na, F and Si were measured. The conditions for this D-SIMS analysis were as follows. The results were as shown in Table 2.
二次イオン質量分析装置(SIMS)を用いて、ε-Ga2O3の膜表面の組成分析を行い、Fe、Ti、Na、F及びSiの濃度を測定した。このD-SIMS分析の諸条件は以下のとおりとした。結果は、表2に示されるとおりであった。 (2d) Concentration of Each Element A secondary ion mass spectrometer (SIMS) was used to analyze the composition of the ε-Ga 2 O 3 film surface, and the concentrations of Fe, Ti, Na, F and Si were measured. The conditions for this D-SIMS analysis were as follows. The results were as shown in Table 2.
<D-SIMS分析条件(Fe、Ti及びNaを検出する場合)>
・注目元素:Fe、Ti、Na
・装置:CAMECA社製 IMS-7f
・一次イオン種:O22+
・一次イオン加速エネルギー:8keV
・二次イオン極性:Positive
・検出領域:直径30μm <D-SIMS analysis conditions (when detecting Fe, Ti and Na)>
・ Attention elements: Fe, Ti, Na
・Equipment: IMS-7f manufactured by CAMECA
・Primary ion species: O2 2+
・Primary ion acceleration energy: 8 keV
・Secondary ion polarity: Positive
・Detection area:diameter 30 μm
・注目元素:Fe、Ti、Na
・装置:CAMECA社製 IMS-7f
・一次イオン種:O22+
・一次イオン加速エネルギー:8keV
・二次イオン極性:Positive
・検出領域:直径30μm <D-SIMS analysis conditions (when detecting Fe, Ti and Na)>
・ Attention elements: Fe, Ti, Na
・Equipment: IMS-7f manufactured by CAMECA
・Primary ion species: O2 2+
・Primary ion acceleration energy: 8 keV
・Secondary ion polarity: Positive
・Detection area:
<D-SIMS分析条件(F及びSiを検出する場合)>
・注目元素:F、Si
・装置:CAMECA社製 IMS-7f
・一次イオン種:Cs+
・一次イオン加速エネルギー:15.0keV
・二次イオン極性:Negative
・検出領域:直径30μm <D-SIMS analysis conditions (when detecting F and Si)>
・ Attention elements: F, Si
・Equipment: IMS-7f manufactured by CAMECA
・Primary ion species: Cs +
・Primary ion acceleration energy: 15.0 keV
・Secondary ion polarity: Negative
・Detection area:diameter 30 μm
・注目元素:F、Si
・装置:CAMECA社製 IMS-7f
・一次イオン種:Cs+
・一次イオン加速エネルギー:15.0keV
・二次イオン極性:Negative
・検出領域:直径30μm <D-SIMS analysis conditions (when detecting F and Si)>
・ Attention elements: F, Si
・Equipment: IMS-7f manufactured by CAMECA
・Primary ion species: Cs +
・Primary ion acceleration energy: 15.0 keV
・Secondary ion polarity: Negative
・Detection area:
例2
上記(1c)及び(1d)において、ミストCVD法で成膜する際に、ステージ54の温度を500℃で安定化させた上で成膜を開始すると共に、520℃まで20分間かけて昇温させたこと以外は、例1と同様にして半導体膜の作製及び各種評価を行った。250cm-1付近のピークのピークトップの波数NXが246.8cm-1であり、このピークに対する半値幅WXを算出したところ、6.7cm-1となった。このことから、250cm-1付近のピークはシャープなピークであることが分かった。また、この半導体膜は不純物濃度が低かった。結果は、表1及び2に示されるとおりであった。 Example 2
In the above (1c) and (1d), when forming a film by the mist CVD method, the temperature of thestage 54 is stabilized at 500° C. before film formation is started, and the temperature is raised to 520° C. over 20 minutes. A semiconductor film was prepared and various evaluations were performed in the same manner as in Example 1, except that the film was made to have the same thickness. The peak top wavenumber N X of the peak near 250 cm −1 is 246.8 cm −1 , and the half width W X for this peak was calculated to be 6.7 cm −1 . From this, it was found that the peak near 250 cm -1 was a sharp peak. Also, this semiconductor film had a low impurity concentration. The results were as shown in Tables 1 and 2.
