[go: up one dir, main page]

WO2023025149A1 - 导光装置、光源装置、显示系统和交通工具 - Google Patents

导光装置、光源装置、显示系统和交通工具 Download PDF

Info

Publication number
WO2023025149A1
WO2023025149A1 PCT/CN2022/114263 CN2022114263W WO2023025149A1 WO 2023025149 A1 WO2023025149 A1 WO 2023025149A1 CN 2022114263 W CN2022114263 W CN 2022114263W WO 2023025149 A1 WO2023025149 A1 WO 2023025149A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transflective
light guide
reflective
source
Prior art date
Application number
PCT/CN2022/114263
Other languages
English (en)
French (fr)
Inventor
吴慧军
徐俊峰
方涛
Original Assignee
未来(北京)黑科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202121985764.2U external-priority patent/CN216748171U/zh
Priority claimed from CN202110970591.5A external-priority patent/CN115903224A/zh
Priority claimed from CN202121983323.9U external-priority patent/CN216817084U/zh
Priority claimed from CN202110968880.1A external-priority patent/CN115933043A/zh
Application filed by 未来(北京)黑科技有限公司 filed Critical 未来(北京)黑科技有限公司
Publication of WO2023025149A1 publication Critical patent/WO2023025149A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres

Definitions

  • At least some embodiments of the present disclosure relate to a light guide device, a light source device, a display system, and a vehicle.
  • the head up display (HUD) technology can project the image light from the image source (including vehicle information such as vehicle speed or other information) to the imaging plate or the windshield of the vehicle (such as a car) through reflective optical design Imaging windows such as glass, so that users (such as drivers) can directly see information without looking down at the dashboard during driving. For example, this can not only improve driving safety factors, but also bring better driving experience.
  • Embodiments of the present disclosure provide a light guide device, a light source device, a display system and a vehicle.
  • a light guide device including: a light guide structure, including a light outcoupling portion configured to outcouple light propagating in the light guide structure,
  • the light guide structure includes a first light guide element and a second light guide element, the light entering the light guide structure is transmitted to the second light guide element through the first light guide element, and the light coupler At least part of the output part is located in the second light guide element;
  • the first light guide element includes a medium configured to transmit the light and a first reflective structure located on at least two sides of the medium, the The first reflective structure is configured to reflect the light incident on the first light guiding element at least once so that the light is transmitted to the second light guiding element; and/or the first light guiding element is configured In order to perform total reflection and propagation on the light incident to the first light guide element so that the light is transmitted to the second light guide element.
  • FIG. 1A is a partial cross-sectional structural schematic diagram of a light guide device provided according to an example of an embodiment of the present disclosure
  • Fig. 1B is a partial cross-sectional structural schematic diagram of a light guide device provided according to another example of an embodiment of the present disclosure
  • Fig. 2 is a partial cross-sectional structural schematic diagram of a light guide device provided according to another example of an embodiment of the present disclosure
  • Fig. 3A is a partial cross-sectional structural schematic diagram of a light guide device provided according to another example of an embodiment of the present disclosure
  • Fig. 3B is a partial cross-sectional structural schematic diagram of a light guide device provided according to another example of an embodiment of the present disclosure.
  • Fig. 4 is a partial cross-sectional structural schematic diagram of a light guide device provided according to another example of an embodiment of the present disclosure.
  • Fig. 5 is a light guide device provided according to another example of an embodiment of the present disclosure.
  • Fig. 6 is a partial cross-sectional structural schematic diagram of a light guide device provided according to another embodiment of the present disclosure.
  • Fig. 7 is a partial cross-sectional structural schematic diagram of a light guide device provided according to another example of an embodiment of the present disclosure.
  • 8A to 8C are partial cross-sectional structural schematic diagrams of light guide devices provided according to three examples of embodiments of the present disclosure.
  • Fig. 9 is a partial cross-sectional structural schematic diagram of a light guide device provided according to another example of an embodiment of the present disclosure.
  • Fig. 10A is a partial cross-sectional structural schematic diagram of a light guide device provided according to another example of an embodiment of the present disclosure.
  • 10B is a schematic cross-sectional structural view of the light guide device when the light guide medium includes air;
  • Fig. 11 is a schematic diagram of total reflection propagation of light in a light guide structure provided with an optical coupling part according to another example of an embodiment of the present disclosure
  • Fig. 12 is a schematic diagram of a light guide structure provided with an optical outcoupling part according to another example of an embodiment of the present disclosure
  • FIGS. 13A to 13H are schematic diagrams of a partial planar structure of a transflective element provided according to another example of an embodiment of the present disclosure.
  • FIG. 14A and FIG. 14B are schematic diagrams of a partial planar structure of a transflective element provided according to another example of an embodiment of the present disclosure.
  • FIG. 15A and FIG. 15B are schematic diagrams of a partial planar structure of a transflective element provided according to another example of an embodiment of the present disclosure.
  • Fig. 16 is a light guide device provided according to another embodiment of the present disclosure.
  • Fig. 17 is a partial cross-sectional structural schematic diagram of a light guide device provided according to another example of an embodiment of the present disclosure.
  • FIG. 18 is a schematic cross-sectional structure diagram of a light source device provided according to the present disclosure.
  • 19A and 19B are partial cross-sectional structural schematic diagrams of a display device provided according to an embodiment of the present disclosure.
  • Fig. 20 is a partial cross-sectional structural schematic diagram of a display device provided according to another example of an embodiment of the present disclosure.
  • Fig. 21 is a partial cross-sectional structural schematic diagram of a display device provided according to another example of an embodiment of the present disclosure.
  • Fig. 22 is a partial cross-sectional structural schematic diagram of a head-up display provided according to an embodiment of the present disclosure
  • FIG. 23A is a head-up display provided according to an example of an embodiment of the present disclosure.
  • FIG. 23B is a head-up display provided according to another example of an embodiment of the present disclosure.
  • Fig. 24a shows a schematic structural diagram of a light source device according to some embodiments of the present disclosure
  • Fig. 24b shows a second structural schematic diagram of a light source device according to some embodiments of the present disclosure
  • Fig. 25a shows a third structural schematic diagram of a light source device according to some embodiments of the present disclosure
  • Fig. 25b shows a fourth structural schematic diagram of a light source device according to some embodiments of the present disclosure
  • Fig. 25c shows the fifth structural schematic diagram of the light source device according to some embodiments of the present disclosure.
  • Fig. 25d shows a sixth structural schematic diagram of a light source device according to some embodiments of the present disclosure.
  • Fig. 26a shows a structural schematic diagram VII of a light source device according to some embodiments of the present disclosure
  • Fig. 26b shows a schematic eighth structural diagram of a light source device according to some embodiments of the present disclosure
  • Fig. 27a shows a schematic diagram 1 of a light splitting structure and a polarization conversion structure in a light source device according to some embodiments of the present disclosure
  • Fig. 27b shows the second schematic diagram of the light splitting structure and polarization conversion structure in the light source device of some embodiments of the present disclosure
  • Fig. 27c shows the third schematic diagram of the light splitting structure and polarization conversion structure in the light source device of some embodiments of the present disclosure
  • Fig. 27d shows a schematic diagram 4 of the light splitting structure and the polarization conversion structure in the light source device of some embodiments of the present disclosure
  • Fig. 28a shows a structural schematic diagram nine of a light source device according to some embodiments of the present disclosure
  • Fig. 28b shows a schematic structural diagram ten of a light source device according to some embodiments of the present disclosure
  • Fig. 28c shows a schematic structural diagram eleventh of a light source device according to some embodiments of the present disclosure
  • Fig. 29 shows a schematic structural diagram twelve of a light source device according to some embodiments of the present disclosure
  • Fig. 30 shows a schematic structural diagram of a light source device thirteen according to some embodiments of the present disclosure
  • FIG. 31 shows a first schematic diagram of a display device according to some embodiments of the present disclosure.
  • Fig. 32 shows a third schematic diagram of a display device according to some embodiments of the present disclosure.
  • Figure 33 shows a schematic diagram of a heads-up display system according to some embodiments of the present disclosure
  • Fig. 34 shows a first schematic diagram of a display system provided by at least some embodiments of the present disclosure
  • Figure 35a shows a second schematic diagram of a display system provided by at least some embodiments of the present disclosure
  • Figure 35b shows a third schematic diagram of a display system provided by at least some embodiments of the present disclosure.
  • Fig. 36a shows a first schematic diagram of a light source device of a display system provided by at least some embodiments of the present disclosure
  • Fig. 36b shows a second schematic diagram of a light source device of a display system provided by at least some embodiments of the present disclosure
  • Fig. 36c shows a third schematic diagram of a light source device of a display system provided by at least some embodiments of the present disclosure
  • Fig. 37a shows a schematic diagram 1 of arrangement of light sources along a first direction provided by at least some embodiments of the present disclosure
  • Fig. 37b shows a second schematic diagram of the arrangement of light sources along the first direction provided by at least some embodiments of the present disclosure
  • Fig. 38a shows a first schematic diagram of arrangement of light sources along a second direction provided by at least some embodiments of the present disclosure
  • Fig. 38b shows a second schematic diagram of the arrangement of light sources along the second direction provided by at least some embodiments of the present disclosure
  • Fig. 39a shows a first schematic diagram of a light guide device of a display system provided by at least some embodiments of the present disclosure
  • Fig. 39b shows a second schematic diagram of a light guide device of a display system provided by at least some embodiments of the present disclosure
  • FIG. 40 shows a fourth schematic diagram of a display system provided by at least some embodiments of the present disclosure.
  • Figure 41 shows a schematic diagram of a light guiding device and an image generating device provided by at least some embodiments of the present disclosure
  • Fig. 42 shows a first schematic diagram of the light conversion part of the display system provided by at least some embodiments of the present disclosure
  • Fig. 43a shows a second schematic diagram of the light conversion part of the display system provided by at least some embodiments of the present disclosure
  • Fig. 43b shows a third schematic diagram of the light converting part of the display system provided by at least some embodiments of the present disclosure
  • Fig. 43c shows a schematic diagram 4 of the light conversion part of the display system provided by at least some embodiments of the present disclosure
  • Fig. 43d shows a fifth schematic diagram of the light conversion part of the display system provided by at least some embodiments of the present disclosure
  • Fig. 44 shows a first schematic diagram of a dodging part provided by at least some embodiments of the present disclosure
  • Fig. 45 shows a first schematic diagram of a light guiding device and a light homogenizing part provided by at least some embodiments of the present disclosure
  • Fig. 46a shows a second schematic diagram of a light guiding device and a light homogenizing part provided by at least some embodiments of the present disclosure
  • Fig. 46b shows the third schematic diagram of the light guiding device and light homogenizing part provided by at least some embodiments of the present disclosure
  • Fig. 47a shows a first schematic diagram of a light conversion part and a light uniform part provided by at least some embodiments of the present disclosure
  • Fig. 47b shows the second schematic diagram of the light conversion part and light uniform part provided by at least some embodiments of the present disclosure
  • Fig. 48a shows the second schematic diagram of the dodging part provided by at least some embodiments of the present disclosure
  • Fig. 48b shows the third schematic diagram of the dodging part provided by at least some embodiments of the present disclosure
  • Fig. 49 shows a fifth schematic diagram of a display system provided by at least some embodiments of the present disclosure.
  • FIG. 50 is an exemplary block diagram of a vehicle according to another embodiment of the present disclosure.
  • 30 light source device; 31: light source structure; 32: light guide structure; 321 optocoupler output unit; 3211: first optocoupler output unit group; 3212: second optocoupler output unit group; 322: light-incoming area; 323: reflector; 324: light guide medium; 33: light uniform part; 331: first light uniform part; 332: second light uniform part; 333: first reflective film; 334: second reflective film; 34: light splitting structure ;35: reflective element; 36: light collecting part; 37: polarization conversion structure; 300: display device: 310: liquid crystal screen: 320: light converging element; 330: diffusing element; 400; head-up display system; 410: imaging window; 420: eye box area; 430: virtual image.
  • light guide structure may also be called “light guide structure”
  • light source structure may also be called “light source part”
  • light guide medium may also be called “light guide structure”.
  • Light guide medium can also be called “polarization beam splitting structure”
  • polarization conversion structure can also be called “polarization conversion structure”
  • light gathering element can also be called “light converging part”
  • display Device may also be referred to as a “display system”
  • a “head-up display” may also be referred to as a “head-up display system”.
  • an embodiment of the present disclosure provides a light guide device, including: a light guide structure, including a light outcoupling portion configured to outcouple light propagating in the light guide structure , wherein the light guide structure includes a first light guide element and a second light guide element, the light entering the light guide structure is transmitted to the second light guide element through the first light guide element, and the light At least part of the outcoupling portion is located in the second light guide element, the first light guide element includes a medium configured to propagate the light and first reflective structures located on at least two sides of the medium, the first light guide element A reflective structure is configured to reflect light incident on the first light guiding element at least once so that the light is transmitted to the second light guiding element.
  • an embodiment of the present disclosure provides a light guide device, including: a light guide structure, including a light outcoupling portion configured to outcouple light propagating in the light guide structure,
  • the light guide structure includes a first light guide element and a second light guide element, the light entering the light guide structure is configured to be transmitted to the second light guide element through the first light guide element, so The light outcoupling part is at least partly located on the second light guide element, and the first light guide element is configured to perform total reflection and propagation on the light incident to the first light guide element so that the light propagates to the second light guide element.
  • the second light guide element; the first light guide element includes at least two reflective surfaces, the divergence angle of the light incident into the first light guide element is ⁇ , and the at least two reflective surfaces include opposite to each other Two reflective surfaces, wherein the angle between the two reflective surfaces opposite to each other is between 0° and ⁇ .
  • the light guide device provided in the first aspect or the second aspect of the present disclosure a better uniform light effect can be achieved through the first light guide element, and the following embodiments are applicable to the light guide device provided in the first aspect or the second aspect of the present disclosure Light guide.
  • the light guide device, light source device, display device, and head-up display provided by the embodiments of the present disclosure will be described below in conjunction with the accompanying drawings and specific embodiments. It should be noted that the same components can be arranged in the same way, and all embodiments of the present disclosure are applicable. Regarding multiple protection topics such as light guide device, light source device, display device, and head-up display, the same or similar content will not be repeated in each protection topic, and reference can be made to the descriptions in the corresponding embodiments of other protection topics.
  • FIG. 1A is a partial cross-sectional structural schematic diagram of a light guide device provided according to an example of an embodiment of the present disclosure.
  • the light guiding device includes a light guiding structure 100 .
  • the light guide structure 100 includes a light outcoupling portion 101 configured to outcouple light propagating in the light guide structure 100 .
  • the light guide structure 100 includes a first light guide element 110 and a second light guide element 120, the light entering the light guide structure 100 is transmitted to the second light guide element 120 through the first light guide element 110, at least part of the light coupling part 101 Located in the second light guide element 120 .
  • the first light guide element 110 includes a medium 111 configured to transmit light and a first reflective structure 112 located on at least two sides of the medium 111, and the first reflective structure 112 is configured to reflect light incident on the first light guide element 110. The light is reflected at least once to propagate the light to the second light guiding element 120 .
  • the first reflective structure 112 is configured to reflect the light incident on the first light guide element 110 multiple times to improve the uniformity of the light emitted from the first light guide element 110 .
  • the light emitted from the light source may be uneven in brightness (for example, the light emitted by a light-emitting diode (LED) is generally bright in the center and dark around). Therefore, when the light is coupled out from the light guide device, it is prone to uneven bad question.
  • the uniformity of light emitted from the light guide device can be improved by arranging a first light guide element including a medium and a first reflection structure.
  • the light outcoupling parts 101 are located in the second light guide element 120, and the light outcoupling part 101 is not provided in the first light guide element 110, that is, the first light outcoupling part 101
  • the light guide element 110 is configured to transmit the light therein into the second light guide element 120, and will not emit light to a predetermined area (such as a display panel, or a user, etc.), and the light coupling part provided in the second light guide element 120 101 is configured to emit the light propagating in the second light guiding element 120 to the aforementioned predetermined area.
  • the first reflective structure 112 may be located on both sides of the medium 111 in the Y direction to reflect light propagating in the XY plane.
  • the first reflective structure 112 may further include a portion located on at least one side of the medium 111 in a direction perpendicular to the XY plane, so as to reflect light incident on this portion.
  • the first reflective structure 112 may surround the medium 111 .
  • the first reflective structure 112 may be provided at other positions of the medium 111 except the light-incident side and the light-outside thereof.
  • the side surface of the first reflective structure 112 facing the medium 111 is a reflective surface for reflecting light incident thereon.
  • the first reflective structure 112 can be an element with relatively high reflectivity (for example, the reflectivity is greater than 70%, 80%, 90% or 95%), and can be an integral element, such as a polished metal piece, such as It is a polished piece including metal materials such as aluminum, copper or silver or metal alloy materials.
  • the first reflective structure 112 can also be plated, pasted or sprayed on a substrate (such as glass, plastic, etc.)
  • a metal reflective surface is provided, such as aluminum-plated, silver-plated or copper-plated reflective surfaces; or a dielectric film reflective surface, such as stacked metal oxides, metal nitrides, and inorganic fluorides.
  • the surface of the first reflective structure 112 facing the medium 111 may be coated with a high-reflectivity film, such as an enhanced specular reflector (ESR, Enhanced Specular Reflector).
  • ESR enhanced specular reflector
  • the first reflective structure 112 is a non-light-transmitting structure, and the light incident on the first reflective structure 112 undergoes specular reflection instead of total reflection on the reflective surface of the first reflective structure 112 .
  • the medium 111 and the first reflective structure 112 are independent structures.
  • the above "independent structures" means that the medium 111 and the first reflective structure 112 are not integrated structures, nor are they made of the same material, but there is no limitation on whether the first reflective structure 112 is in contact with the medium 111 or not.
  • medium 111 may include a transparent substrate.
  • the refractive index of the transparent substrate is greater than 1.
  • non-total reflection of light may propagate in the transparent substrate, but not limited thereto.
  • part of the light rays propagating in the transparent substrate may propagate along the X direction shown in FIG. 1A .
  • the light propagating in the medium may be propagated by total reflection or non-total reflection, which is not limited in the embodiments of the present disclosure.
  • non-total reflection propagation here refers to the propagation of light (such as light with a small divergence angle) in the medium in a way other than total reflection, for example, light can propagate in the medium without reflection (such as between the medium and There is no reflection on the interface between the air); or, light (such as light with a large divergence angle) can also be reflected and propagated in a non-total reflection manner, for example, it may not satisfy the total reflection condition, such as medium and air (or When reflection occurs on the interface between other media), the reflection angle is less than the critical angle of total reflection, and it can be considered that the light does not or rarely propagates through total reflection in the light-guiding medium.
  • the main direction of the light incident to the light guide medium or the main optical axis propagation direction of the light incident to the light guide medium is a direction parallel to a straight line, for example, it can be parallel to the X direction, and some light rays continue to propagate after specular reflection .
  • "Parallel" in the embodiments of the present disclosure includes completely parallel and approximately parallel, completely parallel means that the angle between any two is 0°, approximately parallel means that the angle between any two is not greater than 20°, for example, not greater than 10 °, for example not greater than 5°.
  • the reflective surface of the first reflective structure 112 may be in contact with the surface of the medium 111 .
  • the first reflective structure 112 may be a reflective film plated or pasted on the surface of the medium 111.
  • the shape of the transparent substrate can be a three-dimensional structure, such as one of a cuboid (such as a cube) or a parallelepiped; the first reflective structure 112 can be arranged on at least two surfaces of the three-dimensional structure, such as the at least two surfaces Including two surfaces facing each other, for example, two surfaces facing each other in the Y direction shown in FIG. 1A .
  • the optical path of the light propagating in the medium can be increased, which is beneficial to further improve the homogenization effect of the light.
  • FIG. 1B is a schematic diagram of a partial cross-sectional structure of a light guide device provided according to another example of an embodiment of the present disclosure.
  • the difference between the light guide device shown in FIG. 1B and the light guide device shown in FIG. 1A is that the medium 111 in the light guide device shown in FIG. 1B includes air.
  • the first reflective structure 112 includes at least two sub-reflective surfaces 1120, and a cavity 1121 is included between the at least two sub-reflective surfaces 1120.
  • the air in the cavity 1121 can be used as a medium for propagating light.
  • the cavity 1121 forms a space for light to pass through.
  • the medium of the first light guide element includes air, and the first reflective structure of the first light guide element reflects light in a non-total reflection manner, and the light guide device is opposite to the propagating light While playing a uniform light effect, it is also beneficial to reduce its weight and improve its practicality.
  • the first reflective structure includes two sub-reflective surfaces satisfying that: the two sub-reflective surfaces are separate reflective surfaces or parts extending in different directions on the same reflective surface.
  • the first reflective structure 110 includes two sub-reflective surfaces 1120 opposite to each other.
  • the two sub-reflective surfaces 1120 may be opposite to each other in the Y direction shown in FIG. 1A and FIG. 1B , They may face each other in a direction perpendicular to the XY plane, or may face each other in another direction perpendicular to the X direction.
  • the above two sub-reflective surfaces 1120 facing each other may be two sub-reflective surfaces that are independent of each other with a gap in the middle, or two sub-reflective surfaces that are connected by a connecting portion located outside the medium. This is not limited.
  • two sub-reflecting surfaces 1120 opposite to each other are arranged in parallel.
  • first light guide element 110 and the second light guide element 120 extends along a first direction (such as the X direction shown in the figure), for example, the first light guide element 110 Both the second light guiding element 120 and the second light guiding element 120 extend along the first direction.
  • first light guide element 110 and the second light guide element 120 can both be plate-shaped structures, which extend along at least two directions, and the two extension directions can be the X direction in the figure and the direction perpendicular to the XY plane .
  • extending at least one of the first light guiding element 110 and the second light guiding element 120 along the first direction may refer to the extending direction of the long side of the first light guiding element (and/or the second light guiding element).
  • the above "direction perpendicular to the XY plane" may refer to the direction of the broadside of the first light guide element (and/or the second light guide element), and the long side and the broadside may form a rectangle, such as the first light guide element And/or the second light guide element includes a plate-like structure with a certain thickness in the Y direction as shown in the figure and a rectangular shape on the plane perpendicular to the XY plane.
  • the first light guiding element 110 and the second light guiding element 120 overlap along a second direction perpendicular to the first direction.
  • the embodiment of the present disclosure schematically shows that the second direction is the Y direction shown in the figure.
  • Embodiments of the present disclosure are not limited to the second direction being the Y direction shown in FIG. 1A , and may also be a direction perpendicular to the XY plane.
  • the first light guide element and the second light guide element are arranged to be stacked along the Y direction shown in FIG. Reduce the size of the light guide along the X direction shown in FIG. 1A .
  • the first light guiding element 110 and the second light guiding element 120 may be separate structures, that is, the first light guiding element 110 and the second light guiding element 120 are not integrally formed.
  • an air gap may be provided between the first light guide element 110 and the second light guide element 120 , or an adhesive layer may be provided to stick them together.
  • the second light guiding element 120 includes a first sub-portion 121 that does not overlap the first light guiding element 110 in the second direction.
  • FIG. 1B schematically shows that the length of the first light guide element 110 in the first direction is smaller than the length of the second light guide element 120 in the first direction, so that the second light guide element 120 includes The first sub-section 121 that does not overlap with the first light guide element 110, but not limited thereto, the length of the first light guide element may be the same as the length of the second light guide element, or the length of the first light guide element may be greater than the length of the second light guide element.
  • the light source device shown in FIG. 1A and FIG. 1B when the light guide device shown in FIG. 1A and FIG. 1B is applied to a light source device, the light source device includes a light guide device and a light source part (the light source part 500 shown in FIG. 18 ), and the light source part can be along with the first light guide element.
  • the light source part Arranged in the first direction, and in the Y direction, the light source part overlaps with the first subsection 121 of the second light guide element 120, for example, the first subsection 121 and the first light guide element 110 define an edge of an accommodation space,
  • the light source part can be arranged in the accommodation space, so that part of the space not provided with the first light guide element 110 can be used to reduce the size of the light source device, which is beneficial to the application of products.
  • FIG. 2 is a schematic diagram of a partial cross-sectional structure of a light guide device provided according to another example of an embodiment of the present disclosure.
  • the difference between the light guiding device shown in FIG. 2 and the light guiding device shown in FIGS. 1A and 1B is that the two sub-reflecting surfaces 1120 facing each other in the first reflecting structure 110 shown in FIG. 2 are not parallel, as shown in FIG. 2
  • Other structures in the light guide device except for the first reflective structure 110 may have the same features as the corresponding structures in any example of the light guide device shown in FIG. 1A and FIG. 1B , which will not be repeated here.
  • the divergence angle of the light incident into the first light guide element 110 is ⁇ .
  • the divergence angle is currently a more general standard for measuring the light beam angle.
  • ⁇ /2 is the angle between the luminous direction and the optical axis when the luminous intensity value is half of the axial intensity value; or, ⁇ /2 can also be the luminous The angle between the light emitting direction and the optical axis when the intensity value is 60% or 80% of the radial intensity value.
  • the divergence angle of the light incident into the first light guide element 110 may be 40°.
  • the divergence angle of the light incident into the first light guide element 110 may be 20°.
  • the divergence angle of the light incident into the first light guide element 110 may be 10°.
  • the above-mentioned divergence angle ⁇ of the light incident into the first light guide element 110 is greater than 0°.
  • the angle between the two sub-reflecting surfaces 1120 opposite to each other is greater than 0° and less than or equal to ⁇ .
  • the angle between the two sub-reflecting surfaces 1120 opposite to each other is less than or equal to 40°.
  • the angle between the two sub-reflecting surfaces 1120 opposite to each other is less than or equal to 30°.
  • the angle between the two sub-reflecting surfaces 1120 opposite to each other is less than or equal to 20°.
  • the angle between the two sub-reflecting surfaces 1120 opposite to each other is less than or equal to 10°.
  • the included angle between the two sub-reflecting surfaces 1120 opposite to each other on at least one of the light incident side, the light exit side and the side between the light incident side and the light exit side of the first reflective structure 112 is greater than 0° And less than or equal to ⁇ .
  • the first light guide element 110 includes a light incident side and a light exit side. From the light incident side toward the light exit side, the distance between the two opposing sub-reflective surfaces 1120 increases gradually.
  • the embodiments of the present disclosure are not limited thereto, and the distance between the two sub-reflecting surfaces opposite to each other may gradually decrease from the light incident side of the first light guide element toward the light exit side.
  • the angle between the two sub-reflective surfaces 1120 opposite to each other on the side of the first reflective structure 112 is greater than 0° and less than or equal to ⁇ .
  • it may be opposite sides perpendicular to the XY plane.
  • the second light guide element 120 includes a surface extending along the first direction, and one of the two sub-reflective surfaces 1120 opposite to each other of the first reflective structure 112 may be parallel to the surface of the second light guide element 120 .
  • one of the two sub-reflective surfaces 1120 opposite to each other that is close to the second light guide element 120 may be parallel to the surface of the second light guide element 120 .
  • the embodiments of the present disclosure are not limited thereto, and the two sub-reflection surfaces opposite to each other may not be parallel to the surface of the second light guide element.
  • the two sub-reflecting surfaces facing each other are set to be non-parallel, and the angle between them is less than or equal to ⁇ , which is beneficial to reduce the distance between at least a part of the two sub-reflecting surfaces, and can reduce the Thinning the thickness of the first reflective structure is beneficial to increase the number of reflections of light in the first reflective structure and improve the uniform light effect of the first light guide element.
  • the number of reflections of light in the first reflective structure can also be increased, which is beneficial to improving the homogenization effect of light at large angles.
  • the first light guide element 110 further includes a reflective structure 113 (hereinafter referred to as a third reflective structure 113 ), configured to reflect light propagating in the first light guide element 110 into The second light guiding element 120 .
  • the third reflective structure 113 is located on the light exit side of the medium 111 and the first reflective structure 112 to reflect the light emitted from the medium 111 and the first reflective structure 112 into the second light guide element 120 .
  • the third reflective structure 113 may be attached to the medium 111 or integrally formed with the medium 111 .
  • both can be integrally formed.
  • the third reflective structure 113 may include a reflective surface, which may be an element with relatively high reflectivity, and reflect the light transmitted from the medium 111 and the first reflective structure 112 to the second light guide element 120 through specular reflection.
  • the reflective surface may be a metal reflective surface, such as a reflective surface plated with aluminum, silver or copper.
  • the third reflective structure 113 may include a prism, and the light propagated from the medium 111 and the first reflective structure 112 may be totally reflected on the surface of the prism and directed to the second light guide element 120 .
  • the prism may be a triangular prism.
  • the prism when the light passes through the prism, it will be refracted at the interface between the prism and air or other media (such as the second light guide element or optical glue, etc.), and the refracted light will be deflected towards the central area of the light guide device, which is beneficial to improve Light utilization.
  • FIG. 3A is a schematic diagram of a partial cross-sectional structure of a light guide device provided according to another example of an embodiment of the present disclosure.
  • the light guiding device further includes a light conversion part 200
  • the light conversion part 200 includes a polarization splitting element 210 and a polarization conversion structure 220 .
  • the polarization beam splitting element 210 is configured to split the light incident on the polarization beam splitting element 210 into first polarized light and second polarized light.
  • the light directed toward the polarization splitting element 210 includes light with different polarization states, such as natural light, which can be considered as the sum of many light waves with all possible vibration directions.
  • the polarization beam splitting element 210 may have the property of transmitting light of one polarization state and reflecting light of another polarization state, and the polarization beam splitting element 210 may realize beam splitting by utilizing the above-mentioned transflective property.
  • Other structures in the light guide device provided in this example, except the light converting portion 200 may have the same features as the corresponding structures in any example shown in FIG. 1A to FIG. 2 , which will not be repeated here.
  • the polarization beam splitting element 210 may be a polarization beam splitter prism (PBS, Polarization Beam Splitter).
  • the polarization splitting element 210 may include a transflective film having the above-mentioned transflective properties, and achieve beam splitting by transmitting part of light and reflecting another part of light.
  • the transmittance of the transflective film to one of the first polarized light and the second polarized light in the light emitted by the light source part (the light source part 500 shown in FIG. 18 ) is greater than its transmittance to the other, and the light source The reflectance of one of the first polarized light and the second polarized light in the light emitted from the part is greater than the reflectance of the other.
  • the transmittance of the polarization beam splitting element for the first polarized light is greater than the transmittance of the second polarized light
  • the reflectance of the polarization beam splitting element for the second polarized light is greater than the reflectance of the first polarized light.
  • the first polarized light and the second polarized light are interchangeable.
  • the transmittance of the polarization splitting element 210 to the first polarized light is about 20%-95%, for example, the transmittance may be 60%, 70%, 80%, 90% or 95%.
  • the reflectivity of the polarization splitting element 210 for the second polarized light is about 20%-95%, for example, the reflectivity may be 60%, 70%, 80%, 90% or 95%.
  • the first polarized light and the second polarized light may both be linearly polarized light, and the polarization directions of the first polarized light and the second polarized light are different, for example, the polarization directions of the first polarized light and the second polarized light are perpendicular.
  • first polarized light and the second polarized light may both be circularly polarized or elliptically polarized, and the first polarized light and the second polarized light have different rotations.
  • the transmitted light includes P-polarized light
  • the reflected light includes S-polarized light
  • the transmitted light includes S-polarized light
  • the reflected light includes P-polarized light.
  • one of the first polarized light and the second polarized light is S polarized light
  • the other of the first polarized light and the second polarized light is P polarized light.
  • the transflective film included in the polarizing beam splitting element 210 may be an optical film with a polarized transflective function, such as an optical film that can split unpolarized light into two mutually orthogonal polarized lights through transmission and reflection, such as The beam can be split into two linearly polarized lights whose polarization directions are perpendicular to each other; the above-mentioned optical film can be composed of multiple layers with different refractive indices according to a certain stacking sequence, and the thickness of each layer is about 10-1000nm.
  • the material of the film layer can be selected from inorganic dielectric materials, such as metal oxides, inorganic fluorides, metal oxynitrides and metal nitrides; polymer materials can also be selected, such as polypropylene, polyvinyl chloride or polyethylene.
  • inorganic dielectric materials such as metal oxides, inorganic fluorides, metal oxynitrides and metal nitrides
  • polymer materials can also be selected, such as polypropylene, polyvinyl chloride or polyethylene.
  • the polarization conversion structure 220 is configured to convert the second polarized light obtained by the polarization splitting element 210 into a third polarized light, and the third polarized light has the same polarization state as the first polarized light.
  • the third polarized light may be linearly polarized light, and the polarization direction of the third polarized light is the same as that of the first polarized light.
  • the third polarized light may be circularly polarized light or elliptically polarized light, and the sense of rotation of the third polarized light is the same as that of the first polarized light.
  • the third polarized light has the same polarization state as the first polarized light may mean that the two are basically the same without considering factors such as the conversion efficiency of the polarization conversion structure, for example, both are linearly polarized lights with the same polarization direction , or circularly or elliptically polarized light with the same hand direction.
  • Fig. 3A schematically shows that the polarization conversion structure 220 can be located on the side of the light transmitted by the polarization beam splitting element 210 (for example, the polarization conversion structure 220 is located on the optical path of the light transmitted by the polarization beam splitting element 210), at this time, the polarization beam splitting element 210 transmits
  • the light of the polarization beam splitting element 210 includes the second polarized light, and the light reflected by the polarization beam splitting element 210 includes the first polarized light; 210 on the optical path of the reflected light), at this time, the light transmitted by the polarization beam splitting element includes the first polarized light, and the light reflected by the polarization beam splitting element includes the second polarized light.
  • the second polarized light can be converted into the third polarized light only once through the polarization conversion structure 220 , for example, the polarization conversion structure 220 can be a 1/2 wave plate.
  • the embodiments of the present disclosure are not limited thereto.
  • the second polarized light may also be converted into the third polarized light after passing through the polarization conversion structure 220 at least twice.
  • the polarization conversion structure 220 may be a 1/4 wave plate.
  • the light conversion part 200 further includes a second reflective structure 230 configured to reflect at least one of the first polarized light, the second polarized light and the third polarized light.
  • the light reflected by the polarization splitting element 210 includes the first polarized light
  • the second reflective structure 230 is located on one side of the light reflected by the polarization splitting element 210, and is configured to reflect the first polarized light; for example, the light reflected by the polarization splitting element 210 Including the second polarized light, the second reflective structure 230 is located on the light-reflecting side of the polarization splitting element 210, and is located on the light-incident side of the polarization conversion structure 220, the second reflective structure 230 is configured to reflect the second polarized light, and the reflected The second polarized light is converted into the third polarized light by the polarization conversion structure 220; third polarized light.
  • the reflectivity of the polarization splitting element 210 to the second polarized light is greater than the reflectivity to the first polarized light, and there may be a small amount of the first polarized light incident on the second reflective structure 230 while the second polarized light is incident on the second polarized light.
  • the reflective structure 230 at this time, the second reflective structure 230 may reflect the second polarized light and a small amount of the first polarized light.
  • the second reflective structure may reflect the third polarized light and a small amount of the first polarized light.
  • the second reflective structure 230 may include a reflective surface, which may be a reflective material with a relatively high reflectivity (for example, a reflectivity greater than 60%, 70%, 80%, 90% or 95%).
  • the element reflects at least one of the first polarized light, the second polarized light and the third polarized light into the medium 111 through specular reflection.
  • the reflective surface may be a metal reflective surface, such as an aluminum-plated, silver-plated or copper-plated reflective surface; or, the reflective surface may also be a pasted reflective film, such as the ESR reflective film mentioned above.
  • the second reflective structure 230 may include a prism, and the light incident on the second reflective structure 230 may be totally reflected on the surface of the prism and then directed to the medium 111 .
  • the prism may be a triangular prism structure.
  • the second light guiding element 120 is configured to transmit the first polarized light and the third polarized light.
  • the light conversion part 200 is located on the light incident side of the first light guide element 110, and the first light guide element 110 and the second light guide element 120 are configured to transmit the first polarized light and the third polarized light .
  • the medium 111 is air, and at least part of the light converting portion 200 is located in the cavity 1121 of the first light guiding element 110 .
  • the light guide device provided by the embodiments of the present disclosure, by arranging at least part of the light conversion part in the cavity of the first light guide element, it is beneficial to reduce the volume of the light guide device and allow as much light as possible to enter The cavity of the first light guide element improves the utilization rate of light.
  • FIG. 3B is a schematic diagram of a partial cross-sectional structure of a light guide device provided according to another example of an embodiment of the present disclosure.
  • the medium 111 includes a transparent substrate.
  • a transparent substrate 111 is arranged between at least two sub-reflecting surfaces 1120 (for the convenience of drawing, the refraction process of light entering the transparent substrate 111 is not drawn in Figure 3B), and the light conversion part 200 is located in the first light guide element 110 , for example, on the light incident side of the first light guide element 110 .
  • other structures except the medium 111 may have the same characteristics as the corresponding structure shown in FIG. 3A , which will not be repeated here.
  • FIG. 4 is a schematic diagram of a partial cross-sectional structure of a light guide device provided according to another example of an embodiment of the present disclosure.
  • the difference between the light guide device shown in FIG. 4 and the light guide device shown in FIG. 3A is that the light conversion part 200 is located on the light exit side of the first light guide element 110.
  • the light conversion part 200 can replace the third reflective structure shown in FIG. 3A 113 , the light conversion unit 200 can reflect the light emitted by the medium 111 and the first reflective structure 112 to the second light guide element 120 while performing polarization splitting, which is beneficial to reduce the volume of the light guide device.
  • the medium 111 may be air or a transparent substrate, which is not limited in this example.
  • disposing the light conversion part 200 outside the cavity of the first light guide element 110 can reduce the distance between the two sub-reflective films 1120 facing each other, that is, reduce the thickness of the cavity. , which is beneficial to the lightness and thinning of the light guide device.
  • the light transmitted by the polarization splitting element 210 includes the first polarized light
  • the second reflective structure 230 is located on the side of the light transmitted by the polarization splitting element 210, and is configured to reflect the first polarized light
  • the light transmitted by the light splitting element 210 includes the second polarized light
  • the second reflective structure 230 is located on the side of the light transmitted by the polarized light splitting element 210, and is located on the light incident side of the polarization conversion structure
  • the second reflective structure 230 is configured to reflect the second polarized light light, the reflected second polarized light is converted into the third polarized light through the polarization conversion structure; configured to reflect light of a third polarization.
  • Figure 4 does not show the above-mentioned polarization conversion structure, for example, the light reflected by the polarization beam splitting element includes the second polarized light, and the polarization conversion structure may be located on the reflected light side of the polarization beam splitting element to convert the second polarized light into the third polarized light After that, it is directed to the second light guide element; for example, the light transmitted by the polarization beam splitting element includes the second polarized light, and the polarization conversion structure can be located between the polarization beam splitting element and the second reflection structure, or between the second reflection structure and the second reflection structure. Between the light guide elements to convert the second polarized light into the third polarized light.
  • the second reflective structure 230 can be a prism, and the light incident on at least one surface (such as an inner surface) of the prism is totally reflected and then directed to the second light guide element 120, and the prism is intercepted by the XY plane shown in FIG. 4
  • the shape of the cross-section can be a triangle, and the cross-section of the above-mentioned total reflection surface cut by the XY plane can be the hypotenuse of the triangle, and the triangle also includes two straight sides connected with the hypotenuse, for example, the two straight sides can form a right angle , the two surfaces where the two straight sides are located can totally reflect the light with a large divergence angle to the hypotenuse, and further reflect it out, increasing the light utilization rate.
  • the first reflective structure 110 in the light guide device in the example shown in FIG. 4 may be the first reflective structure shown in FIG. 1A or the first reflective structure shown in FIG. 2 . No limit.
  • the two sub-reflective surfaces 1120 opposite to each other included in the first reflective structure 110 are set as the non-parallel first reflective structure 110 shown in FIG.
  • the light incident side or the light exit side of the light guide element 110 is not located in the cavity of the first light guide element 110 , which is beneficial to reduce the thickness of the cavity.
  • the two sub-reflective surfaces 1120 opposite to each other included in the first reflective structure 110 are set as the non-parallel first reflective structure 110 shown in FIG.
  • the light exit side of the light guide element 110 can ensure that the light incident into the first light guide element 110 has a certain divergence angle (for example, the divergence angle can be within 40°) and uniformly propagates in the first reflection structure 112. The collimation of the light incident on the light conversion part 200 is improved.
  • the light conversion part 200 shown in FIG. 4 is not limited to be disposed on the light exit side of the first light guide element 110, and the light conversion part 200 may also be disposed on the light incident side of the first light guide element 110, as shown in FIGS. 3A and 3B As shown, at this time, the third reflective structure 113 is still provided in the first light guide element 110 to reflect the light emitted from the medium 111 and the first reflective structure 112 to the third reflective structure 113 to the second light guide element 120 .
  • At least one light source such as a plurality of light sources, can be arranged on the light incident side of the light guide device shown in FIGS.
  • the structure 112 has two sub-reflective surfaces 1120 disposed opposite to each other in the Y direction.
  • multiple light sources may be provided on the light incident side of the light guide device, and some of the light sources may share the two sub-reflective surfaces 1120 opposite to each other in the Y direction of the first reflective structure 112 .
  • the first reflective structure 112 may include a circle of reflective surfaces surrounding the medium, for example, include two pairs of sub-reflective surfaces facing each other, and different light sources may be directed to different sub-reflective surfaces.
  • FIG. 5 is a light guide device provided according to another example of an embodiment of the present disclosure.
  • the light guiding device further includes: a light-adjusting structure 18 configured such that at least the transmittance of light of the first wavelength in the light incident on the light-adjusting structure 18 is different from the transmittance of light of the second wavelength. Transmittance, and/or, at least the reflectance or absorptivity of the first wavelength light of the light entering the light-modulating structure 18 is different from the reflectance or absorptivity of the second wavelength light.
  • the light-adjusting structure 18 is located on the light-emitting side or the light-incoming side of the polarization conversion structure 220 .
  • the light-adjusting structure 18 is located between the light-emitting side of the polarization conversion structure 220 and the second light-guiding element 120 .
  • the polarization conversion structure 220 may be located between the polarization splitting element 210 and the second reflection structure 230, and the light-adjusting structure 18 may be located between the polarization conversion structure 220 and the second reflection structure 230, or may be located at the second reflection structure 230.
  • the light-adjusting structure 18 is located at the light-emitting side of the polarization conversion structure 220 at this time.
  • the embodiments of the present disclosure are not limited thereto, and the light-adjusting structure 18 may also be located between the polarization conversion structure 220 and the polarization splitting element 210 , for example, the light-adjustment structure 18 is located on the light-incident side of the polarization conversion structure.
  • the polarization conversion structure 220 may also be located between the second reflective structure 230 and the second light guide element 120, and the dimming structure 18 may be located between the polarization conversion structure 220 and the second light guide element 120. between, or between the polarization conversion structure 220 and the second reflective structure 230 .
  • the polarization conversion structure 220 can also be located between the polarization beam splitting element 210 and the second light guide element 120, and accordingly the light adjusting structure 18 can be located between the polarization conversion structure 220 and the polarization beam splitting element 210, or between the polarization conversion structure 220 and the second light guide element 120. between the second light guide elements 120 .
  • the embodiment of the present disclosure is not limited thereto, and the light-adjusting structure 18 may also be located on the light-incident side of the light conversion part 200 or the light-outside of the light conversion part 200 .
  • one of the first wavelength light and the second wavelength light may be blue light, and the other may be red light and/or green light.
  • one of the first wavelength light and the second wavelength light may be blue light and/or green light, and the other may be red light.
  • one of the first wavelength light and the second wavelength light may be blue light, and the other may be light of a wavelength band longer than blue light (for example, a visible light band greater than 480 nm); or, the second One of the first wavelength light and the second wavelength light may be light with a wavelength shorter than green light, and the other may be light with green light or a wavelength longer than green light (for example, visible light longer than 500nm).
  • the polarization conversion structure 220 may be a 1/4 wave plate or a 1/2 wave plate.
  • a wave plate generally has a higher conversion efficiency for a certain wavelength or a certain band of light, and a relatively low conversion efficiency for other wavelengths/bands of light; for example, in the visible light band, the conversion efficiency of a wave plate for different colors of light
  • Different, for example, wave plates generally have higher conversion efficiency for green light between 500-600nm, so after blue light (400-480nm), green light and red light (600-780nm) pass through the wave plate, the conversion efficiency of each color light or conversion degree) inconsistent, for example, green light can be completely converted into the required polarization state after passing through the wave plate, red light and blue light may be partially unconverted or partially converted into the required polarization state, such as elliptical polarization state, circular polarization state and other polarization states .
  • the above-mentioned part of the color light passing through the wave plate may be completely converted into the required polarization state, while part of the color light may not be completely converted into the required polarization state, which may easily cause the light emitted by the subsequent light guide device to pass through the display panel (described later) Color shift occurs after the liquid crystal layer and color filter (color filter) and other structures.
  • the light-adjusting structure 18 is configured to have a higher transmittance to blue light than to green light and/or red light.
  • the light-adjusting structure 18 is configured such that the transmittance of blue light is higher than the transmittance of yellow light.
  • the light-adjusting structure 18 may be an optical film having the above functions, such as a color filter; for example, the light-adjusting structure 18 may be a multilayer film formed by stacking polymer films or inorganic dielectrics.
  • At least one embodiment of the present disclosure can reduce the degree of color shift of the light emitted from the light conversion part to the second light guide element by providing a light-adjusting structure located on the light-emitting side or the light-incoming side of the polarization conversion structure in the light guide device, and further The degree of color shift of light incident on the liquid crystal display panel is reduced, so that there is almost no color shift or little color shift when the liquid crystal display panel is displayed.
  • dimming structure in the example shown in FIG. 5 may have the same features as the corresponding structures shown in any of the examples shown in FIG. 1A to FIG. 4 , which will not be repeated here.
  • FIG. 6 is a schematic diagram of a partial cross-sectional structure of a light guide device provided according to another embodiment of the present disclosure.
  • the example shown in FIG. 6 is different from the example shown in FIG. 4 in that the first light guide element 110 and the second light guide element 120 are arranged along the extending direction of the second light guide element 120 .
  • the first light guide element 110 and the second light guide element 120 are arranged along the X direction.
  • the first light guide element 110 and the second light guide element 120 are arranged in sequence along one direction, the light emitted from the first reflective structure 112 and the medium 111 may not pass through the third light guide shown in FIG. 3B.
  • the reflection of the reflective structure 113 is incident to the second light guide element 120 .
  • the light conversion part 200 may be disposed between the first light guide element 110 and the second light guide element 120, and a polarized light transmitted by the polarization splitting element 210 is directed to the second light guide element 120, Another polarized light reflected by the polarization splitting element 210 is reflected toward the second light guiding element 120 by the second reflective structure 230 .
  • the first light guide element 110 in at least one example of the present disclosure may have the same features as the first light guide element 110 shown in FIG. 4 , which will not be repeated here.
  • the light conversion unit 200 may have the same features as those shown in any of the examples in FIG. 3A to FIG. 4 , which will not be repeated here.
  • the dimming structure 18 shown in FIG. 5 may be set.
  • the arrangement of the first light guide element and the second light guide element side by side can make the light guide device have a smaller thickness and realize thinning of the light guide device.
  • FIG. 7 is a schematic diagram of a partial cross-sectional structure of a light guide device provided according to another example of an embodiment of the present disclosure.
  • the light guiding device further includes a light-gathering element 19 disposed on the light-incident side of the second light-guiding element 120 , and the light-gathering element 19 is configured to gather the incident light toward a predetermined direction and enter it into the The second light guiding element 120 .
  • FIG. 7 schematically shows that when the first light guide element 110 and the second light guide element 120 are overlapped (arranged along the Y direction shown in the figure), the light gathering element 19 is arranged on the first light guide element 110. and the second light guide element 120 .
  • the light-gathering element 19 may be located between the first light-guiding element and the second light-guiding element, or may not be located between them. Between, the position of the light gathering element can be set according to the specific product structure.
  • the light condensing element 19 may include at least one lens, and the at least one lens may condense the light emitted by the first light guide element 110, thereby improving the utilization rate of the light.
  • at least one lens may include a convex lens.
  • the light collecting element 19 may also include a prism or a curved mirror.
  • the light-gathering element 19 is configured to deflect the light that passes through the light-gathering element and is incident into the second light-guiding element 120 and propagates close to the light-emitting surface of the second light-guiding element 120 in a direction away from its light-emitting surface.
  • the light passing through the light collecting element 19 is incident on the second light guiding element 120 , wherein the light propagating away from the first light guiding element 110 deviates to a side close to the first light guiding element 110 .
  • the light-gathering element 19 may comprise a decentered lens.
  • the decentered lens may consider that its optical axis does not coincide with the lens geometric axis (for example, there is a certain distance), such as the decentered lens shown in FIG. Upper left.
  • the decentered lens can adjust the light that is close to the light incident side of the first light guide element 110 from the light exit surface of the first light guide element 110 to the second light guide element 120 (for example, it is on the left side of the decentered lens 400 in FIG. 7 ).
  • the light rays) can be shifted toward the direction close to the light-incident side thereof, and the light rays that are far away from the light-incident side of the first light guide element 110 among the light rays emitted from the light-emitting surface of the first light-guiding element 110 to the second light-guiding element 120 (
  • the offset to the side close to the first light guide element 110 is beneficial to improve the utilization rate of light.
  • FIG. 7 schematically shows that the first light guide element and the second light guide element are arranged along the Y direction, and the light gathering element is located between the first light guide element and the second light guide element, but it is not limited thereto.
  • the first light guide element and the second light guide element may also be arranged along the X direction shown in FIG. 7 , and the light gathering element may or may not be located between the first light guide elements.
  • a reflection part is also provided between the first light guide element 110 and the second light guide element 120, and the reflection part can reflect the leaked light (such as light with a larger angle) when propagating in the second light guide element 120 and reflect it back to the second light guide element.
  • 120 and/or liquid crystal display panel which can further improve the utilization rate of light.
  • the reflective surface 1120 may also have a similar effect.
  • FIG. 8A and FIG. 8B are partial cross-sectional structural schematic diagrams of light guide devices provided according to two examples of embodiments of the present disclosure.
  • the second light guide element 120 extends along a first direction (the X direction shown in the figure), and along a second direction perpendicular to the first direction, the first light guide element 110 Overlapping with the second light guide element 120, and the first light guide element 110 and the second light guide element 120 are integrally formed; for example, the medium 111 of the first light guide element 110 and the second light guide element 120 are integrally formed; for example, The media of the two can be integrally formed.
  • the embodiment of the present disclosure schematically shows that the second direction is the Y direction shown in the figure.
  • Embodiments of the present disclosure are not limited to the second direction being the Y direction shown in FIG. 8A and FIG. 8B , and may also be a direction perpendicular to the XY plane.
  • the first light guiding element 110 extends along the first direction, and the length of the first light guiding element 110 is smaller than the length of the second light guiding element 120, so that the second light guiding element 120 is included in the second light guiding element 120.
  • the first sub-section 121 that does not overlap with the first light guide element 110 in a direction.
  • the light source device includes a light guide device and a light source part (the light source part shown in FIG. 18 ), and the light source part can be arranged along the first direction with the first light guide element.
  • the light source part overlaps with the first sub-section 121 of the second light guide element 120, so that part of the space where the first light guide element 110 is not provided can be used to reduce the overall weight of the light source device mentioned later. size, which is conducive to the application of the product.
  • the first light guiding element 110 includes a second sub-portion 122 that does not overlap the second light guiding element 120 in a direction perpendicular to the extending direction of the second light guiding element 120 .
  • FIG. 8B schematically shows that the length of the second light guide element 120 is shorter than the length of the first light guide element 110, so that the first light guide element 110 includes a direction perpendicular to the extending direction of the second light guide element 120.
  • the length of the first light guide element may also be less than or equal to the length of the second light guide element.
  • the light source device when the light guide device shown in FIG. 8B is applied to a light source device, the light source device includes a light guide device and a light source part (light source part 500 shown in FIG. 18 ), and the light source part can be aligned with the second light guide element along the first direction. arranged, and in the Y direction, the light source portion overlaps with the second sub-portion 122 of the first light guide element 110 .
  • the second light guide element 120 and the second sub-part 122 define the edge of an accommodating space, and the light source part can be located in the accommodating space, so that part of the space not provided with the second light guide element 120 can be used to reduce the size of the device. size, which is conducive to the application of the product.
  • the first light guide element 110 further includes first reflective structures 112 disposed on at least two sides of the medium 111 .
  • the medium 111 in this example may be a transparent substrate in the examples shown in FIGS. 1A to 7 , and the first reflective structure 112 in this example may have the same structure characteristics, which will not be repeated here.
  • FIG. 8C is a schematic diagram of a partial cross-sectional structure of a light guide device provided according to another example of an embodiment of the present disclosure.
  • the difference from the example shown in FIG. 3B is that the medium 111 of the first light guiding element 110 does not overlap with the second light guiding element 120 in the Y direction.
  • the third reflective structure 113 of the first light guide element 110 overlaps with the second light guide element 120 in the Y direction.
  • FIG. 9 is a schematic diagram of a partial cross-sectional structure of a light guide device provided according to another example of an embodiment of the present disclosure. As shown in FIG. 9 , both the first light guide element 110 and the second light guide element 120 extend along the first direction, and the first light guide element 110 and the second light guide element 120 are arranged along the first direction.
  • the first light guide element 110 and the second light guide element 120 may be separate structures. But not limited thereto, the first light guide element and the second light guide element can also be integrally formed.
  • the first light guide element in this example can have the same features as the first light guide element shown in FIGS. 1A to 7
  • the second light guide element in this example can be the same as the second light guide element shown in FIGS.
  • the light guide element has the same features, which will not be repeated here.
  • FIG. 10A is a schematic diagram of a partial cross-sectional structure of a light guide device provided according to another example of an embodiment of the present disclosure.
  • the light guide structure 100 further includes a third light guide element 130, the light outcoupling part 101 includes a first light outcoupler 1011 and a second light outcoupler 1012, and the second light guide element 120 includes a first light outcoupler 101
  • the light coupling part 1011, the third light guiding element 130 includes the second light coupling part 1012, in the direction perpendicular to the extension direction of the second light guiding element 120, the second light coupling part 1012 is connected with the first light guiding element 110 overlap, and at least part of the first light outcoupling portion 1011 does not overlap with the second light outcoupling portion 1012 .
  • the light propagating in the medium 111 and reflected by the first reflective structure 112 is incident on the first optical coupling part 1011 and coupled out from the first optical coupling part 1011, for example, without passing through
  • the first light out-coupling unit 1011 is processed to be incident on the second light out-coupling unit 1012 .
  • the light outcoupled from the first light outcoupling part 1011 will pass through the third light guide element 130 (the part of the light outcoupled from the first light outcoupler 1011 through the third light guide element 130 After being a transparent material), it emits from the light guide structure 100.
  • the light coupled out from the first light coupling part 1011 will exit from the light guide structure 100 after passing through the part of the structure of the third light guide element 130 that is not provided with the second light coupling part 1012, but it is not limited thereto.
  • the light coupled out by an optical coupling part 1011 may also pass through the second optical coupling part 1012 of the third light guiding element 130 and exit from the light guiding structure 100 .
  • the first light out-coupling portion 1011 and the second light out-coupling portion 1012 at least contact or partially overlap.
  • the light guide structure 100 can be provided with light sources on both sides of the X direction, and the light emitted from the light source provided on one side is incident from the side of the first light guide element 110 away from the second light guide element 120. to the light guiding structure 100, and is coupled out by the first light coupling part 1011; the light emitted by the light source arranged on the other side only propagates in the third light guiding element 130, and is coupled out by the second light coupling part 1012 .
  • the light emitted by the light sources on both sides will be gradually homogenized when propagating in the corresponding light guide structure before exiting through the output part of the optocoupler, which improves the uniformity of the light.
  • the light sources are arranged on both sides of the light guide structure, which is beneficial to heat dissipation.
  • the first light guide element and the second light guide element in this example may respectively have the same features as those shown in FIGS. 1A to 7 , which will not be repeated here.
  • the light guiding structure includes a plurality of light outcoupling portions.
  • each optical outcoupling part may include a plurality of optical outcoupling elements.
  • all the optocouplers included in the optocoupler are transflective elements, or some of the optocouplers included in the optocoupler are transflective elements, and some are reflective elements, or a part of the optocoupler included
  • the light outcoupling element is a transflective element, and part of it is a transmissive element, or the light outcoupling element included in the light outcoupling part is another type of light outcoupling element.
  • a transflective element may be used as an example for description.
  • the optical outcoupling element with a reflectivity of 0 or 1 may also be referred to as a transflective element.
  • each of the light outcoupling elements included in the light outcoupling part may be inclined or non-inclined in the same direction relative to the arrangement direction of the light outcoupling elements.
  • the light outcoupling part includes an array of transflective elements, and at least some of the transflective elements in the array of transflective elements are configured to partially reflect and partially transmit light propagating to the transflective element, A part of the light is coupled out of the second light guide element and another part continues to propagate in the second light guide element.
  • the aforementioned transreflective element may refer to the first transreflective element described below, and the following first transreflective element has the same features and implementations as the aforementioned transreflective element.
  • the light outcoupling unit 101 includes a first transflective element array 0100, the first transflective element array 0100 includes a plurality of first transflective elements 0110, and the first transflective elements 0110 are configured to transmit to the first transflective element A part of the light of 0110 exits the light guide device through one of reflection and transmission, and another part of the light transmitted to the first transflective element 0110 continues to propagate in the light guide device through the other of reflection and transmission.
  • the embodiment of the present disclosure schematically shows that at least some of the first transflective elements 0110 in the transflective element array 0100 are configured to reflect a part of light propagating to the first transflective elements 0110 out of the second light guide element 120 , and Another part of the light is transmitted so that the part of the light continues to propagate in the second light guide element 120 .
  • the first transflective element may include a dot structure arranged on the surface of the second light guide element, and a part of the light may be absorbed by the dot structure by destroying the reflection angle of the light propagating through total reflection in the light guide structure. Transmitting out of the light guide structure, part of the light can be reflected by the dot structure to continue to propagate in the light guide structure.
  • the embodiments of the present disclosure are not limited thereto, and the light outcoupling part may further include a grating configured to emit a part of the light propagating to the grating out of the second light guide element.
  • the second light guide element 120 further includes a light guide medium 123, and the light guide medium 123 includes a transparent material.
  • the light guide medium 123 can be made of transparent materials such as resin, glass or plastic.
  • the transparent substrate is configured to transmit the light entering the light guide medium 123 through total reflection and/or non-total reflection transmission; or, the light guide medium 123 includes air.
  • non-total reflection propagation here refers to the propagation of light (such as light with a small divergence angle) in the medium in a way other than total reflection, for example, light can propagate in the medium without reflection (such as between the medium and There is no reflection on the interface between the air); or, light (such as light with a large divergence angle) can also be reflected and propagated in a non-total reflection manner, for example, it may not satisfy the total reflection condition, such as medium and air (or When reflection occurs on the interface between other media), the reflection angle is less than the critical angle of total reflection, and it can be considered that the light does not or rarely propagates through total reflection in the light-guiding medium.
  • the main direction of the light incident to the light guide medium or the main optical axis propagation direction of the light incident to the light guide medium is a direction parallel to a straight line, for example, it can be parallel to the X direction, and some light rays continue to propagate after specular reflection .
  • the "total reflection propagation" here can refer to the reflection angle of light (such as light with a large divergence angle and satisfying the total reflection condition) on the interface between the light guide element and the air (or other medium) when the reflection angle is not less than the total reflection angle. Reflection critical angle. For example, most of the light incident on the light guide element propagates through total reflection. For example, part of the light incident on the light guide element may not be reflected and propagate in the light guide element along a straight line, while another part of the light is totally reflected and continues to propagate.
  • the light guiding medium 123 is made of a material that can realize a waveguide function, and is generally a transparent material with a refractive index greater than 1.
  • the material of the light-guiding medium 123 may include one or more of silicon dioxide, lithium niobate, silicon-on-insulator (SOI, Silicon-on-insulator), polymer, III-V semiconductor compound, and glass.
  • the light guide medium 123 may be a planar substrate, a stripe substrate, a ridge substrate, and the like.
  • the light guide medium adopts a planar substrate to form a uniform surface light source.
  • the first transflective element 0110 may be the surface of the light-guiding medium 123 , or may be a reflective medium disposed on the surface of the light-guiding medium 123 by plating or cladding.
  • the light guide medium 123 may be divided into a plurality of cylinders (such as parallelepipeds) with a parallelogram cross section, and the first transflective element 0110 may be arranged between the joined cylinders.
  • the above cylinder may include two surfaces opposite to each other, one of the two surfaces may be the light incident surface of the cylinder, and the other surface is located at the back side of the light incident surface.
  • the first transflective element may be the surface of the light incident surface of the cylinder, or the surface of the cylinder opposite to the light incident surface.
  • the medium between adjacent first transflective elements 0110 may be the light guiding medium 123 .
  • the light guide medium 123 includes a plurality of waveguide sub-mediums arranged along the first direction and bonded to each other.
  • a reflective medium is interposed between adjacent waveguide sub-mediums.
  • the anti-element is configured to couple the portion of the light out of the optical waveguide element by breaking the total reflection condition of the portion of the light by reflection.
  • FIG. 10B is a schematic cross-sectional structure diagram of a light guide device when the light guide medium is air.
  • the array of transflective elements can be fixed by means of support plates, glue, etc., thereby reducing the weight of the light-guiding device and having strong practicability.
  • the embodiment of the present disclosure is described by taking a plurality of first transflective elements 0110 parallel to each other as an example, at this time, the light emitted from the transflective element array is parallel light.
  • the embodiments of the present disclosure are not limited thereto.
  • the multiple transflective elements in the transflective element array can also be non-parallel. By adjusting the angle between the multiple transflective elements, the light emitted from the transflective element array can be adjusted to Concentrate or diverge light.
  • FIG. 1A to FIG. 10A schematically show that the propagation mode of the light in the light guide structure provided with the light coupling part is non-total reflection propagation.
  • Embodiments of the present disclosure are not limited to the non-total reflection propagation of the light in the light guide structure provided with the optical outcoupling portion.
  • FIG. 11 is a schematic diagram of total reflection propagation of light in a light guide structure provided with an optical outcoupling portion according to another example of an embodiment of the present disclosure.
  • the propagation mode of the light in the light guide structure provided with the optical coupling part can also be total reflection propagation, that is, the light occurs on the interface between the light guide structure and the air (or other medium).
  • the reflection angle during reflection is not less than the critical angle of total reflection.
  • the first transflective elements 0110 are arranged sequentially along the extension direction of the second light guide element 120 (such as arranged in sequence along the X direction), and along the light rays propagating in the second light guide element 120
  • the reflectivity of the plurality of first transflective elements 0110 increases gradually in the propagation direction.
  • the above "propagation direction of light propagating in the second light guide element” may refer to the overall (macroscopic) direction of light propagation, for example, the direction of light propagation in the second light guide element 120 refers to the X direction shown in FIG.
  • the direction of light propagation in the second light guide element 120 refers to the direction opposite to the arrow in the X direction shown in Figure 11, the light entering the second light guide element can be in the second light guide element 120
  • the total reflection propagation as shown in FIG. 11 may be performed in the element, and the non-total reflection propagation as shown in FIG. 1A may also be performed, which is not limited in the embodiments of the present disclosure.
  • any two transflective elements in the plurality of first transflective elements 0110 have different reflectivity.
  • the number of the plurality of first transflective elements 0110 can be N, and along the propagation direction of the light propagating in the second light guide element 120, the reflectances of the N first transflective elements 0110 are respectively set to 1/ n, 1/n-1, 1/n-2, ..., 1/2, and 1, thus, the light intensity reflected by each first transflective element 0100 is basically equal, and the light guide The light emitted by the structure has better uniformity.
  • the number of the plurality of first transflective elements 0110 can be 8, and along the propagation direction of the light propagating in the second light guide element 120, the reflectances of the eight first transflective elements 0110 are respectively set to 1/ 8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, and 1, each first transflective element 0100 is provided with a reflective film with different reflectivity, then the 8th A transflective element 0110 can be provided with 8 kinds of reflective films with different reflectivity.
  • the first transflective element 0110 (for example, it can be considered as the first transflective element receiving the light emitted by the first light guide element 110 ) is located at the outermost edge and close to the light incident side in the transflective element array. element) is configured to reflect at least part of the light propagating from the first light guiding element 110 into the second light guiding element 120, and the reflectivity of the first transflective element 0110 is greater than the transmittance.
  • the reflectivity of the above-mentioned first transflective element 0110 located at the outermost edge may not be less than 90%, such as close to 100%, so as to reflect all the light transmitted from the first light guide element 110 into the second light guide element 120 to the other first transflective element 0110.
  • the above-mentioned first transflective element 0110 at the outermost edge can be set as an element with a certain transmittance, and the transmittance is set so that the intensity of light transmitted through the second light guide element 120 is comparable to that of other subsequent first transflective elements 0110.
  • the intensities of the outcoupled light are close to each other, which is beneficial to increase the light exit area of the second light guide element, and avoid light not coming out of the edge.
  • Fig. 12 is a schematic diagram of a light guide structure provided with an optical outcoupling portion according to another example of an embodiment of the present disclosure.
  • a plurality of first transflective elements 0110 includes M transflective element groups 011, and each transflective element group 011 in at least one transreflective element group 011 includes at least two The reflectivity of the first transreflective element 0110 and the first transreflective element 0110 located in different transflective element groups 011 are different, and M is a positive integer greater than 1.
  • the multiple first transreflective elements 0110 include M transreflective element groups 011, and each transflective element group 011 in at least one transreflective element group 011 includes at least two first transreflective elements 0110 with the same reflectivity,
  • the reflectivity of the first transflective elements 0110 located in different transflective element groups 011 is different, and M is a positive integer greater than 1.
  • the above-mentioned "same reflectance" may include completely the same reflectance and approximately the same reflectance.
  • the same reflectance means that the ratio of the reflectance of any two is 0.8-1.2, or 0.9-1.1, or 0.95-1.05; And/or, it can be considered that both are provided with the same type of transflective film, for example, the material of the transflective film provided by both may be the same.
  • the types of transflective films required for the transflective element array can be reduced, which is beneficial to reduce The cost of the light guide structure.
  • the at least two first transreflective elements 0110 with preset reflectivity may be at least two first transreflective elements 0110 with the same reflectivity.
  • a transreflective element farthest from the light-incident side of the plurality of transreflective elements may have a reflectivity of more than 95%, or a transmittance of less than 5%, for example, the transflective element may only Reflect light.
  • the number of multiple first transreflective elements 0110 can be N, and the types of reflectivity included in N first transflective elements 0110 are less than N types, thereby reducing the number of first transflective element arrays.
  • the type of the required transflective film is beneficial to reduce the cost of the light guide device.
  • a plurality of first transflective elements 0110 are arranged along the propagation direction of light in the light guide device (such as the second light guide element 120), along the arrangement direction of the plurality of first transflective elements 0110,
  • the reflectivity of the plurality of first transflective elements 0110 gradually increases regionally.
  • increasing regionally may refer to: dividing a plurality of first transreflective elements into two or more regions (one region may refer to one group of transflective elements, but it is not limited thereto, and one region may also include Two adjacent or more than two groups of transflective elements), the reflectivity of the transflective elements in the above-mentioned different regions is different and tends to increase gradually as a whole.
  • a region when a region includes a plurality of transreflective elements, and the plurality of transreflective elements in the region are adjacently distributed, it can be considered that there is no arrangement between any two transreflective elements among the plurality of transreflective elements in the region.
  • Transflective elements in other areas For example, when a region includes a plurality of transreflective elements, the reflectivity of these transreflective elements can be the same or different; 1/8, 1/7, 1/6), of course, the reflectivity can also have no specific change rule (for example, the reflectivity can be set to 1/8, 1/7, 1/8), multiple regions as a whole It can be a gradual change trend.
  • the reflectance of the first transflective element 0110 with the highest reflectance among the plurality of first transflective elements 0110 is not less than 90%.
  • the second light guide element 120 includes a light-incident side, and the first transflective element 0110 farthest from the light-incident side may be the first transflective element 0110 with the highest reflectivity, and the transflective surface of the first transflective element 0110
  • the reflectivity of the light incident on it is not less than 92%, or not less than 95%, or not less than 98%, such as the reflectivity of the first transflective element 0110 is close to or almost 100%, that is, the first transflective
  • the reflective element 0110 can reflect almost all light incident on its transflective surface out of the second light guide element.
  • the second light guide element 120 includes a plurality of light exit regions 010, and the plurality of first transflective elements 0110 correspond one-to-one to the plurality of light exit regions 010, and the plurality of light exit regions 010 (for example, each light exit region 010 area) is configured to emit light reflected by the corresponding first transflective element 0110.
  • the above-mentioned light exit area refers to the area on the light exit surface of the light medium, and the light reflected by a first transflective element 0110 passes through the light exit surface of the light guide medium.
  • the emitting area is a light emitting area 010 .
  • the above-mentioned light-emitting surface may be a solid surface, such as a surface of a transparent substrate.
  • the side of the first transflective elements 0110 away from the first light-guiding element 110 is its light-emitting side (take the first light-guiding element shown in FIG.
  • the positional relationship between the element 110 and the second light guide element 120 is taken as an example), and the edge of the first transflective element 0110 away from the first light guide element 110 can be located in the same plane (the plane perpendicular to the Y direction), the above
  • the light exit area 010 may be an area on the plane, and the area where the light reflected by a first transflective element 0110 emerges from the plane is a light exit area 010 .
  • the plane where the light exit area is located may be a non-substantial virtual surface, such as the light exit area shown in FIG. 10B .
  • any two light exit regions 010 do not overlap (for example, touch); or, at least two adjacent light exit regions 010 overlap.
  • any two light exit regions 010 do not overlap.
  • the orthographic projections of at least two adjacent first transflective elements 0110 on a plane perpendicular to the Y direction overlap, then the light exit areas 010 corresponding to the at least two adjacent first transflective elements 0110 overlap.
  • the intensity difference of light emitted from any two light exit areas 010 is not greater than 20% of the intensity of one of the light exit areas.
  • the above "intensity" may refer to brightness, luminous flux, illuminance or light intensity.
  • the intensity difference of the light emitted by any two light exit areas 010 is not greater than 15% of the intensity of one of the light exit areas.
  • the intensity difference of the light emitted by any two light exit areas 010 is not greater than 10% of the intensity of one of the light exit areas.
  • the intensity difference of the light emitted by any two light exit areas 010 is not greater than 5% of the intensity of one of the light exit areas.
  • the brightness difference between any two areas is within 20%.
  • the reflectivity of at least part of the first transflective elements so that the intensity difference of light emitted by any two light exit regions is not greater than 20% of the intensity of one of the light exit regions %, it is beneficial to improve the uniformity of light emitted from the second light guide element.
  • the first transflective elements 0110 in the same transflective element group 011 are adjacently arranged along the propagation direction of the light in the second light guide element 120 .
  • a transreflective element group includes two first transreflective elements 0110 , and the two first transreflective elements 0110 may be transreflective elements adjacent to each other.
  • a transflective element group includes more than three first transreflective elements 0110, these three or more first transreflective elements 0110 are arranged in sequence, and any two first transreflective elements 0110 are not set to belong to other transflective element groups The first transflective element 0110.
  • the number of first transreflective elements 0110 can be N, for example, 8, and the first transreflective elements 0110 included in each group of M groups of first transreflective elements have the same , and the reflectivity of the first transflective element 0110 in any two groups in the M groups is different.
  • M can be 4, and along the propagation direction of the light in the second light guide element 120, the reflectivity of the plurality of first transflective elements 0110 can be sequentially set to 1/8, 1/8, 1/6, 1/6, 1/4, 1/4, 1/2 and 1, at this time, the number of a group of first transflective elements 0110 is one or two.
  • the embodiment of the present disclosure is not limited thereto, and the number of a group of first transflective elements may be three or more, which may be set according to actual product requirements.
  • a diffusing element may be provided on the light-emitting side of the second light-guiding element 120 to diffuse the light emitted from the second light-guiding element 120 to improve the uniformity of the light.
  • the M transreflective element groups 011 include the first transreflective element group 011-1 and the second transreflective element group 011-2, and the first transflective element group 011-1 in the first transreflective element group 011-1
  • the reflectivity of the reflective elements 0110 is greater than the reflectivity of the first transflective elements 0110 in the second transflective element group 011-2, and the number of the first transflective elements 0110 in the first transflective element group 011-1 is not greater than that of the first transflective element group 011-1.
  • the quantity of the first transflective element 0110 in the second transflective element group 011-2 is not greater than that of the first transflective element group 011-1.
  • the reflectance of the first transflective element 0110 in the first transflective element group 011-1 is 1/6 above, and the reflectance of the first transflective element 0110 in the second transflective element group 011-2 is above 1/6. 1/8, the number of the first transreflective elements 0110 in the first transreflective element group 011-1 may be equal to the number of the first transreflective elements 0110 in the second transreflective element group 011-2.
  • the reflectance of the first transflective element 0110 in the first transflective element group 011-1 is 1/2 above, and the reflectance of the first transflective element 0110 in the second transflective element group 011-2 is above 1/2. 1/4, the number of the first transreflective elements 0110 in the first transreflective element group 011-1 may be less than the number of the first transreflective elements 0110 in the second transreflective element group 011-2.
  • the number of the first transflective elements 0110 included in the transflective element group 011 may be reduced regionally along the propagation direction of the light in the second light guide element 120 .
  • the number of first transflective elements 0110 in the transflective element group 011 closest to the light incident side of the second light guide element 120 is the largest, and the transflective element group 011 farthest from the light incident side of the second light guide element 120
  • the number of the first transreflective elements 0110 in the group is the least, and the number of the first transreflective elements 0110 in the transreflective element group 011 located between the above two transreflective element groups 011 can be located between the above two numbers, or with The larger number of the above numbers is the same; the number of transflective element groups 011 located between the above two transflective element groups 011 can be multiple, and the number of the first transflective element 0110 in these transflective element groups 011 Can be the same or different; for example, when the number of
  • M transreflective element groups 011 include a third transreflective element group 011-3, and the reflectivity of the first transreflective element 0110 in the third transreflective element group 011-3 is greater than that of other transflective elements.
  • the reflectivity of the first transflective element 0110 in the element group 011, and the third transflective element group 011-3 includes only one first transreflective element 0110.
  • the third transflective element group 011-3 is the transflective element group 011 farthest from the light incident side of the second light guide element 120, and the first transflective element group 011 in the transflective element group 011
  • the reflectivity of element 0110 is not less than 90%.
  • the reflectivity of the first transflective element 0110 in the transflective element group 011 to the light incident on it is not less than 92%, or not less than 95%, or not less than 98%, such as the transflective
  • the reflectivity of the first transflective element 0110 in the element group 011 is close to or almost 100%, that is, the first transflective element 0110 can reflect almost all the light incident on its transflective surface out of the second light guide element.
  • the inclination directions of the first transreflective elements 0110 in the same transreflective element group 011 are the same.
  • the aforementioned "inclined direction” may refer to the inclined direction of the first transreflective element relative to the Y direction, for example, the direction indicated by the arrow in the X direction is rightward, and the direction of the first transreflective element 0110 located in the same transflective element group 011 is Lean right.
  • the inclination directions of the plurality of first transflective elements 0110 may all be the same, or may have a certain error range, for example, an error range of 0°-10°.
  • the first transflective elements 0110 in the same transflective element group 011 are arranged in parallel.
  • any two of the plurality of first transflective elements 0110 are arranged parallel to each other.
  • the above "parallel arrangement" may include strictly parallel and approximately parallel, strictly parallel means that the angle between any two is 0°, approximately parallel means that the angle between any two is not greater than 10°.
  • the light emitted from the second light guide element can be parallel light.
  • the embodiments of the present disclosure are not limited thereto, and some of the multiple first transflective elements may also be arranged non-parallel, so as to achieve convergence or divergence of light emitted from the second light guide element.
