[go: up one dir, main page]

WO2023000169A1 - 油气井用调流控水酸化完井装置及使用方法 - Google Patents

油气井用调流控水酸化完井装置及使用方法 Download PDF

Info

Publication number
WO2023000169A1
WO2023000169A1 PCT/CN2021/107380 CN2021107380W WO2023000169A1 WO 2023000169 A1 WO2023000169 A1 WO 2023000169A1 CN 2021107380 W CN2021107380 W CN 2021107380W WO 2023000169 A1 WO2023000169 A1 WO 2023000169A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
water control
acidizing
water
screen
Prior art date
Application number
PCT/CN2021/107380
Other languages
English (en)
French (fr)
Inventor
陈彦洪
Original Assignee
北京合力奇点科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京合力奇点科技有限公司 filed Critical 北京合力奇点科技有限公司
Priority to CN202180007822.0A priority Critical patent/CN115135849A/zh
Priority to PCT/CN2021/107380 priority patent/WO2023000169A1/zh
Priority to DE202022101554.6U priority patent/DE202022101554U1/de
Priority to CA3158805A priority patent/CA3158805A1/en
Priority to CN202221596337.XU priority patent/CN217681695U/zh
Priority to CN202221596338.4U priority patent/CN217681690U/zh
Priority to CN202221597791.7U priority patent/CN217681696U/zh
Publication of WO2023000169A1 publication Critical patent/WO2023000169A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/10Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole

