WO2023012893A1 - 半導体素子を用いたメモリ装置 - Google Patents
半導体素子を用いたメモリ装置 Download PDFInfo
- Publication number
- WO2023012893A1 WO2023012893A1 PCT/JP2021/028754 JP2021028754W WO2023012893A1 WO 2023012893 A1 WO2023012893 A1 WO 2023012893A1 JP 2021028754 W JP2021028754 W JP 2021028754W WO 2023012893 A1 WO2023012893 A1 WO 2023012893A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductor layer
- layer
- gate
- gate conductor
- wiring conductor
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 45
- 239000004020 conductor Substances 0.000 claims abstract description 194
- 239000000758 substrate Substances 0.000 claims abstract description 61
- 239000000969 carrier Substances 0.000 claims description 34
- 239000012535 impurity Substances 0.000 claims description 27
- 230000006870 function Effects 0.000 claims description 26
- 239000011159 matrix material Substances 0.000 claims description 8
- 230000000694 effects Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 14
- 238000009825 accumulation Methods 0.000 description 10
- 238000009413 insulation Methods 0.000 description 10
- 230000006399 behavior Effects 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000004904 shortening Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 108091006149 Electron carriers Proteins 0.000 description 1
- 229910004166 TaN Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/20—DRAM devices comprising floating-body transistors, e.g. floating-body cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/409—Read-write [R-W] circuits
- G11C11/4096—Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/10—Programming or data input circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/10—Programming or data input circuits
- G11C16/14—Circuits for erasing electrically, e.g. erase voltage switching circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/06—Arrangements for interconnecting storage elements electrically, e.g. by wiring
- G11C5/063—Voltage and signal distribution in integrated semi-conductor memory access lines, e.g. word-line, bit-line, cross-over resistance, propagation delay
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/711—Insulated-gate field-effect transistors [IGFET] having floating bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/402—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration individual to each memory cell, i.e. internal refresh
- G11C11/4023—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration individual to each memory cell, i.e. internal refresh using field effect transistors
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/408—Address circuits
- G11C11/4085—Word line control circuits, e.g. word line drivers, - boosters, - pull-up, - pull-down, - precharge
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/409—Read-write [R-W] circuits
- G11C11/4094—Bit-line management or control circuits
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/03—Making the capacitor or connections thereto
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/05—Making the transistor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D88/00—Three-dimensional [3D] integrated devices
Definitions
- the present invention relates to a memory device using semiconductor elements.
- the channel In a normal planar MOS transistor, the channel extends horizontally along the upper surface of the semiconductor substrate.
- the SGT channel extends in a direction perpendicular to the upper surface of the semiconductor substrate (see Patent Document 1 and Non-Patent Document 1, for example). For this reason, SGTs enable higher density semiconductor devices compared to planar MOS transistors.
- a DRAM Dynamic Random Access Memory
- PCM Phase Change Memory
- Non-Patent Document 6 RRAM (Resistive Random Access Memory, see, for example, Non-Patent Document 4), and MRAM (Magneto-resistive Random Access Memory, see, for example, Non-Patent Document 5) that changes the resistance by changing the direction of the magnetic spin with an electric current ) can be highly integrated.
- DRAM memory cell see Non-Patent Document 6
- a DRAM without a capacitor has a problem that a sufficient voltage margin cannot be secured because it is greatly affected by the coupling of the gate electrode from the floating body word line.
- the memory device includes: a semiconductor substrate extending horizontally or standing vertically; a first gate insulating layer surrounding part or all of a side surface on one end side of the semiconductor substrate; a second gate insulating layer close to or connected to the first gate insulating layer and surrounding part or all of a side surface on the other end side of the semiconductor substrate; a first gate conductor layer covering the first gate insulating layer; a second gate conductor layer having a work function different from that of the first gate conductor layer covering the second gate insulating layer; a first impurity layer outside one end of the first gate conductor layer and a second impurity layer outside one end of the second gate conductor layer in the direction in which the semiconductor substrate extends; a first wiring conductor layer connected to the first impurity layer; a second wiring conductor layer connected to the second impurity layer; a third wiring conductor layer connected to the first gate conductor layer; a fourth wiring conductor layer connected to the second gate conductor layer;
- the first impurity layer is formed by controlling the voltage applied to the first wiring conductor layer, the second wiring conductor layer, the third wiring conductor layer, and the fourth wiring conductor layer. and extracting either the electron group or the hole group, which are majority carriers remaining in the semiconductor matrix, from one or both of the second impurity layers to perform a memory erasing operation. (first invention).
- a second invention is based on the first invention, wherein the first wiring conductor layer is a source line, the second wiring conductor layer is a bit line, and the third wiring conductor layer is a plate line.
- the fourth wiring conductor layer is a word line; performing the memory erasing operation and the memory writing operation by voltages applied to the source line, the bit line, the plate line, and the word line;
- Majority carriers in the first impurity layer are electrons
- Majority carriers in the semiconductor substrate are holes
- a work function of the first gate conductor layer is larger than that of the second gate conductor layer.
- the first wiring conductor layer is a source line
- the second wiring conductor layer is a bit line
- the third wiring conductor layer is a first driving line.
- a control line wherein the fourth wiring conductor layer is a word line; performing the memory erase operation and the memory write operation by voltages applied to the source line, the bit line, the first drive control line, and the word line;
- Majority carriers in the first impurity layer are holes, majority carriers in the semiconductor substrate are electrons, and a work function of the first gate conductor layer is smaller than a work function of the second gate conductor layer.
- a fourth invention is characterized in that, in the above first invention, the first gate conductor layer and the second gate conductor layer are formed overlapping each other and have different work functions. invention).
- FIG. 4 is a diagram showing a cross-sectional structure of one-side electrode and both-side electrode of the dynamic flash memory according to the first embodiment;
- FIG. 4 is a diagram for explaining the write operation of the dynamic flash memory, the accumulation of carriers immediately after the operation, and the energy band diagram in the case of the one-sided electrode according to the first embodiment;
- FIG. 4 is a diagram for explaining the accumulation and behavior of hole carriers immediately after the write operation of the dynamic flash memory in the case of the one-side electrode according to the first embodiment, and the erase operation;
- FIG. 4 is a diagram for explaining the write operation of the dynamic flash memory, the accumulation of hole carriers immediately after the operation, and the energy band diagram in the case of electrodes on both sides according to the first embodiment;
- FIG. 4 is a diagram showing a cross-sectional structure of one-side electrode and both-side electrode of the dynamic flash memory according to the first embodiment;
- FIG. 4 is a diagram for explaining the write operation of the dynamic flash memory, the accumulation of carriers immediately after the operation, and the energy band
- FIG. 4 is a diagram for explaining a write operation, accumulation of carriers immediately after the operation, and an energy band diagram of a dynamic flash memory when a gate electrode with a high work function is used on only one side of the electrodes on both sides according to the first embodiment;
- FIG. 4 is a diagram for explaining a write operation of a dynamic flash memory cell having a three-dimensional structure according to the first embodiment, and an accumulation state of carriers immediately after the operation;
- FIG. 4 is a diagram for explaining accumulation of electron carriers immediately after a write operation of the dynamic flash memory in the case of a single-sided electrode according to the first embodiment, and an energy band diagram; To explain the write operation of the dynamic flash memory having a structure in which the gates connected to the word line WL and the plate line PL are overlapped in the dynamic flash memory structure using the one-side electrode according to the first embodiment, and the accumulation of carriers immediately after the operation. is a diagram.
- FIG. 2 shows the writing mechanism and carrier behavior of the dynamic flash memory
- FIG. 3 shows the data erasing mechanism
- FIG. 4 shows the writing mechanism and carrier behavior of the dynamic flash memory with both electrodes
- FIG. 8 The writing mechanism and carrier behavior of dynamic flash memory when the work function is different only on one side of the electrodes on both sides, the cell structure of three-dimensional dynamic flash memory and the accumulation of carriers during writing using FIG. 8, the cell structure of the dynamic flash memory in which the gate conductor layers overlap and the carrier accumulation state during writing will be described with reference to FIG.
- FIG. 1(a) shows a cross-sectional structure of a planar-type dynamic flash memory according to the first embodiment of the present invention.
- An n + layer 3a A semiconductor region containing a high concentration of donor impurities is hereinafter referred to as an “n + layer”) (which is an example of the “first impurity layer” in the scope of claims).
- n + layer 3a A semiconductor region containing a high concentration of donor impurities is hereinafter referred to as an “n + layer” (which is an example of the “first impurity layer” in the scope of claims).
- the n + layer 3b which is an example of the "second impurity layer” in the claims).
- a gate insulating layer 4a (which is an example of a "first gate insulating layer” in the scope of claims) above a portion of the semiconductor substrate 1 which will become a channel region in the future. and a gate insulating layer 4b (which is an example of the "second gate insulating layer” in the claims).
- the gate insulating layers 4a and 4b are in contact with or close to the n + layers 3a and 3b, respectively.
- On the upper side of this gate insulating layer 4a there are respectively a gate conductor layer 16a (an example of the "first gate conductor layer” in the claims) and a gate conductor layer 5b (the "second gate conductor layer” in the claims).
- n + layer 3a is connected to a source line SL (an example of the “source line” in the claims), which is a wiring conductor.