上記(1c)及び(1d)において、ミストCVD法で成膜する際に、ステージ54の温度を500℃で安定化させた上で成膜を開始すると共に、520℃まで20分間かけて昇温させたこと以外は、例1と同様にして半導体膜の作製及び各種評価を行った。250cm-1付近のピークのピークトップの波数NXが246.8cm-1であり、このピークに対する半値幅WXを算出したところ、6.7cm-1となった。このことから、250cm-1付近のピークはシャープなピークであることが分かった。また、この半導体膜は不純物濃度が低かった。結果は、表1及び2に示されるとおりであった。 Example 2
In the above (1c) and (1d), when forming a film by the mist CVD method, the temperature of the
例3
ミストCVD法(上記(1))の代わりに、以下に説明するHVPE法によりε-Ga2O3系半導体膜を作製したこと以外は、例1と同様にして各種評価を行った。250cm-1付近のピークのピークトップの波数NXが248.3cm-1であり、このピークに対する半値幅WXを算出したところ、7.0cm-1となった。このことから、250cm-1付近のピークはシャープなピークであることが分かった。また、この半導体膜は不純物濃度が低かった。結果は、表1及び2に示されるとおりであった。 Example 3
Various evaluations were performed in the same manner as in Example 1, except that the ε-Ga 2 O 3 -based semiconductor film was produced by the HVPE method described below instead of the mist CVD method (above (1)). The peak top wavenumber N X of the peak near 250 cm −1 is 248.3 cm −1 , and the half width W X for this peak was calculated to be 7.0 cm −1 . From this, it was found that the peak near 250 cm -1 was a sharp peak. Also, this semiconductor film had a low impurity concentration. The results were as shown in Tables 1 and 2.
ミストCVD法(上記(1))の代わりに、以下に説明するHVPE法によりε-Ga2O3系半導体膜を作製したこと以外は、例1と同様にして各種評価を行った。250cm-1付近のピークのピークトップの波数NXが248.3cm-1であり、このピークに対する半値幅WXを算出したところ、7.0cm-1となった。このことから、250cm-1付近のピークはシャープなピークであることが分かった。また、この半導体膜は不純物濃度が低かった。結果は、表1及び2に示されるとおりであった。 Example 3
Various evaluations were performed in the same manner as in Example 1, except that the ε-Ga 2 O 3 -based semiconductor film was produced by the HVPE method described below instead of the mist CVD method (above (1)). The peak top wavenumber N X of the peak near 250 cm −1 is 248.3 cm −1 , and the half width W X for this peak was calculated to be 7.0 cm −1 . From this, it was found that the peak near 250 cm -1 was a sharp peak. Also, this semiconductor film had a low impurity concentration. The results were as shown in Tables 1 and 2.
(1’)HVPE法によるε-Ga2O3系半導体膜の作製
(1a’)下地基板の準備
下地基板として、厚さ約0.4mmで直径5.08cm(2インチ)のc面GaN単結晶基板を準備した。 (1′) Preparation of ε-Ga 2 O 3 -based semiconductor film by HVPE method (1a′) Preparation of base substrate A crystal substrate was prepared.
(1a’)下地基板の準備
下地基板として、厚さ約0.4mmで直径5.08cm(2インチ)のc面GaN単結晶基板を準備した。 (1′) Preparation of ε-Ga 2 O 3 -based semiconductor film by HVPE method (1a′) Preparation of base substrate A crystal substrate was prepared.
(1b’)成膜
図2に示される構成のHVPE装置20を準備した。HVPE装置20の構成については前述したとおりである。金属Gaをリアクタ22内に配置し、塩化水素ガス(HCl)を供給した。これにより金属Gaと塩化水素を反応させてGaのハロゲン化物を生成させて、成膜用下地基板24へ供給した。同時に、酸素原料としてのO2ガス及びキャリアガスとしてN2ガスをリアクタ22内に導入した。こうしてHVPE法による成膜を550℃の成長温度で15分間行い、成膜用下地基板24及びその上に形成された半導体膜を複合材料として得た。 (1b') Film FormationAn HVPE apparatus 20 having the configuration shown in FIG. 2 was prepared. The configuration of the HVPE device 20 is as described above. Metallic Ga was placed in reactor 22 and hydrogen chloride gas (HCl) was supplied. Metal Ga and hydrogen chloride were thereby reacted to produce a Ga halide, which was supplied to the base substrate 24 for film formation. At the same time, O 2 gas as an oxygen source and N 2 gas as a carrier gas were introduced into the reactor 22 . In this manner, film formation by the HVPE method was performed at a growth temperature of 550° C. for 15 minutes to obtain the base substrate 24 for film formation and the semiconductor film formed thereon as a composite material.