  • the light guide device further includes a second transflective element array, as shown in FIG.
  • the array includes a plurality of second transflective elements 0120, at least some of the plurality of second transflective elements 0120 are configured to partially transmit and partially reflect light propagating to the second transflective elements 0120 so that a portion of the light rays exit
  • the light guide device (such as the third light guide element 130), and make another part of the light continue to propagate in the light guide device.
  • the aforementioned transreflective element may refer to the second transreflective element described below, and the second transflective element described below has the same features and implementations as the aforementioned transreflective element.
  • the first transreflective element array and the second transreflective element array do not overlap in the direction perpendicular to the arrangement direction of the first transreflective element (the Y direction shown in FIG. 10A ), for example, the first The array and the second array of transflective elements may be arranged along the Y direction shown in FIG. 10A .
  • the first transflective element array and the second transflective element array overlap in a direction perpendicular to the extending direction of the first transflective element 0110 .
  • a plurality of second transflective elements include M' transflective element groups, and each transflective element group in at least one transflective element group includes at least two second transflective elements with the same reflectivity.
  • reflective elements, and second transflective elements located in different transflective element groups have different reflectivities, and M' is a positive integer greater than 1.
  • M' is a positive integer greater than 1.
  • the type is beneficial to reduce the cost of the light guide device.
  • the number of multiple second transreflective elements can be N' (for example, N' is a positive integer greater than or equal to 2), and the types of reflectivity included in N' second transflective elements are less than N 'kinds, thereby reducing the types of transflective films needed for the second transflective element array, which is beneficial to reducing the cost of the light guide device.
  • a plurality of second transflective elements are arranged along the propagation direction of the light in the light guide device, and along the arrangement direction of the plurality of second transflective elements, the reflectivity of the plurality of second transflective elements is gradually increased regionally.
  • the above-mentioned regionally increasing gradually may refer to: dividing a plurality of second transflective elements into two or more regions (one region may refer to one group of transflective elements, but it is not limited thereto, one region may also be Including two adjacent groups of transflective elements or more than two groups of transflective elements), the reflectivity of the transflective elements in the above-mentioned different regions is different and generally tends to increase gradually.
  • the reflectance of the second transflective element with the highest reflectance among the plurality of second transflective elements is not less than 90%.
  • the light guide device includes a light-incident side, and the second transflective element farthest from the light-incident side may be the second transflective element with the highest reflectivity, and the transflective surface of the second transflective element is incident on it.
  • the reflectivity of light is not less than 92%, or not less than 95%, or not less than 98%, if the reflectivity of the second transflective element is close to or almost 100%, the second transflective element can The light on the reverse side is almost entirely reflected out of the light guide.
  • the second transreflective element in the embodiment of the present disclosure may have the same properties as the above-mentioned first transreflective element, for example, the reflective medium provided in the first transflective element may be applied to the second transflective element.
  • the two transflective element arrays may be mirror-symmetrical.
  • the types of reflective media in the two transflective element arrays can be arranged mirror-symmetrically.
  • FIGS 13A to 13H are schematic diagrams of a partial planar structure of a transflective element provided according to another example of an embodiment of the present disclosure.
  • a plurality of transreflective elements include a transflective element provided with a reflective medium 0111, and at least part of the transreflective element is set There is a reflective medium 0111 with a first reflectivity, and among at least two transreflective elements in the at least part of the transreflective elements, the reflective medium 0111 with the first reflectivity accounts for a different area ratio of the corresponding transreflective elements so that at least two The reflectivity of each transflective element is different.
  • the transflective elements are provided with reflective media 0111 with the same reflectivity, and in at least two transflective elements of at least some of the transflective elements, the reflective medium 0111 with the same reflectivity occupies different area ratios of the corresponding transflective elements In order to make the reflectivity of at least two transflective elements different.
  • the above-mentioned "same reflectance” includes exactly the same reflectance and approximately the same reflectance, and approximately the same reflectance refers to the ratio of the difference between any two reflectances to one of them not greater than 10% (for example, may not be greater than 8 %, 5% or 1%).
  • the above-mentioned first reflectivity may refer to at least one specific reflectivity, such as at least one of 80%, 70%, 60% and other numerical values.
  • the reflective medium 0111 has a first reflectivity
  • the first reflectivity is a specific reflectivity, for example, the first reflectivity is 60%
  • the above-mentioned at least two transflective elements all have the same reflectivity or, in at least two transflective elements, the reflective medium 0111 has a first reflectivity
  • the first reflectivity includes a plurality of specific reflectivity, for example, the first reflectivity includes 60% and 80%, it can be considered that at least two transflective Reflecting media with a reflectivity of 60% and reflective media with a reflective rate of 80% are arranged on the reflective elements.
  • a plurality of transflective elements include a transflective element provided with a reflective medium 0111, and at least one reflective medium 0111 provided with a transflective element includes at least two different reflectivities, and the reflectivity types of the reflective medium 0111 provided with a plurality of transflective elements The quantity is less than the quantity of the plurality of transflective elements 0110 .
  • the transflective elements are provided with reflective media 0111 having two or more reflectivities, and in at least two transflective elements of at least some of the transflective elements, the reflective media 0111 with the same reflectivity occupy the corresponding transmissive
  • the area ratios of the transflective elements are different such that the reflectivity of at least two transflective elements is different.
  • the reflective medium 0111 includes two media with a reflectivity of 60% and a reflective rate of 80%. In at least two transflective elements, the reflective medium with a reflective rate of 60% occupies a different area ratio of the corresponding transflective element 0110.
  • the area ratio of the reflective medium with a reflectivity of 80% to the corresponding transreflective elements is different, so that the reflectivity of at least two transflective elements is different.
  • the above-mentioned "same reflectivity" may refer to the same reflectivity, including exactly the same reflectivity and approximately the same reflectivity. Approximately the same reflectivity means that the ratio of the difference between any two reflectivities to one of them is not greater than 10 % (eg, may be no greater than 8%, 5%, or 1%).
  • the embodiment of the present disclosure adjusts the reflectivity of the corresponding transflective element by arranging reflective media with the same reflectivity on at least two transflective elements, and adjusting the area of the reflective medium with the same reflectivity on the at least two transflective elements , reducing the types of reflective media, reducing the production cost of the transflective element.
  • the reflective medium provided by the above-mentioned at least one transflective element may be a medium comprising a layer of reflective film, or may be a medium comprising a multilayer reflective film, and the reflectivity of the above-mentioned reflective medium refers to the overall multi-film layer included in the reflective medium. Reflectivity.
  • the above-mentioned reflective medium may also be a transflective medium, and the transflective medium may be a medium comprising a layer of transflective film, or a medium comprising multiple layers of transflective films, and the transmittance of the transflective medium refers to the Transmittance of the entire film layer included.
  • the reflective medium provided by at least one transflective element includes a stacked multilayer reflective film
  • the multilayer reflective film includes tantalum pentoxide, titanium dioxide, magnesium oxide, zinc oxide, zirconium oxide, silicon dioxide, fluorine Magnesium oxide, silicon nitride, silicon oxynitride, and aluminum fluoride.
  • the arrangement of the transflective elements and the change trend of the reflectivity on the plurality of transreflective elements can be compared with the arrangement of the transflective elements and the reflectivity on the plurality of transflective elements shown in FIGS. 1A to 12 .
  • the change trend of the rate is the same, so it will not be repeated here.
  • FIGS. 13A to 13H take the first transflective element 0110 as an example for description, but not limited thereto, and the second transflective element is also applicable.
  • FIGS. 13A to 13H schematically show that the shape of the first transflective element 0110 is a rectangle, but it is not limited thereto.
  • the shape of the first transflective element can also be other polygons such as a circle, an ellipse, or a hexagon.
  • the first transflective element 0110 may be the surface of the light guide medium 123 .
  • the light guide medium 123 can be divided into a plurality of cylinders (such as parallelepipeds) with a parallelogram cross section, and transflective elements 0110 can be arranged between the joined cylinders.
  • the above cylinder may include two surfaces opposite to each other, one of the two surfaces may be the light incident surface of the cylinder, and the other surface is located at the back side of the light incident surface.
  • the reflective medium can be disposed on the transflective element by plating or cladding, that is, it can be disposed on the surface of the pillars, such as the surface where the above-mentioned pillars are spliced together.
  • the shape of the above-mentioned first transflective element can guide the shape of the surface of the spliced cylinder in the optical medium.
  • the areas of any two transreflective elements 0110 among the plurality of first transreflective elements 0110 are the same, and the reflective medium 0111 set on the same first transreflective element 0110 is of the same type.
  • a reflective medium 0111 of reflectivity (for example, a first reflectivity).
  • the reflective medium 0111 may be made of a material with high reflectivity, for example, the reflective medium 0111 may not be less than 80%.
  • the reflectivity of the reflective medium 0111 may not be less than 90%.
  • the reflectivity of the reflective medium 0111 may not be less than 95%.
  • the reflectivity of the first transreflective element can be adjusted in a larger range, that is, the first transreflective element can be adjusted to have a larger High reflectivity (such as having the same reflectivity as the reflective medium), or may have a small reflectivity (such as reflectivity less than 40%).
  • the embodiments of the present disclosure are not limited thereto.
  • some reflective media provided on the first transflective elements may also use materials with lower reflectivity.
  • the above “same area” may mean that the two areas are completely the same or approximately the same, for example, the ratio of the two areas is 0.8-1.2, for example, it may be 0.9-1.1.
  • all the reflective media 0111 disposed on the first transflective element 0110 are reflective media 0111 with a first reflectivity.
  • reflective media 0111 with the same reflectivity are disposed on the plurality of first transflective elements 0110 .
  • the reflective medium 0111 provided on the plurality of first transflective elements 0110 may be made of the same material, thereby greatly reducing the types of reflective medium and reducing the production cost of the product.
  • the reflectivity of the first transflective element 0110 is positively correlated with the area of the reflective medium 0111 provided therein.
  • the reflectivity of the first transflective element 0110 reaches the maximum, which can be almost equal to the reflectivity of the reflective medium 0111.
  • the reflectivity of the first transflective element 0110 is smaller than the reflectivity of the reflective medium 0111, thus, by adjusting the setting on the first transflective element 0110
  • the area of the reflective medium 0111 can adjust the reflectivity of the first transflective element 0110.
  • part of the first transflective element 0110 further includes a blank area 0112
  • the blank area 0112 includes an area of the first transflective element 0110 that is not provided with a reflective medium 0111 .
  • the area on the first transflective element 0110 except the reflective medium 0111 is the blank area 0112 .
  • the reflectivity of the first transreflective element can be adjusted by adjusting the area ratio of the reflective medium to the blank area on a first transreflective element, wherein the larger the area ratio of the reflective medium to the blank area, the greater the area ratio of the first transflective element. The higher the reflectivity.
  • the multiple first transflective elements may be surfaces of multiple parallelepipeds included in the light guide medium (for example, multiple parallelepiped surfaces spliced with each other), and the blank area may be an area on the above surface without a reflective medium.
  • the area ratio of the reflective medium 0111 to the blank area 0112 in the first transflective element 0110 shown in FIG. 13A is greater than the area ratio of the reflective medium 0111 to the blank area 0112 in the first transflective element 0110 shown in FIG. 13B , Then the reflectivity of the first transflective element 0110 shown in FIG. 13A is greater than that of the first transflective element 0110 shown in FIG. 13B .
  • 13A and 13B schematically show that the reflective medium 0111 extends along the U direction and is arranged along the V direction.
  • Embodiments of the present disclosure are not limited thereto, and the reflective medium 0111 may also be set to extend along the V direction and be arranged along the U direction.
  • Figure 13C and Figure 13D schematically show that the reflective medium 0111 extends along the direction intersecting the U direction and the V direction, and by adjusting the area ratio of the reflective medium 0111 and the blank area 0112, the corresponding first transflective element can be adjusted reflectivity.
  • FIG. 13E and FIG. 13F schematically show that the shape of the reflective medium 0111 is circular, and by adjusting the area ratio of the reflective medium 0111 to the blank area 0112, the reflectivity of the corresponding first transflective element can be adjusted.
  • FIG. 13G and FIG. 13H schematically show that the shape of the reflective medium 0111 is a rectangle, and by adjusting the area ratio of the reflective medium 0111 to the blank area 0112, the reflectivity of the corresponding first transflective element can be adjusted.
  • the shape of the reflective medium is not limited to the rectangle or circle shown in the figure, and can also be other shapes.
  • the reflective medium 0111 provided on the first transflective element 0110 can all use a reflective film with a reflectivity of 80%.
  • the number of the first transflective element 0110 is four, for example.
  • the reflectivity of the reflective element 0110 needs to be set to 20%, 40%, 60% and 80% respectively, that is, it can be achieved by adjusting the area ratio of the film layer with a reflectivity of 80% on different first transflective elements. Others with 80% reflectivity.
  • lower reflectivity can be achieved by adjusting the duty cycle.
  • the duty ratio in the embodiments of the present disclosure may refer to the area ratio of the reflective medium and the blank area provided by the transflective element, or the area ratio of the blank area to the reflective medium.
  • a reflective medium 0111 can be set in half of a first transflective element 0110, and a blank area 0112 can be set in the other half.
  • a transreflective element 0110 reduces the amount of light reflected by half.
  • the implementation of other lower reflectivity is similar, just adjust the area ratio of the reflective medium.
  • the reflective medium 0111 of part of the first transflective element 0110 is evenly distributed, which can make the light emitted from the light guide device more uniform.
  • the uniform distribution of the above-mentioned reflective medium may include cross-distribution of reflective medium and blank area, and may include equidistant distribution of reflective medium in a certain direction (such as V direction, U direction, or a direction intersecting both U direction and V direction, etc.).
  • the distribution of the reflective medium 0111 can also be unevenly distributed (for example, similar to the distribution form of a two-dimensional code lattice) or randomly distributed, so that the ratio of the total area of the reflective medium 0111 to the area of the blank area meets the requirements.
  • a diffusing element may be arranged on the light-emitting surface of the light-guiding device, and the uniformity of light emitted by the transflective element may be further improved through diffusion.
  • FIG. 14A and FIG. 14B are schematic diagrams of a partial planar structure of a transflective element provided according to another example of an embodiment of the present disclosure.
  • FIG. 14A and FIG. 14B take the first transflective element 0110 as an example for description, but not limited thereto, and the second transflective element is also applicable.
  • Figure 14A and Figure 14B schematically show that the shape of the first transflective element 0110 is a rectangle, but it is not limited thereto, the shape of the first transflective element can also be other polygons such as a circle, an ellipse, or a hexagon .
  • a plurality of first transreflective elements 0110 includes at least two transreflective element groups (011 as shown in FIG. 12 ), at least one transreflective element A group includes at least two transflective elements, and the reflective media 0111 set in the same transflective element group have the same reflectivity, and the reflective media 0111 in different transflective element groups have different reflectivity.
  • the same first transreflective element 0110 is provided with a reflective medium 0111 made of the same material, and at least two different first transreflective elements 0110 can be provided with different materials to form The reflective medium 0111.
  • the shape of the first transflective element, the shape and distribution of the reflective medium may be the same as those in the examples shown in FIGS. 13A to 13H , and the repeat.
  • the number of the plurality of first transflective elements 0110 may be N, and the number of transflective element groups 011 included in the N first transflective elements 0110 is less than N.
  • the number of first transreflective elements 0110 set in one transreflective element group or multiple transreflective element groups can be greater than 1, and the number of transreflective element groups and the number of first transreflective elements in each transreflective element group can be Set according to product requirements.
  • the reflectivity of the reflective medium 0111 of the first transflective element 0110 shown in FIG. 14A is different from the reflectivity of the reflective medium 0111 of the first transflective element 0110 shown in FIG. 14B , and the first transflective element 0111 shown in FIG. 14A
  • the element 0110 and the first transflective element 0110 shown in FIG. 14B are respectively located in two different transflective element groups.
  • the area ratio of the reflective media 0111 to the corresponding first transflective elements 0110 is the same.
  • the reflective medium 0111 set in the first transflective element 0110 shown in FIG. 14A accounts for an area ratio of A
  • the reflective medium 0111 set in the first transflective element 0110 shown in FIG. 14B occupies the area ratio of the first transflective element 0110.
  • the area ratio of the first transflective element 0110 is also A, but since the reflectivity of the reflective medium 0111 set by the two first transflective elements 0110 is different, even if the area of the reflective medium 0111 set by the two first transflective elements 0110 is For the same ratio, the reflectance of the two first transflective elements 0110 is also different.
  • the reflectivity of the first transflective element 0110 is positively correlated with the area of the reflective medium 0111 on which it is disposed.
  • the larger the area of the reflective medium 0111 is set the greater the reflectivity of the first transflective element 0110, when the area of the reflective medium 0111 is the same as the When the surface areas are almost the same, the reflectivity of the first transflective element 0110 reaches the maximum, which can be almost equal to the reflectivity of the reflective medium 0111 .
  • the reflectivity of the first transflective element 0110 is smaller than the reflectivity of the reflective medium 0111, thus, by adjusting the setting on the first transflective element 0110
  • the area of the reflective medium 0111 can adjust the reflectivity of the first transflective element 0110.
  • the reflective medium 0111 set on the first transflective element 0110 shown in FIG. 14A is a reflective film with a reflectivity of 80%
  • the reflective medium 0111 set on the first transflective element 0110 shown in FIG. 14B is a reflective film with a reflectivity of 80%.
  • the number of multiple first transflective elements 0110 is four as an example, along the propagation direction of light, the reflectivity of the four first transflective elements 0110 is set to 20%, 40%, and 60% respectively and 80%.
  • a reflective medium 0111 with a reflective rate of 60% can be set on the first transflective element 0110 with a reflective rate of 60%, and the reflective medium 0111 occupies the surface of the first transflective element 0110;
  • a reflective medium 0111 with a reflectivity of 80% can be set on the transflective element 0110, and the reflective medium 0111 occupies the surface of the first transflective element 0110;
  • the area ratio of the surface of the reflective element 0110 can realize the first transreflective element 0110 with a reflectivity of 20% and 40%, respectively, or adjust the reflective medium 0111 with a reflectivity of 60% between the other two first transreflective elements 0110
  • the area ratio of the surface can respectively realize the first transflective element 0110 with a reflectivity of 20% and 40%, or adjust the area ratio of the reflective medium 0111 with a reflectivity of 60% on the surface of a first transflective element 0110 respectively.
  • the first transflective element 0110 Realize the first transflective element 0110 with a reflectivity of 20% and 40%, and adjust the area ratio of the reflective medium 0111 with a reflectivity of 80% on the surface of a first transflective element 0110 to achieve reflectivity respectively 20% and 40% of the other first transflective element 0110.
  • the first transflective element with lower reflectivity can be realized by using two reflective media with different reflectivity
  • the first transflective element with different reflectivity can be realized by using at least two reflective media with different reflectivity , the effect of more uniform light emitted from the first transflective element can be obtained.
  • the first transflective element includes the aforementioned blank area 0112 , and by adjusting the area ratio of the reflective medium 0111 to the blank area 0112 , the reflectivity of the corresponding first transflective element can be adjusted.
  • FIG. 15A and FIG. 15B are schematic diagrams of a partial planar structure of a transflective element provided according to another example of an embodiment of the present disclosure.
  • FIG. 15A and FIG. 15B take the first transflective element 0110 as an example for description, but not limited thereto, and the second transflective element is also applicable.
  • Fig. 15A and Fig. 15B schematically show that the shape of the first transflective element 0110 is a rectangle, but it is not limited thereto, the shape of the first transflective element can also be other polygons such as circle, ellipse or hexagon .
  • Fig. 15A and Fig. 15B are provided with reflective medium 0111
  • the reflective medium 0111 provided for at least one first transflective element 0110 includes at least two kinds Different reflectivity
  • the number of reflectivity types of the reflective medium 0111 provided by the plurality of first transflective elements 0110 is smaller than the number of the plurality of first transflective elements 0110 .
  • At least one transflective element is provided with a reflective medium including at least two different reflectivities, and the number of reflective types of the reflective medium is less than the number of multiple transflective elements, so that the transflective While the emitted light of the element is relatively uniform, it is beneficial to reduce the manufacturing cost of the transflective element.
  • the reflective medium 0111 provided in at least one first transflective element 0110 includes at least two reflective mediums with different reflectivities.
  • at least one first transflective element 0110 may be provided with three kinds of reflective media 0111 or four kinds of reflective media 0111 with different reflectivities.
  • some of the first transflective elements 0110 are provided with at least two kinds of reflective media with different reflectances, and the reflectances of the reflective media provided by different first transflective elements 0110 may be the same or different.
  • the reflective medium 0111 provided on each first transreflective element 0110 includes at least two reflective media with different reflectivity (such as the first reflective medium 0111-1 and second reflective medium 0111-2), in different first transflective elements 0110, a reflective medium 0111 with the same reflectivity (such as first reflective medium 0111-1 or second reflective medium 0111- 2)
  • the ratios of areas occupied by the corresponding first transflective elements 0110 are different so that the reflectances of different first transflective elements 0110 are different.
  • the area ratio of the reflective medium 0111-1 to the first transflective element 0110 is different, and the second reflective medium 0111-2 set in the first transflective element 0110 shown in FIG. 15A occupies the area of the first transflective element 0110
  • the area ratio of the second reflective medium 0111-2 occupying the first transreflective element 0110 is also different from that of the first transflective element 0110 shown in FIG.
  • the reflectivity of the corresponding first transflective element is adjusted by the area ratio of the reflectivity of the reflective medium.
  • the embodiments of the present disclosure are not limited to reflective media with different reflectances including only two different reflective rates, and may also include a third reflective medium with other reflective rates, which can be set according to product requirements.
  • the reflective medium 0111 provided for each first transflective element 0110 includes at least two reflective media with different reflectivity (such as the first reflective medium 0111-1 and second reflective medium 0111-2), the reflectivity of different first transflective elements 0110 is different, and in different first transflective elements 0110, the reflective medium 0111 occupies the surface of the corresponding first transflective element 0110
  • the area ratio is the same.
  • the embodiments of the present disclosure are not limited thereto.
  • the reflective medium provided for each first transflective element includes at least two reflective media with different reflectivity (such as the first reflective medium and the second reflective medium). Two reflective media), the reflectivity of different first transflective elements is different, and in different first transflective elements, the area ratio of the reflective medium to the surface of the corresponding first transflective element is different.
  • the area ratio of the reflective medium 0111 (including the first reflective medium 0111-1 and the second reflective medium 0111-2) in the first transflective element 0110 shown in FIG. 15A to the first transflective element 0110 is B
  • the area ratio of the reflective medium 0111 (including the first reflective medium 0111-1 and the second reflective medium 0111-2) in the first transflective element 0110 shown in FIG. 15B to the first transflective element 0110 is also B
  • both In each of the first transreflective elements 0110, the area ratio occupied by the reflective medium 0111 is the same, and the first transreflective element can be adjusted by adjusting the area of the first transreflective element occupied by the reflective medium with different reflectivity on each first transreflective element.
  • the reflectivity of the transflective element For example, in the first transflective element 0110 shown in FIG. 15A, the area ratio of the first reflective medium 0111-1 to the first transflective element 0110 can be B1, and the second reflective medium 0111-2 occupies the first transreflective element 0110.
  • the area ratio of the first reflective medium 0111-1 to the first transflective element 0110 can be B3,
  • the first reflective medium 0111-1 and the second reflective medium 0111-2 can be reflective films with a reflectivity of 80% and 60% respectively, and by adjusting the As for the area ratio, the reflectivity of different first transflective elements can be adjusted between 20% and 80%.
  • the first transflective element includes the aforementioned blank area 0112 , and by adjusting the area ratio of the reflective medium 0111 to the blank area 0112 , the reflectivity of the corresponding first transflective element can be adjusted.
  • the method of adjusting the reflectivity of the first transflective element 0110 shown in FIGS. 13A to 15B by adjusting the area ratio of the surface of the reflective medium 0111 disposed thereon can be applied to FIGS. 1A to 15B
  • the reflectivity of the plurality of first transflective elements 0110 is gradually increased regionally or gradually.
  • Fig. 16 is a light guide device provided according to another embodiment of the present disclosure.
  • the light guiding device includes a light guiding structure 100 .
  • the light guide structure 100 includes a light outcoupling portion 101 configured to outcouple light propagating in the light guide structure 100 .
  • the light guide structure 100 includes a first light guide element 110 and a second light guide element 120, the light entering the light guide structure 100 is transmitted to the second light guide element 120 through the first light guide element 110, and the light coupling part 101 is located at the second light guiding element 120 .
  • the first light guide element 110 is configured to perform total reflection on the light incident on the first light guide element 110 so that the light propagates to the second light guide element 120, the first light guide element 110 includes at least two reflective surfaces 1120, The divergence angle of the light incident into the first light guide element 110 is ⁇ , the at least two reflective surfaces 112 include two reflective surfaces 112 opposite to each other, and the angle between the two reflective surfaces 112 opposite to each other is greater than or equal to 0° and less than or equal to ⁇ .
  • the above-mentioned divergence angle ⁇ of the light incident into the first light guide element 110 is greater than 0°.
  • the included angle between the two sub-reflective surfaces 112 facing each other is greater than 0° and less than or equal to at least one of the light incident side, the light exit side, and the side between the light incident side and the light exit side of the reflective structure. theta.
  • the included angle between the two reflecting surfaces 112 facing each other is between 0° and ⁇ .
  • the above-mentioned angle between the two opposite reflecting surfaces 112 is greater than 0° and less than or equal to ⁇ ; Less than or equal to ⁇ , it is beneficial to reduce the distance between at least a part of the area between the two reflecting surfaces, and can reduce the thickness of the first light guide element, which is beneficial to increase the number of reflections of light in the first light guide element, and improve the first light guide element.
  • the dodging effect of the light element is beneficial to improve the homogenization effect of the light at a large angle.
  • the above-mentioned angle between the two reflecting surfaces 112 opposite to each other is equal to 0°, which can be considered to be parallel to each other; the parallel reflecting surfaces 112 are conducive to maintaining the total reflection propagation of light in the first light guide element 110, which can improve light utilization.
  • the first light guide element 110 is provided with a light guide medium 111, and the light propagates through the light guide medium 111 through total reflection.
  • the inner surface for reflecting light may also be a reflective structure disposed on the outer surface of the light guide medium, which is not limited in the embodiments of the present disclosure.
  • the above two reflective surfaces 1120 may face each other in the Y direction shown in FIG. 16 , may face each other in a direction perpendicular to the XY plane, or may face each other in other directions perpendicular to the X direction.
  • the above two reflecting surfaces 1120 facing each other may be two sub-reflecting surfaces that are independent of each other with a space in between, or may be two sub-reflecting surfaces that are connected through a connecting portion located outside the medium 111. In the embodiment of the present disclosure, There is no limit to this.
  • the divergence angle of the light incident into the first light guide element 110 may be 40°.
  • the divergence angle of the light incident into the first light guide element 110 may be 20°.
  • the divergence angle of the light incident into the first light guide element 110 may be 10°.
  • the angle between the two reflecting surfaces 1120 opposite to each other is less than or equal to 40°.
  • the angle between the two reflecting surfaces 1120 opposite to each other is less than or equal to 30°.
  • the angle between the two reflecting surfaces 1120 opposite to each other is less than or equal to 20°.
  • the angle between the two sub-reflecting surfaces 1120 opposite to each other is less than or equal to 10°.
  • the second light guide element in the embodiment of the present disclosure may have the same characteristics as the second light guide element shown in FIG. 1A to FIG. 12 , which will not be repeated here.
  • the light guiding device in the embodiment shown in FIG. 16 may include the third reflective structure 130 shown in any example in FIGS. 1A to 3B , and may include the light conversion part shown in any example in FIGS. 1A to 10B 200 (in some examples, the light conversion part can replace the third reflective structure 130), which may include the light-adjusting structure 18 in the example shown in FIG. Examples will not be repeated.
  • Fig. 17 is a partial cross-sectional structural schematic diagram of a light guide device provided according to another example of an embodiment of the present disclosure.
  • the light is transmitted to the second light guiding element 120 through the fourth light guiding element 140 .
  • the fourth light guide element 140 is located between the light conversion part 200 and the second light guide element 120 , and the light emitted by the light conversion part 200 is transmitted to the second light guide element 120 through the fourth light guide element 140 .
  • the light transmitted in the fourth light guide element 140 may undergo non-total reflection or total reflection propagation on the inner surface of the fourth light guide element 140 , so as to further have a uniform light effect on the light.
  • the extending direction of the fourth light guiding element 140 is the same as the extending direction of the second light guiding element 120 .
  • the fourth light guiding element 140 overlaps the second light guiding element 120 .
  • the first light guide element 110 overlaps the second light guide element 120 along the Y direction, and the fourth light guide element 140 is located between the first light guide element 110 and the second light guide element 120 .
  • the fourth light guide element between the light conversion part and the second light guide element, it is beneficial to further mix the light emitted by the light conversion part evenly, and can improve the light emitted from the light conversion part to the second light guide element of evenness.
  • the fourth light guide element 140 includes a light coupling part and a light coupling part, and the light coupling part and the light coupling part may include structures such as reflective surfaces or gratings, which are not limited in this embodiment of the present disclosure.
  • FIG. 18 is a schematic cross-sectional structure diagram of a light source device provided according to the present disclosure.
  • the light source device includes a light source part 500 and the light guide device provided in any example in Figure 1A to Figure 17, Figure 18 schematically shows that the light guide device is the light guide device shown in Figure 3A, but is not limited to Here, the light guide device provided in other examples in FIGS. 1A to 17 may also be used.
  • the light emitted from the light source part 500 is configured to enter the light guide.
  • the light source part 500 may include a light source 510 and a reflective light guide structure 520 configured to adjust the light emitted by the light source 510 to a predetermined divergence angle.
  • the predetermined divergence angle may include a divergence angle within 40°.
  • the predetermined divergence angle may include divergence angles within 20°.
  • the predetermined divergence angle may include a divergence angle within 10°.
  • the predetermined divergence angle may include divergence angles within 5°.
  • the reflective light guide structure 520 can be a lamp cup, which can be a solid lamp cup or a hollow lamp cup, and can convert the light with a certain divergence angle emitted by the light source into a collimated light.
  • Nearly parallel light rays (for example, the divergence angle is not greater than 10°) have better consistency and can improve light utilization efficiency. Referring to the embodiment shown in FIG. 19B , the efficiency of polarization conversion of collimated light rays is higher.
  • the reflective light guide structure 520 can control the divergence angle of the light to a smaller angle.
  • the divergence angle of the light emitted by the light source is generally larger, for example, the divergence angle is 45°, and the reflective light guide structure 520 can control the angle as 40°, 20° or 10°.
  • the light has a divergence angle within 20°, and the light with a certain divergence angle will increase its uniformity with multiple reflections during propagation, which can improve the uniformity of light and shade.
  • the light source device provided by the embodiments of the present disclosure can be used as a backlight source of a display device.
  • FIG. 18 schematically shows that the light source part is located on the side of the light guide device as an example, but it is not limited thereto.
  • the light source part is located at the side of the light guide device, that is, the backlight is a side-type backlight.
  • the light guiding device can be set as light incident from at least one side (for example, light can be incident from two sides), which is beneficial to reduce the thickness of the light source device.
  • the light guiding device can also be arranged so that the bottom (for example, the side of the light guiding device away from the light exit area) receives light, which is beneficial to reduce the planar size of the light source device.
  • the light source 510 can be a monochromatic light source or a color mixing light source, such as a red monochromatic light source, a green monochromatic light source, a blue monochromatic light source or a white color mixing light source, or it can also be a combination of multiple monochromatic light sources of different colors to form a color mixing light source.
  • the monochromatic light source can finally form a monochrome image, and the color-mixing light source can form a color image.
  • light source 510 may be a laser light source or a light emitting diode (LED) light source.
  • the light source part 500 may include one light source 510 or a plurality of light sources 510 .
  • the light emitted by the light source 510 included in the light source unit 500 may be a one-dimensional light beam, that is, a light beam mainly extending in a one-dimensional direction.
  • the light source part 100 may include a light strip light source, and the cross section of the light beam emitted by the light source 510 is approximately one-dimensional line shape, or may be narrow strip shape.
  • the light source device provided by the embodiments of the present disclosure can make the light emitted by the light source device have better uniformity by using the light guide device shown in FIGS. 1A to 17 .
  • FIG. 19A and FIG. 19B are partial cross-sectional structural schematic diagrams of a display device provided according to an embodiment of the present disclosure.
  • the display device includes a display panel 600 and the light source device shown in FIG. 18 .
  • the display panel 600 includes a display surface 601 and a backside 602 opposite to the display surface 601 , and the light source device is located on the backside 602 of the display panel 600 .
  • the light emitted by the light source device passes through the display panel 600 and then goes to the viewing area.
  • the side of the display panel 600 facing the light source device is the non-display side
  • the side of the display panel 600 away from the light source device is the display side
  • the observation area is located on the display side of the display panel 600
  • the display side is where the user can watch the displayed image. side.
  • the viewing area and the light source device are located on two sides of the display panel 600 .
  • the display panel may be a liquid crystal display panel.
  • the liquid crystal display panel may include an array substrate, an opposite substrate, a liquid crystal layer located between the array substrate and the opposite substrate, and a sealant for encapsulating the liquid crystal layer.
  • the liquid crystal display panel further includes a first polarizing layer disposed on a side of the array substrate away from the opposite substrate and a second polarizing layer disposed on a side of the opposite substrate away from the array substrate.
  • the light source device is configured to provide backlight to the liquid crystal display panel, and the backlight is converted into image light after passing through the liquid crystal display panel.
  • the direction of the polarization axis of the first polarizing layer and the direction of the polarization axis of the second polarizing layer are perpendicular to each other, but not limited thereto.
  • the first polarizing layer can pass one kind of linearly polarized light
  • the second polarizing layer can pass another kind of linearly polarized light
  • the polarization directions of the two kinds of linearly polarized light are perpendicular to each other.
  • the light emitted by the light source device provided in the embodiments of the present disclosure is linearly polarized light, and the polarization direction of the linearly polarized light is parallel to the polarization axis of the first polarizing layer. Therefore, the light emitted from the light source device to the display panel has a higher utilization rate.
  • the reflectivity of a transflective element 0110 located at the outermost edge on the light incident side is greater than the transmittance.
  • the reflectivity of the transflective element can be almost 100% or close to 100%, so that most or even all of the light is reflected to the transflective element adjacent to it, so that other transflective elements far away from the transflective element will reflect the light Coupling out can not only prevent the edge of the display panel from being too bright, but also prevent the transmitted light from having a certain divergence angle due to the certain transmittance of the transflective element.
  • the divergent light leaks from the edge of the transflective element, which is different from the normal coupling. The outgoing rays overlap, causing bright bars.
  • At least part of the transflective element 0110 at the outermost edge does not overlap with the display panel 600;
  • the area of the display panel 600 where element 0110 overlaps is not used for imaging.
  • the transflective element 0110 located at the outermost edge of the light incident side reflects a part of the light transmitted from the first light guide element 110 into the second light guide element 120 to the The adjacent transflective element transmits another part of the light transmitted from the first light guide element 110 into the second light guide element 120 to the display panel 600 .
  • the above-mentioned transflective element 0110 at the outermost edge of the light incident side can be set as an element with a certain transmittance, for example, the transmittance can be small, for example, it can be no more than 20%, and try to make the light emitted directly through the transflective element
  • the intensity of the light is not much different from the intensity of the light coupled out from other transflective elements, for example, the intensity difference is not greater than 20% of the intensity of the light coupled out from any one of the transflective elements (for example, it can be 15%, 10 % or 5%), so that the light emitting area can be increased to prevent the edge from not showing light.
  • FIG. 20 is a schematic diagram of a partial cross-sectional structure of a display device provided according to another example of an embodiment of the present disclosure.
  • the display device further includes at least one light diffusing element 710, located on at least one of the display surface side and the back side of the display panel 600, and configured to emit at least one of the display panel 600 and the light source device. The light is diffused.
  • FIG. 20 schematically shows that the light diffusion element 710 is located on the back side of the display panel 600, that is, between the display panel 600 and the light source device, and is configured to diffuse the light emitted by the light source device, that is, the light diffusion element 710 configured to diffuse the light beam passing through the light diffusing element 710 .
  • the light diffusing element 710 can also be arranged on the light emitting side of the display panel 600, configured to diffuse the image light emitted by the display panel 600, for example, the light diffusing element 710 is arranged close to the display panel 600 to improve the imaging effect.
  • FIG. 20 schematically shows that the number of light diffusing elements is one, but it is not limited thereto, and there may be multiple light diffusing elements arranged at intervals to further improve the dispersion effect of light beams.
  • the embodiment of the present disclosure schematically shows that the light diffusion element is located on the back side of the display panel, but is not limited thereto, and may also be located on the side of the display surface of the display panel.
  • the light diffusing element can be attached to the surface of the display surface of the display panel.
  • the light diffusing element 710 is configured to diffuse the light beam passing through the light diffusing element 710 without changing or hardly changing the optical axis of the light beam.
  • optical axis refers to the centerline of the beam, which can also be considered as the main direction of beam propagation.
  • the incident light beam passes through the light diffusing element 710, it will be diffused into a light beam with a spot with a specific size and shape along the propagation direction.
  • the energy distribution of the spot can be uniform or non-uniform; for example, the size and shape of the spot can be determined by Microstructural control of the surface design of the beam spreading element 700 .
  • the aforementioned specific shapes of light spots may include, but are not limited to, linear, circular, elliptical, square, and rectangular.
  • the light diffusing element 710 may not distinguish between front and back.
  • the propagation angle and spot size of the diffused beam determine the brightness and visible area of the final image. The smaller the diffused angle, the higher the imaging brightness and the smaller the visible area; and vice versa.
  • the light diffusing element 710 includes at least one of a diffractive optical element and a diffractive optical element.
  • the light diffusion element 710 can be a low-cost scattering optical element, such as a dodging sheet, a diffusion sheet, etc., when the light beam passes through a scattering optical element such as a dodging sheet, it will be scattered, and a small amount of diffraction will also occur, but the scattering effect
  • the main function is that the light beam will form a larger spot after passing through the scattering optical element.
  • the light diffusing element 710 may also be a diffractive optical element (Diffractive Optical Elements, DOE) that controls the diffusion effect relatively more precisely, such as a beam shaper (Beam Shaper).
  • DOE diffractive Optical Elements
  • Beam Shaper Beam Shaper
  • diffractive optical elements design specific microstructures on the surface to expand the beam of light mainly through diffraction, and the size and shape of the spot are controllable.
  • FIG. 21 is a schematic diagram of a partial cross-sectional structure of a display device provided according to another example of an embodiment of the present disclosure.
  • the display device further includes a light converging element 720, which is located between the light source device and the display panel 600, and is configured to condense the light emitted from the light source device and then direct the converged light to at least one light diffuser.
  • a light converging element 720 which is located between the light source device and the display panel 600, and is configured to condense the light emitted from the light source device and then direct the converged light to at least one light diffuser.
  • Element 710 is located between the light source device and the display panel 600, and is configured to condense the light emitted from the light source device and then direct the converged light to at least one light diffuser.
  • the light converging element 720 is configured to control the direction of the collimated light emitted by the light source device, and gather the light to a predetermined range, which can further gather the light and improve the utilization rate of the light.
  • the above-mentioned predetermined range can be a point, such as the focal point of a convex lens, or a small area.
  • the purpose of setting the light converging element is to uniformly or mostly adjust the direction of the collimated light output by the optical waveguide element to the predetermined range, and improve the light utilization rate.
  • the light converging element 720 can be a lens, a prism, a curved mirror or a combination of lenses, such as a Fresnel lens and/or a curved lens, such as a convex lens, a concave lens or a combination of lenses, etc., and a convex lens is used as an example in FIG. 21 Give a schematic description.
  • the light converging element 720 can gather the collimated light output by the light source device to a certain range, and the light diffusing element 710 can diffuse the gathered light.
  • the visible range is expanded while providing high light efficiency.
  • the light converging element 720 can concentrate and direct almost all the light, so that the light can reach the user's eye box area 001, so the collimated light beam output by the light source device is easy to control to realize Easy to adjust the direction of light.
  • the area where the observer needs to watch the image can be preset according to actual needs, that is, the eyebox area (eyebox) 001, which refers to the area where the observer's eyes are located and the image displayed by the display device can be seen, for example
  • the eye box area may be a planar area or a three-dimensional area, and the user's eyes can see images within the range of the eye box, for example, a complete image.
  • the array of transflective elements includes adjacent first transflective elements and second transflective elements, the first transflective elements are configured to reflect light propagating from the first light guiding element into the second light guiding element toward
  • the second transflective element along a direction perpendicular to the extending direction of the second light guide element, at least part of the first transflective element does not overlap with the liquid crystal layer of the display panel.
  • the first transreflective element may be the above-mentioned outermost transreflective element 0110, which at least partially does not overlap with the display panel 600.
  • the area of the display panel 600 overlapping with the transflective element 0110 on the outermost edge is not used for imaging.
  • the reflectance of the first transflective element is above 80%, for example, it may be 90%, or it may be 95%, or even close to 100%.
  • the first transflective element reflects most of the light to other transflective elements of the second light guide element (for example, the second transflective element), the body of the first transflective element transmits little or almost no light, and the other transflective elements will The light is coupled out, and the display panel such as a liquid crystal screen may not overlap with the first transflective element.
  • the array of transflective elements includes adjacent first transreflective elements and second transflective elements, the first transflective elements are configured to reflect a part of light propagating from the first light guiding element into the second light guiding element toward the second light guiding element.
  • the transflective element transmits another part of the light transmitted from the first light guide element into the second light guide element to the display panel, and the reflectivity of the first transflective element is greater than the transmittance.
  • the first transflective element can be the above-mentioned transflective element 0110 at the outermost edge on the light incident side, which can be set as an element with a certain transmittance, for example, the transmittance can be small, For example, it can be no more than 20% (for example, no more than 10%, 8% or 5%), so that the intensity of the light emitted directly through the transflective element is as far as possible from other transflective elements (such as the second transflective element)
  • the intensity of the light coupled out is not much different, for example, the intensity difference is not greater than 20% (for example, it can be 15%, 10% or 5%) of the intensity of the light coupled out from any one of the transflective elements, so that the light output can be increased
  • the size of the display panel can be reduced to prevent the edge of the display panel from being exposed to light, and the size of the display panel can be set to be close to or the same as that of the light guide element, which saves installation space.
  • Fig. 22 is a partial cross-sectional structural schematic diagram of a head-up display provided according to an embodiment of the present disclosure.
  • the head-up display includes a reflective imaging unit 800 and the display device shown in any one of FIGS. 19A to 21 .
  • FIG. 22 schematically shows that the display device in the head-up display is the display device shown in FIG. 21 , but is not limited thereto.
  • the reflective imaging unit 800 is configured to reflect the light emitted by the display device to the observation area 001 of the head-up display (ie, the eye box area 001 ).
  • the reflective imaging unit 800 is configured to reflect the light emitted by the display device to the eye box area 001 and transmit ambient light.
  • a user located in the eye box area 001 can watch the image 002 reflected by the display device reflected by the reflective imaging unit 800 and the environmental scene on the side away from the eye box area 001 of the reflective imaging unit 800 .
  • the image light emitted by the display device enters the reflective imaging part 800, and the light reflected by the reflective imaging part 800 enters the user, such as the eye box area 001 where the driver's eyes are located, and the user can observe the image formed on the outside of the reflective imaging part, for example. virtual image without affecting the user's observation of the external environment.
  • the above-mentioned eye box area 001 refers to the plane area where the user's eyes are located and the image displayed on the head-up display can be seen.
  • the user's eyes deviate from the center of the eye box area by a certain distance, such as moving up and down, left and right by a certain distance, the user's eyes are still in the eye box area, and the user can still see the image displayed on the head-up display.
  • the reflective imaging unit 800 can be a windshield (such as a windshield) or an imaging window of a motor vehicle, respectively corresponding to a windshield-type head-up display (Windshield-HUD, W-HUD) and a combined head-up display. (Combiner-HUD, C-HUD).
  • the reflective imaging part 800 can be a flat plate, which forms a virtual image through mirror reflection; it can also be a curved surface, such as a windshield or a transparent imaging plate with curvature, etc., which will provide farther imaging distance.
  • the reflective imaging part 800 may include a first layer, a second layer, and a gap between the first layer and the second layer (hereinafter referred to as an interlayer); 800 in the interlayer (ie, the gap between the first layer and the second layer).
  • the reflective imaging unit 800 as a windshield of a vehicle (for example, a front windshield)
  • the reflective imaging unit 800 provided with a wedge-shaped film and the head-up display shown in FIG. 22 have an anti-ghosting function.
  • the windshield adopts a double-layer glass structure, and a wedge-shaped polyvinyl butyral (PVB) layer is embedded between the two layers of glass by a special process.
  • PVB polyvinyl butyral
  • Windshield which can make the images reflected on the inner and outer surfaces of the glass (that is, the image reflected by the first layer and the image reflected by the second layer) overlap into one image, thereby enabling the head-up display to have ghosting suppression (eg, anti-ghosting) Function.
  • the wedge-shaped film has a thin end and a thick end, and also has a certain angle, and the angle of the wedge-shaped film needs to be set according to the requirements of the head-up display.
  • images reflected from surfaces of the reflective imaging part close to the image source and away from the image source can be superimposed into an image to solve the problem of ghosting.
  • the surface of the reflection imaging part 800 facing the display device may be provided with a selective reflection film, a P polarized light reflection film or a first phase retardation part.
  • a P-polarized reflective film is provided on the surface of the reflective imaging unit 800 facing the display device to reflect the P-polarized light emitted by the display device to the reflective imaging unit 800 , and the P-polarized reflective film is opposite to P
  • the reflectance of the light in the polarization state is greater than the reflectance of the light in the S polarization state.
  • the image light emitted by the display device includes P-polarized light
  • the P-polarized image light can be reflected by the P-polarized reflective film and enter the observation area.
  • the material of the reflective imaging part 800 includes glass
  • the transmittance of glass to P-polarized light is relatively high, and the reflectivity is relatively low.
  • the brightness reflected by the outer surface of the reflective imaging part 800 toward the observation area is very low, thereby eliminating ghost images.
  • the structure of the P polarizing reflective film is similar to that of the selective reflective film mentioned above, and can be realized by stacking multilayer films, which can be a structure formed by stacking organic films or stacking inorganic films.
  • the P-polarized light reflective film may be a reflective polarizer (Reflecting polarizer mirror, RPM), that is, an RPM film.
  • the reflective imaging unit 800 is provided with a first phase delay unit on the surface facing the display device, the light emitted by the display device includes light in an S polarization state, and the first phase delay unit is configured to The S-polarized light of the first phase retarder is converted into non-S-polarized light, such as P-polarized light, circularly polarized light or elliptically polarized light.
  • the image light emitted by the display device includes light in the S polarization state
  • the first phase delay part may be a 1/2 wave plate
  • a part of the light in the S polarization state incident on the first phase delay part may be reflected by the reflective imaging part 800
  • the other part is converted into P-polarized light after passing through the first phase retardation part.
  • the reflectivity of the P-polarized light on the outer inner surface of the reflective imaging part 800 is very low, and it will basically be transmitted, thereby eliminating ghosting. .
  • the image light emitted by the display device includes light in the S polarization state
  • the first phase delay part may be a 1/4 wave plate
  • a part of the light in the S polarization state incident on the first phase delay part may be reflected by the reflective imaging part 800
  • the other part is converted into circularly polarized light after passing through the first phase delay part.
  • the reflectivity of the circularly polarized light on the outer inner surface of the reflective imaging part 800 is very low, thereby eliminating ghosting.
  • the reflective imaging part such as the windshield of a motor vehicle, has a high reflectivity to S-polarized light (S-polarized light), so the light emitted by the display device of the head-up display generally includes S-polarized light.
  • S-polarized light S-polarized light
  • the sunglasses filter S-polarized light, so the driver cannot see the image of the head-up display when wearing the sunglasses.
  • the reflective imaging part of the head-up display when the reflective imaging part of the head-up display is provided with a P-polarized reflective film on the side facing the display device, and the image light emitted by the display device includes light in a P-polarized state, the reflective imaging part can The image light in the P polarization state is reflected to the observation area so that the user wearing sunglasses with both eyes located in the observation area can still see the image displayed by the display device, thereby improving user experience.
  • a second phase delay part such as a quarter-wave plate, is provided between the display device of the head-up display and the reflective imaging part 800 .
  • the above-mentioned second phase retardation part is not closely arranged on the reflective imaging part 800 of the head-up display, that is, there is a certain distance between the second phase delay part and the reflective imaging part 800, so that the light emitted by the display device passes through the second phase After the delay part, after being reflected by the reflective imaging part 800, it will not pass through the second phase delay part again, but directly emit to the observation area.
  • the light emitted by the display device includes light in the S polarization state
  • the second phase retardation unit is configured to convert the light in the S polarization state incident on the second phase retardation unit into light in the circular polarization state (circularly polarized light) or elliptical
  • the light of the polarization state (elliptical polarized light), the circularly polarized light or the elliptical polarized light is reflected by the reflective imaging part 800 and shoots to the observation area.
  • the P polarization state The light enables the user wearing sunglasses whose eyes are located in the observation area to still see the image displayed by the display device, thereby improving user experience.
  • FIG. 23A is an example of a heads-up display provided according to an embodiment of the present disclosure.
  • the reflective imaging unit 800 is provided with a selective reflection film 810 on the surface facing the display device, and the selective reflection film 810 is configured so that the reflectance of the wavelength band of the image light emitted by the display device is greater than that of the wave band other than the image light.
  • the reflectivity of light in the band may be greater than 80%, 90%, 95%, 99.5% or other applicable values.
  • the reflectance of the selective reflection film 810 to light in a wavelength band other than the image light can be less than 30%, 20%, 10%, 5%, 1%, 0.5% or other applicable values.
  • the transmittance of the selective reflection film 810 to the wavelength band of the image light emitted by the display device may be less than 30%, 20%, 10%, 5%, 1%, 0.5% or other applicable values.
  • the transmittance of the selective reflection film 810 to light in a wavelength band other than the image light can be greater than 80%, 90%, 95%, 99.5% or other applicable values.
  • the selective reflection film 810 is configured to reflect the image light emitted by the display device, and to transmit light of a wavelength band other than the wavelength band of the image light.
  • the image light includes light in three bands of red, green and blue (RGB), and the selective reflection film 810 reflects the image light emitted by the display device (for example, with the aforementioned high reflectivity), and transmits light in other wave bands (for example, with aforementioned higher transmittance).
  • RGB red, green and blue
  • the selective reflection film 810 may be a transflective film, which has high reflectivity for narrowband light (with at least one spectral band) and high transmittance for light in other wavelength bands within the visible light band.
  • the full width at half maximum of the bands of the reflectance spectrum may be less than or equal to 60 nm.
  • the full width at half maximum of the bands of the reflectance spectrum may be less than or equal to 30 nm.
  • the full width at half maximum of the bands of the reflectance spectrum may be less than or equal to 10 nm.
  • the emission spectrum of the image light emitted by the display device at least partially matches the properties of the selective reflection film 810 .
  • image rays include narrowband rays (having at least one spectral band).
  • the emission spectrum of the narrowband light partially or fully overlaps with the reflection spectrum of the selective reflection film 810 .
  • the full width at half maximum of the bands of the emission spectrum may be less than or equal to 60 nm.
  • the full width at half maximum of the bands of the emission spectrum may be less than or equal to 30 nm.
  • the full width at half maximum of the bands of the emission spectrum may be less than or equal to 10 nm.
  • the selective reflection film 810 has higher reflectivity (for example, the reflectivity is about 70%-90%) to red light, green light and blue light, and has higher transmittance (for example, The transmittance is about 70% to 90%).
  • the above-mentioned selective reflection film 810 may include a selective transflective film formed by stacking inorganic oxide films or polymer films, and the transflective film is formed by stacking at least two film layers with different refractive indices.
  • the "different refractive index" here means that the film layer has a different refractive index in at least one of the three xyz directions.
  • the composition of the film layer is selected from the group consisting of tantalum pentoxide, titanium dioxide, magnesium oxide, zinc oxide, zirconium oxide, silicon dioxide, magnesium fluoride, silicon nitride, silicon oxynitride , one or more of aluminum fluoride.
  • the film layer of organic polymer material includes at least two thermoplastic organic polymer film layers.
  • two thermoplastic polymer film layers are alternately arranged to form an optical film, and the refractive indices of the two thermoplastic polymer film layers are different.
  • the molecules of the above-mentioned organic polymer materials have a chain structure, and the molecules are arranged in a certain direction after stretching, resulting in different refractive indices in different directions, that is, the required film can be formed through a specific stretching process.
  • the above-mentioned thermoplastic polymers can be polyethylene terephthalate (PET) and its derivatives with different degrees of polymerization, polyethylene naphthalate (PEN) and its derivatives with different degrees of polymerization, different degrees of polymerization Degree of polybutylene terephthalate (PBT) and its derivatives.
  • the selective reflection film 810 may have higher reflectivity for narrow-band light with a specific polarization state (having at least one spectral band), and higher reflectivity for light of other wavelength bands in the visible light band and narrow-band light with other polarization states. transmittance.
  • the full width at half maximum of the spectral band of the reflected light may be less than or equal to 60 nm.
  • the specific polarization state may be a vertical polarization state (e.g., S polarization state), and the selective reflection film 810 has a relatively high reflectivity (e.g., a transmittance of about 70 % ⁇ 90%), while it has a higher transmittance (for example, the reflectance is about 70% ⁇ 90%) for light in other wavelength bands and red light, green light and blue light with horizontal polarization state (for example, P polarization state). ).
  • the embodiments of the present disclosure are not limited thereto, and the specific polarization state may also be different polarization states such as circular polarization and elliptical polarization.
  • the average reflectance of the selective reflection film 810 within the half-width of at least one of the n bands of s-polarized light is greater than a specific reflectance, such as 50%; for example, greater than 60%, 70%, 80% or 90%, even up to 95% or more; and the average reflectance of the selective reflection film 810 for the visible light bands other than the half-maximum width of the n bands of s-polarized light, compared to the n bands of s-polarized light
  • the average reflectance at half width at half maximum is at least 5% lower, such as 10%, 15%, or even 20% lower.
  • the average transmittance of the selective reflection film 810 for p-polarized light in the visible light range is greater than 60%; for example, greater than 70%, 80% or 90%, even up to 95%.
  • the light source unit 500 inputs narrow-band light to the light guide device 100, and the narrow-band light has a high reflectivity on the transflective element 0110, so that as much light as possible can be coupled out from the light guide device 100.
  • the light coupled out is still narrow-band light, and the narrow-band light is converted into image light after passing through the display panel 600, and is emitted to the reflective imaging part 800.
  • the side of the reflective imaging part 800 facing the display panel 600 is provided with a The reflectivity of the selective reflection film 810, at this time most of the light can be reflected and imaged. At the same time, most of the light in the external ambient light can be transmitted normally, and will not affect the observation of the external environment.
  • the embodiments of the present disclosure are not limited thereto, and the above-mentioned "transflective film with high reflectivity for the above-mentioned narrow-band light" may also be provided on the side of the reflective imaging part away from the display device, or both sides of the reflective imaging part.
  • the wavelength band of light generated by traffic lights and other similar devices is close to or coincides with the narrow band; because the above-mentioned light is generally non-polarized light, When transmitted through the windshield, only light with a specific polarization state will be reflected and cannot be received, while light with other polarization states can still be transmitted and observed, avoiding the risk of not being able to see traffic signals.
  • the light emitted by the light source unit 500 is white light, which is mixed with red light, blue light and green light
  • the transflective element 0110 of the light guide device 100 can be a transflective film without wavelength selection characteristics, which is the same as the preceding Fig. 1A to Fig.
  • the first transflective element 0110 described in the embodiment of 10B may have the same or similar features, which will not be repeated here.
  • the transflective element 0110 reflects white light mixed with red light, blue light and green light to the display panel 600;
  • the selective reflection film 810 provided on the side of the reflection imaging part 800 facing the display device has the above-mentioned selectivity, and the selective reflection The film 810 may reflect the RGB light having an S polarization state in the light directed thereto by the display device toward the user.
  • FIG. 23B is a head-up display provided according to another example of an embodiment of the present disclosure.
  • the light emitted by the light source unit 500 is a narrow-band light, which can be converted into RGB light in a P-polarized state by the light conversion unit 200 (which can be the light conversion unit 200 shown in FIG. 3A ), so as to improve the light intensity. utilization rate.
  • the converted P-polarized RGB light is coupled into the light guide device 100 and propagates along the total reflection path and/or the non-total reflection path, and is coupled out to the display panel 600 through the transflective element 0110, and passes through the display panel (such as a liquid crystal display panel) 600 Converted into RGB image light with S polarization state, the image light is emitted to the selective reflection film 810 on the side of the reflective imaging part 800 facing the display device, and is reflected by the selective reflection film 810 to human eyes.
  • the S-polarized RGB light will be reflected by the selective reflection film 810 , and the P-polarized RGB light and light in other wavelength bands can be transmitted to human eyes.
  • the image light emitted by the display device includes image light in the S polarization state.
  • the reflective imaging part is a windshield of a vehicle
  • the reflectivity of the image light in the S polarized state on the reflective imaging part is often higher, improving the The overall light utilization rate of the head-up display; the ambient light in the P-polarized state and the light in other bands included in the ambient light can have a high transmittance on the reflective imaging part, and the user can clearly observe the external environment and achieve high reflectivity. High transparency effect.
  • the above-mentioned display device has low power consumption, light and thin volume, is convenient for installation and installation, and improves the experience of using the head-up display.
  • Embodiments of the present disclosure are not limited to the head-up display including the above-mentioned display device.
  • the head-up display may also include the light guide device shown in any example in FIG. 1A to FIG.
  • the outgoing light is reflected to the viewing area of the head-up display.
  • the light emitted by the light guiding device can directly be incident on the reflective imaging part without passing through any optical elements or devices, and the light emitted by the light guiding device can also pass through other optical elements (such as mirrors, lenses, etc.) or other devices (such as liquid crystals, etc.) display panel) and then incident to the reflective imaging unit.
  • Embodiments of the present disclosure are not limited to the head-up display including the above-mentioned display device.
  • the head-up display may also include the light source device shown in FIG. observation area.
  • the light emitted by the light source device may directly be incident on the reflective imaging part without passing through any optical elements or devices, and the light emitted by the light source device may also pass through other optical elements (such as mirrors, lenses, etc.) or other devices (such as liquid crystal display panels). ) and then incident on the reflective imaging unit.
  • Embodiments of the present disclosure provide a light source device.
  • the light source device includes: a light source part for emitting light; and a light guide device, wherein the light emitted by the light source part is configured as a light guide device, wherein the light guide device is any one of the aforementioned light guide devices in the present disclosure.
  • the light source device includes a light source structure and a light guide structure
  • the light source structure is used to emit light
  • the light is the source light
  • the light guide structure includes a light incident area that allows at least part of the light to enter the light guide structure and includes a plurality of light couplers
  • the light guide structure includes The first light guide element and the second light guide element, the light entering the light guide structure is transmitted to the second light guide element through the first light guide element, at least part of the light coupling part is located in the second light guide element, wherein the light guide structure
  • the first light guide element includes a light homogenization part configured to homogenize the light before it is incident on the light outcoupling part, or the multiple light outcoupling parts of the light guide structure include a plurality of light outcoupling parts for partial reflection and partial outcoupling.
  • the orthographic projection of the light source structure on the light guide structure is at least partially within the light guide structure.
  • most of the orthographic projection of the light source structure onto the light guide structure in the direction perpendicular to the arrangement direction of the plurality of light outcoupling components is located inside the light guide structure, and a small part may also fall outside the light guide structure; or, the light source structure All orthographic projections are within the light guide structure.
  • the light source part is arranged along the extending direction of the thickness of the second light guiding element, and/or, the first light guiding element and the second light guiding element are stacked along the thickness direction of the light guiding structure.
  • the light guide structure is configured such that light incident thereon propagates along a first direction and exits the light guide structure along a second direction intersecting the first direction;
  • the light guide structure may be any type of light guide structure, It may also be called a light guiding structure, a waveguide structure or an optical waveguide structure.
  • the light source device can be used in a display device.
  • a display device including the light source device and an image generating element configured to generate image light using the light emitted by the light source device.
  • the image light obtained after being processed by the image generating element carries image information.
  • the light emitted by the light source device does not carry image information before entering the image generating element for processing, so it is called the source light.
  • An embodiment of the present disclosure also provides a head-up display system, which includes the above light source device or display device.
  • An embodiment of the present disclosure also provides a vehicle, which includes the above light source device or display device or head-up display system.
  • the orthographic projection of the light source structure 31 on the light guide structure 32 is at least partially located in the light guide structure 32, wherein the light guide structure 32
  • the light outcoupling direction is the thickness direction of the light source device
  • the direction perpendicular to the light outcoupling direction is the extension direction (such as the width direction or the length direction) of the light source device (the extension direction is an example of the above-mentioned first direction).
  • the width of the light source device is effectively reduced, making the structure of the light source device more compact.
  • the above-mentioned light source device is particularly suitable for application scenarios that require a small thickness of the light source device but require a high width.
  • the light guide structure 32 may include one or more light incident regions, and the light incident regions of the light guide structure 32 may correspond to the middle or end regions of the light guide structure 32 .
  • the light incident area 322 included in the light guide structure 32 corresponds to the middle part of the light guide structure 32, thus, the light enters the light guide structure 32 from the middle part of the light guide structure 32, and passes through the light guide structure. 32 propagates from the middle of the light guiding structure 32 to two opposite end regions of the light guiding structure 32 .
  • the light incident region 322 may be located at the end region of the light guide structure 32 .
  • the light guide structure 32 includes two light incident regions 322, which respectively correspond to the two opposite end regions of the light guide structure 32, thus, the light from the two opposite end portions of the light guide structure 32 respectively The regions enter into the light guiding structure 32 and propagate in the light guiding structure 32 from the end regions towards the middle of the light guiding structure 32 .
  • the light guide structure 32 includes a light incident area corresponding to an end area, thus, light enters the light guide from an end area of the light guide structure 32 structure 32 , and propagates in the light guiding structure 32 to the other end region of the light guiding structure 32 opposite to the end region.
  • the light guide structure 32 may include one or more light outcoupler groups, and each light outcoupler group includes at least two light outcoupler groups arranged in sequence.
  • the at least two optical outcoupling elements are arranged in sequence along the above-mentioned first direction.
  • the at least two light outcoupling component groups are arranged in sequence in a direction perpendicular to the light outcoupling direction.
  • the plurality of light outcoupling elements 321 of the light guide structure 32 comprises a set of light outcoupling elements.
  • the plurality of light outcoupling elements 321 of the light guide structure 32 include the first ones sequentially arranged in the arrangement direction of the plurality of light outcoupling elements.
  • An optocoupler group 3211 and a second optocoupler group 3212 the first optocoupler group 3211 includes a plurality of first optocouplers, and the second optocoupler group 3212 includes a plurality of second optocouplers
  • the light-incoming area 322 of the light guide structure 32 is located between the first light out-coupling group 3211 and the second light out-coupling group 3212 in the arrangement direction of the plurality of light out-coupling parts 321.
  • the light entering the light guide structure 32 from the light region 322 is coupled out by the first light outcoupler group 3211 and the second light outcoupler group 3212 .
  • the first optocoupler group 3211 and the second optocoupler group 3212 are arranged in sequence in a direction perpendicular to the direction of light outcoupling (in the figure, the horizontal direction is taken as an example for illustration), incident to a plurality of first light
  • the light from the outcoupling element propagates in the opposite direction to the light incident on the plurality of second light outcoupling elements in the light guide structure 32, and is coupled out by the first light outcoupler group 3211 and the second light outcoupler group 3212
  • the light is coupled out toward the same side of the light guide structure 32 , which is the light outcoupling side of the light guide structure 32 .
  • the light incident area 322 included in the light guide structure 32 corresponds to the middle part of the light guide structure 32 .
  • the light incident region 322 corresponds to the middle part of the first optical outcoupler group 3211 and the second optical outcoupler group 3212, and the light entering the light guide structure 32 passes through the first optical outcoupler group 3211 and the second optical outgroup group 3211.
  • the transmission distances of the groups 3212 are the same or tend to be the same, and the propagation directions in the light guide structure 32 are opposite.
  • the light guide structure 32 may include a light incident region 322 in the middle (as shown in FIG. 24a, 23b, 25b-25d), or may include two light incident regions located at the end region of the light guide structure 32 .
  • the two light incident areas 322 included in the light guide structure 32 are respectively located on the side away from the middle of the light guide structure 32 on the side of the first light outcoupler group 3211 and the second light outcoupler group 3212.
  • the light enters the light guide structure 32 from two opposite end regions of the light guide structure 32 respectively, and propagates from the end regions to the middle of the light guide structure 32 and is respectively received by the first light coupler group 3211 and the second light coupler Output group 3212 is coupled out.
  • the light output area of the first optical coupler group 3211 is adjacent to the light output area 322 of the second optical coupler group, and there is no gap between them.
  • the light output of the light guide structure 32 can be continuous and/or the uniformity of the light output can be improved. sex.
  • the first optocoupler in the first optocoupler group 3211 to receive light and the first optocoupler in the second optocoupler group 3212 to receive light The ends close to each other included in the second optocoupler are connected to each other (such as abutting against or close to each other), so that continuous light output can be achieved, and in some cases it can be avoided that the light does not directly exit through the optocoupler group and appear Displays the status of the light bars.
  • the first photocoupler that receives light last in the first photocoupler group 3211 and the second photocoupler that receives light last in the second photocoupler group 3212 The close ends of the light outcoupling member are connected to each other (for example, abutting against or close to each other), so as to realize continuous light out, and in some cases avoid the light out area of the light guide structure from including dark areas.
  • the plurality of light outcoupling elements in the light guide structure 32 may include a plurality of transflective elements or a plurality of outcoupling gratings or other types of components for decoupling light from the light guide structure 32 .
  • the following embodiments are described by taking the light outcoupling element including a transflective element as an example.
  • the transflective element partially transmits and partially reflects the light incident thereon, so that part of the light incident thereon is coupled out from the light guide structure 32 and another part continues to propagate in the light guide structure 32 .
  • 24a to 33 illustrate by taking the transflective element to reflect the light incident on it out of the light guide structure 32 as an example; in other examples, the transflective element can couple the light incident on it out of the light guide structure through transmission. 32.
  • the multiple transflective elements included in the light guide structure 32 may be inclined relative to their arrangement direction (the horizontal direction is taken as an example in the figure).
  • each of the multiple transflective elements included in the light guide structure 32 may also be arranged along the arrangement direction of the multiple transflective elements.
  • the transflective element may comprise an adjustment medium for adjusting the reflectivity and/or transmittance of the transflective element.
  • the type of the adjustment medium is in one-to-one correspondence with the transflective elements.
  • different types of adjustment media are provided for different transflective elements; or, the number of types of adjustment media is less than the number of transflective elements.
  • at least two transflective elements comprise the same type of adjustment medium.
  • the light-receiving surfaces of at least two transflective elements are occupied by the adjusting medium, and the light-receiving surfaces include blank areas where the adjusting medium is not provided.
  • the regulating medium may be a single-layer film structure or a stacked structure of multi-layer films.
  • the transflective elements in the light guide structure 32 can be directly placed in a gas (such as air) environment; or, the light guide structure 32 can be Including the light guiding medium 324 , the transflective elements in the light guiding structure 324 may be located in the light guiding structure 324 .
  • the material of the light guide structure 324 includes a transparent optical material with a refractive index greater than 1.
  • the transparent optical material may include at least one or more of silicon dioxide, lithium niobate, silicon-on-insulator (SOI, Silicon-on-insulator), high molecular polymer, III-V semiconductor compound and glass, etc.
  • the shape of the light guide medium can be a flat substrate, a strip substrate, or a ridge substrate.
  • the light in the light guide structure 32 propagates linearly or reflectively in the light guide structure 324 , for example, along the arrangement direction of a plurality of transflective elements.
  • reflective propagation may include total reflective propagation and/or non-total reflective reflective propagation.
  • the light rays may be totally reflected at at least one of the opposing major surfaces of the light guiding structure 324 .
  • the transflective element can be disposed in the light-guiding medium by plating or sticking.
  • a plurality of sub-lightguide media can be used, each sub-lightguide medium in at least part of the sub-lightguide mediums is a column with a parallelogram in cross-section, adjacent sub-lightguide media are spliced together and transparent anti-element.
  • the transflective element can also be arranged in the light guide medium in other ways.
  • the transflective element may be an element with substantially no wavelength selectivity and polarization selectivity, and the wavelength properties and polarization properties of the light emitted by the light source are basically unchanged after being transmitted/reflected by the transflective element.
  • the reflectivity of the multiple transflective elements increases gradually. This is beneficial to achieve uniform light output from the light guide structure 32 .
  • the plurality of light outcoupling elements 321 of the light guide structure 32 may include a plurality of transflective elements with the same tilt direction, and the plurality of transflective elements belong to the same light source. Coupler set. Or, in some other embodiments, as shown in FIG. 24a, FIG. 24b, and FIG. a second transflective element, the arrangement direction of the plurality of first transflective elements and the plurality of second transflective elements relative to the plurality of light outcoupling elements 321 included in the light guide structure 32 (the horizontal direction is taken as an example in the figure) in the opposite direction of inclination.
  • first transflective element and the second transflective element are arranged along the first oblique direction and the second oblique direction respectively, and there is a set angle between the first oblique direction and the second oblique direction, such as an angle of approximately 90° or obtuse angle. "Approximately” can be understood as ignoring the influence of factors such as process errors.
  • the inclination directions of the first transreflective element and the second transreflective element relative to the arrangement direction of the transreflective elements are opposite and the inclination angles are substantially the same.
  • the multiple first transflective elements in the first optical outcoupler group 3211 and the multiple second transflective elements in the second optical outcoupler group are arranged in mirror images.
  • the first transflective element and the second transflective element are arranged symmetrically around the plane where the main optical axis of the light of the light source structure is located.
  • the light in the light source structure 31 can pass through one light source part (as shown in Figure 24a, Figure 25b, Figure 25c, Figure 26a to Figure 33 ) or multiple (as shown in Figure 24b, Figure 25a, Figure 25d) light source parts; and/or, the light emitted by the light source structure 31 can be divided into one or more parts; or a plurality of light incident regions, or satisfy the use of one or more light outcoupling component groups, or be used for polarization conversion of light.
  • the light source structure 31 includes a first light source part, which is configured to emit a first source light, and the first part of the first source light is located in the first light source.
  • At least one first optical outcoupler of the outcoupler set 3211 is located in the optical path, and the second part of the first source light is located in the optical path of at least one second optical outcoupler in the second optical outcoupler set 3212 .
  • the first light source part shown in the figures may include one sub-light source; or, the first light source part may include a plurality of sub-light sources, for example, the The arrangement direction of the plurality of sub-light sources is perpendicular to the light outcoupling direction or perpendicular to the arrangement direction of the plurality of transflective elements.
  • the first light source part includes a sub-light source for emitting the first source light
  • the first source light includes two display areas, and the two display areas can respectively emit the first part of the first source light and the second part; or, for example, the first light source part includes a plurality of sub-light sources, the plurality of sub-light sources can be connected to the same circuit or set independently, some of the sub-light sources are used to emit the first part of the first source light, and the other part of the sub-light sources are used for Emits the second portion of the first source ray.
  • the light source structure 31 includes a first light source part and a second light source part configured to respectively emit the first source light and the second source light in the source light, the first light source
  • the first source light emitted by the second light source part is at least located in the optical path of at least one first optocoupler of the first optocoupler group 3211
  • the second source light emitted by the second light source part is at least located in the second optocoupler group 3212
  • the at least one second optocoupler is located in the optical path.
  • the first light source part and the second light source part respectively include a sub-light source
  • the first light source part and the second light source part respectively include a plurality of sub-light sources
  • the The arrangement direction of the plurality of sub-light sources is perpendicular to the light coupling direction or the arrangement direction of the plurality of transflective elements, and the first light source part and the second light source part use one or more sub-light sources to emit the first source light and the second source light .
  • the source light emitted by one or more light source parts of the light source structure 31, or a part or multiple parts of the source light can be emitted to a Or multiple optocoupler output groups.
  • the light source structure 31 includes a first light source part and a second light source part configured to respectively emit a first source light and a second source light in the source light, the first source light Emitted to the first optical outcoupler group 3211, the second source light is emitted to the second optical outcoupler group 3212; or, for example, as shown in Figure 24a, Figure 25b and Figure 25c, the light source structure 31 includes a first light source part , which is configured to emit a first source light, and the first source light is simultaneously emitted to the first photocoupler group 3211 and the second photocoupler group 3212; or, for example, as shown in FIGS. 26a-33, the light source structure 31 includes a first light source portion, which is configured to emit a first source light, and the first light source light is emitted to an optical coupler group.
  • the first light source unit and the second light source unit may be one or more of a laser light source, an LED light source, and the like.
  • the light source device includes a light recycling device, and the light recycling device is used to recycle part of the light that cannot be used in the source light, Can make full use of light.
  • the light recovery device includes a light splitting structure 34 and a polarization conversion structure 37 .
  • the light splitting structure divides the source light into at least two polarization states, and converts the polarization states of at least part of the light that cannot be used by the display panel into usable polarization states through the polarization conversion structure.
  • the light splitting structure 34 is configured to divide the light incident on the light splitting structure 34 into a first light with a first polarization characteristic and a second light with a second polarization characteristic;
  • the polarization conversion process is performed on the polarization conversion structure to obtain the third light, and the third light is polarized light with the second polarization characteristic.
  • the first light is converted into a third light having a second polarization characteristic, the third light having the same polarization characteristic as the second light.
  • the light with the second polarization characteristic can be utilized, and the first light can be converted into the third light with the second polarization characteristic, which can realize the recycling of the first light.
  • the third light is: the light having the same polarization characteristic as the second light, but having at least one intermediate polarization characteristic during conversion.
  • one of the first polarization characteristic and the second polarization characteristic is an S polarization characteristic and the other is a P polarization characteristic.
  • At least one polarization conversion process is performed on the first light to obtain the third light.
  • the first light undergoes a polarization conversion and is converted into a third light with a second polarization characteristic; or, the first light undergoes two polarization conversions and is converted into a third light with a second polarization characteristic, or the light A greater number of polarization conversions take place to be converted into a third light having a second polarization characteristic.
  • the performance of the polarization conversion structure is different.
  • the polarization conversion structure is at least one or more of a 1/2 wave plate or a 1/4 wave plate.
  • the light splitting structure divides the light into at least two kinds of light with specific polarization.
  • the light splitting structure divides light into S-polarized light and P-polarized light.
  • the light paths of the at least two kinds of polarization characteristics are also different, wherein the polarization conversion structure can be arranged on at least one light path, and convert the polarization state of the light on the light path.
  • the light splitting structure is a polarization beam splitting element (PBS).
  • the polarization beam splitting element is used to divide light into first light and second light with different polarization states.
  • the transmittance of the polarization beam splitting element to the first light is greater than that to the second light.
  • the light transmittance, or the reflectance of the polarization beam splitting element to the first light is smaller than the reflectance to the second light, or is a combination of the above transmittance relationship and reflectance relationship.
  • the polarization conversion structure 37 includes a phase delay element, and the polarization characteristic of the light is changed through the phase delay element; for example, the phase delay element is a 1/2 wave plate or a 1/4 wave plate.
  • the polarization conversion structure further includes a reflective element 35.
  • the reflective element 35 changes the propagation direction of at least one of the light rays, so that the multiple light rays separated by the light splitting structure have the same direction or can be directed to a designated position.
  • the polarization conversion structure 37 is not shown in some drawings in FIGS. 25a-26b, 28a-29, and 31-33, and some drawings only show the polarization conversion structure 37
  • the relationship between the light splitting structure and the polarization conversion structure in the embodiments shown in Figure 25a-Figure 26b, Figure 28a-Figure 29, Figure 31- Figure 33 can be used in Figure 27a to Figure 27d any kind.
  • the polarization conversion structure 37 is disposed on the side of the polarization beam splitting element away from the reflection element 35 .
  • the light source emits non-polarized light
  • the liquid crystal screen 310 can use S-polarized light
  • the transflective element reflects S-polarized light and transmits P-polarized light
  • the polarization beam splitting element can reflect S-polarized light.
  • the S-polarized part of the light emitted by the light source is reflected by the polarization beam splitting element, and the reflected S-polarized light is reflected by the reflective element 35 and then shoots to the light guide structure 32, and the P-polarized part of the light emitted by the light source is polarized
