[go: up one dir, main page]

WO2023001285A1 - 一种带双离合器的电动汽车的动力系统及其控制方法 - Google Patents

一种带双离合器的电动汽车的动力系统及其控制方法 Download PDF

Info

Publication number
WO2023001285A1
WO2023001285A1 PCT/CN2022/107368 CN2022107368W WO2023001285A1 WO 2023001285 A1 WO2023001285 A1 WO 2023001285A1 CN 2022107368 W CN2022107368 W CN 2022107368W WO 2023001285 A1 WO2023001285 A1 WO 2023001285A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
transmission
clutch
differential
torque
Prior art date
Application number
PCT/CN2022/107368
Other languages
English (en)
French (fr)
Inventor
刘建康
王燕
张天强
胡志林
闫书畅
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023001285A1 publication Critical patent/WO2023001285A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/02Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing
    • B60K17/12Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing of electric gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing of differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the technical field of electric vehicles, for example, it relates to a power system of an electric vehicle with dual clutches and a control method thereof.
  • the difference between the permanent magnet synchronous motor and the asynchronous motor is that the permanent magnet synchronous motor has a relatively large anti-drag torque under the condition of rotating, and in order to prevent the back electromotive force from being too high, its magnetic field weakening current is relatively large in the high speed range , consumes more electric energy, all of which lead to higher power consumption of four-wheel drive models using permanent magnet synchronous motors, and shorter driving mileage, which affects the competitiveness of models.
  • the present application provides a power system of an electric vehicle with a dual clutch, which reduces the loss of the motor with rotation, so that the resistance and power consumption of the electric vehicle are smaller when the electric vehicle is driven, thereby prolonging the cruising range of the electric vehicle.
  • a power system of an electric vehicle with a double clutch comprising: three motors, the three motors are respectively a first motor, a second motor and a third motor; two transmissions, the two transmissions are respectively the first A transmission and a second transmission, the input end of the first transmission is connected to the output end of the first motor, the input end of the second transmission is connected to the output end of the second motor and the output of the third motor At least one of the ends is connected; two differentials, the two differentials are respectively a first differential and a second differential, and the input end of the first differential is connected to the first transmission The output end of the first differential is connected with the front axle of the electric vehicle to drive the front wheels to rotate, and the input end of the second differential is connected with the output end of the second transmission, so The output end of the second differential is connected with the rear axle of the electric vehicle to drive the rear wheels to rotate; two clutches, the two clutches are respectively the first clutch and the second clutch, and the first clutch is located at the between the first motor and the second differential, and the
  • the present application also provides a method for controlling a power system of an electric vehicle.
  • the first motor, the second motor and the third motor all adopt the torque control mode and the magnitude of the output torque is determined by the opening degree of the accelerator pedal;
  • the speed of the motor is lower than or equal to the preset speed, it is in the first gear, and when the speed of the motor is higher than the preset speed, it is in the second gear; the first motor, the second motor or The required torque T Mdmd of the third motor is:
  • T M1dmd of the first motor when calculating the demand torque T M1dmd of the first motor, ⁇ is 2; when calculating the demand torque T M2dmd of the second motor or the demand torque T M3dmd of the third motor, ⁇ is 4; T drive is the required drive torque of the wheel, i is the transmission ratio between the output end of the motor and the input end of the differential, and ⁇ is the mechanical transmission efficiency from the motor to the wheel;
  • T brake is the required braking torque of the wheel
  • i 1 is the transmission ratio between the output end of the first motor and the input end of the first differential
  • ⁇ 1 is the transmission ratio from the first motor to the input end of the first differential.
  • FIG. 1 is a schematic diagram of a power system of an electric vehicle with a dual clutch provided in Embodiment 1 of the present application;
  • FIG. 2 is a schematic diagram of a power system of an electric vehicle with a dual clutch provided in Embodiment 2 of the present application;
  • FIG. 3 is a schematic diagram of a power system of an electric vehicle with a dual clutch provided in Embodiment 3 of the present application;
  • FIG. 4 is a schematic diagram of a power system of an electric vehicle with a dual clutch provided in Embodiment 4 of the present application;
  • FIG. 5 is a schematic diagram of a power system of an electric vehicle with a dual clutch provided in Embodiment 5 of the present application;
  • FIG. 6 is a schematic diagram of a power system of an electric vehicle with a dual clutch provided in Embodiment 6 of the present application;
  • FIG. 7 is a schematic diagram of a power system of an electric vehicle with a dual clutch provided in Embodiment 7 of the present application;
  • Fig. 8 is a schematic diagram of a power system of an electric vehicle with a dual clutch provided in Embodiment 8 of the present application;
  • Fig. 9 is a schematic diagram of a power system of an electric vehicle with a dual clutch provided in Embodiment 9 of the present application;
  • Fig. 10 is a schematic diagram of a power system of an electric vehicle with a dual clutch provided in Embodiment 10 of the present application;
  • Fig. 11 is a schematic diagram of a power system of an electric vehicle with a dual clutch provided in Embodiment 11 of the present application;
  • Fig. 12 is a schematic diagram of a power system of an electric vehicle with a dual clutch provided in Embodiment 12 of the present application;
  • Fig. 13 is a schematic diagram of a power system of an electric vehicle with a dual clutch provided in Embodiment 13 of the present application;
  • Fig. 14 is a schematic diagram of a power system of an electric vehicle with a dual clutch provided in Embodiment 14 of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the meanings of the above terms in this application according to the situation.
  • This embodiment provides a power system of an electric vehicle with dual clutches, as shown in Figure 1, including three motors, two transmissions, two differentials and two clutches, all of which are permanent magnet synchronous motors , the permanent magnet synchronous motor has the characteristics of high power density, high efficiency, and can provide better acceleration performance for electric vehicles.
  • the three motors are the first motor 11, the second motor 12 and the third motor 13, and the two transmissions Respectively the first speed changer 21 and the second speed changer 22, the input end of the first speed changer 21 is connected with the output end of the first motor 11, the input end of the second speed changer 22 is connected with the output end of the second motor 12 and the third motor 13 At least one of the output ends is connected, and the two differentials are respectively a first differential 31 and a second differential 32, the input of the first differential 31 is connected with the output of the first speed changer 21, and the first The output end of the differential 31 is connected with the front axle 100 of the electric vehicle to drive the front wheels 200 to rotate, the input end of the second differential 32 is connected with the output end of the second speed changer 22, and the output end of the second differential 32 It is connected with the rear axle 300 of the electric vehicle to drive the rear wheels 400 to rotate.
  • the two clutches are respectively the first clutch 41 and the second clutch 42.
  • the first clutch 41 is located between the first motor 11 and the first differential 31.
  • the second A clutch 41 can transmit the power of the first motor 11 to the first differential 31, and can cut off the power connection between the first motor 11 and the first differential 31.
  • the second clutch 42 is located at the third motor 13 Between the second differential 32, the second clutch 42 can transmit the power of the third motor 13 to the second differential 32, and can cut off the power between the third motor 13 and the second differential 32 connect.
  • the three motors, two transmissions and two clutches of the power system of the electric vehicle with dual clutches provided in this embodiment are used in combination, so that the system has a high matching degree to the working conditions and improves the environmental adaptability of the electric vehicle.
  • a motor can provide stronger acceleration performance for the electric vehicle, so that the electric vehicle has stronger power in low gear, thereby reducing the loss of the motor with the rotation, which in turn makes the electric vehicle drive with less resistance and lower power consumption. Less, extending the range of electric vehicles.
  • the first clutch 41 of this embodiment is respectively connected to the output end of the first motor 11 and the input end of the first differential 31, and the power system of the electric vehicle with dual clutches also includes a reduction mechanism 5, the
  • the reduction mechanism 5 is a single-stage reduction mechanism 5, the reduction mechanism 5 is connected with the third motor 13, the second clutch 42 is connected with the output end of the third motor 13 and the input end of the reduction mechanism 5 respectively, and the second speed changer 22 is connected with the reduction mechanism 5.
  • the output ends of the two motors are coaxially arranged and both are connected with the second differential 32, so that the power of the third motor 13 and the second motor 12 is output to the rear axle 300 to drive the rear wheels 400 to rotate.
  • This embodiment also provides a control method suitable for the power system of the electric vehicle with dual clutch, the control method of the power system of the electric vehicle with dual clutch includes sports mode, extreme mode, economy mode and comfort mode.
  • both clutches are in the engaged state.
  • the transmission is in the first gear when the speed of the second motor 12 is lower than or equal to the preset speed.
  • the second motor 12 is in second gear when the RPM is higher than the preset RPM.
  • the transmission switches to the second gear.
  • the first motor 11, the second motor 12 and the third motor 13 all adopt the torque control mode and the output torque is determined by the opening degree of the accelerator pedal.
  • the required driving torque T drive of the wheel is obtained by looking up the opening degree of the wheel. This method is common knowledge of those skilled in the art and will not be repeated here.
  • the required torque T Mdmd of the first motor 11, the second motor 12 or the third motor 13 is:
  • is 2; when calculating the demand torque T M2dmd of the second motor 12 or the demand torque T M3dmd of the third motor 13, ⁇ is 4; T drive is the wheel
  • the required drive torque, i is the transmission ratio between the output end of the motor and the input end of the differential, and ⁇ is the mechanical transmission efficiency from the motor to the wheels.
  • i is the transmission ratio between the output end of the first motor 11 and the input end of the first differential 31, that is, the speed ratio of the current gear of the first transmission 21;
  • i is the transmission ratio between the output end of the second motor 12 and the input end of the second differential 32, that is, the speed ratio of the current gear of the second transmission 22;
  • T M3dmd of the third motor 13 i is the transmission ratio between the output terminal of the third motor 13 and the input terminal of the second differential 32 , that is, the speed ratio of the reduction mechanism 5 .
  • Tbrake is the required braking torque of the wheel
  • i1 is the transmission ratio between the output end of the first motor 11 and the input end of the first differential 31
  • ⁇ 1 is from the first motor 11 to the front wheel 200 mechanical transfer efficiency.
  • the control method of the power system of the electric vehicle with dual clutches provided in this embodiment includes the extreme mode.
  • the three motors all adopt the torque control mode to ensure that the electric vehicle has optimal acceleration and the highest speed.
  • the two clutches are kept in the combined state, and the two transmissions are not shifted, which makes the next drive smoother, avoids the power delay caused by the clutch combination, ensures that the electric vehicle has better acceleration performance, and improves the performance of the electric vehicle. Economical, extending the cruising range of electric vehicles.
  • the first clutch 41 When braking in the sports mode, the first clutch 41 is disengaged, the second clutch 42 is disengaged, the first transmission 21 and the second transmission 22 maintain the current gear, the first motor 11 and the third motor 13 do not work,
