[go: up one dir, main page]

WO2023013544A1 - Plasma processing apparatus and processing status detection method - Google Patents

Plasma processing apparatus and processing status detection method Download PDF

Info

Publication number
WO2023013544A1
WO2023013544A1 PCT/JP2022/029270 JP2022029270W WO2023013544A1 WO 2023013544 A1 WO2023013544 A1 WO 2023013544A1 JP 2022029270 W JP2022029270 W JP 2022029270W WO 2023013544 A1 WO2023013544 A1 WO 2023013544A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
plasma processing
emission intensity
chamber
plasma
Prior art date
Application number
PCT/JP2022/029270
Other languages
French (fr)
Japanese (ja)
Inventor
悠平 島津
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023013544A1 publication Critical patent/WO2023013544A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma

Definitions

  • the present disclosure relates to a plasma processing apparatus and a processing status detection method.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a plasma processing apparatus according to an embodiment.
  • FIG. 2 is a block diagram showing an example of a schematic configuration of a control unit according to the embodiment;
  • FIG. 3 is a diagram showing an example of changes in emission intensity due to changes in the conditions of the plasma processing chamber according to the embodiment.
  • FIG. 4 is a diagram showing an example of changes in corrected emission intensity according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of the processing order of the processing status detection method according to the embodiment.
  • a technology that monitors the emission intensity of the plasma in the chamber using a sensor such as an OES (Optical Emission Spectrometer) sensor, and detects the processing status of the plasma processing from changes in the monitored emission intensity.
  • OES Optical Emission Spectrometer
  • the end point of etching is detected from changes in the emission intensity of plasma during etching.
  • the monitored plasma emission contains noise due to various factors. Therefore, in conventional etching end point detection, noise is removed by a noise countermeasure filter such as a moving average or a low-pass filter.
  • noise countermeasure filters deal with short-periodic waveform shifts. For this reason, in order to remove noise due to changes in chamber conditions using a conventional noise countermeasure filter, it is necessary, for example, to apply a long-term moving average to make the waveform shift inconspicuous.
  • the emission intensity of the plasma fluctuates greatly instantaneously, the signal corresponding to the processing status of the plasma processing is buried in noise due to the effects of noise due to changes in the chamber conditions, making it impossible to detect the end point of etching. Gone.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a plasma processing apparatus 1 according to an embodiment.
  • the plasma processing chamber 10 has a plasma processing space 10 s defined by a showerhead 13 , side walls 10 a of the plasma processing chamber 10 and a substrate support 11 . Side wall 10a is grounded.
  • the showerhead 13 and substrate support 11 are electrically insulated from the plasma processing chamber 10 housing.
  • the showerhead 13 is configured to introduce at least one processing gas from the gas supply unit 20 into the plasma processing space 10s.
  • the showerhead 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and multiple gas introduction ports 13c.
  • the processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s through a plurality of gas introduction ports 13c.
  • showerhead 13 also includes a conductive member.
  • a conductive member of the showerhead 13 functions as an upper electrode.
  • the gas introduction part may include one or more side gas injectors (SGI: Side Gas Injector) attached to one or more openings formed in the side wall 10a.
  • SGI Side Gas Injector
  • the gas supply unit 20 may include at least one gas source 21 and at least one flow controller 22 .
  • gas supply 20 is configured to supply at least one process gas from respective gas sources 21 through respective flow controllers 22 to showerhead 13 .
  • Each flow controller 22 may include, for example, a mass flow controller or a pressure controlled flow controller.
  • gas supply 20 may include at least one flow modulation device for modulating or pulsing the flow rate of at least one process gas.
  • the RF power supply 31 includes a first RF generator 31a and a second RF generator 31b.
  • the first RF generator 31a is coupled to the conductive member of the substrate support 11 and/or the conductive member of the showerhead 13 via at least one impedance matching circuit to provide a source RF signal for plasma generation (source RF electrical power).
  • the source RF signal has a frequency within the range of 13 MHz to 150 MHz.
  • the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are provided to conductive members of the substrate support 11 and/or conductive members of the showerhead 13 .
  • the first RF generation section 31a is electrically connected to the conductive member of the shower head 13 via a conductive section 33a such as wiring.
  • the conductive portion 33a is provided with an impedance matching circuit 34a.
  • the impedance matching circuit 34a matches the output impedance of the first RF generator 31a and the input impedance on the load side (shower head 13 side).
  • the impedance matching circuit 34a is provided with a variable capacitor.
  • a variable capacitor has an adjustment section for adjusting the capacitance, and the capacitance can be changed by changing the position of the adjustment section.
  • the impedance matching circuit 34a has a drive mechanism that drives the adjuster.
  • the impedance matching circuit 34a matches the output impedance of the first RF generator 31a and the input impedance of the load by adjusting the capacitance of the variable capacitor by changing the position of the adjustment section using the driving mechanism.
  • the variable capacitor of the impedance matching circuit 34a is provided with the sensor 35, and the sensor 35 monitors the position of the adjusting section to monitor the capacitance.
  • the sensor 35 outputs position data indicating the monitored position of the adjustment unit to the control unit 100, which will be described later.
  • the first RF generator 31 a supplies the conductive member of the shower head 13 with first high-frequency power of a first frequency for generating plasma.
  • the first RF generator 31a supplies the above-described source RF signal as the first high-frequency power to the conductive member of the showerhead 13 via the conductive section 33a and the impedance matching circuit 34a.
  • the conductive member of showerhead 13 functions as an electrode.
  • a high density plasma is generated in the plasma processing chamber 10 by supplying the source RF signal.
  • the second RF generation section 31b is electrically connected to the conductive member of the base of the substrate support section 11 via a conductive section 33b such as wiring.
  • the conductive portion 33b is provided with an impedance matching circuit 34b.
  • the impedance matching circuit 34b matches the output impedance of the second RF generation section 31b and the input impedance on the load side (substrate support section 11 side).
  • the impedance matching circuit 34b is provided with a variable capacitor.
  • a variable capacitor has an adjustment section for adjusting the capacitance, and the capacitance can be changed by changing the position of the adjustment section.
  • the impedance matching circuit 34b has a drive mechanism that drives the adjuster.
  • the impedance matching circuit 34b matches the output impedance of the second RF generator 31b and the input impedance of the load by changing the position of the adjustment section by the drive mechanism and adjusting the capacitance of the variable capacitor.
  • the second RF generator 31 b supplies the conductive member of the substrate support 11 with a second high-frequency power having a second frequency lower than the first frequency for attracting ion components in the plasma to the substrate W.
  • FIG. the second RF generator 31b supplies the above-described bias RF signal as the second high-frequency power to the conductive member of the substrate support 11 via the conductive portion 33b and the impedance matching circuit 34b.
  • the conductive member functions as an electrode. The ion components in the plasma generated within the plasma processing chamber 10 are attracted to the substrate W by applying the bias RF signal.
  • Power supply 30 may also include a DC power supply 32 coupled to plasma processing chamber 10 .
  • the DC power supply 32 includes a first DC generator 32a and a second DC generator 32b.
  • the first DC generator 32a is connected to a conductive member of the substrate support 11 and configured to generate the first DC signal.
  • the generated first DC signal is applied to the conductive member of substrate support 11 .
  • the first DC signal may be applied to other electrodes, such as electrodes in an electrostatic chuck.
  • the second DC generator 32b is connected to the conductive member of the showerhead 13 and configured to generate the second DC signal.
  • the generated second DC signal is applied to the conductive members of showerhead 13 .
  • the first and second DC signals may be pulsed. Note that the first and second DC generators 32a and 32b may be provided in addition to the RF power supply 31, and the first DC generator 32a may be provided instead of the second RF generator 31b. good.
  • the exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example.
  • Exhaust system 40 may include a pressure regulating valve and a vacuum pump.
  • the pressure regulating valve regulates the pressure in the plasma processing space 10s.
  • Vacuum pumps may include turbomolecular pumps, dry pumps, or combinations thereof.
  • the plasma processing apparatus 1 configured as described above further includes a controller 100 .
  • FIG. 2 is a block diagram showing an example of a schematic configuration of the control section 100 according to the embodiment.
  • the operation of the plasma processing apparatus 1 shown in FIG. 1 is centrally controlled by a control unit 100 .
  • the control unit 100 is, for example, a computer, and controls each unit of the plasma processing apparatus 1 .
  • the operation of the plasma processing apparatus 1 is centrally controlled by a control unit 100 .
  • the control unit 100 controls the plasma processing apparatus 1 to perform various processes described in the present disclosure.
  • the control unit 100 is provided with an external interface 101 , a process controller 102 , a user interface 103 and a storage unit 104 .
  • the external interface 101 can communicate with each part of the plasma processing apparatus 1, and inputs and outputs various data. For example, position data from the sensor 35 and light emission data from the sensor 36 are input to the external interface 101 .
  • the process controller 102 has a CPU (Central Processing Unit) and controls each part of the plasma processing apparatus 1 .
  • CPU Central Processing Unit
  • the user interface 103 is composed of a keyboard for inputting commands for the process manager to manage the plasma processing apparatus 1, a display for visualizing and displaying the operating status of the plasma processing apparatus 1, and the like.
  • the storage unit 104 stores a control program (software) for realizing various processes executed in the plasma processing apparatus 1 under the control of the process controller 102, and recipes in which process condition data and the like are stored.
  • the control program and recipe may be stored in a computer-readable computer recording medium (for example, a hard disk, an optical disk such as a DVD, a flexible disk, a semiconductor memory, etc.). Also, control programs and recipes can be transmitted at any time from another device, for example, via a dedicated line and used online.
  • the process controller 102 has an internal memory for storing programs and data, reads the control program stored in the storage unit 104, and executes processing of the read control program.
  • the process controller 102 functions as various processing units by executing control programs.
  • the process controller 102 has functions of a plasma controller 102a, a detector 102b, and a corrector 102c.
  • the process controller 102 has the functions of a plasma control unit 102a, a detection unit 102b, and a correction unit 102c will be described.
  • the functions of the plasma control unit 102a, the detection unit 102b, and the correction unit 102c may be distributed and realized by a plurality of controllers.
  • the plasma control unit 102a, the detection unit 102b, and the correction unit 102c may be implemented separately by separate controllers capable of data communication with each other.
  • the plasma control unit 102a controls plasma processing.
  • the plasma controller 102a controls the exhaust system 40 to exhaust the inside of the plasma processing chamber 10 to a predetermined degree of vacuum.
  • the plasma control unit 102a controls the gas supply unit 20 and introduces the processing gas from the gas supply unit 20 into the plasma processing space 10s.
  • the plasma control unit 102a controls the power supply 30, supplies the source RF signal and the bias RF signal from the first RF generation unit 31a and the second RF generation unit 31b in accordance with the introduction of the processing gas, and controls the plasma processing chamber.
  • a plasma is generated within 10 .
  • the plasma processing apparatus 1 performs plasma etching as plasma processing.
  • the plasma control unit 102 a controls the RF power supply 31 and supplies high frequency power from the RF power supply 31 .
  • RF power supply 31 provides a source RF signal and a bias RF signal.
  • the plasma controller 102a controls the RF power supply 31 and supplies source RF signals and bias RF signals from the first RF generator 31a and the second RF generator 31b, respectively.
  • the detection unit 102b detects the state of plasma processing from changes in the plasma emission intensity indicated by the emission data input from the sensor 36. For example, the detection unit 102b detects the end point of etching from changes in the emission intensity of a predetermined wavelength, which changes according to the etching state, among the emission intensities of the plasma for each wavelength indicated by the emission data.
  • the plasma control unit 102a controls plasma processing based on the detection result of the detection unit 102b. For example, the plasma control unit 102a ends plasma etching when the detection unit 102b detects the end point of etching.
  • the condition of the plasma processing chamber 10 changes during plasma processing, and the emission intensity of the plasma may change momentarily and greatly.
  • the impedance matching circuit 34a changes the position of the adjustment section by the driving mechanism so that the output impedance of the first RF generation section 31a and the input impedance of the load side match even during the plasma processing, and the static electricity of the variable capacitor is changed. Adjust volume.
  • the capacitance of the variable capacitor of the impedance matching circuit 34a changes during plasma processing, the condition of the plasma processing chamber 10 changes and the plasma emission intensity changes instantaneously. Changes in the conditions of the plasma processing chamber 10 are also caused by changes in various plasma processing conditions.
  • the condition of the plasma processing chamber 10 changes due to changes in the capacitance of the variable capacitor of the impedance matching circuit 34b.
  • the condition of the plasma processing chamber 10 changes due to changes in the frequency of high frequency signals such as the source RF signal and the bias RF signal supplied to the plasma processing chamber 10 .
  • the condition of the plasma processing chamber 10 changes due to changes in the DC voltages such as the first DC signal and the second DC signal supplied to the plasma processing chamber 10 .
  • the condition of the plasma processing chamber 10 changes due to changes in the pressure within the plasma processing chamber 10 .
  • there are multiple parameters that change the conditions of the plasma processing chamber 10 during plasma processing In the following, an example will be described in which the condition of the plasma processing chamber 10 changes due to changes in the capacitance of the variable capacitor of the impedance matching circuit 34a as a parameter.
  • FIG. 3 is a diagram showing an example of changes in emission intensity due to changes in the conditions of the plasma processing chamber according to the embodiment.
  • the vertical axis on the left side of FIG. 3 is the emission intensity.
  • the vertical axis on the right side of FIG. 3 is the position of the variable capacitor adjustment section of the impedance matching circuit 34a.
  • the horizontal axis of FIG. 3 is time. For example, when plasma etching is performed by supplying a processing gas containing a CF-based gas from the gas supply unit 20, the detection unit 102b detects the end point of etching from changes in emission intensity at a wavelength of 260 nm.
  • FIG. 1 is a diagram showing an example of changes in emission intensity due to changes in the conditions of the plasma processing chamber according to the embodiment.
  • the vertical axis on the left side of FIG. 3 is the emission intensity.
  • the vertical axis on the right side of FIG. 3 is the position of the variable capacitor adjustment section of the impedance matching circuit 34a.
  • the luminous intensity momentarily changes greatly at the timing when the position of the adjustment section of the variable capacitor changes. For example, at timing T1 when the position changes, the emission intensity momentarily rises significantly. When the emission intensity momentarily changes greatly in this manner, the etching end point may not be detected or the etching end point may be erroneously detected.
  • the plasma processing apparatus 1 monitors parameter values that change the condition of the plasma processing chamber 10 using sensors.
  • the plasma processing apparatus 1 monitors the electrostatic capacitance of the variable capacitor of the impedance matching circuit 34a using the sensor 35 .
  • the sensor 35 monitors the position of the variable capacitor adjustment portion of the impedance matching circuit 34a.
  • the correction unit 102c corrects the emission intensity detected by the sensor 36 based on the amount of fluctuation in the parameter value. For example, the correction unit 102c corrects the emission intensity monitored by the sensor 36 based on the amount of variation in the value of the parameter monitored by the sensor 35. FIG. For example, when the sensor 35 detects a change in the position of the adjustment unit of the variable capacitor of the impedance matching circuit 34a, the correction unit 102c detects the emission intensity monitored by the sensor 36 during the plasma processing based on the amount of change detected by the sensor 35. to correct.
  • the correction unit 102c calculates the average of the light emission intensities monitored by the sensor 36 before and after the parameter value monitored by the sensor 35 fluctuates, and obtains the difference between the averages of the light emission intensities before and after the change.
  • the correction unit 102c corrects the emission intensity monitored by the sensor 36 with the obtained difference.
  • the correction unit 102c calculates the average of the emission intensities before and after the variation is detected by the sensor 35, and obtains the difference between the averages of the emission intensities before and after.
  • the correction unit 102c corrects the emission intensity detected by the sensor 36 with the obtained difference. For example, as shown in FIG.
  • the correction unit 102c calculates the average a1 of the light emission intensity during the predetermined period T2 immediately before the timing T1 and the average a2 of the light emission intensity during the predetermined period T3 immediately after the timing T1. , the difference ⁇ a between the average a2 and the average a1.
  • the correction unit 102c subtracts the difference ⁇ a from the light emission intensity detected by the sensor 36 after timing T1.
  • the above is an example of correction, and is not limited to this. Corrections may be made in response to parameters that change the conditions of the plasma processing chamber 10 during plasma processing.
  • the detection unit 102b detects the end point of plasma processing based on the change in emission intensity corrected by the correction unit 102c.
  • FIG. 4 is a diagram showing an example of changes in corrected emission intensity according to the embodiment.
  • the vertical axis on the left side of FIG. 4 is the emission intensity.
  • the vertical axis on the right side of FIG. 4 is the position of the variable capacitor adjustment section of the impedance matching circuit 34a.
  • the horizontal axis of FIG. 4 is time.
  • FIG. 4 shows the result of correcting the change in emission intensity at the timing T1 shown in FIG. 3 by the correction unit 102c.
  • the momentary rise in the light emission intensity at the timing T1 when the position changes is corrected, and the light emission intensity changes with the same tendency before and after the timing T1.
  • the detection unit 102b can accurately detect the endpoint of plasma processing based on the corrected change in emission intensity.
  • the correction unit 102c calculates the average of the luminous intensity monitored by the sensor 36 before and after the value of the parameter monitored by the sensor 35 fluctuates, and obtains the difference between the average luminous intensities before and after the change.
  • the storage unit 104 may store the correction amount of the emission intensity according to the amount of change in the value of the parameter monitored by the sensor 35 .
  • the correction unit 102c may obtain from the storage unit 104 a correction amount corresponding to the amount of change in the value of the parameter monitored by the sensor 35, and correct the emission intensity monitored by the sensor 36 with the obtained correction amount.
  • the storage unit 104 stores correction data that stores the amount of correction of the light emission intensity for each variation amount of the position monitored by the sensor 35 .
  • the correction unit 102 c obtains a correction amount corresponding to the position change amount detected by the sensor 35 from the correction data stored in the storage unit 104 . Then, the correction unit 102c may correct the light emission intensity detected by the sensor 36 with the obtained correction amount.
  • the condition of the plasma processing chamber 10 changes due to changes in the capacitance of the variable capacitor of the impedance matching circuit 34a has been described as an example. However, it is not limited to this. Changes in the conditions of the plasma processing chamber 10 are caused by various other changes in plasma processing conditions. As such, the values of various parameters that change the condition of plasma processing chamber 10 may each be monitored by a sensor. The correction unit 102c may correct the light emission intensity monitored by the sensor 36 during plasma processing based on the amount of variation in the value of the parameter monitored by each sensor. For example, the condition of the plasma processing chamber 10 changes due to changes in the capacitance of the variable capacitor of the impedance matching circuit 34b.
  • the position of the adjusting portion of the variable capacitor of the impedance matching circuit 34b is monitored by a sensor, and the emission intensity monitored by the sensor 36 during plasma processing is corrected based on the variation amount of the position of the adjusting portion monitored by the sensor.
  • the condition of the plasma processing chamber 10 changes due to changes in the frequency of high frequency signals such as the source RF signal and the bias RF signal supplied to the plasma processing chamber 10 . Therefore, the frequency of the high frequency signal supplied to the plasma processing chamber 10 is monitored by a sensor.
  • sensors are provided in the conductive portions 33a and 33b through which high frequency signals such as source RF signals and bias RF signals flow, and the sensors monitor the frequency of the high frequency signals supplied to the plasma processing chamber 10.
  • the correction unit 102c may correct the emission intensity monitored by the sensor 36 during plasma processing based on the amount of variation in the frequency of the high frequency signal monitored by the sensor. Also, for example, the condition of the plasma processing chamber 10 changes due to changes in the DC voltage applied to the plasma processing chamber 10 . Therefore, the DC voltage applied to the plasma processing chamber 10 is monitored by a sensor. For example, sensors are provided at the conductive portions 33a and 33b through which DC voltages such as the first DC signal and the second DC signal flow, and the DC voltage applied to the plasma processing chamber 10 is monitored by the sensors. The correction unit 102c may correct the light emission intensity monitored by the sensor 36 during plasma processing based on the amount of change in the DC voltage monitored by the sensor.
  • the condition of the plasma processing chamber 10 changes due to changes in the pressure within the plasma processing chamber 10 . Therefore, the pressure inside the plasma processing chamber 10 is monitored by a sensor.
  • the correction unit 102c may correct the emission intensity monitored by the sensor 36 during plasma processing based on the amount of pressure variation monitored by the sensor. Instead of monitoring the change in pressure, a sensor may be provided in the pressure regulating valve that regulates the pressure to monitor the position of the pressure regulating valve. The correction unit 102c may correct the emission intensity monitored by the sensor 36 during plasma processing, based on the variation amount of the pressure regulating valve monitored by the sensor.
  • FIG. 5 is a diagram illustrating an example of the processing order of the processing status detection method according to the embodiment.
  • the processing of the processing status detection method shown in FIG. 5 is performed when the substrate W on which the film to be etched is formed is placed on the substrate supporting portion 11 and plasma processing is performed.
  • the plasma control unit 102a starts plasma processing (S10).
  • the plasma controller 102a controls the exhaust system 40 to exhaust the inside of the plasma processing chamber 10 to a predetermined degree of vacuum.
  • the plasma control unit 102a controls the gas supply unit 20 and introduces the processing gas from the gas supply unit 20 into the plasma processing space 10s.
  • the plasma control unit 102a controls the power supply 30, supplies source RF signals and bias RF signals from the first RF generation unit 31a and the second RF generation unit 31b in accordance with the introduction of the processing gas, and performs etching. Start.
  • the correction unit 102c determines whether or not the sensor detects a change that changes the condition of the plasma processing chamber 10 (S11). For example, the correction unit 102c determines whether or not the position value of the adjustment unit of the variable capacitor of the impedance matching circuit 34a monitored by the sensor 35 has changed. If no change is detected (S11: No), the process proceeds to S13, which will be described later.
  • the correction unit 102c corrects the luminescence intensity detected by the sensor 36 based on the detected change (S12). For example, the correction unit 102c corrects the emission intensity monitored by the sensor 36 based on the amount of variation in the value of the parameter monitored by the sensor 35.
  • the detection unit 102b detects the state of plasma processing from the change in the emission intensity corrected by the correction unit 102c (S13). For example, the detection unit 102b detects the end point of etching from a change in emission intensity of a predetermined wavelength.
  • the plasma control unit 102a determines whether or not the detection unit 102b has detected the etching end point (S14). If the end point of etching has not been detected (S14: No), the process proceeds to S11.
  • the plasma control unit 102a ends the plasma processing.
  • the plasma processing apparatus 1 includes the plasma processing chamber 10, the sensor 36 (first sensor), the sensor 35 (second sensor), the correction unit 102c, and the detection unit 102b.
  • Plasma processing chamber 10 is used in which plasma processing is performed.
  • a sensor 36 monitors the emission intensity of the plasma.
  • Sensors 35 monitor the values of parameters that change the condition of plasma processing chamber 10 .
  • the correction unit 102c corrects the emission intensity monitored by the sensor 36 based on the amount of variation in the value of the parameter monitored by the sensor 35.
  • the detection unit 102b detects the processing status of plasma processing based on the change in the emission intensity corrected by the correction unit 102c. Thereby, the plasma processing apparatus 1 can detect the processing status of the plasma processing even if the condition of the plasma processing chamber 10 changes.
  • the correction unit 102c calculates the average of the light emission intensity monitored by the sensor 36 before and after the value of the parameter monitored by the sensor 35 fluctuates, finds the difference between the averages of the light emission intensities before and after the change, and obtains the calculated difference. corrects the emission intensity monitored by the sensor 36 at .
  • the plasma processing apparatus 1 can correct changes in plasma emission intensity due to changes in the plasma processing chamber 10 condition.
  • the plasma processing apparatus 1 further has a storage section 104 .
  • the storage unit 104 stores the correction amount of the emission intensity according to the amount of change in the value of the parameter monitored by the sensor 35 .
  • the correction unit 102c obtains a correction amount corresponding to the variation amount of the parameter value monitored by the sensor 35 from the storage unit 104, and corrects the emission intensity monitored by the sensor 36 with the obtained correction amount.
  • the plasma processing apparatus 1 can correct changes in plasma emission intensity due to changes in the plasma processing chamber 10 condition.
  • the plasma processing apparatus 1 further has impedance matching circuits 34a and 34b (matching devices).
  • the impedance matching circuits 34 a and 34 b are provided with variable capacitors and are provided in the conductive portions 33 a and 33 b (signal lines) that supply high frequency signals to the plasma processing chamber 10 .
  • a sensor 35 monitors the capacitance of the variable capacitor. Thereby, the plasma processing apparatus 1 can correct changes in the emission intensity of the plasma due to changes in the capacitance of the variable capacitors of the impedance matching circuits 34a and 34b.
  • the plasma processing apparatus 1 monitors the frequency of the high-frequency signal supplied to the plasma processing chamber 10 with a sensor. Thereby, the plasma processing apparatus 1 can correct changes in the emission intensity of plasma caused by changes in the frequency of the high-frequency signal supplied to the plasma processing chamber 10 .
  • the plasma processing apparatus 1 monitors the DC voltage applied to the plasma processing chamber 10 by a sensor. As a result, the plasma processing apparatus 1 can correct changes in plasma emission intensity caused by changes in the DC voltage applied to the plasma processing chamber 10 .
  • the plasma processing apparatus 1 further has an exhaust system 40 (exhaust section).
  • the exhaust system 40 is provided with a pressure regulating valve for regulating the pressure inside the plasma processing chamber 10 and evacuates the inside of the plasma processing chamber 10 .
  • the plasma processing apparatus 1 monitors the position of the pressure regulating valve with a sensor. Thereby, the plasma processing apparatus 1 can correct the change in the emission intensity of the plasma due to the change in the pressure control valve.
  • the substrate W may be any.
  • Appendix 1 a chamber in which plasma processing is performed; a first sensor that monitors the emission intensity of the plasma; a second sensor that monitors the value of a parameter that changes the condition of the chamber; a correction unit that corrects the emission intensity monitored by the first sensor based on the amount of variation in the value of the parameter monitored by the second sensor; a detection unit that detects the processing status of plasma processing based on the change in emission intensity corrected by the correction unit;
  • a plasma processing apparatus having
  • the correction unit calculates an average of the luminescence intensities monitored by the first sensor before and after the value of the parameter monitored by the second sensor fluctuates, and obtains a difference between the average luminescence intensities before and after the change. , correcting the emission intensity monitored by the first sensor with the obtained difference.
  • Appendix 3 further comprising a storage unit that stores a correction amount of the emission intensity according to the amount of variation in the value of the parameter monitored by the second sensor;
  • the correction unit obtains from the storage unit a correction amount corresponding to the amount of variation in the value of the parameter monitored by the second sensor, and corrects the emission intensity monitored by the first sensor with the obtained correction amount.
  • Appendix 7 4. The plasma processing apparatus according to any one of Appendices 1 to 3, wherein the second sensor monitors the pressure in the chamber.
  • Appendix 8 a pressure regulating valve for regulating the pressure in the chamber, and further comprising an exhaust section for exhausting the interior of the chamber; 4.
  • the plasma processing apparatus according to any one of appendices 1 to 3, wherein the second sensor monitors the position of the pressure regulating valve.
  • (Appendix 9) monitoring, with a first sensor, the emission intensity of plasma in a chamber in which plasma processing is performed; monitoring with a second sensor the value of a parameter that changes conditions within the chamber; correcting the luminescence intensity monitored by the first sensor based on the amount of variation in the value of the parameter monitored by the second sensor; detecting the processing status of plasma processing based on the corrected change in emission intensity; Processing status detection method.
  • Plasma processing apparatus 10 plasma processing chamber 11 substrate support section 30 power supply 31 RF power supply 31a first RF generation section 31b second RF generation section 32 DC power supply 32a first DC generation section 32b second DC generation section 33a, 33b Conductive parts 34a, 34b Impedance matching circuit 35 Sensor 36 Sensor 40 Exhaust system 100 Control part 101 External interface 102 Process controller 102a Plasma control part 102b Detection part 102c Correction part 103 User interface 104 Storage part W Substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

In the present invention, plasma processing is performed in a chamber. A first sensor monitors the emission intensity of the plasma. A second sensor monitors the value of a parameter for changing the condition of the chamber. A correction unit corrects the emission intensity being monitored by the first sensor, on the basis of the amount of variation in the value of the parameter being monitored by the second sensor. A detection unit detects the processing status of the plasma processing on the basis of a change in the emission intensity corrected by the correction unit.