  • the beam-splitting element transmits, passes through the polarization conversion structure 37 and converts it into S-polarized light, and emits it to the light guide structure 32 , and then converts the non-polarized light emitted by the light source into S-polarized light that can be used by the liquid crystal screen 310 .
  • the polarization beam splitting element may be a transflective film coated or pasted on the substrate, which has the characteristics of reflecting S-polarized light and transmitting P-polarized light.
  • the transflective film is one or more of DBEF optical film and BEF optical film.
  • the reflective element 35 may be a common reflective plate; or, it may also be a reflective film coated or pasted on the substrate with the characteristic of reflecting S-polarized light.
  • the reflector is one or more of metal reflectors and glass reflectors; for example, the reflector is any reflective film that can reflect S-polarized light.
  • the polarization conversion structure 37 is a 1/2 wave plate.
  • the reflective element 35 may also have transflective properties, which may be the same as the transflective properties of the polarization beam splitting element.
  • the polarization conversion structure 37 is arranged in close contact with the polarization beam splitting element.
  • the explanation of the bonding arrangement can be as follows: the bonding surface of the polarization conversion structure 37 is arranged on the surface of the polarization beam splitting element, and there is basically no gap between the two.
  • the polarization conversion structure 37 may be arranged in close contact with the polarization beam splitting element through connection methods such as close contact, adsorption or adhesion.
  • the polarization conversion structure 37 may be bonded and fixed on the surface of the polarization beam splitting element.
  • the polarization beam splitting element reflects the light of the P polarization state and transmits the light of the S polarization state
  • the reflective element 35 can reflect the light of the P polarization state.
  • the polarized light, the polarization conversion structure 37 is a 1/2 wave plate, the way of its polarization conversion and optical path direction change is the same as the above-mentioned way that the liquid crystal screen 310 can use the P-polarized light, and will not be repeated here.
  • the polarization conversion structure 37 is disposed on the outgoing path of the light reflected by the reflective element 35 .
  • the light source emits non-polarized light
  • the liquid crystal screen 310 can use the S-polarized light
  • the polarization beam splitting element transmits the S-polarized light and reflects the P-polarized light
  • the reflective element 35 can reflect the P-polarized light.
  • the S-polarized part of the light emitted by the light source is transmitted through the polarization beam splitting element, and the reflected P-polarized light is reflected by the reflective element 35, and after the reflection is processed by the polarization conversion structure 37, it is converted into S-polarized light, which can send out the light source
  • the non-polarized light is converted into S-polarized light available for the liquid crystal screen 310 .
  • Parameters such as performance and material used of each component in the polarization conversion device shown in FIG. 27b are the same as those in the polarization conversion device shown in FIG. 27a , so details will not be repeated here.
  • the polarization conversion structure 37 is disposed between the transflective element and the reflective element 35 .
  • the light source emits non-polarized light
  • the liquid crystal screen 310 can use the S-polarized light.
  • the polarization beam splitting element transmits the S-polarized light and reflects the P-polarized light.
  • the reflective element 35 can reflect the S-polarized light.
  • the S-polarized part of the light emitted by the light source is transmitted by the polarization beam splitting element, and the reflected P-polarized light is processed by the polarization conversion structure 37 and converted into S-polarized light, and then reflected by the reflective element 35, which can convert the non-polarized light emitted by the light source.
  • the polarized light is converted into S polarized light available to the liquid crystal screen 310 .
  • Parameters such as performance and material used of each component in the polarization conversion device shown in FIG. 27c are the same as those in the polarization conversion device shown in FIG. 27a , and will not be repeated here.
  • the polarization conversion structure 37 is arranged on the side of the reflective element 35 close to the transflective element, the light source emits non-polarized light, and the liquid crystal screen 310 can use the light of the S polarization state, and the polarization beam splitting element Reflecting P-polarized light and transmitting S-polarized light, the reflective element 35 is a common reflective element 35, such as an aluminum mirror, which does not have polarized reflection characteristics.
  • the S-polarized part of the light emitted by the light source is transmitted by the polarization beam splitting element, and the transmitted S-polarized light is emitted to the liquid crystal screen 310; the P-polarized part of the light emitted by the light source is reflected by the polarized beam splitting element, and is polarized after reflection.
  • the conversion structure 37 is converted into circularly polarized light after processing, and the circularly polarized light is reflected on the reflective element 35, and the reflected circularly polarized light is converted into S-polarized light by the polarization conversion structure 37 again, which can convert the non-polarized light emitted by the light source It is the S-polarized light available for the liquid crystal screen 310 .
  • the polarization conversion structure 37 is selected as a 1/4 wave plate, and the performance and materials of other components in the polarization conversion device are the same as those shown in Fig. 27a.
  • the components in the polarization conversion device are the same, and will not be repeated here.
  • At least two light rays are obtained after being split by the light splitting structure, and the at least two light rays can enter different optical couplers respectively output group, or the same optocoupler output group, the recycling of light can be realized by using one of the two methods.
  • the light emitted by a light source structure is divided into a first light and a second light, the first light corresponds to the first light coupler group 3211, and the second light corresponds to the second light coupler group 3211 component group 3212, as shown in FIG.
  • the polarization conversion structure converts the first light before entering the first light outcoupling component group 3211 into a third light, or, as shown in FIG. 25c, the polarization conversion structure will be converted by the first
  • the first light coupled out by the optocoupler set 3211 is converted into a third light.
  • the light corresponding to the optical coupler group is explained as follows: after the light enters the light guide structure 32 , it is transmitted and reflected from the corresponding optical coupler group.
  • the first light source part and the second light source part of the light source structure respectively emit the first source light and the second source light
  • the first source light and the second source light are divided into the second source light
  • the first light and the second light, the first light of the first source light is converted by the polarization conversion structure, and the third light and the second light of the first source light are transmitted to the first light out-coupling element group 3211
  • the second source The first light of the light is converted by the polarization conversion structure to obtain the third light and the second light of the second source light are transmitted to the second light outcoupling element group 3212 .
  • the light emitted by a light source structure is divided into first light and second light.
  • the polarization state of the first light or the second light is converted, for example, the first polarization state of the first light is converted into the same polarization state as the second light, and the first light and the second light converted by the deflection state enter an optical coupler Out of group.
  • the light splitting structure and the polarization conversion structure are arranged between the light source part and the light guide structure, the source light emitted by the light source is split and polarized, and then enters the structure behind the light path; and the source light is separated by the light splitting structure and polarized After the conversion structure is processed, it still propagates along the set light output direction.
  • the light splitting structure and the polarization conversion structure can be arranged continuously or discontinuously.
  • the continuous arrangement is: the source light is split and then undergoes polarization conversion
  • the discontinuous arrangement is: the source light can first enter the light guide after being split. The structure then undergoes polarization conversion.
  • the light emitted by the light source structure is processed by the light splitting structure and then polarized Conversion, it should be noted that the above figure does not show the polarization conversion structure 37, the polarization conversion structure 37 is arranged on the optical path of the first light after the light splitting structure, and is used to convert the first light into the third light.
  • the polarization conversion structure 37 is arranged on the optical path after the outcoupling of the first light, for converting the outcoupled first light into a third light, and the polarization conversion structure 37 can be attached to the light guide structure , or, it can also be a setting method that does not fit.
  • the light splitting structure includes at least one light splitting element (such as a polarizing beam splitting element PBS), and the first source light and the second source light are split by the same light splitting element or different light splitting elements processing; and/or the polarization conversion structure comprises at least one polarization conversion element (such as a phase delay element), the first light of the first source light and the first light of the second source light are polarized by the same polarization conversion element or different polarization conversion elements convert.
  • PBS polarizing beam splitting element
  • the polarization conversion structure comprises at least one polarization conversion element (such as a phase delay element), the first light of the first source light and the first light of the second source light are polarized by the same polarization conversion element or different polarization conversion elements convert.
  • the first source light and the second source light correspond to the light splitting structure 34 and the polarization conversion structure respectively; for example, as shown in Figure 25d, the first source light and the second source light correspond to the light splitting structure 34, respectively,
  • the first light or the second light separated by the light splitting structure 34 is reflected by the same reflective element, and the reflected first light or the second light is subjected to polarization conversion by the same polarization conversion structure 37 .
  • the light Before the light enters the light guide structure, the light is reflected/totally reflected multiple times in the homogenizing part, which can improve the uniformity of the light, especially the brightness and darkness of the light.
  • the source light emitted by the light source structure or the split light or the split and polarized light is subjected to at least one homogenization treatment by a light homogenization unit 33, and then enters the light guide structure 32 .
  • Fig. 25a-Fig. 25c Fig. 26a, Fig. 26b, Fig. 28a-Fig.
  • the direction of stacking arrangement or the arrangement direction of a plurality of optical outcoupling elements are arranged sequentially.
  • the homogenizing portion 33 and the plurality of light outcoupling elements are stacked in a direction perpendicular to the arrangement direction of the plurality of light outcoupling elements.
  • the light homogenizing part 33 includes a first light homogenizing member 331, and the first light homogenizing member 331 and a plurality of light outcoupling members are arranged with a plurality of light outcoupling members.
  • the direction is vertically stacked.
  • the first homogenization element 331 is stacked under the light guide structure 32, and the light emitting side of the first light homogenization element 331 emits the homogenized light, and the light enters the light guide through the light incident area 322 of the light guide structure. structure32.
  • the first light homogenizing element 331 and the plurality of light outcoupling elements are sequentially arranged in the arrangement direction of the plurality of light outcoupling elements.
  • the first homogenizing elements 331 are arranged side by side on one side of the light guide structure 32, and the light emitting side of the first light homogenizing elements 331 emits the homogenized light, and the light passes through the light incident area 322 at the side end of the light guiding structure Enter the light guiding structure 32 .
  • the light dodging part includes a plurality of first light dodging members, and the arrangement manner of the plurality of first light dodging members may refer to the arrangement manner of one first light dodging member.
  • a plurality of first homogenizing elements 331 can be stacked as shown in Figure 26a, or arranged side by side as shown in Figure 26b, or can also be combined with the first homogenizing elements 331 shown in Figure 26b Overlay settings.
  • the light when the homogenization part includes a plurality of first homogenization parts, the light needs to propagate in as many first homogenization parts as possible, so as to increase the number of reflections/total reflections and achieve the homogenization effect of maximization.
  • the ends of a plurality of first light homogenizing elements 331 are arranged at intervals or integrally connected with the head end of the next first light uniform element 331, and the light can be reflected by a reflection structure that is independent or integrally connected with the first light uniform element 331, so that The light enters the next first homogenizing member 331 from one first homogenizing member 331 .
  • the plurality of optocouplers of the light guide structure includes a set of optocouplers, and the set of optocouplers A plurality of light coupling components are arranged in the same direction, and the light guide structure of this structure is provided with a light incident area, and the light only needs to propagate along one direction in the light guide structure.
  • the light incident area is located at the edge of the light incident side of the light guide structure, and the light propagates from one edge to the opposite edge in the light guide structure.
  • a light splitting structure and a polarization conversion structure are arranged on the optical path.
  • the light splitting structure 34 shown in 27d is the same as the polarization structure in terms of structure, light splitting and polarization conversion. After the light is split and polarized, part of the light can be recovered to further improve the light utilization rate.
  • the second light is polarized light having a second polarization characteristic
  • the polarization conversion structure is configured to change the polarization characteristic of the first light so that the first light having the first polarization characteristic is polarized
  • the light splitting structure 34 and the polarization conversion structure are arranged on the light incident side or the light exit side of the first light homogenizing member 331, and After being converted by the polarization conversion structure, the first light propagates toward at least part of the plurality of light outcoupling elements.
  • Fig. 26a-26b Fig. 28a-Fig. 29, Fig. 31-Fig.
  • the light-incident side of the homogenizing element 331 is used to homogenize the separated first light and second light.
  • the light dodging part may include a second light dodging member 332, the number of the second light dodging member 332 is one or more, and the second light dodging member 332 is located on the optical path Between the first light homogenizing element 331 and the light guide structure 32 , the light emitted by the first light homogenizing element 331 enters the second light homogenizing element 332 , is homogenized by the second light homogenizing element 332 , and then enters the light guiding structure 32 .
  • the dodging part 33 includes a first dodging member 331 and a second dodging member 332, and the light is uniformed by the first dodging member 331 and the second dodging member 332 in turn. chemical treatment, and then enter the light guide structure 32.
  • the light splitting structure and the light conversion structure are arranged on the light exit side of the first light homogenizing element 331, and the light emitted by the first light homogenizing element 331 is absorbed by at least one second light homogenizing element.
  • Part 332 performs homogenization.
  • At least the light splitting structure is disposed between the first light homogenizing member 331 and the second light homogenizing member 332 .
  • the light splitting structure and the polarization conversion structure are disposed between the first light homogenizing element 331 and the second light homogenizing element 332 .
  • the light homogenized by the first light homogenizing member 331 is divided into the first light and the second light by the light splitting structure 34, and the second light and the light obtained after the first light is converted by the polarization conversion structure After being homogenized by the second light homogenizing element 332 , the third light propagates toward the side of the light guide structure 32 where the plurality of light outcoupling elements are located.
  • a reflective member 323 is provided on the light output side of the second light homogenizing member 332 , and the reflective member is used to reflect the light emitted by the second light homogenizing element 132 to the side of the light guide structure 32 where multiple light coupling members are located.
  • the positions of the light splitting structure and the light converting structure in FIGS. 28 a - 28 c may be replaced by being located on the light incident side of the first light homogenizing member 331 .
  • the inventors of the present disclosure have found in their research that the light that has been split and polarized converted is homogenized by at least one homogenizer before entering the light guide structure, which can improve the polarization beam splitting element (PBS), wave plate, etc.
  • PBS polarization beam splitting element
  • the second light homogenizing element 332 and a plurality of light outcoupling elements are stacked in a direction perpendicular to the arrangement direction of the plurality of light outcoupling elements or arranged in multiple
  • the optocoupler outputs are arranged sequentially in the arrangement direction.
  • the second light homogenizing element 332 and the plurality of light outcoupling elements are stacked in a direction perpendicular to the arrangement direction of the plurality of light outcoupling elements.
  • the first homogenizing elements 331 are also arranged in layers.
  • the second light homogenizing element 332 and the plurality of light coupling elements are sequentially arranged in the arrangement direction of the plurality of light coupling elements. Cascading settings.
  • the arrangement of the second light homogenizing member 332 is not limited to the above two arrangements, and other arrangements can also be adopted.
  • the second light dodging member 332 is arranged obliquely or vertically relative to the first light dodging member 331 and the light guide structure 32 , and this arrangement is especially suitable for situations where the thickness of the light source device is relatively low.
  • multiple second light homogenizing elements there are multiple second light homogenizing elements, and multiple second light homogenizing elements can be stacked in a direction perpendicular to the arrangement direction of multiple light coupling elements, or multiple light coupling elements Set in sequence in the arrangement direction of the output pieces, or set in a combination of the two.
  • a plurality of second light dodging elements are stacked, and the end of one second light dodging element is arranged at intervals or integrally connected with the head end of the next second light dodging element.
  • the connected reflective structure is reflected, so that the light enters the next second uniform member 332 from one second uniform member.
  • the light homogenizing element shown in Figure 25a-25c, or the first light uniform element shown in Figure 26a, Figure 26b and Figure 29-33, and the first light uniform element shown in Figure 28a-28c The dodging piece and the second dodging piece are collectively referred to below as the dodging piece.
  • the homogenizing element has a set length along the direction of light propagation. After the light enters the homogenizing element, multiple reflections or total reflections occur within the set length, and the direction of the light is constantly changed to make the light tend to be uniform.
  • the homogenizing member may be a hollow structure, or may also be a solid structure, or some structures capable of realizing light transmission.
  • the optical component After the optical component, it is incident on the first reflective film 333 or the second reflective film 334, and the light reflected by the first reflective film 333 or the second reflective film 334 travels a certain distance, and then enters the second reflective film 334 or the first reflective film 334 or the first reflective film 334.
  • the light On the reflective film 333 , the light is reflected/totally reflected and transmitted in the first homogenizing member and the second homogenizing member in this way, so that uniform light can be realized.
  • the medium in the light transmission space is air, or, for example, an optical filling layer is formed between the first reflection film 333 and the second reflection film 334, and light propagates in the optical filling layer; for example, the material of the optical filling layer is transparent One or more of glass, transparent plastic, etc.
  • the homogenizing element 331 includes a transparent optical medium in which light propagates.
  • a transparent optical medium is a transparent substrate with a refractive index greater than one.
  • the light homogenizing element shown in Figure 25a to Figure 25c, or the first light uniform element shown in Figure 26a, Figure 26b and Figure 29-33, and the first light uniform element shown in Figure 28a-28c A dodging piece and a second dodging piece.
  • the oblique setting of the first reflective film 333 and the second reflective film 334 in the first light uniform member 331 gradually increases the transmission space of the first light uniform member 331 along the direction of light propagation; for example, as shown in Figures 25a-25c, Figure 26a, Figure 26b, Figure 28b, Figure 28c and Figures 29-33, the first reflection film 333 and the second reflection film 334 of the uniform light element are arranged in parallel, along the light propagation direction, The transmission space of the first light homogenizing element 331 remains unchanged.
  • the light is set as a light with a non-zero preset divergence angle.
  • the uniformity (especially the uniformity of light and shade) will increase accordingly, which in turn can improve the uniformity of the backlight.
  • the range of the preset divergence angle is (0,20]; and/or, the preset divergence angle is greater than or equal to that between the opposite main reflection surfaces (such as the first reflective film 333 and the second reflective film 334) of the uniform light element
  • the non-zero included angle of at least one of the light incident side, the light exit side and the middle side of the dodging member, or the relative main reflection surface of the dodging member is parallel.
  • the divergence angle of the light, or the divergence angle and the two of the dodging member The angle between the two main surfaces is limited to ensure that the light will be reflected/totally reflected in the dodging member, thereby ensuring the dodging effect.
  • Fig. 25a-Fig. 25c Fig. 26a, Fig. 26b, Fig. 28a-Fig.
  • the emitted light is concentrated and then incident into the light guide structure. By concentrating this part of the light, the divergence and waste of light can be reduced and the utilization rate of light can be improved.
  • the light concentrating part is arranged in the light incident area of the light guide structure; for example, the light concentrating part can be connected with the light guide structure or the light homogenizing structure, or can be arranged independently.
  • the light emitted from the light emitting side of the first light homogenizing element 331 travels to the plurality of light coupling elements of the light guide structure 32 after being condensed by the light concentrating part 36 .
  • the light collecting part 36 may be a single lens, or a lens group in which a plurality of lenses are stacked in the direction of the optical path, and the light is collected by the lens or the lens group.
  • At least one lens in the lens or the lens group is selected from an eccentric lens, and the focal point of the eccentric lens is located on the side of the center line of the eccentric lens close to the center of the light guide structure 32. More light enters the light guide structure, which can improve the utilization rate of light.
  • the direction of the light emitted from the light emitting side of the light dodging element is perpendicular to the side where the light incident area of the light guide structure is located, and this part of the light can directly enter the light guide structure from the light incident area.
  • the light output direction of the light output side of the first light uniform member 331 is perpendicular to the light incident area 322 of the light guide structure 32. After the light is emitted by the first light uniform member 331, the direction of the light meets the incident adjustment, and can be directly Enter the light guide structure 32 from the light incident region.
  • the light direction emitted from the light-emitting side of the dodging member is in the same direction as the entrance of the light guide structure.
  • the side where the light area is located is arranged in parallel, and this part of light can enter the light guide structure only after at least one step of reflection.
  • a reflective member 323 is provided on the light emitting side of the light homogenizing member, and the reflective member 323 is configured to make the light emitted from the light emitting side propagate toward the side of the light guide structure 32 where the plurality of light outcoupling members are located.
  • the reflector 323 is a prism, and the light is reflected by the prism to the side where the light incident area 322 of the light guide structure 32 is located; Aggregation can improve light utilization.
  • the prism uses a triangular prism, which can totally reflect the light propagating from the light exit side of the first light homogenizing member 331 to the light guide structure 32 .
  • the reflective member 323 is integrally formed with at least part of the first uniform member 331 .
  • a transparent optical medium such as a transparent substrate
  • a reflective mirror surface can be selected as the reflective member 323 , and the reflective mirror surface can be bonded or integrally formed with the transparent optical medium.
  • the end of one of the main planes (ie, the reflective surface) of the first light homogenizing element 331 includes a horizontal extension and an inclined portion, and the inclined portion can be regarded as the reflecting element 323 .
  • the light emitting side of the light homogenizing element and the light guide structure may be arranged at intervals, or may be integrally connected.
  • the light homogenizing element 33 and the light guide structure 32 are arranged at intervals, as shown in Figures 28a, 28b and 29, between the first light homogenizing element 331 or the second light uniform element 332 and the light guiding structure 32 Arranged at intervals; for example, as shown in FIG. 30 , the light emitting side of the first light homogenizing member 331 is integrally connected with the light guide structure 32 .
  • the integrated connection is realized through a structure with a turn, and the use of an integrated structure can reduce the manufacturing process of the light guide structure 32 and the first light uniform member 331.
  • it can be molded by a set of moulds, and the integrated structure It can also reduce the difficulty of supporting the light guide structure 32 and the first light homogenizing member 331 , or the number of brackets used can also be reduced.
  • At least one reflector 323 is provided in the turning structure for reflecting the light emitted by the first homogenizing member 331 into the light guide structure 32, for example, as shown in FIG. The 323 reflect the light twice by the optical member, and emit the light into the light guide structure 32 .
  • each of at least some of the optocouplers partially transmits the light incident to the optocoupler so that the transmitted The light is transmitted to the next optocoupler; among multiple optocouplers, for example, the transmittance of the first optocoupler to receive light is less than its reflectivity, so as to provide sufficient light to the following Transflective treatment is performed on the output parts of the first-grade optocoupler.
  • the display device 300 includes an image generating unit, and the light emitted by the light source device 30 is converted into image light by the image generating unit.
  • an image generating unit is arranged on the optical path of the light emitted by the light guide structure 32, for example, the image generating unit is a liquid crystal screen, and the light emitted by the light source device 30 can be converted by the liquid crystal screen 310 into Image light.
  • the light outcoupling element in the light guide structure is used to receive and outcouple the elementary light, and the outcoupled light is directed to the liquid crystal screen.
  • the optical coupling part is a transflective element, and the transmittance of the first transflective element that receives light in the light guide structure needs to be limited to avoid or reduce the transmission of too much light, resulting in bright bars on the LCD screen, or , reflecting too much light, resulting in dark areas on the LCD screen.
  • the first transflective element is set as an element with a limited transmittance, and the transmittance needs to meet the following conditions:
  • the brightness of the outcoupled light is the same or close, and the brightness of the outcoupled light is uniform to avoid local over-brightness or over-darkness.
  • the liquid crystal screen 310 can cover the area where the first transflective element is located in the light guide structure 32 .
  • At least one light converging element 320 and/or diffusing element 330 may be disposed between the light guide structure and the liquid crystal screen.
  • the light converging element 320 can gather the collimated light output by the light guide structure 32 to a required range, gather the light, and improve the light utilization rate; the light diffusing element 330 can diffuse the light, wherein the main propagation direction of the light remains unchanged, so The light will still gather to the predetermined range, however, after the light passes through the diffusing element 330, it will be further diffused to a larger area along the predetermined range, which can expand the visible range.
  • the display device 300 includes a light converging element 320 and a diffusing element 330; the light emitted by the light source device 30 is sequentially processed by the light converging element 320 and the diffusing element 330, then transmitted to the image generating unit, and After passing through the image generation unit, it is converted into image light.
  • the light condensing element 320 is a condensing lens, which can be a single lens or a combination of multiple lenses.
  • the lens is one or more of a convex lens, a Fresnel lens, and the like.
  • the light diffusing element 330 can be a diffractive optical element, such as a beam shaper (beam shaper). After the light passes through the beam shaper, it will diffuse and form a beam with a specific cross-sectional shape.
  • the cross-sectional shape includes but is not limited to linear, circular, Oval, square or rectangular; by controlling the microstructure of the diffractive optical element, the diffusion angle and cross-sectional shape of the light can be precisely controlled to achieve precise control of the diffusion effect; in addition, for example, the light diffusing element 330 can also be a scattering optical element , such as diffusion film, etc.
  • the display device and the imaging window are combined to form a head-up display system.
  • the head-up display system can form a virtual image of image light outside the imaging window according to the principle of mirror imaging.
  • the imaging window 410 is configured to reflect the image light emitted by the display device 300 to the eye box area 420 of the head-up display system 400, and what the user observes is the virtual image 430 formed outside the imaging window 410, while not Affect the observation of the external environment.
  • the predetermined range where the light condensing element 320 gathers the light can be the center of the eye box area 420
  • the position of the virtual image 430 relative to the imaging window 410 can be the center of the eye box area 420.
  • the imaging window 410 can transmit and reflect light, and is made of materials that can transmit light and reflect light.
  • the imaging window 410 is a windshield or a transparent imaging plate, for example, the windshield is a windshield, for example, the transparent imaging plate is transparent glass or transparent plastic.
  • W-HUD windshield-HUD
  • C-HUD head-up display system
  • the imaging window 410 may be a flat plate, or may also be a curved plate.
  • a head-up display system is provided within the vehicle, with the eye-box area 420 of the head-up display system positioned near the location of the user's eyes.
  • the user When the user is driving a vehicle, he can observe static or dynamic information on the virtual image 430 in the head-up display system 400 .
  • a front windshield, a side window, or an independently provided transparent imaging plate of a vehicle is used as an imaging window.
  • a vehicle such as a vehicle, a train, or a tram
  • the inventors of the present disclosure found in research that when the head-up display system (HUD) projects an image onto an imaging window such as a windshield of a vehicle, the imaging window needs to have a higher reflectivity to improve the brightness of reflection imaging; and, the imaging The window also needs to have a high transmittance, so that the user can clearly see the environment outside the vehicle.
  • reflectivity and transmittance are generally in a trade-off relationship, and the imaging window in the related art is often difficult to take into account; in the related art, there is a technical solution to improve the brightness of HUD reflection imaging by increasing the display brightness of the image source of the HUD.
  • the image source of HUD such as liquid crystal display
  • the image source of HUD usually has a thicker backlight source, which is not conducive to the reduction of HUD volume, and also limits the further popularization and application of HUD.
  • the display system includes: an image source configured to emit image light including at least one spectral band in the visible light band.
  • the image source includes a light guide device and an image generation device, the light guide device includes an optical coupling part configured to couple out the light in the light guide device, and the image generation device is configured to couple the light out of the light coupling part
  • the rays of light are converted into image rays.
  • the imaging device is configured to reflect the image light.
  • the imaging device includes a transparent substrate and a selective transflective element arranged on at least one surface of the transparent substrate. The selective transflective element is configured to reflect at least part of the image light. greater than the reflectance of light in the visible light band other than the image light, and/or, the transmittance of at least part of the image light is smaller than the transmittance of light in the visible light band other than the image light.
  • FIG. 34 is a schematic structural diagram of a display system provided by at least one embodiment of the present disclosure, for example, it may be a partial cross-sectional structural schematic diagram.
  • the image source 90 includes a light guide device 91 and an image generating device 92
  • the light guide device 91 includes an optical coupling part 911
  • the optical coupling part 911 is configured to couple out the light in the light guide device 91
  • the light outcoupling part 911 includes a plurality of transflective elements 9111 as an example for illustration.
  • the transmitted light is coupled out, for example, the light coupled out of the light guiding device 91 can directly shoot to the image generating device 92, as shown in Figure 34; or, the light coupled out of the light guiding device 91 can also be transmitted to Image generating means 92 .
  • the image generating device 92 converts the incident light into image light Ls, and the image light Ls travels to the imaging device 20 and is reflected.
  • the imaging device 20 reflects the image light Ls to the preset area A (for example, the preset area A may be the eye box area mentioned later), and the user whose eyes are located in the preset area A can see the image light Ls passing through
  • the formed virtual image V is reflected by the imaging device 20 .
  • the light guide device 91 can be a waveguide device (the light propagates in the device with a total reflection path, as shown in Figure 34); it can also be a light guide plate, such as the light travels in a linear direction as a whole in the device; for example, the light guide device 91 may be a plate structure, or a ridge structure or a strip structure; in at least one example of the present disclosure, the light guide device 91 is a plate structure, and the light guide device 91 of the plate structure can couple out a relatively uniform As a light source, a surface light source is more suitable for providing backlight for the image generating device 92 . By setting the light guide device 91, the light propagates and is coupled out in the thinner light guide device 91. Compared with the thicker devices such as light tunnels used in the related art, the thickness of the image source 90 can be reduced, thereby reducing the The volume of the display system improves the user experience of the display system.
  • the light coupled out by the light guiding device 91 may be collimated light; for example, the collimated light is parallel or nearly parallel light, and generally has a divergence angle not greater than 30°; for example, the consistency of the collimated light is better,
  • the conversion rate of the image light converted by the image generating device 92 is relatively high, which can improve the utilization rate of the light.
  • the collimated light is perpendicular to the light exit area of the light guide device 91 (eg, the upper light exit surface); for example, the angle between the collimated light and the normal of the light exit area of the light guide device 91 is no greater than 80°.
  • the image generating device 92 may be a reflective imaging device or a transmissive imaging device, which forms the image light Ls by reflecting or transmitting light; for example, the image generating device 92 includes a liquid crystal display panel, which may be a transmissive liquid crystal display panel or a reflective LCD panel.
  • the liquid crystal display panel may include an array substrate, an opposite substrate, a liquid crystal layer located between the array substrate and the opposite substrate, and a sealant for encapsulating the liquid crystal layer.
  • the liquid crystal display panel further includes a first polarizing layer disposed on a side of the array substrate away from the opposite substrate and a second polarizing layer disposed on a side of the opposite substrate away from the array substrate.
  • the light guiding device 91 is configured to provide backlight to the liquid crystal display panel, and the backlight is transformed into image light Ls after passing through the liquid crystal display panel.
  • the image source 90 emits image light Ls that includes at least one spectral band in the visible light band.
  • the image light Ls may include one or more spectral bands in the visible light band. It can also be considered that the image light Ls includes one or more spectral bands in the visible light band. an emission peak.
  • the image light Ls includes a band in the visible light band, and it can be considered that the image light Ls is a monochromatic light, which can form a monochrome image; for another example, the image light Ls includes multiple bands in the visible light band, such as three spectral bands.
  • the image light Ls can be regarded as a colored light, which can form a color image.
  • the imaging device 20 includes a transparent substrate 21 and a selective transflective element 22 arranged on at least one surface of the transparent substrate 21; for example, as shown in FIG.
  • the selective transflective element 22 can cover part of the surface of the transparent substrate 21 , as shown in FIG. 34 ; or, it can also cover the entire surface of the transparent substrate 21 .
  • the selective transflective element 22 can maintain a certain distance from the transparent substrate 21, and can also be closely attached to the transparent substrate 21 by means of plating, sticking or spraying; in the drawings of the embodiments of the present disclosure, The selective transflective element 22 is attached to the surface of the transparent substrate 21 close to the image source 90 as an example for illustration, but this should not be construed as a limitation to the present disclosure.
  • the selective transflective element 22 can be an optical film, for example, the optical film can be composed of multiple layers with different refractive indices according to a certain stacking sequence, and the thickness of each film layer is about 10-1000 nm;
  • the material of the film layer can be selected from inorganic dielectric materials, such as at least one of metal oxides, inorganic fluorides, metal oxynitrides and metal nitrides; polymer materials can also be selected, such as polypropylene, polyvinyl chloride and at least one of polyethylene.
  • the transparent substrate 21 can be selected from at least one of transparent materials such as polycarbonate, polyethylene terephthalate, polymethyl methacrylate, glass and quartz, or it can be transparent and transparent.
  • transparent materials such as polycarbonate, polyethylene terephthalate, polymethyl methacrylate, glass and quartz, or it can be transparent and transparent.
  • the transparent substrate 21 can change color in a strong light environment to reduce the intensity of ambient light.
  • the selective transflective element 22 is configured such that the reflectivity of at least part of the image light Ls is greater than the reflectivity of visible light rays Le other than the image light Ls, and/or the transmittance of at least part of the image light Ls is smaller than that of The transmittance of visible light rays Le other than image light Ls.
  • external light includes full-band light such as ultraviolet light, visible light, and infrared light, such as sunlight, or light emitted/reflected by external objects such as vehicles and buildings.
  • the light that can be recognized by the user is generally the light in the visible light band, so the light Le in the visible light band in the external light is used to indicate the external light.
  • the light La refers to the light in the visible light band other than the image light Ls.
  • at least part of the image light can be regarded as almost all of the image light Ls, or part of the image light Ls, such as 60%, 70%, 80% or 90% of the image light Ls.
  • the reflectivity of at least part of the image light Ls of the selective transflective element 22 is 20% to 99%; for example, it can be 60%, 70%, 80% or 90%, or even greater than 95%; the selective transflective The transmittance of the element 22 to the light La is 20%-99%; for example, it can be 60%, 70%, 80% or 90%, even greater than 95%.
  • the reflectivity of the selective transflective element 22 to the light Ls is 60%, and the reflectivity to the light La is 40%; and/or, the transmittance of the selective transflective element 22 to the light Ls is 30%, and The transmittance to light La is 70%.
  • the selective transflective element 22 may have an average reflectance of 20% to 99% for at least one spectral band in the image light Ls, and may also be considered as a reflectance for each spectral band in at least one spectral band in the image light Ls.
  • the transmittance of the selective transflective element 22 to the light La other than the image light in the visible light band is 20% to 99%, which may be the reflectance of the wavelength band where the light La is located.
  • the average value is 20%-99%, and it can also be considered that the transmittance of the part of the wavelength band of the light La is 20%-99%.
  • the image light Ls is reflected as much as possible, so as to improve the brightness of the virtual image V formed by reflection. ; Moreover, the external ambient light is transmitted as much as possible, so that the user can clearly see the external environment, achieving the effect of "high reflection and high transparency", and also reducing the power consumption requirements for the image source; and, using light guide
  • the device 91 provides light for the image source 90, reduces the thickness of the image source 90, and improves the practicability and user experience of the display system.
  • the image light Ls includes at least three spectral bands in the visible light band, and the half-width of the spectral bands is not greater than 60 nm.
  • the half width of the band is not greater than 50 nm, 30 nm, 15 nm or 5 nm.
  • the three spectral bands respectively correspond to the blue light band, the green light band and the red light band in the visible light band.
  • the peak positions of at least three bands are respectively located in the ranges of 410nm-480nm, 500nm-570nm and 590nm-690nm.
  • the three spectral bands included in the image light correspond to the blue light band, the green light band and the red light band in the visible light band respectively, and the half-maximum width of the band is 20nm; the reflectivity of the selective transflective element 22 to the image light Ls Taking 70% as an example and the transmittance of light La as 70%, the display system provided by any embodiment of the present application will be explained.
  • the image source 90 further includes a light source device 93 configured to emit light including at least one spectral band in the visible light band, and in the visible light band The light including at least one spectral band propagates to the light guiding device 91 .
  • the light of at least one spectral band includes light of one spectral band, for example, the light emitted by the light source device 93 has a wavelength band of 550nm-600nm; or, for example, the light of at least one spectral band includes light of multiple spectral bands, for example
  • the light emitted by the light source device 93 includes three spectral bands (for example, three spectral bands corresponding to red light, green light and blue light).
  • rays from one band can form monochromatic image rays
  • rays from multiple bands can form polychromatic image rays.
  • the light emitted by the light source device 93 may have other light rays in the visible light band besides the above-mentioned light having at least one band in the visible light range, for example, light rays close to or coincident with the wavelength band of the light La; for example, The light emitted by the light source device 93 may have distributed wavelength bands in the range of visible light.
  • the light source device 93 may include at least one white LED that uses blue light to excite phosphor powder, and its emission spectrum includes almost the entire visible light band. After the light passes through the image generating device 92, it will be converted into image light Ls. The color chip will be transformed into image light Ls having at least one spectral band.
  • the light source device 93 includes a non-sequential light source, and it can be considered that the light emitted by the light source device 93 at different times is the same or has little difference.
  • the light emitted by the light source device 93 after being turned on may always include the above-mentioned light having at least one band in the visible light range.
  • the light source device 93 includes a sequential light source, and the light source device 93 alternately emits light of different colors in a sequential manner, such as light corresponding to different spectral bands in the above-mentioned at least one spectral band; for example, the light source device 93 alternately emits red light in a sequential manner , green light, and blue light, it can be considered that the light emitted by the light source device 93 is different at different times; Form blue, green and red monochrome images, because of its fast refresh rate (for example, 24Hz exceeding the resolution limit of the human eye), through the persistence of vision of the human eye, a color image is formed in the senses.
  • the fast refresh rate for example, 24Hz exceeding the resolution limit of the human eye
  • the liquid crystal display panel does not need to be provided with a color filter, which can reduce or avoid the waste caused by light being absorbed by the color filter, and can greatly improve the utilization rate of light.
  • the light source device 93 can be arranged on the side of the light guide device 91, and the light is introduced into the light guide device 91 in the way of side incident light, the thickness of the image source 90 is smaller, and the volume is lighter; or, the light source device 93 can also be arranged on The bottom of the light guiding device 91 directs the light into the light guiding device 91 in a direct-down manner, and the image source 90 takes up less space perpendicular to the light emitting direction.
  • the light source device 93 is disposed on the side of the light guide device 91 as an example for explanation.
  • Fig. 35a and Fig. 35b respectively show partial cross-sectional structural schematic diagrams of the display system in two different implementation manners.
  • the light source device 93 can be arranged at least on the side of the light guide device 91 in the x direction in the figure, for example, it can be the side away from the user (for example, the user viewing angle is The light guide device 91 is close to the side of the windshield), as shown in Figure 35a; or, the light source device 93 can be arranged at least on the side of the light guide device 91 in the y direction in the figure, such as a side close to the co-pilot position side (for example, when the user is the driver, the side where the light guide device 91 is close to or close to the co-driver's position from the viewing angle), as shown in Figure 35b; for example, the light source device 93 can be set in different positions according to different usage environments , which is not limited in this embodiment of the present application.
  • the light source device 93 includes at least one light source 931, for example, the light source 931 can be a point light source, a line light source or a surface light source.
  • the light source 931 can be a point light source, a line light source or a surface light source.
  • FIG. 36a and FIG. 36b show a schematic diagram of a light source device including a light source 931 .
  • the light source 931 can be a line light source such as a light strip or a light bar. Faceted backlight.
  • the light source 931 can be a single point light source (such as an LED light source or a laser light source), and it is necessary to expand the light source 931 through a beam expander (for example, along the x direction in Figure 36b), and the beam expander can be It is at least one of grating, transflective film and scattering dots.
  • Figure 36b takes a light source 931 installed in the lower left corner as an example. The light emitted by the light source 931 can be extended along the x direction to form a line light source, and then the line light source can be coupled out by the optical coupling part 911 to become a surface light source.
  • Fig. 36a, Fig. 36b and Fig. 36c can be regarded as top views of partial cross-sectional structures of different implementations of the image source 90 in the embodiment shown in Fig. 35b.
  • the above-mentioned at least one light source 931 can be an electroluminescent element, and the electroluminescent element generates light through electric field excitation, including but not limited to including but not limited to light emitting diode (Light Emitting Diode, LED), organic light emitting diode (Organic Light-Emitting Diode, OLED), Mini LED (Mini LED), Micro LED (Micro LED), Cold Cathode Fluorescent Lamp (Cold Cathode Fluorescent Lamp, CCFL), LED Cold Light Source (Cold LED Light, CLL), Electroluminescence (Electro Luminescent, EL), electron emission (Field Emission Display, FED) or quantum dot light source (Quantum Dot, QD), etc.
  • light emitting diode Light Emitting Diode, LED
  • organic light emitting diode Organic Light-Emitting Diode, OLED
  • Mini LED Mini LED
  • Micro LED Micro LED
  • Cold Cathode Fluorescent Lamp Cold Catho
  • At least one light source 931 includes a first color light source, a second color light source and a third color light source, and the first color light source, the second color light source and the third color light source are configured to emit light according to a preset timing or to emit light simultaneously .
  • the first color, the second color and the third color can correspond to any color light in the visible light band; for example, the first color, the second color and the third color can be RGB three-color light; for example, the above-mentioned at least one light source 931 can be A monochromatic light source that emits light of different wavelengths, so that the light source device 93 as a whole emits light with at least one band in the visible light range;
  • the three bands of 540nm ⁇ 10nm (green light) and 450nm ⁇ 10nm (blue light) for example, can be monochromatic light-emitting diode (LED) light sources, including but not limited to red LED, green LED, blue LED, green LED,
  • LED monochromatic light-emitting diode
  • gallium arsenide diodes emit red spectral bands
  • gallium phosphide diodes emit green spectral bands
  • silicon carbide diodes emit yellow spectral bands
  • gallium nitride diodes emit blue
  • the above-mentioned first color light source, second color light source and third color light source are configured to emit light according to a preset timing or configured to emit light at the same time, and the process is similar to the above embodiment; for example, red light, green light and blue light are emitted
  • the three light sources emit light at the same time; for example, the three light sources that emit red light, green light, and blue light emit light sequentially in sequence, which can be used with LCD panels without color filters, and the light utilization rate is higher.
  • At least one light source 931 includes one light source 931 extending along the first direction or includes a plurality of light sources 931 arranged in sequence along the first direction, and the first direction is relative to the lower edge of the imaging device 20.
  • the direction of extension is oblique or vertical.
  • Fig. 37a and Fig. 37b are illustrated by taking at least one light source including a plurality of light sources 931 arranged in sequence along the first direction as an example.
  • Fig. 37a and Fig. 37b can be regarded as different implementations of the image source 90 in the embodiment shown in Fig. 35b
  • the first direction may be the x direction shown in the figure; for example, the first direction may be an oblique direction having an included angle with the x direction in the figure.
  • the extension direction of the lower edge of the imaging device 20 is generally the y direction, for example, it may be the extension direction of the lower edge of the windshield of the vehicle (for example, along the main driver-passenger driver direction); for example, the first direction may be a direction perpendicular to or inclined to the extending direction of the lower edge of the windshield of the vehicle.
  • the image source 90 when the display system is applied to a vehicle, the image source 90 can be arranged at the console of the vehicle, and the space of the console is generally narrow in the x direction (such as the direction of travel), and the light source device 93 can be arranged on the light guide device 91 at the One or both sides in the y direction can reduce the space occupied by the image source 90 .
  • At least one light source 931 includes one light source 931 extending along the second direction or includes a plurality of light sources 931 arranged in sequence along the second direction, and the second direction and the first direction are all located on the same plane And not parallel.
  • Fig. 38a and Fig. 38b are illustrated by taking at least one light source including a plurality of light sources 931 arranged in sequence along the second direction as an example.
  • Fig. 38a and Fig. 38b can be considered as different implementations of the image source 90 in the embodiment shown in Fig. 35a The top view of the partial cross-sectional structure of the way.
  • the first direction and the second direction may be located at the plane where the light guiding device 91 or the image generating device 92 is located, such as the direction in which the long side and the short side of the rectangular light guiding device 91 or the image generating device 92 extend; for example,
  • the first direction is not parallel to the second direction; for example, the first direction and the second direction have an intersection.
  • the first direction is perpendicular to the second direction.
  • the second direction may be parallel or inclined to the extension direction of the bottom edge of the imaging device 20 but not parallel to the first direction, for example, the second direction is parallel to or inclined to the windshield of the vehicle
  • the lower edge of the window is perpendicular to the first direction.
  • the image source 90 can be arranged at the console of the vehicle.
  • the image source 90 is a rectangle, and the size in the y direction (for example, along the extension direction of the driver-co-driver) is relatively large.
  • more light sources 931 can be arranged on one side or both sides of the light guiding device 91, which can improve the brightness and display effect of the display system.
  • At least one light source 931 does not overlap with the light guiding device 91 .
  • the light output direction of the light guide device 91 may be a direction perpendicular to the plane where xy is located in the figure; in this direction, at least one The light source 931 does not overlap with the light guide device 91, and at least one light source 931 is arranged on the side of the light guide device 91, such as at least one side (such as one side, two sides or four sides) of the light guide device 91 as the light guide device 91 provides light, which is beneficial to reduce the thickness of the image source 90 (for example, the thickness along the light emitting direction of the light guide device 91), realizes the light and thin design of the image source 90, and improves the user experience of the display system.
  • the light outcoupling part 911 includes a plurality of transflective elements 9111, and the light passes through one of reflection and transmission of the transflective elements 9111 in the light guide device 91. The one propagates through the transreflective element 9111 and the other one of reflection and transmission emerges. Along the propagation direction of the light, the reflectivity of the plurality of transflective elements 9111 gradually increases; or, the light outcoupling part 911 includes at least one grating, The grating is configured to couple out of the light guide 91 a portion of the light rays propagating to the grating.
  • the light guiding device 91 can make the light incident on the light guiding device 91 mainly transmit along a certain direction as a whole, which can propagate along a total reflection path, as shown in FIG. 39 a ; or, it can also propagate along a straight line.
  • Figure 39b for example, the direction from left to right in Figure 39a and Figure 39b can be considered as the main direction of light propagation. is the "direction of light propagation".
  • a plurality of transflective elements 9111 are arranged along the light propagation direction, and each transflective element 9111 can emit at least part of the light incident on it through reflection, and the transmitted light continues to propagate; or , the transflective element 9111 can also be arranged on the light exit side of the light guide device 91 (for example, at the light exit surface), for example, the transflective element 9111 can include scattering dots, and the scattering dots can transmit at least part of the incident light to it through transmission, reflection light continues to propagate.
  • the transflective element 9111 is arranged inside the light guide device 91 , and the light propagates in the form of transmission and exits in the form of reflection as an example for explanation.
  • two adjacent transflective elements 9111 may at least partially overlap.
  • the projections of two adjacent transflective elements 9111 overlap at least partially; or, along the outcoupling direction of the light (such as the light direction along the z direction in Fig. 39a and Fig. 39b), the adjacent two transflective elements 9111 can be connected at least.
  • projections of two adjacent transflective elements 9111 are at least partially connected.
  • the reflectivity of the multiple transflective elements 9111 arranged in sequence along the light propagation direction tends to increase gradually, and/or the transmittance tends to decrease gradually.
  • the reflectivity of each transflective element 9111 is different from each other, and the reflectivity of the next transflective element 9111 along the light propagation direction is larger.
  • a plurality of transflective elements 9111 can be grouped, and each group contains at least one transflective element 9111.
  • the reflectivity of the transflective elements 9111 in each group can be the same, and the reflectivity between each group can be different, and gradually increase along the direction of light propagation.
  • the reflectivity of the last transreflective element 9111 along the light propagation direction is greater than the reflectivity of each other transreflective element 9111, so that the light can be reflected out of the light guide device 91 as much as possible; for example, the last transreflective element
  • the reflectivity can be 80%, 85%, 90%, 95% or 100%.
  • the reflectivity of the transflective element 9111 By setting the reflectivity of the transflective element 9111 to gradually increase, it can be increased one by one, or it can be gradually increased regionally (for example, the reflectivity of the transflective element in each sub-region can be the same, gradually decrease, gradually increase, or Random distribution) can make the luminous intensity of light coupled out by different transflective elements 9111 basically the same or close, for example, the difference in luminous intensity of light coupled out by any two transflective elements is within 15%.
  • the transflective element 9111 may be a transflective element with almost no selectivity to light, for example, there is almost no difference in the optical characteristics (such as wavelength characteristics and/or polarization characteristics) of the light transmitted and reflected by it; or, the transflective element 9111 may also Can be wavelength selective and/or polarization selective, where the wavelength and/or polarization characteristics of reflected and transmitted light differ.
  • the transflective element 9111 may have a material and structure similar to that of the above-mentioned selective transflective element 22 , and achieve different optical characteristics through layers with different refractive indices, different thicknesses, and different stacking methods.
  • a plurality of transflective elements 9111 are arranged obliquely to the plane where the light guiding device 91 is located. For example, by adjusting the inclination angle of the transflective element 9111 and the plane where the light guide device 91 is located, the angle and orientation of the outcoupled light can be adjusted. For example, the transflective elements 9111 are parallel or nearly parallel to each other.
  • the light outcoupling part 911 may include at least one grating configured to couple out a part of the light propagating to the grating out of the light guiding device 91 .
  • the grating couples light out of the light guide 91 at least by diffraction.
  • the grating can be a diffraction grating corresponding to the wavelength of light in at least one spectral band; for example, the grating includes at least one of a red light diffraction grating, a green light diffraction grating and a blue light diffraction grating; for example, the grating can be a transmission grating or Reflective grating.
  • the light guiding device 91 may further include a light guiding medium 912 , and part or all of the transflective element 9111 is disposed in the light guiding medium 912 .
  • the refractive index of the light-guiding medium 912 may be greater than 1, so that the light incident on the inner surface of the light-guiding medium 912 and satisfying the total reflection condition (for example, part of the light incident on the light-guiding medium 912 with a larger divergence angle) can Full emission propagation occurs, improving the light guiding effect, as shown in Figure 39a.
  • the light guiding medium 912 may also be air, and the light may propagate in the light guiding medium 912 in a non-total reflection form (for example, mainly along a straight path), as shown in FIG. 39b.
  • the light outcoupling part 911 including a plurality of transflective elements 9111 or gratings the light propagating in the light guiding device 91 can be coupled out of the light guiding device to provide light for the image generating device 92 .
  • the image light includes at least one band of light having a first polarization characteristic; the selective transflective element 22 is also configured to, for at least part of the image light having a first polarization
  • the reflectance of part of the band or each band of light in the light of a polarization characteristic is greater than the reflectance of light in the visible light band other than the image light and at least one band of light of the second polarization characteristic, and/or, for at least part of the
  • the transmittance of part of the bands or each band of light in the light having the first polarization characteristic in the image light is less than the transmittance of light in the visible light band other than the image light and at least one band of the second polarization characteristic; wherein, The first polarization characteristic is different from the second polarization characteristic.
  • At least part of the image light rays having the first polarization characteristic part of the band or each band light is marked as SLs, which is reflected by the selective transflective element 22, such as reflected to a predetermined Area A: the light that coincides with or is close to the light SLs in the external environment light Le is reflected by the selective transflective element 22, the light La is transmitted, and the light PLs of at least one band of the second polarization characteristic is also transmitted.
  • the external ambient light is generally unpolarized light
  • the unpolarized light can be considered to include two orthogonally polarized light rays, or it can be considered that the unpolarized light can be decomposed into two orthogonally polarized light rays, for example, the unpolarized light can be Decompose into left-handed circularly polarized light and right-handed circularly polarized light, or decompose into left-handed elliptical polarized light and right-handed elliptical polarized light, or decompose into two linearly polarized lights whose polarization directions are perpendicular to each other.
  • the first polarization characteristic is orthogonal to the second polarization characteristic.
  • the first polarization characteristic and the second polarization characteristic may be the above-mentioned elliptical polarization characteristic, circular polarization characteristic or linear polarization characteristic.
  • the first polarization characteristic and the second polarization characteristic are linear polarization characteristics as an example for explanation.
  • the first polarization characteristic may be a vertical linear polarization characteristic
  • the second polarization characteristic may be a horizontal linear polarization characteristic.
  • the imaging device 20 is a windshield of a vehicle
  • the angle between the imaging device 20 and the image source 90 is often close to the Brewster angle.
  • Polarization characteristics) light has a high reflectivity, which can improve light utilization and increase the brightness of the virtual image V.
  • the first polarization characteristic may be a vertical linear polarization characteristic
  • the second polarization characteristic may be a horizontal linear polarization characteristic.
  • the first polarization characteristic may be a horizontal linear polarization characteristic
  • the second polarization characteristic may be a vertical linear polarization characteristic.
  • the first polarization characteristic may be S polarization characteristic
  • the second polarization characteristic may be P polarization characteristic
  • the first polarization characteristic may be P polarization characteristic
  • the second polarization characteristic may be S polarization characteristic
  • the reflectivity of the selective transflective element 22 to at least part of the image light can be 20% to 99%, such as 60%, 70%, 80% or 90%, or even greater than 95%;
  • the transmittance to light in the visible light band other than image light and light in at least one spectral band of the second polarization characteristic may be 20% to 99%; for example, it may be 60%, 70%, 80% or 90%, or even greater than 95%.
  • the reflectivity of the selective transflective element 22 to the light SLs is 60%, and the reflectivity to the light La and the light PLs is 40%; and/or, the transmittance of the selective transflective element 22 to the light SLs is 30%. %, and the transmittance to light La and light PLs is 70%.
  • the light of the external light Le passing through the imaging device 20 is increased, for example, the light PLs is increased; for many traffic signal devices, such as traffic lights, the wavelength of the light emitted by them is often different from that of The above spectral bands are close to or at least partly overlapped, and the user, such as the driver, can also receive the light PLs through the imaging device 20, which will not affect the observation of the external environment, especially traffic information, and improve driving safety; in addition, the image generation device 92 often The band light with polarization characteristics is also emitted, and the selective transflective element 22 is set so that the reflectivity of at least part of the bands or each band of light in the light having the first polarization characteristic in at least part of the image light is greater than that of the image light The reflectance of light in other than the visible light band and at least one band of light with the second polarization characteristic, and/or, for at least part of the image light with the first polarization characteristic in part of
  • the light coupled out by the light guiding device 91 includes light having at least one spectral band with the second polarization characteristic; Image rays of light of at least one spectral band of a polarization characteristic.
  • the light guiding device 91 couples light PLs having at least one spectral band of the second polarization characteristic, and the light PLs is converted into light SLs after passing through an image generating device 92 (such as a liquid crystal display panel); for example, the light SLs are orthogonal to the polarization properties of light PLs.
  • the light SLs is perpendicular to the polarization direction of the light PLs.
  • the light coupled out by the light guide device 91 may be unpolarized light, which may be considered to include at least one band of light PLs with the second polarization characteristic, and the part of the above-mentioned unpolarized light with the second polarization characteristic passes through the image generating device 92 (such as a liquid crystal display panel) and then converted into light SLs, and other polarized light is absorbed or reflected by the image generating device 92 .
  • the image generating device 92 such as a liquid crystal display panel
  • the transflective element 9111 is configured such that its reflectivity for at least one spectral band of light with the second polarization characteristic is greater than its reflectivity for at least one spectral band of light with the first polarization characteristic , and/or, the transflective element 9111 is configured such that the transmittance of at least one spectral band of light having the second polarization characteristic is smaller than its transmittance of at least one spectral band of light having the first polarization characteristic.
  • the transflective element 9111 is also set to match the characteristics of the light having at least one spectral band of the second polarization characteristic, which can further improve light utilization efficiency.
  • the reflectivity of the transreflective element 9111 to light in at least one spectral band with the second polarization characteristic can be 20% to 99%, for example, it can be 60%, 70%, 80% or 90%, or even greater than 95%.
  • the transmittance of the transflective element 9111 to at least one band of light with the first polarization characteristic may be 20% to 99%; for example, it may be 60%, 70%, 80% or 90%, or even greater than 95%.
  • the reflectivity of the transflective element 9111 to the light PLs is 60%, and the reflectivity to the light SLs is 40%;
  • the transmittance is 70%.
  • the image source 90 further includes a light conversion unit 94 that converts the light before it enters the image generating device 92.
  • the light conversion unit 94 includes a light splitting element 941 and a conversion element 942; the light splitting element 941 is configured to divide the incident light into a first part of light and a second part of light having different optical characteristics from each other; The properties are transformed into the optical properties of the other.
  • the first part of the light L1 and the second part of the light L2 split by the light splitting element 941 can be adjusted to have the same characteristics before entering the image generating device 92, and almost all the lights with the same characteristics can be matched with it.
  • the utilization of the image generation device 92 can greatly improve the utilization rate of light.
  • the light emitted by the light source 931 is generally natural light (for example, unpolarized light), which can be considered to include different polarization characteristics and/or wavelength characteristics; A part of light L1 and a second part of light L2.
  • the conversion element 942 converts the optical characteristics of one of the first part of the light L1 and the second part of the light L2 into the optical characteristics of the other, as shown in FIG.
  • the characteristics of the light L1 will be described as an example.
  • the light splitting element 941 can split light rays with different characteristics, so as to separate the first part of light L1 and the second part of light L2 with different optical characteristics.
  • the characteristic may be a polarization characteristic, a wavelength characteristic, or the like.
  • the light splitting element 941 may be a polarization light splitting element or a wavelength light splitting element.
  • the light splitting element 941 can realize the function of transmission and reflection (hereinafter referred to as transflection), through the difference of its reflectivity and/or transmittance to light with different characteristics, at least the first part of light L1 and the second Partial light L2 splitting; for example, as shown in Figure 42, the reflectivity of the light splitting element 941 to the first part of light L1 is smaller than the reflectivity of the second part of light L2, and/or the transmittance of the light splitting element 941 to the first part of light L1 is greater than The transmittance of the second part of the light L2 is used to split the light according to the difference in the reflectance/transmittance of different light rays.
  • transflection transmission and reflection
  • the light splitting element 941 can divide light into light with different polarization characteristics, such as a first part of light L1 with a first polarization characteristic and a second part of light L2 with a second polarization characteristic, the first part
  • the light L1 and the second part of the light L2 may be linearly polarized light, circularly polarized light, or elliptically polarized light with different polarization characteristics.
  • the polarization states of the first partial light L1 and the second partial light L2 are orthogonal.
  • both the first part of light L1 and the second part of light L2 are linearly polarized lights, and their polarization directions are vertical.
  • the light splitting element 941 can divide the light into the first part of light L1 and the second part of light L2 of different wavelength bands, and the spectra of the first part of light L1 and the second part of light L2 are not completely the same.
  • the light splitting element 941 can divide the light into a first part of light L1 having a red wavelength band and a second part of light L2 having a non-red wavelength band (eg, blue and green light bands).
  • the converting element 942 can convert the optical characteristic of one of the first partial light L1 and the second partial light L2 into the optical characteristic of the other.
  • the conversion element 942 may be a polarization conversion element, such as a wave plate; or, may also be a wavelength conversion element, such as a filter, phosphor, and the like.
  • the converting element 942 may convert at least part (such as 50%, 60%, 70%, 80% or 90%) of the characteristics of the light, or convert almost all the characteristics of the light, which is not limited in the embodiment of the present application. .
  • the light conversion part 94 further includes: a reflective element 943, and the reflective element 943 is configured to convert the first part of light L1 and the second part One of the lights L2 is reflected to the light guide 91 .
  • the light reflected by the reflective element 943 may directly exit the light guide device 91 , or the light reflected by the reflective element 943 may pass through other elements before exiting the light guide device 91 , which is not limited in this embodiment of the present application.
  • the first part of the light L1 and the second part of the light L2 split by the light splitting element 941 generally go in different directions.
  • At least one embodiment of the present application can change the first part of the light L1 or the second part of the light L2 by setting the reflective element 943. direction, so that the first part of the light L1 or the second part of the light L2 can be guided to the light guide device 91, so that as much light as possible enters the light guide device 91, thereby improving light utilization efficiency.
  • the light splitting element 941 includes a polarization splitting element configured to divide the incident light into a first polarized light and a second polarized light with different polarization characteristics from each other;
  • the conversion element 942 includes a polarization conversion element , the polarization conversion element is configured to convert the polarization characteristic of one of the first polarized light and the second polarized light to the polarization characteristic of the other.
  • the polarization beam-splitting element may be a three-dimensional polarization beam-splitting prism, or a polarization beam-splitting film such as RPM (Reflecting polarizer mirror) or BEF (Brightness Enhancement Film).
  • the polarization conversion element may be a 1/2 wave plate or a 1/4 wave plate.
  • the first part of light L1 or the second part of light L2 split by the light splitting element 941 can be converted by the polarization conversion element, so that the light emitted by the light conversion part 94 has the same polarization characteristics, so that the light emitted by the light source device 93 can be almost Both are converted into light with the same polarization characteristic, which can increase the brightness of other components that need to work based on the light of this polarization characteristic, for example, the brightness of a liquid crystal display can be increased.
  • the coordination relationship between the polarization conversion element and the polarization beam splitting element and the light conversion process will be explained below.
  • the first part of the light L1 and the second part of the light L2 split by the polarization beam splitting element are linearly polarized light with a vertical polarization direction
  • the polarization conversion element is a 1/2 wave plate or 1/4 as an example for explanation, but not It should be construed as a limitation on the implementation of the application.
  • the conversion element 942 is disposed between the light splitting element 941 and the reflection element 943, and the conversion element 942 is configured to perform polarization conversion on the second part of light L2 reflected by the light splitting element 941, and the converted light has the same
  • the first part of light L1 has the same characteristics, so the converted light is marked with L1 in FIG. 43 a , so that the unpolarized light emitted by the light source 931 is converted into light with the same polarization characteristics.
  • the conversion element 942 may be attached to the surface of the light splitting element 941 near the reflective element 943; for example, the conversion element 942 may be a half-wave plate.
  • the conversion element 942 is disposed on the side of the reflective element 943 close to the light splitting element 941, and the conversion element 942 is configured to perform polarization conversion on the second part of light L2 reflected by the reflective element 943, for example, the second part of light L2 is the second part of the light L2 reflected by the light splitting element 941; the converted light has the same characteristics as the first part of the light L1, so the converted light is marked with L1 in FIG. for light rays with the same polarization properties.
  • the conversion element 942 is disposed on the side of the light splitting element 941 away from the reflective element 943, and the conversion element 942 is configured to perform polarization conversion on the first part of light L1 transmitted by the light splitting element 941, and the converted light has the same
  • the second part of the light L2 has the same characteristics, so the converted light is marked as L2 in FIG. 43c, so that the unpolarized light emitted by the light source 931 is converted into light with the same polarization characteristics.
  • the conversion element 942 may be attached to the surface of the light splitting element 941 away from the reflective element 943; for example, the conversion element 942 may be a half-wave plate.
  • the conversion element 942 is disposed between the light splitting element 941 and the reflection element 943, and is configured to convert the light passing through it multiple times.
  • the light can be converted to have the same characteristics as the first part of the light L1, so the converted light is labeled L2 in FIG. 43d, so as to convert the unpolarized light emitted by the light source 931 into light with the same polarization characteristics.
  • the conversion element 942 may be attached to the surface of the reflective element 943 near the light splitting element 941; for example, the conversion element 942 may be a quarter-wave plate.
  • the "conversion to have the same characteristics as the first part of the light L1 or the second part of the light L2" in the above embodiment does not limit the complete conversion of the light, and some light may not be converted or not completely converted, as shown in Figure 43a
  • the light converted by the conversion element 942 not only includes the light having the same characteristics as the first part of the light L1, but may also include part of the unconverted second part of the light L2.
  • the image generating device 92 may include a liquid crystal display panel, which can convert the light having the first polarization characteristic or the second polarization characteristic into the image light Ls, thereby realizing imaging.
  • the light conversion unit 94 can convert almost all the light emitted by the light source device 93 into light with specific polarization characteristics that can be used by the image generating device 92 , thereby improving light utilization efficiency and imaging brightness.
  • the image source 90 further includes a homogenizing part 95 that homogenizes the light before it enters the image generating device 92;
  • the light-emitting direction overlaps with the light-guiding device 91, as shown in Figure 45; or, it is arranged side by side with the light-guiding device 91 in a direction perpendicular to the light-emitting direction of the light-guiding device 91, as shown in Figures 46a and 13b.
  • the uniform light portion 95 overlaps the light guide device 91;
  • the projection of the surface where the light device 91 is located overlaps with the light guide device; for example, it may be completely overlapped or partially overlapped.
  • the image source 90 may also include a reflector 96, which changes the direction of the light after homogenization treatment by the homogenization part 95 and directs it to the light guide device 91.
  • the reflector 96 may be a reflective film, a reflective surface or a prism. .
  • the light uniform part 95 and the light guiding device 91 are overlapped in the light emitting direction of the light guiding device 91, which can reduce the size of the image source 90 in the plane direction (such as the xy plane in FIG. 45 ), thereby improving the display System availability.
  • the uniform light portion 95 and The light guiding device 91 is arranged side by side;
  • the light uniform part 95 and the light guiding device 91 can be arranged on the same plane or close to the same plane, as shown in Figure 46a; Arranged side by side, as shown in Figure 46b.
  • Arranging the homogenizing part 95 and the light guiding device 91 side by side in a direction perpendicular to the light emitting direction of the light guiding device 91 can reduce the image source 90 in the light emitting direction of the light guiding device 91 (such as in Fig. 46a and Fig. 46b).
  • the thickness in the z direction improves the convenience of using the display system.
  • the homogenizing portion 95 includes at least a first reflecting surface 951 and a second reflecting surface 952 opposite to each other. Homogenize the light.
  • FIG. 44 shows a schematic diagram of homogenization of part of the light emitted by the light source 931 after being reflected by the first reflective surface 951 and the second reflective surface 952. Each reflection can be regarded as adding at least one virtual image of the light source 931.
  • the virtual image formed by the reflection of the light source 931 can also be regarded as a light source, which is equivalent to expanding the number of light sources 931 through reflection, and the light rays emitted by a plurality of light sources are interlaced and overlapped with each other, which increases the uniformity of the light emitted by the uniform light part 95 ( For example, the uniformity of light and shade), which can improve the display effect.
  • the light transmitted in the dodging portion 95 can propagate in the form of total reflection
  • the dodging portion 95 includes a solid transparent material 953, and the first reflective surface 951 and the second reflective surface 952 can be the inner surfaces of the solid transparent material 953; or
  • the homogenizing portion 95 may include a cavity, and there may be air between the first reflecting surface 951 and the second reflecting surface 952 , and the light propagating in the homogenizing portion 95 propagates in the form of specular reflection.
  • part of the light emitted by the light source 931 may be emitted directly without being reflected by the first reflective surface 951 and the second reflective surface 952 , such as straight light rays as shown in FIG. 44 .
  • the first reflective surface 951 and the second reflective surface 952 can be polished metal surfaces, such as polished copper, silver, aluminum or aluminum alloy elements; or, the first reflective surface 951 and the second reflective surface 952 can also be reflective Film, such as aluminum, silver or copper, or it can be a laminated polymer film such as ESR film (Enhanced Specular Reflector).
  • the light processed by the homogenizing unit 95 can be processed by the light conversion unit 94 and then transmitted to the light guide device 91; for example, the light emitted by the light source 931 is homogenized by the homogenizing unit 95.
  • the light emitted by the uniform light part 95 has better uniformity and direction consistency, and then the light is converted into light with the same polarization state by the light conversion part 94, and the light with the same polarization state is then transmitted to the light guide device 91, after being coupled out, it can be used by the image generating device 92 matching its characteristics, which can greatly improve the utilization rate of light.
  • the light processed by the light conversion unit 94 can be processed by the uniform light unit 95 and then transmitted to the light guide device 91; for example, the light emitted by the light source 931 is converted by the light conversion unit 94
  • the light with the same polarization state is homogenized by the homogenization part 95, and the light emitted by the homogenization part 95 has better uniformity and direction consistency; the light is then transmitted to the light guide
  • the device 91 is coupled out, it can be used by the image generating device 92 matching its characteristics, which can greatly improve the utilization rate of light.
  • the light emitted by the light source 931 may directly enter the homogenizing portion 95 , or the light emitted by the light source 931 may enter the homogenizing portion 95 after passing through other components, which is not limited in this embodiment.
  • the light incident on the homogenizing portion 95 has a predetermined divergence angle
  • the distance between the first reflective surface 951 and the second reflective surface 952 is The included angle of at least one of the light-incident side, the light-outside, and the side between the light-incident side and the light-outside of the uniform light portion 95 is not greater than a predetermined divergence angle.
  • the included angle between the first reflective surface 951 and the second reflective surface 952 is not greater than a preset divergence angle, so that the divergent light can be reflected in the light guide medium 912 to homogenize the light through reflection.
  • the distance between the first reflective surface 951 and the second reflective surface 952 on the light-incident side of the uniform light portion 95 is smaller than the distance between the light-exit side of the light uniform portion 95, such as the gap between the first reflective surface 951 and the second reflective surface 952.
  • the angle can be the opening angle toward the light-emitting direction of the light-homogenizing portion 95, as shown in FIG.
  • the distance on the light exit side for example, the angle between the first reflective surface and the second reflective surface may be the opening angle toward the light incident direction of the light homogenizing portion 95, as shown in FIG. 48b.
  • none of the opening angles mentioned above is greater than the preset divergence angle.
  • the side between the first reflective surface 951 and the second reflective surface 952, for example, in the direction perpendicular to the paper plane of Figure 48a and Figure 48b, includes the first reflective surface 951 and the second reflective surface 952; for example , the distance between the first reflective surface 951 and the second reflective surface 952 is smaller on the side away from the paper than along the side of the paper; for example, the distance between the first reflective surface 951 and the second reflective surface 952, On the side along the paper is smaller than the side away from the paper.
  • the divergence angle ⁇ is currently a relatively common standard for measuring the light beam angle.
  • ⁇ /2 is the angle between the light-emitting direction and the optical axis when the luminous intensity value is half of the axial intensity value; or, ⁇ /2 is also It may be the angle between the light emitting direction and the optical axis when the luminous intensity value is 60% or 80% of the radial intensity value.
  • the divergence angle of the light incident into the light guiding device 91 can be 40°, 20° or 10°, and correspondingly, the included angle between the first reflective surface 951 and the second reflective surface 952 can be smaller than 40°, 20° or 10°. 10°, for example may be 30°, 10° or 5°.
  • the first reflective surface 951 and the second reflective surface 952 may be parallel, and the included angle may be considered as 0°.
  • the light source device 93 can also include a reflective light guide element, such as a lamp cup; the lamp cup can adjust the light emitted by the light source 931 to a predetermined divergence angle (such as the above-mentioned divergence angle greater than the included angle of the reflecting surface), and the light with a predetermined divergence angle Enter the homogenization part 95 and perform homogenization treatment, as shown in Fig. 48a and Fig. 48b.
  • the lamp cup may be a solid lamp cup or a hollow lamp cup, which converts light with a certain divergence angle emitted by the light source 931 into light with a predetermined divergence angle.
  • the divergence angle of the light emitted by the light source is generally relatively large, for example, the divergence angle is 45°, and the lamp cup can control the divergence angle of the light to a smaller 40°, 20° or 10°.
  • the light source device 93 may include a diffusing element, and the light source 931 may emit collimated light (such as a laser), for example, the divergence angle of the light may be smaller than the predetermined divergence angle, and the light may be diffused by the diffusing element to form a preset divergence angle.
  • collimated light such as a laser
  • the homogenizing portion 95 can also include other opposite reflective surfaces, such as at least one pair of reflective surfaces parallel to the direction of the paper;
  • the reflective surface between the light-incident side and the light-exit side of the uniform light part 95, the reflective surface can be, for example, a quadrangular prism shape, a hexagonal prism shape or an octagonal prism shape, including at least one set of opposite reflective surfaces, and can also include two sets , three groups, four groups or more opposite reflective surfaces.
  • a light concentrating device 97 is further included;
  • the light collecting device 97 is located between the light guiding device 91 and the image generating device 92 .
  • the light concentrating device 97 can concentrate and direct almost all the light coupled out by the light guide device 91 , so that the light can reach the eye box area of the user.
  • the condensing device 97 can condense the light to the preset area A, which can further condense the light and improve the utilization rate of the light.
  • it can be a point gathered in the preset area A, such as the focal point of a convex lens, or it can be a smaller area. Setting the light collecting device 97 can uniformly or mostly adjust the direction of the light coupled out of the light guide device 91 To the preset area A to improve the utilization rate of light.
  • the light concentrating device 97 can be a lens, a curved reflector, a refracting mirror or a combination of lenses, such as a Fresnel lens and/or a curved lens, such as a convex lens, a concave lens or a combination of lenses, etc.
  • a convex lens is used as Example to illustrate.
  • the preset area A can be an eyebox area (eyebox).
  • the eyebox area refers to the area where the user's eyes are located and can see the display system image.
  • the eyebox area can be a plane area or a three-dimensional area.
  • the image can be seen within the bounds of the box, such as the complete image.
  • a user may be a driver and/or a passenger.
  • At least one light diffusion device 98 is further included, and the light diffusion device 98 is configured to diffuse at least one of the image light and the outcoupling light of the light guide device 91 to cover the pre- Suppose area A.
  • at least one light diffusing device 98 is located on at least one of the light exit side and the back side of the image generating device 92 .
  • the number of light diffusing devices 98 may be multiple and arranged at intervals to further improve the dispersion effect of light beams.
  • the propagation angle of the diffused beam and the spot size along the propagation direction determine the brightness and visible area of the virtual image V formed by the display system. The smaller the diffusion angle, the higher the brightness of the virtual image V observed by the user, and the visible area is also smaller; and vice versa.
  • FIG. 49 schematically shows that the light diffusing device 98 is located on the back side of the image generating device 92, that is, between the light guiding device 91 and the image generating device 92, and is configured to diffuse the emitted light from the light guiding device 91. .
  • the light diffusing device 98 can also be arranged on the light-emitting side of the image generating device 92, and is configured to diffuse the image light emitted by the image generating device 92, and the light diffusing device 98 can be arranged in close contact with the light-emitting surface of the image generating device 92, so as to Improve imaging effect. For example, diffuse the light and cover at least the eye box area.
  • light diffusing device 98 is configured to diffuse a light beam passing therethrough without changing or barely changing the optical axis of the light beam.
  • optical axis refers to the centerline of the beam, which can also be considered as the main direction of beam propagation.
  • the energy distribution of the spot can be uniform or non-uniform; for example, the size and shape of the spot can be determined by Specific microstructure control designed in the light diffusing device 98 .
  • the above-mentioned light spots of specific shapes may include but not limited to linear, circular, elliptical, square or rectangular.
  • the light diffusing device 98 includes at least one of a diffractive optical element and a diffractive optical element.
  • the scattering optical elements include uniform light sheets, diffusion sheets, etc., which mainly scatter the light beam, and also produce a small amount of diffraction; for example, a large light spot can be formed after the light beam passes through the scattering optical element.
  • Diffractive Optical Elements can control the diffusion effect relatively more accurately, such as beam shapers (Beam Shaper), etc., which mainly play the role of beam expansion through diffraction, and the spot can be small, such as the size of the spot and shape controllable.
  • the light concentrating device 97 can gather the light output by the light guiding device 91 to a certain range (for example, within the preset area A), and the light diffusing device 98 can diffuse the collected light to at least cover the preset area A (for example, covering the eyes). box area), through the cooperation of the light concentrating device 97 and the light diffusing device 98, the visible range is expanded while providing high light efficiency.
  • the display system described in any of the above-mentioned embodiments may be a head-up display system HUD; HUD).
  • At least one embodiment of the present disclosure further provides a vehicle, including the light guide device, light source device, or display system described in any one of the above embodiments.
  • a vehicle including the light guide device, light source device, or display system described in any one of the above embodiments.
  • the front window (eg, windshield) of a vehicle is multiplexed as the imaging device 20 of the display system.
  • the means of transport can be various appropriate means of transport, for example, can include land vehicles such as various types of automobiles, or can be water vehicles such as ships, or can be air vehicles such as airplanes, and its driving position is set a windshield (eg, at least one of a front windshield, side windshields, and a rear windshield) and project an image onto the front windshield.
  • the imaging device 20 may be in the shape of a plane or a curved surface, such as a windshield with a curvature or a transparent imaging plate with a curvature, etc., which will provide a longer imaging distance.
  • FIG. 50 is an exemplary block diagram of a vehicle according to another embodiment of the present disclosure.
  • the vehicle includes a heads-up display provided by at least some embodiments of the present disclosure.
  • the vehicle's front window eg, front windshield
  • the reflective imaging portion 800 of the head-up display is multiplexed as the reflective imaging portion 800 of the head-up display.
  • the means of transport can be various appropriate means of transport, for example, can include various types of land vehicles such as automobiles, or can be water vehicles such as boats, or can be air vehicles such as airplanes, which are provided with windshields. window (for example, at least one of the front windshield, side windshield, and rear windshield) and transmits an image onto the windshield through the onboard display system.
  • land vehicles such as automobiles
  • water vehicles such as boats
  • air vehicles such as airplanes
  • window for example, at least one of the front windshield, side windshield, and rear windshield