  • the braking torque is provided by the second motor 12, and the power generation demand torque T Mbrake of the second motor 12 is:
  • Tbrake is the required braking torque of the wheel
  • i is the transmission ratio between the output end of the second motor 12 and the input end of the second differential 32
  • is the mechanical transmission efficiency from the motor to the wheel.
  • the first clutch 41 When driving in the economical mode, the first clutch 41 is in disengaged state, the second clutch 42 is in disengaged state, the first speed changer 21 and the second speed changer 22 keep the current gear, the first motor 11 and the third motor 13 do not work, drive The torque is provided by the second electric motor 12, and the required torque T Mdmd of the second electric motor 12 is:
  • T drive is the required drive torque of the wheel
  • i is the transmission ratio between the output end of the second motor 12 and the input end of the second differential 32
  • n is the mechanical transmission from the second motor 12 to the rear wheel 400 efficiency.
  • the braking method in the economy mode is the same as that in the present embodiment in the sports mode.
  • the economical mode mainly considers economical efficiency and weakens dynamic performance.
  • driving it is realized by a motor, which can greatly improve the efficiency of the motor and improve the economy.
  • it can also reduce the drag of the motor and the transmission system when braking.
  • Hysteresis loss, and the use of a motor brake is also more efficient.
  • the first motor 11, the second motor 12 and the third motor 13 When driving in the comfort mode, the first motor 11, the second motor 12 and the third motor 13 all adopt the torque control mode and the magnitude of the torque sent is determined by the opening degree of the accelerator pedal, and the first speed changer 21 and the second speed changer 22 are both Keep in the first gear without shifting gears, the first motor 11, the second motor 12 and the third motor 13 all adopt the torque control mode, and the required torque T Mdmd of the first motor 11, the second motor 12 or the third motor 13 is :
  • is 2; when calculating the demand torque T M2dmd of the second motor 12 or the demand torque T M3dmd of the third motor 13, ⁇ is 4; T drive is the wheel
  • the required drive torque, i is the transmission ratio between the output end of the motor and the input end of the differential, and ⁇ is the mechanical transmission efficiency from the motor to the wheels.
  • the braking torque is provided by the first motor 11, the second motor 12 and the third motor 13 are not working, and the power generation demand torque T M1brake of the first motor 11 is:
  • Tbrake is the required braking torque of the wheel
  • i1 is the transmission ratio between the output end of the first motor 11 and the input end of the first differential 31
  • ⁇ 1 is from the first motor 11 to the front wheel 200 mechanical transfer efficiency.
  • the comfort mode mainly considers the comfort.
  • the clutch is kept engaged when driving and braking.
  • the transmission does not shift gears, which reduces the impact of clutch disengagement and engagement, and reduces the impact and frustration during gear shifting. Enhanced comfort.
  • the switching conditions of the sports mode, the extreme mode, the economic mode and the comfort mode in the control method of the power system of the electric vehicle with dual clutches of the present embodiment are as follows:
  • the conditions for switching to the extreme mode are: the vehicle speed is less than 1km/h, and the vehicle is in park or neutral, and the state of charge of the power battery is greater than 50%; the conditions for switching to the economic mode is: the vehicle speed is less than 5km/h, and the accelerator pedal is not depressed; then the condition for switching to the comfort mode is: the vehicle speed is less than 5km/h, and the accelerator pedal is not depressed.
  • the conditions for switching to the sports mode are: the vehicle speed is less than 5km/h, the accelerator pedal is not depressed, and the state of charge of the power battery is greater than 30%; the conditions for switching to the economic mode are: : The vehicle speed is less than 5km/h, and the accelerator pedal is not depressed; the conditions for switching to the comfort mode are: the vehicle speed is less than 5km/h, and the accelerator pedal is not depressed.
  • the conditions for switching to the extreme mode are: the vehicle speed is less than 1km/h, and the vehicle is in park or neutral, and the state of charge of the power battery is greater than 50%; then the conditions for switching to the sports mode It is: the vehicle speed is less than 5km/h, and the accelerator pedal is not depressed, and the state of charge of the power battery is greater than 30%; then the conditions for switching to the comfort mode are: the vehicle speed is less than 5km/h, and the accelerator pedal is not depressed.
  • the conditions for switching to the extreme mode are: the vehicle speed is less than 1km/h, and the vehicle is in park or neutral, and the state of charge of the power battery is greater than 50%; then the conditions for switching to the sports mode It is: the vehicle speed is less than 5km/h, and the accelerator pedal is not depressed, and the state of charge of the power battery is greater than 30%; then the condition for switching to the economic mode is: the vehicle speed is less than 5km/h, and the accelerator pedal is not depressed.
  • the first clutches are respectively connected to the output end of the first motor and the input end of the first transmission, or the first clutches are respectively It is connected with the output terminal of the first transmission and the input terminal of the first differential.
  • the second clutch is respectively connected to the output end of the second motor and the input end of the second transmission, or the second clutch is respectively connected to the The output end of the third motor is connected to the input end of the second transmission, or the second clutch is connected to the second transmission and the second differential respectively.
  • the second motor is connected to the second transmission
  • the third motor is connected to the reduction mechanism
  • the second transmission is connected to the
  • the reduction mechanism is arranged coaxially and both are connected to the second differential
  • the second clutch is respectively connected to the output end of the second motor and the input end of the second transmission, or the The second clutch is respectively connected with the reduction mechanism and the second differential; when the second motor is connected with the second transmission and the third motor is connected with the second transmission, the first The output ends of the three motors are connected to the input ends of the second transmission, or the second clutch is connected to the second transmission and the second differential respectively.
  • the difference between the power system of the electric vehicle with dual clutches of the present embodiment and the first embodiment is that the power system of the electric vehicle with dual clutches of the present embodiment does not include a reduction mechanism 5, and the second The clutch 42 is connected with the output end of the third motor 13 and the input end of the second speed changer 22 respectively, the input end of the second speed changer 22 is also connected with the second motor 12, and the output end of the second speed changer 22 is connected with the second differential gear 32 Connected, now the second motor 12 and the third motor 13 share a gear of the second speed changer 22, the third motor 13 can only output power through a gear of the second speed changer 22, by shifting gears, the second motor 12 can The power is output through the two gears of the second transmission 22 , so that the power of the second motor 12 and the third motor 13 is transmitted to the rear axle 300 through the second transmission 22 and the second differential 32 to rotate the rear wheels 400 .
  • the driving method in the sports mode is the same as the driving method in the extreme mode in this embodiment, and the braking method in the sports mode is the same as the braking method in the extreme mode in the first embodiment.
  • the driving method in the economical mode is the same as the driving method in the sports mode in the first embodiment, and the braking method in the economical mode is the same as the braking method in the sports mode in this embodiment.
  • i is the transmission ratio between the output end of the third electric motor 13 and the input end of the second differential 32, that is, the transmission ratio of the second transmission 22
  • the speed ratio of the first gear when braking in the comfortable mode, it is the same as the braking method in the comfortable mode in Embodiment 1.
  • the switching conditions among the sports mode, the extreme mode, the economy mode and the comfort mode are the same as those in the first embodiment.
  • connection mode of the second clutch 42 and the deceleration mechanism 5 of the power system of the electric vehicle with double clutch of the present embodiment is different from embodiment one, the deceleration mechanism 5 of the present embodiment links to each other with the 3rd motor 13 , the second transmission 22 is connected with the second motor 12, the output end of the second transmission 22 is coaxial with the output end of the reduction mechanism 5, and the second clutch 42 is connected with the reduction mechanism 5 and the second differential 32 respectively.
  • the control method of the power system of the electric vehicle with dual clutches in this embodiment the driving and braking methods in the extreme mode are the same as the driving and braking methods in the extreme mode in Embodiment 1. .
  • the driving method in the sports mode is the same as the driving method in the extreme mode of this embodiment.
  • the first clutch 41 is in the disengaged state
  • the second clutch 42 is in the engaged state
  • the first transmission 21 maintains the current gear
  • the second transmission 22 is neutral
  • the first motor 11 and the second motor 12 do not work
  • the braking torque is provided by the third motor 13
  • the power generation demand torque T Mbrake of the third motor 13 is:
  • Tbrake is the required braking torque of the wheel
  • i is the transmission ratio between the output end of the third motor 13 and the input end of the second differential 32, that is, the speed ratio of the reduction mechanism 5
  • n is the speed ratio from the third The mechanical transmission efficiency of the motor 13 to the rear wheel 400.
  • the first clutch 41 When driving in the economical mode, the first clutch 41 is in disengaged state, the second clutch 42 is in engaged state, the first transmission 21 maintains the current gear, the second transmission 22 is in neutral, and the first motor 11 and the second motor 12 do not work , the driving torque is provided by the third motor 13, and the demand torque T Mdmd of the third motor 13 is:
  • T drive is the required drive torque of the wheel
  • i is the transmission ratio between the output end of the third motor 13 and the input end of the second differential 32, that is, the speed ratio of the reduction mechanism 5
  • n is the speed ratio from the third motor 13 Mechanical transmission efficiency to rear wheels 400.
  • the braking method in the economy mode is the same as that in the present embodiment in the sports mode.
  • the methods of driving and braking in the comfort mode are the same as the methods of driving and braking in the comfort mode in the first embodiment.
  • the switching conditions among the sports mode, the extreme mode, the economy mode and the comfort mode are the same as those in the first embodiment.
  • the difference between the power system of the electric vehicle with dual clutches of the present embodiment and the second embodiment is that the connection position of the second clutch 42 is different, and the second clutch 42 of the present embodiment is connected with the second transmission respectively.
  • the output terminal of 22 is connected with the input terminal of the second differential 32 , and the second motor 12 and the third motor 13 are both connected with the input terminal of the second transmission 22 .
  • the second speed changer 22 is not a left-right symmetrical structure, the left side of the second speed changer 22 connected with the second motor 12 has a shifting function, and the right side of the second speed changer 22 connected with the third motor 13 does not have a shifting function .
  • the control method of the power system of the electric vehicle with dual clutches in this embodiment the driving and braking methods in the extreme mode are the same as the driving and braking methods in the extreme mode in the second embodiment .
  • the driving method in the sports mode is the same as the driving method in the extreme mode of this embodiment.
  • the first clutch 41 is in the disengaged state
  • the second clutch 42 is in the engaged state
  • the first transmission 21 maintains Current gear
  • the second speed changer 22 is neutral gear
  • the neutral gear described here means that the part of the second speed changer 22 connected to the second motor 12 is neutral
  • the part of the second speed changer 22 connected to the third motor 13 is always the first gear.
  • the first motor 11 and the second motor 12 do not work
  • the braking torque is provided by the third motor 13, and the power generation demand torque T Mbrake of the third motor 13 is:
  • Tbrake is the required braking torque of the wheels
  • i is the transmission ratio between the output end of the third motor 13 and the input end of the second differential 32, that is, the speed ratio of the first gear of the second transmission 22
  • is the mechanical transmission efficiency from the third motor 13 to the rear wheel 400.
  • the first clutch 41 When driving in the economical mode, the first clutch 41 is in disengaged state, the second clutch 42 is in engaged state, the first transmission 21 maintains the current gear, the second transmission 22 is in neutral, and the first motor 11 and the second motor 12 do not work , the driving torque is provided by the third motor 13, and the demand torque T Mdmd of the third motor 13 is:
  • T drive is the required drive torque of the wheels
  • i is the transmission ratio between the output end of the third motor 13 and the input end of the second differential 32, that is, the speed ratio of the first gear of the second transmission 22
  • is the mechanical transmission efficiency from the third motor 13 to the rear wheel 400 .
  • the braking method in the economy mode is the same as that in the present embodiment in the sports mode.
  • the driving and braking methods in the comfort mode are the same as the driving and braking methods in the second embodiment respectively.
  • the switching conditions among the sports mode, the extreme mode, the economy mode and the comfort mode are the same as those in the second embodiment.
  • connection mode of the second clutch 42 and the deceleration mechanism 5 of the power system of the electric vehicle with dual clutches of the present embodiment is different from that of the first embodiment, and the deceleration mechanism 5 of the present embodiment is connected with the third motor 13 , the second transmission 22 is connected with the second motor 12, the output end of the second transmission 22 is coaxial with the output end of the reduction mechanism 5, and the second clutch 42 is connected with the second transmission 22 and the second differential 32 respectively.
  • the control method of the power system of the electric vehicle with dual clutches in this embodiment the driving and braking methods in the extreme mode are the same as the driving and braking methods in the extreme mode in Embodiment 1. .
  • the driving method in the sports mode is the same as the driving method in the extreme mode of this embodiment.
  • the first clutch 41 is in the disengaged state
  • the second clutch 42 is in the engaged state
  • the first transmission 21 maintains The current gear
  • the second transmission 22 is neutral
  • the first motor 11 and the second motor 12 do not work
  • the braking torque is provided by the third motor 13
  • the power generation demand torque T Mbrake of the third motor 13 is:
  • Tbrake is the required braking torque of the wheel
  • i is the transmission ratio between the output end of the third motor 13 and the input end of the second differential 32, that is, the speed ratio of the reduction mechanism 5
  • n is the speed ratio from the third The mechanical transmission efficiency of the motor 13 to the rear wheel 400.
  • the first clutch 41 When driving in the economical mode, the first clutch 41 is in disengaged state, the second clutch 42 is in engaged state, the first transmission 21 maintains the current gear, the second transmission 22 is in neutral, and the first motor 11 and the second motor 12 do not work , the driving torque is provided by the third motor 13, and the demand torque T Mdmd of the third motor 13 is:
  • T drive is the required drive torque of the wheel
  • i is the transmission ratio between the output end of the third motor 13 and the input end of the second differential 32, that is, the speed ratio of the reduction mechanism 5
  • n is the speed ratio from the third motor 13 Mechanical transmission efficiency to rear wheels 400.
  • the braking method in the economy mode is the same as that in the present embodiment in the sports mode.
  • the methods of driving and braking in the comfort mode are the same as the methods of driving and braking in the comfort mode in the first embodiment.
  • the switching conditions among the sports mode, the extreme mode, the economy mode and the comfort mode are the same as those in the first embodiment.
  • the difference between the power system of the electric vehicle with dual clutches of the present embodiment and the second embodiment is that the connection position of the second clutch 42 is different, and the second clutch 42 of the present embodiment is connected with the second motor respectively.
  • the output end of 12 is connected with the input end of the second transmission 22
  • the third motor 13 is connected with the input end of the second transmission 22
  • the output end of the second transmission 22 is connected with the input end of the second differential 32 .
  • the control method of the power system of the electric vehicle with dual clutches in this embodiment the driving and braking methods in the extreme mode are the same as the driving and braking methods in the extreme mode in the second embodiment .
  • the driving method in the sports mode is the same as the driving method in the extreme mode of this embodiment.
  • the first clutch 41 and the second clutch 42 are all in a disengaged state, and the first transmission 21 and the second transmission 22 keep the current gear, the first motor 11 and the second motor 12 do not work, the braking torque is provided by the third motor 13, and the power generation demand torque T Mbrake of the third motor 13 is:
  • Tbrake is the required braking torque of the wheels
  • i is the transmission ratio between the output end of the third motor 13 and the input end of the second differential 32, that is, the speed ratio of the first gear of the second transmission 22
  • is the mechanical transmission efficiency from the third motor 13 to the rear wheel 400.
  • the required torque T Mdmd of the third motor 13 is:
  • T drive is the required drive torque of the wheels
  • i is the transmission ratio between the output end of the third motor 13 and the input end of the second differential 32, that is, the speed ratio of the first gear of the second transmission 22
  • is the mechanical transmission efficiency from the motor to the wheels.
  • the braking method in the economy mode is the same as that in the present embodiment in the sports mode.
  • the driving and braking methods in the comfort mode are the same as the driving and braking methods in the second embodiment respectively.
  • the switching conditions among the sports mode, the extreme mode, the economy mode and the comfort mode are the same as those in the second embodiment.
  • connection mode of the second clutch 42 and the deceleration mechanism 5 of the power system of the electric vehicle with dual clutches of the present embodiment is different from the fifth embodiment, and the deceleration mechanism 5 of the present embodiment is connected with the third motor 13 , the second motor 12 is connected to the second transmission 22 through the second clutch 42 , and the output end of the second transmission 22 is coaxial with the output end of the reduction mechanism 5 and then connected to the second differential 32 .
  • control method of the power system of the electric vehicle with dual clutches in this embodiment is the same as the fifth embodiment in the extreme mode, sports mode, economical mode and comfort mode.
  • the switching conditions among the sports mode, the extreme mode, the economy mode and the comfort mode are the same as those in the fifth embodiment.
  • connection mode of the first clutch 41 of the power system of the electric vehicle with double clutch of the present embodiment is different from embodiment two, and the first clutch 41 of the present embodiment is connected with the output end of the first motor 11 respectively. It is connected with the first transmission 21 , and the output terminal of the first transmission 21 is connected with the input terminal of the first differential 31 .
  • control method of the power system of the electric vehicle with dual clutches in this embodiment is the same as the second embodiment in the extreme mode, sports mode, economical mode and comfort mode.
  • the switching conditions among the sports mode, the extreme mode, the economy mode and the comfort mode are the same as those in the second embodiment.
  • connection mode of the first clutch 41 of the power system of the electric vehicle with double clutch of the present embodiment is different from the first embodiment, the first clutch 41 of the present embodiment is respectively connected with the output end of the first motor 11 It is connected with the first transmission 21 , and the output terminal of the first transmission 21 is connected with the input terminal of the first differential 31 .
  • the control method of the power system of the electric vehicle with dual clutches in this embodiment is the same as Embodiment 1 in the extreme mode, sports mode, economy mode and comfort mode.
  • the switching conditions among the sports mode, the extreme mode, the economy mode and the comfort mode are the same as those in the first embodiment.
  • connection mode of the first clutch 41 of the power system of the electric vehicle with double clutch of the present embodiment is different from the embodiment four, and the first clutch 41 of the present embodiment is connected with the output terminal of the first motor 11 respectively. It is connected with the first transmission 21 , and the output terminal of the first transmission 21 is connected with the input terminal of the first differential 31 .
  • control method of the power system of the electric vehicle with dual clutches in this embodiment is the same as the fourth embodiment in the extreme mode, sports mode, economical mode and comfort mode.
  • the switching conditions among the sports mode, the extreme mode, the economy mode and the comfort mode are the same as those in the fourth embodiment.
  • connection mode of the first clutch 41 of the power system of the electric vehicle with double clutch of the present embodiment is different from the third embodiment, the first clutch 41 of the present embodiment is respectively connected with the output end of the first motor 11 It is connected with the first transmission 21 , and the output terminal of the first transmission 21 is connected with the input terminal of the first differential 31 .
  • control method of the power system of the electric vehicle with dual clutches in this embodiment is the same as the third embodiment in the extreme mode, sports mode, economical mode and comfort mode.
  • the switching conditions among the sports mode, the extreme mode, the economy mode and the comfort mode are the same as those in the third embodiment.
  • connection mode of the first clutch 41 of the power system of the electric vehicle with double clutch of the present embodiment is different from the embodiment six, and the first clutch 41 of the present embodiment is connected with the output end of the first motor 11 respectively. It is connected with the first transmission 21 , and the output terminal of the first transmission 21 is connected with the input terminal of the first differential 31 .
  • the control method of the power system of the electric vehicle with dual clutches in this embodiment is the same as Embodiment 6 in the extreme mode, sports mode, economy mode and comfort mode.
  • the switching conditions among the sports mode, the extreme mode, the economy mode and the comfort mode are the same as those in the sixth embodiment.
  • connection mode of the first clutch 41 of the power system of the electric vehicle with double clutch of the present embodiment is different from the embodiment five, and the first clutch 41 of the present embodiment is connected with the output end of the first motor 11 respectively. It is connected with the first transmission 21 , and the output terminal of the first transmission 21 is connected with the input terminal of the first differential 31 .
  • control method of the power system of the electric vehicle with dual clutches in this embodiment is the same as the fifth embodiment in the extreme mode, sports mode, economical mode and comfort mode.
  • the switching conditions among the sports mode, the extreme mode, the economy mode and the comfort mode are the same as those in the fifth embodiment.
  • connection mode of the first clutch 41 of the power system of the electric vehicle with double clutch of the present embodiment is different from the embodiment seven, and the first clutch 41 of the present embodiment is connected with the output end of the first motor 11 respectively. It is connected with the first transmission 21 , and the output terminal of the first transmission 21 is connected with the input terminal of the first differential 31 .
  • the control method of the power system of the electric vehicle with dual clutches in this embodiment is the same as Embodiment 7 in the extreme mode, sports mode, economy mode and comfort mode.
  • the switching conditions among the sports mode, the extreme mode, the economy mode and the comfort mode are the same as those in the seventh embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种带双离合器的电动汽车的动力系统及其控制方法,其中带双离合器的电动汽车的动力系统包括:三个电机,分别为第一电机(11)、第二电机(12)及第三电机(13);两个变速器,分别为第一变速器(21)和第二变速器(22);两个差速器,分别为第一差速器(31)和第二差速器(32);两个离合器,分别为第一离合器(41)和第二离合器(42),第一离合器(41)位于第一电机(11)和第一差速器(31)之间,第二离合器(42)位于第二电机(12)与第二差速器(32)之间或者第三电机(13)与第二差速器(32)之间。动力系统减小了电机的随转损失,使得电动汽车驱动时的阻力更小,耗电量更少,从而延长了电动汽车的续航里程。