Description

プラズマ処理装置及び処理状況検出方法PLASMA PROCESSING APPARATUS AND PROCESSING STATUS DETECTION METHOD
 本開示は、プラズマ処理装置及び処理状況検出方法に関する。 The present disclosure relates to a plasma processing apparatus and a processing status detection method.
 特許文献1は、基板をチャンバ内で交互のプロセスにかけ、プラズマ発光強度の変化をモニタリングし、包絡線フォロアアルゴリズムを用いてプラズマ発光強度から振幅情報を抽出し、モニタリング結果に基づいた時間に交互のプロセスを停止する技術を開示する。 US Pat. No. 5,300,001 discloses subjecting a substrate to alternating processes in a chamber, monitoring changes in plasma emission intensity, extracting amplitude information from the plasma emission intensity using an envelope follower algorithm, and performing alternating processes in time based on the monitoring results. Techniques for stopping processes are disclosed.
米国特許出願公開第2006/0006139号明細書U.S. Patent Application Publication No. 2006/0006139
 本開示は、チャンバのコンディションの変化が発生してもプラズマ処理の処理状況を検出する技術を提供する。 The present disclosure provides a technique for detecting the processing status of plasma processing even when the chamber condition changes.
 本開示の一態様によるプラズマ処理装置は、チャンバと、第1のセンサと、第2のセンサと、補正部と、検出部とを有する。チャンバは、内部でプラズマ処理が実施される。第1のセンサは、プラズマの発光強度をモニタする。第2のセンサは、チャンバのコンディションを変化させるパラメータの値をモニタする。補正部は、第1のセンサによりモニタされる発光強度を第2のセンサによりモニタされるパラメータの値の変動量に基づいて補正する。検出部は、補正部により補正された発光強度の変化に基づいて、プラズマ処理の処理状況を検出する。 A plasma processing apparatus according to one aspect of the present disclosure includes a chamber, a first sensor, a second sensor, a corrector, and a detector. The chamber is in which plasma processing is performed. A first sensor monitors the emission intensity of the plasma. A second sensor monitors the value of a parameter that changes the condition of the chamber. The correction unit corrects the emission intensity monitored by the first sensor based on the amount of variation in the value of the parameter monitored by the second sensor. The detection unit detects the processing status of the plasma processing based on the change in the emission intensity corrected by the correction unit.
 本開示によれば、チャンバのコンディションの変化が発生してもプラズマ処理の処理状況を検出できる。 According to the present disclosure, the processing status of plasma processing can be detected even if the chamber condition changes.
図1は、実施形態に係るプラズマ処理装置の概略的な構成の一例を示す図である。FIG. 1 is a diagram showing an example of a schematic configuration of a plasma processing apparatus according to an embodiment. 図2は、実施形態に係る制御部の概略的な構成の一例を示したブロック図である。FIG. 2 is a block diagram showing an example of a schematic configuration of a control unit according to the embodiment; 図3は、実施形態に係るプラズマ処理チャンバのコンディションの変化による発光強度の変化の一例を示す図である。FIG. 3 is a diagram showing an example of changes in emission intensity due to changes in the conditions of the plasma processing chamber according to the embodiment. 図4は、実施形態に係る補正された発光強度の変化の一例を示す図である。FIG. 4 is a diagram showing an example of changes in corrected emission intensity according to the embodiment. 図5は、実施形態に係る処理状況検出方法の処理順序の一例を説明する図である。FIG. 5 is a diagram illustrating an example of the processing order of the processing status detection method according to the embodiment.
 以下、図面を参照して本願の開示するプラズマ処理装置及び処理状況検出方法の実施形態について詳細に説明する。なお、本実施形態により、開示するプラズマ処理装置及び処理状況検出方法が限定されるものではない。 Hereinafter, embodiments of the plasma processing apparatus and the processing status detection method disclosed in the present application will be described in detail with reference to the drawings. Note that the present embodiment does not limit the disclosed plasma processing apparatus and processing status detection method.
 プラズマ処理では、例えば、OES(Optical Emission Spectrometer)センサなどのセンサを用いてチャンバ内のプラズマの発光強度をモニタし、モニタした発光強度の変化からプラズマ処理の処理状況を検出する技術がある。例えば、プラズマエッチングでは、エッチング中のプラズマの発光強度の変化からエッチングの終点を検出する。しかし、モニタするプラズマの発光には様々な要因によるノイズが含まれている。そこで、従来のエッチングの終点検出では、移動平均やローパスフィルタなどのノイズ対策フィルタにより、ノイズの除去を行っている。 In plasma processing, for example, there is a technology that monitors the emission intensity of the plasma in the chamber using a sensor such as an OES (Optical Emission Spectrometer) sensor, and detects the processing status of the plasma processing from changes in the monitored emission intensity. For example, in plasma etching, the end point of etching is detected from changes in the emission intensity of plasma during etching. However, the monitored plasma emission contains noise due to various factors. Therefore, in conventional etching end point detection, noise is removed by a noise countermeasure filter such as a moving average or a low-pass filter.
 上記のノイズ要因の一つに、プラズマ処理中にチャンバのコンディションが変化してプラズマの発光強度が瞬間的に大きく変動する場合がある。従来のノイズ対策フィルタは、周期性の短い波形シフトに対応したものである。このため、従来のノイズ対策フィルタにより、チャンバのコンディションの変化によるノイズを除去するには、例えば、長時間の移動平均をかけ、波形のシフトを目立たなくする必要がある。しかし、プラズマの発光強度が瞬間的に大きく変動するような場合、チャンバのコンディションの変化によるノイズの影響により、プラズマ処理の処理状況に応じた信号がノイズに埋もれエッチングの終点を検出することができなくなる。 One of the above noise factors is that the plasma emission intensity may momentarily fluctuate greatly due to changes in the chamber conditions during plasma processing. Conventional noise countermeasure filters deal with short-periodic waveform shifts. For this reason, in order to remove noise due to changes in chamber conditions using a conventional noise countermeasure filter, it is necessary, for example, to apply a long-term moving average to make the waveform shift inconspicuous. However, when the emission intensity of the plasma fluctuates greatly instantaneously, the signal corresponding to the processing status of the plasma processing is buried in noise due to the effects of noise due to changes in the chamber conditions, making it impossible to detect the end point of etching. Gone.
 そこで、チャンバのコンディションの変化が発生してもプラズマ処理の処理状況を検出する技術が期待されている。 Therefore, technology is expected to detect the processing status of plasma processing even if the chamber condition changes.
[実施形態]
[装置構成]
 本開示のプラズマ処理装置の一例について説明する。図1は、実施形態に係るプラズマ処理装置1の概略的な構成の一例を示す図である。
[Embodiment]
[Device configuration]
An example of the plasma processing apparatus of the present disclosure will be described. FIG. 1 is a diagram showing an example of a schematic configuration of a plasma processing apparatus 1 according to an embodiment.
 以下に、プラズマ処理装置1の一例としての容量結合プラズマ処理装置の構成例について説明する。容量結合プラズマ処理装置1は、プラズマ処理チャンバ10、ガス供給部20、電源30及び排気システム40を含む。また、プラズマ処理装置1は、基板支持部11及びガス導入部を含む。ガス導入部は、少なくとも1つの処理ガスをプラズマ処理チャンバ10内に導入するように構成される。ガス導入部は、シャワーヘッド13を含む。基板支持部11は、プラズマ処理チャンバ10内に配置される。シャワーヘッド13は、基板支持部11の上方に配置される。一実施形態において、シャワーヘッド13は、プラズマ処理チャンバ10の天部(ceiling)の少なくとも一部を構成する。プラズマ処理チャンバ10は、シャワーヘッド13、プラズマ処理チャンバ10の側壁10a及び基板支持部11により規定されたプラズマ処理空間10sを有する。側壁10aは接地される。シャワーヘッド13及び基板支持部11は、プラズマ処理チャンバ10筐体とは電気的に絶縁される。 A configuration example of a capacitively-coupled plasma processing apparatus as an example of the plasma processing apparatus 1 will be described below. The capacitively coupled plasma processing apparatus 1 includes a plasma processing chamber 10, a gas supply section 20, a power supply 30 and an exhaust system 40. As shown in FIG. Further, the plasma processing apparatus 1 includes a substrate support section 11 and a gas introduction section. The gas introduction is configured to introduce at least one process gas into the plasma processing chamber 10 . The gas introduction section includes a showerhead 13 . A substrate support 11 is positioned within the plasma processing chamber 10 . The showerhead 13 is arranged above the substrate support 11 . In one embodiment, showerhead 13 forms at least a portion of the ceiling of plasma processing chamber 10 . The plasma processing chamber 10 has a plasma processing space 10 s defined by a showerhead 13 , side walls 10 a of the plasma processing chamber 10 and a substrate support 11 . Side wall 10a is grounded. The showerhead 13 and substrate support 11 are electrically insulated from the plasma processing chamber 10 housing.
 基板支持部11は、本体部111及びリングアセンブリ112を含む。本体部111は、基板(ウェハ)Wを支持するための中央領域(基板支持面)111aと、リングアセンブリ112を支持するための環状領域(リング支持面)111bとを有する。本体部111の環状領域111bは、平面視で本体部111の中央領域111aを囲んでいる。基板Wは、本体部111の中央領域111a上に配置され、リングアセンブリ112は、本体部111の中央領域111a上の基板Wを囲むように本体部111の環状領域111b上に配置される。一実施形態において、本体部111は、基台及び静電チャックを含む。基台は、導電性部材を含む。基台の導電性部材は下部電極として機能する。静電チャックは、基台の上に配置される。静電チャックの上面は、基板支持面111aを有する。リングアセンブリ112は、1又は複数の環状部材を含む。1又は複数の環状部材のうち少なくとも1つはエッジリングである。また、図示は省略するが、基板支持部11は、静電チャック、リングアセンブリ112及び基板のうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含んでもよい。温調モジュールは、ヒータ、伝熱媒体、流路、又はこれらの組み合わせを含んでもよい。流路には、ブラインやガスのような伝熱流体が流れる。また、基板支持部11は、基板Wの裏面と基板支持面111aとの間に伝熱ガスを供給するように構成された伝熱ガス供給部を含んでもよい。 The substrate support section 11 includes a body section 111 and a ring assembly 112 . The body portion 111 has a central region (substrate support surface) 111 a for supporting the substrate (wafer) W and an annular region (ring support surface) 111 b for supporting the ring assembly 112 . The annular region 111b of the body portion 111 surrounds the central region 111a of the body portion 111 in plan view. The substrate W is arranged on the central region 111 a of the main body 111 , and the ring assembly 112 is arranged on the annular region 111 b of the main body 111 so as to surround the substrate W on the central region 111 a of the main body 111 . In one embodiment, body portion 111 includes a base and an electrostatic chuck. The base includes an electrically conductive member. The conductive member of the base functions as a lower electrode. An electrostatic chuck is arranged on the base. The upper surface of the electrostatic chuck has a substrate support surface 111a. Ring assembly 112 includes one or more annular members. At least one of the one or more annular members is an edge ring. Also, although not shown, the substrate supporter 11 may include a temperature control module configured to control at least one of the electrostatic chuck, the ring assembly 112, and the substrate to a target temperature. The temperature control module may include heaters, heat transfer media, flow paths, or combinations thereof. A heat transfer fluid, such as brine or gas, flows through the channel. Further, the substrate support section 11 may include a heat transfer gas supply section configured to supply a heat transfer gas between the back surface of the substrate W and the substrate support surface 111a.
 シャワーヘッド13は、ガス供給部20からの少なくとも1つの処理ガスをプラズマ処理空間10s内に導入するように構成される。シャワーヘッド13は、少なくとも1つのガス供給口13a、少なくとも1つのガス拡散室13b、及び複数のガス導入口13cを有する。ガス供給口13aに供給された処理ガスは、ガス拡散室13bを通過して複数のガス導入口13cからプラズマ処理空間10s内に導入される。また、シャワーヘッド13は、導電性部材を含む。シャワーヘッド13の導電性部材は上部電極として機能する。なお、ガス導入部は、シャワーヘッド13に加えて、側壁10aに形成された1又は複数の開口部に取り付けられる1又は複数のサイドガス注入部(SGI:Side Gas Injector)を含んでもよい。 The showerhead 13 is configured to introduce at least one processing gas from the gas supply unit 20 into the plasma processing space 10s. The showerhead 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and multiple gas introduction ports 13c. The processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s through a plurality of gas introduction ports 13c. Showerhead 13 also includes a conductive member. A conductive member of the showerhead 13 functions as an upper electrode. In addition to the showerhead 13, the gas introduction part may include one or more side gas injectors (SGI: Side Gas Injector) attached to one or more openings formed in the side wall 10a.
 ガス供給部20は、少なくとも1つのガスソース21及び少なくとも1つの流量制御器22を含んでもよい。一実施形態において、ガス供給部20は、少なくとも1つの処理ガスを、それぞれに対応のガスソース21からそれぞれに対応の流量制御器22を介してシャワーヘッド13に供給するように構成される。各流量制御器22は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部20は、少なくとも1つの処理ガスの流量を変調又はパルス化する少なくとも1つの流量変調デバイスを含んでもよい。 The gas supply unit 20 may include at least one gas source 21 and at least one flow controller 22 . In one embodiment, gas supply 20 is configured to supply at least one process gas from respective gas sources 21 through respective flow controllers 22 to showerhead 13 . Each flow controller 22 may include, for example, a mass flow controller or a pressure controlled flow controller. Additionally, gas supply 20 may include at least one flow modulation device for modulating or pulsing the flow rate of at least one process gas.
 電源30は、少なくとも1つのインピーダンス整合回路を介してプラズマ処理チャンバ10に結合されるRF電源31を含む。RF電源31は、ソースRF信号及びバイアスRF信号のような少なくとも1つのRF信号(RF電力)を、基板支持部11の導電性部材及び/又はシャワーヘッド13の導電性部材に供給するように構成される。これにより、プラズマ処理空間10sに供給された少なくとも1つの処理ガスからプラズマが形成される。従って、RF電源31は、プラズマ生成部12の少なくとも一部として機能し得る。また、バイアスRF信号を基板支持部11の導電性部材に供給することにより、基板Wにバイアス電位が発生し、形成されたプラズマ中のイオン成分を基板Wに引き込むことができる。 Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit. RF power supply 31 is configured to supply at least one RF signal (RF power), such as a source RF signal and a bias RF signal, to conductive members of substrate support 11 and/or conductive members of showerhead 13 . be done. Thereby, plasma is formed from at least one processing gas supplied to the plasma processing space 10s. Therefore, the RF power supply 31 can function as at least part of the plasma generator 12 . Further, by supplying the bias RF signal to the conductive member of the substrate supporting portion 11, a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W. FIG.