図2に示される構成のHVPE装置20を準備した。HVPE装置20の構成については前述したとおりである。金属Gaをリアクタ22内に配置し、塩化水素ガス(HCl)を供給した。これにより金属Gaと塩化水素を反応させてGaのハロゲン化物を生成させて、成膜用下地基板24へ供給した。同時に、酸素原料としてのO2ガス及びキャリアガスとしてN2ガスをリアクタ22内に導入した。こうしてHVPE法による成膜を550℃の成長温度で15分間行い、成膜用下地基板24及びその上に形成された半導体膜を複合材料として得た。 (1b') Film Formation
例4
HVPE法における上記(1b’)において、成長温度を550℃で安定化させた上で成膜を開始すると共に、580℃まで30分間かけて昇温させたこと以外は、例3と同様にして半導体膜の作製及び各種評価を行った。250cm-1付近のピークのピークトップの波数NXが254.9cm-1であり、このピークに対する半値幅WXを算出したところ、5.9cm-1となった。このことから、250cm-1付近のピークはシャープなピークであることが分かった。また、この半導体膜は不純物濃度が低かった。結果は、表1及び2に示されるとおりであった。 Example 4
In the above (1b') in the HVPE method, the film formation was started after the growth temperature was stabilized at 550 ° C., and the temperature was raised to 580 ° C. over 30 minutes. A semiconductor film was produced and various evaluations were performed. The peak top wave number N X of the peak near 250 cm −1 is 254.9 cm −1 , and the half width W X for this peak was calculated to be 5.9 cm −1 . From this, it was found that the peak near 250 cm -1 was a sharp peak. Also, this semiconductor film had a low impurity concentration. The results were as shown in Tables 1 and 2.
HVPE法における上記(1b’)において、成長温度を550℃で安定化させた上で成膜を開始すると共に、580℃まで30分間かけて昇温させたこと以外は、例3と同様にして半導体膜の作製及び各種評価を行った。250cm-1付近のピークのピークトップの波数NXが254.9cm-1であり、このピークに対する半値幅WXを算出したところ、5.9cm-1となった。このことから、250cm-1付近のピークはシャープなピークであることが分かった。また、この半導体膜は不純物濃度が低かった。結果は、表1及び2に示されるとおりであった。 Example 4
In the above (1b') in the HVPE method, the film formation was started after the growth temperature was stabilized at 550 ° C., and the temperature was raised to 580 ° C. over 30 minutes. A semiconductor film was produced and various evaluations were performed. The peak top wave number N X of the peak near 250 cm −1 is 254.9 cm −1 , and the half width W X for this peak was calculated to be 5.9 cm −1 . From this, it was found that the peak near 250 cm -1 was a sharp peak. Also, this semiconductor film had a low impurity concentration. The results were as shown in Tables 1 and 2.
例5(比較)
ミストCVD法における上記(1c)及び(1d)において、成膜する際に、ステージ54の温度を500℃で安定化させたこと以外は、例1と同様にして半導体膜の作製及び各種評価を行った。250cm-1付近のピークのピークトップの波数NXが251.9cm-1であり、このピークに対する半値幅WXを算出したところ、16.5cm-1となった。このことから、250cm-1付近のピークはブロードなピークであることが分かった。また、この半導体膜は不純物濃度が高かった。結果は、表1及び2に示されるとおりであった。 Example 5 (Comparison)
In the above (1c) and (1d) in the mist CVD method, except that the temperature of thestage 54 was stabilized at 500° C. during film formation, the semiconductor film was produced and various evaluations were performed in the same manner as in Example 1. gone. The peak top wavenumber N X of the peak near 250 cm −1 is 251.9 cm −1 , and the half width W X for this peak was calculated to be 16.5 cm −1 . From this, it was found that the peak near 250 cm −1 was a broad peak. In addition, this semiconductor film had a high impurity concentration. The results were as shown in Tables 1 and 2.