Description

一种带双离合器的电动汽车的动力系统及其控制方法
本申请要求在2021年7月22日提交中国专利局、申请号为202110830629.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车技术领域,例如涉及一种带双离合器的电动汽车的动力系统及其控制方法。
背景技术
当前纯电动汽车发展越来越快,为了追求较好的动力性,很多车型均采用四驱方案,即前后各采用一套包括一个电机和一个单级减速器的电驱动系统。永磁同步电机由于其功率密度大,而且效率较高,目前在纯电动汽车上得到了广泛应用。但是永磁同步电机与异步电机的不同之处在于:永磁同步电机在随转工况下其反拖扭矩较大,而且为了防止反电动势过高,其在高转速段的弱磁电流较大,消耗电能较多,这些均导致了采用永磁同步电机的四驱车型电耗较高,续驶里程较短,影响车型竞争力。
发明内容
本申请提供一种带双离合器的电动汽车的动力系统,减小了电机的随转损失,使得电动汽车驱动时的阻力更小、耗电量更少,从而延长了电动汽车的续航里程。
本申请采用以下技术方案:
一种带双离合器的电动汽车的动力系统,包括:三个电机,三个所述电机分别为第一电机、第二电机及第三电机;两个变速器,两个所述变速器分别为第一变速器和第二变速器,所述第一变速器的输入端与所述第一电机的输出端 相连,所述第二变速器的输入端与所述第二电机的输出端和所述第三电机的输出端中至少之一相连;两个差速器,两个所述差速器分别为第一差速器和第二差速器,所述第一差速器的输入端与所述第一变速器的输出端相连,所述第一差速器的输出端与电动汽车的前轴相连以带动前车轮转动,所述第二差速器的输入端与所述第二变速器的输出端相连,所述第二差速器的输出端与所述电动汽车的后轴相连以带动后车轮转动;两个离合器,两个所述离合器分别为第一离合器和第二离合器,所述第一离合器位于所述第一电机和所述第二差速器之间,所述第二离合器位于所述第二电机或者所述第三电机与所述第二差速器之间。
本申请还提供了一种电动汽车的动力系统的控制方法。
一种适用于以上方案所述的带双离合器的电动汽车的动力系统的控制方法,包括极致模式,两个所述离合器均处于结合状态;
在所述极致模式下驱动时,所述第一电机、所述第二电机及所述第三电机均采用扭矩控制模式且输出的扭矩的大小由加速踏板的开度确定;所述变速器在所述电机的转速低于或等于预设转速时处于第一挡位,在所述电机的转速高于所述预设转速时处于第二挡位;所述第一电机、所述第二电机或所述第三电机的需求扭矩T Mdmd为:
Figure PCTCN2022107368-appb-000001
其中,当计算所述第一电机的需求扭矩T M1dmd时,α取2;当计算所述第二电机的需求扭矩T M2dmd或所述第三电机的需求扭矩T M3dmd时,α取4;T drive为车轮的需求驱动扭矩,i为所述电机的输出端与所述差速器的输入端之间的传动比,η为从所述电机到车轮的机械传递效率;
在所述极致模式下制动时,两个所述变速器均保持当前挡位,制动扭矩由所述第一电机提供,所述第二电机和所述第三电机不工作,所述第一电机的发电需求扭矩T M1brake为:
Figure PCTCN2022107368-appb-000002
其中,T brake为车轮的需求制动扭矩,i 1为所述第一电机的输出端与所述第一差速器的输入端之间的传动比,η 1为从所述第一电机到所述前车轮的机械传递效率。
附图说明
图1是本申请实施例一提供的带双离合器的电动汽车的动力系统的示意图;
图2是本申请实施例二提供的带双离合器的电动汽车的动力系统的示意图;
图3是本申请实施例三提供的带双离合器的电动汽车的动力系统的示意图;
图4是本申请实施例四提供的带双离合器的电动汽车的动力系统的示意图;
图5是本申请实施例五提供的带双离合器的电动汽车的动力系统的示意图;
图6是本申请实施例六提供的带双离合器的电动汽车的动力系统的示意图;
图7是本申请实施例七提供的带双离合器的电动汽车的动力系统的示意图;
图8是本申请实施例八提供的带双离合器的电动汽车的动力系统的示意图;
图9是本申请实施例九提供的带双离合器的电动汽车的动力系统的示意图;
图10是本申请实施例十提供的带双离合器的电动汽车的动力系统的示意图;
图11是本申请实施例十一提供的带双离合器的电动汽车的动力系统的示意图;
图12是本申请实施例十二提供的带双离合器的电动汽车的动力系统的示意图;
图13是本申请实施例十三提供的带双离合器的电动汽车的动力系统的示意图;
图14是本申请实施例十四提供的带双离合器的电动汽车的动力系统的示意图。
图中:
11、第一电机;12、第二电机;13、第三电机;
21、第一变速器;22、第二变速器;
31、第一差速器;32、第二差速器;
41、第一离合器;42、第二离合器;
5、减速机构;
100、前轴;200、前车轮;300、后轴;400、后车轮。
具体实施方式
下面将结合附图对本申请实施例的技术方案作详细描述。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述,而不能理解为指示或暗示相对重要性。其中,术语“第一位置”和“第二位置”为两个不同的位置。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本申请中的含义。
实施例一
本实施例提供一种带双离合器的电动汽车的动力系统,如图1所示,包括三个电机、两个变速器、两个差速器及两个离合器,三个电机均为永磁同步电机,永磁同步电机具有功率密度大、效率较高且能够为电动汽车提供较好的加 速性能的特点,三个电机分别为第一电机11、第二电机12及第三电机13,两个变速器分别为第一变速器21和第二变速器22,第一变速器21的输入端与第一电机11的输出端相连,第二变速器22的输入端与第二电机12的输出端和第三电机13的输出端中至少之一相连,两个差速器分别为第一差速器31和第二差速器32,第一差速器31的输入端与第一变速器21的输出端相连,第一差速器31的输出端与电动汽车的前轴100相连以带动前车轮200转动,第二差速器32的输入端与第二变速器22的输出端相连,第二差速器32的输出端与电动汽车的后轴300相连以带动后车轮400转动,两个离合器分别为第一离合器41和第二离合器42,第一离合器41位于第一电机11和第一差速器31之间,第一离合器41能够使第一电机11的动力传递至第一差速器31上,并能够切断第一电机11和第一差速器31之间的动力连接,第二离合器42位于第三电机13与第二差速器32之间,第二离合器42能够使第三电机13的动力传递至第二差速器32上,并能够切断第三电机13和第二差速器32之间的动力连接。
本实施例提供的带双离合器的电动汽车的动力系统的三个电机、两个变速器及两个离合器联合使用,使得系统对工况的匹配度较高,提高电动车辆的环境适应性,同时三个电机能够为电动汽车提供更强的加速性能,使电动汽车在低挡时具有更强的动力,从而减小了电机的随转损失,进而使得电动汽车驱动时的阻力更小、耗电量更少,延长了电动汽车的续航里程。
示例性地,本实施例的第一离合器41分别与第一电机11的输出端和第一差速器31的输入端相连,该带双离合器的电动汽车的动力系统还包括减速机构5,该减速机构5为单级减速机构5,减速机构5与第三电机13相连,第二离合器42分别与第三电机13的输出端和减速机构5的输入端相连,第二变速器22与减速机构5的输出端同轴设置且两者均与第二差速器32相连,从而将第三电机13和第二电机12的动力输出至后轴300上以驱动后车轮400转动。
本实施例还提供了一种适用于该带双离合器的电动汽车的动力系统的控制方法,该带双离合器的电动汽车的动力系统的控制方法包括运动模式、极致模 式、经济模式及舒适模式。
示例性地,在极致模式时,两个离合器均处于结合状态,在本实施例中,变速器在第二电机12的转速低于或等于预设转速时处于第一挡位,在第二电机12的转速高于预设转速时处于第二挡位。以预设转速为第二电机12的最高转速为例,当车速超过预设车速(例如200km/h)对应的第二电机12的最高转速(例如16000rpm)时,变速器切换成第二挡位。
在极致模式下驱动时,第一电机11、第二电机12及第三电机13均采用扭矩控制模式且输出的扭矩的大小由加速踏板的开度确定,根据驾驶员需求扭矩图表,可由加速踏板的开度查表的得出车轮的需求驱动扭矩T drive,此方法为本领域技术人员的公知常识,此处不再赘述。第一电机11、第二电机12或第三电机13的需求扭矩T Mdmd为:
Figure PCTCN2022107368-appb-000003
其中,当计算第一电机11的需求扭矩T M1dmd时,α取2;当计算第二电机12的需求扭矩T M2dmd或第三电机13的需求扭矩T M3dmd时,α取4;T drive为车轮的需求驱动扭矩,i为电机的输出端与差速器的输入端之间的传动比,η为从电机到车轮的机械传递效率。
计算第一电机11的需求扭矩T M1dmd时,i为第一电机11的输出端与第一差速器31的输入端之间的传动比,即第一变速器21的当前挡位的速比;计算第二电机12的需求扭矩T M2dmd时,i为第二电机12的输出端与第二差速器32的输入端之间的传动比,即第二变速器22的当前挡位的速比;计算第三电机13的需求扭矩T M3dmd时,i为第三电机13的输出端与第二差速器32的输入端之间的传动比,即减速机构5的速比。
在极致模式下制动时,两个变速器均保持当前挡位,制动扭矩由第一电机11提供,第二电机12和第三电机13不工作,第一电机11的发电需求扭矩T M1brake为:
Figure PCTCN2022107368-appb-000004
其中,T brake为车轮的需求制动扭矩,i 1为第一电机11的输出端与第一差速器31的输入端之间的传动比,η 1为从第一电机11到前车轮200的机械传递效率。