Definitions

  • the invention belongs to the technical field of oil and gas well development, and relates to oil and gas well segmental flow control and water control, segmental acid fracturing and oil and gas production technology, in particular to a flow control and water acidification device suitable for oil and gas wells, specifically an oil and gas well A flow regulating and water controlling acidizing well completion device for oil and gas wells and a method of use thereof.
  • staged acid fracturing is usually used to produce integrated strings.
  • the increase in water production of oil and gas wells and the shutdown of oil and gas wells due to water flooding become more and more critical to the production of the entire oil field.
  • the horizontal wellbore is long, because of the rock heterogeneity and permeability anisotropy along the horizontal wellbore, the oil and gas production in different horizontal well sections is different, and because the horizontal wellbore outside the control area
  • the boundary line of the oil and gas reservoirs is relatively complicated, and it is not necessarily a straight line or a straight line parallel to the horizontal wellbore.
  • the object of the present invention is to invent a flow regulating water control acidizing well completion device for oil and gas wells and its use method, which can be used in one trip to complete the staged acid fracturing well completion and integrate production and water control functions.
  • the tool device and pipe string system overcome the problem that the integration of segmented acid fracturing and flow regulation and water control cannot be realized in one trip.
  • An object of the present invention is to provide a flow control and water acidizing well completion device for oil and gas wells, which can simultaneously realize the function of producing the original pipe string after acid fracturing through one trip of the pipe string operation, and has the function of controlling water and suppressing the oil and gas well edge Bottom water coning effect, prolonging the low water-cut production period of oil and gas wells, increasing the recovery rate of oil and gas wells, achieving the purpose of reducing operating procedures and saving process costs.
  • Another object of the present invention is to provide a flow control and water acidification well completion device for oil and gas wells, so as to prevent the output of corrosive gas during the well completion operation to the greatest extent, ensure the safety of production operations, and realize complex oil and gas with high hydrogen sulfide content.
  • the purpose of horizontal wells is to control the maximum degree of recovery in the area, thereby realizing the completion and production optimization of deep complex oil and gas wells.
  • a well completion device for regulating flow and controlling water including:
  • a flow-regulating and water-controlling screen has a base pipe, a screen part arranged on the base pipe, and a flow-regulating and water-controlling part communicated with the screen part;
  • the screen part is used to control the formation fluid Filtration;
  • the flow control part is connected to the downstream of the screen part, and is used to increase the flow resistance of water in the formation fluid;
  • a single-flow mechanism connected to the flow-regulating and water-controlling screen; the single-flow mechanism is provided with a central channel communicating with the base pipe, and a central channel communicating with the outside of the single-flow mechanism Acidizing holes; the single flow mechanism is configured to be operable to open and close the acidizing holes by external wellbore pressure.
  • the base pipe is also provided with a one-way assembly; the one-way assembly is configured to allow the fluid to flow from the screen part to the flow regulation and water control part, and prevent the fluid from flowing The flow regulating water part flows to the screen part.
  • the screen part includes an outer protective sleeve, a filter, a diversion net, a filter net, a diversion net, and a support layer that are sequentially sleeved from the outside to the inside; There are circular through holes; the guide net is used for guiding the fluid; the filter screen, the guide net and the support layer are fixed together by extrusion forging.
  • the flow regulation and water control part includes an outer tube fixed on the outside of the base pipe, and a flow regulation and water control component installed on the wall of the base pipe inside the outer tube; A flow regulation and water control space is formed between the pipe and the outer pipe; the flow regulation and water control component communicates the interior of the base pipe with the flow regulation and water control space.
  • the flow regulating water control screen is a single flow control water screen; wherein, the one-way assembly includes:
  • the overflow sleeve fixedly arranged inside the outer pipe; the flow sleeve separates the flow regulating water control space in the radial direction to form an inner space and an outer space communicated with the screen portion; the flow regulating The water control component communicates the inner space with the interior of the base pipe; the overflow sleeve is provided with a communication hole that communicates the inner space with the outer space;
  • the first support spring axially supports the plugging piston at the plugging position; the plugging piston can be pushed by formation fluid to move from the plugging position to the opening position.
  • the single-flow mechanism is a single-flow ball-dropping fracturing sleeve; the single-flow ball-dropping fracturing sleeve is connected to the lower end of the flow-regulating and water-controlling screen;
  • the single-flow ball-dropping fracturing sleeve includes: an outer casing, an inner sliding sleeve slidably sleeved inside the outer casing; the inside of the inner sliding sleeve forms a central channel and is fixed with a ball seat; the inner sliding sleeve A slider fixedly connected to the outside of the inner sliding sleeve and a second support spring axially supporting the slider are provided between the sleeve and the outer sleeve; the slider is fixedly connected to the outer sleeve by shear pins tube; the outer casing is provided with the acidizing hole; the inner sliding sleeve is fixed at a position to block the acidizing hole by the shear pin;
  • the ball seat When the ball seat is blocked by the ball and the pressure in the central channel exceeds a certain pressure after being pressed, the ball seat drives the inner sliding sleeve and the slider to shear the shear pin for axial Move to open the acidizing hole, and when the pressure is stopped, the second support spring pushes the inner sliding sleeve to re-block the acidizing hole.
  • the upper end of the outer sleeve is connected with an upper joint, and the lower end of the outer sleeve is connected with a lower joint; the position where the inner sliding sleeve blocks the acidification hole is: the inner sliding sleeve
  • the sealing sleeve at the upper end is set in the upper joint, and the sealing sleeve at the lower end of the inner sliding sleeve is set in the lower joint.
  • the flow regulating water control acidification device is a channel conversion type flow regulating water control staged acidification string; the single flow water control screen and the single flow ball fracturing sleeve form Fluidic water acidification components;
  • the channel conversion type flow-regulating and water-controlling staged acidizing string has a top packer, a plurality of the above-mentioned flow-regulating and water-controlling acidizing components, an isolation packer connected to two adjacent flow-regulating and water-controlling components, and a wellbore Isolation valve, two-stage float shoe.
  • the flow regulating water control screen is a one-way valve type water control screen; wherein, the one-way assembly is looped between the outer pipe and the base pipe to connect the The flow regulation and water control space is spaced along the axial direction to form a first axial space communicating with the screen part and a second axial space communicating with the flow regulation and water control component;
  • the one-way assembly includes: a first one-way ball seat and a second one-way ball seat that are butted in the axial direction; wherein, along the flow direction of the formation fluid, the first one-way ball seat is arranged on the second one-way ball seat To the upstream of the ball seat, the first one-way ball seat has a first number of first passages distributed in the circumferential direction, and the second one-way ball seat has a second passage larger than the first number distributed in the circumferential direction ; Wherein, the first number of second passages and the first number of first passages are aligned one by one in the axial direction, and the remaining number of second passages are staggered from the first passages; in the axially aligned first passages In the first channel and the second channel, the ends of the first channel and the second channel that are engaged with each other are provided with ball seats respectively, and a blocking valve ball is arranged in the oppositely engaged ball seats.
  • the single-flow mechanism is a two-stage fracturing sleeve connected to the lower end of the one-way valve water control screen; the two-stage fracturing sleeve includes:
  • the sliding sleeve body; the acidizing hole is provided on the sliding sleeve body;
  • the upper valve seat sliding sleeve slidably sleeved in the sliding sleeve body and the lower valve seat sliding sleeve located below the upper valve seat sliding sleeve; the inner diameter of the lower valve seat sliding sleeve is smaller than that of the upper valve seat The inner diameter of the sliding sleeve; the lower valve seat sliding sleeve is positioned at the position where the acidizing hole is blocked by a shear pin; the upper valve seat sliding sleeve is positioned above the lower valve seat sliding sleeve by a shear pin
  • the lower valve seat sliding sleeve can be pushed by pressure to open the acidizing hole after being blocked by the ball; the upper valve seat sliding sleeve can be pushed by pressure to open the acidizing hole after being blocked by the ball. Position of the hole re-plugged.
  • the lower end of the sliding sleeve body is connected with a lower joint; the part of the lower joint extending into the lower end of the sliding sleeve body has a limit end; the lower valve seat sliding sleeve is When the ball is pushed to contact with the limiting end, it is axially limited by the lower joint; when the upper valve seat sliding sleeve is pushed by the ball to contact with the lower valve seat sliding sleeve, The sleeve is axially limited, and the acidizing hole is re-sealed.
  • the flow-regulating and water-controlling acidification device is a one-way valve-type flow-regulating and water-controlling acidizing string; Fluidic water acidification components;
  • the channel conversion type flow-regulating and water-controlling staged acidizing string has a top packer, a plurality of the above-mentioned flow-regulating and water-controlling acidizing components, an isolation packer connected to two adjacent flow-regulating and water-controlling components, and a wellbore Isolation valve, two-stage float shoe.
  • the screen for regulating flow and controlling water is an adaptive regulating and controlling screen for water;
  • the network base pipe is connected with the water control base pipe to form a base pipe;
  • a diversion channel is formed between the screen part and the base pipe; the base pipe is fixedly connected with a connection assembly; the connection assembly is fixedly connected with the lower end of the outer protective sleeve and the upper end of the outer pipe; the The connection component is provided with a communication channel connecting the diversion channel and the flow regulation and water control space;
  • the water control base pipe is respectively connected to the inner wall of the outer pipe at both axial ends of the flow regulation and water control space; the water control base pipe is also provided with a sandwich channel upstream of the flow regulation and water control space; A communicating annulus is also provided between the upper end of the water control base pipe and the connection assembly; the communicating annulus communicates between the communicating channel and the clamping wall channel.
  • the single-flow mechanism is a single-flow fracturing passing assembly connected to the upper end of the flow-regulating and water-controlling screen; the single-flow fracturing passing assembly includes:
  • An outer cylinder the outer cylinder is provided with the acidification hole and a miniature check valve arranged in the acidification hole;
  • the inner tube body is fixedly sleeved in the outer cylinder; the inside of the inner tube body is formed as a central channel; the central channel has an outlet hole; the outlet hole is connected to the inner tube body and the The intermediate annulus between the outer cylinders is connected; the intermediate annulus is also provided with a rubber sealing sleeve that is fitted and sleeved on the outer body of the inner tube to cover the outlet hole; the rubber sealing sleeve can The outlet hole is opened when the pressure in the central channel exceeds a first predetermined pressure.
  • the miniature check valve includes: a valve body fixed in the acidification hole, a baffle fixed at the radially outer end of the valve body, a valve ball located in the valve body , and a spring located between the valve ball and the baffle plate; the valve body has a valve body seat blocked by the valve ball at the radially inner end.
  • the wall thickness of the rubber sealing sleeve is stepped in the axial direction from the upper end to the lower end; wherein, the wall thickness of the upper step is greater than that of the lower step.
  • the flow regulation and water control acidification device is an adaptive flow regulation and water control acidification string; the single-flow fracturing passage assembly and the adaptive flow regulation and water control screen form a flow regulation Water acidification components;
  • the self-adaptive flow regulation and water control acidification string includes a top packer and a plurality of the flow regulation and water control acidification components; wherein, each of the flow regulation and water control acidification components is provided with an expansion pack above and below device; the adaptive flow regulation and water control screen is also provided with a centralizer.
  • a well completion device for regulating flow and controlling water for oil and gas wells comprising: a top packer connected sequentially from top to bottom, a plurality of components for regulating and controlling water and acidizing, wellbore isolation valves, and floating shoes; wherein, each adjacent two An isolation packer is arranged between the flow regulation and water control acidification components;
  • the flow regulation water control acidification component includes a flow regulation and water control screen and a single flow mechanism connected with the flow regulation and water control screen;
  • the flow-regulating and water-controlling screen has a base pipe, a screen part arranged on the base pipe, and a flow-regulating and water-controlling part communicated with the screen part;
  • the screen part is used to filter the formation fluid;
  • the flow regulating water control part is connected to the downstream of the screen part, and is used to increase the flow resistance of water in the formation fluid;
  • the base pipe is also provided with a one-way assembly; the one-way assembly is configured to allow fluid flow from the screen part to the flow regulating water control part, and prevent fluid from flowing from the flow regulating water control part to the screen part;
  • the single-flow mechanism is provided with a central passage communicating with the base pipe, and an acidizing hole connecting the central passage with the outside of the single-flow mechanism; the single-flow mechanism is configured to be pressurized outside the well.
  • the acidification pores are operatively opened and closed.
  • the isolation packers are set step by step, and the upper and lower formations are isolated through the isolation packers;
  • the acidizing hole of the single-flow mechanism When acidizing the formation, the acidizing hole of the single-flow mechanism is opened, and the acidification of the formation is started by pressure through the oil pipe; at this time, the flow-regulating water control screen cannot communicate with the outside through the one-way component, and the acid liquid only passes through the acidification of the single-flow mechanism The hole enters the formation to complete the acidification of the formation; after the acidification is completed, stop pressing and close the acidification hole of the single-flow mechanism;
  • Acidification is carried out layer by layer from bottom to top;
  • the acidizing hole of the single-flow mechanism is closed, and the oil and gas pass through the filter of the screen part of the flow regulating and water controlling screen in sequence, and the water controlling and throttling of the flow regulating and water controlling part enters the oil pipe and finally reaches the ground. Production.
  • the flow-regulating and water-controlling acidification well completion device of the present disclosure cooperates with the flow-regulating and water-controlling screen and the single-flow mechanism to realize the production function of the original pipe string after acid fracturing, and has the effect of controlling water and suppressing coning of bottom water at the edge of oil and gas wells , prolong the low water-cut production period of oil and gas wells, improve the recovery rate of oil and gas wells, achieve the purpose of reducing operating procedures and saving process costs.
  • Fig. 1 is a schematic structural diagram of a flow regulation and water control component provided by an embodiment of the present application
  • Fig. 2 is a perspective view of Fig. 1;
  • Fig. 3 is a schematic structural diagram of a flow regulation and water control component provided by another embodiment of the present application.
  • Fig. 4 is the sectional view of Fig. 3;
  • Fig. 5 is a perspective view of Fig. 3;
  • Fig. 6 is a schematic structural diagram of a flow regulation and water control component provided by another embodiment of the present application.
  • Figure 7 is a perspective view of Figure 6;
  • Fig. 8 is a schematic structural diagram of a flow regulation and water control component provided by another embodiment of the present application.
  • Fig. 9 is a perspective view of Fig. 8.
  • Fig. 10 is a schematic structural diagram of a flow regulation and water control component provided by another embodiment of the present application.
  • Figure 11 is a perspective view of Figure 10
  • Fig. 12 is a schematic structural diagram of a channel-switching flow-regulating and water-controlling sectioned acidification column provided by an embodiment of the present application;
  • Fig. 13 is a schematic diagram of the half-section structure of the one-way valve type water control screen shown in Fig. 12;
  • Fig. 14 is a schematic cross-sectional structure diagram of Fig. 13;
  • Fig. 15 is a schematic diagram of the partial structure of the screen of Fig. 13;
  • Fig. 16 is a schematic diagram of the half-section structure of the single-flow drop ball fracturing sleeve shown in Fig. 12;
  • Fig. 17 is a schematic cross-sectional structure diagram of Fig. 16;
  • Fig. 18 is a schematic diagram of the state of the flow regulation and water control part in Fig. 13 during the acid fracturing process;
  • Fig. 19 is a schematic diagram of the state of the flow regulation and water control part in Fig. 13 during the production process;
  • Fig. 20 is a schematic structural view of a one-way valve-type flow-regulating and water-controlling acidification column provided by another embodiment of the present application;
  • Fig. 21 is a schematic diagram of the half-section structure of the one-way valve type water control screen shown in Fig. 20;
  • Fig. 22 is a schematic cross-sectional structure diagram of Fig. 21;
  • Fig. 23 is a schematic diagram of the half-section structure of the two-stage fracturing sliding sleeve in Fig. 20;
  • Fig. 24 is a schematic cross-sectional structure diagram of Fig. 23;
  • Fig. 25 is a schematic structural view of the one-way valve in Fig. 21;
  • Figure 26 is a schematic diagram of the state of Figure 25 in the acid fracturing process
  • Fig. 27 is a schematic diagram of the state of Fig. 25 in the production process
  • Fig. 28 is a schematic structural diagram of an adaptive flow regulation and water control acidification column provided by another embodiment of the present application.
  • Fig. 29 is a schematic diagram of the half-section structure of the single-flow fracturing passage assembly in Fig. 28;
  • Fig. 30 is a schematic cross-sectional structure diagram of Fig. 29;
  • Fig. 31 is a schematic diagram of the cross-sectional structure of the miniature check valve in Fig. 29;
  • Fig. 32 is a schematic cross-sectional structure diagram of the rubber sealing sleeve of Fig. 29;
  • Fig. 33 is a schematic cross-sectional structure diagram of the self-adaptive flow regulation and water control screen shown in Fig. 28 .
  • an embodiment of the present disclosure provides a flow regulation and water control component, and the flow regulation and water control component serves as a core control mechanism (AICD) for self-adaptive flow regulation and water control of three-phase inflow of oil, gas and water.
  • AICD core control mechanism
  • This embodiment provides an AICD disposed in a well and adapted to receive inflow fluid.
  • the flow regulation and water control component introduces relatively large flow resistance and relatively large pressure drop to unnecessary fluids (such as water in oil and gas wells), and introduces relatively large flow resistance and relatively large pressure drop to required fluids (such as oil in oil and gas wells, Gas) introduces relatively small flow resistance and relatively small pressure drop.
  • unnecessary fluids such as water in oil and gas wells
  • required fluids such as oil in oil and gas wells, Gas
  • the inflow control mechanism can reduce the proportion of undesired fluids in the produced fluid, so that the oil and gas well can maintain high-efficiency production.
  • the flow regulation and water control component includes a chamber 2 , an outlet 3 and at least one inlet 1 .
  • the chamber 2 has a first end (it is the upper end when facing Fig. 2, and the first end is the radially outer end in the radial direction of the base pipe when installed on the flow regulating water control screen) and a second end. end (it is the lower end when facing Figure 2, and the first end is the radially inner end in the radial direction of the base pipe when installed on the flow regulating and water control screen), and the section of the chamber extends along the And shrink, the first end of the chamber 2 is a cylindrical chamber, and the second end of the chamber 2 is a cylindrical chamber with an inner diameter smaller than the first end.
  • the flow channel height is the vertical height from the top of the chamber 2 to the outlet 3 when facing FIG. 2 , and may also be the vertical distance between the inlet 1 and the outlet 3 when facing FIG. 2 .
  • the flow regulation and water control component is in a stepped shape, and the outer diameter of the part corresponding to the first end of the chamber is larger than the outer diameter of the part corresponding to the second end of the chamber, so that it is conveniently positioned and installed in the communication hole of the base pipe.
  • the chamber outlet 3 is the second end of the chamber.
  • the inlet 1 is a linear flow channel, and the first end of the chamber 2 ( end), so that a fluid that rotates toward the outlet along the tangential direction of the chamber 2 is generated inside the chamber 2.
  • an oil-water variable friction structure (damping structure) can be added between the inlet 1 and the first end of the chamber 2 to further achieve the purpose of oil-gas-water separation.
  • the flow regulation and water control component has more favorable pressure and flow velocity characteristics for ideal fluids (oil, gas) to be produced.
  • ideal fluids oil, gas
  • the fluid forms a jet.
  • the inflow fluid is oil
  • the velocity of the formed jet is relatively small due to the relatively low density and relatively high viscosity of the oil.
  • the effect of increasing the rotation in the vortex chamber is limited, and it flows out from the center outlet 3 very quickly, and the throttling resistance generated in the whole device is relatively small; and when the water enters the water control device, due to the relatively high density of water, the viscosity Smaller, the inertial force is larger, the speed of the formed jet is relatively higher, and the rotation in the vortex chamber increases significantly, and a high-speed swirl is formed in the vortex chamber 2, thereby generating a large throttling resistance
  • the flow regulation and water control part comprises a vortex inducer of the inlet 1, which causes the incoming fluid to generate jets and guides these jets into the chamber 2 of the flow regulation and water control part.
  • the jet Inside the chamber 2 , the jet generates a swirling flow as well as an axial flow which is transformed towards the outlet 3 of the chamber 2 .
  • the gravitational potential energy of the fluid is converted into the motion potential energy of rotating toward the center, while the motion potential energy of tangential motion is converted into the throttling resistance generated by the entire flow regulating and water control components at the center outlet 3.
  • the water device has a large resistance to water, and the throttling resistance formed in the throttling part due to the high viscosity of the oil is relatively small, while the viscosity force and inertial force of the air are very small, so a throttling resistance is formed in the water control device. Flow resistance is also very small.
  • the flow regulation and water control component has an integral structure and is formed of materials suitable for downhole environments and having strong structural integrity, such as steel or tungsten carbide, which can be formed by processing, injection molding, casting and the like.
  • the overall size of the device is small, with a height of about 14-18mm, an upper section diameter of 18-20mm, a lower section diameter of 4-6mm, and a diameter of outlet 3 of 1.6-4.5mm. .
  • Figure 1 and Figure 2 show the transverse section and 3D view of the double inlet 1 swirl structure, respectively. It can be seen from the figure that the structure includes two fluid inlets 1, and these two inlets 1 send tangential jets into the swirl chamber 2 respectively.
  • the swirl chamber 2 is an inverted conical inner cavity Chamber 2
  • the inlet 1 passes through the wall of the chamber 2
  • the second end of the chamber 2 is the fluid outlet 33.
  • the vortex flow in the flow regulation and water control component forms a low pressure area in the eye area closest to the axis. More viscous oils spin at lower speeds, less viscous fluids like gas or water spin at much higher speeds, and the lower pressure at the eye effectively chokes the fluid flow. Therefore, the flow regulating water control component mainly responds to the fluid viscosity, and the induced rotational flow causes a pressure drop, and the degree of the pressure drop is a function of the fluid characteristics of the flow, and the strength of the flow reduction increases with the decrease of the fluid viscosity. The maximum value is reached in pure gas flow.
  • FIG. 3 and FIG. 4 another embodiment of the present disclosure also provides a flow regulation and water control component.
  • this embodiment adds a long and short channel design.
  • Fig. 3 and Fig. 4 are the front view and the transverse cross-sectional view of the long and short flow channel structures respectively.