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种导光装置、光源装置、显示系统和交通工具。导光装置包括:导光结构(100),包括光耦出部(101),光耦出部(101)被配置为将在导光结构(100)中传播的光线耦出,导光结构(100)包括第一导光元件(110)和第二导光元件(120),进入导光结构(100)的光线经第一导光元件(110)传输至第二导光元件(120),光耦出部(101)的至少部分位于第二导光元件(120);第一导光元件(110)包括被配置为传播光线的介质(111)以及位于介质(111)的至少两侧的第一反射结构(112),第一反射结构(112)被配置为对入射至第一导光元件(110)的光线进行至少一次反射以使光线传播至第二导光元件(120);和/或,第一导光元件(110)被配置为对入射至第一导光元件(110)的光线进行全反射传播以使光线传播至第二导光元件(120)。

Description

导光装置、光源装置、显示系统和交通工具
相关申请的交叉引用
本申请是以CN申请号为202110970591.5、202110968880.1、202121985764.2、202121983323.9,申请日为2021年8月23日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开至少一些实施例涉及一种导光装置、光源装置、显示系统和交通工具。
背景技术
抬头显示(head up display,HUD)技术可以通过反射式的光学设计,将像源发出的图像光(包括例如车速等车辆信息或其它信息)投射到成像板或者交通工具(例如汽车)的挡风玻璃等成像窗上,以使用户(例如驾驶员)在驾驶过程中无需低头看仪表盘就可以直接看到信息,例如,这样既能提高驾驶安全系数,又能带来更好的驾驶体验。
发明内容
本公开实施例提供一种导光装置、光源装置、显示系统和交通工具。
根据本公开第一方面,提供了一种导光装置,包括:导光结构,包括光耦出部,所述光耦出部被配置为将在所述导光结构中传播的光线耦出,其中,所述导光结构包括第一导光元件和第二导光元件,进入所述导光结构的光线经所述第一导光元件传输至所述第二导光元件,所述光耦出部的至少部分位于所述第二导光元件;其中,所述第一导光元件包括被配置为传播所述光线的介质以及位于所述介质的至少两侧的第一反射结构、所述第一反射结构被配置为对入射至所述第一导光元件的光线进行至少一次反射以使所述光线传播至所述第二导光元件;和/或所述第一导光元件被配置为对入射至所述第一导光元件的光线进行全反射传播以使所述光线传播至所述第二导光元件。
附图说明
图1A为根据本公开实施例的一示例提供的导光装置的局部截面结构示意图;
图1B为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图;
图2为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图;
图3A为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图;
图3B为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图;
图4为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图;
图5为根据本公开实施例的另一示例提供的导光装置;
图6为根据本公开另一实施例提供的导光装置的局部截面结构示意图;
图7为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图;
图8A至图8C为根据本公开实施例的三个示例提供的导光装置的局部截面结构示意图;
图9为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图;
图10A为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图;
图10B为导光介质包括空气时的导光装置的截面结构示意图;
图11为根据本公开实施例的另一示例中设置有光耦出部的导光结构中光线进行全反射传播的示意图;
图12为根据本公开实施例的另一示例提供的设置有光耦出部的导光结构的示意图;
图13A至图13H为根据本公开实施例的另一示例提供的透反元件的局部平面结构示意图;
图14A和图14B为根据本公开实施例的另一示例提供的透反元件的局部平面结构示意图;
图15A和图15B为根据本公开实施例的另一示例提供的透反元件的局部平面结构示意图;
图16为根据本公开另一实施例提供的一种导光装置;
图17为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图;
图18为根据本公开提供的光源装置的截面结构示意图;
图19A和图19B为根据本公开实施例提供的显示装置的局部截面结构示意图;
图20为根据本公开实施例的另一示例提供的显示装置的局部截面结构示意图;
图21为根据本公开实施例的另一示例提供的显示装置的局部截面结构示意图;
图22为根据本公开实施例提供的抬头显示器的局部截面结构示意图;
图23A为根据本公开实施例的一示例提供的抬头显示器;
图23B为根据本公开实施例的另一示例提供的抬头显示器;
图24a显示了本公开一些实施例的光源装置的结构示意图一;
图24b显示了本公开一些实施例的光源装置的结构示意图二;
图25a显示了本公开一些实施例的光源装置的结构示意图三;
图25b显示了本公开一些实施例的光源装置的结构示意图四;
图25c显示了本公开一些实施例的光源装置的结构示意图五;
图25d显示了本公开一些实施例的光源装置的结构示意图六;
图26a显示了本公开一些实施例的光源装置的结构示意图七;
图26b显示了本公开一些实施例的光源装置的结构示意图八;
图27a显示了本公开一些实施例的光源装置中分光结构及偏振转换结构的示意图一;
图27b显示了本公开一些实施例的光源装置中分光结构及偏振转换结构的示意图二;
图27c显示了本公开一些实施例的光源装置中分光结构及偏振转换结构的示意图三;
图27d显示了本公开一些实施例的光源装置中分光结构及偏振转换结构的示意图四;
图28a显示了本公开一些实施例的光源装置的结构示意图九;
图28b显示了本公开一些实施例的光源装置的结构示意图十;
图28c显示了本公开一些实施例的光源装置的结构示意图十一;
图29显示了本公开一些实施例的光源装置的结构示意图十二;
图30显示了本公开一些实施例的光源装置的结构示意图十三;
图31显示了本公开一些实施例的显示装置的示意图一;
图32显示了本公开一些实施例的显示装置的示意图三;
图33显示了本公开一些实施例的抬头显示系统的示意图
图34显示了本公开至少一些实施例提供的显示系统的示意图一;
图35a显示了本公开至少一些实施例提供的显示系统的示意图二;
图35b显示了本公开至少一些实施例提供的显示系统的示意图三;
图36a显示了本公开至少一些实施例提供的显示系统的光源装置的示意图一;
图36b显示了本公开至少一些实施例提供的显示系统的光源装置的示意图二;
图36c显示了本公开至少一些实施例提供的显示系统的光源装置的示意图三;
图37a显示了本公开至少一些实施例提供的光源沿第一方向排布的示意图一;
图37b显示了本公开至少一些实施例提供的光源沿第一方向排布的示意图二;
图38a显示了本公开至少一些实施例提供的光源沿第二方向排布的示意图一;
图38b显示了本公开至少一些实施例提供的光源沿第二方向排布的示意图二;
图39a显示了本公开至少一些实施例提供的显示系统的导光装置的示意图一;
图39b显示了本公开至少一些实施例提供的显示系统的导光装置的示意图二;
图40显示了本公开至少一些实施例提供的显示系统的示意图四;
图41显示了本公开至少一些实施例提供的导光装置和图像生成装置的示意图;
图42显示了本公开至少一些实施例提供的显示系统的光转化部的示意图一;
图43a显示了本公开至少一些实施例提供的显示系统的光转化部的示意图二;
图43b显示了本公开至少一些实施例提供的显示系统的光转化部的示意图三;
图43c显示了本公开至少一些实施例提供的显示系统的光转化部的示意图四;
图43d显示了本公开至少一些实施例提供的显示系统的光转化部的示意图五;
图44显示了本公开至少一些实施例提供的匀光部的示意图一;
图45显示了本公开至少一些实施例提供的导光装置和匀光部的示意图一;
图46a显示了本公开至少一些实施例提供的导光装置和匀光部的示意图二;
图46b显示了本公开至少一些实施例提供的导光装置和匀光部的示意图三;
图47a显示了本公开至少一些实施例提供的光转化部和匀光部的示意图一;
图47b显示了本公开至少一些实施例提供的光转化部和匀光部的示意图二;
图48a显示了本公开至少一些实施例提供的匀光部的示意图二;
图48b显示了本公开至少一些实施例提供的匀光部的示意图三;
图49显示了本公开至少一些实施例提供的显示系统的示意图五;
以及
图50为根据本公开另一实施例提供的交通工具的示例性框图。
图中:30:光源装置;31:光源结构;32:光导结构;321光耦出部;3211:第一光耦出部组;3212:第二光耦出部组;322:入光区域;323:反射件;324:光导介质;33:匀光部;331:第一匀光件;332:第二匀光件;333:第一反射膜;334:第二反射膜;34:分光结构;35:反射元件;36:聚光部;37:偏振转换结构;300:显示装置:310:液晶屏:320:光线会聚元件;330:扩散元件;400;抬头显示系统;410:成像窗;420:眼盒区域;430:虚像。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。为了清晰起见,在用于描述本公开的实施例的附图中的元件被放大或缩小,即这些附图并不限制实际的比例。本公开中提及的“至少一个”指的是“一个或多个”,本公开中提及的“多个”指“至少两个”,即“两个或两个以上”。
需要说明的是,在本公开的实施例中,“导光结构”也可称为“光导结构”、“光源结构”也可称为“光源部”、“导光介质”也可称为“光导介质”、“偏振分光结构”也可称为“分光元件”、“偏振转化结构”也可称为“偏振转换结构”、“光线聚集元件”也可称为“聚光部”,“显示装置”也可称为“显示系统”、“抬头显示器”也可称为“抬头显示系统”。
第一方面,本公开实施例提供的一种导光装置,包括:导光结构,包括光耦出部,所述光耦出部被配置为将在所述导光结构中传播的光线耦出,其中,所述导光结构包括第一导光元件和第二导光元件,进入所述导光结构的光线经所述第一导光元件传输至所述第二导光元件,所述光耦出部的至少部分位于所述第二导光元件,所述第一导光元件包括被配置为传播所述光线的介质以及位于所述介质的至少两侧的第一反射结构,所述第一反射结构被配置为对入射至所述第一导光元件的光线进行至少一次反射以使所述光线传播至所述第二导光元件。
第二方面,本公开实施例提供一种导光装置,包括:导光结构,包括光耦出部,所述光耦出部被配置为将在所述导光结构中传播的光线耦出,其中,所述导光结构包括第一导光元件和第二导光元件,进入所述导光结构的光线被配置为经所述第一导光元件传输至所述第二导光元件,所述光耦出部至少部分位于所述第二导光元件,所述第一导光元件被配置为对入射至所述第一导光元件的光线进行全反射传播以使所述光线传播至所述第二导光元件;所述第一导光元件包括至少两个反射面,入射到所述第一导光元件内的光线的发散角为θ,所述至少两个反射面包括彼此相对的两个反射面,其中,彼此相对的所述两个反射面之间的夹角在0°与θ之间。
对于本公开第一方面或第二方面提供的导光装置,均可以通过第一导光元件实现较好的匀光效果,以下的实施例均适用于本公开第一方面或第二方面提供的导光装置。
下面结合附图及具体实施例对本公开实施例提供的导光装置、光源装置、显示装置以及抬头显示器进行描述,需要说明的是,相同部件可以采用相同的设置方式,本公开所有实施例均适用于导光装置、光源装置、显示装置以及抬头显示器等多个保护主题,相同或类似的内容在每个保护主题中不再重复,可参考其他保护主题对应的实施例中的描述。
图1A为根据本公开实施例的一示例提供的导光装置的局部截面结构示意图。如图1A所示,导光装置包括导光结构100。导光结构100包括光耦出部101,光耦出部101被配置为将在导光结构100中传播的光线耦出。导光结构100包括第一导光元件110和第二导光元件120,进入导光结构100的光线经第一导光元件110传输至第二导光元件120,光耦出部101的至少部分位于第二导光元件120。第一导光元件110包括被配置为传播光线的介质111以及位于介质111的至少两侧的第一反射结构112,第一反射结构112被配置为对入射至第一导光元件110的光线进行至少一次反射以使光线传播至第二导光元件120。例如,第一反射结构112被配置为对入射至第一导光元件110的光线进行多次反射以提高从第一导光元件110出射光线的均匀性。
例如,从光源发出的光线可能存在明暗不均的(如发光二极管(LED)发出的光线一般是中心亮而四周偏暗)现象,因此,光线从导光装置耦出时,容易出现均匀性较差的问题。本公开实施例提供的导光装置,通过设置包括介质和第一反射结构的第一导光元件,可以提高从导光装置出射光的均匀性。
例如,如图1A所示,在本公开实施例的一示例中,光耦出部101均位于第二导光元件120,第一导光元件110中没有设置光耦出部101,即第一导光元件110配置为将其中的光线传播进第二导光元件120,不会向预定区域(例如显示面板,或者用户等)出射光线,而第二导光元件120中设置的光耦出部101被配置为将在第二导光元件120中传播的光线出射向上述预定区域。
例如,如图1A所示,第一反射结构112可以位于介质111在Y方向上的两侧,以对在XY面内传播的光线进行反射。例如,第一反射结构112还可以包括位于介质111在垂直于XY面上的方向上的至少一侧的部分,以将入射到该部分的光线进行反射。例如,第一反射结构112可以围绕介质111。例如,介质111除其入光侧和出光侧外的其他位置均可以设置第一反射结构112。
例如,第一反射结构112面向介质111的一侧表面为反射表面,用于对入射至其上的光线进行反射。
例如,第一反射结构112可以是具有较高反射率(例如,反射率大于70%、80%、90%或者95%)的元件,可以是一体元件,例如可以是抛光的金属件,如可以是包括铝、铜或银等金属材料或者金属合金材料的抛光件。
例如,第一反射结构112也可以是在基材(例如玻璃、塑料等)上镀设、贴覆或喷涂具有较高反射率的材质,例如第一反射结构112面向介质111的一侧表面可以设置金属反射面,如镀铝、镀银或镀铜的反射面;或者也可以是介质膜反射面,如金属氧化物、金属氮化物、无机氟化物等堆叠而成。例如,第一反射结构112面向介质111的一侧表面可以贴覆高反射率的膜材,如增强型镜面反射膜(ESR,Enhanced Specular Reflector)。
例如,第一反射结构112为非透光结构,入射到第一反射结构112的光线在第一反射结构112的用于反射的表面发生例如镜面反射,而不是全反射。例如,介质111与第一反射结构112为彼此独立的结构。上述“彼此独立的结构”指介质111和第一反射结构112不是一体化的结构,也不是采用相同材料的结构,但对第一反射结构112与介质111是否接触不作限制。
例如,如图1A所示,介质111可以包括透明基板。例如透明基板的折射率大于1。例如,光线在透明基板中可以发生非全反射传播,但不限于此。例如,在透明基板中传播的光线的一部分可以沿图1A所示的X方向进行传播。在介质包括透明基板时,在介质中传播的光线既可以采用全反射传播,也可以采用非全反射传播,本公开实施例对此不作限制。这里的“非全反射传播”指光线(例如部分发散角较小的光线)在介质中的传播为除全反射之外的传播方式,例如光线可以在介质内传播且不反射(例如在介质与空气之间的界面上不反射);或者,光线(例如部分发散角较大的光线)也可以是以非全反射的方式反射传播,例如其可以不满足全反射条件,例如介质与空气(或其他介质)之间的界面上发生反射时的反射角小于全反射临界角,可以认为光线没有或很少在导光介质中发生全反射传播。例如,入射至导光介质的光线的主方向或者入射至导光介质的光线的主光轴传播方向为平行于一直线的方向,例如可以与X方向平行,还有部分光线镜面反射后继续传播。本公开实施例中的“平行”包括完全平行和大致平行,完全平行指任意两者之间夹角为0°,大致平行指任意两者之间的夹角不大于20°,例如不大于10°,例如不大于5°。
例如,第一反射结构112的反射面可以与介质111的表面接触。例如,第一反射结构112可 以为镀设或贴合在介质111的表面上的反射膜。例如,透明基板的形状可以为立体结构,例如可以是长方体(例如立方体)或平行六面体中的一种;第一反射结构112可以设置在立体结构的至少两个表面上,例如该至少两个表面包括彼此相对的两个表面,例如在图1A所示的Y方向上彼此相对的两个表面。
本公开的一示例中提供的导光装置中,通过将介质设置为透明基板,可以增大在介质中传播的光线的光程,有利于进一步改善光线的匀化效果。
例如,图1B为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图。图1B所示导光装置与图1A所示导光装置的区别在于:图1B所示导光装置中的介质111包括空气。例如,如图1B所示,第一反射结构112包括至少两个子反射面1120,该至少两个子反射面1120之间包括空腔1121,空腔1121之中的空气可以为用于传播光线的介质111,该空腔1121形成供光线通过的空间。
本公开任一实施例提供的导光装置中,第一导光元件的介质包括空气,且第一导光元件的第一反射结构采用非全反射方式反射光线,该导光装置在对传播光线起到匀光效果的同时,还有利于减轻其重量,提高实用性。
在一些实施例中,第一反射结构包括地两个子反射面满足:两个子反射面为单独的反射面或者同一反射面上的延伸方向不同的部分。例如,如图1A和图1B所示,第一反射结构110包括彼此相对的两个子反射面1120,例如这两个子反射面1120可以为在图1A和图1B所示的Y方向上彼此相对,也可以在垂直于XY面的方向上彼此相对,还可以在其他与X方向垂直的方向上彼此相对。例如,上述彼此相对的两个子反射面1120可以为彼此独立且中间设置有间隔的两个子反射面,也可以为通过位于介质以外区域的连接部连接起来的两个子反射面,本公开实施例对此不作限制。
例如,如图1A和图1B所示,彼此相对的两个子反射面1120平行设置。
例如,如图1A和图1B所示,第一导光元件110和第二导光元件120至少之一沿第一方向延伸(例如图中所示的X方向),例如第一导光元件110和第二导光元件120均沿第一方向延伸。例如,第一导光元件110和第二导光元件120可以均为板状结构,其均沿至少两个方向延伸,两个延伸方向可以是如图中的X方向和垂直于XY面的方向。例如,上述第一导光元件110和第二导光元件120至少之一沿第一方向延伸可以指第一导光元件(和/或第二导光元件)的长边的延伸方向。例如,上述“垂直于XY面的方向”可以指第一导光元件(和/或第二导光元件)的宽边的方向,上述长边和宽边可以形成矩形,例如第一导光元件和/或第二导光元件包括在如图的Y方向有一定厚度且在垂直于XY平面上呈矩形的板状结构。
例如,在沿与第一方向垂直的第二方向上,第一导光元件110和第二导光元件120交叠。本公开实施例示意性的示出第二方向为图中所示的Y方向。本公开实施例不限于第二方向为图1A所示的Y方向,还可以为垂直于XY面的方向。本公开至少一示例中,将第一导光元件和第二导光元件设置为沿图1A所示的Y方向堆叠设置,可以使得第一导光元件和第二导光元件结构紧凑,且尽量降低导光装置沿图1A所示的X方向的尺寸。
例如,如图1A和图1B所示,第一导光元件110和第二导光元件120可以为彼此分离的结构,即第一导光元件110和第二导光元件120不是一体成型。例如,第一导光元件110和第二导光元件120之间可以设置空气间隙,也可以设置胶层以将两者粘贴在一起。
例如,如图1A和图1B所示,第二导光元件120包括在第二方向上不与第一导光元件110交叠的第一子部121。例如,图1B示意性的示出第一导光元件110在第一方向上的长度小于第二导光元件120在第一方向上的长度,以使第二导光元件120包括在第二方向上不与第一导光元件110交叠的第一子部121,但是不限于此,第一导光元件的长度可以与第二导光元件的长度相同,或者第一导光元件的长度可以大于第二导光元件的长度。
例如,在图1A和图1B所示的导光装置应用于光源装置时,光源装置包括导光装置和光源部(图18所示的光源部500),光源部可以与第一导光元件沿第一方向排列,且在Y方向上,光源部与第二导光元件120的第一子部121交叠,例如,第一子部121和第一导光元件110限定一容纳空间的边缘,该容纳空间内可以设置光源部,从而可以利用没有设置第一导光元件110的部分 空间以减小光源装置的尺寸,有利于产品的应用。
例如,图2为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图。图2所示导光装置与图1A和图1B所示导光装置的不同之处在于图2所示的第一反射结构110中彼此相对的两个子反射面1120是不平行的,图2所示导光装置中除第一反射结构110外的其他结构可以与图1A和图1B任一示例所示导光装置中相应的结构具有相同的特征,在此不再赘述。
例如,如图2所示,入射到第一导光元件110内的光线的发散角为θ。发散角是目前较为通用的衡量光束发光角度的标准,例如θ/2为发光强度值为轴向强度值的一半时发光方向与光轴之间的夹角;或者,θ/2还可以为发光强度值为径向强度值的60%或80%时发光方向与光轴之间的夹角。例如,入射到第一导光元件110内的光线的发散角可以为40°。例如,入射到第一导光元件110内的光线的发散角可以为20°。例如,入射到第一导光元件110内的光线的发散角可以为10°。例如,上述入射到第一导光元件110内的光线的发散角θ为大于0°的角度。
例如,如图2所示,彼此相对的两个子反射面1120之间的夹角大于0°且小于等于θ。例如,彼此相对的两个子反射面1120之间的夹角小于等于40°。例如,彼此相对的两个子反射面1120之间的夹角小于等于30°。例如,彼此相对的两个子反射面1120之间的夹角小于等于20°。例如,彼此相对的两个子反射面1120之间的夹角小于等于10°。
例如,彼此相对的两个子反射面1120之间的在第一反射结构112的入光侧、出光侧和位于入光侧和出光侧之间的侧方中的至少之一的夹角大于0°且小于等于θ。例如,如图2所示,第一导光元件110包括入光侧和出光侧,从其入光侧朝向出光侧的方向,彼此相对的两个子反射面1120之间的距离逐渐增大。当然,本公开实施例不限于此,从第一导光元件的入光侧朝向出光侧的方向,彼此相对的两个子反射面之间的距离也可以逐渐减小。例如,彼此相对的两个子反射面1120之间的在第一反射结构112的侧方的夹角大于0°且小于等于θ。例如,可以是垂直于XY平面的对设侧。
例如,如图2所示,第二导光元件120包括沿第一方向延伸的表面,第一反射结构112的彼此相对的两个子反射面1120之一可以与第二导光元件120的表面平行。例如,彼此相对的两个子反射面1120中靠近第二导光元件120的一个可以与第二导光元件120的表面平行。当然,本公开实施例不限于此,彼此相对的两个子反射面可以均不与第二导光元件的表面平行。
本公开至少一实施例中将彼此相对的两个子反射面设置为不平行,且两者之间的夹角小于等于θ,有利于降低两个子反射面之间的至少一部分区域的距离,可以减薄第一反射结构的厚度,有利于增加光线在第一反射结构中反射的次数,提高第一导光元件的匀光效果。此外,还可以增加光线在第一反射结构中的反射次数,有利于提升大角度光线的匀化效果。
例如,如图1A至图2所示,第一导光元件110还包括反射结构113(以下称为第三反射结构113),被配置为将在第一导光元件110中传播的光线反射进第二导光元件120。例如,第三反射结构113位于介质111和第一反射结构112的出光侧,以将从介质111和第一反射结构112出射的光线反射进第二导光元件120。
例如,介质111为透明基板时,第三反射结构113可以与介质111贴合或者与介质111一体成型。例如,两者可以一体成型。
例如,第三反射结构113可以包括反射面,该反射面可以为具有较高反射率的元件,通过镜面反射作用将介质111和第一反射结构112传播出的光线反射至第二导光元件120。例如,反射面可以为金属反射面,如镀铝、镀银或镀铜的反射面。
例如,第三反射结构113可以包括棱镜,从介质111和第一反射结构112传播出的光线可以在棱镜的表面发生全反射后射向第二导光元件120。例如棱镜可以为三棱镜。例如,光线在经过棱镜出射时会在棱镜与空气或者其他介质(例如第二导光元件或者光学胶等)的界面发生折射,发生折射的光线会朝向导光装置的中心区域偏转,有利于提高光线的利用率。
例如,图3A为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图。如图3A所示,导光装置还包括光转化部200,光转化部200包括偏振分光元件210和偏振转化结构220。偏振分光元件210被配置为将射向偏振分光元件210的光线分光处理为第一偏振光和第二偏振光。例如,射向偏振分光元件210的光线包括具有不同偏振态的光线,例如为自然光,其可以 认为是具有一切可能的振动方向的许多光波的总和。例如,偏振分光元件210可以具有透射一种偏振态的光线和反射另一种偏振态的光线的特性,该偏振分光元件210可以利用上述透反特性实现分束。本示例提供的导光装置中除光转化部200外的其他结构可以与图1A至图2所示任一示例中相应的结构具有相同的特征,在此不再赘述。
例如,偏振分光元件210可以为偏振分光棱镜(PBS,Polarization Beam Splitter)。例如,偏振分光元件210可以包括具有上述透反特性的透反膜,通过透射部分光线和反射另一部分光线实现分束作用。例如,透反膜对光源部(图18所示的光源部500)发出的光线中的第一偏振光和第二偏振光之一的透射率大于其对另一者的透射率,且对光源部发出的光线中的第一偏振光和第二偏振光之一的反射率大于其对另一者的反射率。例如,偏振分光元件对第一偏振光的透射率大于对第二偏振光的透射率,且偏振分光元件对第二偏振光的反射率大于对第一偏振光的反射率。第一偏振光与第二偏振光可以互换。
例如,偏振分光元件210对第一偏振光的透射率约为20%~95%,例如透射率可以是60%、70%、80%、90%或者95%。
例如,偏振分光元件210对第二偏振光的反射率约为20%~95%,例如反射率可以是60%、70%、80%、90%或者95%。
例如,第一偏振光和第二偏振光可以均为线偏振光,第一偏振光和第二偏振光的偏振方向不同,例如,第一偏振光和第二偏振光的偏振方向垂直。
例如,第一偏振光和第二偏振光可以均为圆偏振光或者椭圆偏振光,第一偏振光和第二偏振光的旋向不同。
例如,非偏振光线经过具有偏振分光功能的偏振分光元件210后,透射光线包括P偏振光,反射光线包括S偏振光;或者透射光线包括S偏振光,反射光线包括P偏振光,本公开实施例对此不做限制。例如,第一偏振光和第二偏振光之一为S偏振光,第一偏振光和第二偏振光的另一个为P偏振光。
例如,偏振分光元件210包括的透反膜可以是具有偏振透反功能的光学膜,例如可以将非偏振光线,通过透射和反射,分束为两个互相正交的偏振光的光学膜,例如可以分束为两个偏振方向互相垂直的线偏振光;上述光学膜可以由多层具有不同折射率的膜层按照一定的堆叠顺序组合而成,每个膜层的厚度约在10~1000nm之间;膜层的材料可以选用无机电介质材料,例如,金属氧化物、无机氟化物、金属氮氧化物和金属氮化物;也可以选用高分子材料,例如聚丙烯、聚氯乙烯或聚乙烯。
例如,如图3A所示,偏振转化结构220被配置为将偏振分光元件210分光处理后得到的第二偏振光转化为第三偏振光,第三偏振光与第一偏振光的偏振态相同。例如,第三偏振光可以为线偏振光,第三偏振光的偏振方向与第一偏振光的偏振方向相同。例如,第三偏振光可以为圆偏振光或者椭圆偏振光,第三偏振光的旋向与第一偏振光的旋向相同。上述“第三偏振光与第一偏振光的偏振态相同”可以指不考虑偏振转化结构的转换效率等因素的情况下,两者基本相同,例如,两者均为偏振方向相同的线偏振光,或者旋向相同的圆偏振光或者椭圆偏振光。
例如,图3A示意性的示出偏振转化结构220可以位于偏振分光元件210透射光的一侧(例如偏振转化结构220位于偏振分光元件210透射光的光路上),此时,偏振分光元件210透射的光包括第二偏振光,偏振分光元件210反射的光包括第一偏振光;但不限于此,偏振转化结构还可以位于偏振分光元件反射光的一侧(例如偏振转化结构220位于偏振分光元件210反射光的光路上),此时,偏振分光元件透射的光包括第一偏振光,偏振分光元件反射的光包括第二偏振光。
例如,第二偏振光可以仅经过一次偏振转化结构220就转化为第三偏振光,例如,该偏振转化结构220可以为1/2波片。当然,本公开实施例不限于此,第二偏振光也可以至少两次经过偏振转化结构220后转化为第三偏振光,例如,该偏振转化结构220可以为1/4波片。
例如,如图3A所示,光转化部200还包括第二反射结构230,第二反射结构230被配置为反射第一偏振光、第二偏振光和第三偏振光至少之一。
例如,偏振分光元件210反射的光线包括第一偏振光,第二反射结构230位于偏振分光元件210反射光的一侧,且被配置为反射第一偏振光;例如,偏振分光元件210反射的光线包括第二偏 振光,第二反射结构230位于偏振分光元件210反射光的一侧,且位于偏振转化结构220的入光侧,第二反射结构230被配置为反射第二偏振光,反射后的第二偏振光经过偏振转化结构220转化为第三偏振光;例如,偏振分光元件210反射的光线包括第二偏振光,第二反射结构230位于偏振转化结构220的出光侧,且被配置为反射第三偏振光。
例如,偏振分光元件210对第二偏振光的反射率大于对第一偏振光的反射率,在第二偏振光入射到第二反射结构230的同时可能存在少量的第一偏振光入射到第二反射结构230,此时,第二反射结构230可能反射第二偏振光和少量的第一偏振光。同理,在第二偏振光转化为第三偏振光后,第二反射结构可能反射第三偏振光和少量的第一偏振光。
例如,如图3A所示,第二反射结构230可以包括反射面,该反射面可以为具有较高反射率(例如,反射率大于60%、70%、80%、90%或95%)的元件,通过镜面反射作用将第一偏振光、第二偏振光以及第三偏振光的至少之一反射至介质111中。例如,反射面可以为金属反射面,如镀铝、镀银或镀铜的反射面;或者,反射面也可以为贴覆的反射膜,例如上文提到的ESR反射膜。
例如,第二反射结构230可以包括棱镜,入射至第二反射结构230的光线可以在棱镜的表面发生全反射后射向介质111。例如棱镜可以为三棱镜结构。
例如,第二导光元件120被配置为传输第一偏振光和第三偏振光。
例如,如图3A所示,光转化部200位于第一导光元件110的入光侧,第一导光元件110和第二导光元件120被配置为传输第一偏振光和第三偏振光。
例如,如图3A所示,介质111为空气,光转化部200的至少部分位于第一导光元件110的空腔1121内。本公开实施例提供的导光装置中,通过将光转化部的至少部分设置在第一导光元件的空腔内,有利于减小导光装置的体积,也可以让尽可能多的光线进入第一导光元件的空腔,提高光线利用率。
例如,图3B为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图。图3B所示导光装置与图3A所示导光装置的区别在于:介质111包括透明基板。如图3B所示,至少两个子反射面1120之间设置有透明基板111(为方便绘图,图3B中未绘制出光线进入透明基板111的折射过程),光转化部200位于第一导光元件110以外,例如位于第一导光元件110的入光侧。本示例中除介质111外的其他结构可以与图3A所示相应的结构具有相同的特征,在此不再赘述。
例如,图4为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图。图4所示导光装置与图3A所示导光装置的区别在于:光转化部200位于第一导光元件110的出光侧,此时光转化部200可以取代图3A所示的第三反射结构113,该光转化部200在进行偏振分光的同时可以将介质111和第一反射结构112射向其的光线反射向第二导光元件120,有利于减小导光装置的体积。
例如,如图4所示,介质111可以为空气,也可以为透明基板,本示例对此不作限制。例如,在介质111为空气时,将光转化部200设置在第一导光元件110的空腔以外,可以减小彼此相对的两个子反射膜1120之间的距离,即减小空腔的厚度,有利于导光装置的轻薄化。
例如,如图4所示,偏振分光元件210透射的光线包括第一偏振光,第二反射结构230位于偏振分光元件210透射光的一侧,且被配置为反射第一偏振光;例如,偏振分光元件210透射的光线包括第二偏振光,第二反射结构230位于偏振分光元件210透射光的一侧,且位于偏振转化结构的入光侧,第二反射结构230被配置为反射第二偏振光,反射后的第二偏振光经过偏振转化结构转化为第三偏振光;例如,偏振分光元件210透射的光线包括第二偏振光,第二反射结构230位于偏振转化结构的出光侧,且被配置为反射第三偏振光。
图4没有示出上述偏振转化结构,例如,偏振分光元件反射的光线包括第二偏振光,该偏振转化结构可以位于偏振分光元件的反射光侧,以将第二偏振光转化为第三偏振光后射向第二导光元件;例如,偏振分光元件透射的光线包括第二偏振光,该偏振转化结构可以位于偏振分光元件与第二反射结构之间,也可以位于第二反射结构与第二导光元件之间,以将第二偏振光转化为第三偏振光。
例如,第二反射结构230可以为棱镜,入射至棱镜的至少一个表面(例如内表面)的光线发生全反射后射向第二导光元件120,该棱镜被图4所示的XY面所截的截面的形状可以为三角形, 上述发生全反射的表面被XY面所截的截面可以为三角形的斜边,该三角形还包括与斜边连接的两条直边,例如两条直边可以形成直角,这两条直边所在的两个表面可以将发散角较大的光线全反射至斜边,进一步反射出去,增加光利用率。
例如,图4所示示例中的导光装置中的第一反射结构110可以为图1A所示的第一反射结构,也可以为图2所示的第一反射结构,本公开实施例对此不作限制。
例如,如图4所示,在第一反射结构110中包括的彼此相对的两个子反射面1120设置为图2所示的不平行的第一反射结构110时,光转化部200可以位于第一导光元件110的入光侧或者出光侧,但是没有位于第一导光元件110的空腔内,有利于减少空腔的厚度。
例如,如图4所示,在第一反射结构110中包括的彼此相对的两个子反射面1120设置为图2所示的不平行的第一反射结构110时,光转化部200可以位于第一导光元件110的出光侧,可以在保证入射至第一导光元件110内的光线具有一定发散角(例如发散角可以是40°以内)且在第一反射结构112中均匀传播的同时,尽量提高入射至光转化部200的光线的准直性。
当然,图4所示的光转化部200不限于设置在第一导光元件110的出光侧,光转化部200还可以设置在第一导光元件110的入光侧,如图3A和图3B所示,此时第一导光元件110中依然设置第三反射结构113以将介质111和第一反射结构112出射至第三反射结构113的光线反射至第二导光元件120。
例如,图1A至图4所示的导光装置的入光侧可以设置至少一个光源,例如多个光源,多个光源可以沿垂直于图中XY平面的方向排列;所有光源可以共用第一反射结构112在Y方向上设置的彼此相对的两个子反射面1120。例如,导光装置的入光侧可以设置多个光源,部分光源可以共用第一反射结构112在Y方向上设置的彼此相对的两个子反射面1120。例如,第一反射结构112可以包括围绕介质的一圈子反射面,例如包括彼此相对的两对子反射面,不同的光源可以射向不同的子反射面。
例如,图5为根据本公开实施例的另一示例提供的导光装置。如图5所示,导光装置还包括:调光结构18,被配置为至少对射向调光结构18中的光线中的第一波长光的透过率不同于对第二波长光的透过率,和/或,至少对射向调光结构18中的光线的第一波长光的反射率或吸收率不同于对第二波长光的反射率或吸收率。例如,调光结构18位于偏振转化结构220的出光侧或者入光侧。例如,调光结构18位于偏振转化结构220的出光侧与第二导光元件120之间。
例如,如图5所示,偏振转化结构220可以位于偏振分光元件210与第二反射结构230之间,调光结构18可以位于偏振转化结构220与第二反射结构230之间,也可以位于第二反射结构230与第二导光元件120之间,此时的调光结构18位于偏振转化结构220的出光侧。当然,本公开实施例不限于此,调光结构18还可以位于偏振转化结构220与偏振分光元件210之间,例如调光结构18位于偏振转化结构的入光侧。
本公开实施例不限于此,例如,偏振转化结构220还可以位于第二反射结构230与第二导光元件120之间,调光结构18可以位于偏振转化结构220与第二导光元件120之间,或者位于偏振转化结构220与第二反射结构230之间。例如,偏振转化结构220还可以位于偏振分光元件210与第二导光元件120之间,相应地调光结构18可以位于偏振转化结构220与偏振分光元件210之间,或者位于偏振转化结构220与第二导光元件120之间。
本公开实施例不限于此,调光结构18还可以位于光转化部200的入光侧或者光转化部200的出光侧。
例如,第一波长光和第二波长光之一可以为蓝光,另一个可以为红光和/或绿光。例如,第一波长光和第二波长光之一可以为蓝光和/或绿光,另一个可以为红光。应当理解,本公开实施例不限于此,例如第一波长光和第二波长光之一可以为蓝光,另一个可以为波长大于蓝光的波段(例如大于480nm的可见光波段)的光;或者,第一波长光和第二波长光之一可以为波长小于绿光的波段的光,另一个可以为绿光以及波长大于绿光的波段(例如大于500nm的可见光波段)的光。
例如,偏振转化结构220可以为1/4波片或者1/2波片。例如,波片通常来说对某一波长或某一波段的光线的转化效率较高,对其他波长/波段的光线转化效率相对较低;例如可见光波段内,波片对不同颜色光线的转化效率不同,例如波片一般对500-600nm之间的绿光的转化效率较高, 因此蓝光(400-480nm)、绿光以及红光(600-780nm)经过波片后,各色光的转化效率(或转化程度)不一致,例如绿光经过波片后可以完全转化为需要的偏振态,红光和蓝光可能部分未转化或者部分转化为需要的偏振态,例如椭圆偏振态、圆偏振态等偏振态。上述经过波片的部分颜色光可能可以完全转化为需要的偏振态,而部分颜色光可能不能完全转化为需要的偏振态的问题,容易导致后续导光装置出射的光线经过显示面板(后面描述)的液晶层以及滤色片(color filter)等结构后出现色偏。
例如,调光结构18被配置为对蓝光的透过率高于对绿光和/或红光的透过率。例如,调光结构18被配置为对蓝光的透过率高于对黄光的透过率。
例如,调光结构18可以为具有上述功能的光学膜,例如可以是滤色片;例如,调光结构18可以是采用高分子膜或者无机电介质堆叠形成的多层膜。
本公开至少一实施例通过在导光装置中设置位于偏振转化结构的出光侧或者入光侧的调光结构,可以降低从光转化部出射至第二导光元件的光线的色偏程度,进而降低入射至液晶显示面板的光线的色偏程度,最终使得液晶显示面板显示时几乎没有色偏或色偏很少。
图5所示示例中除调光结构外的其他结构可以与图1A至图4任一示例所示的相应的结构具有相同的特征,在此不再赘述。
例如,图6为根据本公开另一实施例提供的导光装置的局部截面结构示意图。图6所示示例与图4所示示例不同之处在于第一导光元件110和第二导光元件120沿第二导光元件120的延伸方向排列。例如,如图6所示,第一导光元件110和第二导光元件120沿X方向排列。
例如,如图6所示,由于第一导光元件110和第二导光元件120沿一方向依次排列,从第一反射结构112以及介质111出射的光线可以不经过图3B所示的第三反射结构113的反射而入射至第二导光元件120。
例如,如图6所示,光转化部200可以设置在第一导光元件110与第二导光元件120之间,经偏振分光元件210透射的一偏振光射向第二导光元件120,经偏振分光元件210反射的另一偏振光经第二反射结构230反射向第二导光元件120。
本公开至少一示例中的第一导光元件110可以与图4所示第一导光元件110具有相同的特征,在此不再赘述。本示例中光转化部200可以与图3A至图4任一示例所示光转化部具有相同的特征,在此不再赘述。例如,本示例中可以设置图5所示的调光结构18。图6所示的实施例中的第一导光元件和第二导光元件并排设置可以使得以使导光装置具有更小的厚度,实现导光装置的轻薄化。
例如,图7为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图。如图7所示,导光装置还包括光线聚集元件19,设置在第二导光元件120的入光侧,光线聚集元件19被配置为将入射至其的光线朝预设方向聚集并入射至第二导光元件120。例如,图7示意性的示出在第一导光元件110和第二导光元件120交叠设置(沿图中所示Y方向排列)时,光线聚集元件19设置在第一导光元件110与第二导光元件120之间。例如,在第一导光元件和第二导光元件沿图中所示X方向排列时,光线聚集元件19可以位于第一导光元件与第二导光元件之间,也可以不位于两者之间,光线聚集元件的位置可根据具体产品结构进行设置。
例如,光线聚集元件19可以包括至少一个透镜,该至少一个透镜可以对第一导光元件110出射的光线进行会聚,从而提高光线的利用率。例如,至少一个透镜可以包括凸透镜。例如,光线聚集元件19还可以包括棱镜或曲面反射镜。
例如,光线聚集元件19被配置为使经过所述光线聚集元件并入射至第二导光元件120中且在靠近第二导光元件120的出光面传播的光线向远离其出光面的方向偏移。例如,经过光线聚集元件19的光线并入射至第二导光元件120的光线,其中在远离第一导光元件110的位置传播的光线向靠近第一导光元件110的一侧偏移。例如,光线聚集元件19可以包括偏心透镜,例如,偏心透镜可以认为其光轴与透镜几何轴不重合(例如有一定距离),例如图7中的所示偏心透镜,其光轴可以在X方向上左偏。例如,偏心透镜可以调整从第一导光元件110的出光面射向第二导光元件120的光线中靠近第一导光元件110入光侧的光线(例如图7中处于偏心透镜400左侧的光线)可以向靠近其入光侧的方向偏移,而从第一导光元件110的出光面射向第二导光元件120的光线 中远离第一导光元件110入光侧的光线(例如图7中处于偏心透镜400右侧的光线)可以不偏移或者减少偏移,从而使得入射至第二导光元件120的光线在传播时,远离第一导光元件110的位置传播的光线向靠近第一导光元件110的一侧偏移,有利于提高光线的利用率。图7示意性的示出第一导光元件和第二导光元件沿Y方向排列,光线聚集元件位于第一导光元件和第二导光元件之间,但不限于此。例如,第一导光元件和第二导光元件也可以沿图7所示的X方向排列,光线聚集元件可以位于第一导光元件之间,也可以不位于两者之间。
例如,第一光导元件110和第二光导元件120之间还设置有反射部,反射部可以反射第二光导元件120中传播时漏出的光线(例如角度较大的光线)反射回第二光导元件120和/或液晶显示面板,可以进一步提升光线利用率。应当理解,反射面1120也可以起到类似的效果。
例如,图8A和图8B为根据本公开实施例的两个示例提供的导光装置的局部截面结构示意图。如图8A和图8B所示,第二导光元件120沿第一方向(如图中所示的X方向)延伸,在沿与第一方向垂直的第二方向上,第一导光元件110和第二导光元件120交叠,且第一导光元件110和第二导光元件120一体成型;例如,第一导光元件110的介质111和第二导光元件120一体成型;例如,两者的介质可以一体成型。本公开实施例示意性的示出第二方向为图中所示的Y方向。本公开实施例不限于第二方向为图8A和图8B所示的Y方向,还可以为垂直于XY面的方向。
例如,如图8A所示,第一导光元件110沿第一方向延伸,第一导光元件110的长度小于第二导光元件120的长度,以使第二导光元件120包括在第二方向上不与第一导光元件110交叠的第一子部121。例如,在图8A所示的导光装置应用于光源装置时,光源装置包括导光装置和光源部(图18所示的光源部),光源部可以与第一导光元件沿第一方向排列,且在Y方向上,光源部与第二导光元件120的第一子部121交叠,从而可以利用没有设置第一导光元件110的部分空间以减小后续提到的光源装置整体的尺寸,有利于产品的应用。
例如,如图8B所示,第一导光元件110包括在垂直于第二导光元件120的延伸方向的方向上不与第二导光元件120交叠的第二子部122。例如,图8B示意性的示出第二导光元件120的长度小于第一导光元件110的长度,以使第一导光元件110包括在垂直于第二导光元件120的延伸方向的方向上不与第二导光元件120交叠的第二子部122。但不限于此,第一导光元件的长度还可以小于或者等于第二导光元件的长度。
例如,在图8B所示的导光装置应用于光源装置时,光源装置包括导光装置和光源部(图18所示的光源部500),光源部可以与第二导光元件沿第一方向排列,且在Y方向上,光源部与第一导光元件110的第二子部122交叠。例如,第二导光元件120和第二子部122限定了一容纳空间的边缘,光源部可以位于该容纳空间内,从而可以利用没有设置第二导光元件120的部分空间以减小装置的尺寸,有利于产品的应用。
例如,如图8A和图8B所示,第一导光元件110还包括设置在介质111的至少两侧的第一反射结构112。本示例中的介质111可以为图1A至图7所示示例中的透明基板,本示例中的第一反射结构112可以与图1A至图7所示示例中的第一反射结构112具有相同的特征,在此不再赘述。
例如,图8C为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图。与图3B所示的示例的不同之处在于,第一导光元件110的介质111与第二导光元件120在Y方向上没有交叠。例如,第一导光元件110的第三反射结构113与第二导光元件120在Y方向上有交叠。
例如,图9为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图。如图9所示,第一导光元件110和第二导光元件120均沿第一方向延伸,且第一导光元件110和第二导光元件120沿第一方向排列。
例如,如图9所示,第一导光元件110和第二导光元件120可以为彼此分离的结构。但不限于此,第一导光元件还可以与第二导光元件一体成型。本示例中的第一导光元件可以与图1A至图7所示的第一导光元件具有相同的特征,本示例中的第二导光元件可以与图1A至图7所示的第二导光元件具有相同的特征,在此不再赘述。
例如,图10A为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图。如图10A所示,导光结构100还包括第三导光元件130,光耦出部101包括第一光耦出部1011和第二光耦出部1012,第二导光元件120包括第一光耦出部1011,第三导光元件130包括第二光耦出部 1012,在垂直于第二导光元件120的延伸方向的方向上,第二光耦出部1012与第一导光元件110交叠,且第一光耦出部1011的至少部分与第二光耦出部1012没有交叠。
例如,如图10A所示,在介质111中传播且被第一反射结构112反射的光线入射到第一光耦出部1011,并从第一光耦出部1011耦出,例如不会不经过第一光耦出部1011处理而入射到第二光耦出部1012上。
例如,如图10A所示,从第一光耦出部1011耦出的光线会经过第三导光元件130(从第一光耦出部1011耦出的光线经过第三导光元件130的部分为透明材料)后,从导光结构100出射。例如,从第一光耦出部1011耦出的光线会经过第三导光元件130没有设置第二光耦出部1012的部分结构后,从导光结构100出射,但不限于此,从第一光耦出部1011耦出的光线也可以经过第三导光元件130的第二光耦出部1012后,从导光结构100出射。
例如,如图10A所示,沿Y方向,第一光耦出部1011与第二光耦出部1012至少相接,或者部分交叠。例如,如图10A所示,导光结构100在X方向的两侧均可以设置光源,设置在一侧的光源出射的光线从第一导光元件110远离第二导光元件120的一侧入射至导光结构100,并被第一光耦出部1011耦出;设置在另一侧的光源出射的光线仅在第三导光元件130中传播,并被第二光耦出部1012耦出。两侧的光源发出的光线在经光耦出部出射之前,在相应的导光结构内传播时会逐渐匀化,提高了光线均匀性。此外,将光源设置在导光结构的两侧,有利于散热。本示例中的第一导光元件和第二导光元件分别可以与图1A至图7所示的第一导光元件和第二导光元件具有相同的特征,在此不再赘述。
在一些实施例中,导光结构包括多个光耦出部。其中,每个光耦出部可以包括多个光耦出件。例如,光耦出部包含的光耦出件全部为透反元件,或者光耦出部包含的一部分光耦出件为透反元件、并且一部分为反射件,或者,光耦出部包含的一部分光耦出件为透反元件、并且一部分为透射件,或者,光耦出部包含的光耦出件为其他类型的光耦出件。
在后面的一些实施例的描述中,可以以透反元件作为光耦出件为例进行描述。为便于描述,可以将反射率为0或1的光耦出件也称为透反元件。
在一些实施例中,光耦出部所包含的各个光耦出件可以相对于光耦出件的排列方向朝同一方向倾斜或非倾斜设置。
例如,如图1A至图10A所示,光耦出部包括透反元件阵列,透反元件阵列中的至少部分透反元件被配置为对传播至透反元件的光线进行部分反射和部分透射,以使该光线的一部分被耦出第二导光元件且另一部分继续在第二导光元件中传播。上述透反元件可以指以下描述的第一透反元件,下述第一透反元件与上述透反元件具有相同的特征和实施方式。例如,光耦出部101包括第一透反元件阵列0100,第一透反元件阵列0100包括多个第一透反元件0110,第一透反元件0110被配置为将传播至第一透反元件0110的光线的一部分通过反射和透射之一射出导光装置,且通过反射和透射的另一者使得传播至第一透反元件0110的光线的另一部分继续在导光装置中传播。本公开实施例示意性的示出透反元件阵列0100中的至少部分第一透反元件0110被配置为将传播至第一透反元件0110的光线的一部分反射出第二导光元件120,且透射光线的另一部分以使该部分光线继续在第二导光元件120中传播。但不限于此,例如,第一透反元件可以包括设置在第二导光元件表面的网点结构,可以通过破坏在导光结构中全反射传播的光线的反射角而使得一部分光线可以被网点结构透射出导光结构,一部分光线可以被网点结构反射以继续在导光结构中传播。
当然,本公开实施例不限于此,光耦出部还可以包括光栅,光栅被配置为将传播至光栅的光线的一部分射出第二导光元件。
例如,如图1A至图10A所示,第二导光元件120还包括导光介质123,导光介质123包括透明材质,例如导光介质123可以是树脂、玻璃或塑料等透明材质制作而成的透明基板,透明基板被配置为将进入导光介质123的光线进行全反射传播和/或非全反射传播;或者,导光介质123包括空气。这里的“非全反射传播”指光线(例如部分发散角较小的光线)在介质中的传播为除全反射之外的传播方式,例如光线可以在介质内传播且不反射(例如在介质与空气之间的界面上不反射);或者,光线(例如部分发散角较大的光线)也可以是以非全反射的方式反射传播,例如其可以不满足全反射条件,例如介质与空气(或其他介质)之间的界面上发生反射时的反射角小于全 反射临界角,可以认为光线没有或很少在导光介质中发生全反射传播。例如,入射至导光介质的光线的主方向或者入射至导光介质的光线的主光轴传播方向为平行于一直线的方向,例如可以与X方向平行,还有部分光线镜面反射后继续传播。这里的“全反射传播”可以指光线(例如部分发散角较大且满足全反射条件的光线)在导光元件与空气(或其他介质)之间的界面上发生反射时的反射角不小于全反射临界角。例如,入射至导光元件质的光线大部分全反射传播。例如,入射至导光元件的光线的一部分可以不反射且沿直线在导光元件中传播,另一部分光线全反射后继续传播。
例如,导光介质123由可实现波导功能的材料制成,一般为折射率大于1的透明材料。例如,导光介质123的材料可以包括二氧化硅、铌酸锂、绝缘体上硅(SOI,Silicon-on-insulator)、高分子聚合物、Ⅲ-Ⅴ族半导体化合物和玻璃等中的一种或多种。
例如,导光介质123可为平面基板、条形基板和脊型基板等。例如,本公开实施例的至少一示例中,导光介质采用平面基板以形成均匀的面光源。
例如,第一透反元件0110可以为导光介质123的表面,也可以为采用镀设或者贴覆的方式设置在导光介质123表面的反射介质。例如,导光介质123可被划分为多个截面为平行四边形的柱体(例如平行六面体),在拼接的柱体之间可以设置第一透反元件0110。例如,上述柱体可以包括彼此相对的两个表面,这两个表面之一可以为柱体的入光面,另一个表面位于入光面的背侧。例如,第一透反元件可以为柱体入光面的表面,也可以为柱体中与入光面相背的表面。
例如,相邻第一透反元件0110之间的介质可以为导光介质123。例如,导光介质123包括沿第一方向排列且彼此贴合的多个波导子介质,相邻波导子介质之间夹设反射介质,各波导子介质被配置为使得光线发生全内反射,透反元件被配置为通过反射破坏部分光线的全反射条件而将该部分光线耦出光波导元件。
例如,图10B为导光介质为空气时的导光装置的截面结构示意图。如图10B所示,导光介质123为空气时,透反元件阵列可以用支撑板、胶粘等手段实现固定,由此可以减轻导光装置的重量,实用性较强。
例如,本公开实施例以多个第一透反元件0110均彼此平行为例进行描述,此时从透反元件阵列出射的光线为平行光。但本公开实施例不限于此,透反元件阵列中的多个透反元件还可以不平行,通过调整多个透反元件之间的夹角,可以将从透反元件阵列出射的光线调整为会聚光或者发散光。
例如,图1A至图10A示意性的示出在设置有光耦出部的导光结构中的光线的传播方式为非全反射传播。本公开实施例不限于在设置有光耦出部的导光结构中的光线的传播方式为非全反射传播。图11为根据本公开实施例的另一示例中设置有光耦出部的导光结构中光线进行全反射传播的示意图。如图11所示,在设置有光耦出部的导光结构中的光线的传播方式也可以为全反射传播,即,光线在导光结构与空气(或其他介质)之间的界面上发生反射时的反射角不小于全反射临界角。
例如,如图1A至图11所示,第一透反元件0110沿第二导光元件120的延伸方向依次排列(如沿X方向依次排列),沿在第二导光元件120中传播的光线的传播方向,多个第一透反元件0110的反射率逐渐增大。上述“在第二导光元件中传播的光线的传播方向”可以指光线传播的整体(宏观)的方向,例如在第二导光元件120中光线传播的方向指图1A所示的与X方向的箭头指向相反的方向,例如在第二导光元件120中光线传播的方向指图11所示的与X方向的箭头指向相反的方向,进入第二导光元件的光线可以在第二导光元件中进行如图11所示的全反射传播,也可以进行如图1A所示的非全反射传播,本公开实施例对此不作限制。
例如,多个第一透反元件0110中的任意两个透反元件的反射率均不同。
例如,多个第一透反元件0110的数量可以为N个,沿在第二导光元件120中传播的光线的传播方向,N个第一透反元件0110的反射率依次分别设置为1/n、1/n-1、1/n-2、......、1/2以及1,由此,每个第一透反元件0100反射出的光强是基本相等的,导光结构出射的光线具有较好的均匀性。
例如,多个第一透反元件0110的数量可以为8个,沿在第二导光元件120中传播的光线的传 播方向,8个第一透反元件0110的反射率依次分别设置为1/8、1/7、1/6、1/5、1/4、1/3、1/2以及1,每个第一透反元件0100上设置具有不同反射率的反射膜,则8个第一透反元件0110上可以设置8种不同反射率的反射膜。
例如,如图1A所示,透反元件阵列中位于最边缘且靠近入光侧的第一透反元件0110(例如,可以认为是接收第一导光元件110出射的光线的第一个透反元件)被配置为反射从第一导光元件110传播进第二导光元件120的光线的至少部分,且该第一透反元件0110的反射率大于透射率。例如,上述位于最边缘的第一透反元件0110的反射率可以不小于90%,例如接近100%,以尽量将从第一导光元件110传播进第二导光元件120的光线全部反射向其他第一透反元件0110。例如,上述位于最边缘的第一透反元件0110可以设置为具有一定透射率的元件,该透射率设置为使得透射出第二导光元件120的光线的强度与后续其他第一透反元件0110耦出的光线的强度接近,有利于增加第二导光元件的出光面积,避免边缘不出光。
图12为根据本公开实施例的另一示例提供的设置有光耦出部的导光结构的示意图。如图12所示,,多个第一透反元件0110包括M个透反元件组011,至少一个透反元件组011中的每个透反元件组011包括具有预设反射率的至少两个第一透反元件0110,且位于不同透反元件组011的第一透反元件0110的反射率不同,M为大于1的正整数。例如,多个第一透反元件0110包括M个透反元件组011,至少一个透反元件组011中的每个透反元件组011包括反射率相同的至少两个第一透反元件0110,且位于不同透反元件组011的第一透反元件0110的反射率不同,M为大于1的正整数。上述“反射率相同”可以包括反射率完全相同和反射率大致相同,这里的“反射率大致相同”指任意两者的反射率之比为0.8~1.2,或者0.9~1.1,或者0.95~1.05;和/或,可以认为两者设置了相同类型的透反膜,例如两者设置的透反膜的材料可以相同。本公开实施例中,通过将多个第一透反元件设置为至少有两个透反元件设置为具有相同的反射率,可以减少透反元件阵列所需的透反膜的种类,有利于降低导光结构的成本。例如,具有预设反射率的至少两个第一透反元件0110,可以是具有相同反射率的至少两个第一透反元件0110。例如,多个透反元件中距离该多个透反元件入光侧最远的一个透反元件可以具有95%以上的反射率,或者具有5%以下的透射率,例如该透反元件可以仅反射光线。
例如,如图12所示,多个第一透反元件0110的数量可以为N,N个第一透反元件0110包括的反射率的种类小于N种,由此可以减少第一透反元件阵列所需的透反膜的种类,有利于降低导光装置的成本。
例如,如图12所示,多个第一透反元件0110沿光线在导光装置(例如第二导光元件120)中的传播方向排列,沿多个第一透反元件0110的排列方向,多个第一透反元件0110的反射率呈区域性地逐渐增大。例如,区域性地逐渐增大可以指:将多个第一透反元件划分为两个或两个以上的区域(一个区域可以指一个透反元件组,但不限于此,一个区域也可以包括两个相邻的或者两个以上透反元件组),上述不同区域中透反元件的反射率不同且整体上呈逐渐增大的趋势。例如,在一个区域包括多个透反元件时,该区域内的多个透反元件相邻分布设置,可以认为该区域内的多个透反元件中任意两个透反元件之间没有设置属于其他区域的透反元件。例如,在一个区域包括多个透反元件时,这些透反元件的反射率可以相同,也可以不同,在这些透反元件的反射率不同时,反射率可以逐渐变化(例如,反射率可以设置为1/8、1/7、1/6),当然,反射率也可以没有特定的变化规律(例如,反射率可以设置为1/8、1/7、1/8),多个区域整体呈逐渐变化趋势就可以。
例如,如图12所示,多个第一透反元件0110中反射率最大的第一透反元件0110的反射率不小于90%。例如,第二导光元件120包括入光侧,距离该入光侧最远的第一透反元件0110可以为反射率最大的第一透反元件0110,该第一透反元件0110的透反面对入射在其上的光线的反射率不小于92%,或者不小于95%,或者不小于98%,如该第一透反元件0110的反射率接近或几乎为100%,即该第一透反元件0110可以将入射在其透反面上的光线几乎全部反射出第二导光元件。
例如,如图12所示,第二导光元件120包括多个出光区010,多个第一透反元件0110与多个出光区010一一对应,多个出光区010(例如,每个出光区)被配置为出射被对应的第一透反元件0110反射的光线。例如,在第二导光元件120中的导光介质为透明基材时,上述出光区指导光介 质的出光面上的区域,一个第一透反元件0110反射的光线从导光介质的出光面出射的区域为一个出光区010。上述出光面可以是实体面,例如透明基材的一个表面。例如,在第二导光元件120的导光介质为空气时,以多个第一透反元件0110远离第一导光元件110的一侧为其出光侧(以图1A所示第一导光元件110和第二导光元件120的位置关系为例),多个第一透反元件0110远离第一导光元件110的一侧边缘可以位于同一平面(垂直与Y方向的平面)内,上述出光区010可以为该平面上的区域,一个第一透反元件0110反射的光线从该平面出射的区域为一个出光区010。或者,上述出光区所在平面可以是一个非实体的虚拟面,如图10B中所示的出光区。
例如,如图12所示,任意两个出光区010不交叠(例如,相接);或者,至少两个相邻的出光区010交叠。例如,在多个第一透反元件0110在垂直于Y方向的平面上的正投影没有交叠,则任意两个出光区010不交叠。例如,至少两个相邻的第一透反元件0110在垂直于Y方向的平面上的正投影交叠,则该至少两个相邻的第一透反元件0110对应的出光区010交叠。
例如,如图12所示,任意两个出光区010出射的光线的强度差不大于其中一个出光区的强度的20%。上述“强度”可以指亮度、光通量、照度或者光强。例如,任意两个出光区010出射的光线的强度差不大于其中一个出光区的强度的15%。例如,任意两个出光区010出射的光线的强度差不大于其中一个出光区的强度的10%。例如,任意两个出光区010出射的光线的强度差不大于其中一个出光区的强度的5%。例如,任意两个区域的亮度差在20%的范围内。本公开实施例提供的多个第一透反元件中,通过调节至少部分第一透反元件的反射率以使任意两个出光区出射的光线的强度差不大于其中一个出光区的强度的20%,有利于提高从第二导光元件出射光线的均匀性。
例如,如图12所示,位于同一透反元件组011中的第一透反元件0110沿光线在第二导光元件120内的传播方向上相邻设置。例如,一透反元件组包括两个第一透反元件0110,这两个第一透反元件0110可以为彼此相邻的透反元件。例如,一透反元件组包括三个以上第一透反元件0110,这三个以上第一透反元件0110依次排列,且任意两个第一透反元件0110中没有设置属于其他透反元件组的第一透反元件0110。
例如,如图12所示,多个第一透反元件0110的数量可以为N个,例如8个,M组第一透反元件中的每一组中包括的第一透反元件0110具有相同的反射率,且M组中的任意两组中的第一透反元件0110的反射率不同。例如,如图12所示,M可以为4,沿光线在第二导光元件120中的传播方向,多个第一透反元件0110的反射率可以依次设置为1/8、1/8、1/6、1/6、1/4、1/4、1/2和1,此时一组第一透反元件0110的数量为一个或者两个。本公开实施例不限于此,一组第一透反元件的数量还可以为三个或者更多个,可以根据实际产品需求进行设置。
例如,可以在第二导光元件120的出光侧设置扩散元件,以将从第二导光元件120出射的光线进行扩散,可以提高光线的均匀性。
例如,如图12所示,M个透反元件组011包括第一透反元件组011-1和第二透反元件组011-2,第一透反元件组011-1中的第一透反元件0110的反射率大于第二透反元件组011-2中的第一透反元件0110的反射率,且第一透反元件组011-1中第一透反元件0110的数量不大于第二透反元件组011-2中第一透反元件0110的数量。例如,第一透反元件组011-1中的第一透反元件0110的反射率为上述1/6,第二透反元件组011-2中的第一透反元件0110的反射率为上述1/8,第一透反元件组011-1中的第一透反元件0110的数量可以等于第二透反元件组011-2中的第一透反元件0110的数量。例如,第一透反元件组011-1中的第一透反元件0110的反射率为上述1/2,第二透反元件组011-2中的第一透反元件0110的反射率为上述1/4,第一透反元件组011-1中的第一透反元件0110的数量可以小于第二透反元件组011-2中的第一透反元件0110的数量。
例如,如图12所示,沿光线在第二导光元件120中的传播方向,透反元件组011中包括的第一透反元件0110的数量可以呈区域性地减小。例如,最靠近第二导光元件120的入光侧的透反元件组011中的第一透反元件0110的数量最多,最远离第二导光元件120的入光侧的透反元件组011中的第一透反元件0110的数量最少,位于上述两个透反元件组011之间的透反元件组011中的第一透反元件0110的数量可以位于上述两个数量之间,或者与上述数量中数值较大的一个相同;位于上述两个透反元件组011之间的透反元件组011的数量可以为多个,这些透反元件组011 中的第一透反元件0110的数量可以相同,也可以不同;例如,这些透反元件组011中的两个透反元件组011中的第一透反元件0110的数量不同时,靠近第二导光元件120的入光侧的一个透反元件组011中的第一透反元件0110的数量可以大于远离第二导光元件120的入光侧的一个透反元件组011中的第一透反元件0110的数量。
例如,如图12所示,M个透反元件组011包括第三透反元件组011-3,第三透反元件组011-3中的第一透反元件0110的反射率大于其他透反元件组011中的第一透反元件0110的反射率,且第三透反元件组011-3仅包括一个第一透反元件0110。例如,如图12所示,第三透反元件组011-3为距离第二导光元件120的入光侧最远的透反元件组011,该透反元件组011中的第一透反元件0110的反射率不小于90%。例如,该透反元件组011中的第一透反元件0110的透反面对入射在其上的光线的反射率不小于92%,或者不小于95%,或者不小于98%,如该透反元件组011中的第一透反元件0110的反射率接近或几乎为100%,即该第一透反元件0110可以将入射在其透反面上的光线几乎全部反射出第二导光元件。
例如,如图12所示,位于同一透反元件组011中的第一透反元件0110的倾斜方向相同。上述“倾斜方向”可以指第一透反元件相对于Y方向的倾斜方向,例如以X方向的箭头所指的方向为向右,位于同一透反元件组011中的第一透反元件0110向右倾斜。例如,多个第一透反元件0110的倾斜方向可以均相同,或者也可以有一定的误差范围,例如具有0°-10°的误差范围。
例如,如图12所示,位于同一透反元件组011中的第一透反元件0110平行设置。例如,多个第一透反元件0110中的任意两个彼此平行设置。上述“平行设置”可以包括严格平行和大致平行,严格平行指任意两者的夹角为0°,大致平行指任意两者的夹角不大于10°。通过将多个第一透反元件平行设置,可以使得从第二导光元件出射的光线为平行光。本公开实施例不限于此,多个第一透反元件中也可以有部分透反元件不平行设置,以实现从第二导光元件出射的光线进行会聚或者发散。
例如,在本公开实施例的一示例中,导光装置还包括第二透反元件阵列,如图10A所示,第二光耦出部1012包括第二透反元件阵列,第二透反元件阵列包括多个第二透反元件0120,多个第二透反元件0120中的至少部分被配置为部分透射且部分反射传播至第二透反元件0120的光线,以使所述光线的一部分射出导光装置(例如第三导光元件130),且使光线的另一部分继续在导光装置中传播。例如,上述透反元件可以指以下描述的第二透反元件,下述第二透反元件与上述透反元件具有相同的特征和实施方式。例如,第一透反元件阵列与第二透反元件阵列在垂直于第一透反元件的排列方向的方向(如图10A所示的Y方向)上没有交叠,例如,第一透反元件阵列与第二透反元件阵列沿可以沿图10A所示的Y方向排列。
例如,如图10A所示,第一透反元件阵列与第二透反元件阵列在垂直于第一透反元件0110的延伸方向的方向上交叠。
例如,如图10A所示,多个第二透反元件包括M’个透反元件组,至少一个透反元件组中的每个透反元件组包括具有相同反射率的至少两个第二透反元件,且位于不同透反元件组的第二透反元件的反射率不同,M’为大于1的正整数。上述“相同反射率”可以包括反射率完全相同和反射率大致相同,这里的“反射率大致相同”指任意两者的反射率之比为0.8~1.2,或者0.9~1.1,或者0.95~1.05。本公开实施例中,通过将多个第二透反元件设置为M’个透反元件组,至少有两个透反元件反射率相同,可以减少第二透反元件阵列所需的透反膜的种类,有利于降低导光装置的成本。
例如,如图10A所示,多个第二透反元件的数量可以为N’(例如N’为大于等于2的正整数),N’个第二透反元件包括的反射率的种类小于N’种,由此可以减少第二透反元件阵列所需的透反膜的种类,有利于降低导光装置的成本。
例如,如图10A所示,多个第二透反元件沿光线在导光装置中的传播方向排列,沿多个第二透反元件的排列方向,多个第二透反元件的反射率呈区域性地逐渐增大。
例如,上述区域性地逐渐增大可以指:将多个第二透反元件划分为两个或两个以上的区域(一个区域可以指一个透反元件组,但不限于此,一个区域也可以包括两个相邻的透反元件组或者两个以上透反元件组),上述不同区域中透反元件的反射率不同且整体上呈逐渐增大的趋势。
例如,如图10A所示,多个第二透反元件中反射率最大的第二透反元件的反射率不小于90%。例如,导光装置包括入光侧,距离该入光侧最远的第二透反元件可以为反射率最大的第二透反元件,该第二透反元件的透反面对入射在其上的光线的反射率不小于92%,或者不小于95%,或者不小于98%,如该第二透反元件的反射率接近或几乎为100%,该第二透反元件可以将入射在其透反面上的光线几乎全部反射出导光装置。
本公开实施例中的第二透反元件可以与上述第一透反元件具有相同的性质,例如第一透反元件中设置的反射介质可以应用于第二透反元件。