本实施例提供的带双离合器的电动汽车的动力系统的控制方法包括极致模式,驱动时,三个电机均采用扭矩控制模式,保证电动汽车具有最优的加速性和最高的车速,制动时,两个离合器均保持结合状态,两个变速器均不换挡,使得下一次驱动更加顺畅,避免了离合器结合带来的动力延迟,保证了电动汽车具有较好的加速性能,提高了电动汽车的经济性,延长了电动汽车的续航里程。
在运动模式下驱动时,与在极致模式下的驱动相同,此处不再赘述。
在运动模式下制动时,第一离合器41处于分离状态,第二离合器42处于分离状态,第一变速器21和第二变速器22保持当前挡位,第一电机11和第三电机13不工作,制动扭矩由第二电机12提供,第二电机12的发电需求扭矩T Mbrake为:
Figure PCTCN2022107368-appb-000005
其中,T brake为车轮的需求制动扭矩,i为第二电机12的输出端与第二差速器32的输入端之间的传动比,η为从电机到车轮的机械传递效率。
在经济模式下驱动时,第一离合器41处于分离状态,第二离合器42处于分离状态,第一变速器21和第二变速器22保持当前挡位,第一电机11和第三电机13不工作,驱动扭矩由第二电机12提供,第二电机12的需求扭矩T Mdmd为:
Figure PCTCN2022107368-appb-000006
其中,T drive为车轮的需求驱动扭矩,i为第二电机12的输出端与第二差速器32的输入端之间的传动比,η为从第二电机12到后车轮400的机械传递效率。
在经济模式下制动的方法与本实施例在运动模式下的制动方法相同。
需要说明的是,经济模式主要是考虑经济性,弱化动力性,驱动时通过一个电机实现,能够大幅度提高电机的使用效率,提升经济性,同时制动时也能够减少电机和传动系统的拖滞损失,而且采用一个电机制动其使用效率也较高。
在舒适模式时,两个离合器均处于结合状态。
在舒适模式下驱动时,第一电机11、第二电机12和第三电机13均采用扭矩控制模式且发出的扭矩的大小由加速踏板的开度确定,第一变速器21和第二变速器22均保持在第一挡位不换挡,第一电机11、第二电机12及第三电机13均采用扭矩控制模式,第一电机11、第二电机12或第三电机13的需求扭矩T Mdmd为:
Figure PCTCN2022107368-appb-000007
其中,当计算第一电机11的需求扭矩T M1dmd时,α取2;当计算第二电机12的需求扭矩T M2dmd或第三电机13的需求扭矩T M3dmd时,α取4;T drive为车轮的需求驱动扭矩,i为电机的输出端与差速器的输入端之间的传动比,η为从电机到车轮的机械传递效率。
在舒适模式下制动时,制动扭矩由第一电机11提供,第二电机12和第三电机13不工作,第一电机11的发电需求扭矩T M1brake为:
Figure PCTCN2022107368-appb-000008
其中,T brake为车轮的需求制动扭矩,i 1为第一电机11的输出端与第一差速器31的输入端之间的传动比,η 1为从第一电机11到前车轮200的机械传递效率。
舒适模式主要考虑舒适性,在舒适模式下驱动时和制动时均让离合器保持结合状态,同时变速器不换挡,减少了离合器分离结合的冲击,同时减少了换挡过程中的冲击和顿挫,提升舒适性。
本实施例的带双离合器的电动汽车的动力系统的控制方法中的运动模式、极致模式、经济模式及舒适模式的切换条件如下:
若当前模式为运动模式,则能够向极致模式切换的条件为:车速小于1km/h,且车辆为停车挡或空挡,且动力电池的荷电状态大于50%;则能够向经济模式切换的条件为:车速小于5km/h,且油门踏板未踩下;则能够向舒适模式切换的条件为:车速小于5km/h,且油门踏板未踩下。
若当前模式为极致模式,则能够向运动模式切换的条件为:车速小于5km/h,且油门踏板未踩下,且动力电池的荷电状态大于30%;则能够向经济模式切换的条件为:车速小于5km/h,且油门踏板未踩下;则能够向舒适模式切换的条件为:车速小于5km/h,且油门踏板未踩下。
若当前模式为经济模式,则能够向极致模式切换的条件为:车速小于1km/h,且车辆为停车挡或空挡,且动力电池的荷电状态大于50%;则能够向运动模式切换的条件为:车速小于5km/h,且油门踏板未踩下,且动力电池的荷电状态大于30%;则能够向舒适模式切换的条件为:车速小于5km/h,且油门踏板未踩下。
若当前模式为舒适模式,则能够向极致模式切换的条件为:车速小于1km/h,且车辆为停车挡或空挡,且动力电池的荷电状态大于50%;则能够向运动模式切换的条件为:车速小于5km/h,且油门踏板未踩下,且动力电池的荷电状态大于30%;则能够向经济模式切换的条件为:车速小于5km/h,且油门踏板未踩下。
作为一种带双离合器的电动汽车的动力系统的可选方案,所述第一离合器分别与所述第一电机的输出端和所述第一变速器的输入端相连,或者所述第一离合器分别与所述第一变速器的输出端和所述第一差速器的输入端相连。
作为一种带双离合器的电动汽车的动力系统的可选方案,所述第二离合器分别与所述第二电机的输出端和第二变速器的输入端相连,或者所述第二离合器分别与所述第三电机的输出端和所述第二变速器的输入端相连,或者所述第二离合器分别与所述第二变速器和所述第二差速器相连。
作为一种带双离合器的电动汽车的动力系统的可选方案,所述第二电机与所述第二变速器相连,所述第三电机与所述减速机构相连,所述第二变速器与所述减速机构同轴设置且两者均与所述第二差速器相连的情况下,所述第二离合器分别与所述第二电机的输出端和所述第二变速器的输入端相连,或者所述第二离合器分别与所述减速机构和所述第二差速器相连;在所述第二电机与所述第二变速器相连,所述第三电机第二变速器相连的情况下,所述第三电机的输出端与所述第二变速器的输入端相连,或者所述第二离合器分别与所述第二变速器和所述第二差速器相连。
实施例二
如图2所示,本实施例的带双离合器的电动汽车的动力系统与实施例一的不同之处在于,本实施例的带双离合器的电动汽车的动力系统不包括减速机构5,第二离合器42分别与第三电机13的输出端和第二变速器22的输入端相连,第二变速器22的输入端还与第二电机12相连,第二变速器22的输出端与第二差速器32相连,此时第二电机12和第三电机13共用第二变速器22的一个挡位,第三电机13仅能通过第二变速器22的一个挡位输出动力,通过换挡,第二电机12能够通过第二变速器22的两个挡位输出动力,使得第二电机12和第三电机13的动力通过第二变速器22和第二差速器32传输至后轴300上以使后车轮400转动。
本实施例的带双离合器的电动汽车的动力系统的控制方法,在极致模式下驱动时,第二电机12和第三电机13共用第一挡位,计算第三电机13的需求扭矩T M3dmd时,i为第三电机13的输出端与第二差速器32的输入端之间的传动比,即为第二变速器22的第一挡位速比;在极致模式下制动时与实施例一相同。
在运动模式下驱动的方法与本实施例在极致模式下的驱动方法相同,在运动模式下的制动方法与实施例一在极致模式下的制动方法相同。
在经济模式下驱动的方法与实施例一在运动模式下驱动的方法相同,在经济模式下的制动的方法与本实施例在运动模式下的制动的方法相同。
在舒适模式下驱动时,计算第三电机13的需求扭矩T M3dmd时,i为第三电机13的输出端与第二差速器32的输入端之间的传动比,即为第二变速器22的第一挡位速比;在舒适模式下制动时与实施例一舒适模式下制动方法相同。
运动模式、极致模式、经济模式及舒适模式之间的切换条件与实施例一相同。
实施例三
如图3所示,本实施例的带双离合器的电动汽车的动力系统的第二离合器42和减速机构5的连接方式不同于实施例一,本实施例的减速机构5与第三电机13相连,第二变速器22与第二电机12相连,第二变速器22的输出端与减速机构5的输出端同轴,第二离合器42分别与减速机构5和第二差速器32相连。
本实施例的带双离合器的电动汽车的动力系统的控制方法与实施例一相比,在极致模式下驱动和制动的方法分别与实施例一在极致模式下的驱动和制动的方法相同。
在运动模式下驱动的方法与本实施例在极致模式下的驱动方法相同,在运动模式下制动时,第一离合器41处于分离状态,第二离合器42处于结合状态,第一变速器21保持当前挡位,第二变速器22为空挡,第一电机11和第二电机12不工作,制动扭矩由第三电机13提供,第三电机13的发电需求扭矩T Mbrake为:
Figure PCTCN2022107368-appb-000009
其中,T brake为车轮的需求制动扭矩,i为第三电机13的输出端与第二差速器32的输入端之间的传动比,即减速机构5的速比,η为从第三电机13到后车轮400的机械传递效率。
在经济模式下驱动时,第一离合器41处于分离状态,第二离合器42处于结合状态,第一变速器21保持当前挡位,第二变速器22为空挡,第一电机11和第二电机12不工作,驱动扭矩由第三电机13提供,第三电机13的需求扭矩T Mdmd为:
Figure PCTCN2022107368-appb-000010
其中,T drive为车轮的需求驱动扭矩,i为第三电机13的输出端与第二差速器32的输入端之间的传动比,即减速机构5的速比,η为从第三电机13到后车轮400的机械传递效率。
在经济模式下制动的方法与本实施例在运动模式下的制动方法相同。
在舒适模式下驱动和制动的方法分别与实施例一在舒适模式下驱动和制动的方法相同。
运动模式、极致模式、经济模式及舒适模式之间的切换条件与实施例一相同。
实施例四
如图4所示,本实施例的带双离合器的电动汽车的动力系统与实施例二的不同之处在于第二离合器42的连接位置不同,本实施例的第二离合器42分别与第二变速器22的输出端和第二差速器32的输入端相连,第二电机12和第三电机13均与第二变速器22的输入端相连。其中,第二变速器22并非左右对称结构,第二电机12所连接的第二变速器22的左侧具有换挡功能,而第三电机13所连接的第二变速器22的右侧不具有换挡功能。