  • the flow regulation and water control component includes four cylindrical inlet flow channels with different lengths (inlet flow channels include: short flow channel 4 and long flow channel 5). After the short flow channel 4 and the long flow channel 5 converge, they reach the inlet end 6 of the swirl chamber through a diameter reduction. The inlet port 6 communicates between the short channel 4 , the long channel 5 and the chamber 7 .
  • the flow area of the inlet port 6 is smaller than the sum of the flow areas of the short channel 4 and the long channel 5 .
  • the second end of the swirl chamber 7 (the second end is the radially inner end when installed on the flow regulating and water control screen, which can be inserted into the stepped through hole of the base pipe wall for positioning and installation) is the fluid outlet 8, wherein the swirl chamber 7 is an inverted conical inner chamber, which is consistent with the inner chamber structure of the double-entrance swirl structure in Fig. 1 and Fig. 2 .
  • Figure 5 is a three-dimensional view of the structure of long and short flow channels.
  • the long and short flow channels 4 and 5 have added two new inlet flow channels on the basis of maintaining the flow regulation and water control of the double inlet swirl structure, which can effectively increase the oil passing area and reduce the resistance of the device to the oil.
  • the design of the channel reduces the formation of turbulent flow areas.
  • the whole structure adds multiple local throttling mechanisms, which greatly improves the resistance to water and further strengthens the control function of water.
  • the reduced diameter of the inlet port 6 can effectively increase The flow rate makes it easier for the fluid to form a jet that flows along the cut surface of the swirl cavity.
  • the control resistance of the structure to water is further enhanced, and the pressure ratio of water-oil flow is further enlarged.
  • an oil-gas-water adaptive flow control component with a multi-branch flow channel structure is established by adding branch channels.
  • an embodiment of the present disclosure also provides an oil-gas-water adaptive flow regulation and water control component with a multi-branch channel structure.
  • 6 and 7 are respectively a top perspective view and a longitudinal perspective view of the multi-branch channel structure.
  • Fig. 7 is a three-dimensional view of a multi-branch channel structure.
  • the flow regulation and water control component includes two rectangular inlet channels 9 .
  • the cross-sectional area of the rectangular inlet channel 9 is a rectangular structure.
  • the inner extension of the flow channel 9 are provided with a plurality of branch flow channels 10 and two guide channels 11 that guide the fluid to do swirl movement in the swirl chamber 12, wherein, as shown in Figure 7, the height of the flow channel increases from the inlet flow
  • the height of the runners from the channel 9 to the diversion channel 11 decreases gradually, showing a certain descending slope.
  • the bottom end of the flow regulating and water controlling part is a fluid outlet 13 .
  • the outlet of the inlet channel 9 is the inlet of the guide channel 11 .
  • the flow channel width of the inlet flow channel 9 in the state shown in FIG. 6 is constant, and the flow channel width of the guide channel 11 in the state shown in FIG. 6 gradually decreases along the flow direction.
  • the multi-branch flow diversion structure maintains the flow regulation and water control mechanism of the double inlet swirl flow, and adds an oil-water diversion mechanism and an oil-water variable friction structure design in the inlet channel 9 to further achieve the purpose of water control and oil stability.
  • the branch flow channel 10 utilizes the local friction effect to block oil and water
  • the guide channel 11 utilizes the friction effect along the way to block water and oil.
  • the height difference between the entrance and exit of the flow channel makes it easier for water to form A jet flowing through a tangential flow in a swirl chamber.
  • This structure promotes the relatively low density of the fluid in the process of swirling, and the relatively large oil flows quickly to the fluid outlet 13 first, while the relatively dense water rotates along the swirl chamber, thereby controlling water and stabilizing oil.
  • branch flow channel 10 further promotes the oil flowing out from the branch flow channel 10 to flow to the center outlet in a straight line, while the water flowing out of the flow guide channel is closer to entering the swirl chamber in a rotating manner, and then in the center of the swirl chamber. Form high throttling resistance.
  • three conical swirl chambers (the chambers of the flow regulation and water control components in Figures 1 to 7 It can be called the swirl cavity) and the movable balls are arranged in the swirl cavity, and the movable balls in the swirl cavity are made of different materials according to the specific density requirements.
  • the centrifugal force acting on the fluid is smaller than the centrifugal force acting on the ball, and the ball will correspondingly have a greater buoyancy, so the ball will rotate upward around the swirl cavity The farther end of the fluid outlet); on the contrary, when the density of the inflowing fluid is greater than the density of the ball, the ball will move to the fluid outlet.
  • the mechanism can use this effect to selectively produce or restrict the flow of fluids of different densities, such as producing gas to control water, and producing oil to control water.
  • Shaped vortex increases the advantage of oil-water resistance changes.
  • this disclosure also proposes two flat plate-shaped throttling parts.
  • the flow regulating and water controlling component is used as a water controlling and throttling part to regulate formation fluid.
  • FIG. 8 and FIG. 9 are respectively a top perspective view and a three-dimensional perspective view of a flat-plate double-inlet flow regulation and water control component.
  • the flow regulation and water control component includes two funnel-shaped inlet channels 14 , two narrow fluid acceleration channels 15 , a fluid swirl disc 16 and a central outlet 11 .
  • the fluid acceleration channel 15 is in a tangent state to the swirl disk 16 . After the formation fluid flows into the flow regulation and water control part, it enters the flow regulation and water control part from the inlet channel 14, and enters the central swirl disc 16 after being intercepted and accelerated by the fluid acceleration channel 15.
  • the diameter of the central swirl disc 16 is the same as the diameter of the central outlet.
  • the ratio is: (8.5 ⁇ 12):1. Due to the low viscosity and high density of water, it enters the swirl disk 16 in the tangential direction to form a high-speed swirl flow in the swirl disk 16. According to the law of conservation of rotational momentum, water forms a high additional force through high-speed rotation in the swirl disk 16. resistance, thereby increasing the additional pressure generated by the entire throttling member; and oil due to its high viscosity and relatively low density, it is difficult to form a high-speed rotating flow in the swirl disk 16 like water, so it flows out to the center outlet quickly .
  • the rotation control of the swirl disk 21 in the center of the whole set of throttling mechanism is very important.
  • the ratio of the diameter of the swirling disk 16 to the height of the entire flow regulation and water control component is 10-12:1, and the ratio of the length, width and height of the flow acceleration channel 15 is 9-11:1-1.5:1.2-1.8.
  • Figure 10 and Figure 11 are schematic structural diagrams of another flat-plate flow regulation and water control component.
  • Fig. 10 and Fig. 11 are respectively a top perspective view and a three-dimensional perspective view of the structure of a flat plate multi-branch flow regulation and water control component.
  • the flow regulation and water control component includes two funnel-shaped inlet channels 18 , eight branch channels 19 , two gradually narrowing diversion channels 20 , a fluid swirl disc 21 and a central outlet 22 .
  • the eight branch channels 19 are separated by protruding end faces.
  • the protruding structures protruding end faces
  • the corner is a sharp angle, and this structure makes the vortex formed in the branch flow channel when the inflow fluid is water with a large inertia force, preventing water from flowing into the branch flow channel, and ensuring that almost all (at least most) of the water flowing into the throttling member enters the diversion flow
  • the channel 20 is a channel that gradually narrows from the inlet end to the outlet end of the guide channel 20 . Specifically, the ratio of the width of the inlet end of the diversion channel 20 to the width of the outlet end is 3:2.
  • the outlet of the diversion channel 20 is tangent to the swirl disc 21, ensuring that the formation water flow entering the throttling member enters the swirl disc 20 from a tangent, and the ratio of the diameter of the central swirl disc 21 to the central outlet is: (6.5 to 10.5 ): 1, because the viscosity of water is little, density is big, enters in swirl disk 21 with tangential direction and forms high-speed swirl in swirl disk 21, according to the law of conservation of rotational momentum, water passes through high-speed rotation in swirl disk 21 High additional resistance is formed, which in turn increases the additional pressure generated by the entire throttling part; and due to the high viscosity and relatively low density of the oil, the oil entering the flat multi-branch diversion, flow regulation and water control part will directly flow to the center through the branch flow channel At the outlet, the additional resistance generated in the throttling member is relatively small.
  • the ratio of the diameter of the swirling disk 21 to the height of the entire throttling mechanism (flow regulation and water control components) is 8.5-10.5:1, and the ratio of the length, width and height of the flow path acceleration channel is 9-11:1-1.5:1.2 ⁇ 1.8.
  • an embodiment of the present disclosure provides a flow regulation and water control acidification device, specifically a flow regulation and water control acidification well completion device for oil and gas wells.
  • the flow regulating and water controlling acidizing well completion device for oil and gas wells comprises: a flow regulating and water controlling screen 52; a single flow mechanism 53 connected with the flow regulating and water controlling screen 52.
  • the screen tube has a base pipe 522 , a screen part 524 arranged on the base pipe 522 , and a flow regulation and water control part 520 communicating with the screen part 524 .
  • the screen portion 524 is used to filter formation fluids.
  • the flow regulation and water control part 520 is communicated with the downstream of the screen part 524 for increasing the flow resistance of water in the formation fluid.
  • the single-flow mechanism 53 is provided with a central channel communicating with the base pipe 522 and an acidification hole communicating the central channel with the outside of the single-flow mechanism 53 .
  • the single-flow mechanism 53 is configured to be operable to open and close the acidizing hole by pressing outside the well.
  • the single-flow device only allows fluid to flow from the central passage through the acidizing hole to the outside of the single-flow mechanism 53 .
  • the single-flow mechanism 53 can be installed on the upper end of the flow regulation and water control screen 52 , and can also be installed on the lower end of the flow regulation and water control screen 52 , which is not limited in this application.
  • the base pipe 522 is also provided with a one-way component.
  • the flow direction allowed by the one-way assembly is opposite to that of the one-way mechanism 53 .
  • the one-way assembly is configured to allow fluid flow from the screen portion 524 to the flow control portion 520 and to block fluid flow from the flow control portion 520 to the screen portion 524 .
  • the one-way assembly is upstream of the flow regulation and water control component 534 .
  • the screen portion 524 includes an outer protective cover 20 , a filter 21 , a flow guide 22 , a filter 23 , a flow guide 24 , and Support layer 25. Circular through holes are distributed on the outer protective cover 20 .
  • the filter screen 21, the diversion net 22, the filter net 23, and the diversion net 24 form a filter layer.
  • the guide nets 22 and 24 are used to guide fluid.
  • the filter screens 21, 23, the guide screens 22, 24 and the supporting layer 25 are fixed together by extrusion forging.
  • the flow regulation and water control part 520 includes an outer tube 528 fixed on the outside of the base pipe 522 , and a flow regulation and water control component 534 installed on the wall of the base pipe 522 inside the outer tube 528 .
  • the flow regulation and water control component 534 adopts the plate type flow regulation and water control component in the above embodiments, or the conical flow regulation and water control component.
  • a flow regulation and water control space is formed between the base pipe 522 and the outer pipe 528 .
  • the flow regulation and water control component 534 communicates the interior 5220 of the base pipe 522 with the flow regulation and water control space. After the formation fluid enters the flow regulation and water control space, it is throttled by the flow regulation and water control component 534 and then the oil and gas are input into the base pipe 522 .
  • the flow-controlling water-control acidizing well completion device for oil and gas wells is a flow-controlling water-control sectioned acidizing string 50, which can separate the formation to form multiple acidizing layers (formation), and for each acidizing layer (Formation) can be independently acid fracturing production operation.
  • the flow regulation and water control screen 52 and the single flow mechanism 53 constitute a flow regulation and water control acidification component.
  • the sectioned acidizing string 50 for flow regulation and water control has a top packer 51, a plurality of the flow regulation water control acidification components, an isolation packer 54 connected to two adjacent flow regulation water control acidification components, a wellbore Isolation valve 55, double-stage floating shoe 56.
  • the oil and gas well completion device for acidizing with flow regulation and water control is a segmental acidification string 50 with channel conversion type flow regulation and water control.
  • the channel conversion type flow regulation and water control segmental acidification string 50 has a top packer 51, a plurality of the above-mentioned flow regulation and water control acidification components, and isolation packers connected to two adjacent flow regulation and water control acidification components 54.
  • the staged acidizing string 50 of channel conversion type flow regulation and water control includes: a top packer 51, a single flow control water screen 52, a single flow ball fracturing sleeve 53, an isolation packer 54, a single flow control Water screen pipe 52, ball-pitching fracturing sleeve 53, wellbore isolation valve 55, and double-stage floating shoe 56.
  • the double-stage float shoe 56 includes a forward double-stage float shoe 56 and a reverse double-stage float shoe 56 .
  • the channel-converting flow-regulating and water-controlling staged acidizing column 50 isolates the upper and lower acidizing layers, and correspondingly carries out acidizing and production work.
  • the flow regulating water control screen 52 is a single flow control water screen.
  • the single-flow mechanism 53 is a single-flow ball fracturing sleeve.
  • the acidification device for regulating flow and controlling water is a sectioned acidification column 50 for regulating flow and controlling water.
  • the single-flow water control screen 52 and the single-flow ball fracturing sleeve 53 constitute a flow regulation water control acidification component.
  • the single-flow water control screen 52 is composed of a screen part 524 and a flow regulation and water control part 520 , and the (adaptive) flow regulation and water control component 534 (AICD) is installed on the screen base pipe 522 .
  • the upper end of the base pipe 522 is fixedly connected with a collar 521 .
  • a flow guide channel is formed between the screen portion 524 and the base pipe 522 .
  • the screen part 524 is mainly composed of three layers, and the outermost is the outer protective sleeve 20 with round holes.
  • the outer protective cover 20 protects the filter layer and ensures the strength and reliability of the screen.
  • the 2nd-5th layer in the middle is the filter layer.
  • the second layer and the fourth layer are precision filter screens 21, 23 (sand-proof filtering effect).
  • the third layer and the fifth layer are precision guide nets 22 and 24 (guiding the inflowing liquid).
  • the sixth inner layer is the support layer 25, which ensures sufficient flow area between the filter layer and the base pipe 522.
  • the three are extruded through extrusion forging, which improves the strength by 74% compared with the traditional screen pipe, and at the same time reduces the cost.
  • An upper end ring 523 fixedly sheathed outside the base pipe 522 is fixedly connected to the upper end of the outer protective sheath 20 .
  • the lower end of the outer protective sheath 20 is connected with the upper end of the outer tube 528 through a butt plug 525 .
  • the docking plug 525 is fixedly sleeved outside the base pipe 522, and forms a passage between the base pipe 522 and the flow regulation and water control space and the screen part 524 (flow guiding channel).
  • the lower end of the outer tube 528 is fixedly sleeved outside the lower joint 530, and is fixedly connected by a set screw 531 for anti-rotation setting.
  • the one-way assembly of the single-flow water control screen 52 includes: an overflow sleeve 527 fixed inside the outer tube 528, a blocking piston 526 and a first support spring 538 .
  • a retaining ring 529 is fixedly connected between the outer tube 528 and the upper end of the lower joint 530.
  • the retaining ring 529 is fixedly sleeved at the rear end of the outer space 5272 .
  • the rear end of the first supporting spring 538 is pressed against the blocking ring, and the front end is pressed against the blocking piston 526 .
  • the first support spring 538 is a cylindrical spring 538 sleeved outside the overflow sleeve 527 .
  • the overflow sleeve 527 radially separates the flow regulation and water control space to form an inner space 5271 and an outer space 5272 communicating with the screen portion 524 .
  • the flow regulation and water control component 534 communicates the inner space 5271 with the inside of the base pipe 522 .
  • the flow sleeve 527 is provided with a communication hole 5270 connecting the inner space 5271 and the outer space 5272 .
  • the outer wall of the lower joint 530 is provided with a sealing ring 532 that fits and seals between the lower end of the outer tube 528 and the lower joint 530 to seal off the lower end of the outer space 5272 .
  • the upper end and the lower end of the overflow sleeve 527 are respectively sealed and connected to the upper fixing ring (the upper fixing ring is fixedly sleeved outside the base pipe 522) and the upper end of the lower joint 530, and, between the upper end of the overflow sleeve 527 and the upper fixing ring,
  • a sealing ring 533 is also provided between the lower end of the flow sleeve 527 and the upper end of the lower joint 530 .
  • Sealing rings 535 and 537 are respectively provided on the inner wall and the outer wall of the blocking piston 526 to block the communication hole 5270 at the initial position.
  • the outer space 5272 and the inner space 5271 are annular spaces separated by the flow sleeve 527 .
  • the blocking piston 526 and the first support spring 538 are disposed in the outer space 5272 .
  • the blocking piston 526 slides axially within the outer space 5272 .
  • the blocking piston 526 has a blocking position for blocking the communication hole 5270 and an open position for opening the communication hole 5270 .
  • the first support spring 538 supports the blocking piston 526 in the blocking position in the axial direction.
  • the plugging piston 526 can be moved by formation fluid from the plugging position (FIG. 18) to the open position (FIG. 19).
  • the one-way assembly of the single-flow control water screen 52 includes a piston 526 , a first support spring 538 , and an overflow sleeve 527 .
  • the piston 526 blocks the flow hole 5270 of the flow sleeve 527 , and the acidizing fluid cannot enter the formation through the screen 52 .
  • the oil and gas push the piston 526 to compress the spring 538, and the communication hole 5270 of the flow sleeve 527 is opened, and the oil and gas in the formation finally enter the oil pipe through the water control and gas stabilization device, and reach the ground.
  • the piston 526 blocks the communication hole of the overflow sleeve 527, and the acidizing fluid cannot enter the formation through the single-fluid water control screen.
  • the fluid pushes the piston 526 to compress the spring 538 to open the channel, and the fluid finally enters the oil pipe through the water control device and reaches the ground.
  • the single-flow mechanism 53 is a single-flow ball fracturing sleeve.
  • the single-flow ball-dropping fracturing sleeve 53 communicates with the lower end of the flow-regulating and water-controlling screen 52 .
  • the single-flow ball-dropping fracturing sleeve 53 includes: an outer sleeve 542 , and an inner sleeve 545 slidably sleeved inside the outer sleeve 542 .
  • the inside of the inner sliding sleeve 545 constitutes a central channel and is fixed with a ball seat 546 .
  • a sliding block 543 fixedly connected to the outside of the inner sliding sleeve 545 and a second supporting spring 544 axially supporting the sliding block 543 are disposed between the inner sliding sleeve 545 and the outer sleeve 542 .
  • the slider 543 is fixedly connected to the outer casing 542 through a shear pin 554 .
  • the outer casing 542 is provided with the acidizing hole 540; the inner sliding sleeve 545 is fixed by the shear pin 554 at a position to block the acidizing hole 540.
  • the upper end of the outer sleeve 542 is connected with an upper joint 541
  • the lower end of the outer sleeve 542 is connected with a lower joint 547 , which is bonded and sealed by a sealing ring 548 .
  • the position where the inner sliding sleeve 545 blocks the acidizing hole 540 (the position shown in Fig. 16 and Fig. 17 ) is: the upper end of the inner sliding sleeve 545 is sealed in the upper joint 541, and the inner The lower end of the sliding sleeve 545 is sealed in the lower joint 547 .
  • the lower end of the upper joint 541 is fixedly connected in the upper end of the outer sleeve 542 .
  • the inner wall of the lower end of the upper joint 541 is provided with a limiting step.
  • the outer wall of the inner sliding sleeve 545 has a carrying step
  • the sliding block 543 is fixed between the inner sliding sleeve 545 and the outer sleeve 542, and the inner and outer sides of the sliding block 543 are provided with sealing rings 552, 554 and the walls of the inner sliding sleeve 545 and the outer sleeve 542. snug seal.
  • the sliding block 543 cooperates with the carrying step, and is pressed upward by the second support spring 544 to fit the carrying step, so that the sliding block 543 and the inner sliding sleeve 545 form an axial joint movement.
  • the ball seat 546 is fixed on the inner wall of the inner sliding sleeve 545 by a set screw 551 .
  • the inner wall of the upper end of the lower joint 547 has a sliding section for the inner sliding sleeve 545 to slide, and the inner wall is provided with a sealing ring 549 and a blocking step.
  • the inner wall of the upper end of the lower joint 547 is provided with a sealing ring 549 and keeps in sealing contact with the inner sliding sleeve 545 .
  • a sealing ring 550 is provided between the ball seat 546 and the inner sliding sleeve 545 for sealing.
  • the ball seat 546 When the ball seat 546 is blocked by the ball and the pressure in the central channel exceeds a certain pressure after being pressed, the ball seat 546 drives the inner sliding sleeve 545 and the slider 543 to pin the shear pin 554 shears and moves axially to open the acidizing hole 540, and when the pressure is stopped, the second support spring 544 pushes the inner sliding sleeve 545 to re-block the acidizing hole 540.
  • the single-flow ball fracturing sliding sleeve 53 seals the steel body through the ball and the ball seat 546, presses and pushes the inner sliding sleeve 545 (the slider 543) to cut the shear pin 554, and realizes the opening of the inner sliding sleeve 545 and the opening of the acidizing hole 540.
  • the inner sliding sleeve 545 resets under the action of the second support spring 544 to close the acidizing hole 540 .
  • the isolation packer 54 is set step by step.
  • the tubing is being pressurized and set, and after the setting is completed, the isolation packer 54 is checked and sealed. Isolate the packer 54 by annulus pressurization and seal inspection. If the pressure is stable, the seal inspection is qualified; then use the special setting tool to set the top hanging packer. Press to check whether the top packer 51 is qualified. After the top packer 51 is checked and sealed, the annulus is pressed or turned forward and the setting tool is discarded.
  • the acidizing hole 540 of the cracked sliding sleeve 53 enters the stratum to complete the acidizing and dredging of the stratum; after the acidizing is completed, the pressure is stopped, the second support spring 544 pushes against the slider 543, and the slider 543 pushes the inner sliding sleeve 545 and the ball seat 546 to reset, and the ball seat 546 closes the sliding sleeve again under the effect of the second support spring 544.
  • the channel-converting flow-regulating and water-controlling staged acidizing string 50 can increase the number of layers of acidizing stratification by adding isolation packers 54, single-flow water-controlling screens, and ball fracturing sleeves 53 of different sizes 546 . Achieve fine layering.
  • the oil and gas enter the annulus with the base pipe 522 through the filtration of the single-flow control water screen section, and then push the piston away, and flow through the flow control water component 534 (AICD) through the communication hole of the flow sleeve It enters the oil pipe and finally reaches the ground to realize water control and stable gas production.
  • AICD flow control water component 534
  • the channel conversion type flow regulation and water control section acidification column 50 of this embodiment has the following advantages:
  • the flow-regulating and water-controlling acidification device is a one-way valve-type flow-regulating and water-controlling acidification column 60 .
  • the flow-regulating and water-controlling screen 62 is a one-way valve-type water-controlling screen 62 .
  • the single flow mechanism is a two-stage fracturing sliding sleeve 63 connected to the lower end of the one-way valve type water control screen 62 .
  • the one-way valve type water control screen 62 and the two-stage fracturing sliding sleeve 63 constitute a flow regulation water control acidification component.
  • the one-way valve-type flow regulation and water control acidification string 60 has a top packer 61, a plurality of the flow regulation and water control acidification components, and an isolation packer 64 connected to two adjacent flow regulation and water control acidification components , wellbore isolation valve 65, double-stage floating shoe 66.
  • the whole set of one-way valve-type flow-regulating and water-controlling acid pressure string 60 is mainly composed of the following tools: the outer string 60 consists of the upper Including: top packer 61, one-way valve water control screen 62, two-stage fracturing sleeve 63, isolation packer 64, one-way valve water control screen 62, two-stage fracturing sleeve 63.
  • the one-way valve type water control screen pipe 62 is composed of a screen part 624 and a flow regulation and water control part 620, and the (adaptive) flow regulation and water control component 631 (AICD) is installed on the screen base pipe 622 .
  • the upper end of the base pipe 622 is fixedly connected with a collar 621 .