例如,在第一透反元件阵列和第二透反元件阵列沿如图10A所示的X方向排列时,两个透反元件阵列可以镜像对称。例如,在第一透反元件阵列和第二透反元件阵列沿图2所示的X方向排列时,两个透反元件阵列中的反射介质的种类可以镜像对称设置。
图13A至图13H为根据本公开实施例的另一示例提供的透反元件的局部平面结构示意图。如图13A至图13H所示,多个透反元件(如第一透反元件0110和第二透反元件0120至少之一)包括设置有反射介质0111的透反元件,至少部分透反元件设置有具有第一反射率的反射介质0111,上述至少部分透反元件中的至少两个透反元件中,具有第一反射率的反射介质0111占相应的透反元件的面积比不同以使至少两个透反元件的反射率不同。例如,至少部分透反元件设置有具有相同反射率的反射介质0111,至少部分透反元件的至少两个透反元件中,具有相同反射率的反射介质0111占相应的透反元件的面积比不同以使至少两个透反元件的反射率不同。上述“相同反射率”包括完全相同的反射率和近似相同的反射率,近似相同的反射率指任意两者的反射率之差与其中之一的比值不大于10%(例如,可以不大于8%、5%或1%)。例如,上述第一反射率可以指至少一个特定反射率,如80%、70%、60%及其他数值中的至少一者。例如,至少两个透反元件中,反射介质0111具有第一反射率,第一反射率为一个特定反射率,例如第一反射率为60%,上述至少两个透反元件均具有相同的反射率;或者,至少两个透反元件中,反射介质0111具有第一反射率,第一反射率包括多个特定反射率,例如第一反射率包括60%和80%,可以认为至少两个透反元件上均设置有反射率为60%的反射介质和反射率为80%的反射介质。
例如,多个透反元件包括设置有反射介质0111的透反元件至少一个透反元件设置的反射介质0111包括至少两种不同反射率,且多个透反元件设置的反射介质0111的反射率种类数量小于多个透反元件0110的数量。
例如,至少部分透反元件设置有具有两种或两种以上反射率的反射介质0111,至少部分透反元件的至少两个透反元件中,具有同一种反射率的反射介质0111占相应的透反元件的面积比不同以使至少两个透反元件的反射率不同。例如,反射介质0111包括反射率为60%和反射率为80%的两种介质,至少两个透反元件中,反射率为60%的反射介质占相应的透反元件0110的面积比不同,和/或反射率为80%的反射介质占相应的透反元件的面积比不同,以使至少两个透反元件的反射率不同。上述“同一种反射率”可以指相同的反射率,包括完全相同的反射率和近似相同的反射率,近似相同的反射率指任意两者的反射率之差与其中之一的比值不大于10%(例如,可以不大于8%、5%或1%)。
本公开实施例通过在至少两个透反元件上设置具有相同反射率的反射介质,且通过调节该至少两个透反元件上反射率相同的反射介质的面积来调节相应透反元件的反射率,减少反射介质的种类,降低了透反元件的制作成本。
例如,上述至少一个透反元件设置的反射介质可以为包括一层反射膜的介质,也可以为包括多层反射膜的介质,上述反射介质的反射率指该反射介质包括的多膜层整体的反射率。例如,上述反射介质也可以为透反介质,该透反介质可以为包括一层透反膜的介质,也可以为包括多层透反膜的介质,透反介质的透射率指该透反介质包括的膜层整体的透射率。例如,至少一个透反元件设置的所述反射介质包括堆叠设置的多层反射膜,所述多层反射膜包括五氧化二钽、二氧化钛、氧化镁、氧化锌、氧化锆、二氧化硅、氟化镁、氮化硅、氮氧化硅以及氟化铝中的多种。
例如,本示例中,多个透反元件的排列方式以及多个透反元件上反射率的变化趋势可以与图1A至图12所示的透反元件的排列方式以及多个透反元件上反射率的变化趋势相同,在此不再赘述。
例如,图13A至图13H以第一透反元件0110为例进行描述,但不限于此,第二透反元件也适用。例如,图13A至图13H示意性的示出第一透反元件0110的形状为矩形,但是不限于此,第一透反元件的形状还可以为圆形、椭圆形或者六边形等其他多边形。例如,第一透反元件0110可以为导光介质123的表面。例如,导光介质123可被划分为多个截面为平行四边形的柱体(例如平行六面体),在拼接的柱体之间可以设置透反元件0110。例如,上述柱体可以包括彼此相对的两个表面,这两个表面之一可以为柱体的入光面,另一个表面位于入光面的背侧。例如,反射介质可以采用镀设或者贴覆的方式设置在透反元件上,即可以设置在柱体的表面,例如上述柱体彼此拼接的表面。上述第一透反元件的形状可以指导光介质中拼接的柱体的表面的形状。
例如,如图13A至图13H所示,多个第一透反元件0110中任意两个透反元件0110的的面积相同,且同一第一透反元件0110上设置的反射介质0111为具有同一种反射率(例如第一反射率)的反射介质0111。例如,该反射介质0111可以选用反射率较大的材质,例如,该反射介质0111的反射率可以不小于80%。例如,该反射介质0111的反射率可以不小于90%。例如,该反射介质0111的反射率可以不小于95%。通过在同一第一透反元件上设置反射率较大的反射介质,可以使得该第一透反元件的反射率具有较大的可调节范围,即该第一透反元件可以调节为具有较大的反射率(如与反射介质具有相同的反射率),也可以具有较小的反射率(如反射率小于40%)。当然,本公开实施例不限于此,根据第一透反元件的位置以及对反射率的需求,一些第一透反元件上设置的反射介质也可以采用反射率较低的材质。上述“面积相同”可以指两者的面积完全相同或者大致相同,例如两者的面积之比为0.8~1.2,例如可以是0.9~1.1。
例如,如图13A至图13H所示,所有第一透反元件0110上设置的反射介质0111均为具有第一反射率的反射介质0111。例如,多个第一透反元件0110上均设置具有相同反射率的反射介质0111。例如,多个第一透反元件0110上设置的反射介质0111可以为采用同一材料制作的反射介质0111,从而极大减少了反射介质的种类,降低了产品的制作成本。
例如,如图13A至图13H所示,第一透反元件0110的反射率与其设置的反射介质0111的面积呈正相关。例如,对于一个第一透反元件0110,其上设置的反射介质0111的面积越大,该第一透反元件0110的反射率越大,当反射介质0111的面积与该第一透反元件0110的表面面积几乎相同时,该第一透反元件0110的反射率达到最大,几乎可以与反射介质0111的反射率相等。在反射介质0111的面积小于该第一透反元件0110的表面面积时,该第一透反元件0110的反射率小于反射介质0111的反射率,由此,通过调节第一透反元件0110上设置的反射介质0111的面积,可以调节第一透反元件0110的反射率。
例如,如图13A至图13H所示,部分第一透反元件0110还包括空白区域0112,空白区域0112包括第一透反元件0110未设置反射介质0111的区域。例如,第一透反元件0110上除反射介质0111以外的区域即为空白区域0112。通过调节一个第一透反元件上的反射介质与空白区域的面积比,可以调节该第一透反元件的反射率,其中,反射介质与空白区域的面积比越大,第一透反元件的反射率越高。例如,多个第一透反元件可以为导光介质中包括的多个平行六面体的表面(例如多个平行六面体彼此拼接的表面),空白区域可以为上述表面中没有设置反射介质的区域。
例如,图13A所示的第一透反元件0110中的反射介质0111与空白区域0112的面积比大于图13B所示的第一透反元件0110中的反射介质0111与空白区域0112的面积比,则图13A所示的第一透反元件0110的反射率大于图13B所示的第一透反元件0110。图13A和图13B示意性的示出,反射介质0111沿U方向延伸且沿V方向排列,本公开实施例不限于此,反射介质还可以设置为沿V方向延伸且沿U方向排列。
例如,图13C和图13D示意性的示出反射介质0111沿与U方向和V方向相交的方向延伸,且通过调节反射介质0111与空白区域0112的面积比,可以调节相应的第一透反元件的反射率。
例如,图13E和图13F示意性的示出反射介质0111的形状为圆形,且通过调节反射介质0111与空白区域0112的面积比,可以调节相应的第一透反元件的反射率。
例如,图13G和图13H示意性的示出反射介质0111的形状为矩形,且通过调节反射介质0111与空白区域0112的面积比,可以调节相应的第一透反元件的反射率。
当然,反射介质的形状不限于图中所示的矩形或者圆形,还可以为其他形状。
例如,第一透反元件0110上设置的反射介质0111可以均采用反射率为80%的反射膜,第一透反元件0110的数量例如为四个,沿光线的传播方向,四个第一透反元件0110的反射率分别需要设置为20%、40%、60%和80%,也即可以通过调节反射率为80%的膜层在不同第一透反元件上的面积比来实现低于80%反射率的其他反射率。
例如,可以采用调节占空比的方式来实现较低的反射率。例如,本公开实施例中的占空比可以指透反元件设置的反射介质与空白区域的面积比,或者空白区域与反射介质的面积比。例如,可以在一个第一透反元件0110的一半区域设置反射介质0111,而另一半区域设置空白区域0112,相对于表面设置填充满反射介质0111的另一个第一透反元件0110,上述一个第一透反元件0110反射的光线数量降为一半。其他较低的反射率的实现方式与其类似,调节反射介质的面积占比即可。
例如,如图13A至图13H所示,部分第一透反元件0110的反射介质0111均匀分布,可以使得从导光装置出射的光线更加均匀。上述反射介质的均匀分布可以包括反射介质和空白区域交叉分布,可以包括反射介质在某一方向(如V方向、U方向或者与U方向和V方向均相交的方向等)等间距分布。
例如,反射介质0111的分布也可以不均匀分布(例如,类似二维码点阵的分布形式)或者呈随机分布,使得反射介质0111的总面积与空白区域的面积比例符合要求就可以。
例如,在导光装置的出光面可以设置扩散元件,通过扩散作用进一步提升透反元件出射的光线的均匀性。
例如,图14A和图14B为根据本公开实施例的另一示例提供的透反元件的局部平面结构示意图。例如,图14A和图14B以第一透反元件0110为例进行描述,但不限于此,第二透反元件也适用。例如,图14A和图14B示意性的示出第一透反元件0110的形状为矩形,但是不限于此,第一透反元件的形状还可以为圆形、椭圆形或者六边形等其他多边形。
图14A和图14B与图13A至图13H所示示例的不同之处在于多个第一透反元件0110包括至少两个透反元件组(如图12所示的011),至少一个透反元件组中包括至少两个透反元件,且同一透反元件组中设置的反射介质0111为具有相同反射率的反射介质0111,位于不同透反元件组的反射介质0111的反射率不同。例如,本示例中多个第一透反元件0110中,同一第一透反元件0110中设置采用同一材质形成的反射介质0111,至少两个不同的第一透反元件0110中可以设置不同材质形成的反射介质0111。本示例中,第一透反元件的形状、反射介质的形状以及分布可以与图13A至图13H所示示例中的第一透反元件的形状、反射介质的形状以及分布相同,在此不再赘述。
例如,多个第一透反元件0110的数量可以为N,N个第一透反元件0110包括的透反元件组011的数量小于N。例如,一个透反元件组或者多个透反元件组中设置的第一透反元件0110的数量可以大于1,透反元件组的数量以及各透反元件组中第一透反元件的数量可以根据产品需求进行设置。
例如,图14A所示的第一透反元件0110的反射介质0111的反射率不同于图14B所示的第一透反元件0110的反射介质0111的反射率,图14A所示的第一透反元件0110和图14B所示的第一透反元件0110分别位于两个不同的透反元件组。
例如,设置具有不同反射率的反射介质0111的至少两个第一透反元件0110中,反射介质0111占相应的第一透反元件0110的面积比相同。例如,图14A所示的第一透反元件0110设置的反射介质0111占该第一透反元件0110的面积比为A,图14B所示的第一透反元件0110设置的反射介质0111占该第一透反元件0110的面积比也为A,但是由于两个第一透反元件0110设置的反射介质0111的反射率不同,则即使两个第一透反元件0110设置的反射介质0111的面积比相同,这两个第一透反元件0110的反射率也不同。
例如,在设置有至少两个第一透反元件0110的透反元件组中,第一透反元件0110的反射率与其设置的反射介质0111的面积呈正相关。例如,对于一个第一透反元件0110,其设置的反射介质0111的面积越大,该第一透反元件0110的反射率越大,当反射介质0111的面积与该第一透反元件0110的表面面积几乎相同时,该第一透反元件0110的反射率达到最大,几乎可以与反射介 质0111的反射率相等。在反射介质0111的面积小于该第一透反元件0110的表面面积时,该第一透反元件0110的反射率小于反射介质0111的反射率,由此,通过调节第一透反元件0110上设置的反射介质0111的面积,可以调节第一透反元件0110的反射率。
例如,图14A所示的第一透反元件0110上设置的反射介质0111为反射率为80%的反射膜,图14B所示的第一透反元件0110上设置的反射介质0111为反射率为60%的反射膜,多个第一透反元件0110的数量为四个为例,沿光线的传播方向,四个第一透反元件0110的反射率分别设置为20%、40%、60%和80%。例如,反射率为60%的第一透反元件0110上可以设置反射率为60%的反射介质0111,该反射介质0111占满第一透反元件0110的表面;反射率为80%的第一透反元件0110上可以设置反射率为80%的反射介质0111,该反射介质0111占满第一透反元件0110的表面;通过调节反射率为80%的反射介质0111在另外两个第一透反元件0110的表面的面积比可以分别实现反射率分别为20%和40%的第一透反元件0110,或者调节反射率为60%的反射介质0111在另外两个第一透反元件0110的表面的面积比可以分别实现反射率分别为20%和40%的第一透反元件0110,或者调节反射率为60%的反射介质0111在一个第一透反元件0110的表面的面积比可以分别实现反射率分别为20%和40%之一的第一透反元件0110,调节反射率为80%的反射介质0111在一个第一透反元件0110的表面的面积比可以分别实现反射率分别为20%和40%的另一个的第一透反元件0110。由此,本示例可以通过两种不同反射率的反射介质实现具有较低反射率的第一透反元件,通过采用至少两个不同反射率的反射介质实现具有不同反射率的第一透反元件,可以获得从第一透反元件出射光线更均匀的效果。
本示例中,第一透反元件包括上述空白区域0112,通过调节反射介质0111与空白区域0112的面积比,可以调节相应的第一透反元件的反射率。
例如,图15A和图15B为根据本公开实施例的另一示例提供的透反元件的局部平面结构示意图。例如,图15A和图15B以第一透反元件0110为例进行描述,但不限于此,第二透反元件也适用。例如,图15A和图15B示意性的示出第一透反元件0110的形状为矩形,但是不限于此,第一透反元件的形状还可以为圆形、椭圆形或者六边形等其他多边形。
图15A和图15B与图13A至图13H所示示例的不同之处在于:所有第一透反元件0110设置有反射介质0111,至少一个第一透反元件0110设置的反射介质0111包括至少两种不同反射率,且多个第一透反元件0110设置的反射介质0111的反射率种类数量小于多个第一透反元件0110的数量。本示例提供的透反元件中,通过在至少一个透反元件上设置包括至少两种不同反射率的反射介质,且反射介质的反射率种类数量小于多个透反元件的数量,在使得透反元件出射光线较均匀的同时,有利于降低透反元件的制作成本。
例如,如图15A和图15B所示,至少一个第一透反元件0110设置的反射介质0111包括反射率不同的至少两种反射介质。例如,至少一个第一透反元件0110可以设置反射率不同的三种反射介质0111或者四种反射介质0111。例如,一些第一透反元件0110设置反射率不同的至少两种反射介质,不同第一透反元件0110设置的反射介质的几种反射率可以相同,也可以不同。
例如,如图15A和图15B所示,至少两个第一透反元件0110中,每个第一透反元件0110上设置的反射介质0111包括反射率不同的至少两种反射介质(如第一反射介质0111-1和第二反射介质0111-2),不同第一透反元件0110中,具有相同反射率的一种反射介质0111(如第一反射介质0111-1或第二反射介质0111-2)占相应的第一透反元件0110的面积比不同以使不同第一透反元件0110的反射率不同。
例如,图15A所示的第一透反元件0110上设置的第一反射介质0111-1占该第一透反元件0110的面积比与图15B所示的第一透反元件0110设置的第一反射介质0111-1占该第一透反元件0110的面积比不同,并且,图15A所示的第一透反元件0110设置的第二反射介质0111-2占该第一透反元件0110的面积比与图15B所示的第一透反元件0110设置的第二反射介质0111-2占该第一透反元件0110的面积比也不同,由此,可以通过调节第一透反元件设置的不同反射率的反射介质的面积比来调节相应的第一透反元件的反射率。当然,本公开实施例不限于不同反射率的反射介质仅包括两种不同反射率,还可以包括具有其他反射率的第三反射介质等,可根据产品需求进行设置。
例如,如图15A和图15B所示,至少两个第一透反元件0110中,每个第一透反元件0110设置的反射介质0111包括反射率不同的至少两种反射介质(如第一反射介质0111-1和第二反射介质0111-2),不同第一透反元件0110的反射率不同,且不同第一透反元件0110中,反射介质0111占相应的第一透反元件0110的表面的面积比相同。当然,本公开实施例不限于此,例如,至少两个第一透反元件中,各第一透反元件设置的反射介包括反射率不同的至少两种反射介质(如第一反射介质和第二反射介质),不同第一透反元件的反射率不同,且不同第一透反元件中,反射介质占相应的第一透反元件的表面的面积比不同。
例如,图15A所示的第一透反元件0110中的反射介质0111(包括第一反射介质0111-1和第二反射介质0111-2)占该第一透反元件0110的面积比为B,图15B所示的第一透反元件0110中的反射介质0111(包括第一反射介质0111-1和第二反射介质0111-2)占该第一透反元件0110的面积比也为B,两个第一透反元件0110中,反射介质0111占据的面积比相同,可以通过调节各第一透反元件上的不同反射率的反射介质占该第一透反元件上的面积来调节该第一透反元件的反射率。例如,图15A所示的第一透反元件0110中,第一反射介质0111-1占该第一透反元件0110的面积比可以为B1,第二反射介质0111-2占该第一透反元件0110的面积比可以为B2,B1+B2=B;图15B所示的第一透反元件0110中,第一反射介质0111-1占该第一透反元件0110的面积比可以为B3,第二反射介质0111-2占该第一透反元件0110的面积比可以为B4,B3+B4=B,则通过调节B1、B2、B3以及B4的值,可以调整两个第一透反元件的反射率。
例如,如图15A和图15B所示,第一反射介质0111-1和第二反射介质0111-2可以分别为反射率为80%和60%的反射膜,同时通过调节这两种反射膜的面积比例,可以将不同的第一透反元件的反射率在20%~80%之间调节。
本示例中,第一透反元件包括上述空白区域0112,通过调节反射介质0111与空白区域0112的面积比,可以调节相应的第一透反元件的反射率。
例如,图13A至图15B所示的第一透反元件0110通过调节其上设置的反射介质0111的其表面的面积比调节该第一透反元件0110的反射率的方式可以应用于图1A至图12所示的示例中,以实现多个第一透反元件0110的反射率呈区域性地逐渐增大,或者逐渐增大。
图16为根据本公开另一实施例提供的一种导光装置。如图16所示,该导光装置包括导光结构100。导光结构100包括光耦出部101,光耦出部101被配置为将在导光结构100中传播的光线耦出。导光结构100包括第一导光元件110和第二导光元件120,进入导光结构100的光线经第一导光元件110传输至第二导光元件120,光耦出部101位于第二导光元件120。第一导光元件110被配置为对入射至第一导光元件110的光线进行全反射传播以使光线传播至第二导光元件120,第一导光元件110包括至少两个反射面1120,入射到第一导光元件110内的光线的发散角为θ,上述至少两个反射面112包括彼此相对的两个反射面112,该彼此相对的两个反射面112之间的夹角大于等于0°且小于等于θ。上述入射到第一导光元件110内的光线的发散角θ为大于0°的角度。
例如,彼此相对的两个子反射面112之间的在反射结构的入光侧、出光侧和位于入光侧和出光侧之间的侧方中的至少之一的夹角大于0°且小于等于θ。
例如,上述彼此相对的两个反射面112之间的夹角在0°与θ之间。例如,上述彼此相对的两个反射面112之间的夹角大于0°且小于等于θ;本公开实施例中将彼此相对的两个反射面设置为不平行,且两者之间的夹角小于等于θ,有利于降低两个反射面之间的至少一部分区域的距离,可以减薄第一导光元件的厚度,有利于增加光线在第一导光元件中反射的次数,提高第一导光元件的匀光效果。此外,还可以增加光线在第一导光元件中的反射次数后,有利于提升大角度光线的匀化效果。
例如,上述彼此相对的两个反射面112之间的夹角等于0°,可以认为其相互平行;平行的反射面112有利于维持光线在第一导光元件110内的全反射传播,可以提升光线利用率。
例如,第一导光元件110中设置有导光介质111,光线在该导光介质111中发生全反射传播,上述第一导光元件110包括的至少两个反射面112可以为导光介质111的用于反射光线的内表面,也可以为设置在导光介质外表面上的反射结构,本公开实施例对此不作限制。
例如,上述两个反射面1120可以为在图16所示的Y方向上彼此相对,也可以在垂直于XY面的方向上彼此相对,还可以在其他与X方向垂直的方向上彼此相对。例如,上述彼此相对的两个反射面1120可以为彼此独立且中间设置有间隔的两个子反射面,也可以为通过位于介质111以外区域的连接部连接起来的两个子反射面,本公开实施例对此不作限制。
例如,入射到第一导光元件110内的光线的发散角可以为40°。例如,入射到第一导光元件110内的光线的发散角可以为20°。入射到第一导光元件110内的光线的发散角可以为10°。
例如,彼此相对的两个反射面1120之间的夹角小于等于40°。例如,彼此相对的两个反射面1120之间的夹角小于等于30°。例如,彼此相对的两个反射面1120之间的夹角小于等于20°。例如,彼此相对的两子反射面1120之间的夹角小于等于10°。
本公开实施例中的第二导光元件可以与图1A至图12所示第二导光元件具有相同的特征,在此不再赘述。
例如,图16所示实施例中的导光装置可以包括图1A至图3B中任一示例所示的第三反射结构130,可以包括图1A至图10B中任一示例所示的光转化部200(某些示例中,光转化部可以替代第三反射结构130),可以包括图5所示示例中的调光结构18,可以包括图7所示示例中的光线聚集元件19等结构,本示例不再赘述。
图17为根据本公开实施例的另一示例提供的导光装置的局部截面结构示意图。图17所示导光装置与图4以及图16所示导光装置的不同之处在于导光装置还包括第四导光元件140,位于光转化部200的出光侧,光转化部200出射的光经第四导光元件140传输至第二导光元件120。例如,第四导光元件140位于光转化部200与第二导光元件120之间,光转化部200出射的光经第四导光元件140传输至第二导光元件120。例如,在第四导光元件140内传输的光线可以在第四导光元件140的内表面发生非全反射或者全反射传播,以将对该光线进一步起到匀光效果。
例如,如图17所示,第四导光元件140的延伸方向与第二导光元件120的延伸方向相同。例如,沿Y方向,第四导光元件140与第二导光元件120交叠。例如,沿Y方向第一导光元件110与第二导光元件120交叠,且第四导光元件140位于第一导光元件110与第二导光元件120之间。
本示例通过在光转化部与第二导光元件之间设置第四导光元件,有利于将光转化部出射的光线进一步混合均匀,可以提升从光转化部出射至第二导光元件的光线的均匀度。
例如,第四导光元件140包括光耦入部和光耦出部,光耦入部和光耦出部可以包括反射面或者光栅等结构,本公开实施例对此不作限制。
例如,图18为根据本公开提供的光源装置的截面结构示意图。如图18所示,光源装置包括光源部500以及图1A至图17任一示例提供的导光装置,图18示意性的示出导光装置为图3A所示的导光装置,但不限于此,还可以为图1A至图17中其他示例提供的导光装置。
例如,如图18所示,光源部500发出的光线被配置为进入导光装置。
例如,光源部500可以包括光源510和反射导光结构520,反射导光结构520被配置为将光源510发出的光线调节至预定发散角。例如,预定发散角可以包括40°以内的发散角。例如,预定发散角可以包括20°以内的发散角。例如,预定发散角可以包括10°以内的发散角。例如,预定发散角可以包括5°以内的发散角。
例如,反射导光结构520可以为灯杯,该灯杯可以是实心灯杯或空心灯杯,可以将光源发出的具有一定发散角度的光线转化为准直光线,例如,准直光线为平行或近乎平行(例如发散角不大于10°)的光线,其一致性较好,可以提高光线利用率,参见图19B所示的实施例,准直光线偏振转化的效率更高。
例如,反射导光结构520可以将光线的发散角控制为较小的角度,例如光源发出的光线其发散角一般较大,例如发散角为45°,反射导光结构520可以将该角度控制为40°、20°或10°。例如,光线具有20°以内的发散角,具有一定发散角度的光线,随着传播中的多次反射,其均匀性也会随之增加,可以改善光线明暗均匀度。
例如,本公开实施例提供的光源装置可以用于显示装置的背光源。
例如,图18示意性的示出光源部位于导光装置的侧方为例,但不限于此。当光源装置用于背光源时,光源部位于导光装置的侧方,即背光源为侧入式背光源。例如,导光装置可以设置为至 少一个边侧入光(例如,可以是两个边侧入光)的入光方式,有利于减小光源装置的厚度。例如,导光装置也可以设置为底部(例如导光装置远离出光区的一侧)入光,有利于减小光源装置的平面尺寸。
例如,光源510可为单色光源或混色光源,例如红色单色光源、绿色单色光源、蓝色单色光源或白色混色光源,或者也可以是多个不同颜色的单色光源组合形成混色光源,上述单色光源最终可形成单色图像,上述混色光源则可形成彩色图像。例如,光源510可以是激光光源或发光二极管(LED)光源。例如,光源部500可以包括一个光源510或多个光源510。
例如,光源部500包括的光源510发出的光线可以为一维光束,即主要在一维方向上延伸的光束。例如,光源部100可以包括条状灯带光源,该光源510发出光束的截面近似为一维线状,或者可以是窄带状。
本公开实施例提供的光源装置,通过采用图1A至图17所示的导光装置,可以使得光源装置出射的光线具有较好的均匀性。
例如,图19A和图19B为根据本公开实施例提供的显示装置的局部截面结构示意图。如图19A和图19B所示,显示装置包括显示面板600以及图18所示的光源装置。
例如,如图19A和图19B所示,显示面板600包括显示面601和与显示面601相对的背侧602,光源装置位于显示面板600的背侧602。例如,光源装置出射的光透过显示面板600后射向观察区。例如,显示面板600面向光源装置的一侧为非显示侧,显示面板600远离光源装置的一侧为显示侧,观察区位于显示面板600的显示侧,该显示侧是用户可以观看到显示图像的一侧。例如,观察区和光源装置位于显示面板600的两侧。
例如,显示面板可以为液晶显示面板。液晶显示面板可以包括阵列基板、对置基板、位于阵列基板和对置基板之间的液晶层以及封装液晶层的封框胶。例如,液晶显示面板还包括设置在阵列基板远离对置基板的一侧的第一偏振层和设置在对置基板远离阵列基板的一侧的第二偏振层。例如,光源装置被配置为向液晶显示面板提供背光,背光通过液晶显示面板后转变为图像光。
例如,第一偏振层的偏光轴方向和第二偏振层的偏光轴方向互相垂直,但不限于此。例如,第一偏振层可通过一种线偏振光,第二偏振层可通过另一种线偏振光,上述两种线偏振光的偏振方向垂直。
例如,只有特定偏振态的光线才可经过液晶层与光源装置之间的第一偏振层而入射到液晶显示面板内部,并被利用成像。例如,本公开实施例提供的光源装置发出的光线为线偏振光,该线偏振光的偏振方向与第一偏振层的偏光轴平行,由此,光源装置射向显示面板的光线具有较高的利用率。
例如,如图19A所示,第二导光元件120中,位于入光侧的最边缘的一个透反元件0110的反射率大于透射率。例如,该透反元件的反射率可以几乎为100%或接近100%,从而将大部分甚至全部光线反射向与其相邻的透反元件,以使远离该透反元件的其他透反元件将光线耦出,既可以避免显示面板的边缘过亮,还可以避免该透反元件因具有一定透射率,使得透射的光线具有一定发散角,发散的光线从该透反元件的边缘漏出,与正常耦出的光线交叠,造成亮条。
例如,如图19A所示,沿垂直于显示面板600的显示面的方向,上述最边缘的一个透反元件0110的至少部分与显示面板600没有交叠;或者,与上述最边缘的一个透反元件0110交叠的显示面板600的区域不用于成像。
例如,如图19B所示,第二导光元件120中,位于入光侧的最边缘的透反元件0110将从第一导光元件110传播进第二导光元件120的光线的一部分反射向与其相邻的透反元件,且将从第一导光元件110传播进第二导光元件120的光线的另一部分透射向显示面板600。
例如,上述位于入光侧的最边缘的透反元件0110可以设置为具有一定透射率的元件,例如透射率可以较小,例如可以不超过20%,尽量使得直接透过该透反元件出射的光线的强度与后续从其他透反元件耦出的光线的强度相差不大,例如强度差不大于从其中任一个透反元件耦出的光线的强度的20%(例如,可以是15%,10%或5%),从而可以增加出光面积,避免边缘不出光。
例如,图20为根据本公开实施例的另一示例提供的显示装置的局部截面结构示意图。如图20所示,显示装置还包括至少一个光扩散元件710,位于显示面板600的显示面所在侧和背侧的至少 之一,且被配置为将显示面板600和光源装置至少之一出射的光线进行扩散。
例如,图20示意性的示出光扩散元件710位于显示面板600的背侧,即位于显示面板600与光源装置之间,且被配置为将光源装置的出射的光线进行扩散,即光扩散元件710被配置为将经过光扩散元件710的光束进行扩散。
例如,光扩散元件710还可以设置在显示面板600的出光侧,配置为将显示面板600出射的图像光线进行扩散,光扩散元件710例如紧贴显示面板600设置,以提升成像效果。
例如,图20示意性的示出光扩散元件的数量为1个,但是不限于此,还可以为多个,且彼此间隔设置,以进一步提高光束的分散效果。本公开实施例示意性的示出光扩散元件位于显示面板的背侧,但不限于此,还可以位于显示面板的显示面一侧。例如,光扩散元件可以贴合在显示面板的显示面的表面。
例如,光扩散元件710被配置为扩散经过光扩散元件710的光束但不改变或几乎不改变该光束的光轴。上述“光轴”指光束的中心线,也可以认为是光束传播的主方向。
例如,入射光束经过光扩散元件710后,会扩散为沿传播方向具有特定大小和形状的光斑的光束,例如,光斑的能量分布可以均匀化或者非均匀化;例如,光斑的大小和形状可以由光束扩散元件700的表面设计的微结构控制。上述特定形状的光斑可以包括但不限于线形、圆形、椭圆形、正方形、和长方形。
例如,光扩散元件710可以不区分正反面。例如,光束扩散后的传播角度和光斑尺寸决定了最终成像的亮度及可视区域,扩散角度越小,成像亮度越高,可视区域也越小;反之亦然。
例如,光扩散元件710包括衍射光学元件和散射光学元件中的至少之一。
例如,光扩散元件710可以为成本较低的散射光学元件,如匀光片、扩散片等,光束透过匀光片等散射光学元件时会发生散射,还会发生少量的衍射,但散射起主要作用,光束透过散射光学元件后会形成较大的光斑。
例如,光扩散元件710也可以为对扩散效果控制相对更加精确的衍射光学元件(Diffractive Optical Elements,DOE),例如光束整形片(Beam Shaper)等。例如,衍射光学元件通过在表面设计特定的微结构,主要通过衍射起到光扩束作用,光斑的大小和形状可控。
图20所示的显示装置中除光扩散元件710外的其他结构可以与图1A至图19所示的相应结构具有相同的特征,在此不再赘述。
例如,图21为根据本公开实施例的另一示例提供的显示装置的局部截面结构示意图。如图21所示,显示装置还包括光会聚元件720,位于光源装置与显示面板600之间,且被配置为对从光源装置出射的光线进行会聚后使经会聚的光线射向至少一个光扩散元件710。
例如,如图21所示,光会聚元件720被配置为对光源装置出射的准直光线进行方向控制,将光线聚集至预定范围,可进一步聚拢光线,提高光线利用率。上述预定范围可以是一个点,比如凸透镜的焦点,也可以是一个较小的区域,设置光会聚元件的目的在于将光波导元件输出的准直光线统一或大部分调整方向至预定范围,提高光线的利用率。
例如,光会聚元件720可为透镜、棱镜、曲面反射镜或透镜组合,例如可以是菲涅尔透镜和/或曲面透镜,例如可以是凸透镜、凹透镜或透镜组合等,图21中以凸透镜为例进行示意说明。
例如,如图21所示,光会聚元件720可将光源装置输出的准直光线聚集至一定的范围,光扩散元件710可将聚集的光线扩散。本公开实施例通过光会聚元件和光扩散元件的配合,在提供高光效的同时也扩大了可视范围。
例如,如图21所示,本公开实施例中,光会聚元件720可以对几乎所有光线进行聚集定向,使得光线可到达用户的眼盒区域001,因此光源装置输出的准直光束便于控制以实现方便的调整光线的方向。例如,可以根据实际需求预设观察者需要观看成像的区域,即眼盒区域(eyebox)001,该眼盒区域001是指观察者眼睛所在的、可以看到显示装置显示的图像的区域,例如眼盒区域可以是平面区域或者立体区域,用户眼睛在眼盒范围内都可以看到图像,例如完整的图像。
例如,透反元件阵列包括相邻的第一透反元件和第二透反元件,第一透反元件被配置为将从第一导光元件传播进所述第二导光元件的光线反射向第二透反元件,沿垂直于第二导光元件的延伸方向的方向,第一透反元件的至少部分与显示面板的液晶层没有交叠。例如,如图19A所示实 施例中,沿垂直于显示面板600的显示面的方向,第一透反元件可以是上述最边缘的一个透反元件0110,其至少部分与显示面板600没有交叠;或者,与上述最边缘的一个透反元件0110交叠的显示面板600的区域不用于成像。例如,第一透反元件的反射率为80%以上,例如可以是90%,或者可以是95%,甚至可以接近100%。第一透反元件将绝大多数光线反射至第二导光元件的其他透反元件(例如第二透反元件),第一透反元件本体很少或几乎不透射光线,其他透反元件将光线耦出,显示面板如液晶屏可以与第一透反元件不重叠。
透反元件阵列包括相邻的第一透反元件和第二透反元件,第一透反元件被配置为将从第一导光元件传播进第二导光元件的光线的一部分反射向第二透反元件,且将从第一导光元件传播进第二导光元件的光线的另一部分透射向显示面板,且第一透反元件的反射率大于透射率。例如,如图19b所示的实施例,第一透反元件可以是上述位于入光侧的最边缘的透反元件0110,其可以设置为具有一定透射率的元件,例如透射率可以较小,例如可以不超过20%(例如,不超过10%,8%或5%),尽量使得直接透过该透反元件出射的光线的强度与后续从其他透反元件(例如第二透反元件)耦出的光线的强度相差不大,例如强度差不大于从其中任一个透反元件耦出的光线的强度的20%(例如,可以是15%,10%或5%),从而可以增加出光面积,避免显示面板的边缘不出光,显示面板可以设置与导光元件尺寸接近或相同,节约了安装空间。
图22为根据本公开实施例提供的抬头显示器的局部截面结构示意图。如图22所示,抬头显示器包括反射成像部800以及图19A至图21中任一示例所示的显示装置。图22示意性的示出抬头显示器中的显示装置为图21所示的显示装置,但不限于此。例如,如图22所示,反射成像部800被配置为将显示装置出射的光线反射至抬头显示器的观察区001(即眼盒区域001)。
例如,如图22所示,反射成像部800被配置为将显示装置出射的光线反射至眼盒区域001,且透射环境光。位于眼盒区域001的用户可以观看到反射成像部800反射的显示装置所成像002以及位于反射成像部800远离眼盒区域001一侧的环境景象。例如,显示装置发出的图像光线入射至反射成像部800,被反射成像部800反射的光线入射至用户,例如驾驶员双眼所在的眼盒区域001,用户就可观察到形成于例如反射成像部外侧的虚像,同时不影响用户对外界环境的观察。
例如,上述眼盒区域001是指用户双眼所在的、可以看到抬头显示器显示的图像的平面区域。例如,用户的双眼相对于眼盒区域的中心偏离一定距离,如上下、左右移动一定距离时,用户双眼仍处于眼盒区域内,用户仍然可以看到抬头显示器显示的图像。
例如,如图22所示,反射成像部800可为机动车的挡风窗(例如挡风玻璃)或成像窗,分别对应风挡式抬头显示器(Windshield-HUD,W-HUD)和组合式抬头显示器(Combiner-HUD,C-HUD)。
例如,如图22所示,反射成像部800可以为平面板材,通过镜面反射形成虚像;也可以为曲面面形,如挡风玻璃或者带有曲率的透明成像板等,会提供较远的成像距离。
例如,在本公开的一个示例中,反射成像部800可以包括第一层、第二层以及位于第一层和第二层之间的间隙(后面称之为夹层);楔形膜位于反射成像部800的夹层(也即,第一层和第二层之间的间隙)中。以反射成像部800实现为交通工具的挡风玻璃(例如,前挡风玻璃)对设置了楔形膜的反射成像部800以及图22所示的抬头显示器具有消重影功能进行示例性说明。例如,挡风玻璃采用双层玻璃结构,在两层玻璃之间利用特殊的工艺嵌入楔形的聚乙烯醇缩丁醛酯(PVB)层,通过使得反射成像部800实现为设置了楔形膜的挡风玻璃,可以使得玻璃内外表面反射的图像(也即,第一层反射的图像和第二层反射的图像)重叠成一个影像,由此使得抬头显示器具有重影抑制(例如,消重影)功能。例如,楔形膜具有薄的一端和厚的一端,还具有一定的角度,楔形膜的角度需要根据抬头显示器的要求来设置。本公开实施例通过在反射成像部设置楔形膜,可以使反射成像部靠近图像源以及远离图像源的表面反射的图像重叠成一个影像以解决重影问题。
例如,在本公开的一个示例中,反射成像部800面向显示装置的表面可以设置有选择性反射膜、P偏振光反射膜或者第一相位延迟部。
例如,在本公开的一个示例中,反射成像部800面向显示装置的表面设置有P偏振光反射膜以反射显示装置射向反射成像部800的P偏振态的光线,P偏振光反射膜对P偏振态的光线的反 射率大于对S偏振态的光线的反射率。
例如,显示装置发出的图像光线包括P偏振态的光线,反射成像部800的表面通过设置P偏振光反射膜可以使P偏振的图像光线经P偏振光反射膜反射后入射到观察区。例如,反射成像部800的材料包括玻璃时,玻璃对P偏振光的透射率较高,反射率较低,因此除被P偏振光反射膜反射的P偏振光外,透射过玻璃的P偏振光被反射成像部800外表面反射向观察区的亮度很低,进而可以消除重影。
例如,P偏振光反射膜的结构与上述选择性反射膜的结构类似,都可通过多层膜堆叠的方式来实现,可以是有机膜堆叠或者无机膜堆叠而成的结构。例如,P偏振光反射膜可以为反射式偏光镜(Reflecting polarizer mirror,RPM),即RPM膜。
例如,在本公开的一个示例中,反射成像部800面向显示装置的表面设置有第一相位延迟部,显示装置出射的光线包括S偏振态的光线,第一相位延迟部被配置为将射入第一相位延迟部的S偏振态的光线转换为非S偏振态的光线,例如P偏振态的光线、圆偏振光或椭圆偏振光。
例如,显示装置出射的图像光包括S偏振态的光线,第一相位延迟部可以为1/2波片,入射到第一相位延迟部的S偏振态的光线的一部分可以被反射成像部800反射至观察区,另一部分经过第一相位延迟部后被转换为P偏振态的光线,P偏振态的光线在反射成像部800外侧内表面的反射率很低,基本都会透射出去,进而消除重影。
例如,显示装置出射的图像光包括S偏振态的光线,第一相位延迟部可以为1/4波片,入射到第一相位延迟部的S偏振态的光线的一部分可以被反射成像部800反射至观察区,另一部分经过第一相位延迟部后被转换为圆偏振光,圆偏振光在反射成像部800外侧内表面的反射率很低,进而可以消除重影。
例如,反射成像部,例如机动车的挡风玻璃对S偏振态的光线(S偏振光)的反射率较高,因此抬头显示器的显示装置出射的光线一般包括S偏振光,此时,若用户,例如驾驶员佩戴墨镜时,墨镜是过滤S偏振光的,因此驾驶员佩戴墨镜时就无法看到抬头显示器的图像。本公开实施例的一示例中,在抬头显示器中的反射成像部面向显示装置的一侧设置P偏振光反射膜,且显示装置出射的图像光线包括P偏振态的光线时,反射成像部可以将P偏振态的图像光线反射至观察区以使双眼位于观察区的戴墨镜的用户依然可以看到显示装置显示的图像,从而提高用户的使用体验。
例如,在本公开实施例的一示例中,在抬头显示器的显示装置和反射成像部800之间设置第二相位延迟部,例如四分之一波片。上述的第二相位延迟部是不紧贴设置在抬头显示器的反射成像部800上的,即第二相位延迟部与反射成像部800之间具有一定距离,使得显示装置出射的光线经过第二相位延迟部后,经反射成像部800反射后,不会再次经过第二相位延迟部,而是直接出射至观察区。例如,显示装置出射的光线包括S偏振态的光线,第二相位延迟部被配置为将入射至第二相位延迟部的S偏振态的光线转换为圆偏振态的光线(圆偏振光)或椭圆偏振态的光线(椭圆偏振光),圆偏振光或椭圆偏振光被反射成像部800反射后射向观察区,因圆偏振光或椭圆偏振光包括P偏振分量,经过墨镜过滤后,P偏振态的光线使双眼位于观察区的戴墨镜的用户依然可以看到显示装置显示的图像,从而提高用户的使用体验。
例如,图23A为根据本公开实施例的一示例提供的抬头显示器。如图23A所示,反射成像部800面向显示装置的表面设置有选择性反射膜810,选择性反射膜810被配置为对显示装置出射的图像光线所在波段的反射率大于除图像光线所在波段以外波段的光线的反射率。例如,选择性反射膜810对显示装置出射的图像光线所在波段的反射率可以大于80%、90%、95%、99.5%或其它适用的数值。例如,选择性反射膜810对除图像光线所在波段以外波段的光线的反射率可以小于30%、20%、10%、5%、1%、0.5%或其它适用的数值。例如,选择性反射膜810对显示装置出射的图像光线所在波段的透射率可以小于30%、20%、10%、5%、1%、0.5%或其它适用的数值。例如,选择性反射膜810对除图像光线所在波段以外波段的光线的透射率可以大于80%、90%、95%、99.5%或其它适用的数值。
例如,选择性反射膜810被配置为反射显示装置出射的图像光线,且透过除图像光线所在波段以外波段的光线。例如,图像光线包括红绿蓝(RGB)三个波段的光线,选择性反射膜810反射显示装置发出的图像光线(例如以前述较高的反射率),并透过其他波段的光线(例如以前述 较高的透射率)。由此,大部分图像光线在选择性反射膜810处反射,透过选择性反射膜810并在反射成像部800远离显示装置的内表面处反射的图像光线很少,减弱或者消除了重影。
例如,选择性反射膜810可以为透反膜,对窄带光线(具有至少一个谱带)具有较高的反射率,而对可见光波段内其他波段的光线具有较高的透射率。例如,反射光谱的谱带的半高宽可以小于或等于60nm。例如,反射光谱的谱带的半高宽可以小于或等于30nm。例如,反射光谱的谱带的半高宽可以小于或等于10nm。
例如,显示装置发出的图像光线的发射光谱,与选择性反射膜810的特性至少部分匹配。例如,图像光线包括窄带光线(具有至少一个谱带)。例如,窄带光线的发射光谱与选择性反射膜810的反射光谱部分或全部重合。例如,发射光谱的谱带的半高宽可以小于或等于60nm。例如,发射光谱的谱带的半高宽可以小于或等于30nm。例如,发射光谱的谱带的半高宽可以小于或等于10nm。
例如,选择性反射膜810对红光、绿光和蓝光具有较高的反射率(例如,反射率约为70%~90%),而对其他波段的光线具有较高的透射率(例如,透射率约为70%~90%)。
例如,上述选择性反射膜810可以包括由无机氧化物薄膜或高分子薄膜堆叠而成的选择性透反膜,该透反膜由至少两种具有不同折射率的膜层堆叠而成。这里的“不同折射率”指的是膜层在xyz三个方向上至少有一个方向上的折射率不同。例如,预先选取所需的不同折射率的膜层,并按照预先设置好的顺序对膜层进行堆叠,可以形成具备选择反射和选择透射特性的透反膜,该透反膜可以选择性反射某一特性的光线、透过另一特性的光线。例如,对于采用无机氧化物材料的膜层,该膜层的成分选自五氧化二钽、二氧化钛、氧化镁、氧化锌、氧化锆、二氧化硅、氟化镁、氮化硅、氮氧化硅、氟化铝中的一种或多种。例如,对于采用有机高分子材料的膜层,该有机高分子材料的膜层包括至少两种热塑性有机聚合物膜层。例如,两种热塑性聚合物膜层交替排列形成光学膜,且两种热塑性聚合物膜层的折射率不同。例如,上述有机高分子材料的分子为链状结构,拉伸后分子朝某个方向排列,造成不同方向上折射率不同,即通过特定的拉伸工艺即可形成所需的薄膜。例如,上述热塑性聚合物可以为不同聚合程度的聚对苯二甲酸乙二酯(PET)及其衍生物、不同聚合程度的聚萘二甲酸乙二醇酯(PEN)及其衍生物、不同聚合程度的聚对苯二酸丁二酯(PBT)及其衍生物等。
例如,选择性反射膜810可以对具有特定偏振态的窄带光线(具有至少一个谱带)具有较高的反射率,而对可见光波段内其他波段的光线,以及其他偏振态的窄带光线具有较高的透射率。例如,反射的光线的谱带的半高宽可以小于或等于60nm。
例如,特定偏振态可以为垂直偏振态(例如,S偏振态),选择性反射膜810对具有垂直偏振态的红光、绿光和蓝光具有较高的反射率(例如,透射率约为70%~90%),而对其他波段的光线以及具有水平偏振态(例如,P偏振态)的红光、绿光和蓝光具有较高的透射率(例如,反射率约为70%~90%)。
当然,本公开实施例不限于此,特定偏振态还可以为圆偏振、椭圆偏振等不同的偏振态。
例如,选择性反射膜810对于s偏振光的n个谱带中的至少一个谱带的半峰宽以内的平均反射率大于一个特定反射率,例如50%;例如,大于60%、70%、80%或90%,甚至可达95%以上;且选择性反射膜810对于s偏振光的n个谱带半峰宽以外的可见光波段的平均反射率,比对s偏振光的n个谱带中半峰宽内的平均反射率低至少5%,例如低10%、15%、甚至20%。另外,选择性反射膜810在可见光范围内对于p偏振光的平均透射率大于60%;例如大于70%、80%或90%,甚至可达95%以上。
例如,如图23A所示,光源部500向导光装置100输入窄带光线,窄带光线在透反元件0110上具有较高的反射率,可以使得尽可能多的光线均自导光装置100中耦出;耦出的光线仍然为窄带光线,窄带光线经过显示面板600后转化为图像光线,出射至反射成像部800,反射成像部800面向显示面板600的一侧设置有对上述窄带光线具有较高的反射率的选择性反射膜810,此时大部分光线都可以反射成像。同时,外界环境光中的绝大部分光线都可以正常透射,也不会影响对外界环境的观察。本公开实施例不限于此,上述“对上述窄带光线具有较高的反射率的透反膜”也可以设置在反射成像部远离显示装置的一侧,或者均设置在反射成像部的两侧。
例如,当窄带透反式的选择性反射膜应用于反射成像部(例如挡风玻璃)处时,交通信号灯等类似装置产生的光线波段与窄带接近或者重合;因上述光线一般为非偏振光线,经挡风玻璃透射时,只有特定偏振态的光线会被反射而无法接收,其余偏振态的光线仍可以透射而被观察,避免了无法看到交通信号的风险。
例如,光源部500出射的光线为白光,其混合有红光、蓝光和绿光,其中导光装置100的透反元件0110可以是无波长选择特性的透反膜,其与前文图1A至图10B所述实施例描述的第一透反元件0110可以具有相同或类似的特征,在此不再赘述。例如,透反元件0110将混合有红光、蓝光和绿光的白光反射向显示面板600;反射成像部800面向显示装置的一侧设置的选择性反射膜810具有上述选择性,该选择性反射膜810可将显示装置射向其的光线中具有S偏振态的RGB光线反射向用户。
例如,图23B为根据本公开实施例的另一示例提供的抬头显示器。如图23B所示,光源部500出射的光线为窄带光线,该窄带光线可以通过光转化部200(可以为图3A所示的光转化部200)转换为P偏振态的RGB光线,以提高光线利用率。转化后的P偏振态RGB光线耦入导光装置100并沿全反射路径和/或非全反射路径传播,经透反元件0110耦出至显示面板600,经过显示面板(例如液晶显示面板)600转化为S偏振态的RGB图像光线,图像光线出射至反射成像部800面向显示装置的一侧的选择性反射膜810,并被选择性反射膜810反射至人眼。对于外界环境光而言,其经过反射成像部800时,其中S偏振分量的RGB光线会被选择性反射膜810反射,P偏振分量的RGB光线以及其余波段的光线可透射至人眼。
本实施例中,显示装置出射的图像光线包括S偏振态的图像光,反射成像部为交通工具挡风窗时,S偏振态的图像光在反射成像部上的反射率往往更高,提升了抬头显示器整体的光线利用率;环境光中包括的P偏振态的环境光以及其余波段的光线在反射成像部上可具有较高的透射率,用户可以清晰地观察到外界环境,可以实现高反高透的效果。并且上述显示装置功耗低,体积轻薄,便于设置安装,提升了抬头显示器的使用体验。
本公开实施例不限于抬头显示器包括上述显示装置,抬头显示器还可以为包括图1A至图18任一示例所示的导光装置以及上述反射成像部,反射成像部被配置为将该导光装置出射的光线反射至抬头显示器的观察区。当然,导光装置出射的光可以不经过任何光学元件或装置直接入射到反射成像部上,导光装置出射的光也可以经过其他光学元件(如反射镜、透镜等)或者其他装置(如液晶显示面板)后入射到反射成像部。
本公开实施例不限于抬头显示器包括上述显示装置,抬头显示器还可以为包括图18所示的光源装置,以及上述反射成像部,反射成像部被配置为将该光源装置出射的光线反射至抬头显示器的观察区。当然,光源装置出射的光可以不经过任何光学元件或装置直接入射到反射成像部上,光源装置出射的光也可以经过其他光学元件(如反射镜、透镜等)或者其他装置(如液晶显示面板)后入射到反射成像部。
在一些情形中,受限于交通工具(例如车辆)有限的设计空间,缩减HUD占用的空间是非常重要的设计考量。
本公开的实施例提供一种光源装置。
在一些实施例中,光源装置包括:光源部,用于发射出光线;以及导光装置,其中,光源部发出的光线被配置为进行导光装置,其中,导光装置为本公开前述任一实施例所述的导光装置。
在一些实施例中,光源装置包括光源结构和光导结构,光源结构用于发射出光线,该光线为源光线,光导结构包括允许至少部分光线进入光导结构的入光区域并且包括具有多个光耦出件的光耦出部,入射到至少部分光耦出件中的每个光耦出件处的光线在光耦出件处发生部分反射,并且被光耦出件部分耦出;光导结构包括第一导光元件和第二导光元件,进入光导结构的光线经第一导光元件传输至第二导光元件,光耦出部的至少部分位于第二导光元件,其中,光导结构的第一导光元件包括被配置为对入射至光耦出部之前的光线进行匀化处理的匀光部,或者,光导结构的多个光耦出件包括实现部分反射和部分耦出的多个透反元件,或者光导结构包括上述匀光部及多个透反元件。例如,所述第一导光元件包括匀光部。
在一些实施例中,光源结构在光导结构上的正投影至少部分位于光导结构内。例如,光源结 构在与所述多个光耦出件的排列方向相垂直的方向上向光导结构的正投影大部分位于光导结构内,也可少部分落在光导结构外;或者,光源结构的全部正投影位于光导结构内。
在另一些实施例中,光源部设置在沿着第二导光元件的厚度的延伸方向,和/或,第一导光元件和第二导光元件沿着导光结构的厚度方向上堆叠。
在本公开实施例中,光导结构被配置为使入射至其上的光线沿第一方向传播且沿与第一方向相交的第二方向射出该光导结构;光导结构可以为任意类型的光导结构,其也可以被称为导光结构、波导结构或者光波导结构。
在至少一些实施例中,光源装置可以用于显示装置中。例如,本公开实施例提供一种显示装置,该显示装置包括该光源装置和被配置为利用该光源装置发出的光线生成图像光线的图像生成元件。
在本公开实施例中,被图像生成元件处理后得到的图像光线携带有图像信息,相对应地,光源装置发出的光线在入射至图像生成元件处理之前是不携带图像信息的,因此称为源光线。
本公开实施例还提供一种抬头显示系统,其包括以上光源装置或显示装置。
本公开实施例还提供一种交通工具,其包括以上光源装置或显示装置或抬头显示系统。
本公开中,如图24a至图33所示,在光线耦出方向(上述第二方向)上,光源结构31在光导结构32上的正投影至少部分位于光导结构32内,其中,光导结构32的光线耦出方向为光源装置的厚度方向,垂直于光线耦出方向的方向为光源装置的延伸方向(例如宽度方向或长度方向)(延伸方向为上述第一方向的一个示例)。在本公开实施例中,通过将光源结构31沿光源装置的厚度方向设置,有效减小了光源装置的宽度,使光源装置的结构更加紧凑。在一些实施例中,上述光源装置尤其适用于对光源装置厚度要求小,而对宽度要求较高的应用场景。
在本公开一些实施例中,如图24a至图33所示,光导结构32可以包括一个或多个入光区域,并且光导结构32的入光区域可以对应光导结构32的中部或端部区域。
例如,如图24a-24b、25b-25d所示,光导结构32包括的入光区域322对应光导结构32的中部,由此,光线从光导结构32的中部进入光导结构32中,并且在光导结构32中从光导结构32的中部向光导结构32的两个相对的端部区域传播。
在其它实施例中,入光区域322可以位于光导结构32的端部区域。例如,如图25a所示,光导结构32包括两个入光区域322,其分别对应光导结构32的两个相对的端部区域,由此,光线分别从光导结构32的两个相对的端部区域进入光导结构32中,并且在光导结构32中从端部区域向光导结构32的中部传播。在另一些示例中,如图26a-26b、图28a-图33所示,光导结构32包括对应一个端部区域的一个入光区域,由此,光线从光导结构32的一个端部区域进入光导结构32中,并且在光导结构32中向光导结构32的与该端部区域相对的另一端部区域传播。
在一些实施例中,光导结构32可以包括一个或多个光耦出件组,每个光耦出件组包括依次排列的至少两个光耦出件。例如,该至少两个光耦出件沿上述第一方向依次排列。例如,该至少两个光耦出件组在与光耦出方向相垂直的方向上依次排列。
在一些实施例中,如图26a-26b、图28a-图33所示,光导结构32的多个光耦出件321包括一个光耦出件组。或者,在其它实施例中,如图24a、图24b、图25a-25d所示,光导结构32的多个光耦出件321包括在该多个光耦出件的排列方向上依次设置的第一光耦出件组3211和第二光耦出件组3212,第一光耦出件组3211包括多个第一光耦出件,第二光耦出件组3212包括多个第二光耦出件;光导结构32的入光区域322在多个光耦出件321的排列方向上位于第一光耦出件组3211和第二光耦出件组3212之间,从光导结构32的入光区域322进入光导结构32的光线被第一光耦出件组3211和第二光耦出件组3212耦出。
例如,第一光耦出件组3211和第二光耦出件组3212在与光耦出方向相垂直的方向(图中以水平方向为例进行说明)上依次排列,入射至多个第一光耦出件的光线与入射至多个第二光耦出件的光线在光导结构32中朝相反的方向传播,并且被第一光耦出件组3211和被第二光耦出件组3212耦出的光线例如朝光导结构32的同一侧耦出,该侧为光导结构32的光耦出侧。例如,如图24a-24b、25b-25d所示,光导结构32包括的入光区域322对应光导结构32的中部。例如,入光区域322对应第一光耦出件组3211和第二光耦出件组3212的正中部,进入光导结构32的光 线在第一光耦出件组3211和第二光耦出件组3212的传输距离相同或趋于相同,且在光导结构32内传播的方向相反。
在一些实施例中,在光导结构32包括第一光耦出件组3211和第二光耦出件组3212的情况下,光导结构32可以包括位于中部的一个入光区域322(如图24a、23b、25b-25d所示),或者可以包括位于光导结构32的端部区域的两个入光区域。例如,如图25a所示,光导结构32包括的两个入光区域322分别位于第一光耦出件组3211和第二光耦出件组3212的远离光导结构32的中部的一侧,由此,光线分别从光导结构32的两个相对的端部区域进入光导结构32中,并且从端部区域向光导结构32的中部传播且分别被第一光耦出件组3211和第二光耦出件组3212耦出。
例如,第一光耦出件组3211的出光区域与第二光耦出件组的出光区域322相邻,并且无间隔设置,采用此方式可使光导结构32的出光连续和/或提升出光均匀性。例如,如图24a-24b、25b-25d所示,第一光耦出件组3211中第一个接收光线的第一光耦出件和第二光耦出件组3212中第一个接收光线的第二光耦出件包括的相互靠近的端部彼此连接(例如抵接或紧贴),这样可以实现连续出光,并且在一些情形下可以避免光线未通过光耦出件组直接射出而出现显示亮条的状况。在至少另一个示例中,如图25a所示,第一光耦出件组3211中最后一个接收光线的第一光耦出件和第二光耦出件组3212中最后一个接收光线的第二光耦出件包括的相互靠近的端部彼此连接(例如抵接或紧贴),这样可以实现连续出光,并且在一些情形下以避免光导结构的出光区域包括暗区。
在一些实施例中,光导结构32中的多个光耦出件可以包括多个透反元件或者多个耦出光栅或者其它类型的用于将光线从光导结构32中耦出的部件。为便于理解,以下实施例以光耦出件包括透反元件为例进行说明。
例如,至少部分透反元件对入射至其上的光进行部分透射和部分反射,以使入射至其上的光线的一部分从光导结构32中耦出,且另一部分在光导结构32中继续传播。图24a至图33以透反元件将入射至其上的光反射出光导结构32为例进行说明;在其它示例中,透反元件可以将入射至其上的光通过透射的方式耦出光导结构32。
在一些实施例中,如图24a至图33所示,光导结构32包括的多个透反元件可以相对于其排列方向(图中以水平方向为例)倾斜。或者,在另一些实施例中,光导结构32包括的多个透反元件中的每个也可以沿该多个透反元件的排列方向设置。
例如,至少部分透反元件可以包括用于调节透反元件的反射率和/或透射率的调节介质。例如,调节介质的类型与透反元件一一对应,在这种情况下,例如不同透反元件设置不同类型的调节介质;或者,调节介质的类型的数量小于透反元件的数量,在这种情况下,例如至少两个透反元件包括同一类型的调节介质。例如,至少两个透反元件的受光面被调节介质占据,且该受光面包括未设置调节介质的留白区域。例如,调节介质可以为单层膜结构或多层膜的堆叠结构。
在一些实施例中,如图24a至图26b、图28a至图33所示实施例中,光导结构32中的透反元件可以直接设置在气体(例如空气)环境中;或者,光导结构32可以包括光导介质324,光导结构324中的透反元件可以位于光导结构324中。
例如,光导结构324的材料包括折射率大于1的透明光学材质。例如,透明光学材质可以包括二氧化硅、铌酸锂、绝缘体上硅(SOI,Silicon-on-insulator)、高分子聚合物、Ⅲ-Ⅴ族半导体化合物和玻璃等中的至少一种或多种。例如,光导介质的形状可为平面基板、条形基板或脊型基板等。
例如,光导结构32中的光线在光导结构324中例如沿多个透反元件的排列方向直线传播或者反射式传播。例如,反射式传播可以包括全反射传播和/或非全反射式反射传播。例如,光线可以在光导结构324的相对的主表面至少之一处发生全反射。
例如,透反元件可采用镀设或贴覆的方式设置在光导介质中。例如,可以采用多个子光导介质,至少部分子光导介质中的每个子光导介质为截面为平行四边形的柱体,相邻的子光导介质拼接在一起并且在拼接的子光导介质之间设置有透反元件。透反元件也可以采用其它方式设置于光导介质中。
例如,透反元件可以为基本无波长选择性和偏振选择性的元件,光源发出的光线在被透反元件透射/反射后波长性质和偏振性质基本不变。
例如,沿光导结构32中的多个透反元件的排列方向,该多个透反元件的反射率逐渐增加。这样有利于实现光导结构32的均匀出光。
在一些实施例中,如图26a-26b、28a-33所示,光导结构32的多个光耦出件321可以包括倾斜方向相同的多个透反元件,该多个透反元件属于同一光耦出件组。或者,在另一些实施例中,如图24a、图24b、图25a-25d所示,第一光耦出件组3211包括多个第一透反元件,第二光耦出件组3212包括多个第二透反元件,该多个第一透反元件与该多个第二透反元件相对于光导结构32包括的多个光耦出件321的排列方向(图中以水平方向为例)的倾斜方向相反。
例如,第一透反元件和第二透反元件分别沿第一倾斜方向和第二倾斜方向设置,第一倾斜方向和第二倾斜方向间具有设定夹角,如大致为90°夹角或者钝角。“大致”可以理解为忽略工艺误差等因素的影响。
在一些实施例中,如图24a至图25d所示,第一透反元件和第二透反元件相对于透反元件的排列方向的倾斜方向相反且倾斜角度基本相同。例如第一光耦出件组3211中的多个第一透反元件和第二光耦出件组中的多个第二透反元件镜像设置。例如,第一透反元件和第二透反元件以光源结构的光线的主光轴所在面为中心对称设置。
在一些实施例中,如图24a至图26b、图28a至图33所示,光源结构31中的光线可通过一个光源部(如图24a、图25b、图25c、图26a至图33所示)或多个(如图24b、图25a、图25d所示)光源部发出;并且/或者,可将光源结构31发出的光线分为一部分或多部分;这样的光线能满足光导结构32的一个或多个入光区域,或者满足一个或多个光耦出件组的使用,或者用于对光线进行偏振转换。
例如,如图24a、图25b、图25c、图26a至图33所示,光源结构31包括第一光源部,其被配置为发出第一源光线,并且第一源光线第一部分位于第一光耦出件组3211的至少一个第一光耦出件所在光路中,第一源光线的第二部分位于第二光耦出件组3212的至少一个第二光耦出件所在光路中。
例如,如图24a、图25b、图25c、图26a至图33所示,图中所示的第一光源部可包括一个子光源;或者,第一光源部可以包括多个子光源,例如,该多个子光源的排列方向垂直于光耦出方向或者垂直于多个透反元件的排列方向。例如,第一光源部包括一个子光源,该子光源用于发射出第一源光线,并且该第一源光线包括两个显示区域,两个显示区域可分别发射出第一源光线的第一部分和第二部分;或者,例如,第一光源部包括多个子光源,多个子光源可连接同一电路或独立设置,部分子光源用于发射出第一源光线的第一部分,另一部分子光源用于发射出第一源光线的第二部分。
例如,如图24b、图25a和图25d所示,光源结构31包括被配置为分别发出源光线中的第一源光线和第二源光线的第一光源部和第二光源部,第一光源部发出的第一源光线至少位于第一光耦出件组3211的至少一个第一光耦出件所在光路中,第二光源部发出的第二源光线至少位于第二光耦出件组3212的至少一个第二光耦出件所在光路中。
例如,如图24b、图25a和图25d图所示,第一光源部和第二光源部分别包括一个子光源,或者,第一光源部和第二光源部分别包括多个子光源,例如,该多个子光源的排列方向垂直于光耦出方向或者垂直于多个透反元件的排列方向,第一光源部和第二光源部利用一个或多个子光源发射出第一源光线和第二源光线。
在一些实施例中,如图24a至图26b、图28a至图33所示,光源结构31的一个或多个光源部发射出的源光线,或者源光线的一部分或多部分,可发射至一个或多个光耦出件组。
例如,如图24b、图25a和25d所示,光源结构31包括被配置为分别发出源光线中的第一源光线和第二源光线的第一光源部和第二光源部,第一源光线发射至第一光耦出件组3211,第二源光线发射至第二光耦出件组3212;或者,例如,如图24a、图25b和图25c所示,光源结构31包括第一光源部,其被配置为发出第一源光线,第一源光线同时发射至第一光耦出件组3211和第二光耦出件组3212;或者,例如,图26a-图33所示,光源结构31包括第一光源部,其被配置为 发出第一源光线,第一光源线发射至一个光耦出件组。
例如,第一光源部和第二光源部可以为激光光源和LED光源等中的一种或多种。
在一些实施例中,如图25a-图26b、图28a-图29、图31-图33,光源装置包括光回收装置,使用光回收装置对源光线中部分不能被利用的光线进行回收利用,可以使光线充分利用。
例如,如图27a至图27d所示,光回收装置包括分光结构34和偏振转换结构37。分光结构将源光线至少分为两种偏振态的光线,通过偏振转换结构将至少部分不可被显示面板利用的光线的偏振态转换为可被利用的偏振态。
例如,如图27a-27d所示,分光结构34被配置为将入射至分光结构34的光线分为具有第一偏振特性的第一光线和具有第二偏振特性的第二光线;第一光线入射至偏振转换结构进行偏振转换处理以得到第三光线,第三光线为具有第二偏振特性的偏振光。第一光线被转换为具有第二偏振特性的第三光线,该第三光线与第二光线具有相同的偏振特性。例如,第二偏振特性的光线可被利用,将第一光线转换为具有第二偏振特性的第三光线,可实现对第一光线的回收利用。第三光线为:与第二光线的偏振特性相同,但是转换过程中至少具有一种中间偏振特性的光线。
例如,第一偏振特性和第二偏振特性之一为S偏振特性且另一为P偏振特性。
在一些实施例中,对第一光线进行至少一次偏振转换处理以得到第三光线。例如,第一光线发生一次偏振转换,被转换为具有第二偏振特性的第三光线;或者,第一光线发生两次偏振转换,被转化为具有第二偏振特性的第三光线,或者,光线发生更多次数的偏振转换,被转化为具有第二偏振特性的第三光线。例如,发生一次或多次偏振转换时,偏振转换结构的性能不同,例如,偏振转换结构为1/2波片或1/4波片等中的至少一种或多种。
在一些实施例中,如图25a-图26b、图28a-图29、图31-图33,分光结构将光线分为至少两种不同偏振特定的光线。例如,分光结构将光线分为S偏振态光线和P偏振态光线。该至少两种偏振特性的光线的光路方向也不相同,其中,偏振转换结构可设置在至少一条光路上,并对所在光路上的光线进行偏振态转换。
例如,分光结构为偏振分束元件(PBS),偏振分束元件用于将光线分为偏振态不同的第一光线和第二光线,偏振分束元件对第一光线的透射率大于对第二光线的透射率,或者,偏振分束元件对第一光线的反射率小于对第二光线的反射率,或者,为以上透射率关系及反射率关系的组合。
例如,偏振转换结构37包括相位延迟元件,通过相位延迟元件改变光线的偏振特性;例如,相位延迟元件为1/2波片或1/4波片。
例如,偏振转换结构还包括反射元件35,反射元件35至少改变其中一条光线的传播方向,使被分光结构分离的多条光线的方向相同或能射向指定位置。
在一些实施例中,如图25a-图26b、图28a-图29、图31-图33,通过对偏振分束元件(PBS)、偏振转换结构37,以及反射元件的结构位置进行组合,可得到多种分光及偏转转换方式,这些分光及偏振转换方式可用于分光及偏振转换。
为了使附图更简洁,在图25a-图26b、图28a-图29、图31-图33中的有些附图中未示出偏振转换结构37,有些附图只示出了偏振转换结构37的一种设置方式;然而,图25a-图26b、图28a-图29、图31-图33所示实施例中的分光结构、偏振转换结构之间的关系可以采用图27a至图27d中的任一种。
例如,如图27a所示,偏振转换结构37设置在偏振分束元件远离反射元件35的一侧。光源发射出非偏振光线,例如,液晶屏310液晶屏310可利用S偏振态的光线,并且透反元件反射S偏振态、透射P偏振态光线,偏振分束元件可反射S偏振态光线。其中,光源出射光线中的S偏振态部分经偏振分束元件反射,反射后的S偏振态光线再经反射元件35反射后射至光导结构32,光源发出光线中的P偏振态部则经偏振分束元件透射,透射后经过偏振转换结构37后转化为S偏振光,并射至光导结构32,进而将光源发出的非偏振光线均转化为液晶屏310可利用的S偏振光。
例如,偏振分束元件可以是基板上镀设或贴覆具有反射S偏振态、透射P偏振态光线特性的透反膜。例如,透反膜为DBEF光学膜和BEF光学膜等中的一种或多种。
例如,反射元件35可以是普通的反射板;或者,也可以是基板上镀设或贴覆具有反射S偏振态光线特性的反射膜。例如,反射板为金属反射板和玻璃反射板等中的一种或多种;例如,反射 膜为任一可反射S偏振态光线的反射膜。
例如,偏振转换结构37为1/2波片。
例如,反射元件35也可以具备透反特性,其与偏振分束元件的透反性质可以相同。
例如,偏振转换结构37与偏振分束元件贴合设置。例如,贴合设置的解释可以如下:偏振转换结构37贴合面设置在在偏振分束元件的表面,两者之间基本上无间隙。例如,偏振转换结构37可以通过紧贴、吸附或粘附等连接方式与偏振分束元件贴合设置。例如,并且,可以将偏振转换结构37贴合固定在偏振分束元件的表面。
例如,如图27a所示的偏振转换结构,若液晶屏310液晶屏310可利用P偏振态的光线,则偏振分束元件反射P偏振态光线、透射S偏振态光线,反射元件35可反射P偏振态光线,偏振转换结构37为1/2波片,其偏振转换、以及光路方向变换的方式与上述液晶屏310可利用P偏振态的光线的方式相同,此处便不再一一赘述。
例如,如图27b所示,偏振转换结构37设置在反射元件35反射光线的出射路径上。光源发射出非偏振光线,液晶屏310液晶屏310可利用S偏振态的光线,并偏振分束元件透射S偏振态光线、反射P偏振态光线,反射元件35可反射P偏振态光线。光源发出光线中的S偏振态部分经偏振分束元件透射,反射后的P偏振态光线再被反射元件35反射,反射后被偏振转换结构37处理后转化为S偏振态光线,可以将光源发出的非偏振光线均转化为液晶屏310液晶屏310可利用的S偏振态光线。图27b示出的偏振转换装置中的各元件的性能、所用材料等参数与图27a中示出的偏振转换装置中的各元件相同,此处便不再一一赘述。