本实施例的带双离合器的电动汽车的动力系统的控制方法与实施例二相比, 在极致模式下驱动和制动的方法分别与实施例二在极致模式下的驱动和制动的方法相同。
在运动模式下驱动的方法与本实施例在极致模式下的驱动方法相同,在运动模式下的制动时,第一离合器41处于分离状态,第二离合器42处于结合状态,第一变速器21保持当前挡位,第二变速器22为空挡,这里所述的空挡是指第二变速器22连接第二电机12的部分为空挡,第二变速器22连接第三电机13的部分恒为第一挡位。第一电机11和第二电机12不工作,制动扭矩由第三电机13提供,第三电机13的发电需求扭矩T Mbrake为:
Figure PCTCN2022107368-appb-000011
其中,T brake为车轮的需求制动扭矩,i为第三电机13的输出端与第二差速器32的输入端之间的传动比,即第二变速器22的第一挡位的速比,η为从第三电机13到后车轮400的机械传递效率。
在经济模式下驱动时,第一离合器41处于分离状态,第二离合器42处于结合状态,第一变速器21保持当前挡位,第二变速器22为空挡,第一电机11和第二电机12不工作,驱动扭矩由第三电机13提供,第三电机13的需求扭矩T Mdmd为:
Figure PCTCN2022107368-appb-000012
其中,T drive为车轮的需求驱动扭矩,i为第三电机13的输出端与第二差速器32的输入端之间的传动比,即第二变速器22的第一挡位的速比,η为从第三电机13到后车轮400的机械传递效率。
在经济模式下制动的方法与本实施例在运动模式下的制动方法相同。
在舒适模式下驱动和制动的方法分别与实施例二在舒适模式下驱动和制动的方法相同。
运动模式、极致模式、经济模式及舒适模式之间的切换条件与实施例二相 同。
实施例五
如图5所示,本实施例的带双离合器的电动汽车的动力系统的第二离合器42和减速机构5的连接方式不同于实施例一,本实施例的减速机构5与第三电机13相连,第二变速器22与第二电机12相连,第二变速器22的输出端与减速机构5的输出端同轴,第二离合器42分别与第二变速器22和第二差速器32相连。
本实施例的带双离合器的电动汽车的动力系统的控制方法与实施例一相比,在极致模式下驱动和制动的方法分别与实施例一在极致模式下的驱动和制动的方法相同。
在运动模式下驱动的方法与本实施例在极致模式下的驱动方法相同,在运动模式下的制动时,第一离合器41处于分离状态,第二离合器42处于结合状态,第一变速器21保持当前挡位,第二变速器22为空挡,第一电机11和第二电机12不工作,制动扭矩由第三电机13提供,第三电机13的发电需求扭矩T Mbrake为:
Figure PCTCN2022107368-appb-000013
其中,T brake为车轮的需求制动扭矩,i为第三电机13的输出端与第二差速器32的输入端之间的传动比,即减速机构5的速比,η为从第三电机13到后车轮400的机械传递效率。
在经济模式下驱动时,第一离合器41处于分离状态,第二离合器42处于结合状态,第一变速器21保持当前挡位,第二变速器22为空挡,第一电机11和第二电机12不工作,驱动扭矩由第三电机13提供,第三电机13的需求扭矩T Mdmd为:
Figure PCTCN2022107368-appb-000014
其中,T drive为车轮的需求驱动扭矩,i为第三电机13的输出端与第二差速器32的输入端之间的传动比,即减速机构5的速比,η为从第三电机13到后车轮400的机械传递效率。
在经济模式下制动的方法与本实施例在运动模式下的制动方法相同。
在舒适模式下驱动和制动的方法分别与实施例一在舒适模式下驱动和制动的方法相同。
运动模式、极致模式、经济模式及舒适模式之间的切换条件与实施例一相同。
实施例六
如图6所示,本实施例的带双离合器的电动汽车的动力系统与实施例二的不同之处在于第二离合器42的连接位置不同,本实施例的第二离合器42分别与第二电机12的输出端和第二变速器22的输入端相连,第三电机13与第二变速器22的输入端相连,第二变速器22的输出端与第二差速器32的输入端相连。
本实施例的带双离合器的电动汽车的动力系统的控制方法与实施例二相比,在极致模式下驱动和制动的方法分别与实施例二在极致模式下的驱动和制动的方法相同。
在运动模式下驱动的方法与本实施例在极致模式下的驱动方法相同,在运动模式下制动时,第一离合器41和第二离合器42均处于分离状态,第一变速器21和第二变速器22均保持当前挡位,第一电机11和第二电机12不工作,制动扭矩由第三电机13提供,第三电机13的发电需求扭矩T Mbrake为:
Figure PCTCN2022107368-appb-000015
其中,T brake为车轮的需求制动扭矩,i为第三电机13的输出端与第二差速 器32的输入端之间的传动比,即第二变速器22的第一挡位的速比,η为从第三电机13到后车轮400的机械传递效率。
在经济模式下驱动时,第一离合器41和第二离合器42均处于分离状态,第一变速器21和第二变速器22均保持当前挡位,第一电机11和第二电机12不工作,驱动扭矩由第三电机13提供,第三电机13的需求扭矩T Mdmd为:
Figure PCTCN2022107368-appb-000016
其中,T drive为车轮的需求驱动扭矩,i为第三电机13的输出端与第二差速器32的输入端之间的传动比,即第二变速器22的第一挡位的速比,η为从电机到车轮的机械传递效率。
在经济模式下制动的方法与本实施例在运动模式下的制动方法相同。
在舒适模式下驱动和制动的方法分别与实施例二在舒适模式下驱动和制动的方法相同。
运动模式、极致模式、经济模式及舒适模式之间的切换条件与实施例二相同。
实施例七
如图7所示,本实施例的带双离合器的电动汽车的动力系统的第二离合器42和减速机构5的连接方式不同于实施例五,本实施例的减速机构5与第三电机13相连,第二电机12通过第二离合器42与第二变速器22相连,第二变速器22的输出端与减速机构5的输出端同轴后与第二差速器32相连。
本实施例的带双离合器的电动汽车的动力系统的控制方法与实施例五相比,在极致模式、运动模式、经济模式及舒适模式下的控制方法分别与实施例五相同。运动模式、极致模式、经济模式及舒适模式之间的切换条件与实施例五相同。
实施例八
如图8所示,本实施例的带双离合器的电动汽车的动力系统的第一离合器41的连接方式不同于实施例二,本实施例的第一离合器41分别与第一电机11的输出端和第一变速器21相连,第一变速器21的输出端与第一差速器31的输入端相连。
本实施例的带双离合器的电动汽车的动力系统的控制方法与实施例二相比,在极致模式、运动模式、经济模式及舒适模式下的控制方法分别与实施例二相同。运动模式、极致模式、经济模式及舒适模式之间的切换条件与实施例二相同。
实施例九
如图9所示,本实施例的带双离合器的电动汽车的动力系统的第一离合器41的连接方式不同于实施例一,本实施例的第一离合器41分别与第一电机11的输出端和第一变速器21相连,第一变速器21的输出端与第一差速器31的输入端相连。
本实施例的带双离合器的电动汽车的动力系统的控制方法与实施例一相比,在极致模式、运动模式、经济模式及舒适模式下的控制方法分别与实施例一相同。运动模式、极致模式、经济模式及舒适模式之间的切换条件与实施例一相同。
实施例十
如图10所示,本实施例的带双离合器的电动汽车的动力系统的第一离合器41的连接方式不同于实施例四,本实施例的第一离合器41分别与第一电机11的输出端和第一变速器21相连,第一变速器21的输出端与第一差速器31的输入端相连。
本实施例的带双离合器的电动汽车的动力系统的控制方法与实施例四相比, 在极致模式、运动模式、经济模式及舒适模式下的控制方法分别与实施例四相同。运动模式、极致模式、经济模式及舒适模式之间的切换条件与实施例四相同。
实施例十一
如图11所示,本实施例的带双离合器的电动汽车的动力系统的第一离合器41的连接方式不同于实施例三,本实施例的第一离合器41分别与第一电机11的输出端和第一变速器21相连,第一变速器21的输出端与第一差速器31的输入端相连。
本实施例的带双离合器的电动汽车的动力系统的控制方法与实施例三相比,在极致模式、运动模式、经济模式及舒适模式下的控制方法分别与实施例三相同。运动模式、极致模式、经济模式及舒适模式之间的切换条件与实施例三相同。
实施例十二
如图12所示,本实施例的带双离合器的电动汽车的动力系统的第一离合器41的连接方式不同于实施例六,本实施例的第一离合器41分别与第一电机11的输出端和第一变速器21相连,第一变速器21的输出端与第一差速器31的输入端相连。
本实施例的带双离合器的电动汽车的动力系统的控制方法与实施例六相比,在极致模式、运动模式、经济模式及舒适模式下的控制方法分别与实施例六相同。运动模式、极致模式、经济模式及舒适模式之间的切换条件与实施例六相同。
实施例十三
如图13所示,本实施例的带双离合器的电动汽车的动力系统的第一离合器 41的连接方式不同于实施例五,本实施例的第一离合器41分别与第一电机11的输出端和第一变速器21相连,第一变速器21的输出端与第一差速器31的输入端相连。
本实施例的带双离合器的电动汽车的动力系统的控制方法与实施例五相比,在极致模式、运动模式、经济模式及舒适模式下的控制方法分别与实施例五相同。运动模式、极致模式、经济模式及舒适模式之间的切换条件与实施例五相同。
实施例十四
如图14所示,本实施例的带双离合器的电动汽车的动力系统的第一离合器41的连接方式不同于实施例七,本实施例的第一离合器41分别与第一电机11的输出端和第一变速器21相连,第一变速器21的输出端与第一差速器31的输入端相连。
本实施例的带双离合器的电动汽车的动力系统的控制方法与实施例七相比,在极致模式、运动模式、经济模式及舒适模式下的控制方法分别与实施例七相同。运动模式、极致模式、经济模式及舒适模式之间的切换条件与实施例七相同。