  • the screen part 624 is mainly composed of three layers, and the outermost one is the round hole outer protective sleeve 20 .
  • the outer protective cover 20 protects the filter layer and ensures the strength and reliability of the screen.
  • the 2nd-5th layer in the middle is the filter layer.
  • the second layer and the fourth layer are precision filter screens 21, 23 (sand-proof filtering effect).
  • the third layer and the fifth layer are precision guide nets 22 and 24 (guiding the inflowing liquid).
  • the sixth inner layer is the support layer 25, which ensures sufficient flow area between the filter layer and the base pipe 622.
  • the three are extruded through the extrusion forging process, which increases the strength by 74% compared with the traditional screen pipe, and at the same time reduces the cost.
  • an upper end ring 623 fixedly sleeved outside the base pipe 622 is fixedly connected to the upper end of the outer protective sheath 20 .
  • the lower end of the outer protective sheath 20 is connected with the upper end of the outer tube 626 through a butt plug 625 .
  • a flow guide channel is formed between the screen portion 624 and the base pipe 622 .
  • the docking plug 625 is fixedly sleeved outside the base pipe 622, and forms a passage between the base pipe 622 and the flow regulation and water control space and the screen part 624 (flow guiding channel).
  • the lower end of the outer tube 626 is fixedly sleeved outside the lower joint 632, and is fixedly connected by a set screw 634 for anti-rotation setting.
  • the lower end of the outer tube 626 is also sealed between the sealing ring 635 and the lower joint 632 .
  • the base tube 622 includes an upper base tube 6220 and a lower base tube 628 .
  • the lower end of the upper connecting pipe 6220 and the upper end of the lower base pipe 628 are fixedly connected through an intermediate joint.
  • the screen part 624 is arranged outside the upper connecting pipe 6220 , and at least most of the flow regulating and water controlling part 620 is arranged on the lower base pipe 628 .
  • the one-way assembly 630 is looped between the outer pipe 626 and the (lower) base pipe 622 to space the flow-regulating water control space in the axial direction to form a first axis communicating with the screen portion 624 To the space and the second axial space communicated with the flow regulation and water control component 631 .
  • the lower end of the lower base pipe 628 is connected to the inner side of the lower joint 632 through an external thread, and is provided with a sealing ring 633 for sealing.
  • the lower base pipe 628 constitutes the installation base of the flow regulation and water control component 631 .
  • the flow regulation and water control component 631 adopts the plate type flow regulation and water control component in the above embodiments, or the conical flow regulation and water control component.
  • the one-way assembly 630 includes: a first one-way ball seat 6301 and a second one-way ball seat 6302 that are axially connected.
  • the first one-way ball seat 6301 and the second one-way ball seat 6302 are provided with sealing rings 629 inside and outside (in the radial direction), forming a seal with the outer wall of the lower base pipe 628 and the inner wall of the outer pipe 626 .
  • the first one-way ball seat 6301 is arranged upstream of the second one-way ball seat 6302, and the first one-way ball seat 6301 has a first number of The first channel 6311.
  • the second one-way ball seat 6302 has second passages 6321 distributed in the circumferential direction that are larger than the first number.
  • first number of second passages 6321 and the first number of first passages 6311 are aligned one by one in the axial direction, and the remaining number of second passages 6321 and the first passages 6311 are staggered.
  • the opposite buckling ends of the first channel 6311 and the second channel 6321 are respectively provided with ball seats 6312, 6322, and the opposite buckling ball seats 6312 , 6322 is provided with a blocking valve ball 636.
  • the number of the second channels 6321 may be twice the number of the first channels 6311.
  • the first one-way ball seat 6301 and the second one-way ball seat 6302 are docked, and there may be a butt gap between them, and the axial length of the butt gap is smaller than the diameter of the plugging valve ball 636, preferably smaller than the plugging valve ball 636 radius.
  • the blocking valve ball 636 is a steel ball and can move axially.
  • the two ball seats 6312, 6322 constitute the movement space of the blocking valve ball 636, and the blocking valve ball 636 moves forward to block the first passage 6311, and the first one-way
  • the ball seat 6301 is completely blocked and the one-way assembly 630 is closed.
  • the blocking valve ball 636 moves backward to block a part of the second passages 6321 (the first number), and the remaining second passages 6321 are not blocked, and the one-way assembly 630 is opened.
  • the one-way valve (one-way assembly 630 ) is closed, and the acid liquid cannot enter the formation through the screen pipe, but can only enter the formation through the two-stage fracturing sleeve 63 .
  • the one-way valve 630 is opened, and the fluid passes through the filter screen through the one-way valve (one-way assembly 630), and finally enters the oil pipe through the flow regulating water control component 631 (AICD) and reaches the ground.
  • the one-way component 630 of the one-way valve structure is two ball seats 6312, 6322 with inconsistent number of holes on the left and right sides, and the blocking valve ball 636 cannot leave the left and right ball seats 6312, 6322.
  • the balls 636 When carrying out acid fracturing, as shown in acid fracturing Figure 26, the balls 636 all fall into the ball seat 6312 on the left side, at this time the flow path is completely blocked by the balls 636, so that the acidizing fluid cannot enter the formation.
  • the plugging valve balls 636 all fall into the ball seat 6322 on the right side, but the number of holes on the right side is greater than the number of balls 636, the flow channel is opened, and formation oil and gas pass through the flow regulation and water control component 631 (flow regulating and stabilizing parts) enter the oil pipe and reach the ground.
  • the two-stage fracturing sliding sleeve 63 includes: a sliding sleeve body 651; an upper valve seat sliding sleeve slidably sleeved in the sliding sleeve body 651 652 and the lower valve seat sliding sleeve 653 located below the upper valve seat sliding sleeve 652.
  • the acidizing hole 6510 is provided on the sliding sleeve body 651 .
  • the inner diameter of the lower valve seat sliding sleeve 653 is smaller than the inner diameter of the upper valve seat sliding sleeve 652 .
  • the diameter of the upper valve ball 659 is larger than the diameter of the lower valve ball 653, and the lower valve ball 653 can be seated on the lower valve seat sliding sleeve 653 through the upper valve seat sliding sleeve 652 to block the lower valve seat sliding sleeve 653.
  • the lower valve seat sliding sleeve 653 is positioned at a position to block the acidizing hole 6510 through the shear pin 654 .
  • the upper valve seat sliding sleeve 652 is positioned above the lower valve seat sliding sleeve 653 by shearing pins 6511.
  • the lower valve seat sliding sleeve 653 can be pushed to the position of opening the acidizing hole 6510 by pressure after being blocked by the ball.
  • the upper valve seat sliding sleeve 652 can be pushed to the position where the acidizing hole 6510 is blocked again by pressure after being blocked by the ball.
  • the upper end and the lower end of the upper valve seat sliding sleeve 652 are provided with sealing rings which are in sealing contact with the inner wall of the sliding sleeve body 651, and the upper and lower ends of the lower valve seat sliding sleeve 653 are provided with sealing rings 655 which are in contact with the inner wall of the sliding sleeve body 651. Sealed contacts.
  • the two-stage fracturing sliding sleeve 63 controls the opening and closing of the acidizing hole 6510 through the upper and lower valve seat sliding sleeves 653 of two stages with different inner diameters, the lower valve seat sliding sleeve 653 is opened, the lower valve seat sliding sleeve 653 moves down, and the acid fracturing hole is opened. Open the upper valve seat sliding sleeve 652, the upper valve seat sliding sleeve 652 moves down, and the acid pressure hole is closed again.
  • the outer diameter of the lower valve ball 653 (the ball is an acid-resistant soluble ball) is 0.1in (2.54mm), which is smaller than the minimum inner diameter of the upper valve seat sliding sleeve 652 so as to pass through the upper valve seat sliding sleeve 652 .
  • a lower joint 657 is connected to the lower end of the sliding sleeve body 651 .
  • a sealing ring 656 is provided between the lower end of the sliding sleeve body 651 and the lower joint 657 .
  • the part of the lower joint 657 protruding into the lower end of the sliding sleeve body 651 has a limiting end 6571 .
  • the lower valve seat sliding sleeve 653 is axially limited by the lower joint 657 when pushed by the ball to contact the limiting end 6571 .
  • the isolation packer 64 is set step by step, and the tubing is being pressed and set. After the setting is completed, the isolation packer 64 is checked and sealed. Press through the annular space, if the pressure is stable, the seal inspection is qualified; then use the special setting tool to set the top hanging packer, after the setting is completed, perform annulus seal inspection and hanging inspection, and press the casing to inspect the top packer 61 Whether it is qualified or not, after the top packer 61 is checked and sealed, the annulus is suppressed or forwardly rotated and the setting tool is discarded.
  • the one-way valve type flow control water control acidizing string 60 can increase the acidification layer by adding isolation packers 64, one-way valve type water control screens 62 and two-stage fracturing sliding sleeves 63 with different ball seat sizes. Number, to achieve fine layering.
  • the oil and gas enter the annulus with the base pipe through the filter of the one-way valve type water control screen 62 screen section, and then flow through the one-way valve through the water control device (AICD) into the oil pipe and finally reach the ground, realizing the control Water stabilizes gas production.
  • AICD water control device
  • the one-way valve-type flow-regulating and water-controlling acidification column 60 of this embodiment has the following advantages:
  • the tool adopts mechanical structure completely, and its performance is reliable
  • a one-way valve is used to realize the opening and closing of the water control screen 62, which has high reliability.
  • the flow regulation and water control acidification device is an adaptive flow regulation and water control acidification column 70 .
  • the flow regulating and water controlling screen 73 is an adaptive flow regulating and water controlling screen 73 .
  • the single-flow mechanism 74 is a single-flow fracturing passing assembly 74 connected to the upper end of the flow-regulating and water-controlling screen 73 .
  • the single-flow fracturing passage assembly 74 and the self-adaptive flow regulation and water control screen 73 constitute a flow regulation and water control acidification assembly.
  • the self-adaptive flow regulation and water control acidification string 70 includes a top packer 71 and a plurality of the flow regulation and water control acidification components; wherein, each of the flow regulation and water control acidification components is equipped with expansion valves above and below. Packer 72.
  • the self-adaptive flow regulation and water control screen pipe 73 is also provided with a centralizer 75 .
  • the integrated adaptive flow regulation and water control screen pipe 73 is mainly composed of two parts: the screen part 733 and the self-adaptive flow regulation and water control part.
  • the self-adaptive flow regulation and water control part 737 is installed on the base pipe of the self-adaptive flow regulation and water control part .
  • the upper end of the base pipe is fixedly connected with a collar 731 .
  • the adaptive flow regulation and water control screen pipe 73 includes a screen base pipe 732 and a water control base pipe 736 .
  • the screen base pipe 732 is connected with the water control base pipe 736 to form a base pipe.
  • a flow guide channel 734 is formed between the screen portion 733 and the base pipe 732 .
  • a connection assembly 735 is fixedly connected to the outside of the base pipe.
  • the connection assembly 735 is fixedly connected to the lower end of the outer protective sheath 20 and the upper end of the outer tube 738 .
  • the connecting component 735 is provided with a communication channel connecting the flow guide channel 734 with the flow regulation and water control space.
  • the screen part 733 is mainly composed of three layers, and the outermost is the outer protective sleeve 20 with round holes.
  • the outer protective cover 20 protects the filter layer and ensures the strength and reliability of the screen.
  • the 2nd-5th layer in the middle is the filter layer.
  • the second layer and the fourth layer are precision filter screens 21, 23 (sand-proof filtering effect).
  • the 3rd layer, the 5th layer are precision diversion nets 22,24 (guiding the inflow liquid).
  • the sixth inner layer is the supporting layer 25, which ensures sufficient flow area between the filter layer and the base pipe.
  • the three are extruded through the extrusion forging process, which increases the strength by 74% compared with the traditional screen pipe, and at the same time reduces the cost.
  • the water control base pipe 736 is respectively connected to the inner wall of the outer pipe 738 at both axial ends of the flow regulating water control space.
  • the water control base pipe 736 is also provided with a clamping wall channel upstream of the flow regulating water control space.
  • the communicating annulus communicates between the communicating passage and the sandwiched wall passage.
  • a space for adjusting flow and controlling water is formed between the concave portion between the upper end and the lower end of the water control base pipe 736 and the outer pipe 738 .
  • the flow regulation and water control component 737 is installed on the wall of the recessed part.
  • the lower end of the water control base pipe 736 is also provided with a lower joint 739 .
  • the adaptive flow regulation and water control part is mainly composed of three parts, namely, the water control base pipe 736, the outer pipe 738, and the flow regulation and water control component 737 as the core control part of the self-adaptive flow regulation.
  • the flow regulation and water control component 737 is connected to the upper part of the central hole of the water control base pipe 736 by welding or threading.
  • the central hole of the base pipe 736 communicated with the flow regulation and water control space ensures the connection flexibility of the tools.
  • the single-flow fracturing pass assembly 74 includes: an outer cylinder 756 .
  • the inner tube body 752 is fixedly sheathed in the outer cylinder body 756 .
  • the outer cylinder body 756 is provided with the acidification hole and the micro check valve 755 arranged in the acidification hole.
  • the interior of the inner tube body 752 is configured as a central channel.
  • the central channel has an outlet hole 7521 .
  • the outflow hole 7521 communicates with the intermediate annular space between the inner tube body 752 and the outer cylinder body 756 .
  • the middle annular space is also provided with a rubber sealing sleeve 758 that fits and sleeves on the outside of the inner tube body 752 to cover the outlet hole 7521 .
  • the rubber sealing sleeve 758 can open the outflow hole 7521 when the pressure in the central passage exceeds a first predetermined pressure.
  • the upper end of the outer cylinder 756 is connected to the lower end of the upper joint 751 through an external thread, and is sealed by a sealing ring 754 .
  • the upper end of the inner tube body 752 is fixedly connected in the upper joint 751 and sealed by a sealing ring 753 .
  • the lower end of the outer cylinder 756 is fixedly sleeved on the upper end of the lower joint 762 and sealed by a sealing ring 760 .
  • the lower end of the inner tube body 752 is fixedly sleeved in the upper end of the lower joint 762 and sealed by a sealing ring 761 .
  • the miniature check valve 755 includes: a valve body 7551 fixed in the acidification hole, a baffle plate 7552 fixed at the radially outer end of the valve body 7551, a The inner valve ball 7555, and the spring 7553 between the valve ball 7555 and the baffle plate 7552.
  • the valve body 7551 has a valve body seat blocked by the valve ball 7555 at the radially inner end.
  • a guide body 7554 is also provided in the valve body 7551 .
  • the guide body 7554 fits on the inner wall of the valve body 7551, guides the movement of the valve ball 7555, and serves as a supporting point for the spring 7553 to facilitate the installation of the spring 7553.
  • the spring 7553 is installed between the guide 7554 and the baffle 7552 .
  • the valve ball 7555 is seated between the valve body seat and the guide body 7554, and is pushed against by the spring 7553.
  • the miniature check valve is composed of a baffle plate 7552, a spring 7553, a guide body 7554, a valve body seat, and a steel ball 7555.
  • the single-flow fracturing passes through the outermost shell of the component 74, and the overall structure is compact and flexible, and has high reliability.
  • the miniature check valve is in a low-pressure closed state during the tool running process, and the opening pressure is set at 0.1-0.2MPa.
  • the check valve When acidizing, inject acidizing fracturing fluid into the formation, the injection pressure is greater than 0.2MPa, the check valve can be fully opened (acidizing hole), the minimum passage diameter of the entire check valve is 5mm, and then under the driving pressure of 1MPa, A single miniature check valve can pass more than 0.5m 3 of fracturing fluid per minute, meeting the technical requirements of large-scale acid fracturing.
  • the formation pressure acts on the miniature check valve 755, through the surface seal between the steel ball 7555 and the valve body seat, the miniature check valve 755 can block the differential pressure difference of 60MPa to ensure the closure of the miniature check valve 755 , so that the fluid must pass through the integrated self-adaptive flow control screen 73 to adjust the flow and control liquid and then enter the production column 70.
  • the integrated design of the entire micro check valve has no moving parts, high reliability in use, and can meet application requirements.
  • the single-flow fracturing passage assembly 74 is double-steel-sealed with the micro-single-flow valve 755 and the rubber sealing sleeve 758.
  • the pressure inside the pipe pushes the rubber sealing sleeve 758 to expand and open.
  • the micro-check valve 755 to open to realize the opening of the entire single-flow fracturing passage assembly 74 and the opening of the acidizing channel to realize communication between the inside and outside of the pipe string 70 .
  • the miniature check valve 755 resets under the effect of the spring 7553, and the rubber sealing sleeve 758 returns to its original state, and the outlet hole is closed again.
  • the single-flow fracturing passage assembly 74 plays the role of opening and closing the seal mainly by the miniature single-flow valve 755 and the rubber sealing sleeve 758 .
  • a fixed sleeve 757 is provided outside the inner pipe body 752.
  • the upper end of the fixing sleeve 757 is screwed to the outside of the inner tube body 752 .
  • the lower end of the fixing sleeve 757 is provided with a sealing ring 759 which fits and sleeves on the outer wall of the inner tube body 752 .
  • the fixing sleeve 757 is provided with an installation step at the upper end of the space to embed the upper end 7581 of the rubber sealing sleeve 758, thereby limiting the axial position of the rubber sealing sleeve 758.
  • the fixing sleeve 757 is also provided with a connecting through hole 7571 on the outer wall of the space, and the connecting through hole communicates the space with the outer annular space (the annular space between the outer cylinder body and the inner pipe body).
  • the wall thickness of the rubber sealing sleeve 758 is stepped in the axial direction from the upper end to the lower end. Wherein, the wall thickness of the upper step is greater than that of the lower step. As shown in FIG. 32 , the thickness of the upper end of the rubber sealing sleeve 758 is greater than the thickness of the middle portion 7582 and the lower end 7583 , wherein the thickness of the lower end 7583 is the smallest.
  • the rubber sealing sleeve 758 has a ring-shaped sealing structure, and the thickness of the rubber is arranged in a stepped structure. This structure is mainly suitable for opening the rubber seal from the outside to the inside one by one when the acid liquid is injected inside, so as to ensure that the rubber seal assembly is safe during the acid injection process.
  • the rubber sealing sleeve 758 receives positive sealing pressure, and the formation pressure ensures that the rubber sealing sleeve 758 can cling to the wall of the inner pipe body, thereby ensuring leakage due to poor sealing during gas production, affecting the flow regulation and water control device work effect.
  • the single-flow fracturing passes through the component 74 as the main channel, and most of the acidizing fracturing fluid enters the formation through the single-flow fracturing through the component 74 flow channel string 70, and enters the formation through the self-adaptive flow control screen 73 There is less acid liquid; during production, the fluid pushes the single-flow fracturing to close through the component 74, and the formation fluid must be regulated by the adaptive flow control device and enter the tubing to reach the ground.
  • Staged acidizing the tubing is pumped into the acidizing fracturing fluid system. As the pressure of the internal string 70 increases, the single-flow fracturing is opened through the component 74. The single-flow fracturing at the front, middle, and rear of the well string 70 enters the formation through the assembly 74, respectively realizing the staged acidification of the corresponding reservoir.
  • the passability of the single-flow fracturing passage component 74 is far greater than that of the self-adaptive flow-regulating water control screen 73.
  • the displacement is large and the pressure inside the pipe is relatively high.
  • the fracture enters the formation through the component 74, thereby realizing staged acid fracturing of the reservoir and dredging the formation.
  • pressurization is stopped, and the single-flow fracturing is closed again through the sliding sleeve under the action of formation pressure.
  • the self-adaptive flow control water control acidizing string 70 can increase and optimize the acidification stratification by increasing the number and position of the oil-swellable packer 72, the self-adaptive flow control water control screen 73, and the single-flow fracturing passing component 74 The number and position of layers for fine layering.
  • oil and gas enter into the annulus of the base pipe through the filtration of the adaptive flow control and water control screen section 73, and enter through the flow control and water control component 737 (AICD) of the adaptive flow control and water completion device
  • AICD flow control and water control component 737
  • the self-adaptive flow regulation and water control acidification column 70 of this embodiment has the following advantages:
  • Integrated design, self-adaptive flow control and water control completion string 70 has simple structure and high reliability
  • Self-adaptive flow regulation and water control screen 73 has a simple design structure, no moving parts, and long service life;
  • the expansion packer 72 is used to segment the reservoir, without the need for packer setting and sealing operations, which increases the safety of the entire process and the simplicity of construction;
  • the self-adaptive flow regulation and water control screen 73 is connected internally and externally. During the process of running the tool, the internal and external pressure of the pipe string 70 is balanced, and the safety is high;
  • the single-flow fracturing passage assembly 74 has a simple structure, and the opening and closing process is simple and reliable.
  • the acidification channel and the water control channel are completely separated.
  • the displacement of the segmented acidification is large, and the acidification efficiency is higher.
  • the fluid enters the flow control device through the screen tube, and the water control is highly targeted;
  • the oil and gas wells disclosed in the present disclosure have a flow regulating water control acidizing well completion device and supporting pipe string 70. After being lowered into the staged acid fracturing production water control integrated pipe string 70 system through one operation, isolation and isolation The expansion seal of the device realizes the segmentation of the horizontal well section, thereby realizing the segmentation of the reservoir and the acid fracturing of different segments, realizing the function of segmented acid fracturing.
  • each horizontal section is connected with the reservoir, and the reservoir
  • the fluid outside the layer can enter the production string 70 through the selection of different types of (adaptive) flow control water screens 73 according to the different technologies used, and then pass through the single flow control water screen 73 or the one-way valve type During the process of the water control screen 73 or the self-adaptive water control screen 73, the swirl flow passage structure and the flat flow passage structure on the inner wall surface of the adjusted flow control part 737 add resistance twice to the inflowing fluid to control different phases.
  • the inflow velocity of the state fluid can be adjusted to achieve the purpose of unimpeded gas production, oil phase priority production, and water phase control output, so as to realize the purpose of flow control and water control, and solve the problems of water-bearing oil and gas wells, tight oil and gas reservoirs, and complex and highly acidic oil and gas reservoirs. Difficulties in segmental acid fracturing production water control integrated tool device and supporting process.
  • the tool device and string 70 system with integrated functions of staged acid fracturing completion, production and water control are installed to overcome the general acid fracturing effect of long horizontal wellbore.
  • the gas production is uneven in different horizontal sections, and it is easy for the edge and bottom water to coning into the wellbore and flood the wellbore.
  • the function of the original pipe string 70 for production after acid fracturing is realized, and at the same time, it has the effect of controlling water and suppressing water coning along the edge and bottom of the horizontal wellbore, so as to reduce operating procedures, save process costs, and maximize Prevent the production of toxic gases and complex working conditions during the completion of complex oil and gas wells, ensure the safety of production operations, and achieve the maximum recovery in the control area of various edge-bottom water oil and gas reservoirs and complex and difficult oil and gas reservoirs. Completion and production optimization of oil and gas wells.
  • any numerical value quoted herein includes all values from the lower value to the upper value in increments of one unit, and there is a separation of at least two units between any lower value and any higher value.
  • a component quantity or process variable such as temperature, pressure, time, etc.
  • the purpose Values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32, etc. are also explicitly listed in the specification.
  • one unit is considered to be 0.0001, 0.001, 0.01, 0.1, as appropriate.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Lift Valve (AREA)
  • Cyclones (AREA)