- n + layer 3b is connected to a bit line BL (an example of a "bit line” in the claims) which is a wiring conductor.
- the gate conductor layer 16a is connected to a plate line PL (an example of the "plate line” in the claims), which is a wiring conductor.
- the gate conductor layer 5b is connected to a word line WL (an example of "word line” in the claims) which is a wiring conductor.
- a plurality of the dynamic flash memory cells described above are arranged two-dimensionally on the substrate 1 .
- the gate conductor layer 16a and the gate conductor layer 5b, and the insulating layer 4a and the insulating layer 4b are shown as one in FIG. 1(a), they may be divided into a plurality of layers.
- the gate conductor layer 16a and the gate insulating layer 4a are each divided into two, each of the divided gate conductor layers 16a is connected to the plate line as a conductor electrode of the plate line, and they are operated synchronously or asynchronously. good too.
- gate insulating layers 4a and 4b and gate conductor layers 16a and 5b are provided on the upper side of the substrate 1, and gate insulating layers 4e and 4d and gate conductor layers 16c and 5d are provided on the lower side of the substrate 1.
- 1 shows a different embodiment. As shown in FIG. 1(b), a gate conductor layer 16a is formed on the gate insulation layer 4a, and a gate conductor layer 16a is formed under the gate insulation layer 4e (which is an example of the "first gate insulation layer” in the claims). A conductor layer 16c (which is an example of the "first gate conductor layer” in the claims) is provided.
- PL1 and PL2 which are examples of "plate lines” in the claims
- PL1 and PL2 which are examples of "plate lines” in the claims
- a gate conductor layer 5b is provided on the gate insulation layer 4b
- a gate conductor layer 5d (claimed ) are provided as conductor electrodes of word lines, and connected to WL1 and WL2 (which are examples of the "word line” in the claims) for synchronization. Or you may operate asynchronously. This also allows dynamic flash memory operation.
- the work functions of the gate conductor layer 16a and the gate conductor layer 16c are both the gate conductor layer 5b and the gate conductor layer 5b.
- 5d which is an example of the "second gate conductor layer” in the scope of claims
- either the gate conductor layer 16a or the gate conductor layer 16c is the gate conductor layer 5b or the gate conductor layer 5d. The effect is the same even if the work function is different from that of the conductor layer 5d.
- the substrate 1 is a p-type or i-type semiconductor. may exist. Furthermore, when the n + layers 3a and 3b are formed of p + layers in which holes are majority carriers (hereinafter, a semiconductor region containing a high concentration of acceptor impurities is referred to as a “p + layer”), the substrate is n-type or If an i-type semiconductor is used, the Dynac flash memory operates by using electrons as carriers for writing.
- the gate conductor layer 5b, the gate conductor layer 5d (an example of the "second gate conductor layer” in the claims), the gate conductor layer 16a, the gate conductor layer 16c (the “first gate conductor layer” in the claims).
- the gate material shown in “gate conductor layer”) may be formed of semiconductors with varying impurity concentrations.
- metals such as W, Pd, Ru, Al, TiN, TaN, WN, metal nitrides, or alloys thereof (including silicides), such as laminated structures such as TiN/W/TaN. good.
- the gate conductor layer 5b (which is an example of the "second gate conductor layer” in the claims) and the gate conductor layer 16a (which is an example of the "first gate conductor layer” in the claims) are It may be a shape that overlaps each other.
- n + poly poly Si containing a high concentration of donor impurities
- p + poly poly Si containing a high concentration of acceptor impurities
- 0 V is input to the n + layer 3a connected to the source line SL
- 3 V is input to the n + layer 3b connected to the bit line BL
- 3 V is input to the gate conductor layer 16a connected to the plate line PL, for example.
- 3V, and 5V is input to the gate conductor layer 5b connected to the word line WL.
- a depletion layer region 8 is formed in the substrate 1 immediately below the gate insulating layers 4a, 4b, 4c.
- the inversion layer 12a is formed directly under the gate insulation layer 4a under the gate conductor layer 16a.
- the potential immediately below is higher than that of the gate conductor layer 5b. Therefore, the inversion layer disappears from the first MOSFET to the second MOSFET, and the pinch-off point 13 exists directly under the gate insulating layer 4a under the gate conductor layer 16a connected to the plate line PL. do. Therefore, the first MOSFET with gate conductor layer 16a operates in the saturation region.
- the interface potential of the gate insulating layer 4b of the substrate 1 immediately below the gate insulating layer 4b is always lower than that of the gate electrode 5b, so pinch-off occurs.
- An inversion layer 12b is formed on the entire surface without any dots.
- the inversion layer 12b formed entirely under the gate conductor layer 5b connected to the word line WL acts as a substantial drain of the first MOSFET having the gate conductor layer 16a.
- the electric field is maximum between the boundary regions of 12b and impact ionization phenomena occur in this region. Due to this impact ionization phenomenon, electrons accelerated from the n + layer 3a connected to the source line SL to the n + layer 3b connected to the bit line BL collide with the Si lattice, and their kinetic energy causes the electrons and Hole pairs are generated. Some of the generated electrons flow through the gate conductor layer 16a and the gate conductor layer 5b, but most of them flow through the n + layer 3b connected to the bit line BL.
- a gate-induced drain leakage (GIDL) current may be passed to generate hole groups (for example, E. Yoshida, T, Tanaka, “A Capacitorless 1T-DARM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory”, IEEE Trans, on Electron Devices vol.53, pp.692-697 (2006)).
- hole groups for example, E. Yoshida, T, Tanaka, “A Capacitorless 1T-DARM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory”, IEEE Trans, on Electron Devices vol.53, pp.692-697 (2006).
- FIG. 2(b) shows the depletion layer region 8 and hole groups 11 when all the biases are 0 V immediately after writing.
- the generated hole groups 11 are the majority carriers of the substrate 1 and move according to the concentration gradient, but are accumulated in the substrate 1 for a short period of time and are substantially charged to a positive bias in the non-equilibrium state.
- holes in the depletion layer move toward the source line SL due to the electric field and recombine with electrons.
- the threshold voltages of the first MOSFET and the second MOSFET are lowered due to the positive substrate bias effect due to the holes temporarily stored in the substrate 1 . This lowers the threshold voltage of the second MOSFET connected to the word line WL, as shown in FIG. 2(c).
- This write state is assigned to logical storage data "1".
- bit line BL bit line
- source line SL word line
- word line WL word line
- plate line PL plate line
- n + poly is used for the gate conductor layer 5b connected to the word line WL. controllability is improved. At the same time, the drain edge for the first MOSFET extending from the inversion layer 12b formed when the word line WL is positive becomes very sharp, which improves the efficiency of impact ionization and writes "1" to the dynamic flash memory. can be done efficiently.
- p + poly which has a larger work function than n + poly, for the gate conductor layer 16a connected to the plate line PL, excess holes generated by impact ionization are in the energy band of FIG. As shown in , it will be accumulated near the surface of the substrate 1 adjacent to the gate insulating layer 4a.
- the controllability of accumulated holes from the conductor layer 16a is improved compared to when n + poly is used. Furthermore, since the depletion layer region 8 is formed only in the vicinity of the second MOSEFT, the effective volume in which holes can be stored can be increased compared to when n + poly is used for the gate conductor layer 16a. For these reasons, the overall substrate bias effect on the substrate of this memory element is increased, the time for holding the memory is lengthened, and the voltage margin for "1" write is widened.
- the combination of p + poly (work function 5.15 eV) and n + poly (work function 4.05 eV) is shown as an example of the combination of the gate conductor layer 16a and the gate conductor layer 5b.
- FIG. 3(a) shows the state immediately after the hole groups 11 generated by impact ionization in the previous cycle are stored in the substrate 1 and all the biases are 0V before the erase operation.
- the voltage of the source line SL is set to the negative voltage V ERA during the erase operation.
- V ERA is, for example, -3V.
- the hole groups 11 stored in the substrate region 1 generated by impact ionization in the previous cycle move to the n + layer 3a connected to the source line, and the potential of the substrate 1 changes with time to and the threshold voltage of the second MOSFET becomes higher than when "1" was written, returning to its initial state.
- the second MOSFET having the gate conductor layer 5b connected to this word line WL returns to its original threshold value.
- the erased state of this substrate area 1 is logical storage data "0".
- bit line BL bit line
- source line SL word line
- word line WL word line
- plate line PL voltage conditions applied to the bit line BL, source line SL, word line WL, and plate line PL are examples for performing an erase operation, and other operating conditions that allow an erase operation may be used.
- p + poly is used for the gate conductor layer 16a connected to the plate line PL, the state of the interface between the substrate 1 and the n + layer 3a is uniform, and the depletion layer is almost When a negative potential is applied to the n + layer 3a, recombination of holes and electrons can be promoted very efficiently, and the erasing time can be shortened.
- a dynamic flash memory in which the gate conductor layers are above and below the substrate and each gate conductor layer is divided into a plurality of layers, as in the embodiment shown in FIG. 1(b) of the present invention using FIG. Behavior, accumulation, and energy band diagrams of hole carriers in the written state of are explained.