Claims (10)

  1. 一种带双离合器的电动汽车的动力系统,包括:
    三个电机,三个所述电机分别为第一电机(11)、第二电机(12)及第三电机(13);
    两个变速器,两个所述变速器分别为第一变速器(21)和第二变速器(22),所述第一变速器(21)的输入端与所述第一电机(11)的输出端相连,所述第二变速器(22)的输入端与所述第二电机(12)的输出端和所述第三电机(13)的输出端中至少之一相连;
    两个差速器,两个所述差速器分别为第一差速器(31)和第二差速器(32),所述第一差速器(31)的输入端与所述第一变速器(21)的输出端相连,所述第一差速器(31)的输出端与电动汽车的前轴(100)相连以带动前车轮(200)转动,所述第二差速器(32)的输入端与所述第二变速器(22)的输出端相连,所述第二差速器(32)的输出端与所述电动汽车的后轴(300)相连以带动后车轮(400)转动;
    两个离合器,两个所述离合器分别为第一离合器(41)和第二离合器(42),所述第一离合器(41)位于所述第一电机(11)和所述第一差速器(31)之间,所述第二离合器(42)位于所述第二电机(12)与所述第二差速器(32)之间或者所述第二离合器(42)位于所述第三电机(13)与所述第二差速器(32)之间。
  2. 根据权利要求1所述的带双离合器的电动汽车的动力系统,其中,所述第一离合器(41)分别与所述第一电机(11)的输出端和所述第一变速器(21)的输入端相连,或者所述第一离合器(41)分别与所述第一变速器(21)的输出端和所述第一差速器(31)的输入端相连。
  3. 根据权利要求1所述的带双离合器的电动汽车的动力系统,其中,所述第二离合器(42)分别与所述第二电机(12)的输出端和第二变速器(22)的输入端相连,或者所述第二离合器(42)分别与所述第三电机(13)的输出端和所述第二变速器(22)的输入端相连,或者所述第二离合器(42)分别与所 述第二变速器(22)和所述第二差速器(32)相连。
  4. 根据权利要求1所述的带双离合器的电动汽车的动力系统,还包括减速机构(5),所述减速机构(5)与所述第三电机(13)相连。
  5. 根据权利要求4所述的带双离合器的电动汽车的动力系统,其中,在所述第二电机(12)与所述第二变速器(22)相连,所述第三电机(13)与所述减速机构(5)相连,所述第二变速器(22)与所述减速机构(5)同轴设置且两者均与所述第二差速器(32)相连的情况下,所述第二离合器(42)分别与所述第二电机(12)的输出端和所述第二变速器(22)的输入端相连,或者所述第二离合器(42)分别与所述减速机构(5)和所述第二差速器(32)相连;在所述第二电机(12)与所述第二变速器(22)相连,所述第三电机(13)第二变速器(22)相连的情况下,所述第三电机(13)的输出端与所述第二变速器(22)的输入端相连,或者所述第二离合器(42)分别与所述第二变速器(22)和所述第二差速器(32)相连。
  6. 根据权利要求1所述的带双离合器的电动汽车的动力系统,其中,两个所述变速器均设有第一挡位和第二挡位,每个变速器在所述每个变速器对应的电机的转速低于或等于预设转速时处于第一挡位,每个变速器在所述每个变速器对应的电机的转速高于所述预设转速时处于第二挡位。
  7. 一种适用于权利要求1至6任一项所述的带双离合器的电动汽车的动力系统的控制方法,包括极致模式,在所述极致模式下,两个所述离合器均处于结合状态;
    在所述极致模式下驱动时,所述第一电机(11)、所述第二电机(12)及所述第三电机(13)均采用扭矩控制模式且输出的扭矩的大小由加速踏板的开度确定;每个变速器在所述每个变速器对应的电机的转速低于或等于预设转速时处于第一挡位,每个变速器在所述每个变速器对应的电机的转速高于所述预设转速时处于第二挡位;所述第一电机(11)、所述第二电机(12)或所述第三电机(13)的需求扭矩T Mdmd为:
    Figure PCTCN2022107368-appb-100001
    其中,当计算所述第一电机(11)的需求扭矩T M1dmd时,α取2;当计算所述第二电机(12)的需求扭矩T M2dmd或所述第三电机(13)的需求扭矩T M3dmd时,α取4;T drive为车轮的需求驱动扭矩,i为所述电机的输出端与所述差速器的输入端之间的传动比,η为从所述电机到车轮的机械传递效率;
    在所述极致模式下制动时,两个所述变速器均保持当前挡位,制动扭矩由所述第一电机(11)提供,所述第二电机(12)和所述第三电机(13)不工作,所述第一电机(11)的发电需求扭矩T M1brake为:
    Figure PCTCN2022107368-appb-100002
    其中,T brake为车轮的需求制动扭矩,i 1为所述第一电机(11)的输出端与所述第一差速器(31)的输入端之间的传动比,η 1为从所述第一电机(11)到所述前车轮(200)的机械传递效率。
  8. 根据权利要求7所述的带双离合器的电动汽车的动力系统的控制方法,还包括运动模式,在所述运动模式下驱动时,两个所述离合器均处于结合状态,所述第一电机(11)、所述第二电机(12)和所述第三电机(13)均采用扭矩控制模式且发出的扭矩的大小由加速踏板的开度确定;每个变速器在所述每个变速器对应的电机的转速低于或等于预设转速时处于第一挡位,每个变速器在所述每个变速器对应的电机的转速高于所述预设转速时处于第二挡位,所述第一电机(11)、所述第二电机(12)或所述第三电机(13)的需求扭矩TMdmd为:
    Figure PCTCN2022107368-appb-100003
    其中,当计算所述第一电机(11)的需求扭矩T M1dmd时,α取2;当计算所述第二电机(12)的需求扭矩T M2dmd或所述第三电机(13)的需求扭矩T M3dmd时,α取4;T drive为车轮的需求驱动扭矩,i为所述电机的输出端与所述差速器 的输入端之间的传动比,η为从所述电机到车轮的机械传递效率;
    在所述运动模式下制动时,所述第一离合器(41)处于分离状态,所述第二变速器(22)处于空挡时所述第二离合器(42)处于结合状态,所述第二变速器(22)保持当前挡位时所述第二离合器(42)处于分离状态,制动扭矩由所述第二电机(12)或者所述第三电机(13)提供,所述第二电机(12)或者所述第三电机(13)的发电需求扭矩T Mbrake为:
    Figure PCTCN2022107368-appb-100004
    其中,T brake为车轮的需求制动扭矩,i为所述第三电机(13)的输出端与所述第二差速器(32)的输入端之间的传动比,或者i为所述第二电机(12)的输出端与所述第二差速器(32)的输入端之间的传动比,η为从所述电机到车轮的机械传递效率。
  9. 根据权利要求7所述的带双离合器的电动汽车的动力系统的控制方法,还包括经济模式,在所述经济模式下,所述第一离合器(41)处于分离状态,所述第二变速器(22)处于空挡时所述第二离合器(42)处于结合状态,所述第二变速器(22)保持当前挡位时所述第二离合器(42)处于分离状态;
    在所述经济模式下驱动时,所述第一电机(11)不工作,驱动扭矩由所述第二电机(12)或者所述第三电机(13)提供,所述第二电机(12)或者所述第三电机(13)的需求扭矩T Mdmd为:
    Figure PCTCN2022107368-appb-100005
    其中,T drive为车轮的需求驱动扭矩,i为所述第三电机(13)的输出端与所述第二差速器(32)的输入端之间的传动比,或者i为所述第二电机(12)的输出端与所述第二差速器(32)的输入端之间的传动比,η为从所述电机到车轮的机械传递效率;
    在所述经济模式下制动时,所述第一电机(11)不工作,制动扭矩由所述 第二电机(12)或者所述第三电机(13)提供,所述第二电机(12)或者所述第三电机(13)的发电需求扭矩T Mbrake为:
    Figure PCTCN2022107368-appb-100006
    其中,T brake为车轮的需求制动扭矩,i为所述第三电机(13)的输出端与所述第二差速器(32)的输入端之间的传动比,或者i为所述第二电机(12)的输出端与所述第二差速器(32)的输入端之间的传动比,η为从所述电机到车轮的机械传递效率。
  10. 根据权利要求7所述的带双离合器的电动汽车的动力系统的控制方法,还包括舒适模式,在所述舒适模式下,两个所述离合器均处于结合状态;
    在所述舒适模式下驱动时,所述第一电机(11)、所述第二电机(12)和所述第三电机(13)均采用扭矩控制模式且发出的扭矩的大小由加速踏板的开度确定;两个所述变速器保持在所述第一挡位,所述第一电机(11)、所述第二电机(12)或所述第三电机(13)的需求扭矩T Mdmd为:
    Figure PCTCN2022107368-appb-100007
    其中,当计算所述第一电机(11)的需求扭矩T M1dmd时,α取2;当计算所述第二电机(12)的需求扭矩T M2dmd或所述第三电机(13)的需求扭矩T M3dmd时,α取4;T drive为车轮的需求驱动扭矩,i为所述电机的输出端与所述差速器的输入端之间的传动比,η为从所述电机到车轮的机械传递效率;
    在所述舒适模式下制动时,制动扭矩由所述第一电机(11)提供,所述第二电机(12)和所述第三电机(13)不工作,所述第一电机(11)的发电需求扭矩T M1brake为:
    Figure PCTCN2022107368-appb-100008
    其中,T brake为车轮的需求制动扭矩,i 1为所述第一电机(11)的输出端与 所述第一差速器(31)的输入端之间的传动比,η 1为从所述第一电机(11)到所述前车轮(200)的机械传递效率。
PCT/CN2022/107368 2021-07-22 2022-07-22 一种带双离合器的电动汽车的动力系统及其控制方法 WO2023001285A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110830629.9A CN113352864A (zh) 2021-07-22 2021-07-22 一种带双离合器的电动汽车的动力系统及其控制方法
CN202110830629.9 2021-07-22