例如,如图27c所示,偏振转换结构37设置在透反元件与反射元件35之间。光源发射出非偏振光线,液晶屏310液晶屏310可利用S偏振态的光线,偏振分束元件透射S偏振态光线、反射P偏振态光线,反射元件35可反射S偏振态光线。光源发出光线中的S偏振态部分被偏振分束元件透射,反射后的P偏振态光线被偏振转换结构37处理后转化为S偏振态光线,再被反射元件35反射,可以将光源发出的非偏振光线均转化为液晶屏310液晶屏310可利用的S偏振光。图27c示出的偏振转换装置中的各元件的性能、所用材料等参数与图27a中示出的偏振转换装置中的各元件相同,此处便不再一一赘述。
例如,如图27d所示,偏振转换结构37设置在反射元件35靠近透反元件的一侧,光源发射出非偏振光线,液晶屏310液晶屏310可利用S偏振态的光线,偏振分束元件反射P偏振态光线、透射S偏振态光线,反射元件35为普通的反射元件35,例如铝镜,其不带偏振反射特性。光源发出光线中的S偏振态部分被偏振分束元件透射,透射后的S偏振态光线出射至液晶屏310;光源发出光线中的P偏振态部则被偏振分束元件反射,反射后被偏振转换结构37处理后转化为圆偏振光,圆偏振光在反射元件35上反射,反射后的圆偏振光再次被偏振转换结构37转化为S偏振态光线,可以将光源发出的非偏振光线均转化为液晶屏310液晶屏310可利用的S偏振态光线。图27d的实施例中,光线会先后两次通过偏振转换结构37,因此,偏振转换结构37选用1/4波片,偏振转换装置中其他各元件的性能、所用材料等参数与图27a中示出的偏振转换装置中的各元件相同,此处便不再一一赘述。
在一些实施例中,如图25a-图26b、图28a-图29、图31-图33所示,被分光结构分光后得到至少两条光线,该至少两条光线可分别进入不同的光耦出件组,或者,进行同一个光耦出件组,采用两者方式之一均可实现光线的回收利用。例如,如图25b和图25c所示,一个光源结构射出的光线被分为第一光线和第二光线,第一光线对应第一光耦出件组3211,第二光线对应第二光耦出件组3212,如图25b所示,偏振转换结构将入射至第一光耦出件组3211之前的第一光线转换为第三光线,或者,如图25c所示,偏振转换结构将被第一光耦出件组3211耦出的第一光线转换为第三光线。光线对应光耦出件组解释如下:光线进入光导结构32后,从与其具有对应关系的光耦出件组透反耦出。
例如,如图25a和图25d所示,光源结构的第一光源部和第二光源部分别发射出第一源光线和第二源光线,第一源光线和第二源光线都被分为第一光线和第二光线,第一源光线的第一光线在被偏振转换结构转换后得到的第三光线和第一源光线的第二光线传播至第一光耦出件组3211,第二源光线的第一光线在被偏振转换结构转换后得到的第三光线和第二源光线的第二光线传播至 所述第二光耦出件组3212。
例如,如图28a-图29、图31-图33所示,一个光源结构发射出的光线被分为第一光线和第二光线。第一光线或第二光线的被偏振态转换,例如,第一光线的第一偏振态转化为与第二光线相同的偏振态,被偏转态转换的第一光线和第二光线进入一个光耦出组。
在一些实施例中,如图25a-图26b、图28a-图29、图31-图33所示,分光结构及偏振转换结构在光路中的位置并不受限制,可以设置在光路的多个位置;例如,分光结构和偏振转换结构设置在光源部与光导结构之间,光源发射出的源光线线被分光及偏振转换后,再进入光路后面的结构中;以及源光线被分光结构及偏振转换结构处理后,仍沿设定的出光方向传播。
在一些实施例中,分光结构和偏振转换结构可连续设置,也可非连续设置,连续设置为:源光线被分光后便进行偏振转换,非连续设置为:源光线被分光后可先进入光导结构再进行偏振转换。
例如,如图25a、图25b、图25d、图26a、图26b、图28a-图29、图31-图33所示,光源结构发射出的光线由分光结构处理后便对第一光线进行偏振转换,需要说明的是,上述图中未示出偏振转换结构37,该偏振转换结构37位设置在分光结构之后的第一光线的光路上,用于将第一光线转换为第三光线。例如,如图25c中,偏振转换结构37设置在第一光线耦出后的光路上,用于将耦出后的第一光线转换为第三光线,该偏振转换结构37可与光导结构贴合,或者,也可为不贴合的设置方式。
在一些实施例中,如图25a和图25d所示,分光结构包括至少一个分光元件(如偏振分束元件PBS),第一源光线和第二源光线被同一分光元件或不同分光元件进行分光处理;和/或偏振转换结构包括至少一个偏振转换元件(如相位延迟元件),第一源光线的第一光线和第二源光线的第一光线被同一偏振转换元件或不同偏振转换元件进行偏振转换。
例如,如图25a所示,第一源光线和第二源光线分别对应分光结构34以及偏振转换结构;例如,如图25d所示,第一源光线和第二源光线分别对应分光结构34,被分光结构34分离后的第一光线或第二光线被同一个反射元件反射,并且被反射的第一光线或第二光线被同一个偏振转换结构37进行偏振转换。
在一些实施例中,如图25a-图25c、图26a、图26b、图28a-图33所示,光源装置包括匀光部,匀光部设置在光路上,用于对光线进行匀化处理。在光线进入光导结构之前,光线在匀光部内多次反射/全反射,可提高光线的均匀性,尤其可提高光线的明暗性。
例如,如图25a-图25c所示,光源结构发射出的源光线或者被分光的光线或者被分光并进行偏振转换的光线,至少经过一个匀光部33的匀化处理,再进入光导结构32。
在一些实施例中,如图25a-图25c、图26a、图26b、图28a-图33所示,匀光部和多个光耦出件在与多个光耦出件的排列方向相垂直的方向上层叠设置或者在多个光耦出件的排列方向上依次设置。
例如,如图25a至图25c所示,匀光部33和多个光耦出件在与多个光耦出件的排列方向相垂直的方向上层叠设置。
例如,如图26a、图29-图33所示,匀光部33包括一个第一匀光件331,第一匀光件331和多个光耦出件在与多个光耦出件的排列方向相垂直的方向上层叠设置。如图中视角所示,第一匀光件331层叠设置在光导结构32的下方,第一匀光件331出光侧射出被匀化处理的光线,该光线通过光导结构的入光区域322进入光导结构32。
例如,如图26b所示,第一匀光件331和多个光耦出件在在多个光耦出件的排列方向上依次设置。如图中视角所示,第一匀光件331并排设置在光导结构32的一侧,第一匀光件331出光侧射出被匀化处理的光线,该光线通过光导结构侧端的入光区域322进入光导结构32。
在一些实施例中,匀光部包括多个第一匀光件,多个第一匀光件的设置方式可参照一个第一匀光件的设置方式。例如,多个第一匀光件331可如图26a所示的方式叠层设置,或者,如图26b所示的方式并排设置,或者,还可与图26b所示的第一匀光件331叠层设置。
在一些实施例中,匀光部包括多个第一匀光件时,光线需要在尽可能多的第一匀光件内传播,以使发生反射/全反射的次数更多,实现匀化效果的最大化。
例如,多个第一匀光件331的末端与下一个第一匀光件331的首端间隔设置或一体连接,光 线可被独立或与第一匀光件331一体连接的反射结构反射,使光线由一个第一匀光件331进入下一个第一匀光件331。
在一些实施例中,如图26a-26b、图28a-图29、图31-图33所示,光导结构的多个光耦出件包括一个光耦出件组,该一个光耦出件组中的多个光耦出件以同一个方向排列,此结构的光导结构设置一个入光区域,光线在光导结构内沿一个方向传播即可。
例如,如图26a-26b、图28a-图29、图31-图33所示,入光区域位于光导结构入光侧的边缘位置,光线在光导结构内由一个边缘向相对的边缘方向传播。
在一些实施例中,如图26a-26b、图28a-图29、图31-图33所示,在光路上设置分光结构及偏振转换结构,该分光结构34和偏振转换结构与图27a至图27d所示的分光结构34和偏振结构的结构形式以及分光、偏振转化方式相同。光线被分光及偏振转换后,可实现部分光线回收,进一步提高光线利用率。
例如,如图26a-26b、图28a-图29、图31-图33所示,分光结构34被配置为将入射至分光结构34的光线分为第一光线和第二光线,第一光线为具有第一偏振特性的偏振光,第二光线为具有第二偏振特性的偏振光;以及偏振转换结构被配置为改变第一光线的偏振特性,从而使具有第一偏振特性的第一光线经过偏振转换结构的至少一次偏振转换处理后被转换为具有第二偏振特性且为偏振光的第三光线;分光结构34和偏振转换结构设于第一匀光件331的入光侧或出光侧,并且第一光线在被偏振转换结构转换后传播向多个光耦出件中的至少部分。
在一些实施例中,如图26a-26b、图28a-图29、图31-图33所示,图中所示光源装置至少包括一个第一匀光件331,至少将分光结构设置在第一匀光件331的入光侧,以使被分离出的第一光线和第二光线能进行匀化处理。
在一些实施例中,如图28a-28c所示,匀光部可包括第二匀光件332,第二匀光件332的数量为一个或多个,第二匀光件332在光路上位于第一匀光件331和光导结构32之间,第一匀光件331发出的光线进入第二匀光件332,被第二匀光件332匀化处理后,再进入光导结构32。
例如,如图28a-图28c所示,匀光部33包括一个第一匀光件331和一个第二匀光件332,光线依次被第一匀光件331和第二匀光件332进行匀化处理,再进入光导结构32。
在一些实施例中,如图28a-图28c所示,分光结构及光转换结构设置在第一匀光件331的出光侧,第一匀光件331发出的光线,被至少一个第二匀光件332进行匀化处理。
例如,如图5a-图28c所示,至少将分光结构设置在第一匀光件331和第二匀光件332之间。例如,将分光结构及偏振转化结构设置在第一匀光件331和第二匀光件332之间。如图28a-图28c所示,被第一匀光件331匀化后的光线被分光结构34分为第一光线和第二光线,第二光线以及由第一光线被偏振转换结构转换后得到的第三光线在被第二匀光件332匀化后传播向光导结构32的多个光耦出件所在侧。
例如,在第二匀光件332的出光侧设置反射件323,利用反射件将第二匀光元件132发射出的光线反射到光导结构32的多个光耦出件所在侧。
在另一些实施例中,可以将图28a-图28c中的分光结构和光转换结构的位置替换为位于第一匀光件331的入光侧。
本公开的发明人在研究中发现,被分光且偏振转换处理的光线,在进入光导结构前,至少被一个匀光件进行匀化处理,可以改善偏振分束元件(PBS)、波片等高分子膜材带来的蓝黄色偏。
在一些实施例中,如图28a-图28c所示,第二匀光件332与多个光耦出件在与多个光耦出件的排列方向相垂直的方向上层叠设置或者在多个光耦出件的排列方向上依次设置。
例如,如图28a和28b所示,第二匀光件332与多个光耦出件在与多个光耦出件的排列方向相垂直的方向上层叠设置,该第二匀光件332与第一匀光件331同为层叠设置。例如,如图28c所示,第二匀光件332与多个光耦出件在多个光耦出件的排列方向上依次设置,该第二匀光件332可与第一匀光件331层叠设置。
例如,第二匀光件332的设置方式并不局限于以上两种,还可以采用其他的排布方式设置。例如,将第二匀光件332相对第一匀光件331和光导结构32倾斜或垂直设置,此设置方式尤其适用于对光源装置厚度要求较低的情况。
在一些实施例中,第二匀光件的数量为多个,多个第二匀光件可在与多个光耦出件的排列方向相垂直的方向上层叠设置,或者在多个光耦出件的排列方向上依次设置,或者两者相结合的方式设置。
例如,多个第二匀光件叠层设置,一个第二匀光件的末端与下一个第二匀光件的首端间隔设置或一体连接,光线可被独立或与第二匀光件一体连接的反射结构反射,使光线由一个第二匀光件进入下一个第二匀光件332。
在一些实施例中,如图25a-图25c所示的匀光件,或如图26a、图26b及图29-33所示的第一匀光件,以及图28a-28c所示的第一匀光件和第二匀光件,以下统称匀光件。匀光件沿光线传播方向具有设定长度,光线进入匀光件后,在设定长度内发生多次反射或全反射,通过不断地改变光线的方向,以使光线趋于均匀。匀光件可以是空心结构,或者,也可为实心结构,或者是一些能够实现光传播的结构。
例如,如图25a-图25c、图26a、图26b、图28a-图28c及图29-33所示,匀光件包括间隔设置的第一反射膜333和第二反射膜334,光线进入匀光件后,入射到第一反射膜333或第二反射膜334上,被第一反射膜333或第二反射膜334反射的光线传播一定距离后,再入射到第二反射膜334或第一反射膜333上,光线以此方式在第一匀光件和第二匀光件内发生反射/全反射传播,可以实现匀光。
例如,如图25a-图25c、图26a、图26b、图28a-图28c及图29-33所示,第一反射膜333和第二反射膜334之间为光线传输空间。例如,光线传输空间内的介质为空气,或者,例如,第一反射膜333和第二反射膜334之间为光学填充层,光线在光学填充层内传播;例如,光学填充层的材质为透明玻璃、透明塑料等中的一种或多种。
例如,匀光件331包括透明光学介质,光线在透明光学介质中传播。例如,透明光学介质为折射率大于1的透明基板。
在一些实施例中,如图25a至图25c所示的匀光件,或如图26a、图26b及图29-33所示的第一匀光件,以及图28a-28c所示的第一匀光件和第二匀光件。通过改变匀光件发生反射表面的倾斜度,和/或设定光线的发散角,可调节光线在匀光件内发生反射/全反射频率,以调节光线的匀化效果。
例如,如图28a所示,第一匀光件331中的第一反射膜333和第二反射膜334的倾斜设置,沿光线传播方向,第一匀光件331的传输空间逐渐增大;例如,如图25a-图25c、图26a、图26b、图28b、图28c及图29-33所示,匀光件的第一反射膜333和第二反射膜334平行设置,沿光线传播方向,第一匀光件331的传输空间保持不变。
在一些实施例中,将光线设定为具有非零的预设发散角的光线,该具有一定发散角的源光线在匀光件内传播时,随着多次反射/全反射,光线的均匀性(尤其是明暗均匀性)会随之增加,进而可提升背光的均匀性。
例如,预设发散角度范围为(0,20];和/或,预设发散角度大于或等于匀光件的相对的主反射面(例如第一反射膜333和第二反射膜334)之间的位于匀光件的入光侧、出光侧和中间侧至少之一的非零夹角,或者匀光件的相对的主反射面平行。对光线的发散角度,或发散角与匀光件两个主表面之间的夹角进行限定,可确保光线会在匀光件内发生反射/全反射,进而确保匀光效果。
在一些实施例中,如图25a-图25c、图26a、图26b、图28a-图28c及图29-33所示,将进入光导结构的光线进行聚光处理,将光源或匀光件等发射出的光线进行聚光后,再入射到光导结构中。通过对该部分光线进行聚光处理,可减少光线的发散浪费,提高光线的利用率。
例如,将聚光部设置在光导结构的入光区域;例如,聚光部可与光导结构或匀光结构连接,或独立设置。例如,如图29所示,从第一匀光件331的出光侧出射的光线在经过聚光部36的聚光处理后传播向光导结构32的多个光耦出件。
例如,聚光部36可以为单个透镜,或者为多个透镜在光路方向叠层设置的透镜组,利用透镜或透镜组对光线进行聚集。
例如,透镜或透镜组中的至少一个透镜选用偏心透镜,偏心透镜的焦点位于偏心透镜中心线靠近光导结构32中心的一侧,该偏心透镜可将光线向靠近光导结构32方向偏离,使更多的光线 进入光导结构,可以提高对光线的利用率。
在一些实施例中,光源装置中设置匀光件时,匀光件出光侧射出的光线方向与光导结构入光区域所在侧垂直设置,该部分光线可直接由入光区域进入光导结构。
例如,如图26b所示,第一匀光件331出光侧的出光方向垂直于光导结构32的入光区域322,光线被第一匀光件331发射出后,光线方向满足入射调节,可直接由入光区域进入光导结构32。
在一些实施例中,如图25a-25c,图26a、图28a-图29、图31-33所示,光源装置中设置匀光件时,匀光件出光侧射出的光线方向与光导结构入光区域所在侧平行设置,该部分光线需要通过至少一步反射后才能进入光导结构。
例如,如图25a-25c,图26a、图28a-图29、图31-33所示,匀光件的出光方向平行于光导结构32的入光区域322。在匀光件的出光侧设置反射件323,反射件323被配置为使从出光侧射出的光线朝光导结构32的多个光耦出件所在侧传播。
例如,反射件323为棱镜,光线被棱镜反射向光导结构32的入光区域322所在侧;反射件323选用棱镜结构时,光线出射时会产生折射,折射后的光线会朝向光导结构32的中心聚集,可以提高光线利用率。
例如,如图26a、图29、图31-图33所示,棱镜使用了三棱镜,其可以将从第一匀光件331出光侧传播出的光线全反射至光导结构32。
例如,反射件323与第一匀光件331的至少部分一体成型。例如,当第一匀光件331选择透明光学介质(如透明基板)时,可选择使用反射镜面作为反射件323,该反射镜面可与透明光学介质贴合或一体成型。例如,第一匀光件331的其中一个主平面(即反射面)的末端包括水平延伸部和倾斜部,该倾斜部可视为反射件323。
在一些实施例中,匀光件的出光侧与光导结构之间可间隔设置,也可为一体连接。例如,如图25a-25c所示,匀光件33与光导结构32间隔设置,如图28a、28b和图29所示,第一匀光件331或第二匀光件332与光导结构32间间隔设置;例如,如图30所示,第一匀光件331的出光侧与光导结构32之间一体连接。
例如,如图30所示,通过一个具有转弯的结构实现一体连接,采用一体结构可降低光导结构32和第一匀光件331的制作工艺,例如,可通过一组摸具成型,并且一体结构还可降低光导结构32和第一匀光件331的支撑难度,或者,还可以减少支架的使用数量。在转弯结构内设有至少一个反射件323,用于将第一匀光件331发出的光线反射至光导结构32内,例如,如图30所示,包括两个反射件323,两个反射件323对光件对光线进行两次反射后,将光线发射至光导结构32内。
在一些实施例中,如图24a-图26b、图28a-图33所示,至少部分光耦出件中的每个光耦出件部分透射入射至光耦出件的光线,以使被透射的光线传播至下一个光耦出件;在多个光耦出件中,例如,第一个接收光线的光耦出件的透过率小于其反射率,以将充足的光线提供给后面各级光耦出件进行透反处理。
在一些实施例中,如图31-图32所示,显示装置300包括图像生成单元,光源装置30发出的光线被图像生成单元转化为图像光线。例如,如图31和图32所示,在光导结构32发出光线的光路上均设置有图像生成单元,例如,图像生成单元为液晶屏,光源装置30发射出的光线可被液晶屏310转换为图像光线。
在一些实施例中,如图31-图32所示,光导结构中的光耦出件用于接收并耦出元光线,耦出的光线射至液晶屏上。例如,光耦合部为透反元件,光导结构中对于第一个接收光线的透反元件的透反率需进行限定,以避免或减少透过过多的光线,导致液晶屏的亮条,或者,反射过多的光线,导致液晶屏出现暗区。
例如,如图31所示,第一个透反元件设置为具有限定透射率的元件,该透射率需要满足以下条件:被第一个透反元件耦出的光线的亮度与后续其他透反元件耦出的光线的亮度相同或接近,光线耦出的亮度均匀,避免局部过亮或过暗。如图31所示,通过对第一个透反元件的透反率进行限定,液晶屏310可覆盖光导结构32中第一个透反元件所在的区域。
在一些实施例中,如图32和图33所示,可在光导结构与液晶屏之间,设置至少一个光线会 聚元件320和/或扩散元件330。光线会聚元件320可将光导结构32输出的准直光线聚集至需要的范围,对光线进行聚拢,提高光线利用率;光扩散元件330可将光线扩散,其中,光线的主要传播方向不变,因此光线仍会聚集至预定范围,但是,光线经扩散元件330后会沿着预定范围进一步扩散出一个较大的区域,可以扩大了可视范围。
例如,如图32和图33所示,显示装置300包括光线会聚元件320及扩散元件330;光源装置30发出的光线依次经过光线会聚元件320、扩散元件330处理后传播至图像生成单元,并在通过图像生成单元后转化为图像光线。
例如,光线会聚元件320为聚光透镜,其可以为单个透镜或多个透镜的组合。例如,透镜为凸透镜、菲涅尔透镜等中的一种或多种。
例如,光扩散元件330可为衍射光学元件,如光束整形元件(beam shaper),光线经过beam shaper之后会扩散开并形成一个具有特定截面形状的光束,截面形状包括但不限于线形、圆形、椭圆形、正方形或长方形;通过控制衍射光学元件的微观结构,可以精准控制光线的扩散角和截面形状等,实现对扩散作用的精确控制;另外,例如,光扩散元件330还可为散射光学元件,如扩散膜等。
在一些实施例中,如图33所示,将显示装置与成像窗结合配置成抬头显示系统,该抬头显示系统根据镜面成像原理,可在成像窗的外侧形成图像光线的虚像。
例如,如图33所示,成像窗410被配置为将显示装置300出射的图像光线反射至抬头显示系统400的眼盒区域420,用户观察的是形成在成像窗410外侧的虚像430,同时不影响对外界环境的观察。
例如,因抬头显示系统400发出的光线会被成像窗410反射后再到达眼盒区域420,因此在抬头显示系统400中,光线会聚元件320对光线聚集的预定范围,可以是眼盒区域420中心相对于成像窗410的虚像430位置。
例如,成像窗410可透射和反射光线,其采用可透过光线及可反射光线的材料制成。例如,成像窗410为挡风窗或透明成像板,例如,挡风窗为挡风玻璃,例如,透明成像板为透明玻璃或透明塑料。例如,光线通过挡风窗反射形成虚像,该抬头显示系统可称为W-HUD(windshield-HUD),光线通过透明成像板反射形成虚像,该抬头显示系统可称为(C-HUD)。
例如,成像窗410可以为平面板材,或者,也可以为曲面板材。
在一些实施例中,在交通工具内设置抬头显示系统,该抬头显示系统的眼盒区域420位于用户的眼睛位置附近。用户在驾驶交通工具时,可观察到抬头显示系统400中虚像430上的静态或动态信息。
例如,将交通工具(如汽车、火车或有轨电车等车辆)的前挡风窗、侧面车窗或独立设置的透明成像板作为成像窗。
下面结合附图及具体实施例对本公开实施例提供的显示系统以及交通工具进行描述,需要说明的是,相同部件可以采用相同的设置方式,本公开所有实施例均适用于显示系统及交通工具等多个保护主题,相同或类似的内容在每个保护主题中不再重复,可参考其他保护主题对应的实施例中的描述。
本公开的发明人在研究中发现,抬头显示系统(HUD)将图像投射到车辆挡风窗等成像窗上时,成像窗需要具有较高的反射率,以提高反射成像的亮度;并且,成像窗还需要具有较高的透射率,使得用户可以清晰的观看到车外环境。然而,反射率和透射率一般是此消彼长的关系,相关技术中的成像窗往往难以兼顾;相关技术中有通过提高HUD的图像源的显示亮度已提升HUD反射成像亮度的技术方案,然而通过提高HUD的图像源的功率来提高成像亮度的方式会引起图像源的功耗高、发热量大及散热困难等问题;而且,受限于HUD的使用环境,缩减占用空间也是非常重要的设计考量。目前HUD的图像源如液晶显示器,通常具有厚度较大的背光源,不利于HUD体积的缩减,也限制了HUD的进一步推广应用。
本公开至少一实施例提供一种显示系统及包含其的交通工具,显示系统包括:图像源,被配置为发出在可见光波段内包括至少一个谱带的图像光线。图像源包括导光装置及图像生成装置,导光装置包括光耦出部,光耦出部被配置为将导光装置中的光线耦出,图像生成装置被配置为将 光耦出部耦出的光线转化为图像光线。成像装置,被配置为对图像光线进行反射,成像装置包括透明基材及设置在透明基材至少一个表面的选择性透反元件,选择性透反元件被配置为对至少部分图像光线的反射率大于对图像光线以外的可见光波段光线的反射率,和/或,对至少部分图像光线的透射率小于对图像光线以外的可见光波段光线的透射率。
图34为本公开至少一实施例提供的显示系统的结构示意图,例如可以是局部截面结构示意图。参见图34所示,图像源90包括导光装置91及图像生成装置92,导光装置91包括光耦出部911,光耦出部911被配置为将导光装置91中的光线耦出,图34中以光耦出部911包括多个透反元件9111为例进行说明,例如,光耦出部911通过透射、反射、衍射及折射作用中的至少一种,将在导光装置91中传播的光线耦出,例如,导光装置91耦出的光线可以直接射向图像生成装置92,如图34所示;或者,导光装置91耦出的光线还可以再经过其他元件后传播至图像生成装置92。图像生成装置92将入射至其的光线转化为图像光线Ls,图像光线Ls传播至成像装置20并发生反射。例如,成像装置20将图像光线Ls反射至预设区域A(例如,预设区域A可以是后文提到的眼盒区域),眼睛位于预设区域A的用户就可以看到图像光线Ls经成像装置20反射所成的虚像V。
例如,导光装置91可以是波导装置(光线在装置中以全反射路径传播,如图34所示);也可以是导光板,例如光线在装置中整体沿直线方向行进;例如,导光装置91可以是板状结构,也可以是脊型结构或条形结构;在本公开至少一个示例中,导光装置91为板状结构,板状结构的导光装置91可以耦出较为均匀的面光源,面光源更适于为图像生成装置92提供背光。通过设置导光装置91,光线在较轻薄的导光装置91中传播并耦出,相对于相关技术中采用的光隧等厚度较大的装置,可以减小图像源90的厚度,进而减小显示系统的体积,提升显示系统的使用体验。
例如,导光装置91耦出的光线可以是准直光线;例如,准直光线是平行或近乎平行的光线,一般具有不大于30°的发散角;例如,准直光线的一致性较好,经图像生成装置92转化为图像光线的转化率较高,可以提高光线利用率。例如,准直光线垂直于导光装置91的出光区(例如上出光面);例如,准直光线与导光装置91的出光区的法线之间有不大于80°的夹角。
例如,图像生成装置92可以为反射式成像装置或者透射式成像装置,通过反射或透射光线以形成图像光线Ls;例如,图像生成装置92包括液晶显示面板,可以是透射式液晶显示面板或者反射式液晶显示面板。例如,液晶显示面板可以包括阵列基板、对置基板、位于阵列基板和对置基板之间的液晶层以及封装液晶层的封框胶。例如,液晶显示面板还包括设置在阵列基板远离对置基板的一侧的第一偏振层和设置在对置基板远离阵列基板的一侧的第二偏振层。例如,导光装置91被配置为向液晶显示面板提供背光,背光通过液晶显示面板后转变为图像光线Ls。
例如,图像源90发出在可见光波段内包括至少一个谱带的图像光线Ls,图像光线Ls在可见光波段内可以包括一个或多个谱带,也可以认为图像光线Ls在可见光波段内包括一个或多个发射峰。例如,图像光线Ls在可见光波段内包括一个谱带,可以认为图像光线Ls为单色光线,可以形成单色图像;又例如,图像光线Ls在可见光波段内包括多个谱带,例如三个谱带,可以认为图像光线Ls为彩色光线,可以形成彩色图像。
例如,成像装置20包括透明基材21及设置在透明基材21至少一个表面的选择性透反元件22;例如,参见图34所示,选择性透反元件22可以设置在透明基材21靠近图像源90一侧的表面;或者,选择性透反元件22也可以设置在透明基材21远离图像源90一侧的表面,再或者,可以均设置在透明基材21的两侧表面。例如,选择性透反元件22可以覆盖透明基材21的部分表面,如图34所示;或者,也可以覆满透明基材21的全部表面。应当理解,选择性透反元件22可以与透明基材21之间保持一定距离,也可以通过镀设、贴覆或喷涂等方式与透明基材21紧密贴合;本公开实施例附图中,以选择性透反元件22贴合设置在透明基材21靠近图像源90一侧表面为例进行说明,但不应构成对本公开的限制。
例如,选择性透反元件22可以是光学膜,例如光学膜可以由多层具有不同折射率的膜层按照一定的堆叠顺序组合而成,每个膜层的厚度约在10~1000nm之间;例如,膜层的材料可以选用无机电介质材料,如金属氧化物、无机氟化物、金属氮氧化物和金属氮化物中的至少一种;也可以选用高分子材料,例如聚丙烯、聚氯乙烯及聚乙烯中的至少一种。
例如,透明基材21可以选取如聚碳酸酯、聚对苯二甲酸乙二醇酯、聚甲基丙烯酸甲酯、玻璃及石英等透明材料中的至少一种,也可以是具有既透明又可变色的特性的特殊材料,如变色玻璃,在强光环境下透明基材21可以变色以降低环境光强度。
例如,选择性透反元件22被配置为对至少部分图像光线Ls的反射率大于对图像光线Ls以外的可见光波段光线Le的反射率,和/或,对至少部分图像光线Ls的透射率小于对图像光线Ls以外的可见光波段光线Le的透射率。例如,外界光线包括紫外、可见光和红外等全波段光线,例如可以是阳光,或者外界景物如车辆和建筑物发出/反射的光线。对用户而言,可被用户识别的光线一般为可见光波段的光线,因此用外界光线中的可见光波段光线Le示意外界光线。光线Le传播至成像装置20时,光线Le中与图像光线Ls的谱带重合部分的光线会被选择性透反元件22反射,其余部分则会透过,例如本申请实施例及附图中以光线La指代图像光线Ls以外的可见光波段光线。例如,至少部分图像光线可以认为是几乎全部的图像光线Ls,或者部分图像光线Ls,如60%、70%、80%或者90%比例的图像光线Ls。
例如,选择性透反元件22对至少部分图像光线Ls的反射率,为20%~99%;例如,可以是60%、70%、80%或90%,甚至大于95%;选择性透反元件22对光线La的透射率,为20%~99%;例如,可以是60%、70%、80%或90%,甚至大于95%。例如,选择性透反元件22对光线Ls的反射率为60%,且对光线La的反射率为40%;和/或,选择性透反元件22对光线Ls的透射率为30%,且对光线La的透射率为70%。
例如,选择性透反元件22可以是对图像光线Ls中至少一个谱带的反射率的平均值为20%~99%,也可以认为是对图像光线Ls中至少一个谱带中每个谱带的反射率均为20%~99%;例如,选择性透反元件22对可见光波段内图像光线以外的光线La的透射率为20%~99%,可以是对光线La所在波段的反射率的平均值为20%~99%,也可以认为是对光线La部分波段的透射率均为20%~99%。
本申请至少一实施例中通过设置与图像源90发出的图像光线Ls的光学特性匹配的选择性透反元件22,将图像光线Ls尽可能多地反射,以提高反射所成的虚像V的亮度;并且,将外界环境光线尽可能多地透射,使得用户可以清晰地看到外界环境,实现了“高反高透”的效果,也降低了对图像源的功耗要求;并且,采用导光装置91为图像源90提供光线,减小了图像源90的厚度,提升了显示系统的实用性与使用体验。
本申请至少一实施例中,图像光线Ls在可见光波段内包括至少三个谱带,谱带的半峰宽都不大于60nm。例如,谱带的半峰宽不大于50nm、30nm、15nm或者5nm。例如,三个谱带分别对应可见光波段中的蓝光波段、绿光波段及红光波段。例如,至少三个谱带的峰值位置分别位于410nm~480nm、500nm~570nm及590nm~690nm区间范围内。例如,以图像光线包括的三个谱带分别对应可见光波段中的蓝光波段、绿光波段及红光波段,且谱带半峰宽为20nm;选择性透反元件22对图像光线Ls的反射率为70%、对光线La的透射率为70%为例,对本申请任一实施例提供的显示系统进行解释说明。例如,可见光波段一般位于300nm~700nm,因此可以近似认为可见光波段整体的半峰宽为400nm;对于上述举例而言,上述包括RGB三个谱带的图像光线,其占可见光波段整体光强的比例为:20*3/400=15%,也就是说,光线La所占的光强比例为1-15%=85%。基于上述计算过程,显示系统对图像源90发出光线的反射率为70%;并且,对外界光线的透射率为:85%*70%=59.5%。可以看出,显示系统提升了光线利用率及对外界环境的观察效果,达到了高反高透的技术效果。
在本申请至少一实施例中,参见图35a及图35b所示,图像源90还包括光源装置93,光源装置93被配置为发出在可见光波段内包括至少一个谱带的光线,且在可见光波段内包括至少一个谱带的光线传播至导光装置91。基于上述任一实施例,光源装置93发出的光线的谱带特性与选择性透反元件22至少部分重合,光源装置93发出的光线可以形成图像光线Ls,图像光线Ls可以与成像装置20的特性匹配,显示系统可以实现高反高透的技术效果,此处不再赘述。
例如,至少一个谱带的光线包括一个谱带的光线,例如光源装置93发出的光线具有550nm-600nm的波长谱带;或者,例如,至少一个谱带的光线包括多个谱带的光线,例如光源装置93发出的光线包括三个谱带(如对应红光、绿光和蓝光的三个谱带)。例如,一个谱带的光线可以形成 单色图像光线,多个谱带的光线可以形成多色图像光线。
在一些实施方式中,光源装置93发出的光线除上述在可见光范围内具有至少一个谱带的光线外,还可以具有可见光波段内其他光线,例如与光线La所在波段接近或重合的光线;例如,光源装置93发出的光线可以在可见光范围内均有分布的波段。例如,光源装置93可以包括至少一个利用蓝光激发荧光粉的白光LED,其发射光谱几乎包括整个可见光波段,光线经过图像生成装置92后会转化为图像光线Ls,例如光线经过液晶显示面板中的滤色片后会转化为具有至少一个谱带的图像光线Ls。
例如,光源装置93包括非时序发光光源,可以认为在不同时刻光源装置93发出的光线相同或者差别很小。例如,光源装置93在点亮后发出光线可以一直包括上述在可见光范围内具有至少一个谱带的光线。
例如,光源装置93包括时序发光光源,光源装置93以时序方式交替发出不同颜色的光线,例如对应上述至少一个谱带中的不同谱带的光线;例如,光源装置93以时序方式交替发出红光、绿光和蓝光,可以认为在不同时刻光源装置93发出的光线不同;例如,光源装置93以时序方式发出的红光、绿光和蓝光依次交替通过图像生成装置92(例如液晶显示面板),形成蓝色、绿色和红色的单色图像,因其刷新频率很快(例如超过人眼分辨极限24Hz),通过人眼的视觉暂留作用,感官上形成彩色图像。本实施方式中液晶显示面板无需设置滤色片,可以减少或避免光线被滤色片吸收造成的浪费,可以大幅提升光线利用率。例如,光源装置93可以设置在导光装置91的侧面,以侧入光的方式将光线导入导光装置91,图像源90的厚度更小,体积更加轻薄;或者,光源装置93也可以设置在导光装置91的底部,以直下式的方式将光线导入导光装置91,图像源90在垂直于出光方向上所占空间更小。为方便解释说明,本申请实施例及附图中以光源装置93设置在导光装置91的侧面为例进行解释说明。
例如,图35a及图35b分别示出了两种不同实施方式下显示系统的局部截面结构示意图。例如,当显示系统应用于抬头显示系统时,光源装置93至少可以设置在导光装置91在如图中x方向上的一侧,例如可以是远离用户的一侧(例如,用户观察角度下是导光装置91靠近挡风窗的一侧),如图35a所示;或者,光源装置93至少可以设置在导光装置91在如图中y方向上的一侧,例如靠近副驾驶位置的一侧(例如,用户为司机时,观察角度下是导光装置91靠近或靠近副驾位置的一侧),如图35b所示;例如,可以根据不同的使用环境将光源装置93设置在不同的位置,本申请实施例对此不做限定。
在本申请至少一实施例中,参见图36a、图36b及图36c所示,光源装置93包括至少一个光源931,例如,光源931可以为点光源、线光源或面光源。例如,图36a及图36b示出了光源装置包括一个光源931的示意图。如图36a所示,光源931可以为灯带或灯条等线光源,光线进入导光装置91后再经光耦出部911耦出后转化为面光源,可以为图像生成装置92提供均匀的面状背光。或者,如图36b所示,光源931可以为单点光源(例如LED光源或者激光光源),需要将光源931通过扩束元件进行扩展(例如沿图36b中的x方向扩展),扩束元件可以是光栅、透反膜及散射网点中的至少一种。图36b以一个光源931设置在左下角为例,可以先将光源931发出的光线沿x方向扩展为线光源,线光源再经光耦出部911耦出转为面光源。例如,图36a、图36b及图36c可以认为是图35b所示实施例中,图像源90不同实施方式的局部截面结构俯视图。
例如,上述至少一个光源931可以为电致发光元件,电致发光元件通过电场激发产生光线,包括但不限于包括但不限于发光二极管(Light Emitting Diode,LED)、有机发光二极管(Organic Light-Emitting Diode,OLED)、迷你发光二极管(Mini LED)、微发光二极管(Micro LED)、冷阴极荧光灯管(Cold Cathode Fluorescent Lamp,CCFL)、LED冷光源(Cold LED Light,CLL)、电激发光(Electro Luminescent,EL)、电子发射(Field Emission Display,FED)或量子点光源(Quantum Dot,QD)等。
例如,至少一个光源931包括第一颜色光源、第二颜色光源和第三颜色光源,第一颜色光源、第二颜色光源和第三颜色光源被配置为按照预设时序发光或者被配置为同时发光。例如,第一颜色、第二颜色和第三颜色可以对应可见光波段内的任意色光;例如,第一颜色、第二颜色和第三颜色可以是RGB三色光;例如,上述至少一个光源931可以为发出不同波长光线的单色光源,使 得光源装置93整体发出在可见光范围内具有至少一个谱带的光线;例如,多个光源931发出的输入光可以包括分别在在630nm±10nm(红光)、540nm±10nm(绿光),450nm±10nm(蓝光)这三个波段,例如可以是单色发光二极管(LED)光源,包括但不限于红光LED、绿光LED、蓝光LED、绿光LED,如发出红光谱带的砷化镓二极管、发出绿光谱带的磷化镓二极管,发出黄光谱带的碳化硅二极管和发出蓝光的氮化镓二极管。或者,至少一个光源931可以发出复合光线,例如至少一个光源931也可为发出包括RGB谱带白光二极管,例如红绿蓝光混合形成白光的LED。
例如,上述第一颜色光源、第二颜色光源和第三颜色光源被配置为按照预设时序发光或者被配置为同时发光,其过程与上述实施例类似;例如,发出红光、绿光和蓝光的三种光源同时发光;例如,发出红光、绿光和蓝光的三种光源依次按照时序发光,可以配合无滤色片的液晶显示面板,光线利用率更高。
例如,参见图37a及图37b所示,至少一个光源931包括沿第一方向延伸的一个光源931或者包括沿第一方向依次排列的多个光源931,第一方向相对于成像装置20的下沿的延伸方向倾斜或垂直。例如,图37a及图37b以至少一个光源包括沿第一方向依次排列的多个光源931为例进行示意,图37a及图37b可以认为是图35b所示实施例中,图像源90的不同实施方式的局部截面结构俯视图。例如,第一方向可以是图中所示的x方向;例如,第一方向可以是与图中x方向存在夹角的倾斜方向。可以理解,在图37a及图37b所示的实施方式中,成像装置20下沿的延伸方向一般是y方向,例如可以是车辆挡风窗的下沿的延伸方向(例如,沿主驾-副驾的方向);例如,第一方向可以是垂直或倾斜于车辆挡风窗的下沿的延伸方向的方向。例如,显示系统应用于交通工具时,图像源90可以设置在交通工具的控制台处,控制台一般在x方向(例如行进方向)上空间较为狭窄,光源装置93可以设置在导光装置91在y方向上的一侧或者两侧,可以减小图像源90所占的空间。
或者,参见图38a及图38b所示,至少一个光源931包括沿第二方向延伸的一个光源931或者包括沿第二方向依次排列的多个光源931,第二方向与第一方向均位于同一平面且不平行。例如,图38a及图38b以至少一个光源包括沿第二方向依次排列的多个光源931为例进行示意,图38a及图38b可以认为是图35a所示实施例中,图像源90的不同实施方式的局部截面结构俯视图。例如,第一方向与第二方向可以位于导光装置91或图像生成装置92所在平面处,例如可以是矩形的导光装置91或图像生成装置92的长边和短边延伸的方向;例如,第一方向与第二方向不平行;例如,第一方向和第二方向有交点。例如,第一方向与第二方向垂直。可以理解,在图38a及图38b所示的实施方式中,第二方向可以平行或倾斜于成像装置20下沿的延伸方向但与第一方向不平行,例如第二方向平行或倾斜车辆挡风窗的下沿且垂直于第一方向。例如,显示系统应用于交通工具时,图像源90可以设置在交通工具的控制台处,一般而言图像源90为矩形,在y方向(例如沿主驾-副驾延伸方向)上的尺寸较大,可以在导光装置91的一侧或者两侧设置更多的光源931,可以提升显示系统的亮度和显示效果。
在本申请至少一实施例中,沿导光装置91的出光方向,至少一个光源931与导光装置91不重叠。参见图36a、图36b、图36c、图37a、图37b、图38a及图38b所示,导光装置91的出光方向可以是垂直于图中xy所在平面的方向;在此方向上,至少一个光源931与导光装置91不重合,至少一个光源931采用设置在导光装置91侧面,例如设置在导光装置91的至少一侧(如一侧、两侧或者四侧)的方式为导光装置91提供光线,有利于减小图像源90的厚度(例如沿导光装置91出光方向的厚度),实现了图像源90的体积轻薄设计,提升了显示系统的使用体验。
在本申请至少一实施例中,如图39a及图39b所示,光耦出部911包括多个透反元件9111,光线在导光装置91中经透反元件9111的反射和透射中的一者传播,且经透反元件9111的反射和透射中的另一者出射,沿光线的传播方向,多个透反元件9111的反射率逐渐增加;或者,光耦出部911包括至少一个光栅,光栅被配置为将传播至光栅的光线的一部分耦出导光装置91。
例如,导光装置91可以使得入射至该导光装置91的光线整体上主要沿某一方向传输,其可以是沿全反射路径传播,如图39a所示;或者,也可以是沿直线方向传播,如图39b所示;例如,如图39a及图39b中的从左向右的方向都可以认为是光线传播的主要方向,本申请实施例将光线在导光装置91内的主要传播方向称为“光线传播方向”。如图39a及图39b所示,多个透反元件 9111沿光线传播方向排列设置,每个透反元件9111能够将入射至其的至少部分光线通过反射作用出射,透射的光线则继续传播;或者,透反元件9111也可以设置在导光装置91的出光侧(例如出光面处),例如透反元件9111可以包括散射网点,散射网点能够将入射至其的至少部分光线通过透射作用出射,反射的光线则继续传播。本申请实施例及附图中以透反元件9111设置在导光装置91内部,光线以透射形式传播且以反射形式出射为例进行解释说明。
例如,沿光线的耦出方向(如图39a及图39b中的沿z方向的光线方向),相邻的两个透反元件9111可以至少部分重叠。例如,相邻的两个透反元件9111的投影至少部分重叠;或者,沿光线的耦出方向(如图39a及图39b中的沿z方向的光线方向),相邻的两个透反元件9111可以至少相接。例如,相邻的两个透反元件9111的投影至少部分相接。通过设置相邻的透反元件9111之间相接或者交叠,可以避免透反元件9111之间出现没有光线的暗区,避免影响成像质量。
例如,沿该光线传播方向依次排列的多个透反元件9111的反射率具有逐渐增大的趋势,和或透射率具有逐渐减小的趋势。例如,每个透反元件9111的反射率互不相同,且沿光线传播方向的下一个透反元件9111的反射率较大。或者,可以将多个透反元件9111分组,每组至少包含一个透反元件9111,每组内透反元件9111的反射率可以相同,各组之间的反射率不同,且沿光线传播方向逐渐增大;例如,沿光线传播方向的最后一个透反元件9111的反射率大于其它每个透反元件9111的反射率,可以将光线尽量都反射出导光装置91;例如,最后一个透反元件的反射率可以为80%、85%、90%、95%或100%。通过设置透反元件9111的反射率逐渐增加,可以是逐个增加,或者也可以是区域性的逐渐增加(例如每个子区域内的透反元件的反射率可以相同、逐渐减小、逐渐增大或者随机分布),可以使得不同的透反元件9111耦出光线的发光强度基本一致或接近,例如任意两个透反元件耦出的光线的发光强度差值在15%以内。
例如,透反元件9111可以是几乎对光线没有选择性的透反元件,例如其透射和反射的光线的光学特性(例如波长特性和/或偏振特性)几乎没有差别;或者,透反元件9111也可以具有波长选择性和/或偏振选择性,其反射和透射的光线的波长和/或偏振特性不同。又例如,透反元件9111可以与上述选择性透反元件22具有类似的材料和结构,通过不同折射率、不同厚度和不同堆叠方式的膜层,实现不同的光学特性。
例如,多个透反元件9111倾斜于导光装置91所在的平面设置。例如,可以通过调整透反元件9111与导光装置91所在平面的倾斜角,进而调节耦出光线的角度与朝向。例如,多个透反元件9111之间彼此平行或近乎平行。
例如,光耦出部911可以包括至少一个光栅,光栅被配置为将传播至光栅的光线的一部分耦出导光装置91。例如,光栅至少通过衍射作用将光线耦出导光装置91。例如,光栅可以是与至少一个谱带的光线的波长对应的衍射光栅;例如,光栅包括红光衍射光栅、绿光衍射光栅和蓝光衍射光栅中的至少一种;例如,光栅可以是透射光栅或者反射光栅。
例如,参见图39a及图39b所示,导光装置91还可以包括导光介质912,透反元件9111的部分或全部设置在导光介质912内。该例如,导光介质912的折射率可以大于1,使得入射至该导光介质912内表面且满足全反射条件的光线(例如,入射至导光介质912的部分发散角度较大的光线)能够发生全发射传播,从而提高导光效果,如图39a所示。或者,导光介质912也可以是空气,光线可沿非全反射形式(例如主要沿直线路径)在导光介质912内传播,如图39b所示。通过设置包括多个透反元件9111或者光栅的光耦出部911,可以将在导光装置91传播的光线耦出导光装置,为图像生成装置92提供光线。
在本申请至少一实施例中,参见图40所示,图像光线包括具有第一偏振特性的至少一个谱带的光线;选择性透反元件22还被配置为,对至少部分图像光线中具有第一偏振特性的光线中的部分谱带或每个谱带光线的反射率大于图像光线以外的可见光波段光线以及第二偏振特性的至少一个谱带的光线的反射率,和/或,对至少部分图像光线中具有第一偏振特性的光线中的部分谱带或每个谱带光线的透射率小于图像光线以外的可见光波段光线以及第二偏振特性的至少一个谱带的光线的透射率;其中,第一偏振特性与第二偏振特性不同。例如,参见图40所示,至少部分图像光线中具有第一偏振特性的光线中的部分谱带或每个谱带光线标记为SLs,其被选择性透反元件22反射,例如反射至预设区域A;外界环境光线Le中与光线SLs重合或接近的光线被选择性透 反元件22反射,光线La透过,并且第二偏振特性的至少一个谱带的光线PLs也会透过。可以理解,外界环境光一般是非偏振光线,非偏振光线可以认为包括两个正交偏振态的光线,或者可以认为非偏振光可以分解为两个偏振态正交的光线,例如非偏振态光线可以分解为左旋圆偏振光和右旋圆偏振光,或者分解为左旋椭圆偏振光和右旋椭圆偏振光,或者分解为偏振方向互相垂直的两个线偏振光。
例如,第一偏振特性与第二偏振特性正交。例如,第一偏振特性和第二偏振特性可以是上述椭圆偏振特性、圆偏振特性或者线偏振特性,本实施例中以第一偏振特性及第二偏振特性为线偏振特性为例进行解释说明。
例如,第一偏振特性可以是垂直线偏振特性,第二偏振特性可以是水平线偏振特性。成像装置20为交通工具的挡风窗时,成像装置20与图像源90之间的夹角往往接近布鲁斯特角,可以理解,在此情况下,成像装置20对垂直偏振特性(可以理解为S偏振特性)的光线的反射率高,可以提高光线利用率,提升虚像V的亮度。例如,第一偏振特性可以是垂直线偏振特性,第二偏振特性可以是水平线偏振特性。例如,第一偏振特性可以是水平线偏振特性,第二偏振特性可以是垂直线偏振特性。例如,第一偏振特性可以是S偏振特性,第二偏振特性可以是P偏振特性。例如,第一偏振特性可以是P偏振特性,第二偏振特性可以是S偏振特性。
例如,选择性透反元件22对至少部分图像光线的反射率,可以为20%~99%,例如可以是60%、70%、80%或90%,甚至大于95%;选择性透反元件对图像光线以外的可见光波段光线以及第二偏振特性的至少一个谱带的光线的透射率可以为20%~99%;例如可以是60%、70%、80%或90%,甚至大于95%。例如,选择性透反元件22对光线SLs的反射率为60%,且对光线La及光线PLs的反射率为40%;和/或,选择性透反元件22对光线SLs的透射率为30%,且对光线La及光线PLs的透射率为70%。
可以理解,在图40对应的实施例中,外界光线Le透过成像装置20的光线增加了,例如增加了光线PLs;对于很多交通信号装置,例如红绿灯而言,其发出的光线的波长往往与上述谱带接近或至少部分重合,用户如驾驶员透过成像装置20还可以接收到光线PLs,不会影响对外界环境尤其是交通信息的观察,提高了驾驶安全;另外,图像生成装置92往往也发出带有偏振特性的谱带光线,将选择性透反元件22设置为对至少部分图像光线中具有第一偏振特性的光线中的部分谱带或每个谱带光线的反射率大于图像光线以外的可见光波段光线以及第二偏振特性的至少一个谱带的光线的反射率,和/或,对至少部分图像光线中具有第一偏振特性的光线中的部分谱带或每个谱带光线的透射率小于图像光线以外的可见光波段光线以及第二偏振特性的至少一个谱带的光线的透射率,也能进一步提升光线利用率,提高了显示系统的光效。
在本申请至少一实施例中,导光装置91耦出的光线包括具有第二偏振特性的至少一个谱带的光线;导光装置91耦出的光线经图像生成装置92后转化为包括具有第一偏振特性的至少一个谱带的光线的图像光线。例如,如图41所示,导光装置91耦出具有第二偏振特性的至少一个谱带的光线PLs,光线PLs经过图像生成装置92(例如液晶显示面板)后转化为光线SLs;例如,光线SLs与光线PLs的偏振特性正交。例如,光线SLs与光线PLs的偏振方向垂直。
或者,导光装置91耦出的光线可以是非偏振光线,可以认为其包括具有第二偏振特性的至少一个谱带的光线PLs,上述非偏振光线中的具有第二偏振特性的部分经过图像生成装置92(例如液晶显示面板)后转化为光线SLs,其他偏振态光线则被图像生成装置92吸收或者反射。
在本申请至少一实施例中,透反元件9111被配置为对具有第二偏振特性的至少一个谱带的光线的反射率大于其对具有第一偏振特性的至少一个谱带的光线的反射率,和/或,透反元件9111被配置为对具有第二偏振特性的至少一个谱带的光线的透射率小于其对具有第一偏振特性的至少一个谱带的光线的透射率。将透反元件9111也设置为与具有第二偏振特性的至少一个谱带的光线的特性匹配,可以进一步提升光线利用率。
例如,透反元件9111对具有第二偏振特性的至少一个谱带的光线的反射率,可以为20%~99%,例如可以是60%、70%、80%或90%,甚至大于95%;透反元件9111对具有第一偏振特性的至少一个谱带的光线的透射率可以为20%~99%;例如可以是60%、70%、80%或90%,甚至大于95%。例如,透反元件9111对光线PLs的反射率为60%,且对光线SLs的反射率为40%;和/或, 透反元件9111对光线PLs的透射率为30%,且对光线SLs的透射率为70%。
在本申请至少一实施例中,如图42所示,图像源90还包括在光线入射至图像生成装置92之前对光线进行转化处理的光转化部94,光转化部94包括分光元件941及转换元件942;分光元件941被配置为将入射的光线分为彼此光学特性不同的第一部分光和第二部分光;转换元件942被配置为将第一部分光及第二部分光中的一者的光学特性转为另一者的光学特性。例如,本申请实施例可以将分光元件941分出的第一部分光线L1和第二部分光L2在入射至图像生成装置92之前调整为具有相同的特性,特性相同的光线几乎都可以被与其匹配的图像生成装置92利用,可以大大提升光线利用率。
例如,光源931发出的光线一般而言是自然光(例如,非偏振光),可以认为其包括不同的偏振特性和/或波长特性;分光元件941具有分光的功能,其至少能够将光线分为第一部分光L1和第二部分光L2。转换元件942则将第一部分光L1和第二部分光L2中的一者的光学特性转为另一者的光学特性,如图42中以转换元件942将第二部分光L2转为具有第一部分光L1的特性为例进行说明。
例如,分光元件941能够对不同特性的光线实现分光,从而分出光学特性不同的第一部分光L1和第二部分光L2。例如,该特性可以是偏振特性、波长特性等。例如,分光元件941可以是偏振分光元件或者波长分光元件。例如,分光元件941能够实现透射和反射功能(以下简称为透反),通过其对不同特性的光线的反射率和/或透射率的差异,通过透反作用将至少将第一部分光L1和第二部分光L2分光;例如,如图42所示,分光元件941对第一部分光L1的反射率小于对第二部分光L2的反射率,和/或分光元件941对第一部分光L1的透射率大于对第二部分光L2的透射率,以通过对不同光线反射率/透射率的差异进行分光。
在一种实施方式中,分光元件941可以将光线分为具有不同偏振特性的光线,如分为具有第一偏振特性的第一部分光L1和具有第二偏振特性的第二部分光L2,第一部分光L1与第二部分光L2可以是偏振特性不同的线偏振光、圆偏振光或椭圆偏振光等。例如,第一部分光L1与第二部分光L2的偏振态正交。例如,第一部分光L1与第二部分光L2均为线偏振光,其偏振方向垂直。
在另一种实施方式中,分光元件941能够将光线分为不同波段的第一部分光L1以及第二部分光L2,第一部分光L1与第二部分光L2的光谱不完全相同。例如,分光元件941可以将光线分为具有红光波段的第一部分光L1以及具有非红色光波段(例如,蓝光波段和绿光波段)的第二部分光L2。
例如,转换元件942能够将第一部分光L1及第二部分光L2中的一者的光学特性转换为另一者的光学特性。例如,转换元件942可以是偏振转换元件,如波片;或者,也可以是波长转换元件,如滤光片、荧光粉等。例如,转换元件942可以将至少部分(例如50%、60%、70%、80%或90%)光线的特性转化,也可以将几乎全部光线的特性转化,本申请实施例对此不做限制。
在本申请至少一实施例中,如图43a、图43b、图43c及图43d所示,光转化部94还包括:反射元件943,反射元件943被配置为将第一部分光L1及第二部分光L2中的一者反射向导光装置91。例如,反射元件943反射的光线可以直接出射向导光装置91,反射元件943反射的光线也可以再经过其他元件后再出射向导光装置91,本申请实施例对此不做限制。
例如,分光元件941分出的第一部分光L1和第二部分光L2一般会射向不同的方向,本申请至少一实施例可以通过设置反射元件943来改变第一部分光L1或第二部分光L2的方向,使得第一部分光L1或第二部分光L2能够射向导光装置91,使得尽可能多的光线进入导光装置91,进而提升光线利用率。
本申请至少一实施例中,分光元件941包括偏振分光元件,偏振分光元件被配置为将入射的光线分为彼此偏振特性不同的第一偏振光和第二偏振光;转换元件942包括偏振转换元件,偏振转换元件被配置为将第一偏振光和第二偏振光中的一者的偏振特性转为另一者的偏振特性。例如,偏振分光元件可以是立体形式的偏振分光棱镜,或者是如RPM(Reflecting polarizer mirror)或BEF(Brightness Enhancement Film)等的偏振分光膜。例如,偏振转换元件可以是1/2波片或者1/4波片。通过偏振转换元件能够将分光元件941所分束的第一部分光L1或第二部分光L2转换, 使得经光转化部94出射的光线具有相同的偏振特性,从而能够将光源装置93发出的光线几乎均转换为具有相同偏振特性的光线,能够增加其他需要基于该偏振特性的光线进行工作的部件的亮度,例如可以增加液晶显示屏的亮度等。
例如,以下参见图43a、图43b、图43c及图43d对偏振转换元件和偏振分光元件的配合关系及光线的转化过程进行解释说明。图中以偏振分光元件分光后的第一部分光L1及第二部分光L2为偏振方向垂直的线偏振光,且偏振转换元件为1/2波片或1/4为例进行解释说明,但不应构成对本申请实施方式的限制。
例如,参见图43a所示,转换元件942设置在分光元件941与反射元件943之间,转换元件942被配置为将分光元件941反射的第二部分光L2进行偏振转换,转换后的光线具有与第一部分光L1相同的特性,因此图43a中以L1标记转换后的光线,从而将光源931发出的非偏振光转化为具有相同偏振特性的光线。例如,为了提高偏振转换效果和便于实施,转换元件942可以贴合在分光元件941靠近反射元件943的一侧表面;例如,转换元件942可以是二分之一波片。
例如,参见图43b所示,转换元件942设置在反射元件943靠近分光元件941的一侧,转换元件942被配置为将反射元件943反射的第二部分光L2进行偏振转换,例如第二部分光L2是经分光元件941反射的第二部分光L2;转换后的光线具有与第一部分光L1相同的特性,因此图43b中以L1标记转换后的光线,从而将光源931发出的非偏振光转化为具有相同偏振特性的光线。
例如,参见图43c所示,转换元件942设置在分光元件941远离反射元件943的一侧,转换元件942被配置为将分光元件941透射的第一部分光L1进行偏振转换,转换后的光线具有与第二部分光L2相同的特性,因此图43c中以L2标记转换后的光线,从而将光源931发出的非偏振光转化为具有相同偏振特性的光线。例如,为了提高偏振转换效果和便于实施,转换元件942可以贴合在分光元件941远离反射元件943的一侧表面;例如,转换元件942可以是二分之一波片。
例如,参见图43d所示,转换元件942设置在分光元件941与反射元件943之间,且被配置为多次转换经过其的光线,经转换元件942多次(例如至少两次)转换后的光线可以转化为与第一部分光L1具有相同的特性,因此图43d中以L2标记转换后的光线,从而将光源931发出的非偏振光转化为具有相同偏振特性的光线。例如,为了提高偏振转换效果和便于实施,转换元件942可以贴合在反射元件943靠近分光元件941的一侧表面;例如,转换元件942可以是四分之一波片。
应当理解,上述实施方式中的“转化为与第一部分光L1或第二部分光L2具有相同的特性”,并不限定光线完全转化,可能有部分光线未转化或未完全转化,如图43a所示的实施例,经转换元件942转化后的光线不仅包括与第一部分光L1具有相同特性的光线,可能还包括部分未转化的第二部分光L2。
例如,图像生成装置92可以包含液晶显示面板,该液晶显示面板能够将具有第一偏振特性或第二偏振特性的光线转换为图像光线Ls,从而实现成像。例如,光转化部94能够将光源装置93发出的光线几乎全部转换为能够被图像生成装置92利用的特定偏振特性的光线,从而能够提高光线利用率及成像亮度。
在本公开至少一实施例中,参见图44所示,图像源90还包括在光线入射至图像生成装置92之前对光线进行匀化处理的匀光部95;匀光部95在导光装置91的出光方向上与导光装置91交叠,如图45所示;或者,在与导光装置91的出光方向相垂直的方向上与导光装置91并排设置,如图46a及13b所示。
例如,参见图45所示,在导光装置91的出光方向上(例如图45中所示的z方向),匀光部95与导光装置91交叠;例如,可以认为匀光部在导光装置91所在面的投影,与导光装置重叠;例如,可以是完全重叠或者部分重叠。例如,图像源90还可以包括反射件96,反射件96将匀光部95匀光处理后的光线改变方向并将其射向导光装置91,例如反射件96可以是反射膜、反射面或者棱镜。将匀光部95与导光装置91在导光装置91的出光方向上交叠设置,可以减小图像源90在平面方向上(例如图45中的xy平面)上的尺寸,进而提高了显示系统的实用性。
例如,参见图46a及图46b所示,在与导光装置91的出光方向相垂直的方向上(例如图46a及图46b中所示的x方向和/或y方向),匀光部95与导光装置91并排设置;例如,匀光部95与 导光装置91可以设置在同一平面或接近同一平面,如图46a所示;或者,匀光部13与导光装置91可以交错设置,仍呈并排设置,如图46b所示。将匀光部95与导光装置91在与导光装置91的出光方向相垂直的方向上并排设置,可以减小图像源90在导光装置91出光方向上(例如图46a及图46b中的z方向)上的厚度,进而提高了显示系统使用的便利性。
例如,匀光部95至少包括相对的第一反射面951和第二反射面952,第一反射面951和第二反射面952被配置为对入射至匀光部95的光线进行至少一次反射以对光线进行匀化处理。例如,图44示出了光源931发出的部分光线经第一反射面951和第二反射面952的反射后匀化的示意图,每次反射都可以视为增加了至少一个光源931的虚像,这些光源931反射所成的虚像也可以视为光源,等效于通过反射扩展了光源931的数量,多个光源发出的光线彼此交错交叠,增加了经匀光部95出射的光线的均匀性(例如明暗均匀性),可以提升显示效果。
例如,在匀光部95内传输的光线可以全反射形式传播,匀光部95包括实心透明材质953,第一反射面951和第二反射面952可以是实心透明材质953的内表面;或者,匀光部95可以包括空腔,第一反射面951和第二反射面952之间可以是空气,在匀光部95内传播的光线以镜面反射的形式传播。例如,光源931发出的部分光线可以不经第一反射面951和第二反射面952反射而直接出射,如图44中所示的直线光线。
例如,第一反射面951和第二反射面952可以是抛光的金属表面,例如抛光的铜、银、铝或铝合金元件;或者,第一反射面951和第二反射面952也可以是反射膜,例如镀铝、银或铜,或者可以是贴覆的高分子膜材如ESR膜(Enhanced Specular Reflector)。在一种实施方式中,参见图47a所示,经过匀光部95处理的光线可以经光转化部94处理后传输至导光装置91;例如,光源931发出的光线经匀光部95进行匀化处理,经匀光部95出射的光线具有较好的均匀性和方向一致性,光线再经光转化部94转化为具有相同偏振态的光线,具有相同偏振态的光线再传播至导光装置91,耦出后可供与其特性匹配的图像生成装置92利用,可以大大提升光线利用率。
在另一种实施方式中,参见图47b所示,经过光转化部94处理的光线可以经匀光部95处理后传输至导光装置91;例如,光源931发出的光线经光转化部94转化为具有相同偏振态的光线,具有相同偏振态的光线再经匀光部95进行匀化处理,经匀光部95出射的光线具有较好的均匀性和方向一致性;光线再传播至导光装置91,耦出后可供与其特性匹配的图像生成装置92利用,可以大大提升光线利用率。例如,可以是光源931发出的光线直接进入匀光部95,或者也可以是光源931发出的光线经过其他元件后再进入匀光部95,本实施例对此不做限定。
在本公开至少一实施例中,如图44、图48a及图48b所示,入射至匀光部95的光线具有预设发散角,第一反射面951和第二反射面952之间的在匀光部95的入光侧、出光侧和位于入光侧和出光侧之间的侧方中的至少之一的夹角不大于预设发散角。
例如,第一反射面951和第二反射面952的夹角不大于预设发散角,以使得发散的光线能够在导光介质912内发生反射,以通过反射对光线进行匀化处理。
例如,第一反射面951和第二反射面952在匀光部95的入光侧的间距小于在匀光部95的出光侧的间距,如第一反射面951和第二反射面952的夹角可以是朝向匀光部95出光方向的张角,如图48a所示;或者,第一反射面951和第二反射面952在匀光部95的入光侧的间距大于在匀光部95的出光侧的间距,例如,第一反射面和第二反射面的夹角可以是朝向匀光部95入光方向的张角,如图48b所示。例如,上述张角均不大于预设发散角。
例如,第一反射面951和第二反射面952之间的侧方,例如在垂直于图48a及图48b的纸面方向,包括对设的第一反射面951和第二反射面952;例如,第一反射面951和第二反射面952之间的间距,在背离纸面的侧方小于沿纸面的侧方;例如,第一反射面951和第二反射面952之间的间距,在沿纸面的侧方小于背离纸面的侧方。
例如,发散角θ是目前较为通用的衡量光束发光角度的标准,例如θ/2为发光强度值为轴向强度值的一半时发光方向与光轴之间的夹角;或者,θ/2还可以为发光强度值为径向强度值的60%或80%时发光方向与光轴之间的夹角。例如,入射到导光装置91内的光线的发散角可以为40°、20°或10°,相应地,第一反射面951和第二反射面952的夹角可以小于40°、20°或10°,例如可以是30°、10°或5°。例如,第一反射面951和第二反射面952可以平行,可以认为其夹 角为0°。
例如,光源装置93还可以包括反射导光元件,例如灯杯;灯杯可以将光源931发出的光线调节至预定发散角(例如上述大于反射面夹角的发散角),具有预定发散角的光线进入匀光部95并匀化处理,如图48a及图48b所示。例如,灯杯可以是实心灯杯或空心灯杯,将光源931发出的具有一定发散角度的光线转化为具有预定发散角的光线。例如,光源发出的光线其发散角一般较大,例如发散角为45°,灯杯可以将光线的发散角控制为较小的40°、20°或10°。
又例如,光源装置93可以包括扩散元件,光源931可以发出准直光线(例如激光),例如光线发散角可能小于上述预定发散角可以通过扩散元件对光线进行扩散,从而形成预设发散角。
例如,匀光部95还可以包括其他对设的反射面,例如平行于纸面方向的至少一对反射面;例如,上述反射面与第一反射面951、第二反射面952可以是围设在匀光部95入光侧和出光侧之间的反射面,该反射面例如可以是四棱柱形状、六棱柱形状或者八棱柱形状,包括至少一组对设的反射面,还可以包括两组、三组、四组或者更多的对设的反射面。
例如,在本公开至少一实施例中,参见图49所示,还包括聚光装置97;聚光装置97被配置为将导光装置91出射的光线聚集至预设区域A。例如,聚光装置97位于导光装置91与图像生成装置92之间。例如,聚光装置97可以对几乎所有导光装置91耦出的光线进行聚集定向,使得光线可到达用户的眼盒区域。
例如,聚光装置97可以将光线聚集至预设区域A,可进一步聚拢光线,提高光线利用率。例如,可以是聚集在预设区域A内的一个点,比如凸透镜的焦点,也可以是一个较小的区域,设置聚光装置97可以将导光装置91耦出的光线统一或大部分调整方向至预设区域A,提高光线的利用率。
例如,聚光装置97可为透镜、曲面反射镜、折射镜或透镜组合,例如可以是菲涅尔透镜和/或曲面透镜,例如可以是凸透镜、凹透镜或者透镜组合等,图49中以凸透镜为例进行示意说明。
例如,预设区域A可以是眼盒区域(eyebox),眼盒区域是指用户眼睛所在的、可以看到显示系统图像的区域,例如眼盒区域可以是平面区域或者立体区域,用户眼睛在眼盒范围内都可以看到图像,例如完整的图像。例如,用户可以是驾驶员和/或乘客。
本公开至少一实施例中,参见图49所示,还包括至少一个光扩散装置98,光扩散装置98被配置为将图像光线和导光装置91的耦出光线的至少之一扩散至覆盖预设区域A。例如,至少一个光扩散装置98位于图像生成装置92的出光侧和背侧的至少之一。例如,光扩散装置98的数量可以为多个,且彼此间隔设置,以进一步提高光束的分散效果。例如,光束扩散后的传播角度和沿传播方向截面的光斑尺寸决定了显示系统所成虚像V的亮度及可视区域,扩散角度越小,用户观察到的虚像V的亮度越高,可视区域也越小;反之亦然。
例如,图49示意性的示出光扩散装置98位于图像生成装置92的背侧,即位于导光装置91与图像生成装置92之间,且被配置为将导光装置91的出射的光线进行扩散。
例如,光扩散装置98还可以设置在图像生成装置92的出光侧,配置为将图像生成装置92出射的图像光线进行扩散,光扩散装置98可以紧贴设置于图像生成装置92的出光面,以提升成像效果。例如,将光线扩散且至少覆盖眼盒区域。
例如,光扩散装置98被配置为扩散经过其的光束但不改变或几乎不改变该光束的光轴。上述“光轴”指光束的中心线,也可以认为是光束传播的主方向。例如,入射光束经过光扩散装置98后,会扩散为沿传播方向具有特定大小和形状的光斑的光束,例如,光斑的能量分布可以均匀化或者非均匀化;例如,光斑的大小和形状可以由光扩散装置98中设计的特定的微结构控制。上述特定形状的光斑可以包括但不限于线形、圆形、椭圆形、正方形或长方形。
例如,光扩散装置98包括衍射光学元件和散射光学元件中的至少之一。例如,散射光学元件包括匀光片、扩散片等,主要对光束起散射作用,还会发生少量的衍射;例如光束透过散射光学元件后可以形成较大的光斑。例如,衍射光学元件(Diffractive Optical Elements,DOE)对扩散效果控制相对更加精确,例如可以是光束整形片(Beam Shaper)等,主要通过衍射起到扩束作用,光斑可以较小,例如光斑的大小和形状可控。
例如,聚光装置97可将导光装置91输出的光线聚集至一定的范围(例如预设区域A以内), 光扩散装置98可将聚集的光线扩散为至少覆盖预设区域A(例如覆盖眼盒区域),通过聚光装置97及光扩散装置98的配合,在提供高光效的同时也扩大了可视范围。
例如,上述任一实施例所述的显示系统可以是抬头显示系统HUD;例如,可以是风挡式抬头显示系统(Winshield-HUD,W-HUD)和组合式抬头显示系统(Combiner-HUD,C-HUD)。
本公开至少一实施例还提供一种交通工具,包括上述任一实施例所述的导光装置、光源装置、或显示系统。例如,交通工具的前窗(例如,前挡风玻璃)被复用为显示系统的成像装置20。
例如,该交通工具可以是各种适当的交通工具,例如可以包括各种类型的汽车等陆上交通工具,或可以是船舶等水上交通工具,或可以是飞机等空中交通工具,其驾驶位置设置挡风窗(例如,前挡风窗、侧挡风窗和后挡风窗中的至少一者)且将图像投射到前挡风窗上。例如,成像装置20可以为平面面形,也可以为曲面面形,如带弧度的挡风窗或者带有曲率的透明成像板等,会提供较远的成像距离。
图50为根据本公开另一实施例提供的交通工具的示例性框图。如图所示,该交通工具包括本公开的至少一些实施例提供的抬头显示器。交通工具的前窗(例如,前挡风玻璃)被复用为抬头显示器的反射成像部800。
例如,该交通工具可以是各种适当的交通工具,例如可以包括各种类型的汽车等陆上交通工具,或可以是船等水上交通工具,或可以是飞机等空中交通工具,其设置挡风窗(例如,前挡风窗、侧挡风窗和后挡风窗中的至少一者)且通过车载显示系统将图像透射到挡风窗上。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (30)