Abstract

本公开提供一种油气井用调流控水酸化完井装置及使用方法,其中,一种油气井用调流控水酸化完井装置包括:调流控水筛管;所述筛管具有基管、设置于所述基管上的筛网部分、以及与筛网部分连通的调流控水部分;所述筛网部分用于对地层流体过滤;所述调流控水部分连通于所述筛网部分的下游,用于增大地层流体中水的流动阻力;与所述调流控水筛管相连接的单流机构;所述单流机构内设有与所述基管相通的中心通道、以及将所述中心通道与所述单流机构的外部连通的酸化孔;所述单流机构被配置为通过井外打压可操纵地打开关闭所述酸化孔。该调流控水酸化装置能够实现酸压后原管柱进行生产的功能,并具有控水抑制油气井边底水锥进效果。

Description

油气井用调流控水酸化完井装置及使用方法 技术领域
本发明属于油气井开发技术领域,涉及油气井分段调流控水、分段酸压及油气生产技术,特别涉及一种适用于油气井的调流控水酸化装置,具体为一种油气井用油气井用调流控水酸化完井装置及使用方法。
背景技术
随着世界能源需求的持续增大,深层复杂天然气、致密油气的开发越发成为全世界化石能源勘探开发的重点。但很多复杂储层油气藏的开发时,多面临酸性H2S和CO2气体的影响,大多数油气井含了剧毒H2S气体。为了增加单井产量,降低投入产出比,很多深层油气藏采用长水平井完井,随着油气井布井从主体区块向外围区块延伸,储层物性相对变差,为了提高单井产能,该长水平井通常需要进行酸压和酸洗作业,有些区块水平井筒长达1000米以上,由于长水平井筒的渗透率各向异性和岩石非均质性,笼统酸压和酸洗效果不明显,通常需要进行分段酸压酸洗作业,以提高单井产量。
目前通常采用分段酸压生产一体化管柱,但随着油气田开发进入中后期,油气井产水量增大及油气井出水被水淹停产越发成为影响整个油田产量的关键,因为水平井筒长,分段酸压生产一体化管柱在一定生产时间后,因为沿水平井筒的岩石非均质性和渗透率各向异性,不同水平井分段内产油气量不同,且由于水平井筒控制区域外的油气藏边界线较为复杂,不一定是平行与水平井筒的直线或者直面,因此周围有较强边底水时,一旦某个水平分段出水或者被水突破,整个水平井筒很快被水淹没,进而导致水锁井筒,油气无法顺利采出,影响油气井的产能。这就需要在完井的过程中,就考虑分段控水的问题,由于深层复杂油气藏一般高含H 2S,为了防止出现H 2S事故,一般油气井完井过程中要求在下入重浆压井液后,完井作业尽量保证在一趟作业中完成,不建议完井多次起下管柱,从而避免井底的H2S溢出井口而造成严重事故,因此分段酸压后,再下入生产与控水管柱等作业模式无法实现。
为了高效开发复杂深层含酸性气体油气藏,在分段酸压的基础上,考虑后期均衡产气,控水抑制边底水锥进,同时考虑到高含H 2S作业的风险,需要发明一种适用于高含H2S气井的酸压生产控水一体化管柱及配套工艺,以通过下入该一体化管柱进行完井,只需一次下管柱进行作业,有效的分段酸压沟通储层,同时可以实现生产,并且在生产过程中,可以有效的分段控水,均衡不同分段气体的产出速度,抑制不同分段控制区域外边底水的锥进速度,从而实现一趟工艺酸压生产控水一体化,节约工艺成本的同时, 最大限度保证复杂深层油气井筒生产作业安全。
发明内容
鉴于上述不足,本发明的目的是,发明出一种油气井用调流控水酸化完井装置及使用方法,通过一趟作业下入分段酸压完井和生产及控水一体化功能的工具装置及管柱系统,克服一趟管住无法实现分段酸压和调流控水一体化的问题。
本发明的一个目的是提供一种油气井用调流控水酸化完井装置,通过一趟下管柱作业,同时实现酸压后原管柱进行生产的功能,并具有控水抑制油气井边底水锥进效果,延长油气井低含水采出期,提高油气井采收率的效果,达到减少作业工序,节约工艺成本的目的。
本发明还有一个目的是提供一种油气井用调流控水酸化完井装置,以能够最大限度防止完井作业过程腐蚀性气体的产出,保证生产作业安全,实现高含硫化氢复杂油气水平井控制区域最大采出程度的目的,进而实现深层复杂油气井的完井和生产最优化。
为达到上述至少一个目的,本申请采用如下技术方案:
一种调流控水酸化完井装置,其中,包括:
调流控水筛管;所述筛管具有基管、设置于所述基管上的筛网部分、以及与筛网部分连通的调流控水部分;所述筛网部分用于对地层流体过滤;所述调流控水部分连通于所述筛网部分的下游,用于增大地层流体中水的流动阻力;
与所述调流控水筛管相连接的单流机构;所述单流机构内设有与所述基管相通的中心通道、以及将所述中心通道与所述单流机构的外部连通的酸化孔;所述单流机构被配置为通过井外打压可操纵地打开关闭所述酸化孔。
作为一种优选的实施方式,所述基管上还设有单向组件;所述单向组件被配置为允许流体从所述筛网部分向所述调流控水部分流动,而阻止流体从所述调流控水部分向所述筛网部分流动。
作为一种优选的实施方式,所述筛网部分包括从外向内依次套设的外保护套、过滤网、导流网、过滤网、导流网、以及支撑层;所述外保护套上分布有圆形通孔;所述导流网用于对流体导流;所述过滤网、导流网以及支撑层通过挤锻固定一体。
作为一种优选的实施方式,所述调流控水部分包括固定于所述基管外侧的外管、在所述外管内安装于所述基管壁上的调流控水部件;所述基管和所述外管之间形成调流控水空间;所述调流控水部件将所述基管的内部与所述调流控水空间相连通。
作为一种优选的实施方式,所述调流控水筛管为单流控水筛管;其中,所述单向组 件包括:
固定设置在所述外管内部的过流套;所述过流套将所述调流控水空间在径向上分隔形成内空间和与所述筛网部分相连通的外空间;所述调流控水部件将所述内空间与所述基管的内部相连通;所述过流套上设有将内空间和外空间相连通的连通孔;
设置于所述外空间的沿轴向滑动的封堵活塞以及第一支撑弹簧;所述封堵活塞具有将所述连通孔封堵的封堵位置、以及将所述连通孔打开的打开位置;所述第一支撑弹簧在轴向上支撑所述封堵活塞位于所述封堵位置;所述封堵活塞能被地层流体推动从所述封堵位置移动到所述打开位置。
作为一种优选的实施方式,所述单流机构为单流投球压裂滑套;所述单流投球压裂滑套连通于所述调流控水筛管的下端;
所述单流投球压裂滑套包括:外套管、可滑动地套设在所述外套管内部的内滑套;所述内滑套的内部构成中心通道并固定有球座;所述内滑套和所述外套管之间设有固定连接于所述内滑套外的滑块、以及轴向支撑所述滑块的第二支撑弹簧;所述滑块通过剪切销钉固定连接所述外套管;所述外套管上设有所述酸化孔;所述内滑套被所述剪切销钉固定在将所述酸化孔封堵的位置;
在所述球座被投球封堵,经打压使得所述中心通道内的压力超过一定压力时,所述球座带动所述内滑套及所述滑块将所述剪切销钉剪断进行轴向移动而打开所述酸化孔,并在停止打压时所述第二支撑弹簧推动所述内滑套重新将所述酸化孔封堵。
作为一种优选的实施方式,所述外套的上端连接有上接头,所述外套的下端连接有下接头;所述内滑套将所述酸化孔封堵的位置为:所述内滑套的上端密封套设于所述上接头内,所述内滑套的下端密封套设于所述下接头内。
作为一种优选的实施方式,所述调流控水酸化装置为通道转换式调流控水分段酸化管柱;所述单流控水筛管及所述单流投球压裂滑套构成调流控水酸化组件;
所述通道转换式调流控水分段酸化管柱具有顶部封隔器、多个所述调流控水酸化组件、连接于相邻两个调流控水酸化组件的隔离封隔器、井筒隔离阀、双级浮鞋。
作为一种优选的实施方式,所述调流控水筛管为单向阀式控水筛管;其中,所述单向组件环套在所述外管和所述基管之间将所述调流控水空间沿轴向间隔形成与所述筛网部分相通的第一轴向空间和与所述调流控水部件相通的第二轴向空间;
所述单向组件包括:沿轴向相对接的第一单向球座和第二单向球座;其中,沿地层流体流动方向,所述第一单向球座设置于所述第二单向球座的上游,所述第一单向球座 具有在圆周方向分布的第一数量的第一通道,所述第二单向球座具有在圆周方向分布的大于第一数量的第二通道;其中,第一数量的第二通道与第一数量的第一通道在轴向上一一对齐设置,剩余数量的第二通道与第一通道相错开;在沿轴向相对齐的第一通道和第二通道中,第一通道和第二通道的相对扣合的端部各自设置有球座,相对扣合的球座内设有一个封堵阀球。
作为一种优选的实施方式,所述单流机构为连接于所述单向阀式控水筛管的下端的双级压裂滑套;所述双级压裂滑套包括:
滑套本体;所述滑套本体上设有所述酸化孔;
可滑动地套设于所述滑套本体内的上阀座滑套和位于所述上阀座滑套下方的下阀座滑套;所述下阀座滑套的内径小于所述上阀座滑套的内径;所述下阀座滑套通过剪切销钉定位在将所述酸化孔封堵的位置;所述上阀座滑套通过剪切销钉定位在所述下阀座滑套的上方;所述下阀座滑套在被投球封堵后能被压力推动至将所述酸化孔打开的位置;所述上阀座滑套在被投球封堵后能被压力推动至将所述酸化孔重新封堵的位置。
作为一种优选的实施方式,所述滑套本体的下端连接有下接头;所述下接头伸入所述滑套本体的下端内部的部分具有限位端;所述下阀座滑套在被投球推动至与所述限位端接触时被所述下接头轴向限位;所述上阀座滑套在被投球推动至与所述下阀座滑套接触时被所述下阀座滑套轴向限位,并将所述酸化孔重新封堵。
作为一种优选的实施方式,所述调流控水酸化装置为单向阀式调流控水酸化管柱;所述单向阀式控水筛管及所述双级压裂滑套构成调流控水酸化组件;
所述通道转换式调流控水分段酸化管柱具有顶部封隔器、多个所述调流控水酸化组件、连接于相邻两个调流控水酸化组件的隔离封隔器、井筒隔离阀、双级浮鞋。
作为一种优选的实施方式,所述调流控水筛管为自适应调流控水筛管;所述自适应调流控水筛管包括筛网基管、控水基管;所述筛网基管和所述控水基管相连接构成基管;
所述筛网部分和所述基管之间形成有导流通道;所述基管外固定连接有连接组件;所述连接组件固定连接外保护套的下端以及所述外管的上端;所述连接组件开设有将所述导流通道和所述调流控水空间相连通的连通通道;
所述控水基管在所述调流控水空间的轴向两端分别连接所述外管内壁;所述控水基管在所述调流控水空间的上游还设有夹壁通道;所述控水基管的上端和连接组件之间还设有连通环空;所述连通环空连通在所述连通通道和所述夹壁通道之间。
作为一种优选的实施方式,所述单流机构为连接于所述调流控水筛管上端的单流压 裂通过组件;所述单流压裂通过组件包括:
外筒体;所述外筒体上设有所述酸化孔、以及设置于所述酸化孔内的微型单流阀;
固定套设于所述外筒体内的内管体;所述内管体的内部构成为中心通道;所述中心通道具有一出流孔;所述出流孔与所述内管体和所述外筒体之间的中间环空相连通;所述中间环空内还设有贴合套设于所述内管体外将所述出流孔遮盖的橡胶密封套;所述橡胶密封套能够在所述中心通道内的压力超过第一预定压力时将所述出流孔打开。
作为一种优选的实施方式,所述微型单流阀包括:固定在所述酸化孔内的阀体、固定于所述阀体在径向的外端的挡板、位于所述阀体内的阀球、以及位于所述阀球和所述挡板之间的弹簧;所述阀体在径向的内端具有被所述阀球封堵的阀体座。
作为一种优选的实施方式,所述橡胶密封套的壁厚沿轴向从上端至下端呈阶梯式壁厚;其中,位于上方的阶梯壁厚大于位于下方的阶梯壁厚。
作为一种优选的实施方式,所述调流控水酸化装置为自适应调流控水酸化管柱;所述单流压裂通过组件和所述自适应调流控水筛管构成调流控水酸化组件;
所述自适应调流控水酸化管柱包括顶部封隔器、多个所述调流控水酸化组件;其中,每个所述调流控水酸化组件的上方及下方均设有膨胀封隔器;所述自适应调流控水筛管还设有扶正器。
一种油气井用调流控水酸化完井装置,包括:从上至下依次连接的顶部封隔器、多个调流控水酸化组件、井筒隔离阀、浮鞋;其中,每相邻两个调流控水酸化组件之间设有隔离封隔器;所述调流控水酸化组件包括调流控水筛管以及与所述调流控水筛管相连接的单流机构;
所述调流控水筛管具有基管、设置于所述基管上的筛网部分、以及与筛网部分连通的调流控水部分;所述筛网部分用于对地层流体过滤;所述调流控水部分连通于所述筛网部分的下游,用于增大地层流体中水的流动阻力;所述基管上还设有单向组件;所述单向组件被配置为允许流体从所述筛网部分向所述调流控水部分流动,而阻止流体从所述调流控水部分向所述筛网部分流动;
所述单流机构内设有与所述基管相通的中心通道、以及将所述中心通道与所述单流机构的外部连通的酸化孔;所述单流机构被配置为通过井外打压可操纵地打开关闭所述酸化孔。
一种如上所述的油气井用调流控水酸化完井装置的使用方法,包括以下步骤:
将所述调流控水酸化完井装置下入到井中,在下入过程中通过井筒隔离阀进行自动 灌浆,液体通过井筒隔离阀的孔进入调流控水酸化完井装置内部,保持调流控水酸化完井装置内外压力平衡;
在所述调流控水酸化完井装置下入到位后投球关闭井筒隔离阀;
在关闭井筒隔离阀后,逐级坐封隔离封隔器,通过隔离封隔器隔离出上下不同的地层;
在进行酸化地层时,将单流机构的酸化孔打开,通过油管打压开始该地层的酸化;此时调流控水筛管通过单向组件无法与外部连通,酸液仅通过单流机构的酸化孔进入地层完成酸化地层;在酸化完成后,停止打压,关闭所述单流机构的酸化孔;
从下至上逐个地层进行酸化;
在进行生产时,将单流机构的酸化孔关闭,油气正向依次通过调流控水筛管的筛网部分的过滤,调流控水部分的控水节流,进入油管最终到达地面,完成生产。
有益效果:
本公开的调流控水酸化完井装置通过调流控水筛管与单流机构相配合,实现酸压后原管柱进行生产的功能,并具有控水抑制油气井边底水锥进效果,延长油气井低含水采出期,提高油气井采收率的效果,达到减少作业工序,节约工艺成本的目的。
在管柱中设置多套调流控水筛管与单流机构,即可通过一趟作业下入分段酸压完井和生产及控水一体化功能的工具装置及管柱系统,克服一趟管住无法实现分段酸压和调流控水一体化的问题。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的调流控水部件结构示意图;
图2是图1的立体图;
图3是本申请另一个实施例提供的调流控水部件结构示意图;
图4是图3的剖面图;
图5是图3的立体图;
图6是本申请另一个实施例提供的调流控水部件结构示意图;
图7是图6的立体图;
图8是本申请另一个实施例提供的调流控水部件结构示意图;
图9是图8的立体图;
图10是本申请另一个实施例提供的调流控水部件结构示意图;
图11是图10的立体图;
图12是本申请一个实施例提供的通道转换式调流控水分段酸化管柱结构示意图;
图13是图12的单向阀式控水筛管半剖结构示意图;
图14是图13的剖面结构示意图;
图15是图13的筛网部分结构示意图;
图16是图12的单流投球压裂滑套半剖结构示意图;
图17是图16的剖面结构示意图;
图18是图13的调流控水部分在酸压过程的状态示意图;
图19是图13的调流控水部分在生产过程的状态示意图;
图20是本申请另一个实施例提供的单向阀式调流控水酸化管柱结构示意图;
图21是图20的单向阀式控水筛管半剖结构示意图;
图22是图21的剖面结构示意图;
图23是图20的双级压裂滑套半剖结构示意图;
图24是图23的剖面结构示意图;
图25是图21的单向阀结构示意图;
图26是图25在酸压过程的状态示意图;
图27是图25在生产过程的状态示意图;
图28是本申请另一个实施例提供的自适应调流控水酸化管柱结构示意图;
图29是图28的单流压裂通过组件半剖结构示意图;
图30是图29的剖面结构示意图;
图31是图29的微型单流阀剖面结构示意图;
图32是图29的橡胶密封套剖面结构示意图;
图33是图28的自适应调流控水筛管剖面结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的另一个元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中另一个元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
还需要说明的是,除非具有明确定义,在未定义的方位词中,本公开中的“上”“下”可以理解为与井口位置的远近关系定义,相邻两个部件,距离井口近的部件位于距离井口远的部件的上方,而同一部件的不同部分,同样以距离井口远近来进行定义。
参阅图1、图2,本公开的一个实施例提供一种调流控水部件,该调流控水部件作为油气水三相入流自适应调流控水核心控制机构(AICD)。该实施例提供一种设置在井中且适于接收流入流体的调流控水部件(AICD)。
该调流控水部件作为流体流入控制机构通过对不需要的流体(例如油气井中的水)引入相对较大的流动阻力和相对较大的压降,对需要的流体(例如油气井中的油、气)引入相对较小的流动阻力和相对较小的压降,以这种方式流入控制机构可以降低不需要流体在产出液中所占的比例,使油气井保持高效生产。
所述调流控水部件包括腔室2、出口3和至少一个入口1。所述腔室2具有第一端(在面对图2时为上端,在安装在调流控水筛管上时第一端为在基管径向方向上的径向外端)和第二端(在面对图2时为下端,在安装在调流控水筛管上时第一端为在基管径向方向 上的径向内端),且腔室的截面沿腔室的延伸而缩小,腔室2的第一端为圆柱形腔室,腔室2的第二端为内径小于第一端的圆柱形腔室。该调流控水部件中,入口1直径:出口3直径:流道高度=1:1.8~2.8:4.5~6.5。其中,流道高度为面对图2时腔室2的顶部至出口3的竖直高度,也可以为入口1与出口3在面对图2时竖直方向的间距。入口1或入口1流道的内径:旋流腔室2最大内径=1:4.5~7.5。调流控水部件为阶梯形状,其对应腔室第一端的部分外径大于对应腔室第二端的部分的外径,如此方便定位安装于基管的连通孔中。
腔室出口3为腔室的第二端。入口1处有一个横向的维度尺寸,用以接收流体并向腔室2的第一端进行输送,入口1为直线型流道,并以大致沿切向方向通入腔室2(的第一端),从而在腔室2内部产生沿腔室2切面方向向出口旋转的流体。同时,在入口1至腔室2的第一端间可以增加油水变摩阻结构(阻尼结构),以更加达到油气水分离的目的。
该调流控水部件对于要生产的理想流体(油、气)具有更有利的压力与流速特性。当地层流体流入装置内,由入口1流道节流后,流体形成射流.当入流流体为油的时候,由于油的密度相对较小,粘度相对较大,形成的射流的速度相对较小,进而在涡流腔内的旋转增加效果有限,很快从中心出口3流出,在整个装置内生的节流阻力相对较小;而当水进入控水装置内,由于水的密度相对较大,粘度较小,惯性力较大,形成的射流的速度相对较大,进而在涡流腔内的旋转增加效果明显,在涡流腔室2内形成告诉的旋流,进而产生较大的节流阻力
调流控水部件包括入口1的涡流诱导器,该涡流诱导器使进入的流体产生射流并将这些射流引导到调流控水部件的腔室2中。在腔室2内,射流产生旋转流以及轴向流,该轴向流向腔室2的出口3转化。在旋转腔室2内,流体的重力势能转化为向中心旋转的运动势能,而切向运动的运动势能在中心出口3转化为整个调流控水部件所产生的节流阻力,因此,整套控水装置对水的阻力较大,油由于粘度较大在节流件内所形成的节流阻力相对较小,而气的粘度力和惯性力都很小,因而在控水装置内形成了节流阻力也非常小。
该调流控水部件为一体式结构,由适用于井下环境且具有较强结构完整性的材料形成,例如钢或碳化钨,可以通过加工、注塑、铸造等方式形成。该装置整体尺寸小巧,高度约为14-18mm,上截面直径18-20mm,下截面直径4-6mm,出口3直径1.6-4.5mm,装置下端外部为螺纹设计,方便安装于油气井管柱上。
图1和图2分别显示的是双入口1旋流结构的横向截面和3维视图。从图中可以看出该结构包括两个流体入口1,这两个入口1将切向的射流分别送入旋流腔2,参照图2可以看出旋流腔2为倒圆锥型的内部腔室2,入口1穿过腔室2壁,腔室2第二端为流体出口33。
该调流控水部件中的漩涡流在最靠近轴线的眼区形成低压区。粘度较高的油以较低的速度旋转运动,粘度较低的流体(如气体或水)则旋转速度要高得多,眼处较低的压力有效地扼制了流体流动。因此,该调流控水部件主要对流体粘度作出反应,诱导的旋转流动导致压力降,并且压力降的程度是流动的流体特性的函数,流量减少的强度随着流体粘度的降低而增加,在纯气体流中达到最大值。
如图3、图4,本公开的另一个实施例还提供一种调流控水部件,相较于图1、图2的调流控水部件,该实施例增加了长短流道设计。其中,图3、图4分别为长短流道结构的正视图和横向截面图。该调流控水部件包含四个圆柱形入口流道,且流道长度不同(入口流道包括:短流道4,长流道5)。短流道4、长流道5汇合后经过一次缩径到达旋流腔入口端6。入口端6连通在短流道4、长流道5与腔室7之间。入口端6的过流面积小于短流道4和长流道5的过流面积之和。长流道5直径:短流道4直径=1:1~1.4。长流道5长度:短流道4长度=3~5.5:1。