ミストCVD法における上記(1c)及び(1d)において、成膜する際に、ステージ54の温度を500℃で安定化させたこと以外は、例1と同様にして半導体膜の作製及び各種評価を行った。250cm-1付近のピークのピークトップの波数NXが251.9cm-1であり、このピークに対する半値幅WXを算出したところ、16.5cm-1となった。このことから、250cm-1付近のピークはブロードなピークであることが分かった。また、この半導体膜は不純物濃度が高かった。結果は、表1及び2に示されるとおりであった。 Example 5 (Comparison)
In the above (1c) and (1d) in the mist CVD method, except that the temperature of the
例6(比較)
HVPE法における上記(1b’)において、成長温度を500℃で安定化させたこと以外は、例3と同様にして半導体膜の作製及び各種評価を行った。250cm-1付近のピークのピークトップの波数NXが251.7cm-1であり、このピークに対する半値幅WXを算出したところ、14.3cm-1となった。このことから、250cm-1付近のピークはブロードなピークであることが分かった。また、この半導体膜は不純物濃度が高かった。結果は、表1及び2に示されるとおりであった。 Example 6 (Comparison)
A semiconductor film was prepared and various evaluations were performed in the same manner as in Example 3, except that the growth temperature was stabilized at 500° C. in (1b′) above in the HVPE method. The peak top wavenumber N X of the peak near 250 cm −1 is 251.7 cm −1 , and the half width W X for this peak was calculated to be 14.3 cm −1 . From this, it was found that the peak near 250 cm −1 was a broad peak. In addition, this semiconductor film had a high impurity concentration. The results were as shown in Tables 1 and 2.
HVPE法における上記(1b’)において、成長温度を500℃で安定化させたこと以外は、例3と同様にして半導体膜の作製及び各種評価を行った。250cm-1付近のピークのピークトップの波数NXが251.7cm-1であり、このピークに対する半値幅WXを算出したところ、14.3cm-1となった。このことから、250cm-1付近のピークはブロードなピークであることが分かった。また、この半導体膜は不純物濃度が高かった。結果は、表1及び2に示されるとおりであった。 Example 6 (Comparison)
A semiconductor film was prepared and various evaluations were performed in the same manner as in Example 3, except that the growth temperature was stabilized at 500° C. in (1b′) above in the HVPE method. The peak top wavenumber N X of the peak near 250 cm −1 is 251.7 cm −1 , and the half width W X for this peak was calculated to be 14.3 cm −1 . From this, it was found that the peak near 250 cm −1 was a broad peak. In addition, this semiconductor film had a high impurity concentration. The results were as shown in Tables 1 and 2.
Claims (10)
- ε-Ga2O3、又はε-Ga2O3系固溶体で構成される結晶を主相とする、半導体膜であって、
レーザーラマン分光法により測定される、前記半導体膜のラマンスペクトルにおける250cm-1付近のピークの半値幅が10cm-1以下である、半導体膜。 A semiconductor film whose main phase is a crystal composed of ε-Ga 2 O 3 or an ε-Ga 2 O 3 -based solid solution,
A semiconductor film, wherein the half width of the peak near 250 cm −1 in the Raman spectrum of the semiconductor film measured by laser Raman spectroscopy is 10 cm −1 or less. - 前記半導体膜の表面の、前記半導体膜の外周縁に内接する最大円の中心点X並びに4つの外周点A、B、C及びDの各々において、レーザーラマン分光法により測定される、前記半導体膜のラマンスペクトルにおける250cm-1付近のピークの半値幅が10cm-1以下であり、
前記外周点A、B、C及びDが、i)前記外周点A及び前記外周点Cを結ぶ直線と、前記外周点B及び前記外周点Dを結ぶ直線とが前記中心点Xで直角に交わり、かつ、ii)前記外周点A、B、C及びDの前記半導体膜の外縁からの各最短距離が前記半導体膜の半径の1/5となるように定められる、請求項1に記載の半導体膜。 The semiconductor film measured by laser Raman spectroscopy at the center point X of the largest circle inscribed in the outer periphery of the semiconductor film and each of the four outer peripheral points A, B, C and D on the surface of the semiconductor film. The half width of the peak near 250 cm -1 in the Raman spectrum of is 10 cm -1 or less,
i) a straight line connecting the outer peripheral points A and C and a straight line connecting the outer peripheral points B and D intersect at right angles at the center point X; and ii) each shortest distance of said perimeter points A, B, C and D from the outer edge of said semiconductor film is determined to be 1/5 of the radius of said semiconductor film. film. - 前記半導体膜のラマンスペクトルにおいて、250cm-1付近でのピーク強度I250の、260cm-1付近でのピーク強度I260に対するピーク強度比I250/I260が、2.0以上である、請求項1又は2に記載の半導体膜。 The peak intensity ratio I 250 / I 260 of the peak intensity I 250 near 250 cm −1 to the peak intensity I 260 near 260 cm −1 in the Raman spectrum of the semiconductor film is 2.0 or more. 3. The semiconductor film according to 1 or 2.