 一実施形態において、RF電源31は、第1のRF生成部31a及び第2のRF生成部31bを含む。第1のRF生成部31aは、少なくとも1つのインピーダンス整合回路を介して基板支持部11の導電性部材及び/又はシャワーヘッド13の導電性部材に結合され、プラズマ生成用のソースRF信号(ソースRF電力)を生成するように構成される。一実施形態において、ソースRF信号は、13MHz~150MHzの範囲内の周波数を有する。一実施形態において、第1のRF生成部31aは、異なる周波数を有する複数のソースRF信号を生成するように構成されてもよい。生成された1又は複数のソースRF信号は、基板支持部11の導電性部材及び/又はシャワーヘッド13の導電性部材に供給される。第2のRF生成部31bは、少なくとも1つのインピーダンス整合回路を介して基板支持部11の導電性部材に結合され、バイアスRF信号(バイアスRF電力)を生成するように構成される。一実施形態において、バイアスRF信号は、ソースRF信号よりも低い周波数を有する。一実施形態において、バイアスRF信号は、400kHz~13.56MHzの範囲内の周波数を有する。一実施形態において、第2のRF生成部31bは、異なる周波数を有する複数のバイアスRF信号を生成するように構成されてもよい。生成された1又は複数のバイアスRF信号は、基板支持部11の導電性部材に供給される。また、種々の実施形態において、ソースRF信号及びバイアスRF信号のうち少なくとも1つがパルス化されてもよい。 In one embodiment, the RF power supply 31 includes a first RF generator 31a and a second RF generator 31b. The first RF generator 31a is coupled to the conductive member of the substrate support 11 and/or the conductive member of the showerhead 13 via at least one impedance matching circuit to provide a source RF signal for plasma generation (source RF electrical power). In one embodiment, the source RF signal has a frequency within the range of 13 MHz to 150 MHz. In one embodiment, the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are provided to conductive members of the substrate support 11 and/or conductive members of the showerhead 13 . The second RF generator 31b is coupled to the conductive member of the substrate support 11 via at least one impedance matching circuit and configured to generate a bias RF signal (bias RF power). In one embodiment, the bias RF signal has a lower frequency than the source RF signal. In one embodiment, the bias RF signal has a frequency within the range of 400 kHz to 13.56 MHz. In one embodiment, the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies. One or more bias RF signals generated are provided to the conductive members of the substrate support 11 . Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
 例えば、第1のRF生成部31aは、配線などの導電部33aを介してシャワーヘッド13の導電性部材と電気的に接続されている。導電部33aには、インピーダンス整合回路34aが設けられている。インピーダンス整合回路34aは、第1のRF生成部31aの出力インピーダンスと負荷側(シャワーヘッド13側)の入力インピーダンスを整合させる。例えば、インピーダンス整合回路34aは、バリアブルコンデンサが設けられている。バリアブルコンデンサは、静電容量を調節するための調節部を有し、調節部のポジションを変えることにより、静電容量が変更可能とされている。インピーダンス整合回路34aは、調節部を駆動する駆動機構を有する。インピーダンス整合回路34aは、駆動機構により調節部のポジションを変えてバリアブルコンデンサの静電容量を調整することで、第1のRF生成部31aの出力インピーダンスと負荷側の入力インピーダンスとを整合させる。本実施形態では、インピーダンス整合回路34aのバリアブルコンデンサにセンサ35を設けており、センサ35により調節部のポジションをモニタすることで静電容量をモニタする。センサ35は、モニタした調節部のポジションを示すポジションデータを後述する制御部100へ出力する。第1のRF生成部31aは、プラズマを生成するための第1の周波数の第1高周波電力をシャワーヘッド13の導電性部材に供給する。例えば、第1のRF生成部31aは、第1高周波電力として、上述したソースRF信号を導電部33a及びインピーダンス整合回路34aを介してシャワーヘッド13の導電性部材に供給する。シャワーヘッド13の導電性部材は、電極として機能する。ソースRF信号が供給されることにより、プラズマ処理チャンバ10内には、高密度のプラズマが生成される。 For example, the first RF generation section 31a is electrically connected to the conductive member of the shower head 13 via a conductive section 33a such as wiring. The conductive portion 33a is provided with an impedance matching circuit 34a. The impedance matching circuit 34a matches the output impedance of the first RF generator 31a and the input impedance on the load side (shower head 13 side). For example, the impedance matching circuit 34a is provided with a variable capacitor. A variable capacitor has an adjustment section for adjusting the capacitance, and the capacitance can be changed by changing the position of the adjustment section. The impedance matching circuit 34a has a drive mechanism that drives the adjuster. The impedance matching circuit 34a matches the output impedance of the first RF generator 31a and the input impedance of the load by adjusting the capacitance of the variable capacitor by changing the position of the adjustment section using the driving mechanism. In this embodiment, the variable capacitor of the impedance matching circuit 34a is provided with the sensor 35, and the sensor 35 monitors the position of the adjusting section to monitor the capacitance. The sensor 35 outputs position data indicating the monitored position of the adjustment unit to the control unit 100, which will be described later. The first RF generator 31 a supplies the conductive member of the shower head 13 with first high-frequency power of a first frequency for generating plasma. For example, the first RF generator 31a supplies the above-described source RF signal as the first high-frequency power to the conductive member of the showerhead 13 via the conductive section 33a and the impedance matching circuit 34a. The conductive member of showerhead 13 functions as an electrode. A high density plasma is generated in the plasma processing chamber 10 by supplying the source RF signal.
 また、例えば、第2のRF生成部31bは、配線などの導電部33bを介して基板支持部11の基台の導電性部材と電気的に接続されている。導電部33bには、インピーダンス整合回路34bが設けられている。インピーダンス整合回路34bは、第2のRF生成部31bの出力インピーダンスと負荷側(基板支持部11側)の入力インピーダンスを整合させる。例えば、インピーダンス整合回路34bは、バリアブルコンデンサが設けられている。バリアブルコンデンサは、静電容量を調節するための調節部を有し、調節部のポジションを変えることにより、静電容量が変更可能とされている。インピーダンス整合回路34bは、調節部を駆動する駆動機構を有する。インピーダンス整合回路34bは、駆動機構により調節部のポジションを変えてバリアブルコンデンサの静電容量を調整することで、第2のRF生成部31bの出力インピーダンスと負荷側の入力インピーダンスとが整合させる。第2のRF生成部31bは、プラズマ中のイオン成分を基板Wに引き込むための第1の周波数よりも低い第2の周波数の第2高周波電力を基板支持部11の導電性部材に供給する。例えば、第2のRF生成部31bは、第2高周波電力として、上述したバイアスRF信号を導電部33b及びインピーダンス整合回路34bを介して基板支持部11の導電性部材に供給する基板支持部11の導電性部材は、電極として機能する。バイアスRF信号が供給されることにより、プラズマ処理チャンバ10内に生成されたプラズマ中のイオン成分が、基板Wに引き込まれる。 Also, for example, the second RF generation section 31b is electrically connected to the conductive member of the base of the substrate support section 11 via a conductive section 33b such as wiring. The conductive portion 33b is provided with an impedance matching circuit 34b. The impedance matching circuit 34b matches the output impedance of the second RF generation section 31b and the input impedance on the load side (substrate support section 11 side). For example, the impedance matching circuit 34b is provided with a variable capacitor. A variable capacitor has an adjustment section for adjusting the capacitance, and the capacitance can be changed by changing the position of the adjustment section. The impedance matching circuit 34b has a drive mechanism that drives the adjuster. The impedance matching circuit 34b matches the output impedance of the second RF generator 31b and the input impedance of the load by changing the position of the adjustment section by the drive mechanism and adjusting the capacitance of the variable capacitor. The second RF generator 31 b supplies the conductive member of the substrate support 11 with a second high-frequency power having a second frequency lower than the first frequency for attracting ion components in the plasma to the substrate W. FIG. For example, the second RF generator 31b supplies the above-described bias RF signal as the second high-frequency power to the conductive member of the substrate support 11 via the conductive portion 33b and the impedance matching circuit 34b. The conductive member functions as an electrode. The ion components in the plasma generated within the plasma processing chamber 10 are attracted to the substrate W by applying the bias RF signal.
 また、電源30は、プラズマ処理チャンバ10に結合されるDC電源32を含んでもよい。DC電源32は、第1のDC生成部32a及び第2のDC生成部32bを含む。一実施形態において、第1のDC生成部32aは、基板支持部11の導電性部材に接続され、第1のDC信号を生成するように構成される。生成された第1のDC信号は、基板支持部11の導電性部材に印加される。一実施形態において、第1のDC信号が、静電チャック内の電極のような他の電極に印加されてもよい。一実施形態において、第2のDC生成部32bは、シャワーヘッド13の導電性部材に接続され、第2のDC信号を生成するように構成される。生成された第2のDC信号は、シャワーヘッド13の導電性部材に印加される。種々の実施形態において、第1及び第2のDC信号がパルス化されてもよい。なお、第1及び第2のDC生成部32a,32bは、RF電源31に加えて設けられてもよく、第1のDC生成部32aが第2のRF生成部31bに代えて設けられてもよい。 Power supply 30 may also include a DC power supply 32 coupled to plasma processing chamber 10 . The DC power supply 32 includes a first DC generator 32a and a second DC generator 32b. In one embodiment, the first DC generator 32a is connected to a conductive member of the substrate support 11 and configured to generate the first DC signal. The generated first DC signal is applied to the conductive member of substrate support 11 . In one embodiment, the first DC signal may be applied to other electrodes, such as electrodes in an electrostatic chuck. In one embodiment, the second DC generator 32b is connected to the conductive member of the showerhead 13 and configured to generate the second DC signal. The generated second DC signal is applied to the conductive members of showerhead 13 . In various embodiments, the first and second DC signals may be pulsed. Note that the first and second DC generators 32a and 32b may be provided in addition to the RF power supply 31, and the first DC generator 32a may be provided instead of the second RF generator 31b. good.
 プラズマ処理装置1は、プラズマの発光強度をモニタするセンサ36が設けられている。センサ36は、例えば、OESセンサなどである。プラズマ処理チャンバ10の側面には、光を透過する透過窓37が設けられている。透過窓37は、例えば、石英基板により構成され、光(可視光)を透過する透過性を有する。センサ36は、透過窓37を介してプラズマ処理中のプラズマ処理チャンバ10内のプラズマの発光強度をモニタする。例えば、センサ36は、プラズマの波長毎の発光強度を検出する。センサ36は、検出した波長毎の発光強度を示す発光データを後述する制御部100へ出力する。なお、センサ36は、プラズマ処理チャンバ10内に配置されてもよい。 The plasma processing apparatus 1 is provided with a sensor 36 that monitors the emission intensity of plasma. The sensor 36 is, for example, an OES sensor or the like. A side surface of the plasma processing chamber 10 is provided with a transmission window 37 for transmitting light. The transmissive window 37 is made of, for example, a quartz substrate, and has transmissivity for transmitting light (visible light). Sensor 36 monitors the emission intensity of the plasma within plasma processing chamber 10 during plasma processing through transmission window 37 . For example, the sensor 36 detects the emission intensity for each wavelength of plasma. The sensor 36 outputs light emission data indicating the detected light emission intensity for each wavelength to the control unit 100, which will be described later. It should be noted that sensor 36 may be located within plasma processing chamber 10 .
 排気システム40は、例えばプラズマ処理チャンバ10の底部に設けられたガス排出口10eに接続され得る。排気システム40は、圧力調整弁及び真空ポンプを含んでもよい。圧力調整弁によって、プラズマ処理空間10s内の圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプ又はこれらの組み合わせを含んでもよい。 The exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example. Exhaust system 40 may include a pressure regulating valve and a vacuum pump. The pressure regulating valve regulates the pressure in the plasma processing space 10s. Vacuum pumps may include turbomolecular pumps, dry pumps, or combinations thereof.
 上記のように構成されたプラズマ処理装置1は、制御部100をさらに含む。図2は、実施形態に係る制御部100の概略的な構成の一例を示したブロック図である。図1に示したプラズマ処理装置1は、制御部100によって、その動作が統括的に制御される。 The plasma processing apparatus 1 configured as described above further includes a controller 100 . FIG. 2 is a block diagram showing an example of a schematic configuration of the control section 100 according to the embodiment. The operation of the plasma processing apparatus 1 shown in FIG. 1 is centrally controlled by a control unit 100 .
 制御部100は、例えば、コンピュータであり、プラズマ処理装置1の各部を制御する。プラズマ処理装置1は、制御部100によって、その動作が統括的に制御される。制御部100は、本開示において述べられる種々の工程をプラズマ処理装置1に実行させる制御を行う。制御部100は、外部インターフェース101と、プロセスコントローラ102と、ユーザインターフェース103と、記憶部104とが設けられている。 The control unit 100 is, for example, a computer, and controls each unit of the plasma processing apparatus 1 . The operation of the plasma processing apparatus 1 is centrally controlled by a control unit 100 . The control unit 100 controls the plasma processing apparatus 1 to perform various processes described in the present disclosure. The control unit 100 is provided with an external interface 101 , a process controller 102 , a user interface 103 and a storage unit 104 .
 外部インターフェース101は、プラズマ処理装置1の各部と通信可能とされ、各種のデータを入出力する。例えば、外部インターフェース101には、センサ35からのポジションデータや、センサ36からの発光データが入力される。 The external interface 101 can communicate with each part of the plasma processing apparatus 1, and inputs and outputs various data. For example, position data from the sensor 35 and light emission data from the sensor 36 are input to the external interface 101 .
 プロセスコントローラ102は、CPU(Central Processing Unit)を備えプラズマ処理装置1の各部を制御する。 The process controller 102 has a CPU (Central Processing Unit) and controls each part of the plasma processing apparatus 1 .
 ユーザインターフェース103は、工程管理者がプラズマ処理装置1を管理するためにコマンドの入力操作を行うキーボードや、プラズマ処理装置1の稼動状況を可視化して表示するディスプレイ等から構成されている。 The user interface 103 is composed of a keyboard for inputting commands for the process manager to manage the plasma processing apparatus 1, a display for visualizing and displaying the operating status of the plasma processing apparatus 1, and the like.