- a gate conductor layer 16a and a gate conductor layer 16c are formed on the gate insulation layer 4a and the gate insulation layer 4c using p + poly, respectively, and the gate conductor layer 5b and the gate conductor layer 5d is formed on the gate insulating layer 4b and the insulating layer 4d using n + poly respectively.
- depletion layer regions 8 are formed in the substrate 1 immediately below the gate insulating layers 4a, 4b, 4c, 4d, 4e, and 4f.
- the first MOSFET having the gate conductor layers 16a and 16c operates in the saturation region, and the boundary region between the pinch-off point 13 and the inversion layer 12b or 12d in the region 8 serving as the depletion layer.
- the electric field is maximized and impact ionization occurs in this region. Due to this impact ionization phenomenon, electrons accelerated from the n + layer 3a connected to the source line SL to the n + layer 3b connected to the bit line BL collide with the Si lattice, and their kinetic energy causes the electrons and Hole pairs are generated.
- FIG. 4(a) shows the generated hole groups 11 accumulate in the substrate region 1 for a short period of time, charging it substantially to a positive bias in the non-equilibrium state.
- the threshold voltage of the second MOSFET connected to the word line WL becomes low and "1" can be written.
- FIG. 4(b) shows the state of the accumulated holes 11 together with the depletion layer 8 at the instant when all the biases should be set to 0 immediately after writing "1" to the dynamic flash memory.
- the energy band at this time as shown in FIG.
- the generated holes are accumulated near the interface between the substrate 1, the gate insulating layer 4a and the gate insulating layer 4b, and the gate conductor layers 16a and 16c
- the controllability of accumulated holes from is improved compared to when n + poly is used.
- the depletion layer region 8 is formed only in the vicinity of the second MOSEFT, the effective volume in which holes can be accumulated is increased compared to when n + poly is used for the gate conductor layers 16a and 16c. can.
- the effect of the overall substrate bias on the substrate as a memory element is enhanced, the time for holding the memory is lengthened, and the voltage margin for writing "1" is widened.
- the effect of shortening the erasing time can be obtained for the reason explained with reference to FIG.
- the same voltage is applied to the plate lines PL1 and PL2, and the same voltage is applied to the word lines WL1 and WL2.
- the effect obtained by the present invention is the same even when the voltages are applied in synchronization with each other.
- the same material is used for the gate conductor layers 16a and 16c connected to the plate lines PL1 and PL2. the effect is the same.
- n + poly is used for the gate conductor layer 5a
- p + poly is used for the gate conductor layer 16c, which are connected to the plate lines PL1 and PL2, respectively.
- the write conditions are the same as the bias conditions explained in FIG. FIG. 5(b) shows the state of holes immediately after writing "1" to the dynamic flash memory and the energy band at that time. In this case as well, holes are accumulated directly under the gate insulating layer 4c in contact with the gate conductor layer 16c immediately after writing. It has the effect of improving the efficiency and shortening the erasing operation time.
- the present invention is effective not only in the structure in which elements are formed on one plane of the substrate as described so far, but also in a dynamic flash memory based on SGT having a three-dimensional structure as shown in FIG. be.
- the gate conductor layer 16a is formed around the gate insulation layer 4a using p + poly
- the gate conductor layer 5b is formed around the gate insulation layer 4b using n + poly.
- the gate conductor layer 16 and the gate conductor layer 5b have different work functions.
- FIG. 6(b) shows a structure with a part of the film removed in order to make the three-dimensional structure easier to understand.
- 0 V is input to the n + layer 3a connected to the source line SL
- 3 V is input to the n + layer 3b connected to the bit line BL
- the gate conductor layer connected to the plate line PL 3V for example, is input to 16a
- 5V for example, is input to the gate conductor layer 5b connected to the word line WL.
- the first MOSFET with the gate conductor layer 16a operates in the saturation region and the generated hole groups 11 accumulate in the substrate region 1 for a short period of time and are substantially positively biased in the unbalanced state. to charge.
- the threshold voltage of the second MOSFET connected to the word line WL becomes low and "1" can be written.
- FIG. 6(c) shows the state of the accumulated holes 11 in the horizontal section of the gate conductor layer 16a at the instant when all the biases are set to 0 immediately after "1" is written to the dynamic flash memory.
- the welled-up holes are accumulated near the interface between the substrate 1 and the gate insulating film 4a, and the control force for the accumulated holes from the first gate conductor layer 16a is n + poly. become larger over time.
- the depletion layer region 8 is only in the vicinity of the second MOSEFT, the effective volume in which holes can be accumulated can be made larger than when n + poly is used.