- 前記半導体膜のラマンスペクトルにおける113cm-1付近のピークの半値幅が10cm-1以下である、請求項1又は2に記載の半導体膜。 3. The semiconductor film according to claim 1, wherein the half width of the peak near 113 cm −1 in the Raman spectrum of said semiconductor film is 10 cm −1 or less.
- 前記半導体膜の表面のTi濃度が1.0×1015atoms/cm3以下である、請求項1又は2に記載の半導体膜。 3. The semiconductor film according to claim 1, wherein the surface Ti concentration of said semiconductor film is 1.0×10 15 atoms/cm 3 or less.
- 前記半導体膜の表面のFe濃度が1.0×1015atoms/cm3以下である、請求項1又は2に記載の半導体膜。 3. The semiconductor film according to claim 1, wherein the surface Fe concentration of said semiconductor film is 1.0×10 15 atoms/cm 3 or less.
- 前記半導体膜の表面のNa濃度が2.0×1013atoms/cm3以下である、請求項1又は2に記載の半導体膜。 3. The semiconductor film according to claim 1, wherein the surface Na concentration of said semiconductor film is 2.0×10 13 atoms/cm 3 or less.
- 前記半導体膜の表面のF濃度が2.0×1015atoms/cm3以下である、請求項1又は2に記載の半導体膜。 3. The semiconductor film according to claim 1, wherein the surface F concentration of said semiconductor film is 2.0×10 15 atoms/cm 3 or less.
- 前記半導体膜の表面のSi濃度が1.0×1016atoms/cm3以下である、請求項1又は2に記載の半導体膜。 3. The semiconductor film according to claim 1, wherein the surface Si concentration of said semiconductor film is 1.0×10 16 atoms/cm 3 or less.
- GaN単結晶基板と、前記GaN単結晶基板上に形成された請求項1又は2に記載の半導体膜とを備えた、複合基板。 A composite substrate comprising a GaN single crystal substrate and the semiconductor film according to claim 1 or 2 formed on the GaN single crystal substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023543703A JP7620719B2 (en) | 2021-08-27 | 2022-06-09 | Semiconductor film and composite substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021139270 | 2021-08-27 | ||
JP2021-139270 | 2021-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023026633A1 true WO2023026633A1 (en) | 2023-03-02 |
Family
ID=85321722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/023323 WO2023026633A1 (en) | 2021-08-27 | 2022-06-09 | Semiconductor film and composite substrate |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7620719B2 (en) |
WO (1) | WO2023026633A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017007871A (en) * | 2015-06-16 | 2017-01-12 | 国立研究開発法人物質・材料研究機構 | ε-Ga2O3 single crystal, ε-Ga2O3 manufacturing method, and semiconductor device using the same |
JP2019009405A (en) * | 2017-06-28 | 2019-01-17 | 株式会社Flosfia | Laminate structure and semiconductor device |
JP2019012826A (en) * | 2017-06-30 | 2019-01-24 | 国立研究開発法人物質・材料研究機構 | Gallium nitride semiconductor substrate, gallium nitride semiconductor device, imaging device, and manufacturing method thereof |
WO2021048950A1 (en) * | 2019-09-11 | 2021-03-18 | 日本碍子株式会社 | Semiconductor film |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019142756A (en) * | 2018-02-22 | 2019-08-29 | トヨタ自動車株式会社 | Film deposition method |
JP2020011859A (en) * | 2018-07-17 | 2020-01-23 | トヨタ自動車株式会社 | Film forming method and semiconductor device manufacturing method |
CN113066902A (en) * | 2021-03-25 | 2021-07-02 | 北京邮电大学 | Method for regulating and controlling photoelectric response performance of epsilon-phase gallium oxide through oxygen vacancy concentration |
-
2022
- 2022-06-09 JP JP2023543703A patent/JP7620719B2/en active Active