旋流腔7的第二端(在安装于调流控水筛管上时第二端为径向内端,该端可以作为插入到基管壁的阶梯通孔中进行定位安装)为流体出口8,其中旋流腔7为倒圆锥型的内部腔室,与图1、图2中的双入口旋流结构的内部腔室结构一直。图5为长短流道结构的三维图。
长短流道4、5在保有双入口旋流结构的调流控水的基础上,新增加了两个入口流道,可以有效增大过油面积,降低装置对油的阻力,同时通过长短流道的设计减小湍流区域的形成,同时,整套结构增加了多个局部节流机构,使得对水的阻力大幅度提高,对水的控制功能进一步加强,入口端6的缩径则可以有效增加流速,使流体更容易形成沿着旋流腔切面流动的射流。该结构对水的控制阻力得到了进一步增强,水油过流的压力比进一步放大。
为了进一步增加油、气、水控制的针对性,通过增加分支流道的方法,建立了多分支流道结构的油气水自适应调流控水部件。如图6、图7所示,本公开的一个实施例还提供一种多分支流道结构的油气水自适应调流控水部件。其中,图6和图7分别为多分支流道结构的俯视透视图和纵向透视图。图7为多分支流道结构的三维图。
该调流控水部件包含两个矩形入口流道9。矩形入口流道9的横截面积为矩形结构。在流道9沿内延伸设有多个分支流道10和两个引导流体在旋流腔12内做旋流运动的导流通道11,其中,如图7所示,流道高度从入口流道9到导流通道11流道高度逐渐下降,呈一定下降坡度。调流控水部件的底端为流体出口13。
具体的,入口流道9直径(图6所示状态下的流道宽度):出口13直径=1:1.8~2.5。入口流道9直径(图6所示状态下的流道宽度):分支流道10直径(图6所示状态下的流道宽度)=1~1.2:1。入口流道9入口高度:入口流道9出口高度=3:2。其中,入口流道9的出口为导流通道11的进口。入口流道9在图6状态下的流道宽度不变,导流通道11在图6状态下的流道宽度沿流向逐渐减小。
多分支导流结构在保有双入口旋流的调流控水机理上,在入口流道9内增加了油水分流机构及油水变摩阻结构的设计,以更加达到控水稳油的目的。分支流道10利用局部摩阻效应起到过油阻水的作用,导流通道11利用沿程摩阻效应起到过水阻油的作用,同时流道出入口高度落差使水更容易形成沿着旋流腔切面流动的射流。该结构促使流体在旋流的过程中密度相对较小而先对相对较大的油快速向流体出口13流动,而密度较大的水则沿旋流腔旋转,从而起到控水稳油的作用。此外,分支流道10的存在进一步促使从分支流道10流出的油以直线的方式流向中心出口,而导流通道流出的水更接近以旋转的方式进入旋流腔,进而在旋流腔中心形成高的节流阻力。
为了进一步增加自适应调流控水部件的控水、稳油、采气的综合控制能力,可在三种圆锥形结构的旋流腔(图1至图7的调流控水部件的腔室可以称为旋流腔)内布置活动小球,旋流腔内可活动小球根据具体密度要求由不同材料制成。当流入流体的密度小于小球密度时,作用于流体上的离心力小于作用于小球上的离心力,小球将对应有一个更大的浮力,所以小球将围绕旋流腔向上旋转(即离流体出口更远的一端);反之当流入流体的密度大于小球密度时,小球就会向流体出口移动。该机构可以利用这种效果选择性的生产或限制不同密度的流体流动,例如产气控水,产油控水。
以上给出了三种大致呈圆锥形的油、气、水三相自适应调流控水机构,圆锥形调流控水部件具有安装方便、旋流腔室相对过流面积大、可以通过圆锥形涡流增加油水阻力变化的优势。
考虑到自身体积的限制,单个圆锥形节流件的通过面积和旋转涡流相对较小,为了方便现场应用,在圆锥形调流控水部件的基础上,本公开还提出了两个平板形的自适应调流控水部件的实施例。该调流控水部件作为控水节流件对地层流体进行调控。
如图8、图9示出的一平板型调流控水部件结构示意图。图8和图9分别为平板型双入口调流控水部件的俯视透视图和三维透视图。该调流控水部件包含两个漏斗型入口流道14,两个窄流体加速通道15、一个流体旋流盘16和中心出口11。其中,如图9所示,流体加速通道15与旋流盘16成相切状态。地层流体流入该调流控水部件后,由入口流道14进入调流控水部件,经过流体加速通道15截流加速后进入中心旋流盘16,中心旋流盘16的直径与中心出口的直径比为:(8.5~12):1。由于水的粘度小、密度大,以切线方向进入旋流盘16中在旋流盘16中形成高速旋流,根据旋转动量守恒定律,水在旋流盘16内通过高速的旋转形成高的附加阻力,进而增大整个节流件产生的附加压力;而油由于粘度大,密度相对较小,在旋流盘16内很难像水一样形成高速的旋转流动,从而较快的向中心出口流出。整套节流机构中心旋流盘21的旋转控液至关重要。旋流盘16的直径与整个调流控水部件的高度比为:10~12:1,流道加速通道15的长度、宽度、高度比为:9~11:1~1.5:1.2~1.8。
如图10、图11示出的另一平板型调流控水部件结构示意图。图10和图11分别为平板型多分支调流控水部件结构的俯视透视图和三维透视图。该调流控水部件包含两个漏斗型入口流道18,八个分支通道19、两个逐渐变窄的导流通道20和一个流体旋流盘21和中心出口22。
其中如图11所示,八个分支流道19由端面凸起分隔组成.凸起结构(端面凸起)与同位置的导流通道20成垂直形态,同时凸起结构在来流方向的端角为尖角,这种结构使得入流流体为惯性力较大的水时分支流道内会形成涡旋,阻挡水流入分支流道,确保流入节流件的水大致全部(至少大部分)进入导流通道20,导流通道20从入口端到出口端逐渐变细的通道。具体的,导流通道20的入口端宽度:出口端宽度比为3:2。导流通道20出口与旋流盘21成相切状态,确保进入节流件的地层水流由切线进入旋流盘20,中心旋流盘21的直径与中心出口的直径比为:(6.5~10.5):1,由于水的粘度小、密度大,以切线方向进入旋流盘21中在旋流盘21中形成高速旋流,根据旋转动量守恒定律,水在旋流盘21内通过高速的旋转形成高的附加阻力,进而增大整个节流件产生的附加压力;而油由于粘度大,密度相对较小,进入平板型多分支导流调流控水部件的会通过分支流道直接流向中心出口,在节流件内产生的附加阻力相对较小。旋流盘21的直径与整个节流机构(调流控水部件)的高度比为:8.5~10.5:1,流道加速通道长度、宽度、高度比为:9~11:1~1.5:1.2~1.8。
参阅图12至图19,本公开一个实施例提供一种调流控水酸化装置,具体的为一种油气井用调流控水酸化完井装置。该油气井用调流控水酸化完井装置包括:调流控水筛管52;与所述调流控水筛管52相连接的单流机构53。
其中,所述筛管具有基管522、设置于所述基管522上的筛网部分524、以及与筛网部分524连通的调流控水部分520。所述筛网部分524用于对地层流体过滤。所述调流控水部分520连通于所述筛网部分524的下游,用于增大地层流体中水的流动阻力。所述单流机构53内设有与所述基管522相通的中心通道、以及将所述中心通道与所述单流机构53的外部连通的酸化孔。所述单流机构53被配置为通过井外打压可操纵地打开关闭所述酸化孔。单流装置仅允许流体从中心通道经酸化孔向所述单流机构53外流动。单流机构53可以安装于调流控水筛管52的上端,也可以安装在调流控水筛管52的下端,本申请并不作限制。
为实现于单流机构53进行配合,以保证酸压时酸液尽量经酸化孔进入到待酸化层中,所述基管522上还设有单向组件。该单向组件允许的流向与单流机构53相反。所述单向组件被配置为允许流体从所述筛网部分524向所述调流控水部分520流动,而阻止流体从所述调流控水部分520向所述筛网部分524流动。沿地层流体流动方向,单向组件在调流控水部件534的上游。
在本实施例中,如图15所示,所述筛网部分524包括从外向内依次套设的外保护套20、过滤网21、导流网22、过滤网23、导流网24、以及支撑层25。所述外保护套20上分布有圆形通孔。过滤网21、导流网22、过滤网23、导流网24构成过滤层。所述导流网22、24用于对流体导流。所述过滤网21、23、导流网22、24以及支撑层25通过挤锻固定一体。
所述调流控水部分520包括固定于所述基管522外侧的外管528、在所述外管528内安装于所述基管522壁上的调流控水部件534。调流控水部件534采用上述实施例中的板式调流控水部件,或者锥形调流控水部件。所述基管522和所述外管528之间形成调流控水空间。所述调流控水部件534将所述基管522的内部5220与所述调流控水空间相连通。地层流体进入到调流控水空间后经调流控水部件534进行节流后将油气输入到基管522内。
在本实施例中,所述油气井用调流控水酸化完井装置为调流控水分段酸化管柱50,能够将地层分隔形成多个酸化层(地层),并针对每个酸化层(地层)可单独进行酸压生产操作。所述调流控水筛管52及所述单流机构53构成调流控水酸化组件。所述调流 控水分段酸化管柱50具有顶部封隔器51、多个所述调流控水酸化组件、连接于相邻两个调流控水酸化组件的隔离封隔器54、井筒隔离阀55、双级浮鞋56。
在一个实施例中,油气井用调流控水酸化完井装置为通道转换式调流控水分段酸化管柱50。其中,通道转换式调流控水分段酸化管柱50具有顶部封隔器51、多个所述调流控水酸化组件、连接于相邻两个调流控水酸化组件的隔离封隔器54、井筒隔离阀55、双级浮鞋56。
具体的,通道转换式调流控水分段酸化管柱50包括:顶部封隔器51、单流控水筛管52、单流投球压裂滑套53、隔离封隔器54、单流控水筛管52、投球压裂滑套53、井筒隔离阀55、双级浮鞋56。双级浮鞋56包括正向双级浮鞋56和反向双级浮鞋56。该通道转换式调流控水分段酸化管柱50隔离出上下两个酸化层,并对应进行酸化及生产工作。
如图13、图14所示,所述调流控水筛管52为单流控水筛管。所述单流机构53为单流投球压裂滑套。所述调流控水酸化装置为通道转换式调流控水分段酸化管柱50。所述单流控水筛管52及所述单流投球压裂滑套53构成调流控水酸化组件。
在本实施例中,单流控水筛管52由筛网部分524、调流控水部分520组成,(自适应)调流控水部件534(AICD)安装在筛网基管522上。基管522的上端固定连接有接箍521。
筛网部分524和基管522之间形成有导流通道。如图15所示,筛网部分524主要由三层结构组成,最外侧为圆孔外保护套20。该外保护套20保护过滤层,以及保证筛网强度及可靠性。中间第2-第5层为过滤层。其中,在过滤层中,第2层、第4层为精密过滤网21、23(防砂过滤作用)。第3层、第5层为精度导流网22、24(对流入液体进行导流)。内侧第6层为支撑层25,保证过滤层与基管522之间有足够的流通面积,三者通过挤锻工艺进行挤锻,较传统筛管提高74%的强度,同时成本降低。
在外保护套20的上端固定连接有固定套设在基管522外的上端环523。外保护套20的下端和外管528的上端之间通过对接插头525相连接。对接插头525固定套设在基管522外,并与基管522之间形成连通调流控水空间和筛网部分524(导流通道)的通道。外管528的下端固定套设在下接头530外,并通过紧定螺钉531固定连接,进行防转设置。
如图18、图19所示,所述单流控水筛管52的单向组件包括:固定设置在所述外管528内部的过流套527、及封堵活塞526以及第一支撑弹簧538。其中,外管528和下接 头530的上端之间固定连接有挡环529。挡环529固定套设在外空间5272的后端。第一支撑弹簧538的后端顶抵在挡环上,前端顶抵在封堵活塞526上。第一支撑弹簧538为圆柱弹簧538,套设在过流套527外。所述过流套527将所述调流控水空间在径向上分隔形成内空间5271和与所述筛网部分524相连通的外空间5272。所述调流控水部件534将所述内空间5271与所述基管522的内部相连通。所述过流套527上设有将内空间5271和外空间5272相连通的连通孔5270。
下接头530的外壁上设有贴合密封于外管528的下端和下接头530之间的密封圈532,将外空间5272的下端封堵。过流套527的上端和下端分别密封连接上固定环(上固定环固定套设在基管522外)和下接头530的上端外,并且,过流套527的上端和上固定环之间、过流套527的下端和下接头530的上端之间还设有密封环533。封堵活塞526的内壁和外壁上分别设有密封圈535、537,以在初始位置时将连通孔5270封堵。
外空间5272和内空间5271为被过流套527相间隔的环形空间。封堵活塞526以及第一支撑弹簧538设置于所述外空间5272。封堵活塞526在外空间5272内沿轴向滑动。封堵活塞526具有将所述连通孔5270封堵的封堵位置、以及将所述连通孔5270打开的打开位置。第一支撑弹簧538在轴向上支撑所述封堵活塞526位于所述封堵位置。所述封堵活塞526能被地层流体推动从所述封堵位置(图18)移动到所述打开位置(图19)。
单流控水筛管52的单向组件包括活塞526、第一支撑弹簧538、过流套527。当进行酸压时,如图18所示,正常状态下,活塞526挡住过流套527的过流孔5270,酸化液不能通过筛管52进入地层。进行生产时,如图19所示,油气推动活塞526压缩弹簧538,过流套527的连通孔5270打开,地层油气最终通过控水稳气装置进入油管,到达地面。
可以看出本实施例的单流控水筛管在进行酸化时,活塞526堵塞过流套527的连通孔,酸化液不能由单流控水筛管进入地层。生产时,流体推动活塞526压缩弹簧538,打开通道,流体通最终过控水装置进入油管,到达地面。
在本实施例中,如图16、图17所示,单流机构53为单流投球压裂滑套。所述单流投球压裂滑套53连通于所述调流控水筛管52的下端。所述单流投球压裂滑套53包括:外套管542、可滑动地套设在所述外套管542内部的内滑套545。所述内滑套545的内部构成中心通道并固定有球座546。所述内滑套545和所述外套管542之间设有固定连接于所述内滑套545外的滑块543、以及轴向支撑所述滑块543的第二支撑弹簧544。所述滑块543通过剪切销钉554固定连接所述外套管542。所述外套管542上设有所述酸化 孔540;所述内滑套545被所述剪切销钉554固定在将所述酸化孔540封堵的位置。
所述外套管542的上端连接有上接头541,所述外套管542的下端连接有下接头547,并通过密封圈548贴合密封。所述内滑套545将所述酸化孔540封堵的位置(图16、图17所示位置)为:所述内滑套545的上端密封套设于所述上接头541内,所述内滑套545的下端密封套设于所述下接头547内。
上接头541的下端固定连接在外套管542的上端内。上接头541的下端内壁设有限位台阶,内滑套545位于初始位置时,内滑套545的上端被上接头541(的限位台阶)所限位并与上接头541的下端内壁相密封贴合。内滑套545的外壁具有携带台阶,滑块543固定在内滑套545和外套管542之间,滑块543的内外侧设有密封圈552、554与内滑套545、外套管542的壁相贴合密封。滑块543与携带台阶相配合,被第二支撑弹簧544向上顶抵与携带台阶相贴合,使得滑块543和内滑套545构成轴向共同运动。球座546通过紧定螺钉551固定在内滑套545的内壁上。下接头547的上端内壁具有供内滑套545滑动的滑动段,并在内壁设有密封圈549以及阻挡台阶。内滑套545被打压下滑时直至与阻挡台阶相接触而无法继续下行,并将酸化孔540打开。下接头547的上端内壁设有密封圈549并保持与内滑套545密封接触。球座546和内滑套545之间设有密封圈550进行密封。
在所述球座546被投球封堵,经打压使得所述中心通道内的压力超过一定压力时,所述球座546带动所述内滑套545及所述滑块543将所述剪切销钉554剪断进行轴向移动而打开所述酸化孔540,并在停止打压时所述第二支撑弹簧544推动所述内滑套545重新将所述酸化孔540封堵。
单流投球压裂滑套53通过球与球座546进行钢体密封,打压推动内滑套545(的滑块543)剪断剪切销钉554,实现内滑套545打开,酸化孔540开启。在井外停止打压后,内滑套545在第二支撑弹簧544的作用下复位,将酸化孔540关闭。
在应用该通道转换式调流控水分段酸化管柱50时,采用如下作业方式进行实施:
首先用钻杆连接专用下入工具将上述管柱50下入到既定位置,下入过程中通过井筒隔离阀55进行自动灌浆,液体通过井筒隔离阀55的孔进入管柱50内部,保持管柱50内外压力平衡。下入到位后投球关闭井筒隔离阀55。此时,正向双级浮鞋56可以开启;反向双级浮鞋56则不通。
在关闭井筒隔离阀55之后,逐级坐封隔离封隔器54。油管正打压坐封,坐封完成后,验封隔离封隔器54。通过环空打压验封隔离封隔器54,若压力稳定,则验封合格; 然后通过专用坐封工具坐封顶部悬挂封隔器,坐封完成进行环空验封、验挂,向套管打压检验顶部封隔器51是否合格,顶部封隔器51验封合格后,环空打压或正转丢手坐封工具。
在进行酸化下层(酸化层)时,投尺寸合适的耐酸可溶球到下层的单流投球压裂滑套53的球座546上,油管打压,球座546与内滑套545、滑块543剪切销钉554剪断,内滑套545打开,酸化孔540开启,开始第一层酸化,此时单流控水筛管向外侧连通的流道被活塞堵塞,酸液只能通过单流投球压裂滑套53的酸化孔540进入地层完成酸化、疏通地层;酸化完成后,停止打压,第二支撑弹簧544顶抵滑块543,滑块543推动内滑套545及球座546复位,球座546在第二支撑弹簧544的作用下重新关闭滑套。
在需要酸化上层(酸化层)时,投尺寸合适的耐酸可溶球到上层投球压裂滑套53的球座546上,其他操作与下层酸化操作一致。
该通道转换式调流控水分段酸化管柱50可通过增加隔离封隔器54、单流控水筛管及不同球座546尺寸的投球压裂滑套53来增加酸化分层层数,实现精细分层。生产时,油气正向通过单流控水筛管筛网段的过滤进入与基管522的环空,然后推开活塞,通过过流套的连通孔流经调流控水部件534(AICD)进入油管最终到达地面,实现控水稳气生产。
本实施例的该通道转换式调流控水分段酸化管柱50具有以下优点:
①、实现分层酸化功能,可分3层及以上,酸化效果更好;
②、实现分成调流控水功能,可分3层及以上,调流控水针对性强,效果好;
③、酸化通道和控水通道完全分开,分段酸化通过的排量大,酸化的效率更高,控水的时候流体通过筛管进入调流控水装置,控水的针对性强;
④、实现一趟管柱50多层酸压和控水作业,缩短施工时间,提高作业效率;
⑤、实现分段酸化调流控水一体化。
参阅图20至图27,在本公开的另一个实施例中,所述调流控水酸化装置为单向阀式调流控水酸化管柱60。所述调流控水筛管62为单向阀式控水筛管62。所述单流机构为连接于所述单向阀式控水筛管62的下端的双级压裂滑套63。
所述单向阀式控水筛管62及所述双级压裂滑套63构成调流控水酸化组件。所述单向阀式调流控水酸化管柱60具有顶部封隔器61、多个所述调流控水酸化组件、连接于相邻两个调流控水酸化组件的隔离封隔器64、井筒隔离阀65、双级浮鞋66。
如图20所示,示意性质地以分成上下两个酸化层为例,整套单向阀式调流控水酸压 管柱60主要由以下工具组成的外管柱,该外管柱60由上到下包括:顶部封隔器61、单向阀式控水筛管62、双级压裂滑套63、隔离封隔器64、单向阀式控水筛管62、双级压裂滑套63、井筒隔离阀65、双级浮鞋66。
在本实施例中,单向阀式控水筛管62由筛网部分624、调流控水部分620组成,(自适应)调流控水部件631(AICD)安装在筛网基管622上。基管622的上端固定连接有接箍621。
如图15所示,筛网部分624主要由三层结构组成,最外侧为圆孔外保护套20。该外保护套20保护过滤层,以及保证筛网强度及可靠性。中间第2-第5层为过滤层。其中,在过滤层中,第2层、第4层为精密过滤网21、23(防砂过滤作用)。第3层、第5层为精度导流网22、24(对流入液体进行导流)。内侧第6层为支撑层25,保证过滤层与基管622之间有足够的流通面积,三者通过挤锻工艺进行挤锻,较传统筛管提高74%的强度,同时成本降低。
如图21、图22所示,在外保护套20的上端固定连接有固定套设在基管622外的上端环623。外保护套20的下端和外管626的上端之间通过对接插头625相连接。筛网部分624和基管622之间形成有导流通道。对接插头625固定套设在基管622外,并与基管622之间形成连通调流控水空间和筛网部分624(导流通道)的通道。外管626的下端固定套设在下接头632外,并通过紧定螺钉634固定连接,进行防转设置。外管626的下端还通过密封圈635和下接头632之间密封。