- the effect of the overall substrate bias on the substrate of this memory element is increased, the time for holding the memory is lengthened, and the voltage margin for "1" write is widened. Also in the case of erasing, the effect of shortening the erasing time can be obtained for the reason explained in FIG.
- FIG. 7(a) shows a write operation in a dynamic flash memory structure when the majority carriers in the substrate 1 are electrons.
- p + poly is used for the gate conductor layer 16b connected to the word line WL
- n + poly is used for the gate conductor layer 5a connected to the plate line PL.
- the second MOSFET becomes a surface-channel MOSFET with holes as the majority carriers, which improves the controllability of carrier movement. The efficiency of writing 1 to the dynamic flash memory becomes efficient.
- FIG. 2 the explanation was made using the structure in which the gate conductor layer 5b connected to the word line WL and the first gate conductor layer 16a do not overlap, but as shown in FIGS. Even with the structure in which the gate conductor layer 5b and the conductor layer 16a are superimposed on each other, the same effects on the dynamic flash memory according to the present invention are obtained.
- This embodiment has the following features.
- (Feature 1) By using the gate conductor layers having different work functions when writing the dynamic flash memory according to the first embodiment of the present invention, in the case of writing logical data "1", the majority carriers accumulated in the substrate for writing However, since it is stored directly under the gate conductor layer connected to the plate line PL, the amount of storage increases and the information retention time increases. Moreover, since a depletion layer is not formed between the n + layer 3a connected to the source line SL when erasing data, erasing can be performed in a short time. As a result, the operating margin of the memory can be expanded, the power consumption of the memory can be reduced, and the memory can operate at high speed.
- the present invention can be applied to any structure of dynamic flash memory, and the effect of the present invention can be obtained if the work function of even one of the gate conductor layers connected to the plate line PL and the source line SL can be changed. .
- a dynamic flash memory having a structure in which respective gate conductor layers connected to a plate line PL and a source line SL overlap each other also has the same effect by changing the work function of each other.
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Semiconductor Memories (AREA)
- Dram (AREA)
Abstract
絶縁膜2の上に存在する半導体基板1上に、両端にあるソース線SLに繋がるn+層3aと、ビット線BLに繋がるn+層3bと、半導体基板上に形成された第1のゲート絶縁層4aと、プレート線PLに繋がるゲート導体層16aと、半導体基板上に形成されたゲート絶縁層4bと、ワード線WLに繋がる、ゲート導体層16aとは仕事関数の異なる第2のゲート導体層5bがあり、ソース線SL、プレート線PL、ワード線WL、ビット線BLに印加する電圧を制御して、半導体基板1のチャネル領域12の内部でインパクトイオン化現象、またはゲート誘起ドレインリーク電流により発生した正孔群をゲート絶縁膜近傍に保持するデータ保持動作と、そして、この正孔群を、基板1、チャネル領域12内から除去するデータ消去動作を行う。
Description
本発明は、半導体素子を用いたメモリ装置に関する。
近年、LSI(Large Scale Integration) 技術開発において、メモリ素子の高集積化、高性能化、低消費電力化、高機能化が求められている。
通常のプレナー型MOSトランジスタでは、チャネルが半導体基板の上表面に沿う水平方向に延在する。これに対して、SGTのチャネルは、半導体基板の上表面に対して垂直な方向に延在する(例えば、特許文献1、非特許文献1を参照)。このため、SGTはプレナー型MOSトランジスタと比べ、半導体装置の高密度化が可能である。このSGTを選択トランジスタとして用いて、キャパシタを接続したDRAM(Dynamic Random Access Memory、例えば、非特許文献2を参照)、抵抗変化素子を接続したPCM(Phase Change Memory、例えば、非特許文献3を参照)、RRAM(Resistive Random Access Memory、例えば、非特許文献4を参照)、電流により磁気スピンの向きを変化させて抵抗を変化させるMRAM(Magneto-resistive Random Access Memory、例えば、非特許文献5を参照)などの高集積化を行うことができる。また、キャパシタを有しない、1個のMOSトランジスタで構成された、DRAMメモリセル(非特許文献6を参照)などがある。しかし、キャパシタを持たないDRAMは、フローティングボディのワード線からのゲート電極のカップリングに大きく左右され電圧マージンが十分とれない問題点があった。
Hiroshi Takato, Kazumasa Sunouchi, Naoko Okabe, Akihiro Nitayama, Katsuhiko Hieda, Fumio Horiguchi, and Fujio Masuoka: IEEE Transaction on Electron Devices, Vol.38, No.3, pp.573-578 (1991)
H. Chung, H. Kim, H. Kim, K. Kim, S. Kim, K. Dong, J. Kim, Y.C. Oh, Y. Hwang, H. Hong, G. Jin, and C. Chung: "4F2 DRAM Cell with Vertical Pillar Transistor(VPT)," 2011 Proceeding of the European Solid-State Device Research Conference, (2011)
H. S. Philip Wong, S. Raoux, S. Kim, Jiale Liang, J. R. Reifenberg, B. Rajendran, M. Asheghi and K. E. Goodson: "Phase Change Memory," Proceeding of IEEE, Vol.98, No 12, December, pp.2201-2227 (2010)
T. Tsunoda, K .Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama : "Low Power and high Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3V," IEDM (2007)
W. Kang, L. Zhang, J. Klein, Y. Zhang, D. Ravelosona, and W. Zhao: "Reconfigurable Codesign of STT-MRAM Under Process Variations in Deeply Scaled Technology," IEEE Transaction on Electron Devices, pp.1-9 (2015)
M. G. Ertosum, K. Lim, C. Park, J. Oh, P. Kirsch, and K. C. Saraswat : "Novel Capacitorless Single-Transistor Charge-Trap DRAM (1T CT DRAM) Utilizing Electron," IEEE Electron Device Letter, Vol. 31, No.5, pp.405-407 (2010)
メモリ装置においてキャパシタを無くした、1個のトランジス型のDRAM(ゲインセル)では、ワード線とフローティング状態の素子があるボディとの容量結合カップリングが大きく、データ読み出し時や書き込み時にワード線の電位を振幅させると、直接半導体基板のボディへのノイズとして、伝達されてしまう問題点があった。この結果、誤読み出しや記憶データの誤った書き換えの問題を引き起こし、キャパシタを無くした1トランジス型のDRAM(ゲインセル)の実用化が困難となっていた。そして、上記問題を解決すると共に、DRAMメモリセルを高密度化する必要がある。
上記の課題を解決するために、本発明に係るメモリ装置は、
水平方向に伸延する、または垂直方向に立つ半導体基板と、