Publications (1)

Publication Number Publication Date
WO2023001285A1 true WO2023001285A1 (zh) 2023-01-26

Family

ID=77540097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107368 WO2023001285A1 (zh) 2021-07-22 2022-07-22 一种带双离合器的电动汽车的动力系统及其控制方法

Country Status (2)

Country Link
CN (1) CN113352864A (zh)
WO (1) WO2023001285A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024244444A1 (zh) * 2023-05-26 2024-12-05 江苏速豹动力科技有限公司 电驱桥系统和电动卡车

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113335044A (zh) * 2021-07-22 2021-09-03 中国第一汽车股份有限公司 一种带双变速器的电动汽车的动力系统及其控制方法
CN113415141A (zh) * 2021-07-22 2021-09-21 中国第一汽车股份有限公司 一种电动汽车的动力系统、控制方法及电动汽车
CN113352864A (zh) * 2021-07-22 2021-09-07 中国第一汽车股份有限公司 一种带双离合器的电动汽车的动力系统及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239126A (ja) * 2007-03-29 2008-10-09 Daihatsu Motor Co Ltd ハイブリッド自動車の駆動装置
CN105667346A (zh) * 2016-04-08 2016-06-15 吉林大学 一种三电机混合驱动载货汽车及动力系统参数匹配方法
CN207374100U (zh) * 2017-09-28 2018-05-18 北京理工大学 一种半分布式前后多电机驱动系统
WO2018117902A1 (ru) * 2016-12-23 2018-06-28 Равиль Гафиевич ХАДЕЕВ Трансмиссия для гибридного транспортного средства
CN108778811A (zh) * 2016-03-28 2018-11-09 德纳重型车辆系统集团有限责任公司 带有多速变速箱的电动传动系车轴
CN212685216U (zh) * 2020-08-19 2021-03-12 华人运通(江苏)技术有限公司 一种车辆的动力系统及车辆
CN113335044A (zh) * 2021-07-22 2021-09-03 中国第一汽车股份有限公司 一种带双变速器的电动汽车的动力系统及其控制方法
CN113352864A (zh) * 2021-07-22 2021-09-07 中国第一汽车股份有限公司 一种带双离合器的电动汽车的动力系统及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110014868B (zh) * 2017-10-18 2021-11-09 上海汽车集团股份有限公司 三电机汽车动力系统及其控制方法和装置
CN109318697A (zh) * 2018-10-26 2019-02-12 蔚来汽车有限公司 车辆的动力系统、车辆、控制系统及控制方法
CN112092796A (zh) * 2020-09-22 2020-12-18 中国第一汽车股份有限公司 一种四驱纯电动汽车动力系统的控制方法及车辆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239126A (ja) * 2007-03-29 2008-10-09 Daihatsu Motor Co Ltd ハイブリッド自動車の駆動装置
CN108778811A (zh) * 2016-03-28 2018-11-09 德纳重型车辆系统集团有限责任公司 带有多速变速箱的电动传动系车轴
CN105667346A (zh) * 2016-04-08 2016-06-15 吉林大学 一种三电机混合驱动载货汽车及动力系统参数匹配方法
WO2018117902A1 (ru) * 2016-12-23 2018-06-28 Равиль Гафиевич ХАДЕЕВ Трансмиссия для гибридного транспортного средства
CN207374100U (zh) * 2017-09-28 2018-05-18 北京理工大学 一种半分布式前后多电机驱动系统
CN212685216U (zh) * 2020-08-19 2021-03-12 华人运通(江苏)技术有限公司 一种车辆的动力系统及车辆
CN113335044A (zh) * 2021-07-22 2021-09-03 中国第一汽车股份有限公司 一种带双变速器的电动汽车的动力系统及其控制方法
CN113352864A (zh) * 2021-07-22 2021-09-07 中国第一汽车股份有限公司 一种带双离合器的电动汽车的动力系统及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024244444A1 (zh) * 2023-05-26 2024-12-05 江苏速豹动力科技有限公司 电驱桥系统和电动卡车

Also Published As

Publication number Publication date
CN113352864A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2023000979A1 (zh) 一种带双变速器的电动汽车的动力系统及其控制方法
WO2023001285A1 (zh) 一种带双离合器的电动汽车的动力系统及其控制方法
CN108382187B (zh) 双电机混合动力系统及其控制方法
WO2023000983A1 (zh) 一种电动汽车的动力系统及控制方法
WO2023001098A1 (zh) 电动汽车的动力系统、控制方法及电动汽车
CN111409472B (zh) 一种双电机电动汽车的多模式耦合驱动系统
CN104972890A (zh) 一种双电机混合动力自动变速器
JP2020506105A (ja) 横置型デュアル動力源車両用駆動アセンブリ
CN112092648A (zh) 一种四驱纯电动汽车动力系统的控制方法及车辆
JP2020506839A (ja) 横置型デュアル動力源車両用駆動アセンブリ
CN111674255B (zh) 一种混合动力车辆的驱动装置及混合动力车辆
JP2024522740A (ja) ツインモータ多段ハイブリッドパワートレインシステムおよび車両
CN118387085A (zh) 车辆控制方法、计算机可读存储介质、整车控制器及车辆
CN110154750A (zh) 一种双电机四驱电动汽车的传动系统
CN118269622A (zh) 混合动力系统和具有其的车辆
CN203805687U (zh) 一种混合动力车辆多挡位驱动装置
CN111791688B (zh) 混合动力机电耦合系统和车辆
WO2023000982A1 (zh) 一种电动汽车的动力系统、控制方法及电动汽车
WO2025130125A1 (zh) 混合动力系统及其车辆
CN209441177U (zh) 车辆的动力系统、车辆、控制系统
CN111688470B (zh) 一种串并联构型插电式混合动力系统及其控制方法
CN220548929U (zh) 动力传动系统和车辆
CN109835167B (zh) 一种p3结构的两档差速耦合混合动力传动系统
CN216101509U (zh) 一种四挡可跛行带取力模块双电机双行星排混合动力系统
CN115675053B (zh) 动力系统和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22845448

Country of ref document: EP

Kind code of ref document: A1