基管622包括上基管6220和下基管628。上接管6220的下端和下基管628的上端通过中间接头固定连接。筛网部分624设置在上接管6220外,调流控水部分620至少大部分设置在下基管628上。所述单向组件630环套在所述外管626和所述(下)基管622之间将所述调流控水空间沿轴向间隔形成与所述筛网部分624相通的第一轴向空间和与所述调流控水部件631相通的第二轴向空间。下基管628的下端通过外螺纹连接于下接头632的内侧,并设有密封圈633进行密封。下基管628构成调流控水部件631的安装基座。调流控水部件631采用上述实施例中的板式调流控水部件,或者锥形调流控水部件。
如图25、图26、图27所示,所述单向组件630包括:沿轴向相对接的第一单向球座6301和第二单向球座6302。第一单向球座6301和第二单向球座6302的(在径向上的)内侧及外侧均设有密封圈629,与下基管628的外壁、外管626的内壁之间形成密封。其中,沿地层流体流动方向,所述第一单向球座6301设置于所述第二单向球座6302 的上游,所述第一单向球座6301具有在圆周方向分布的第一数量的第一通道6311。所述第二单向球座6302具有在圆周方向分布的大于第一数量的第二通道6321。
具体的,第一数量的第二通道6321与第一数量的第一通道6311在轴向上一一对齐设置,剩余数量的第二通道6321与第一通道6311相错开。在沿轴向相对齐的第一通道6311和第二通道6321中,第一通道6311和第二通道6321的相对扣合的端部各自设置有球座6312、6322,相对扣合的球座6312、6322内设有一个封堵阀球636。第二通道6321的数量可以为第一通道6311数量的两倍。第一单向球座6301和第二单向球座6302相对接,二者之间可以存在对接间隙,对接间隙的轴向长度小于封堵阀球636的直径,较佳的小于封堵阀球636的半径。
该封堵阀球636为钢球,可沿轴向移动。在对齐的第一通道6311和第二通道6321中,两个球座6312、6322构成封堵阀球636的运动空间,封堵阀球636前移将第一通道6311封堵,第一单向球座6301被完全封堵,单向组件630关闭。封堵阀球636后移将部分数量(第一数量)的第二通道6321封堵,剩余数量的第二通道6321未被封堵,单向组件630打开。
酸化时,单向阀(单向组件630)关闭,酸液不能通过筛管进入地层,仅能通过双级压裂滑套63进入地层。生产时,单向阀630开启,流体由过滤网经过单向阀(单向组件630),最终通过调流控水部件631(AICD)进入油管,到达地面。单向阀结构的单向组件630为左右两个孔数不一致的球座6312、6322,封堵阀球636不能离开左右球座6312、6322。当进行酸压时,如酸压图26所示,球636全部落于左侧球座6312中,此时流道被球636完全堵塞,实现酸化液不能进入地层的功能。进行生产时,如生产图27所示,封堵阀球636全部落于右侧球座6322中,但右侧孔数大于球636的数量,流道打开,地层油气通过调流控水部件631(调流稳气部件)进入油管,到达地面。
在本实施例中,如图23、图24所示,所述双级压裂滑套63包括:滑套本体651;可滑动地套设于所述滑套本体651内的上阀座滑套652和位于所述上阀座滑套652下方的下阀座滑套653。所述滑套本体651上设有所述酸化孔6510。所述下阀座滑套653的内径小于所述上阀座滑套652的内径。相应的,上阀球659的直径大于下阀球653的直径,下阀球653可以通过上阀座滑套652落座在下阀座滑套653上,将下阀座滑套653封堵。投入下阀球653,将酸化孔6510打开,进而可以称为酸压球。投入上阀球659,将酸化孔6510关闭,进而可以称为关闭球。所述下阀座滑套653通过剪切销钉654定位在将所述酸化孔6510封堵的位置。所述上阀座滑套652通过剪切销钉6511定位在所述 下阀座滑套653的上方。所述下阀座滑套653在被投球封堵后能被压力推动至将所述酸化孔6510打开的位置。所述上阀座滑套652在被投球封堵后能被压力推动至将所述酸化孔6510重新封堵的位置。上阀座滑套652的上端和下端均设有密封圈与滑套本体651的内壁相密封接触,下阀座滑套653的上端和下端均设有密封圈655与滑套本体651的内壁相密封接触。
双级压裂滑套63通过两级不同内径的上下阀座滑套653控制酸化孔6510的开关,打开下阀座滑套653,下阀座滑套653下移,酸压孔开启。打开上阀座滑套652,上阀座滑套652下移,酸压孔再次关闭。例如,下阀球653(该球为耐酸可溶球)的外径为0.1in(2.54mm),小于上阀座滑套652的最小内径,以便通过上阀座滑套652。
所述滑套本体651的下端连接有下接头657。滑套本体651的下端和下接头657之间设有密封圈656。所述下接头657伸入所述滑套本体651的下端内部的部分具有限位端6571。所述下阀座滑套653在被投球推动至与所述限位端6571接触时被所述下接头657轴向限位。所述上阀座滑套652在被投球推动至与所述下阀座滑套653接触时被所述下阀座滑套653轴向限位,并将所述酸化孔6510重新封堵。
在应用该单向阀式调流控水酸化管柱60时,采用如下作业方式进行实施:
首先用钻杆连接专用下入工具将上述管柱60下入到既定位置,下入过程中通过井筒隔离阀65进行自动灌浆,液体通过井筒隔离阀65的孔进入管柱60内部,保持管柱60内外压力平衡。下入到位后投球关闭井筒隔离阀65。此时,正向双级浮鞋66可以开启;反向双级浮鞋66则不通。
在关闭井筒隔离阀65后,逐级坐封隔离封隔器64,油管正打压坐封,坐封完成后,验封隔离封隔器64。通过环空打压,若压力稳定,则验封合格;然后通过专用坐封工具坐封顶部悬挂封隔器,坐封完成进行环空验封、验挂,向套管打压检验顶部封隔器61是否合格,顶部封隔器61验封合格后,环空打压或正转丢手坐封工具。
在进行酸化下层(酸化层)时,投耐酸可溶球到下层双级压裂阀座的下阀座滑套653上,油管打压,下阀座滑套653剪断剪切销钉,下阀座滑套653下移,酸化孔6510开启,开始第一层(下层酸化层)酸化,此时单向阀式控水筛管62向外侧连通的流道关闭,酸液只能通过双级压裂滑套63的酸化孔6510进入地层完成酸化、疏通地层。在酸化完成后,停止打压,投入尺寸合适的耐酸可溶球到下层双级压裂阀座的上阀座滑套652上,上阀座滑套652剪断剪切销钉,上阀座滑套652下移,定位在下阀座滑套653的上端,此时上阀座滑套652正好关闭酸化孔6510。
在需要酸化上层(酸化层)时,操作与下层酸化操作完全一致。
该单向阀式调流控水酸化管柱60可通过增加隔离封隔器64、单向阀式控水筛管62及不同球座尺寸的双级压裂滑套63来增加酸化分层层数,实现精细分层。
生产时,油气正向通过单向阀式控水筛管62筛网段的过滤进入与基管的环空,然后通过单向阀流经控水装置(AICD)进入油管最终到达地面,实现控水稳气生产。
本实施例的该单向阀式调流控水酸化管柱60具有以下优点:
①、实现分层酸化功能,可分3层及以上,酸化效果更好;
②、实现一趟多层,缩短施工时间,提高作业效率。
③、实现酸化控水一体化;
④、工具完全采用机械结构,性能可靠;
⑤、实现了一段内增加压裂段的数量,段内酸压的针对性得到了增加;
⑥、采用单向阀实现控水筛管62的开启和关闭,可靠性高。
参阅图28至图33,在本公开的另一实施例中,所述调流控水酸化装置为自适应调流控水酸化管柱70。所述调流控水筛管73为自适应调流控水筛管73。所述单流机构74为连接于所述调流控水筛管73上端的单流压裂通过组件74。所述单流压裂通过组件74和所述自适应调流控水筛管73构成调流控水酸化组件。
所述自适应调流控水酸化管柱70包括顶部封隔器71、多个所述调流控水酸化组件;其中,每个所述调流控水酸化组件的上方及下方均设有膨胀封隔器72。所述自适应调流控水筛管73还设有扶正器75。
一体式自适应调流控水筛管73主要由筛网部分733、自适应调流控水部分两部分组成,自适应调流控水部件737安装在自适应调流控水部分的基管上。基管的上端固定连接有接箍731。
所述自适应调流控水筛管73包括筛网基管732、控水基管736。所述筛网基管732和所述控水基管736相连接构成基管。所述筛网部分733和所述基管732之间形成有导流通道734。所述基管外固定连接有连接组件735。所述连接组件735固定连接外保护套20的下端以及所述外管738的上端。所述连接组件735开设有将所述导流通道734和所述调流控水空间相连通的连通通道。
如图15所示,筛网部分733主要由三层结构组成,最外侧为圆孔外保护套20。该外保护套20保护过滤层,以及保证筛网强度及可靠性。中间第2-第5层为过滤层。其中,在过滤层中,第2层、第4层为精密过滤网21、23(防砂过滤作用)。第3层、第 5层为精度导流网22、24(对流入液体进行导流)。内侧第6层为支撑层25,保证过滤层与基管之间有足够的流通面积,三者通过挤锻工艺进行挤锻,较传统筛管提高74%的强度,同时成本降低。
所述控水基管736在所述调流控水空间的轴向两端分别连接所述外管738内壁。所述控水基管736在所述调流控水空间的上游还设有夹壁通道。所述控水基管736的上端和连接组件之间还设有连通环空。所述连通环空连通在所述连通通道和所述夹壁通道之间。控水基管736的上端和下端之间的凹陷部分与外管738之间构成调流控水空间。调流控水部件737安装于该凹陷部分的壁上。控水基管736的下端还设有下接头739。
自适应调流控水部分主要由三部分组成,分别为控水基管736、外管738和作为自适应调流核心控制件的调流控水部件737。调流控水部件737通过焊接或是螺纹连接在控水基管736中心孔的上部,自适应调流控水部件737与专用控水基管736采用螺纹插接的方式连接,安装于控水基管736的与调流控水空间相通的中心孔上,保证的工具的连接灵活性。
在本实施例中,如图29、图30所示,所述单流压裂通过组件74包括:外筒体756。固定套设于所述外筒体756内的内管体752。其中,所述外筒体756上设有所述酸化孔、以及设置于所述酸化孔内的微型单流阀755。所述内管体752的内部构成为中心通道。所述中心通道具有一出流孔7521。所述出流孔7521与所述内管体752和所述外筒体756之间的中间环空相连通。所述中间环空内还设有贴合套设于所述内管体752外将所述出流孔7521遮盖的橡胶密封套758。所述橡胶密封套758能够在所述中心通道内的压力超过第一预定压力时将所述出流孔7521打开。外筒体756的上端通过外螺纹连接上接头751的下端,并通过密封圈754密封。内管体752的上端固定连接在上接头751内,并通过密封圈753密封。相似的,外筒体756的下端固定套设在下接头762的上端外,并通过密封圈760密封。内管体752的下端固定套设在下接头762的上端内,并通过密封圈761密封。
如图31所示,所述微型单流阀755包括:固定在所述酸化孔内的阀体7551、固定于所述阀体7551在径向的外端的挡板7552、位于所述阀体7551内的阀球7555、以及位于所述阀球7555和所述挡板7552之间的弹簧7553。所述阀体7551在径向的内端具有被所述阀球7555封堵的阀体座。在阀体7551内还设有导向体7554。导向体7554贴合于阀体7551的内壁上,为阀球7555的运动导向,并且为弹簧7553支撑点,方便弹簧7553安装。弹簧7553安装在导向体7554和挡板7552之间。阀球7555落座在阀体座和 导向体7554之间,被弹簧7553顶抵。
具体的,微型单流阀由挡板7552、弹簧7553、导向体7554、阀体座、钢球7555部分组成,整体结构较为简单,整个阀体7551的外部具有螺纹,进而可以通过螺纹连接安装在单流压裂通过组件74的最外层外筒体上,整体结构小巧灵活,可靠性高。微型单流阀在工具下入过程中处于低压力关闭状态,打开压力设定在0.1-0.2MPa。
在酸化时,向地层注入酸化压裂液,注入压力大于0.2MPa,单流阀就可以完全打开(酸化孔),整个单流阀的通过最小通过直径是5mm,进而在1MPa的驱动压力下,单个微型单流阀每分钟可通过压裂液0.5m 3以上,满足大型酸化压裂的技术要求。
当生产时,地层压力作用于微型单流阀755,通过钢球7555和阀体座之间的面密封,微型单流阀755可以阻挡住60MPa生差压差,确保微型单流阀755的关闭,使得流体必须通过一体式自适应调流控水筛管73调流控液后进入生产管柱70,整个微型单流阀一体化设计,没有活动部件,使用可靠性高,能够满足应用需求。
如图31、图32所示,单流压裂通过组件74通过微型单流阀755和与橡胶密封套758进行双重钢体密封,酸化过程中,管内打压推动橡胶密封套758向外膨胀打开,进一步推动微型单流阀755打开,实现整个单流压裂通过组件74打开,酸化通道开启,实现管柱70内外沟通。在停止打压后,微型单流阀755在弹簧7553的作用下复位,橡胶密封套758回复原状,重新将出流孔关闭。单流压裂通过组件74中起到打开和关闭密封作用主要是微型单流阀755和橡胶密封套758。
为安装橡胶密封套758,内管体752外还固定套设有固定套757。固定套757的上端螺纹连接于内管体752外。固定套757的下端设有密封圈759贴合套设于内管体752的外壁上。固定套757的上端和下端之间与内管体752的外壁构成容纳橡胶密封套758的空间。固定套757在该空间的上端设有安装台阶,以嵌入橡胶密封套758的上端7581,借此将橡胶密封套758轴向限位。固定套757在该空间的外壁上还设有连接通孔7571,连接通孔将该空间与外部的环空(外筒体和内管体之间的环空)相连通。
所述橡胶密封套758的壁厚沿轴向从上端至下端呈阶梯式壁厚。其中,位于上方的阶梯壁厚大于位于下方的阶梯壁厚。如图32所示,橡胶密封套758的上端厚度大于中间部分7582、以及下端7583的厚度,其中,下端7583的厚度最小。橡胶密封套758成环形密封结构,橡胶的厚度成梯次排列结构,这种构造主要适合于内部注入酸液时橡胶密封打开的方式是从外部逐次向内部打开,确保橡胶密封组件在注酸过程的顺利开启。在生产时,橡胶密封套758收到正向密封压力,地层压力确保橡胶密封套758能够紧贴内 管体壁面,从而确保在气体生产时由于密封不严从而导致泄露,影响调流控水装置的工作效果。
酸化时,单流压裂通过组件74为主流通道,大部分酸化压裂液通过单流压裂通过组件74流道管柱70外进入地层,通过自适应调流控水筛管73进入地层的酸液较少;生产时,流体推动单流压裂通过组件74关闭,地层流体必须通过自适应调流控水装置的调节后进入油管,到达地面。
在应用该自适应调流控水酸化管柱70时,采用如下作业方式进行实施:
首先用钻杆连接专用下入工具将上述管柱70下入到既定位置,下入过程中由于自适应调流控水筛管73内外沟通,液体可以通过自适应调流控水筛管73进入管柱70内部,保持管内外平衡,不需要额外的工具也不需要特殊操作。
工具到位后,通过专用坐封工具坐封顶部悬挂封隔器,坐封完成进行环空验封、验挂,向套管打压检验顶部封隔器71是否合格,顶部封隔器71验封合格后,环空打压或正转丢手坐封工具。
分段酸化:油管打压,泵入酸化压裂液体系,随着内部管柱70压力的提高,单流压裂通过组件74打开,酸化压裂液分别通过布置于整套自适应调流控水完井管柱70前部、中部、后部的单流压裂通过组件74进入地层,分别实现对相应储层的分段酸化,此时尽管自适应调流控水筛管73内外连通,但由于单流压裂通过组件74的通过性要远远由于自适应调流控水筛管73,而压裂过程中排量大,管内压力相对较高,酸化压裂液大部分要通过单流压裂通过组件74进入地层,从而实现对储层的分段酸化压裂,疏通地层。酸化完成后,停止打压,在地层压力的作用下单流压裂通过滑套重新关闭。
该自适应调流控水酸化管柱70可通过增加遇油膨胀封隔器72、自适应调流控水筛管73及单流压裂通过组件74的数量和位置来增加和优化酸化分层层数和位置,实现精细分层。
生产时,油气正向通过自适应调流控水筛管73筛网段的过滤进入与基管的环空,通过自适应调流控水完井装置的调流控水部件737(AICD)进入油管最终到达地面,实现控水稳气生产。
本实施例的该自适应调流控水酸化管柱70具有以下优点:
①、一体化设计,自适应调流控水完井管柱70结构简单,可靠性高;
②、自适应调流控水筛管73设计结构简单,无活动部件,寿命长;
③、采用膨胀封隔器72对储层实现分段,无需封隔器坐封验封作业,增加整套工艺 的安全性和施工的简便性;
④、自适应调流控水筛管73内外连通,工具下入过程中,管柱70内外压力平衡,安全性高;
⑤、单流压裂通过组件74结构简单,打开及关闭过程简单可靠。
⑥、实现分层酸化功能,可分3层及以上,酸化效果更好;
⑦、酸化通道和控水通道完全分开,分段酸化通过的排量大,酸化的效率更高,控水的时候流体通过筛管进入调流控水装置,控水的针对性强;
⑧、实现一趟管柱70多层酸压和控水作业,缩短施工时间,提高作业效率;
⑨、实现一趟管柱70多层酸压和控水作业,缩短施工时间,提高作业效率;
⑩、实现分段酸化调流控水一体化。
综上所述,本公开的一种油气井用调流控水酸化完井装置及配套管柱70,通过一次作业下入分段酸压生产控水一体化管柱70系统后,隔离封隔器的胀封实现对水平井段的分段,从而实现储层分段及对不同分段的酸压,实现分段酸压功能,在酸压完成后,各水平段与储层连通,储层外的流体可以根据采用的工艺技术的不同,通过选用不同类型(自适应)调流控水筛管73,进入生产管柱70内,在通过单流控水筛管73或单向阀式控水筛管73或自适应控水筛管73的过程中,被调流控水部件737的内壁面旋流流道结构和平板流道结构,对入流的流体两次附加阻力而控制不同相态流体的入流速度,进而达到气体无阻产出,油相优先产出,水相控制产出的目的,实现调流控水的目的,解决含水油气井、致密油气藏以及复杂高酸性油气藏的分段酸压生产控水一体化工具装置及配套工艺难题。
通过一趟作业下入分段酸压完井和生产及控水一体化功能的工具装置及管柱70系统,克服长水平井筒笼统酸压增产效果不明显,分段酸压生产一段时间后存在不同水平分段产气不均横,易边底水锥进水淹井筒的问题。
通过一趟下管柱70作业,同时实现酸压后,原管柱70进行生产的功能,同时具有控水抑制沿水平井筒边底水锥进效果,达到减少作业工序,节约工艺成本,最大限度防止复杂油气井完井作业过程有毒气体及复杂工况难题的产出,保证生产作业安全,实现各种边底水油气藏及复杂高难度油气藏水平井控制区域最大采出程度的效果,实现油气井的完井和生产最优化。
本文引用的任何数值都包括从下限值到上限值之间以一个单位递增的下值和上值的所有值,在任何下值和任何更高值之间存在至少两个单位的间隔即可。举例来说,如果 阐述了一个部件的数量或过程变量(例如温度、压力、时间等)的值是从1到90,优选从20到80,更优选从30到70,则目的是为了说明该说明书中也明确地列举了诸如15到85、22到68、43到51、30到32等值。对于小于1的值,适当地认为一个单位是0.0001、0.001、0.01、0.1。这些仅仅是想要明确表达的示例,可以认为在最低值和最高值之间列举的数值的所有可能组合都是以类似方式在该说明书明确地阐述了的。
除非另有说明,所有范围都包括端点以及端点之间的所有数字。与范围一起使用的“大约”或“近似”适合于该范围的两个端点。因而,“大约20到30”旨在覆盖“大约20到大约30”,至少包括指明的端点。
披露的所有文章和参考资料,包括专利申请和出版物,出于各种目的通过援引结合于此。描述组合的术语“基本由…构成”应该包括所确定的元件、成分、部件或步骤以及实质上没有影响该组合的基本新颖特征的其他元件、成分、部件或步骤。使用术语“包含”或“包括”来描述这里的元件、成分、部件或步骤的组合也想到了基本由这些元件、成分、部件或步骤构成的实施方式。这里通过使用术语“可以”,旨在说明“可以”包括的所描述的任何属性都是可选的。
多个元件、成分、部件或步骤能够由单个集成元件、成分、部件或步骤来提供。另选地,单个集成元件、成分、部件或步骤可以被分成分离的多个元件、成分、部件或步骤。用来描述元件、成分、部件或步骤的公开“一”或“一个”并不说为了排除其他的元件、成分、部件或步骤。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。因此,本教导的范围不应该参照上述描述来确定,而是应该参照所附权利要求以及这些权利要求所拥有的等价物的全部范围来确定。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。在前述权利要求中省略这里公开的主题的任何方面并不是为了放弃该主体内容,也不应该认为发明人没有将该主题考虑为所公开的发明主题的一部分。