前記半導体基板の一端側の側面の一部、または全てを囲んだ第1のゲート絶縁層と、
前記第1のゲート絶縁層に近接、もしくは繋がり、且つ前記半導体基板の他端側の側面の一部、または全てを囲んだ第2のゲート絶縁層と、
前記第1のゲート絶縁層を覆った第1のゲート導体層と、
前記第2のゲート絶縁層を覆った第1のゲート導体層とは仕事関数が異なる第2のゲート導体層と、
前記半導体基板が伸延する方向において、前記第1のゲート導体層の一端の外側にある第1の不純物層と、前記第2のゲート導体層の一端の外側にある第2の不純物層と、
前記第1の不純物層に接続した第1の配線導体層と、
前記第2の不純物層に接続した第2の配線導体層と、
前記第1のゲート導体層に接続した第3の配線導体層と、
前記第2のゲート導体層に接続した第4の配線導体層と、を有し、
前記第1の配線導体層と、前記2の配線導体層と、前記3の配線導体層と、前記4の配線導体層と、に印加する電圧を制御して、前記第1の不純物層と前記第2の不純物層との間に流す電流でインパクトイオン化現象、またはゲート誘起ドレインリーク電流により電子群と正孔群を前記半導体母体内に発生させる動作と、発生させた前記電子群と前記正孔群の内、前記半導体母体における少数キャリアである前記電子群と前記正孔群のいずれかを除去する動作と、前記半導体母体における多数キャリアである前記電子群と前記正孔群のいずれかの一部または全てを、前記半導体母体に残存させる動作と、を行ってメモリ書き込み動作を行い、
前記第1の配線導体層と、前記第2の配線導体層と、前記第3の配線導体層と、前記第4の配線導体層とに印加する電圧を制御して、前記第1の不純物層と、前記第2の不純物層の一方もしくは両方から、残存している前記半導体母体における多数キャリアである前記電子群と前記正孔群のいずれかを抜き取り、メモリ消去動作を行う、
ことを特徴とする(第1発明)。
水平方向に伸延する、または垂直方向に立つ半導体基板と、
前記半導体基板の一端側の側面の一部、または全てを囲んだ第1のゲート絶縁層と、
前記第1のゲート絶縁層に近接、もしくは繋がり、且つ前記半導体基板の他端側の側面の一部、または全てを囲んだ第2のゲート絶縁層と、
前記第1のゲート絶縁層を覆った第1のゲート導体層と、
前記第2のゲート絶縁層を覆った第1のゲート導体層とは仕事関数が異なる第2のゲート導体層と、
前記半導体基板が伸延する方向において、前記第1のゲート導体層の一端の外側にある第1の不純物層と、前記第2のゲート導体層の一端の外側にある第2の不純物層と、
前記第1の不純物層に接続した第1の配線導体層と、
前記第2の不純物層に接続した第2の配線導体層と、
前記第1のゲート導体層に接続した第3の配線導体層と、
前記第2のゲート導体層に接続した第4の配線導体層と、を有し、
前記第1の配線導体層と、前記2の配線導体層と、前記3の配線導体層と、前記4の配線導体層と、に印加する電圧を制御して、前記第1の不純物層と前記第2の不純物層との間に流す電流でインパクトイオン化現象、またはゲート誘起ドレインリーク電流により電子群と正孔群を前記半導体母体内に発生させる動作と、発生させた前記電子群と前記正孔群の内、前記半導体母体における少数キャリアである前記電子群と前記正孔群のいずれかを除去する動作と、前記半導体母体における多数キャリアである前記電子群と前記正孔群のいずれかの一部または全てを、前記半導体母体に残存させる動作と、を行ってメモリ書き込み動作を行い、
前記第1の配線導体層と、前記第2の配線導体層と、前記第3の配線導体層と、前記第4の配線導体層とに印加する電圧を制御して、前記第1の不純物層と、前記第2の不純物層の一方もしくは両方から、残存している前記半導体母体における多数キャリアである前記電子群と前記正孔群のいずれかを抜き取り、メモリ消去動作を行う、
ことを特徴とする(第1発明)。
第2発明は、上記の第1発明において、前記第1の配線導体層はソース線であり、前記第2の配線導体層はビット線であり、前記第3の配線導体層はプレート線であり、前記第4の配線導体層はワード線であり、
前記ソース線と、前記ビット線と、前記プレート線と、前記ワード線に印加する電圧により、前記メモリ消去動作と、前記メモリ書き込み動作とを行い、
前記第1の不純物層の多数キャリアは電子であり、前記半導体基板の多数キャリアは正孔であり、前記第1のゲート導体層の仕事関数は前記第2のゲート導体層の仕事関数よりも大きい、
ことを特徴とする(第1発明)。
前記ソース線と、前記ビット線と、前記プレート線と、前記ワード線に印加する電圧により、前記メモリ消去動作と、前記メモリ書き込み動作とを行い、
前記第1の不純物層の多数キャリアは電子であり、前記半導体基板の多数キャリアは正孔であり、前記第1のゲート導体層の仕事関数は前記第2のゲート導体層の仕事関数よりも大きい、
ことを特徴とする(第1発明)。
第3発明は、上記の第1発明において、前記第1の配線導体層はソース線であり、前記第2の配線導体層はビット線であり、前記第3の配線導体層は第1の駆動制御線であり、前記第4の配線導体層はワード線であり、
前記ソース線と、前記ビット線と、前記第1の駆動制御線と、前記ワード線に印加する電圧により、前記メモリ消去動作と、前記メモリ書き込み動作と、を行い、
前記第1の不純物層の多数キャリアは正孔であり、前記半導体基板の多数キャリアは電子であり、前記第1のゲート導体層の仕事関数は前記第2のゲート導体層の仕事関数よりも小さい、
ことを特徴とする(第3発明)。
前記ソース線と、前記ビット線と、前記第1の駆動制御線と、前記ワード線に印加する電圧により、前記メモリ消去動作と、前記メモリ書き込み動作と、を行い、
前記第1の不純物層の多数キャリアは正孔であり、前記半導体基板の多数キャリアは電子であり、前記第1のゲート導体層の仕事関数は前記第2のゲート導体層の仕事関数よりも小さい、
ことを特徴とする(第3発明)。
第4発明は、上記の第1発明において、前記第1のゲート導体層と前記第2のゲート導体層が重なって形成されており、かつこれらの仕事関数が異なることを特徴とする(第4発明)。
以下に、本発明に係る、半導体素子を用いたメモリ装置(ダイナミック フラッシュ メモリと呼ぶ)の構造、駆動方式、蓄積キャリアの挙動について、図面を参照しながら説明する。
(第一実施形態)
図1~図7を用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造と動作メカニズムを説明する。そして図1を用いてゲート電極が片側と両側にある場合のダイナミック フラッシュ メモリのセル構造をそれぞれ説明する。図2を用いて、ダイナミック フラッシュ メモリの書き込みメカニズムとキャリアの挙動、図3を用いてデータ消去メカニズムを、図4を用いて両側電極のダイナミック フラッシュ メモリの書き込みメカニズムとキャリアの挙動、図5を用いて両側電極で片側だけ仕事関数の違う場合のダイナミック フラッシュ メモリの書き込みメカニズムとキャリアの挙動、図6を用いて3次元のダイナミック フラッシュ メモリのセル構造と書き込み時におけるキャリアの蓄積状況、図7を用いてダイナミック フラッシュ メモリの過剰キャリアが電子の場合の書き込み時のキャリアの蓄積状況、図8を用いてゲート導体層が重なる場合のダイナミック フラッシュ メモリのセル構造と書き込み時におけるキャリアの蓄積状況を説明する。
図1~図7を用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造と動作メカニズムを説明する。そして図1を用いてゲート電極が片側と両側にある場合のダイナミック フラッシュ メモリのセル構造をそれぞれ説明する。図2を用いて、ダイナミック フラッシュ メモリの書き込みメカニズムとキャリアの挙動、図3を用いてデータ消去メカニズムを、図4を用いて両側電極のダイナミック フラッシュ メモリの書き込みメカニズムとキャリアの挙動、図5を用いて両側電極で片側だけ仕事関数の違う場合のダイナミック フラッシュ メモリの書き込みメカニズムとキャリアの挙動、図6を用いて3次元のダイナミック フラッシュ メモリのセル構造と書き込み時におけるキャリアの蓄積状況、図7を用いてダイナミック フラッシュ メモリの過剰キャリアが電子の場合の書き込み時のキャリアの蓄積状況、図8を用いてゲート導体層が重なる場合のダイナミック フラッシュ メモリのセル構造と書き込み時におけるキャリアの蓄積状況を説明する。
図1(a)に、本発明の第1実施形態に係る、プレナー型に類するダイナミック フラッシュ メモリの断面構造を示す。アクセプタ不純物を含むp型又はi型(真性型)の導電型を有するシリコン半導体の基板1(特許請求の範囲の「基板」の一例である)の水平方向の一方の側にn+層3a(以下、ドナー不純物を高濃度で含む半導体領域を「n+層」と称する。)(特許請求の範囲の「第1の不純物層」の一例である)がある。n+層3aの反対側にn+層3b(特許請求の範囲の「第2の不純物層」の一例である)がある。半導体基板1の下には絶縁層2があり、半導体基板1の将来チャネル領域となる部分の上部にはゲート絶縁層4a(特許請求の範囲の「第1のゲート絶縁層」の一例である)と、ゲート絶縁層4b(特許請求の範囲の「第2のゲート絶縁層」の一例である)とがある。このゲート絶縁層4aと、ゲート絶縁層4bは、n+層3a、3bに、それぞれ接するか、または近接している。このゲート絶縁層4aの上側には、それぞれゲート導体層16a(特許請求の範囲の「第1のゲート導体層」の一例である)、ゲート導体層5b(特許請求の範囲の「第2のゲート導体層」の一例である)がある。ゲート導体層16aの仕事関数は、ゲート導体層5bのそれと異なる値となっている。そして、ゲート導体層16a、ゲート導体層5bは絶縁層4cにより分離されている。これによりn+層3a、3b、基板1、ゲート絶縁層4a、ゲート絶縁層4b、ゲート導体層16a、ゲート導体層5b、からなるダイナミック フラッシュ メモリセルが形成される。そして、n+層3aは配線導電体であるソース線SL(特許請求の範囲の「ソース線」の一例である)に接続している。n+層3bは配線導電体であるビット線BL(特許請求の範囲の「ビット線」の一例である)に接続している。ゲート導体層16aは配線導電体であるプレート線PL(特許請求の範囲の「プレート線」の一例である)に接続している。ゲート導体層5bは配線導電体であるワード線WL(特許請求の範囲の「ワード線」の一例である)に接続している。本実施形態のメモリ装置では、上述のダイナミック フラッシュ メモリセルが複数、基板1上に2次元状に配置されている。
なお、図1(a)ではゲート導体層16aとゲート導体層5b、絶縁層4aと絶縁層4bがそれぞれひとつとして示しているが、それらを複数に分割してもよい。例えば、ゲート導体層16aとゲート絶縁層4aをそれぞれ2つに分割して、分割したゲート導体層16aのそれぞれをプレート線の導体電極としてプレート線に接続し、それらを同期又は非同期で動作させてもよい。
図1(b)は、基板1の上側に、ゲート絶縁層4a、4b、ゲート導体層16a、5bを設け、基板1の下側にゲート絶縁層4e、4d、ゲート導体層16c、5dを設けた実施形態を示している。図1(b)に示すように、ゲート絶縁層4aの上にゲート導体層16aを、ゲート絶縁層4e(特許請求の範囲の「第1のゲート絶縁層」の一例である)の下にゲート導体層16c(特許請求の範囲の「第1のゲート導体層」の一例である)を設けている。さらに、それぞれをプレート線の導体電極として、PL1、PL2(特許請求の範囲の「プレート線」の一例である)に接続しそれらが同期または非同期で動作させてもよい。同様に、ゲート導体層5bをゲート絶縁層4bの上に設け、ゲート絶縁層4d(特許請求の範囲の「第2のゲート絶縁層」の一例である)の下にゲート導体層5d(特許請求の範囲の「第2のゲート導体層」の一例である)を設け、それぞれをワード線の導体電極として、WL1,WL2(特許請求の範囲の「ワード線」の一例である)に接続し同期または非同期で動作させてもよい。これによっても、ダイナミック フラッシュ メモリ動作がなされる。