 記憶部104には、プラズマ処理装置1で実行される各種処理をプロセスコントローラ102の制御にて実現するための制御プログラム(ソフトウエア)や、処理条件データ等が記憶されたレシピが格納されている。なお、制御プログラムやレシピは、コンピュータで読み取り可能なコンピュータ記録媒体(例えば、ハードディスク、DVDなどの光ディスク、フレキシブルディスク、半導体メモリ等)などに格納された状態のものを利用してもよい。また、制御プログラムやレシピは、他の装置から、例えば専用回線を介して随時伝送させてオンラインで利用したりすることも可能である。 The storage unit 104 stores a control program (software) for realizing various processes executed in the plasma processing apparatus 1 under the control of the process controller 102, and recipes in which process condition data and the like are stored. . The control program and recipe may be stored in a computer-readable computer recording medium (for example, a hard disk, an optical disk such as a DVD, a flexible disk, a semiconductor memory, etc.). Also, control programs and recipes can be transmitted at any time from another device, for example, via a dedicated line and used online.
 プロセスコントローラ102は、プログラムやデータを格納するための内部メモリを有し、記憶部104に記憶された制御プログラムを読み出し、読み出した制御プログラムの処理を実行する。プロセスコントローラ102は、制御プログラムが動作することにより各種の処理部として機能する。例えば、プロセスコントローラ102は、プラズマ制御部102aと、検出部102bと、補正部102cの機能を有する。なお、本実施形態では、プロセスコントローラ102が、プラズマ制御部102a、検出部102b及び補正部102cの機能を有する場合を例に説明する。しかし、プラズマ制御部102a、検出部102b及び補正部102cの機能は、複数のコントローラで分散して実現してもよい。例えば、プラズマ制御部102aと、検出部102b及び補正部102cは、互いにデータ通信が可能な別のコントローラで分散して実現してもよい。 The process controller 102 has an internal memory for storing programs and data, reads the control program stored in the storage unit 104, and executes processing of the read control program. The process controller 102 functions as various processing units by executing control programs. For example, the process controller 102 has functions of a plasma controller 102a, a detector 102b, and a corrector 102c. In this embodiment, an example in which the process controller 102 has the functions of a plasma control unit 102a, a detection unit 102b, and a correction unit 102c will be described. However, the functions of the plasma control unit 102a, the detection unit 102b, and the correction unit 102c may be distributed and realized by a plurality of controllers. For example, the plasma control unit 102a, the detection unit 102b, and the correction unit 102c may be implemented separately by separate controllers capable of data communication with each other.
 プラズマ制御部102aは、プラズマ処理を制御する。例えば、プラズマ制御部102aは、排気システム40を制御して、プラズマ処理チャンバ10内を所定の真空度まで排気する。プラズマ制御部102aは、ガス供給部20を制御し、ガス供給部20から処理ガスをプラズマ処理空間10s内に導入する。プラズマ制御部102aは、電源30を制御し、処理ガスの導入に合わせて、第1のRF生成部31a及び第2のRF生成部31bからソースRF信号及びバイアスRF信号を供給してプラズマ処理チャンバ10内にプラズマを生成する。 The plasma control unit 102a controls plasma processing. For example, the plasma controller 102a controls the exhaust system 40 to exhaust the inside of the plasma processing chamber 10 to a predetermined degree of vacuum. The plasma control unit 102a controls the gas supply unit 20 and introduces the processing gas from the gas supply unit 20 into the plasma processing space 10s. The plasma control unit 102a controls the power supply 30, supplies the source RF signal and the bias RF signal from the first RF generation unit 31a and the second RF generation unit 31b in accordance with the introduction of the processing gas, and controls the plasma processing chamber. A plasma is generated within 10 .
 本実施形態に係るプラズマ処理装置1は、プラズマ処理として、プラズマエッチングを行う。プラズマ制御部102aは、RF電源31を制御し、RF電源31から高周波電力を供給する。RF電源31は、ソースRF信号と、バイアスRF信号を供給する。例えば、プラズマ制御部102aは、RF電源31を制御し、第1のRF生成部31a及び第2のRF生成部31bからソースRF信号及びバイアスRF信号をそれぞれ供給する。 The plasma processing apparatus 1 according to this embodiment performs plasma etching as plasma processing. The plasma control unit 102 a controls the RF power supply 31 and supplies high frequency power from the RF power supply 31 . RF power supply 31 provides a source RF signal and a bias RF signal. For example, the plasma controller 102a controls the RF power supply 31 and supplies source RF signals and bias RF signals from the first RF generator 31a and the second RF generator 31b, respectively.
 検出部102bは、センサ36から入力した発光データが示すプラズマの発光強度の変化からプラズマ処理の状況を検出する。例えば、検出部102bは、発光データが示す波長毎のプラズマの発光強度のうち、エッチング状況に応じて発光強度が変化する所定の波長の発光強度の変化からエッチングの終点を検出する。 The detection unit 102b detects the state of plasma processing from changes in the plasma emission intensity indicated by the emission data input from the sensor 36. For example, the detection unit 102b detects the end point of etching from changes in the emission intensity of a predetermined wavelength, which changes according to the etching state, among the emission intensities of the plasma for each wavelength indicated by the emission data.
 プラズマ制御部102aは、検出部102bの検出結果に基づき、プラズマ処理を制御する。例えば、プラズマ制御部102aは、検出部102bによりエッチングの終点を検出すると、プラズマエッチングを終了する。 The plasma control unit 102a controls plasma processing based on the detection result of the detection unit 102b. For example, the plasma control unit 102a ends plasma etching when the detection unit 102b detects the end point of etching.
 ところでプラズマ処理装置1は、プラズマ処理中にプラズマ処理チャンバ10のコンディションが変化してプラズマの発光強度が瞬間的に大きく変化する場合がある。例えば、インピーダンス整合回路34aは、プラズマ処理中でも、第1のRF生成部31aの出力インピーダンスと負荷側の入力インピーダンスとが整合するように、駆動機構により調節部のポジションを変え、バリアブルコンデンサの静電容量を調整する。プラズマ処理中にインピーダンス整合回路34aのバリアブルコンデンサの静電容量が変化すると、プラズマ処理チャンバ10のコンディションが変化してプラズマの発光強度が瞬間的に変化する。なお、プラズマ処理チャンバ10のコンディションの変化は、その他、様々なプラズマ処理の条件の変化によって発生する。例えば、インピーダンス整合回路34bのバリアブルコンデンサの静電容量の変化によって、プラズマ処理チャンバ10のコンディションが変化する。また、プラズマ処理チャンバ10に供給されるソースRF信号及びバイアスRF信号などの高周波信号の周波数の変化によって、プラズマ処理チャンバ10のコンディションが変化する。また、プラズマ処理チャンバ10に供給される第1のDC信号及び第2のDC信号などの直流電圧の変化によって、プラズマ処理チャンバ10のコンディションが変化する。また、プラズマ処理チャンバ10内の圧力の変化によって、プラズマ処理チャンバ10のコンディションが変化する。上記のように、プラズマ処理中にプラズマ処理チャンバ10のコンディションを変化させるパラメータは複数ある。以下では、パラメータとしてインピーダンス整合回路34aのバリアブルコンデンサの静電容量の変化によってプラズマ処理チャンバ10のコンディションが変化する場合を例に説明する。 By the way, in the plasma processing apparatus 1, the condition of the plasma processing chamber 10 changes during plasma processing, and the emission intensity of the plasma may change momentarily and greatly. For example, the impedance matching circuit 34a changes the position of the adjustment section by the driving mechanism so that the output impedance of the first RF generation section 31a and the input impedance of the load side match even during the plasma processing, and the static electricity of the variable capacitor is changed. Adjust volume. When the capacitance of the variable capacitor of the impedance matching circuit 34a changes during plasma processing, the condition of the plasma processing chamber 10 changes and the plasma emission intensity changes instantaneously. Changes in the conditions of the plasma processing chamber 10 are also caused by changes in various plasma processing conditions. For example, the condition of the plasma processing chamber 10 changes due to changes in the capacitance of the variable capacitor of the impedance matching circuit 34b. Also, the condition of the plasma processing chamber 10 changes due to changes in the frequency of high frequency signals such as the source RF signal and the bias RF signal supplied to the plasma processing chamber 10 . Also, the condition of the plasma processing chamber 10 changes due to changes in the DC voltages such as the first DC signal and the second DC signal supplied to the plasma processing chamber 10 . Also, the condition of the plasma processing chamber 10 changes due to changes in the pressure within the plasma processing chamber 10 . As noted above, there are multiple parameters that change the conditions of the plasma processing chamber 10 during plasma processing. In the following, an example will be described in which the condition of the plasma processing chamber 10 changes due to changes in the capacitance of the variable capacitor of the impedance matching circuit 34a as a parameter.
 エッチングの終点の検出の一例を説明する。図3は、実施形態に係るプラズマ処理チャンバのコンディションの変化による発光強度の変化の一例を示す図である。図3の左の縦軸は、発光強度である。図3の右の縦軸は、インピーダンス整合回路34aのバリアブルコンデンサの調節部のポジションである。図3の横軸は、時間である。例えば、ガス供給部20からCF系ガスを含んだ処理ガスを供給してプラズマエッチングを行う場合、検出部102bは、260nmの波長の発光強度の変化からエッチングの終点を検出する。図3には、左の縦軸及び横軸を用いて、エッチング中の260nmの波長の発光強度の変化が示されている。また、図3には、右の縦軸及び横軸を用いて、インピーダンス整合回路34aのバリアブルコンデンサの調節部のポジションの変化が示されている。図3に示すように、バリアブルコンデンサの調節部のポジションが変化したタイミングで、発光強度は、瞬間的に大きく変化する。例えば、ポジションが変化したタイミングT1では、発光強度が瞬間的に大きく上昇する。このように発光強度が瞬間的に大きく変化すると、エッチング終点を検出できない場合や、エッチング終点を誤検出する場合がある。また、移動平均やローパスフィルタなどのノイズ対策フィルタにより、このような発光強度の瞬間的な変化をノイズとして除去する場合、エッチングの終点の変化がノイズとして消されてしまう虞や、エッチングの終点検出時間が大幅に遅れる場合がある。 An example of detection of the end point of etching will be explained. FIG. 3 is a diagram showing an example of changes in emission intensity due to changes in the conditions of the plasma processing chamber according to the embodiment. The vertical axis on the left side of FIG. 3 is the emission intensity. The vertical axis on the right side of FIG. 3 is the position of the variable capacitor adjustment section of the impedance matching circuit 34a. The horizontal axis of FIG. 3 is time. For example, when plasma etching is performed by supplying a processing gas containing a CF-based gas from the gas supply unit 20, the detection unit 102b detects the end point of etching from changes in emission intensity at a wavelength of 260 nm. FIG. 3 shows the change in emission intensity at a wavelength of 260 nm during etching using the vertical and horizontal axes on the left. In FIG. 3, the vertical axis and horizontal axis on the right side are used to show changes in the position of the variable capacitor adjustment section of the impedance matching circuit 34a. As shown in FIG. 3, the luminous intensity momentarily changes greatly at the timing when the position of the adjustment section of the variable capacitor changes. For example, at timing T1 when the position changes, the emission intensity momentarily rises significantly. When the emission intensity momentarily changes greatly in this manner, the etching end point may not be detected or the etching end point may be erroneously detected. In addition, when removing such instantaneous changes in emission intensity as noise by a noise countermeasure filter such as a moving average or a low-pass filter, there is a risk that the change in the end point of etching will be erased as noise, and the detection of the end point of etching will be difficult. Time can be significantly delayed.
 そこで、実施形態に係るプラズマ処理装置1は、センサにより、プラズマ処理チャンバ10のコンディションを変化させるパラメータの値をモニタする。例えば、プラズマ処理装置1は、センサ35により、インピーダンス整合回路34aのバリアブルコンデンサの静電容量をモニタする。例えば、センサ35は、インピーダンス整合回路34aのバリアブルコンデンサの調節部のポジションをモニタする。 Therefore, the plasma processing apparatus 1 according to the embodiment monitors parameter values that change the condition of the plasma processing chamber 10 using sensors. For example, the plasma processing apparatus 1 monitors the electrostatic capacitance of the variable capacitor of the impedance matching circuit 34a using the sensor 35 . For example, the sensor 35 monitors the position of the variable capacitor adjustment portion of the impedance matching circuit 34a.
 補正部102cは、センサによりモニタされるプラズマ処理チャンバ10のコンディションを変化させるパラメータの値が変動した場合、パラメータの値の変動量に基づいて、センサ36により検出した発光強度を補正する。例えば、補正部102cは、センサ36によりモニタされる発光強度をセンサ35によりモニタされるパラメータの値の変動量に基づいて補正する。例えば、補正部102cは、センサ35によりインピーダンス整合回路34aのバリアブルコンデンサの調節部のポジションの変動を検出した場合、プラズマ処理中にセンサ36によりモニタした発光強度をセンサ35により検出した変動量に基づいて補正する。補正部102cは、センサ35よりモニタされるパラメータの値が変動する前後それぞれでのセンサ36によりモニタした発光強度の平均を算出して前後の発光強度の平均の差を求める。補正部102cは、求めた差でセンサ36によりモニタした発光強度を補正する。例えば、補正部102cは、センサ35により変動を検出した前後それぞれの発光強度の平均を算出して前後の発光強度の平均の差を求める。補正部102cは、求めた差でセンサ36により検出した発光強度を補正する。例えば、補正部102cは、図3に示すように、タイミングT1の直前の所定期間T2での発光強度の平均a1と、タイミングT1の直後の所定期間T3での発光強度の平均a2とを算出し、平均a1に対する平均a2の差Δaを求める。補正部102cは、タイミングT1以降、センサ36により検出した発光強度から差Δaを減算する。以上は補正の一例であり、これに限定されない。プラズマ処理中にプラズマ処理チャンバ10のコンディションを変化させるパラメータに応じた補正が実施され得る。 When the value of the parameter that changes the condition of the plasma processing chamber 10 monitored by the sensor fluctuates, the correction unit 102c corrects the emission intensity detected by the sensor 36 based on the amount of fluctuation in the parameter value. For example, the correction unit 102c corrects the emission intensity monitored by the sensor 36 based on the amount of variation in the value of the parameter monitored by the sensor 35. FIG. For example, when the sensor 35 detects a change in the position of the adjustment unit of the variable capacitor of the impedance matching circuit 34a, the correction unit 102c detects the emission intensity monitored by the sensor 36 during the plasma processing based on the amount of change detected by the sensor 35. to correct. The correction unit 102c calculates the average of the light emission intensities monitored by the sensor 36 before and after the parameter value monitored by the sensor 35 fluctuates, and obtains the difference between the averages of the light emission intensities before and after the change. The correction unit 102c corrects the emission intensity monitored by the sensor 36 with the obtained difference. For example, the correction unit 102c calculates the average of the emission intensities before and after the variation is detected by the sensor 35, and obtains the difference between the averages of the emission intensities before and after. The correction unit 102c corrects the emission intensity detected by the sensor 36 with the obtained difference. For example, as shown in FIG. 3, the correction unit 102c calculates the average a1 of the light emission intensity during the predetermined period T2 immediately before the timing T1 and the average a2 of the light emission intensity during the predetermined period T3 immediately after the timing T1. , the difference Δa between the average a2 and the average a1. The correction unit 102c subtracts the difference Δa from the light emission intensity detected by the sensor 36 after timing T1. The above is an example of correction, and is not limited to this. Corrections may be made in response to parameters that change the conditions of the plasma processing chamber 10 during plasma processing.