  1. 一种导光装置,包括:
    导光结构,包括光耦出部,所述光耦出部被配置为将在所述导光结构中传播的光线耦出,
    其中,所述导光结构包括第一导光元件和第二导光元件,进入所述导光结构的光线经所述第一导光元件传输至所述第二导光元件,所述光耦出部的至少部分位于所述第二导光元件;
    其中,
    所述第一导光元件包括被配置为传播所述光线的介质以及位于所述介质的至少两侧的第一反射结构、所述第一反射结构被配置为对入射至所述第一导光元件的光线进行至少一次反射以使所述光线传播至所述第二导光元件;和/或,所述第一导光元件被配置为对入射至所述第一导光元件的光线进行全反射传播以使所述光线传播至所述第二导光元件。
  2. 根据权利要求1所述的导光装置,其中,所述第一反射结构包括至少两个子反射面,其中,
    所述至少两个子反射面之间包括空腔或透明基板;和/或,
    入射到所述第一导光元件内的光线的发散角为θ,所述至少两个子反射面中包括彼此相对的两个子反射面;其中,彼此相对的所述两个子反射面之间的夹角大于0°且小于等于θ;或者,彼此相对的所述两个子反射面平行。
  3. 根据权利要求1或2所述的导光装置,还包括:光转化部,所述光转化部包括偏振分光元件和偏振转化结构,所述偏振分光元件被配置为将射向所述偏振分光元件的光线分光处理为第一偏振光和第二偏振光;
    所述偏振转化结构被配置为将所述偏振分光元件分光处理后得到的所述第二偏振光转化为第三偏振光,所述第三偏振光与所述第一偏振光的偏振态相同,其中,所述第二导光元件被配置为传输所述第一偏振光和所述第三偏振光。
  4. 根据权利要求3所述的导光装置,其中,所述第一反射结构包括至少两个子反射面,其中,
    所述至少两个子反射面之间包括空腔,所述光转化部的至少部分位于所述第一导光元件的所述空腔内;或者,
    所述至少两个子反射面之间设置有透明基板,所述光转化部位于所述第一导光元件以外。
  5. 根据权利要求1-4任一项所述的导光装置,其中,所述光转化部位于所述第一导光元件的入光侧或者出光侧;和/或,
    所述光转化部还包括第二反射结构,所述第二反射结构被配置为反射所述第一偏振光、所述第二偏振光和所述第三偏振光至少之一,所述第二反射结构包括反射面或者棱镜。
  6. 根据权利要求1-5任一项所述的导光装置,还包括:
    调光结构,被配置为至少对射向所述调光结构中的光线中的第一波长光的透过率不同于对第二波长光的透过率,其中,所述调光结构位于所述偏振转化结构的出光侧或者入光侧;和/或,第四导光元件,位于所述光转化部的出光侧,所述光转化部出射的光经所述第四导光元件传输至所述第二导光元件,
    其中,在所述第四导光元件内传输的光线可以在所述第四导光元件的内表面发生非全反射或者全反射传播。
  7. 根据权利要求1-6任一项所述的导光装置,其中,所述第二导光元件沿第一方向延伸,其中,在沿与所述第一方向垂直的第二方向上,所述第一导光元件和所述第二导光元件交叠;或者,
    所述第一导光元件和所述第二导光元件沿所述第二导光元件的延伸方向排列;和/或,
    所述第一导光元件和所述第二导光元件为彼此分离的结构;或者,所述第一导光元件和所述第二导光元件一体成型;和/或,
    所述第二导光元件沿第一方向延伸,所述第一导光元件至少部分沿所述第一方向延伸,其中,所述第二导光元件包括在与所述第一方向垂直的第二方向上不与所述第一导光元件交叠的第一子部;和/或,
    所述第一导光元件包括在垂直于所述第二导光元件的延伸方向的方向上不与所述第二导光元件交叠的第二子部;和/或,所述第一导光元件包括第三反射结构,其被配置为将通过所述第一反 射结构的所述至少一次反射传播的光线反射进所述第二导光元件,所述第三反射结构包括反射面或棱镜;和/或,所述第二导光元件的入光侧设置有光线聚集元件,所述光线聚集元件被配置为将入射至其的光线朝预设方向聚集并入射至所述第二导光元件。
  8. 根据权利要求7所述的导光装置,其中,所述光线聚集元件被配置为使经过所述光线聚集元件并入射至所述第二导光元件中且靠近所述第二导光元件出光面传播的光线向远离所述出光面的一侧偏移。
  9. 根据权利要求1-8任一项所述的导光装置,其中,所述介质包括空气或者透明基板,所述介质与所述第一反射结构为彼此独立的结构;和/或,
    其中,所述第二导光元件包括导光介质,
    所述导光介质包括透明材质,所述透明材质被配置为使进入所述导光介质的光线进行全反射传播和/或非全反射传播;或者,所述导光介质包括空气;和/或,
    其中,所述导光结构还包括导光介质,所述光耦出部包括多个光耦出件,所述多个光耦出件至少设于所述导光介质,所述光线进入所述导光介质,并在所述导光介质中在所述多个光耦出件的排列方向上直线传播或反射传播。
  10. 根据权利要求1-9任一项所述的导光装置,其中,所述光耦出部包括具有多个透反元件的透反元件阵列,所述透反元件阵列中的至少部分透反元件被配置为对传播至所述透反元件的光线进行部分反射和部分透射,以使该光线的一部分被耦出所述第二导光元件且另一部分继续在所述第二导光元件中传播;或者,
    所述光耦出部包括光栅,所述光栅被配置为将传播至所述光栅的光线的一部分耦出所述第二导光元件;和/或,
    所述透反元件阵列包括沿所述第二导光元件的延伸方向依次排列的多个透反元件;沿在所述第二导光元件中传播的光线的传播方向,所述多个透反元件的反射率逐渐增大或呈区域性地逐渐增大;和/或,
    所述透反元件阵列包括的多个透反元件中位于最边缘且靠近入光侧的所述透反元件被配置为反射从所述第一导光元件传播进所述第二导光元件的光线的至少部分,且该透反元件的反射率大于透射率。
  11. 根据权利要求10所述的导光装置,其中,所述多个透反元件包括M个透反元件组,至少一个透反元件组中的每个透反元件组包括具有预设反射率的至少两个透反元件,且位于不同透反元件组的所述透反元件的反射率不同,M为大于1的正整数;
    和/或,
    所述多个透反元件包括设置有反射介质的透反元件,至少部分透反元件设置有具有第一反射率的反射介质,所述至少部分透反元件的至少两个透反元件中,具有第一反射率的所述反射介质占相应的所述透反元件的面积比不同以使所述至少两个透反元件的反射率不同;
    和/或,
    所述多个透反元件包括设置有反射介质的透反元件,至少一个透反元件设置的所述反射介质包括至少两种不同反射率,且所述多个透反元件设置的反射介质的反射率种类数量小于所述多个透反元件的数量。
  12. 根据权利要求1-11任一项所述的导光装置,其中,所述导光结构还包括第三导光元件,所述光耦出部包括第一光耦出部和第二光耦出部,所述第二导光元件包括所述第一光耦出部,所述第三导光元件包括所述第二光耦出部,在垂直于所述第二导光元件的延伸方向的方向上,所述第二光耦出部与所述第一导光元件交叠,且所述第一光耦出部的至少部分与所述第二光耦出部没有交叠。
  13. 一种光源装置,包括:
    光源部,用于发射出光线;以及
    导光装置,其中,所述光源部发出的光线被配置为进入所述导光装置;
    其中,所述导光装置为权利要求1-12任一项所述的导光装置;或者,
    所述导光装置包括导光结构,
    所述导光结构包括允许至少部分所述光线进入所述导光结构的入光区域并且包括具有多个光耦出件的光耦出部,入射到至少部分光耦出件中的每个光耦出件处的光线在所述光耦出件处发生部分反射,并且被所述光耦出件部分耦出;
    所述导光结构包括第一导光元件和第二导光元件,进入所述导光结构的光线经所述第一导光元件传输至所述第二导光元件,所述光耦出部的至少部分位于所述第二导光元件;
    其中,所述导光结构的第一导光元件包括被配置为对入射至所述光耦出部之前的光线进行匀化处理的匀光部,和/或所述导光结构的所述多个光耦出件包括实现所述部分反射和部分耦出的多个透反元件。
  14. 根据权利要求13所述的光源装置,其中,所述光源部在所述导光结构上的正投影至少部分位于所述导光结构内;和/或,
    所述光源部设置在沿着所述第二导光元件的厚度的延伸方向;和/或,第一导光元件和第二导光元件沿着所述导光结构的厚度方向上堆叠。
  15. 根据权利要求13或14所述的光源装置,其中,所述光源部包括光源和反射导光结构,所述反射导光结构被配置为将所述光源发出的光线调节至预定发散角。
  16. 根据权利要求13-15任一项所述的光源装置,其中:
    所述多个光耦出件包括在所述多个光耦出件的排列方向上依次设置的第一光耦出件组和第二光耦出件组,所述第一光耦出件组包括多个第一光耦件,所述第二光耦出件组包括多个第二光耦出件;
    所述导光结构的入光区域在所述多个光耦出件的排列方向上位于所述第一光耦出件组和所述第二光耦出件组之间,从所述导光结构的入光区域进入所述导光结构的光线被所述第一光耦出件组和所述第二光耦出件组耦出。
  17. 根据权利要求16所述的光源装置,其中:所述第一光耦出件组包括多个第一透反元件,所述第二光耦出件组包括多个第二透反元件,所述多个第一透反元件与所述多个第二透反元件相对于所述多个光耦出件的排列方向的倾斜方向相反;和/或,
    其中:
    所述光源部包括第一光源部,其被配置为发出第一源光线,所述第一源光线的第一部分位于所述第一光耦出件组的至少一个第一光耦出件所在光路中,并且所述第一源光线的第二部分位于所述第二光耦出件组的至少一个第二光耦出件所在光路中;
    或者,
    所述光源部包括被配置为分别发出所述源光线中的第一源光线和第二源光线的第一光源部和第二光源部,所述第一光源部发出的第一源光线至少位于所述第一光耦出件组的至少一个第一光耦出部所在光路中,所述第二光源部发出的第二源光线至少位于所述第二光耦出件组的至少一个第二光耦出件所在光路中。
  18. 根据权利要求17所述的光源装置,还包括分光结构和偏振转化结构;
    所述分光结构被配置为将入射至所述分光结构的光线分为具有第一偏振特性的第一光线和具有第二偏振特性的第二光线,所述第一光线和所述第二光线为具有不同偏振特性的偏振光;
    所述偏振转化结构被配置为对入射至所述偏振转化结构的光线进行至少一次偏振转换处理以得到第三光线,所述第三光线为具有所述第二偏振特性的偏振光;
    其中,
    所述第一光线对应所述第一光耦出件组,所述第二光线对应所述第二光耦出件组,所述偏振转化结构将入射至所述第一光耦出件组之前的第一光线或被第一光耦出件组耦出的第一光线转换为所述第三光线;或者,
    所述第一源光线和所述第二源光线都被分为所述第一光线和所述第二光线,所述第一源光线的第一光线在被所述偏振转化结构转换后得到的第三光线和所述第一源光线的第二光线传播至所述第一光耦出件组,所述第二源光线的第一光线在被所述偏振转化结构转换后得到的第三光线和所述第二源光线的第二光线传播至所述第二光耦出件组;和/或,其中:
    所述分光结构包括至少一个偏振分光元件,所述第一源光线和所述第二源光线被同一偏振分 光元件或不同偏振分光元件进行分光处理;和/或,
    所述偏振转化结构包括至少一个偏振转换元件,所述第一源光线的第一光线和所述第二源光线的第一光线被同一偏振转换元件或不同偏振转换元件进行偏振转换。
  19. 根据权利要求13至18任一项所述的光源装置,其中,
    所述匀光部包括至少一个第一匀光件,所述第一匀光件和所述多个光耦出件在与所述多个光耦出件的排列方向相垂直的方向上层叠设置或者在所述多个光耦出件的排列方向上依次设置;和/或,
    所述至少部分光耦出件中的每个光耦出件部分透射入射至所述光耦出件的光线,以使被透射的光线传播至下一个光耦出件,以及,在所述多个光耦出件中,第一个接收所述光线的光耦出件的透过率小于其反射率;和/或,
    还包括分光结构和偏振转化结构,所述分光结构被配置为将入射至所述分光结构的光线分为第一光线和第二光线,所述第一光线为具有第一偏振特性的偏振光,所述第二光线为具有第二偏振特性的偏振光,以及,所述偏振转化结构被配置为改变所述第一光线的偏振特性,从而使所述具有第一偏振特性的第一光线经过所述偏振转化结构的至少一次偏振转换处理后被转换为具有所述第二偏振特性且为偏振光的第三光线,其中,所述分光结构和所述偏振转化结构设于所述匀光部包括的第一匀光件的入光侧或出光侧,并且所述第一光线在被所述偏振转化结构转换后传播向所述多个光耦出件中的至少部分;
    和/或,
    还包括光线聚集元件,其中,从所述匀光部包括的第一匀光件的出光侧出射的光线在经过所述光线聚集元件的聚光处理后传播向所述导光结构的所述多个光耦出件。
  20. 根据权利要求19所述的光源装置,其中:
    所述匀光部还包括第二匀光件,被所述第一匀光件匀化后的光线被所述分光结构分为所述第一光线和所述第二光线,所述第二光线以及由所述第一光线被所述偏振转化结构转换后得到的所述第三光线在被所述第二匀光件匀化后传播向所述导光结构的所述多个光耦出件所在侧;和/或,其中:所述匀光部包括的第二匀光件与所述多个光耦出件在与所述多个光耦出件的排列方向相垂直的方向上层叠设置或者在所述多个光耦出件的排列方向上依次设置;
    其中,
    所述第一匀光件和所述第二匀光件至少之一包括间隔设置的第一反射膜和第二反射膜,所述第一反射膜和所述第二反射膜之间为光线传输空间或者为光学填充层;和/或,所述第一匀光件和所述第二匀光件至少之一包括透明光学介质,所述光线在所述透明光学介质中传播;和/或,
    其中:所述光线聚集元件包括透镜或者包括至少一个所述透镜的透镜组;或者,
    所述光线聚集元件包括偏心透镜或者包括至少一个所述偏心透镜的透镜组,所述偏心透镜的焦点位于所述偏心透镜中心线靠近所述导光结构中心的一侧;和/或,其中:
    所述第一匀光件的出光侧朝向所述导光结构的所述多个光耦出件所在侧;
    或者,所述导光结构还包括反射件,所述第一匀光件的出光侧朝向所述反射件,所述反射件被配置为使从所述出光侧射出的光线朝所述导光结构的所述多个光耦出件所在侧传播;和/或,入射至所述第一匀光部的光线具有非零的预设发散角度。
  21. 根据权利要求20所述的光源装置,其中,
    所述反射件为棱镜,所述光线被所述棱镜反射向所述导光结构的所述入光区域所在侧;或者,
    所述反射件与所述第一匀光件的至少部分一体成型;和/或
    所述预设发散角度范围为(0,20];和/或,
    所述预设发散角度大于或等于所述第一匀光部的相对的主反射面之间的非零夹角,或者所述第一匀光部的相对的主反射面平行。
  22. 一种显示系统,其中,
    所述显示系统包括权利要求1-12任一项所述的导光装置;或者
    所述显示系统包括权利要求13-21任一项所述的光源装置;或者
    所述显示系统包括被配置为发出图像光线的图像源和被配置为对所述图像光线进行反射的成 像装置,所述图像源包括所述权利要求1-12任一项所述的导光装置或权利要求13-21任一项所述的光源装置;或者
    所述显示系统包括图像源和成像装置,所述图像源被配置为发出在可见光波段内包括至少一个谱带的图像光线,其中,所述图像源包括导光装置及图像生成装置,所述导光装置包括光耦出部,所述光耦出部被配置为将所述导光装置中的光线耦出,所述图像生成装置被配置为将所述光耦出部耦出的光线转化为所述图像光线;
    成像装置,被配置为对所述图像光线进行反射,其中,所述成像装置包括透明基材及设置在所述透明基材至少一个表面的选择性透反元件,所述选择性透反元件被配置为对至少部分图像光线的反射率大于对所述图像光线以外的可见光波段光线的反射率,和/或,对至少部分图像光线的透射率小于对所述图像光线以外的可见光波段光线的透射率。
  23. 根据权利要求22所述的显示系统,所述显示系统为抬头显示器,
    其中,所述反射成像部被配置为将所述导光装置出射的光线反射至所述抬头显示器的观察区,或者,所述反射成像部被配置为将所述光源装置出射的光线反射至所述抬头显示器的观察区。
  24. 根据权利要求22或23所述的显示系统,其中,
    所述图像源还包括:在光线入射至所述图像生成装置之前对所述光线进行匀化处理的匀光部,所述匀光部在所述导光装置的出光方向上与所述导光装置交叠或者在与所述导光装置的出光方向相垂直的方向上与所述导光装置并排设置;所述匀光部至少包括相对的第一反射面和第二反射面,所述第一反射面和所述第二反射面被配置为对入射至所述匀光部的光线进行至少一次反射以对所述光线进行匀化处理,入射至所述匀光部的光线具有预设发散角;其中,所述第一反射面和所述第二反射面之间的在所述匀光部的入光侧、出光侧和位于所述入光侧和出光侧之间的侧方中的至少之一的夹角不大于所述预设发散角;
    和/或,
    所述图像源还包括:在光线入射至所述图像生成装置之前对所述光线进行转化处理的光转化部,所述光转化部包括分光元件及转换元件,或者,所述光转化部包括分光元件、转换元件以及反射元件;所述分光元件被配置为将入射的光线分为彼此光学特性不同的第一部分光和第二部分光,所述转换元件被配置为将所述第一部分光及第二部分光中的一者的光学特性转为另一者的光学特性,所述反射元件被配置为将所述第一部分光及第二部分光中的一者反射向所述导光装置;和/或,
    所述图像源还包括光源装置,所述光源装置被配置为发出在可见光波段内包括至少一个谱带的光线,且所述在可见光波段内包括至少一个谱带的光线传播至所述导光装置,所述至少一个谱带的光线包括一个谱带的光线或多个谱带的光线,所述光源装置包括时序发光光源或者非时序发光光源;和/或,所述图像源还包括光源装置,所述光源装置包括至少一个光源;所述至少一个光源包括沿第一方向延伸的一个光源或者包括沿所述第一方向依次排列的多个光源,所述第一方向相对于所述成像装置的下沿的延伸方向倾斜或垂直;或者,所述至少一个光源包括沿第二方向延伸的一个光源或者包括沿所述第二方向依次排列的多个光源,所述第二方向与所述第一方向均位于同一平面且不平行;和/或,
    所述图像光线包括具有第一偏振特性的至少一个谱带的光线;所述选择性透反元件还被配置为,对所述至少部分图像光线中具有第一偏振特性的光线中的部分谱带或每个谱带光线的反射率大于图像光线以外的可见光波段光线以及第二偏振特性的至少一个谱带的光线的反射率,和/或,对所述至少部分图像光线中具有第一偏振特性的光线中的部分谱带或每个谱带光线的透射率小于图像光线以外的可见光波段光线以及第二偏振特性的至少一个谱带的光线的透射率;其中,所述第一偏振特性与第二偏振特性不同。
  25. 根据权利要求24所述的显示系统,其中,所述导光装置耦出的光线包括具有第二偏振特性的至少一个谱带的光线;
    所述导光装置耦出的光线经所述图像生成装置后转化为所述包括具有第一偏振特性的至少一个谱带的光线的图像光线;和/或,
    所述第一偏振特性包括垂直线偏振特性,所述第二偏振特性包括水平线偏振特性;和/或,
    经过所述匀光部处理的光线经所述光转化部处理后传输至所述导光装置;或者,经过所述光转化部处理的光线经所述匀光部处理后传输至所述导光装置。
  26. 根据权利要求25所述的显示系统,其中,所述光耦出部包括多个透反元件,光线经至少部分所述透反元件的反射和透射中的一者在所述导光装置中传播,且经所述透反元件的反射和透射中的另一者从所述导光装置出射,其中,沿所述光线的传播方向,所述多个透反元件的反射率逐渐增加;
    所述透反元件被配置为对所述具有第二偏振特性的至少一个谱带的光线的反射率大于其对所述具有第一偏振特性的至少一个谱带的光线的反射率,和/或,所述透反元件被配置为对所述具有第二偏振特性的至少一个谱带的光线的透射率小于其对所述具有第一偏振特性的至少一个谱带的光线的透射率。
  27. 根据权利要26所述的显示系统,其中,所述分光元件包括偏振分光元件,所述偏振分光元件被配置为将入射的光线分为彼此偏振特性不同的第一偏振光和第二偏振光,所述转换元件包括偏振转换元件,所述偏振转换元件被配置为将所述第一偏振光和第二偏振光中的一者的偏振特性转为另一者的偏振特性。
  28. 根据权利要求22-25任一项所述的显示系统,其中,所述图像光线在可见光波段内包括至少三个谱带,所述谱带的半峰宽都不大于60nm;或者,
    所述图像光线在可见光波段内包括至少三个谱带,所述谱带的半峰宽都不大于60nm,且所述至少三个谱带的峰值位置分别位于410nm~480nm、500nm~570nm及590nm~690nm区间范围内;和/或,
    所述图像生成装置包括液晶显示面板。
  29. 根据权利要求24或25所述的显示系统,其中,所述至少一个光源包括第一颜色光源、第二颜色光源和第三颜色光源,所述第一颜色光源、所述第二颜色光源和所述第三颜色光源被配置为按照预设时序发光或者被配置为同时发光。
  30. 一种交通工具,包括:
    如权利要求1-12任一项所述的导光装置,或者包括如权利要求13-21任一项所述的光源装置,或者包括如权利要求22-29任一项所述的显示系统。
PCT/CN2022/114263 2021-08-23 2022-08-23 导光装置、光源装置、显示系统和交通工具 WO2023025149A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202121985764.2 2021-08-23
CN202121983323.9 2021-08-23
CN202110968880.1 2021-08-23
CN202110970591.5 2021-08-23
CN202121985764.2U CN216748171U (zh) 2021-08-23 2021-08-23 导光装置、光源装置、显示装置、抬头显示器和交通设备
CN202110970591.5A CN115903224A (zh) 2021-08-23 2021-08-23 光源装置、显示装置、抬头显示系统及交通工具
CN202121983323.9U CN216817084U (zh) 2021-08-23 2021-08-23 显示系统及包含其的交通工具
CN202110968880.1A CN115933043A (zh) 2021-08-23 2021-08-23 导光装置、光源装置、显示装置、抬头显示器和交通设备