また、図1(b)ではゲート導体層16a、ゲート導体層16c(特許請求の範囲の「第1のゲート導体層」の一例である)の仕事関数がどちらもゲート導体層5b、ゲート導体層5d(特許請求の範囲の「第2のゲート導体層」の一例である)よりも大きくしているが、ゲート導体層16a、もしくはゲート導体層16cのうちどちらか一方がゲート導体層5b、ゲート導体層5dのどちらかと仕事関数が異なっても効果は同じである。
また、図1(a)、(b)では基板1がp型又はi型の半導体としたが、基板1(特許請求の範囲の「基板」の一例である)の中に不純物の濃度のプロファイルが存在してもよい。さらにn+層3aと3bを正孔が多数キャリアであるp+層(以下、アクセプタ不純物を高濃度で含む半導体領域を「p+層」と称する。)で形成したときは基板をn型又はi型の半導体とすれば書き込みのキャリアを電子とすることでダイナック フラッシュ メモリの動作がなされる。
また、ゲート導体層5b、ゲート導体層5d(特許請求の範囲の「第2のゲート導体層」の一例である)、ゲート導体層16a、ゲート導体層16c(特許請求の範囲の「第1のゲート導体層」の一例である)で示されたゲート材料は不純物濃度を変えた半導体で形成されてもよい。さらに、例えばW、Pd、Ru、Al、TiN、TaN、WNのような金属、金属の窒化物、もしくはその合金(シリサイドを含む)、例えばTiN/W/TaNのような積層構造であってもよい。
また、ゲート導体層5b(特許請求の範囲の「第2のゲート導体層」の一例である)とゲート導体層16a(特許請求の範囲の「第1のゲート導体層」の一例である)が互いに重なる形状であってもよい。
図2を参照して、図1(a)に示した本発明の第1実施形態に係るダイナミック フラッシュ メモリの書き込み動作時のキャリア挙動、蓄積、エネルギーバンド図を説明する。まずn+層3aとn+層3bの多数キャリアが電子である。たとえばワード線WLに接続されるゲート導体層5bにn+ poly (以下、ドナー不純物を高濃度で含むpoly Siを「n+ poly」と称する。)を使用し、プレート線PLに接続されるゲート導体層16aにp+ polyを(以下、アクセプタ不純物を高濃度で含むpoly Siを「p+ poly」と称する。)使用する。ソース線SLの接続されたn+層3aに例えば0Vを入力し、ビット線BLの接続されたn+層3bに例えば3Vを入力し、プレート線PLの接続されたゲート導体層16aに、例えば、3Vを入力し、ワード線WLの接続されたゲート導体層5bに、例えば、5Vを入力する。その結果、図2(a)に示したように、ゲート絶縁層4a、4b、4cの直下にある基板1には空乏層領域8が形成される。また、プレート線PLに接続されたゲート導体層16aを有する第1のMOSFETにおいて、ゲート導体層16aの下に、反転層12aがゲート絶縁層4aの直下に形成されるが、ゲート絶縁層4bの直下の電位はゲート導体層5bよりも大きくなる。そのために、第1のMOSFETから第2のMOSFETのある部分で反転層は消滅し、プレート線PLの接続されたゲート導体層16aの下にあるゲート絶縁層4aの直下にはピンチオフ点13が存在する。したがってゲート導体層16aを有する第1のMOSFETは飽和領域で動作する。
一方で、ワード線WLの接続されたゲート導体層5bを有する第2のMOSFETにおいて、ゲート絶縁層4b直下の基板1のゲート絶縁層4bの界面電位は必ずゲート電極5bよりも低くなるためにピンチオフ点は存在せずに全面に反転層12bが形成される。このワード線WLの接続されたゲート導体層5bの下部に全面に形成された反転層12bは、ゲート導体層16aを有する第1のMOSFETの実質的なドレインとして働く。この結果、直列接続されたゲート導体層16aを有する第1のMOSFETと、ゲート導体層5bを有する第2のMOSFETとの間の空乏層となっている領域8の中でピンチオフ点13と反転層12bの境界領域の間で電界は最大となり、この領域でインパクトイオン化現象が生じる。このインパクトイオン化現象により、ソース線SLの接続されたn+層3aからビット線BLの接続されたn+層3bに向かって加速された電子がSi格子に衝突し、その運動エネルギーによって、電子・正孔対が生成される。生成された電子の一部は、ゲート導体層16aとゲート導体層5bに流れるが、大半はビット線BLに接続されたn+層3bに流れる。
なお、上記のインパクトイオン化現象を起こさせる代わりに、ゲート誘起ドレインリーク(GIDL)電流を流して正孔群を生成してもよい(例えば、E. Yoshida, T, Tanaka, “A Capacitorless 1T-DARM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory”, IEEE Trans, on Electron Devices vol.53, pp.692-697 (2006)参照)。
図2(b)には書き込み直後、すべてのバイアスが0Vになったときの空乏層領域8と正孔群11を示す。生成された正孔群11は、基板1の多数キャリアであり、その濃度の勾配によって移動するが、短時間的には基板1に蓄積され、非平衡状態では実質的に正バイアスに充電する。また、空乏層内の正孔は電界によってソース線SL側に移動し、電子と再結合する。第1のMOSFETと第2のMOSFETのしきい値電圧は、基板1に一時的に蓄積される正孔により正の基板バイアス効果によって、低くなる。これにより、図2(c)に示すように、ワード線WLの接続された第2のMOSFETのしきい値電圧は、低くなる。この書込み状態を論理記憶データ“1”に割り当てる。
なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件は、書き込み動作を行うための一例であり、書き込み動作ができる他の動作条件であってもよい
本発明の構造によれば、ワード線WLに接続されるゲート導体層5bにn+ polyを使用しているので、上記に説明したように第2のMOSFETは表面チャネル型のMOSFETとなり、キャリア移動の制御性がよくなる。それと同時に、ワード線WLをプラスにした時にできる反転層12bから伸びた第1のMOSFETにとってのドレインエッジが非常に鋭くなるためにインパクトイオン化の効率がよくなり、ダイナミック フラッシュ メモリの“1”書き込みが効率的にできることになる。一方でn+ polyよりも仕事関数の大きいp+ polyをプレート線PLに接続されるゲート導体層16aに用いたことにより、インパクトイオン化によって発生した過剰な正孔は図2(d)のエネルギーバンドに示すがごとく、ゲート絶縁層4aに隣接する基板1の表面近くに蓄積されることになる。そのために、導体層16aからの蓄積正孔への制御性がn+ poly使用時に比べて向上する。さらに、空乏層領域8が第2のMOSEFT近傍だけに形成されるために、正孔を蓄積できる実効的な体積がゲート導体層16aにn+ polyを使用した時に比べて増加できる。これらのために、このメモリ素子として基板に全体の基板バイアスの効果があがり、さらに記憶を保持する時間が長くなり、“1”書き込みの電圧マージンが広がる。
なお、図2ではゲート導体層16aとゲート導体層5bの組み合わせとしてp+ poly(仕事関数 5.15eV)とn+ poly(仕事関数 4.05eV)の組み合わせを例として示したが、これはNi(仕事関数 5.2eV)とn+ poly、NiとW(仕事関数 4.52eV),NiとTaN(仕事関数 4.0eV)/W/TiN(仕事関数 4.7eV)など金属、金属の窒化物、もしくはその合金(シリサイドを含む)、積層構造であってもよい。
次に、図3を用いて、図1(a)に示した第1実施形態のダイナミック フラッシュ メモリの消去動作メカニズムを説明する。図3(a)は、消去動作前に、前のサイクルでインパクトイオン化により生成された正孔群11が基板1に蓄えられ、すべてのバイアスが0Vになった直後の状態を示している。図3(b)に示すように、消去動作時には、ソース線SLの電圧を、負電圧VERAにする。ここで、VERAは、例えば、-3Vである。その結果、基板1の初期電位の値に関係なく、ソース線SLが接続されているソースとなるn+層3aと基板1のPN接合が順バイアスとなる。その結果、前のサイクルでインパクトイオン化により生成された、基板領域1に蓄えられていた正孔群11が、ソース線に接続されているn+層3aに移動し、基板1の電位は時間とともに低くなり、第2のMOSFETのしきい値電圧は、“1”を書き込んだ時よりも高くなり、初期の状態に戻る。これにより、図3(c)に示すように、このワード線WLが接続されたゲート導体層5bをもつ第2のMOSFETは元々のしきい値に戻る。この基板領域1の消去状態は論理記憶データ“0”となる。
なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件は、消去動作を行うための一例であり、消去動作ができる他の動作条件であってもよい
本実施形態の構造によれば、プレート線PLに接続されるゲート導体層16aにp+ polyを使用しているので基板1とn+層3aの界面状態は均一であり、かつ空乏層がほとんどない状態になり、n+層3aに負の電位を与えると非常に効率よく正孔と電子の再結合を促すことができて、消去の時間を短縮することができる。
図4を用いて本発明の図1(b)に示した実施形態のように、ゲート導体層が基板の上下にあり、かつそれぞれのゲート導体層が複数に分割されている場合のダイナミック フラッシュ メモリの書き込み状態における正孔キャリアの挙動、蓄積、エネルギーバンド図を説明する。図4(a)に示すようにゲート導体層16aとゲート導体層16cを、ゲート絶縁層4aとゲート絶縁層4c上にそれぞれp+ polyを使用して形成し、ゲート導体層5bとゲート導体層5dをゲート絶縁層4bと絶縁層4d上にそれぞれn+ polyを使用して形成している。図2で説明した時と同じく、例えばソース線SLの接続されたn+層3aに例えば0Vを入力し、ビット線BLの接続されたn+層3bに例えば3Vを入力し、プレート線PL1とPL2にそれぞれ接続されたゲート導体層16aとゲート導体層16cに、例えば、3Vを入力し、ワード線WL1とWL2にそれぞれ接続されたゲート導体層5bとゲート導体層5dに、例えば、5Vを入力する。その結果、図4(a)に示したように、ゲート絶縁層4a、4b、4c、4d、4e、4fの直下にある基板1には空乏層領域8が形成される。また、ゲート導体層16aとゲート導体層16cを有する第1のMOSFETは飽和領域で動作し、空乏層となっている領域8の中でピンチオフ点13と反転層12bまたは12dの境界領域の間で電界は最大となり、この領域でインパクトイオン化現象が生じる。このインパクトイオン化現象により、ソース線SLの接続されたn+層3aからビット線BLの接続されたn+層3bに向かって加速された電子がSi格子に衝突し、その運動エネルギーによって、電子・正孔対が生成される。
図4(a)に示すように、生成された正孔群11は、短時間的には基板領域1に蓄積され、非平衡状態では実質的に正バイアスに充電する。ワード線WLの接続された第2のMOSFETのしきい値電圧は、低くなり、“1”の書き込みができる。図4(b)にはダイナミック フラッシュ メモリに“1”書き込み直後にすべてのバイアスを0にしたい瞬間の蓄積された正孔11の状態を空乏層8とともに示した。この時のエネルギーバンドは図4(c)で示すように生成された正孔が基板1とゲート絶縁層4aとゲート絶縁層4bの界面付近に蓄積され、ゲート導体層16a、およびゲート導体層16cからの蓄積正孔への制御性がn+ poly使用時に比べて向上する。さらに、空乏層領域8が第2のMOSEFT近傍だけに形成されるために、正孔を蓄積できる実効的な体積がゲート導体層16aおよびゲート導体層16cにn+ polyを使用した時に比べて増加できる。このためメモリ素子として基板に全体の基板バイアスの効果があがり、さらに記憶を保持する時間が長くなり、“1”書き込みの電圧マージンが広がる。また、消去の場合にも図3で説明した理由により消去時間の短縮効果を得られる。
なお、図4で示した例では、プレート線PL1とPL2に同じ電圧を、また、ワード線WL1とWL2に同じ電圧を与えているが、別々にそれぞれが独立した電圧を与えてもよいし、それぞれ同期した電圧の与え方でも本発明によって得られる効果は同じである。