 検出部102bは、補正部102cにより補正された発光強度の変化に基づいて、プラズマ処理のエンドポイントを検出する。 The detection unit 102b detects the end point of plasma processing based on the change in emission intensity corrected by the correction unit 102c.
 図4は、実施形態に係る補正された発光強度の変化の一例を示す図である。図4の左の縦軸は、発光強度である。図4の右の縦軸は、インピーダンス整合回路34aのバリアブルコンデンサの調節部のポジションである。図4の横軸は、時間である。図4は、補正部102cにより、図3に示したタイミングT1の発光強度の変化を補正した結果を示している。図4では、ポジションが変化したタイミングT1での発光強度の瞬間的に上昇が補正され、タイミングT1の前後で発光強度が同様の傾向で変化している。これにより、検出部102bは、補正された発光強度の変化に基づいて、プラズマ処理のエンドポイントを精度よく検出できる。 FIG. 4 is a diagram showing an example of changes in corrected emission intensity according to the embodiment. The vertical axis on the left side of FIG. 4 is the emission intensity. The vertical axis on the right side of FIG. 4 is the position of the variable capacitor adjustment section of the impedance matching circuit 34a. The horizontal axis of FIG. 4 is time. FIG. 4 shows the result of correcting the change in emission intensity at the timing T1 shown in FIG. 3 by the correction unit 102c. In FIG. 4, the momentary rise in the light emission intensity at the timing T1 when the position changes is corrected, and the light emission intensity changes with the same tendency before and after the timing T1. As a result, the detection unit 102b can accurately detect the endpoint of plasma processing based on the corrected change in emission intensity.
 なお、実施形態では、補正部102cが、センサ35よりモニタされるパラメータの値が変動する前後それぞれでのセンサ36によりモニタした発光強度の平均を算出して前後の発光強度の平均の差を求め、求めた差でセンサ36によりモニタした発光強度を補正する場合を例に説明した。しかし、これに限定されるものではない。センサ35によりモニタされるパラメータの値の変動量に応じた発光強度の補正量を記憶部104に記憶してもよい。補正部102cは、記憶部104からセンサ35によりモニタしたパラメータの値の変動量に対応する補正量を求め、求めた補正量でセンサ36によりモニタした発光強度を補正してもよい。例えば、記憶部104は、センサ35によりモニタされるポジションの変動量ごとに、発光強度の補正量を記憶した補正データを記憶する。補正部102cは、センサ35によりポジションの変動を検出すると、記憶部104に記憶された補正データからセンサ35により検出されたポジションの変動量に対応する補正量を求める。そして、補正部102cは、求めた補正量でセンサ36により検出した発光強度を補正してもよい。 In the embodiment, the correction unit 102c calculates the average of the luminous intensity monitored by the sensor 36 before and after the value of the parameter monitored by the sensor 35 fluctuates, and obtains the difference between the average luminous intensities before and after the change. , the case where the emission intensity monitored by the sensor 36 is corrected with the obtained difference has been described as an example. However, it is not limited to this. The storage unit 104 may store the correction amount of the emission intensity according to the amount of change in the value of the parameter monitored by the sensor 35 . The correction unit 102c may obtain from the storage unit 104 a correction amount corresponding to the amount of change in the value of the parameter monitored by the sensor 35, and correct the emission intensity monitored by the sensor 36 with the obtained correction amount. For example, the storage unit 104 stores correction data that stores the amount of correction of the light emission intensity for each variation amount of the position monitored by the sensor 35 . When the sensor 35 detects the position change, the correction unit 102 c obtains a correction amount corresponding to the position change amount detected by the sensor 35 from the correction data stored in the storage unit 104 . Then, the correction unit 102c may correct the light emission intensity detected by the sensor 36 with the obtained correction amount.
 また、実施形態では、インピーダンス整合回路34aのバリアブルコンデンサの静電容量の変化によってプラズマ処理チャンバ10のコンディションが変化する場合を例に説明した。しかし、これに限定されるものではない。プラズマ処理チャンバ10のコンディションの変化は、その他、様々なプラズマ処理の条件の変化によって発生する。そのため、プラズマ処理チャンバ10のコンディションを変化させる様々なパラメータの値をそれぞれセンサでモニタしてもよい。補正部102cは、それぞれのセンサによりモニタされるパラメータの値の変動量に基づいて、プラズマ処理中にセンサ36によりモニタした発光強度を補正してもよい。例えば、インピーダンス整合回路34bのバリアブルコンデンサの静電容量の変化によってプラズマ処理チャンバ10のコンディションが変化する。そこで、インピーダンス整合回路34bのバリアブルコンデンサの調節部のポジションをセンサによりモニタし、センサによりモニタされる調節部のポジションの変動量に基づいて、プラズマ処理中にセンサ36によりモニタされる発光強度を補正してもよい。また、例えば、プラズマ処理チャンバ10に供給されるソースRF信号及びバイアスRF信号などの高周波信号の周波数の変化によってプラズマ処理チャンバ10のコンディションが変化する。そこで、プラズマ処理チャンバ10に供給される高周波信号の周波数をセンサによりモニタする。例えば、ソースRF信号及びバイアスRF信号などの高周波信号が流れる導電部33a、33bにセンサを設けて、プラズマ処理チャンバ10に供給される高周波信号の周波数をセンサによりモニタする。補正部102cは、センサによりモニタされる高周波信号の周波数の変動量に基づいて、プラズマ処理中にセンサ36によりモニタされる発光強度を補正してもよい。また、例えば、プラズマ処理チャンバ10に印加される直流電圧の変化によってプラズマ処理チャンバ10のコンディションが変化する。そこで、プラズマ処理チャンバ10に印加される直流電圧をセンサによりモニタする。例えば、第1のDC信号及び第2のDC信号などの直流電圧が流れる導電部33a、33bにセンサを設けて、プラズマ処理チャンバ10に印加される直流電圧をセンサによりモニタ出する。補正部102cは、センサによりモニタされる直流電圧の変動量に基づいて、プラズマ処理中にセンサ36によりモニタされる発光強度を補正してもよい。また、例えば、プラズマ処理チャンバ10内の圧力の変化によってプラズマ処理チャンバ10のコンディションが変化する。そこで、プラズマ処理チャンバ10内の圧力をセンサによりモニタする。補正部102cは、センサによりモニタされる圧力の変動量に基づいて、プラズマ処理中にセンサ36によりモニタされる発光強度を補正してもよい。なお、圧力の変化の代わりに、圧力を調整する圧力調整弁にセンサを設けて、圧力調整弁の位置をモニタしてもよい。補正部102cは、センサによりモニタされる圧力調整弁の変動量に基づいて、プラズマ処理中にセンサ36によりモニタされる発光強度を補正してもよい。 Also, in the embodiment, the case where the condition of the plasma processing chamber 10 changes due to changes in the capacitance of the variable capacitor of the impedance matching circuit 34a has been described as an example. However, it is not limited to this. Changes in the conditions of the plasma processing chamber 10 are caused by various other changes in plasma processing conditions. As such, the values of various parameters that change the condition of plasma processing chamber 10 may each be monitored by a sensor. The correction unit 102c may correct the light emission intensity monitored by the sensor 36 during plasma processing based on the amount of variation in the value of the parameter monitored by each sensor. For example, the condition of the plasma processing chamber 10 changes due to changes in the capacitance of the variable capacitor of the impedance matching circuit 34b. Therefore, the position of the adjusting portion of the variable capacitor of the impedance matching circuit 34b is monitored by a sensor, and the emission intensity monitored by the sensor 36 during plasma processing is corrected based on the variation amount of the position of the adjusting portion monitored by the sensor. You may Also, for example, the condition of the plasma processing chamber 10 changes due to changes in the frequency of high frequency signals such as the source RF signal and the bias RF signal supplied to the plasma processing chamber 10 . Therefore, the frequency of the high frequency signal supplied to the plasma processing chamber 10 is monitored by a sensor. For example, sensors are provided in the conductive portions 33a and 33b through which high frequency signals such as source RF signals and bias RF signals flow, and the sensors monitor the frequency of the high frequency signals supplied to the plasma processing chamber 10. FIG. The correction unit 102c may correct the emission intensity monitored by the sensor 36 during plasma processing based on the amount of variation in the frequency of the high frequency signal monitored by the sensor. Also, for example, the condition of the plasma processing chamber 10 changes due to changes in the DC voltage applied to the plasma processing chamber 10 . Therefore, the DC voltage applied to the plasma processing chamber 10 is monitored by a sensor. For example, sensors are provided at the conductive portions 33a and 33b through which DC voltages such as the first DC signal and the second DC signal flow, and the DC voltage applied to the plasma processing chamber 10 is monitored by the sensors. The correction unit 102c may correct the light emission intensity monitored by the sensor 36 during plasma processing based on the amount of change in the DC voltage monitored by the sensor. Also, for example, the condition of the plasma processing chamber 10 changes due to changes in the pressure within the plasma processing chamber 10 . Therefore, the pressure inside the plasma processing chamber 10 is monitored by a sensor. The correction unit 102c may correct the emission intensity monitored by the sensor 36 during plasma processing based on the amount of pressure variation monitored by the sensor. Instead of monitoring the change in pressure, a sensor may be provided in the pressure regulating valve that regulates the pressure to monitor the position of the pressure regulating valve. The correction unit 102c may correct the emission intensity monitored by the sensor 36 during plasma processing, based on the variation amount of the pressure regulating valve monitored by the sensor.
 次に、実施形態に係るプラズマ処理装置1が実施する処理状況検出方法の処理の流れについて説明する。図5は、実施形態に係る処理状況検出方法の処理順序の一例を説明する図である。図5に示す処理状況検出方法の処理は、エッチング対象の膜が形成された基板Wが基板支持部11に載置され、プラズマ処理を行う場合に実行される。 Next, the processing flow of the processing status detection method performed by the plasma processing apparatus 1 according to the embodiment will be described. FIG. 5 is a diagram illustrating an example of the processing order of the processing status detection method according to the embodiment. The processing of the processing status detection method shown in FIG. 5 is performed when the substrate W on which the film to be etched is formed is placed on the substrate supporting portion 11 and plasma processing is performed.
 プラズマ制御部102aは、プラズマ処理を開始する(S10)。例えば、プラズマ制御部102aは、排気システム40を制御して、プラズマ処理チャンバ10内を所定の真空度まで排気する。プラズマ制御部102aは、ガス供給部20を制御し、ガス供給部20から処理ガスをプラズマ処理空間10s内に導入する。プラズマ制御部102aは、電源30を制御し、処理ガスの導入に合わせて、第1のRF生成部31a及び第2のRF生成部31bからソースRF信号及びバイアスRF信号を供給して、エッチングを開始する。 The plasma control unit 102a starts plasma processing (S10). For example, the plasma controller 102a controls the exhaust system 40 to exhaust the inside of the plasma processing chamber 10 to a predetermined degree of vacuum. The plasma control unit 102a controls the gas supply unit 20 and introduces the processing gas from the gas supply unit 20 into the plasma processing space 10s. The plasma control unit 102a controls the power supply 30, supplies source RF signals and bias RF signals from the first RF generation unit 31a and the second RF generation unit 31b in accordance with the introduction of the processing gas, and performs etching. Start.
 補正部102cは、センサにより、プラズマ処理チャンバ10のコンディションを変化させる変化を検出したか否かを判定する(S11)。例えば、補正部102cは、センサ35によりモニタされるインピーダンス整合回路34aのバリアブルコンデンサの調節部のポジションの値が変動したか否かを判定する。変化を検出していない場合(S11:No)、後述するS13へ移行する。 The correction unit 102c determines whether or not the sensor detects a change that changes the condition of the plasma processing chamber 10 (S11). For example, the correction unit 102c determines whether or not the position value of the adjustment unit of the variable capacitor of the impedance matching circuit 34a monitored by the sensor 35 has changed. If no change is detected (S11: No), the process proceeds to S13, which will be described later.
 一方、変化を検出した場合(S11:Yes)、補正部102cは、検出した変化に基づいて、センサ36により検出した発光強度を補正する(S12)。例えば、補正部102cは、センサ36によりモニタされる発光強度をセンサ35によりモニタされるパラメータの値の変動量に基づいて補正する。 On the other hand, if a change is detected (S11: Yes), the correction unit 102c corrects the luminescence intensity detected by the sensor 36 based on the detected change (S12). For example, the correction unit 102c corrects the emission intensity monitored by the sensor 36 based on the amount of variation in the value of the parameter monitored by the sensor 35. FIG.
 検出部102bは、補正部102cにより補正された発光強度の変化からプラズマ処理の状況を検出する(S13)。例えば、検出部102bは、所定の波長の発光強度の変化からエッチングの終点を検出する。 The detection unit 102b detects the state of plasma processing from the change in the emission intensity corrected by the correction unit 102c (S13). For example, the detection unit 102b detects the end point of etching from a change in emission intensity of a predetermined wavelength.