- 2022-06-09 WO PCT/JP2022/023323 patent/WO2023026633A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017007871A (en) * | 2015-06-16 | 2017-01-12 | 国立研究開発法人物質・材料研究機構 | ε-Ga2O3 single crystal, ε-Ga2O3 manufacturing method, and semiconductor device using the same |
JP2019009405A (en) * | 2017-06-28 | 2019-01-17 | 株式会社Flosfia | Laminate structure and semiconductor device |
JP2019012826A (en) * | 2017-06-30 | 2019-01-24 | 国立研究開発法人物質・材料研究機構 | Gallium nitride semiconductor substrate, gallium nitride semiconductor device, imaging device, and manufacturing method thereof |
WO2021048950A1 (en) * | 2019-09-11 | 2021-03-18 | 日本碍子株式会社 | Semiconductor film |
Non-Patent Citations (1)
Title |
---|
SHOUTA MORIMOTO, DAISUKE TAHARA, NOBUTAKA MIYAUCHI: "ε-Ga2O3 Thin Film Growth on GaN Template Using Chloride Source by Mist CVD Method,", THE 78TH JSAP AUTUMN MEETING, PROCEEDINGS, 1 January 2017 (2017-01-01), pages 16 - 045, XP093039518, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/jsapmeeting/2017.2/0/2017.2_3895/_pdf/-char/ja> [retrieved on 20230417] * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023026633A1 (en) | 2023-03-02 |
JP7620719B2 (en) | 2025-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1662448B (en) | Manufacturing method of gallium-rich gallium nitride thin film | |
US8318590B2 (en) | Methods and systems for forming thin films | |
JP7289357B2 (en) | semiconductor film | |
JP2015070248A (en) | Oxide thin film and method for manufacturing the same | |
WO2017159311A1 (en) | METHOD FOR PRODUCING GaN CRYSTAL | |
EP3929336A1 (en) | Gan crystal and substrate | |
CN101506947A (en) | Method for producing a doped III-N solid crystal and a free-standing doped III-N substrate, and doped III-N solid crystal and free-standing doped III-N substrate | |
EP4407660A1 (en) | Film-forming method, film-forming device, and crystalline oxide film | |
US20120104557A1 (en) | Method for manufacturing a group III nitride crystal, method for manufacturing a group III nitride template, group III nitride crystal and group III nitride template | |
US20220238645A1 (en) | alpha-Ga2O3 SEMICONDUCTOR FILM | |
WO2023026633A1 (en) | Semiconductor film and composite substrate | |
CN113677833B (en) | Semiconductor film | |
WO2020195355A1 (en) | Underlying substrate | |
JP2020147464A (en) | Manufacturing method of metal nitride film | |
WO2023021815A1 (en) | Semiconductor film and composite substrate | |
JP7221410B2 (en) | α-Ga2O3 semiconductor film | |
JP7612029B2 (en) | Laminate | |
JP2023085571A (en) | semiconductor film | |
JP2021100077A (en) | Film formation method | |
JPH11268996A (en) | Method for growing compound semiconductor mixed crystal | |
WO2020261356A1 (en) | Semiconductor film | |
JP3479041B2 (en) | Method for producing group III metal nitride thin film | |
CN119923494A (en) | GaN crystal and method for producing GaN crystal | |
JP2017125243A (en) | Crystalline oxide film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22860927 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023543703 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22860927 Country of ref document: EP Kind code of ref document: A1 |