また、図4においてはプレート線PL1とPL2に接続されるゲート導体層16aとゲート導体層16cに同じ材料を用いていたが、これはどちらかに一方だけ仕事関数の違う材料を適用するだけでも効果は同じである。例えば図5に示す例ではゲート導体層5aにはn+ polyを、ゲート導体層16cにp+ polyを用いてそれぞれプレート線PL1とPL2に接続をしている。書き込み条件は図4に説明したバイアス条件と同じである。ダイナミック フラッシュ メモリに“1”の書き込み動作直後の正孔の様子、およびその時のエネルギーバンドを図5(b)に示す。この場合も書き込み直後に正孔がゲート導体層16c側に接するゲート絶縁層4cの直下に蓄積されることになり、これまで述べてきたことと同様に“1”書き込み時の正孔の蓄積効率向上、消去動作時間の短縮効果がある。
さらに本発明は今まで述べてきたような基板1平面上に素子を形成する構造だけでなく図6に示すような3次元構造を持つSGTを基本とするダイナミック フラッシュ メモリにおいても本発明は有効である。図6(a)ではゲート導体層16aをゲート絶縁層4aの周囲にp+ polyを使用して形成し、ゲート導体層5bをゲート絶縁層4bの周囲にn+ polyを使用して形成されたダイナミック フラッシュ メモリを示している。ここで、ゲート導体層16とゲート導体層5bは、異なる値の仕事関数を有する。また、図6(b)には、3次元構造をより理解しやすくするために、一部の膜を除去した構造を示した。この構造では例えばソース線SLの接続されたn+層3aに例えば0Vを入力し、ビット線BLの接続されたn+層3bに例えば3Vを入力し、プレート線PLに接続されたゲート導体層16aに例えば、3Vを入力し、ワード線WLに接続されたゲート導体層5bに、例えば、5Vを入力する。その結果、ゲート導体層16aを有する第1のMOSFETは飽和領域で動作し、生成された正孔群11は、短時間的には基板領域1に蓄積され、非平衡状態では実質的に正バイアスに充電する。ワード線WLの接続された第2のMOSFETのしきい値電圧は、低くなり、“1”の書き込みができる。図6(c)には、ダイナミック フラッシュ メモリに“1”書き込み直後にすべてのバイアスを0にした瞬間のゲート導体層16aの水平断面での蓄積された正孔11の状態を示した。図6(c)に示すように、湧き出した正孔が基板1とゲート絶縁膜4aの界面付近に蓄積され、第1のゲート導体層16aからの蓄積正孔への制御力がn+ poly使用時に比べてより大きくなる。さらに、空乏層領域8が第2のMOSEFT近傍だけになるために、正孔を蓄積できる実効的な体積がn+ poly使用時に比べてより大きくできる。これらのためにこのメモリ素子として基板に全体の基板バイアスの効果があがり、さらに記憶を保持する時間が長くなり、“1”書き込みの電圧マージンが広がる。消去の場合にも図3で説明した理由により消去時間の短縮効果を得られる。
これらの効果は基板1の多数キャリアが電子であり、図2で示す3a、3bにあたる多数キャリアが正孔のダイナミック フラッシュ メモリの場合にも同様の効果が得られる。基板1の多数キャリアが電子である場合のダイナミック フラッシュ メモリの構造における書き込み動作を図7(a)に示す。たとえばワード線WLに接続されるゲート導体層16bにはp+ polyを使用し、プレート線PLに接続されるゲート導体層5aにはn+ polyを使用すると仮定する。第2のMOSFETは正孔を多数キャリアとした表面チャネル型のMOSFETとなり、キャリア移動の制御性がよくなると同時に、第2のMOSFETの反転層から伸びたドレインエッジが非常に鋭くなるためにインパクトイオン化の効率がよくなり、ダイナミック フラッシュ メモリの“1”書き込みが効率的にできることになる。一方でインパクトイオン化によって発生した過剰電子はプレート線PLの表面近くに蓄積されることになり、ゲート導体層5aからの蓄積電子への制御性がp+ poly使用時に比べて向上するために、このメモリ素子として基板に全体の基板バイアスの効果があがる。さらに空乏層領域8が第2のMOSEFT近傍だけに形成されるために、電子を蓄積できる実効的な体積がゲート導体層5aにp+ polyを使用した時に比べて増加できる。したがって記憶を保持する時間が長くなり、“1”書き込みの電圧マージンが広がる(この場合は基板に過剰電子がある場合は論理データ“1”である)。また、消去の場合にも今まで説明した理由により消去時間の短縮効果を得られ、ダイナミック フラッシュ メモリの動作マージンは向上する。
また、図2ではワード線WLに接続されるゲート導体層5bと第1のゲート導体層16aが重ならない構造を用いて説明をしていたが、図8(a)、(b)に示すようにゲート導体層5bと導体層16aが重なった構造でも本発明によるダイナミック フラッシュ メモリへの効果は全く同じである。
本実施形態は、下記の特徴を有する。
(特徴1)
本発明の第1実施形態に係るダイナミック フラッシュ メモリの書き込みの際に仕事関数の異なるゲート導体層を用いることで論理データ“1”の書き込みの場合には、書き込むために基板に蓄積された多数キャリアが、プレート線PLに接続されるゲート導体層の直下に蓄積されるためにその蓄積量が多くなり、かつ情報保持時間が長くなる。また、データ消去時にはソース線SLに接続されているn+層3aとの間に空乏層ができないので、消去が短い時間でできる。これらのことにより、メモリの動作マージンを拡大でき、メモリの消費電力を低減でき、メモリの高速動作に繋がる。
(特徴1)
本発明の第1実施形態に係るダイナミック フラッシュ メモリの書き込みの際に仕事関数の異なるゲート導体層を用いることで論理データ“1”の書き込みの場合には、書き込むために基板に蓄積された多数キャリアが、プレート線PLに接続されるゲート導体層の直下に蓄積されるためにその蓄積量が多くなり、かつ情報保持時間が長くなる。また、データ消去時にはソース線SLに接続されているn+層3aとの間に空乏層ができないので、消去が短い時間でできる。これらのことにより、メモリの動作マージンを拡大でき、メモリの消費電力を低減でき、メモリの高速動作に繋がる。
(特徴2)
図1におけるゲート導体層16aおよびゲート導体層16cはダイナミック フラッシュ メモリの論理データ“1”書き込み時に過剰キャリアを蓄積する際にワード線WLに接続されるゲート導体層とは異なる仕事関数を用いることでゲート導体層16a、もしくはゲート導体層16cの直下のゲート絶縁層4a、もしくは4cの直下に過剰キャリアが蓄積されるためにそのデータ保持時間が長くなり、また、ダイナミック フラッシュ メモリの動作電圧マージンを広げることができる。また、論理データ“1”から“0”への消去時にも過剰キャリアを引き抜く部分で空乏層が形成されないために消去時間を短くできる。以上により、より高密度、高性能のダイナミック フラッシュ メモリを実現できる。
図1におけるゲート導体層16aおよびゲート導体層16cはダイナミック フラッシュ メモリの論理データ“1”書き込み時に過剰キャリアを蓄積する際にワード線WLに接続されるゲート導体層とは異なる仕事関数を用いることでゲート導体層16a、もしくはゲート導体層16cの直下のゲート絶縁層4a、もしくは4cの直下に過剰キャリアが蓄積されるためにそのデータ保持時間が長くなり、また、ダイナミック フラッシュ メモリの動作電圧マージンを広げることができる。また、論理データ“1”から“0”への消去時にも過剰キャリアを引き抜く部分で空乏層が形成されないために消去時間を短くできる。以上により、より高密度、高性能のダイナミック フラッシュ メモリを実現できる。
(特徴3)
本発明は、いかなる構造のダイナミック フラッシュ メモリに適用でき、プレート線PLとソース線SLに接続されるそれぞれのゲート導体層の中の一つでも仕事関数を変えることができれば、本発明の効果を奏する。
本発明は、いかなる構造のダイナミック フラッシュ メモリに適用でき、プレート線PLとソース線SLに接続されるそれぞれのゲート導体層の中の一つでも仕事関数を変えることができれば、本発明の効果を奏する。
(特徴4)
プレート線PLとソース線SLに接続されるそれぞれのゲート導体層が互いに重ねる構造をもつダイナミック フラッシュ メモリにおいても互いの仕事関数を変えることで同様の効果を奏する。
プレート線PLとソース線SLに接続されるそれぞれのゲート導体層が互いに重ねる構造をもつダイナミック フラッシュ メモリにおいても互いの仕事関数を変えることで同様の効果を奏する。
また、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した各実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。上記実施例及び変形例は任意に組み合わせることができる。さらに、必要に応じて上記実施形態の構成要件の一部を除いても本発明の技術思想の範囲内となる。
本発明に係る、半導体素子を用いたメモリ機能を用いれば、従来よりも、記憶する時間の長い、消費電力の少ない高速のダイナミック フラッシュ メモリを提供することができる。
1 基板
2 絶縁膜
3a、3b n+層
4a ゲート絶縁層
4b ゲート絶縁層
4e ゲート絶縁層
4d ゲート絶縁層
4c、4f 絶縁膜
5a ゲート導体層
5b ゲート導体層
5d ゲート導体層
8 空乏層領域
11 正孔群
12a、12b、12c、12d 反転層
13 ピンチオフ点
SL ソース線
PL プレート線
WL ワード線
BL ビット線
16a ゲート導体層
16b ゲート導体層
16c ゲート導体層
21 電子群
23a、23b p+層
2 絶縁膜
3a、3b n+層
4a ゲート絶縁層
4b ゲート絶縁層
4e ゲート絶縁層
4d ゲート絶縁層
4c、4f 絶縁膜
5a ゲート導体層
5b ゲート導体層
5d ゲート導体層
8 空乏層領域
11 正孔群
12a、12b、12c、12d 反転層
13 ピンチオフ点
SL ソース線
PL プレート線
WL ワード線
BL ビット線
16a ゲート導体層
16b ゲート導体層
16c ゲート導体層
21 電子群
23a、23b p+層
Claims (4)
- 水平方向に伸延する、または垂直方向に立つ半導体基板と、
前記半導体基板の一端側の側面の一部、または全てを囲んだ第1のゲート絶縁層と、
前記第1のゲート絶縁層に近接、もしくは繋がり、且つ前記半導体基板の他端側の側面の一部、または全てを囲んだ第2のゲート絶縁層と、
前記第1のゲート絶縁層を覆った第1のゲート導体層と、
前記第2のゲート絶縁層を覆った第1のゲート導体層とは仕事関数が異なる第2のゲート導体層と、
前記半導体基板が伸延する方向において、前記第1のゲート導体層の一端の外側にある第1の不純物層と、前記第2のゲート導体層の一端の外側にある第2の不純物層と、
前記第1の不純物層に接続した第1の配線導体層と、
前記第2の不純物層に接続した第2の配線導体層と、
前記第1のゲート導体層に接続した第3の配線導体層と、
前記第2のゲート導体層に接続した第4の配線導体層と、を有し、
前記第1の配線導体層と、前記2の配線導体層と、前記3の配線導体層と、前記4の配線導体層と、に印加する電圧を制御して、前記第1の不純物層と前記第2の不純物層との間に流す電流でインパクトイオン化現象、またはゲート誘起ドレインリーク電流により電子群と正孔群を前記半導体母体内に発生させる動作と、発生させた前記電子群と前記正孔群の内、前記半導体母体における少数キャリアである前記電子群と前記正孔群のいずれかを除去する動作と、前記半導体母体における多数キャリアである前記電子群と前記正孔群のいずれかの一部または全てを、前記半導体母体に残存させる動作と、を行ってメモリ書き込み動作を行い、
前記第1の配線導体層と、前記第2の配線導体層と、前記第3の配線導体層と、前記第4の配線導体層とに印加する電圧を制御して、前記第1の不純物層と、前記第2の不純物層の一方もしくは両方から、残存している前記半導体母体における多数キャリアである前記電子群と前記正孔群のいずれかを抜き取り、メモリ消去動作を行う、