 プラズマ制御部102aは、検出部102bによりエッチングの終点が検出されたか否かを判定する(S14)。エッチングの終点が検出されていない場合(S14:No)、S11へ移行する。 The plasma control unit 102a determines whether or not the detection unit 102b has detected the etching end point (S14). If the end point of etching has not been detected (S14: No), the process proceeds to S11.
 一方、エッチングの終点が検出された場合(S14:Yes)、プラズマ制御部102aは、プラズマ処理を終了する。 On the other hand, when the etching end point is detected (S14: Yes), the plasma control unit 102a ends the plasma processing.
 以上のように、実施形態に係るプラズマ処理装置1は、プラズマ処理チャンバ10と、センサ36(第1のセンサ)と、センサ35(第2のセンサ)と、補正部102cと、検出部102bとを有する。プラズマ処理チャンバ10は、内部でプラズマ処理が実施される。センサ36は、プラズマの発光強度をモニタする。センサ35は、プラズマ処理チャンバ10のコンディションを変化させるパラメータの値をモニタする。補正部102cは、センサ36によりモニタされる発光強度をセンサ35によりモニタされるパラメータの値の変動量に基づいて補正する。検出部102bは、補正部102cにより補正された発光強度の変化に基づいて、プラズマ処理の処理状況を検出する。これにより、プラズマ処理装置1は、プラズマ処理チャンバ10のコンディションの変化が発生してもプラズマ処理の処理状況を検出できる。 As described above, the plasma processing apparatus 1 according to the embodiment includes the plasma processing chamber 10, the sensor 36 (first sensor), the sensor 35 (second sensor), the correction unit 102c, and the detection unit 102b. have Plasma processing chamber 10 is used in which plasma processing is performed. A sensor 36 monitors the emission intensity of the plasma. Sensors 35 monitor the values of parameters that change the condition of plasma processing chamber 10 . The correction unit 102c corrects the emission intensity monitored by the sensor 36 based on the amount of variation in the value of the parameter monitored by the sensor 35. FIG. The detection unit 102b detects the processing status of plasma processing based on the change in the emission intensity corrected by the correction unit 102c. Thereby, the plasma processing apparatus 1 can detect the processing status of the plasma processing even if the condition of the plasma processing chamber 10 changes.
 また、補正部102cは、センサ35によりモニタされるパラメータの値が変動する前後それぞれでのセンサ36によりモニタした発光強度の平均を算出して前後の発光強度の平均の差を求め、求めた差でセンサ36によりモニタした発光強度を補正する。これにより、プラズマ処理装置1は、プラズマ処理チャンバ10コンディションの変化によるプラズマの発光強度の変化を補正できる。 Further, the correction unit 102c calculates the average of the light emission intensity monitored by the sensor 36 before and after the value of the parameter monitored by the sensor 35 fluctuates, finds the difference between the averages of the light emission intensities before and after the change, and obtains the calculated difference. corrects the emission intensity monitored by the sensor 36 at . As a result, the plasma processing apparatus 1 can correct changes in plasma emission intensity due to changes in the plasma processing chamber 10 condition.
 また、プラズマ処理装置1は、記憶部104をさらに有する。記憶部104は、センサ35によりモニタされるパラメータの値の変動量に応じた発光強度の補正量を記憶する。補正部102cは、記憶部104からセンサ35によりモニタしたパラメータの値の変動量に対応する補正量を求め、求めた補正量でセンサ36によりモニタした発光強度を補正する。これにより、プラズマ処理装置1は、プラズマ処理チャンバ10コンディションの変化によるプラズマの発光強度の変化を補正できる。 In addition, the plasma processing apparatus 1 further has a storage section 104 . The storage unit 104 stores the correction amount of the emission intensity according to the amount of change in the value of the parameter monitored by the sensor 35 . The correction unit 102c obtains a correction amount corresponding to the variation amount of the parameter value monitored by the sensor 35 from the storage unit 104, and corrects the emission intensity monitored by the sensor 36 with the obtained correction amount. As a result, the plasma processing apparatus 1 can correct changes in plasma emission intensity due to changes in the plasma processing chamber 10 condition.
 また、プラズマ処理装置1は、インピーダンス整合回路34a、34b(整合器)をさらに有する。インピーダンス整合回路34a、34bは、バリアブルコンデンサが設けられ、プラズマ処理チャンバ10に高周波信号を供給する導電部33a、33b(信号線)に設けられている。センサ35は、バリアブルコンデンサの静電容量をモニタする。これにより、プラズマ処理装置1は、インピーダンス整合回路34a、34bのバリアブルコンデンサの静電容量の変化によるプラズマの発光強度の変化を補正できる。 The plasma processing apparatus 1 further has impedance matching circuits 34a and 34b (matching devices). The impedance matching circuits 34 a and 34 b are provided with variable capacitors and are provided in the conductive portions 33 a and 33 b (signal lines) that supply high frequency signals to the plasma processing chamber 10 . A sensor 35 monitors the capacitance of the variable capacitor. Thereby, the plasma processing apparatus 1 can correct changes in the emission intensity of the plasma due to changes in the capacitance of the variable capacitors of the impedance matching circuits 34a and 34b.
 また、プラズマ処理装置1は、センサにより、プラズマ処理チャンバ10に供給される高周波信号の周波数をモニタする。これにより、プラズマ処理装置1は、プラズマ処理チャンバ10に供給される高周波信号の周波数の変化によるプラズマの発光強度の変化を補正できる。 Also, the plasma processing apparatus 1 monitors the frequency of the high-frequency signal supplied to the plasma processing chamber 10 with a sensor. Thereby, the plasma processing apparatus 1 can correct changes in the emission intensity of plasma caused by changes in the frequency of the high-frequency signal supplied to the plasma processing chamber 10 .
 また、プラズマ処理装置1は、センサにより、プラズマ処理チャンバ10に印加される直流電圧をモニタする。これにより、プラズマ処理装置1は、プラズマ処理チャンバ10に印加される直流電圧の変化によるプラズマの発光強度の変化を補正できる。 Also, the plasma processing apparatus 1 monitors the DC voltage applied to the plasma processing chamber 10 by a sensor. As a result, the plasma processing apparatus 1 can correct changes in plasma emission intensity caused by changes in the DC voltage applied to the plasma processing chamber 10 .
 また、プラズマ処理装置1は、排気システム40(排気部)をさらに有する。排気システム40は、プラズマ処理チャンバ10内の圧力を調整する圧力調整弁が設けられ、プラズマ処理チャンバ10内を排気する。プラズマ処理装置1は、センサにより、圧力調整弁の位置をモニタする。これにより、プラズマ処理装置1は、圧力調整弁の変化によるプラズマの発光強度の変化を補正できる。 In addition, the plasma processing apparatus 1 further has an exhaust system 40 (exhaust section). The exhaust system 40 is provided with a pressure regulating valve for regulating the pressure inside the plasma processing chamber 10 and evacuates the inside of the plasma processing chamber 10 . The plasma processing apparatus 1 monitors the position of the pressure regulating valve with a sensor. Thereby, the plasma processing apparatus 1 can correct the change in the emission intensity of the plasma due to the change in the pressure control valve.
 以上、実施形態について説明してきたが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。実に、上述した実施形態は、多様な形態で具現され得る。また、上述した実施形態は、請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 Although the embodiment has been described above, it should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. Indeed, the above-described embodiments may be embodied in many different forms. Moreover, the embodiments described above may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the claims.
 例えば、上記の実施形態では、基板Wとして半導体ウェハにプラズマ処理を行う場合を例に説明したが、これに限定されるものではない。基板Wは、何れであってもよい。 For example, in the above embodiment, the case where plasma processing is performed on a semiconductor wafer as the substrate W has been described as an example, but the present invention is not limited to this. The substrate W may be any.
 なお、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の特許請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 It should be noted that the embodiments disclosed this time should be considered as examples in all respects and not restrictive. Indeed, the above-described embodiments may be embodied in many different forms. Also, the above-described embodiments may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.
 なお、以上の実施形態に関し、さらに以下の付記を開示する。 In addition, regarding the above embodiment, the following additional remarks are disclosed.
(付記1)
 内部でプラズマ処理が実施されるチャンバと、
 前記プラズマの発光強度をモニタする第1のセンサと、
 前記チャンバのコンディションを変化させるパラメータの値をモニタする第2のセンサと、
 前記第1のセンサによりモニタされる発光強度を前記第2のセンサによりモニタされるパラメータの値の変動量に基づいて補正する補正部と、
 前記補正部により補正された発光強度の変化に基づいて、プラズマ処理の処理状況を検出する検出部と、
 を有するプラズマ処理装置。
(Appendix 1)
a chamber in which plasma processing is performed;
a first sensor that monitors the emission intensity of the plasma;
a second sensor that monitors the value of a parameter that changes the condition of the chamber;
a correction unit that corrects the emission intensity monitored by the first sensor based on the amount of variation in the value of the parameter monitored by the second sensor;
a detection unit that detects the processing status of plasma processing based on the change in emission intensity corrected by the correction unit;
A plasma processing apparatus having
(付記2)
 前記補正部は、前記第2のセンサによりモニタされるパラメータの値が変動する前後それぞれでの前記第1のセンサによりモニタした発光強度の平均を算出して前後の発光強度の平均の差を求め、求めた差で第1のセンサによりモニタした発光強度を補正する
 付記1に記載のプラズマ処理装置。
(Appendix 2)
The correction unit calculates an average of the luminescence intensities monitored by the first sensor before and after the value of the parameter monitored by the second sensor fluctuates, and obtains a difference between the average luminescence intensities before and after the change. , correcting the emission intensity monitored by the first sensor with the obtained difference.
(付記3)
 前記第2のセンサによりモニタされるパラメータの値の変動量に応じた発光強度の補正量を記憶する記憶部をさらに有し、
 前記補正部は、前記記憶部から前記第2のセンサによりモニタしたパラメータの値の変動量に対応する補正量を求め、求めた補正量で第1のセンサによりモニタした発光強度を補正する
 付記1に記載のプラズマ処理装置。
(Appendix 3)
further comprising a storage unit that stores a correction amount of the emission intensity according to the amount of variation in the value of the parameter monitored by the second sensor;
The correction unit obtains from the storage unit a correction amount corresponding to the amount of variation in the value of the parameter monitored by the second sensor, and corrects the emission intensity monitored by the first sensor with the obtained correction amount. 3. The plasma processing apparatus according to .
(付記4)
 バリアブルコンデンサが設けられ、前記チャンバに高周波信号を供給する信号線に設けられた整合器をさらに有し、
 前記第2のセンサは、前記バリアブルコンデンサの静電容量をモニタする
 付記1~3の何れか1つに記載のプラズマ処理装置。
(Appendix 4)
further comprising a matching box provided in a signal line that is provided with a variable capacitor and supplies a high-frequency signal to the chamber;
4. The plasma processing apparatus according to any one of Additions 1 to 3, wherein the second sensor monitors the capacitance of the variable capacitor.
(付記5)
 前記第2のセンサは、前記チャンバに供給される高周波信号の周波数をモニタする
 付記1~3の何れか1つに記載のプラズマ処理装置。
(Appendix 5)
4. The plasma processing apparatus according to any one of appendices 1 to 3, wherein the second sensor monitors the frequency of the high frequency signal supplied to the chamber.
(付記6)
 前記第2のセンサは、前記チャンバに印加される直流電圧をモニタする
 付記1~3の何れか1つに記載のプラズマ処理装置。
(Appendix 6)
4. The plasma processing apparatus according to any one of Additions 1 to 3, wherein the second sensor monitors a DC voltage applied to the chamber.
(付記7)
 前記第2のセンサは、前記チャンバ内の圧力をモニタする
 付記1~3の何れか1つに記載のプラズマ処理装置。
(Appendix 7)
4. The plasma processing apparatus according to any one of Appendices 1 to 3, wherein the second sensor monitors the pressure in the chamber.
(付記8)
 前記チャンバ内の圧力を調整する圧力調整弁が設けられ、前記チャンバ内を排気する排気部をさらに有し、
 前記第2のセンサは、前記圧力調整弁の位置をモニタする
 付記1~3の何れか1つに記載のプラズマ処理装置。
(Appendix 8)
a pressure regulating valve for regulating the pressure in the chamber, and further comprising an exhaust section for exhausting the interior of the chamber;
4. The plasma processing apparatus according to any one of appendices 1 to 3, wherein the second sensor monitors the position of the pressure regulating valve.
(付記9)
 プラズマ処理が実施されるチャンバ内のプラズマの発光強度を第1のセンサによりモニタする工程と、
 前記チャンバ内のコンディションを変化させるパラメータの値を第2のセンサによりモニタする工程と、
 第1のセンサによりモニタされる発光強度を前記第2のセンサによりモニタされるパラメータの値の変動量に基づいて補正する工程と、
 補正された発光強度の変化に基づいて、プラズマ処理の処理状況を検出する工程と、を有する、
 処理状況検出方法。
(Appendix 9)
monitoring, with a first sensor, the emission intensity of plasma in a chamber in which plasma processing is performed;
monitoring with a second sensor the value of a parameter that changes conditions within the chamber;
correcting the luminescence intensity monitored by the first sensor based on the amount of variation in the value of the parameter monitored by the second sensor;
detecting the processing status of plasma processing based on the corrected change in emission intensity;
Processing status detection method.
1 プラズマ処理装置
10 プラズマ処理チャンバ
11 基板支持部
30 電源
31 RF電源
31a 第1のRF生成部
31b 第2のRF生成部
32 DC電源
32a 第1のDC生成部
32b 第2のDC生成部
33a、33b 導電部
34a、34b インピーダンス整合回路
35 センサ
36 センサ
40 排気システム
100 制御部
101 外部インターフェース
102 プロセスコントローラ
102a プラズマ制御部
102b 検出部
102c 補正部
103 ユーザインターフェース
104 記憶部
W 基板
1 plasma processing apparatus 10 plasma processing chamber 11 substrate support section 30 power supply 31 RF power supply 31a first RF generation section 31b second RF generation section 32 DC power supply 32a first DC generation section 32b second DC generation section 33a, 33b Conductive parts 34a, 34b Impedance matching circuit 35 Sensor 36 Sensor 40 Exhaust system 100 Control part 101 External interface 102 Process controller 102a Plasma control part 102b Detection part 102c Correction part 103 User interface 104 Storage part W Substrate