Publications (1)

Publication Number Publication Date
WO2023025149A1 true WO2023025149A1 (zh) 2023-03-02

Family

ID=85322529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114263 WO2023025149A1 (zh) 2021-08-23 2022-08-23 导光装置、光源装置、显示系统和交通工具

Country Status (1)

Country Link
WO (1) WO2023025149A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070274095A1 (en) * 2006-05-24 2007-11-29 Destain Patrick R Backlight wedge with adjacent reflective surfaces
CN103411160A (zh) * 2013-07-26 2013-11-27 京东方科技集团股份有限公司 背光模组及显示装置
CN104570483A (zh) * 2015-01-06 2015-04-29 京东方科技集团股份有限公司 一种背光模组及显示装置
CN206161958U (zh) * 2016-07-18 2017-05-10 深圳珑璟光电技术有限公司 用于增强现实显示的交互头戴显示设备
CN107533255A (zh) * 2015-04-23 2018-01-02 镭亚股份有限公司 基于双光导光栅的背光以及使用该背光的电子显示器
CN110612470A (zh) * 2017-05-30 2019-12-24 索尼公司 光学装置、图像显示装置和显示装置
CN216748171U (zh) * 2021-08-23 2022-06-14 未来(北京)黑科技有限公司 导光装置、光源装置、显示装置、抬头显示器和交通设备
CN216817084U (zh) * 2021-08-23 2022-06-24 未来(北京)黑科技有限公司 显示系统及包含其的交通工具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070274095A1 (en) * 2006-05-24 2007-11-29 Destain Patrick R Backlight wedge with adjacent reflective surfaces
CN103411160A (zh) * 2013-07-26 2013-11-27 京东方科技集团股份有限公司 背光模组及显示装置
CN104570483A (zh) * 2015-01-06 2015-04-29 京东方科技集团股份有限公司 一种背光模组及显示装置
CN107533255A (zh) * 2015-04-23 2018-01-02 镭亚股份有限公司 基于双光导光栅的背光以及使用该背光的电子显示器
CN206161958U (zh) * 2016-07-18 2017-05-10 深圳珑璟光电技术有限公司 用于增强现实显示的交互头戴显示设备
CN110612470A (zh) * 2017-05-30 2019-12-24 索尼公司 光学装置、图像显示装置和显示装置
CN216748171U (zh) * 2021-08-23 2022-06-14 未来(北京)黑科技有限公司 导光装置、光源装置、显示装置、抬头显示器和交通设备
CN216817084U (zh) * 2021-08-23 2022-06-24 未来(北京)黑科技有限公司 显示系统及包含其的交通工具

Similar Documents

Publication Publication Date Title
CN100595648C (zh) 色彩混合照明单元以及使用该单元的系统
CN213092017U (zh) 多层图像显示装置、抬头显示器以及交通设备
CN213092015U (zh) 图像源、抬头显示器以及交通设备
KR20190001406U (ko) 광 조사 장치
US20080089093A1 (en) Backlight unit using particular direct backlight assembly
CN216817084U (zh) 显示系统及包含其的交通工具
WO2022037703A1 (zh) 多层图像显示装置、抬头显示器以及交通设备
JP2007305589A (ja) 照明装置及びこれを採用したディスプレイ装置
JP2010123464A (ja) 照明装置、光学シート及び液晶表示装置
US10795075B2 (en) Backlight module and display device
WO2022171031A1 (zh) 显示装置、抬头显示器以及交通设备
US20160033703A1 (en) Surface Light Source, Backlight Module and Display Device
CN111580308A (zh) 一种背光模组及显示装置
WO2022022675A1 (zh) 图像源、抬头显示器以及交通设备
CN214375582U (zh) 显示装置、近眼显示设备以及光波导元件
CN216748171U (zh) 导光装置、光源装置、显示装置、抬头显示器和交通设备
WO2023123338A1 (zh) 显示装置、抬头显示器以及交通设备
CN114911095A (zh) 光源装置、显示装置、抬头显示器以及交通设备
WO2023025149A1 (zh) 导光装置、光源装置、显示系统和交通工具
CN216748172U (zh) 导光装置、光源装置、抬头显示器和交通设备
US20080218858A1 (en) Polarizing turning film with reduced color separation
CN215769261U (zh) 光源装置、显示装置、抬头显示器以及交通设备
CN216927135U (zh) 导光装置、光源装置以及抬头显示器
CN215769262U (zh) 显示装置、抬头显示器、交通设备以及光源装置
CN216561303U (zh) 显示装置、抬头显示器以及交通设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22860495

Country of ref document: EP

Kind code of ref document: A1