ことを特徴とする半導体素子を用いたメモリ装置。 - 前記第1の配線導体層はソース線であり、前記第2の配線導体層はビット線であり、前記第3の配線導体層はプレート線であり、前記第4の配線導体層はワード線であり、
前記ソース線と、前記ビット線と、前記プレート線と、前記ワード線に印加する電圧により、前記メモリ消去動作と、前記メモリ書き込み動作とを行い、
前記第1の不純物層の多数キャリアは電子であり、前記半導体基板の多数キャリアは正孔であり、前記第1のゲート導体層の仕事関数は前記第2のゲート導体層の仕事関数よりも大きい、
ことを特徴とする、請求項1に記載の半導体素子を用いたメモリ装置。 - 前記第1の配線導体層はソース線であり、前記第2の配線導体層はビット線であり、前記第3の配線導体層は第1の駆動制御線であり、前記第4の配線導体層はワード線であり、
前記ソース線と、前記ビット線と、前記第1の駆動制御線と、前記ワード線に印加する電圧により、前記メモリ消去動作と、前記メモリ書き込み動作と、を行い、
前記第1の不純物層の多数キャリアは正孔であり、前記半導体基板の多数キャリアは電子であり、前記第1のゲート導体層の仕事関数は前記第2のゲート導体層の仕事関数よりも小さい、
ことを特徴とする、請求項1に記載の半導体素子を用いたメモリ装置。 - 前記第1のゲート導体層と前記第2のゲート導体層が重なって形成されており、かつこれらの仕事関数が異なることを特徴とする、請求項1に記載の半導体素子を用いたメモリ装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/028754 WO2023012893A1 (ja) | 2021-08-03 | 2021-08-03 | 半導体素子を用いたメモリ装置 |
US17/878,485 US11980022B2 (en) | 2021-08-03 | 2022-08-01 | Memory device using semiconductor element |
TW111128951A TWI820839B (zh) | 2021-08-03 | 2022-08-02 | 使用半導體元件的記憶裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/028754 WO2023012893A1 (ja) | 2021-08-03 | 2021-08-03 | 半導体素子を用いたメモリ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023012893A1 true WO2023012893A1 (ja) | 2023-02-09 |
Family
ID=85153569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/028754 WO2023012893A1 (ja) | 2021-08-03 | 2021-08-03 | 半導体素子を用いたメモリ装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11980022B2 (ja) |
TW (1) | TWI820839B (ja) |
WO (1) | WO2023012893A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220392900A1 (en) * | 2021-03-29 | 2022-12-08 | Unisantis Electronics Singapore Pte. Ltd. | Memory device using semiconductor element and method for manufacturing the same |
WO2023067686A1 (ja) * | 2021-10-19 | 2023-04-27 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | 半導体素子を用いたメモリ装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003086712A (ja) * | 2001-02-19 | 2003-03-20 | Toshiba Corp | 半導体メモリ装置及びその製造方法 |
JP2003188279A (ja) * | 2001-12-14 | 2003-07-04 | Toshiba Corp | 半導体メモリ装置およびその製造方法 |
JP2004303911A (ja) * | 2003-03-31 | 2004-10-28 | Nec Corp | Misfet |
US20120146146A1 (en) * | 2010-12-14 | 2012-06-14 | International Business Machines Corporation | PARTIALLY DEPELETED (DP) SEMICONDUCTOR-ON-INSULATOR (SOI) FIELD EFFECT TRANSISTOR (FET) STRUCTURE WITH A GATE-TO-BODY TUNNEL CURRENT REGION FOR THRESHOLD VOLTAGE (Vt) LOWERING AND METHOD OF FORMING THE STRUCTURE |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4075653A (en) * | 1976-11-19 | 1978-02-21 | International Business Machines Corporation | Method for injecting charge in field effect devices |
JP5078338B2 (ja) * | 2006-12-12 | 2012-11-21 | ルネサスエレクトロニクス株式会社 | 半導体記憶装置 |
CN101611489B (zh) * | 2006-12-19 | 2011-03-02 | 日本电气株式会社 | 半导体装置 |
KR20170092770A (ko) * | 2016-02-04 | 2017-08-14 | 에스케이하이닉스 주식회사 | 싱글 폴리 불휘발성 메모리 셀 및 메모리 셀 어레이와, 그 동작 방법들 |
US9882566B1 (en) * | 2017-01-10 | 2018-01-30 | Ememory Technology Inc. | Driving circuit for non-volatile memory |
CN113939907A (zh) * | 2019-06-05 | 2022-01-14 | 新加坡优尼山帝斯电子私人有限公司 | 柱状半导体装置的制造方法 |
JP2021034650A (ja) * | 2019-08-28 | 2021-03-01 | キオクシア株式会社 | 半導体記憶装置 |
-
2021
- 2021-08-03 WO PCT/JP2021/028754 patent/WO2023012893A1/ja active Application Filing
-
2022
- 2022-08-01 US US17/878,485 patent/US11980022B2/en active Active
- 2022-08-02 TW TW111128951A patent/TWI820839B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003086712A (ja) * | 2001-02-19 | 2003-03-20 | Toshiba Corp | 半導体メモリ装置及びその製造方法 |
JP2003188279A (ja) * | 2001-12-14 | 2003-07-04 | Toshiba Corp | 半導体メモリ装置およびその製造方法 |
JP2004303911A (ja) * | 2003-03-31 | 2004-10-28 | Nec Corp | Misfet |
US20120146146A1 (en) * | 2010-12-14 | 2012-06-14 | International Business Machines Corporation | PARTIALLY DEPELETED (DP) SEMICONDUCTOR-ON-INSULATOR (SOI) FIELD EFFECT TRANSISTOR (FET) STRUCTURE WITH A GATE-TO-BODY TUNNEL CURRENT REGION FOR THRESHOLD VOLTAGE (Vt) LOWERING AND METHOD OF FORMING THE STRUCTURE |
Also Published As
Publication number | Publication date |
---|---|
TWI820839B (zh) | 2023-11-01 |
US11980022B2 (en) | 2024-05-07 |
US20230039991A1 (en) | 2023-02-09 |
TW202315096A (zh) | 2023-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7572088B2 (ja) | 半導体素子を用いたメモリ装置 | |
TWI823289B (zh) | 具有記憶元件的半導體裝置 | |
US11968822B2 (en) | Memory device using semiconductor element | |
TWI820839B (zh) | 使用半導體元件的記憶裝置 | |
TW202247421A (zh) | 具有記憶元件的半導體裝置 | |
TWI846299B (zh) | 使用半導體元件的記憶裝置 | |
US12144164B2 (en) | Method for manufacturing memory device using semiconductor element | |
TW202345366A (zh) | 使用半導體的記憶裝置 | |
TWI810929B (zh) | 使用半導體元件的記憶裝置的製造方法 | |
US20240321342A1 (en) | Memory device using semiconductor element | |
JP7490285B2 (ja) | 半導体素子を用いたメモリ装置 | |
JP7497101B2 (ja) | 半導体素子を用いたメモリ装置 | |
US20230171945A1 (en) | Semiconductor memory device and manufacturing method of semiconductor memory device | |
JP7381145B2 (ja) | メモリ素子を有する半導体装置 | |
WO2023181172A1 (ja) | 半導体メモリ装置 | |
TWI853501B (zh) | 半導體記憶裝置 | |
US20240196591A1 (en) | Memory device using semiconductor element | |
US12279411B2 (en) | Memory device using semiconductor device | |
US20240179887A1 (en) | Memory-element-including semiconductor device | |
WO2025062621A1 (ja) | 半導体素子を用いたメモリ装置 | |
TW202448289A (zh) | 具有記憶元件的半導體裝置 | |
WO2024214181A1 (ja) | メモリ素子を有する半導体装置 | |
WO2024214180A1 (ja) | 半導体素子を用いたメモリ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21952122 Country of ref document: EP Kind code of ref document: A1 |