Claims (9)

  1.  内部でプラズマ処理が実施されるチャンバと、
     前記プラズマの発光強度をモニタする第1のセンサと、
     前記チャンバのコンディションを変化させるパラメータの値をモニタする第2のセンサと、
     前記第1のセンサによりモニタされる発光強度を前記第2のセンサによりモニタされるパラメータの値の変動量に基づいて補正する補正部と、
     前記補正部により補正された発光強度の変化に基づいて、プラズマ処理の処理状況を検出する検出部と、
     を有するプラズマ処理装置。
    a chamber in which plasma processing is performed;
    a first sensor that monitors the emission intensity of the plasma;
    a second sensor that monitors the value of a parameter that changes the condition of the chamber;
    a correction unit that corrects the emission intensity monitored by the first sensor based on the amount of variation in the value of the parameter monitored by the second sensor;
    a detection unit that detects the processing status of plasma processing based on the change in emission intensity corrected by the correction unit;
    A plasma processing apparatus having
  2.  前記補正部は、前記第2のセンサによりモニタされるパラメータの値が変動する前後それぞれでの前記第1のセンサによりモニタした発光強度の平均を算出して前後の発光強度の平均の差を求め、求めた差で第1のセンサによりモニタした発光強度を補正する
     請求項1に記載のプラズマ処理装置。
    The correction unit calculates an average of the luminescence intensities monitored by the first sensor before and after the value of the parameter monitored by the second sensor fluctuates, and obtains a difference between the average luminescence intensities before and after the change. , correcting the emission intensity monitored by the first sensor with the obtained difference.
  3.  前記第2のセンサによりモニタされるパラメータの値の変動量に応じた発光強度の補正量を記憶する記憶部をさらに有し、
     前記補正部は、前記記憶部から前記第2のセンサによりモニタしたパラメータの値の変動量に対応する補正量を求め、求めた補正量で第1のセンサによりモニタした発光強度を補正する
     請求項1に記載のプラズマ処理装置。
    further comprising a storage unit that stores a correction amount of the emission intensity according to the amount of variation in the value of the parameter monitored by the second sensor;
    The correction unit obtains from the storage unit a correction amount corresponding to the amount of variation in the value of the parameter monitored by the second sensor, and corrects the emission intensity monitored by the first sensor with the obtained correction amount. 2. The plasma processing apparatus according to 1.
  4.  バリアブルコンデンサが設けられ、前記チャンバに高周波信号を供給する信号線に設けられた整合器をさらに有し、
     前記第2のセンサは、前記バリアブルコンデンサの静電容量をモニタする
     請求項1に記載のプラズマ処理装置。
    further comprising a matching box provided in a signal line that is provided with a variable capacitor and supplies a high-frequency signal to the chamber;
    2. The plasma processing apparatus according to claim 1, wherein said second sensor monitors the capacitance of said variable capacitor.
  5.  前記第2のセンサは、前記チャンバに供給される高周波信号の周波数をモニタする
     請求項1に記載のプラズマ処理装置。
    2. The plasma processing apparatus according to claim 1, wherein said second sensor monitors the frequency of the high frequency signal supplied to said chamber.
  6.  前記第2のセンサは、前記チャンバに印加される直流電圧をモニタする
     請求項1に記載のプラズマ処理装置。
    2. The plasma processing apparatus according to claim 1, wherein said second sensor monitors a DC voltage applied to said chamber.
  7.  前記第2のセンサは、前記チャンバ内の圧力をモニタする
     請求項1に記載のプラズマ処理装置。
    2. The plasma processing apparatus of claim 1, wherein the second sensor monitors pressure within the chamber.
  8.  前記チャンバ内の圧力を調整する圧力調整弁が設けられ、前記チャンバ内を排気する排気部をさらに有し、
     前記第2のセンサは、前記圧力調整弁の位置をモニタする
     請求項1に記載のプラズマ処理装置。
    a pressure regulating valve for regulating the pressure in the chamber, and further comprising an exhaust section for exhausting the interior of the chamber;
    2. The plasma processing apparatus according to claim 1, wherein said second sensor monitors the position of said pressure regulating valve.
  9.  プラズマ処理が実施されるチャンバ内のプラズマの発光強度を第1のセンサによりモニタする工程と、
     前記チャンバ内のコンディションを変化させるパラメータの値を第2のセンサによりモニタする工程と、
     第1のセンサによりモニタされる発光強度を前記第2のセンサによりモニタされるパラメータの値の変動量に基づいて補正する工程と、
     補正された発光強度の変化に基づいて、プラズマ処理の処理状況を検出する工程と、を有する、
     処理状況検出方法。
    monitoring, with a first sensor, the emission intensity of plasma in a chamber in which plasma processing is performed;
    monitoring with a second sensor the value of a parameter that changes conditions within the chamber;
    correcting the luminescence intensity monitored by the first sensor based on the amount of variation in the value of the parameter monitored by the second sensor;
    detecting the processing status of plasma processing based on the corrected change in emission intensity;
    Processing status detection method.
PCT/JP2022/029270 2021-08-06 2022-07-29 Plasma processing apparatus and processing status detection method WO2023013544A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021129533A JP2023023737A (en) 2021-08-06 2021-08-06 Plasma processing apparatus and processing status detection method
JP2021-129533 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023013544A1 true WO2023013544A1 (en) 2023-02-09

Family

ID=85154733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029270 WO2023013544A1 (en) 2021-08-06 2022-07-29 Plasma processing apparatus and processing status detection method

Country Status (3)

Country Link
JP (1) JP2023023737A (en)
TW (1) TW202320590A (en)
WO (1) WO2023013544A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024232280A1 (en) * 2023-05-09 2024-11-14 東京エレクトロン株式会社 Variable capacitor, impedance matching device, and plasma processing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139926A (en) * 1988-11-21 1990-05-29 Mitsubishi Electric Corp Automatic end point detecting device
JPH02210825A (en) * 1989-02-10 1990-08-22 Hitachi Ltd Plasma etching method and equipment
JPH11214363A (en) * 1998-01-23 1999-08-06 Hitachi Ltd Semiconductor manufacturing method and apparatus, and semiconductor element
JP2006294658A (en) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd Plasma treating apparatus
JP2013171847A (en) * 2012-02-17 2013-09-02 Tokyo Electron Ltd Plasma processing device and plasma monitoring method
JP2018186252A (en) * 2017-04-27 2018-11-22 大陽日酸株式会社 Epitaxial growth apparatus and epitaxial growth method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139926A (en) * 1988-11-21 1990-05-29 Mitsubishi Electric Corp Automatic end point detecting device
JPH02210825A (en) * 1989-02-10 1990-08-22 Hitachi Ltd Plasma etching method and equipment
JPH11214363A (en) * 1998-01-23 1999-08-06 Hitachi Ltd Semiconductor manufacturing method and apparatus, and semiconductor element
JP2006294658A (en) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd Plasma treating apparatus
JP2013171847A (en) * 2012-02-17 2013-09-02 Tokyo Electron Ltd Plasma processing device and plasma monitoring method
JP2018186252A (en) * 2017-04-27 2018-11-22 大陽日酸株式会社 Epitaxial growth apparatus and epitaxial growth method

Also Published As

Publication number Publication date
JP2023023737A (en) 2023-02-16
TW202320590A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
US7794615B2 (en) Plasma processing method and apparatus, and autorunning program for variable matching unit
KR102033120B1 (en) Plasma-treatment method
KR102279088B1 (en) Plasma processing apparatus
JP2020092036A (en) Control method and plasma processing apparatus
JP4838525B2 (en) Plasma processing method, plasma processing apparatus, and program for determining impedance preset value in variable matching unit
US20240063002A1 (en) Plasma processing apparatus and method for detecting end point
KR20090104783A (en) Plasma processing apparatus and plasma processing method and computer readable storage medium
KR20210117348A (en) Detection and Mitigation of ANOMALOUS PLASMA EVENTs in Semiconductor Processing
WO2023013544A1 (en) Plasma processing apparatus and processing status detection method
TW202418887A (en) Plasma processing apparatus, plasma processing method, pressure valve control device, pressure valve control method, and pressure regulation system
JP7511501B2 (en) Plasma processing apparatus and monitoring device
KR100549901B1 (en) Control method of plasma processing apparatus
WO2023127655A1 (en) Plasma treatment device, power supply system, control method, program, and storage medium
JP7638168B2 (en) Plasma processing apparatus and plasma processing method
US20240212979A1 (en) Method for determining amount of wear of edge ring, plasma processing apparatus, and substrate processing system
JP7413081B2 (en) Substrate processing system
JP2022173042A (en) Plasma processing apparatus and endpoint detection method
CN112447481B (en) Plasma processing apparatus and control method
US20030183337A1 (en) Apparatus and method for use of optical diagnostic system with a plasma processing system
WO2024171734A1 (en) Anomaly detection method and plasma processing device
CN119585851A (en) Control program, information processing program, control method, information processing method, plasma processing apparatus, and information processing apparatus
TW202420387A (en) Plasma processing device and end point detection method
WO2025009468A1 (en) Plasma treatment device, control method, and control program
WO2023074816A1 (en) Plasma treatment device, power supply system, control method, program, and storage medium
JP2023178190A (en) Plasma processing device, plasma processing method, pressure valve control device, pressure valve control method, and pressure adjustment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22852963

Country of ref document: EP

Kind code of ref document: A1