Claims (19)

  1. 一种油气井用调流控水酸化完井装置,其中,包括:
    调流控水筛管;所述筛管具有基管、设置于所述基管上的筛网部分、以及与筛网部分连通的调流控水部分;所述筛网部分用于对地层流体过滤;所述调流控水部分连通于所述筛网部分的下游,用于增大地层流体中水的流动阻力;
    与所述调流控水筛管相连接的单流机构;所述单流机构内设有与所述基管相通的中心通道、以及将所述中心通道与所述单流机构的外部连通的酸化孔;所述单流机构被配置为通过井外打压可操纵地打开关闭所述酸化孔。
  2. 如权利要求1所述的油气井用调流控水酸化完井装置,其中,所述基管上还设有单向组件;所述单向组件被配置为允许流体从所述筛网部分向所述调流控水部分流动,而阻止流体从所述调流控水部分向所述筛网部分流动。
  3. 如权利要求2所述的油气井用调流控水酸化完井装置,其中,所述筛网部分包括从外向内依次套设的外保护套、过滤网、导流网、过滤网、导流网、以及支撑层;所述外保护套上分布有圆形通孔;所述导流网用于对流体导流;所述过滤网、导流网以及支撑层通过挤锻固定一体。
  4. 如权利要求2或3所述的油气井用调流控水酸化完井装置,其中,所述调流控水部分包括固定于所述基管外侧的外管、在所述外管内安装于所述基管壁上的调流控水部件;所述基管和所述外管之间形成调流控水空间;所述调流控水部件将所述基管的内部与所述调流控水空间相连通。
  5. 如权利要求4所述的油气井用调流控水酸化完井装置,其中,所述调流控水筛管为单流控水筛管;其中,所述单向组件包括:
    固定设置在所述外管内部的过流套;所述过流套将所述调流控水空间在径向上分隔形成内空间和与所述筛网部分相连通的外空间;所述调流控水部件将所述内空间与所述基管的内部相连通;所述过流套上设有将内空间和外空间相连通的连通孔;
    设置于所述外空间的沿轴向滑动的封堵活塞以及第一支撑弹簧;所述封堵活塞具有将所述连通孔封堵的封堵位置、以及将所述连通孔打开的打开位置;所述第一支撑弹簧在轴向上支撑所述封堵活塞位于所述封堵位置;所述封堵活塞能被地层流体推动从所述封堵位置移动到所述打开位置。
  6. 如权利要求5所述的油气井用调流控水酸化完井装置,其中,所述单流机构为单流投球压裂滑套;所述单流投球压裂滑套连通于所述调流控水筛管的下端;
    所述单流投球压裂滑套包括:外套管、可滑动地套设在所述外套管内部的内滑套;所述内滑套的内部构成中心通道并固定有球座;所述内滑套和所述外套管之间设有固定连接于所述内滑套外的滑块、以及轴向支撑所述滑块的第二支撑弹簧;所述滑块通过剪切销钉固定连接所述外套管;所述外套管上设有所述酸化孔;所述内滑套被所述剪切销钉固定在将所述酸化孔封堵的位置;
    在所述球座被投球封堵,经打压使得所述中心通道内的压力超过一定压力时,所述球座带动所述内滑套及所述滑块将所述剪切销钉剪断进行轴向移动而打开所述酸化孔,并在停止打压时所述第二支撑弹簧推动所述内滑套重新将所述酸化孔封堵。
  7. 如权利要求6所述的油气井用调流控水酸化完井装置,其中,所述外套的上端连接有上接头,所述外套的下端连接有下接头;所述内滑套将所述酸化孔封堵的位置为:所述内滑套的上端密封套设于所述上接头内,所述内滑套的下端密封套设于所述下接头内。
  8. 如权利要求7所述的油气井用调流控水酸化完井装置,其中,所述油气井用调流控水酸化完井装置为通道转换式调流控水分段酸化管柱;所述单流控水筛管及所述单流投球压裂滑套构成调流控水酸化组件;
    所述通道转换式调流控水分段酸化管柱具有顶部封隔器、多个所述调流控水酸化组件、连接于相邻两个调流控水酸化组件的隔离封隔器、井筒隔离阀、双级浮鞋。
  9. 如权利要求4所述的油气井用调流控水酸化完井装置,其中,所述调流控水筛管为单向阀式控水筛管;其中,所述单向组件环套在所述外管和所述基管之间将所述调流控水空间沿轴向间隔形成与所述筛网部分相通的第一轴向空间和与所述调流控水部件相通的第二轴向空间;
    所述单向组件包括:沿轴向相对接的第一单向球座和第二单向球座;其中,沿地层流体流动方向,所述第一单向球座设置于所述第二单向球座的上游,所述第一单向球座具有在圆周方向分布的第一数量的第一通道,所述第二单向球座具有在圆周方向分布的大于第一数量的第二通道;其中,第一数量的第二通道与第一数量的第一通道在轴向上一一对齐设置,剩余数量的第二通道与第一通道相错开;在沿轴向相对齐的第一通道和第二通道中,第一通道和第二通道的相对扣合的端部各自设置有球座,相对扣合的球座内设有一个封堵阀球。
  10. 如权利要求9所述的油气井用调流控水酸化完井装置,其中,所述单流机构为连接于所述单向阀式控水筛管的下端的双级压裂滑套;所述双级压裂滑套包括:
    滑套本体;所述滑套本体上设有所述酸化孔;
    可滑动地套设于所述滑套本体内的上阀座滑套和位于所述上阀座滑套下方的下阀座滑套;所述下阀座滑套的内径小于所述上阀座滑套的内径;所述下阀座滑套通过剪切销钉定位在将所述酸化孔封堵的位置;所述上阀座滑套通过剪切销钉定位在所述下阀座滑套的上方;所述下阀座滑套在被投球封堵后能被压力推动至将所述酸化孔打开的位置;所述上阀座滑套在被投球封堵后能被压力推动至将所述酸化孔重新封堵的位置。
  11. 如权利要求10所述的油气井用调流控水酸化完井装置,其中,所述滑套本体的下端连接有下接头;所述下接头伸入所述滑套本体的下端内部的部分具有限位端;所述下阀座滑套在被投球推动至与所述限位端接触时被所述下接头轴向限位;所述上阀座滑套在被投球推动至与所述下阀座滑套接触时被所述下阀座滑套轴向限位,并将所述酸化孔重新封堵。
  12. 如权利要求11所述的油气井用调流控水酸化完井装置,其中,所述油气井用调流控水酸化完井装置为单向阀式调流控水酸化管柱;所述单向阀式控水筛管及所述双级压裂滑套构成调流控水酸化组件;
    所述单向阀式调流控水酸化管柱具有顶部封隔器、多个所述调流控水酸化组件、连接于相邻两个调流控水酸化组件的隔离封隔器、井筒隔离阀、双级浮鞋。
  13. 如权利要求4所述的油气井用调流控水酸化完井装置,其中,所述调流控水筛管为自适应调流控水筛管;所述自适应调流控水筛管包括筛网基管、控水基管;所述筛网基管和所述控水基管相连接构成基管;
    所述筛网部分和所述基管之间形成有导流通道;所述基管外固定连接有连接组件;所述连接组件固定连接外保护套的下端以及所述外管的上端;所述连接组件开设有将所述导流通道和所述调流控水空间相连通的连通通道;
    所述控水基管在所述调流控水空间的轴向两端分别连接所述外管内壁;所述控水基管在所述调流控水空间的上游还设有夹壁通道;所述控水基管的上端和连接组件之间还设有连通环空;所述连通环空连通在所述连通通道和所述夹壁通道之间。
  14. 如权利要求13所述的油气井用调流控水酸化完井装置,其中,所述单流机构为连接于所述调流控水筛管上端的单流压裂通过组件;所述单流压裂通过组件包括:
    外筒体;所述外筒体上设有所述酸化孔、以及设置于所述酸化孔内的微型单流阀;
    固定套设于所述外筒体内的内管体;所述内管体的内部构成为中心通道;所述中心通道具有一出流孔;所述出流孔与所述内管体和所述外筒体之间的中间环空相连通;所 述中间环空内还设有贴合套设于所述内管体外将所述出流孔遮盖的橡胶密封套;所述橡胶密封套能够在所述中心通道内的压力超过第一预定压力时将所述出流孔打开。
  15. 如权利要求14所述的油气井用调流控水酸化完井装置,其中,所述微型单流阀包括:固定在所述酸化孔内的阀体、固定于所述阀体在径向的外端的挡板、位于所述阀体内的阀球、以及位于所述阀球和所述挡板之间的弹簧;所述阀体在径向的内端具有被所述阀球封堵的阀体座。
  16. 如权利要求15所述的油气井用调流控水酸化完井装置,其中,所述橡胶密封套的壁厚沿轴向从上端至下端呈阶梯式壁厚;其中,位于上方的阶梯壁厚大于位于下方的阶梯壁厚。
  17. 如权利要求14所述的油气井用调流控水酸化完井装置,其中,所述油气井用调流控水酸化完井装置为自适应调流控水酸化管柱;所述单流压裂通过组件和所述自适应调流控水筛管构成调流控水酸化组件;
    所述自适应调流控水酸化管柱包括顶部封隔器、多个所述调流控水酸化组件;其中,每个所述调流控水酸化组件的上方及下方均设有膨胀封隔器;所述自适应调流控水筛管还设有扶正器。
  18. 一种油气井用调流控水酸化完井装置,包括:从上至下依次连接的顶部封隔器、多个调流控水酸化组件、井筒隔离阀、浮鞋;其中,每相邻两个调流控水酸化组件之间设有隔离封隔器;所述调流控水酸化组件包括调流控水筛管以及与所述调流控水筛管相连接的单流机构;
    所述调流控水筛管具有基管、设置于所述基管上的筛网部分、以及与筛网部分连通的调流控水部分;所述筛网部分用于对地层流体过滤;所述调流控水部分连通于所述筛网部分的下游,用于增大地层流体中水的流动阻力;所述基管上还设有单向组件;所述单向组件被配置为允许流体从所述筛网部分向所述调流控水部分流动,而阻止流体从所述调流控水部分向所述筛网部分流动;
    所述单流机构内设有与所述基管相通的中心通道、以及将所述中心通道与所述单流机构的外部连通的酸化孔;所述单流机构被配置为通过井外打压可操纵地打开关闭所述酸化孔。
  19. 一种如权利要求18所述的油气井用调流控水酸化完井装置的使用方法,包括以下步骤:
    将所述调流控水酸化完井装置下入到井中,在下入过程中通过井筒隔离阀进行自动 灌浆,液体通过井筒隔离阀的孔进入调流控水酸化完井装置内部,保持调流控水酸化完井装置内外压力平衡;
    在所述调流控水酸化完井装置下入到位后投球关闭井筒隔离阀;
    在关闭井筒隔离阀后,逐级坐封隔离封隔器,通过隔离封隔器隔离出上下不同的地层;
    在进行酸化地层时,将单流机构的酸化孔打开,通过油管打压开始该地层的酸化;此时调流控水筛管通过单向组件无法与外部连通,酸液仅通过单流机构的酸化孔进入地层完成酸化地层;在酸化完成后,停止打压,关闭所述单流机构的酸化孔;
    从下至上逐个地层进行酸化;
    在进行生产时,将单流机构的酸化孔关闭,油气正向依次通过调流控水筛管的筛网部分的过滤,调流控水部分的控水节流,进入油管最终到达地面,完成生产。
PCT/CN2021/107380 2021-07-20 2021-07-20 油气井用调流控水酸化完井装置及使用方法 WO2023000169A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202180007822.0A CN115135849A (zh) 2021-07-20 2021-07-20 油气井用调流控水酸化完井装置及使用方法
PCT/CN2021/107380 WO2023000169A1 (zh) 2021-07-20 2021-07-20 油气井用调流控水酸化完井装置及使用方法
DE202022101554.6U DE202022101554U1 (de) 2021-07-20 2022-03-24 Durchflussregulierungs-, Wasserkontroll- und Versauerungskomplettiergerät für Öl- und Gasbrunnen
CA3158805A CA3158805A1 (en) 2021-07-20 2022-05-09 Regulating flow and controlling water acidification well completion device for oil and gas well and use method thereof
CN202221596337.XU CN217681695U (zh) 2021-07-20 2022-06-23 自适应调流控水酸化管柱
CN202221596338.4U CN217681690U (zh) 2021-07-20 2022-06-23 通道转换式调流控水分段酸化管柱
CN202221597791.7U CN217681696U (zh) 2021-07-20 2022-06-23 单向阀式调流控水酸化管柱

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/107380 WO2023000169A1 (zh) 2021-07-20 2021-07-20 油气井用调流控水酸化完井装置及使用方法

Publications (1)

Publication Number Publication Date
WO2023000169A1 true WO2023000169A1 (zh) 2023-01-26

Family

ID=81452834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107380 WO2023000169A1 (zh) 2021-07-20 2021-07-20 油气井用调流控水酸化完井装置及使用方法

Country Status (4)

Country Link
CN (4) CN115135849A (zh)
CA (1) CA3158805A1 (zh)
DE (1) DE202022101554U1 (zh)
WO (1) WO2023000169A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119901876A (zh) * 2025-03-27 2025-04-29 四川省科源工程技术测试中心有限责任公司 一种油气藏流体的相态检测方法及系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117248876A (zh) * 2022-06-10 2023-12-19 中国石油天然气股份有限公司 一种双滑套式防倒流蒸气吞吐注汽管柱
CN115199244B (zh) * 2022-07-18 2023-12-01 陈彦洪 自适应调流控水装置及其使用方法
CN115626684B (zh) * 2022-10-10 2025-05-06 东北石油大学 一种相态重布式自动稳流三相分离装置
CN116181282A (zh) * 2023-03-21 2023-05-30 西南石油大学 一种基于特斯拉阀的智能完井流入控制装置及方法
CN117846528B (zh) * 2024-03-07 2024-06-11 太原理工大学 一种地热钻井钻遇富水地层旋流式连续捞沙装置
CN119145814B (zh) * 2024-11-11 2025-02-14 山东普瑞思德石油技术有限公司 一种应用控水解堵一体化筛管的管柱
CN119352935B (zh) * 2024-12-18 2025-03-21 西南石油大学 一种高压高产井负j-t效应升温的减缓装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510249A (zh) * 2002-12-23 2004-07-07 北京海能海特石油科技发展有限公司 细分区段调控地层流体或注入流体流动的油气井完井系统
CN207161062U (zh) * 2017-08-30 2018-03-30 中国石油化工股份有限公司 一种定向井自适应二次分段控水完井管柱
CN209483317U (zh) * 2018-11-27 2019-10-11 中国石油天然气股份有限公司 分层注入分层防砂采油管柱
CN110578501A (zh) * 2019-09-19 2019-12-17 中国石油化工股份有限公司 多地层逐层酸化分层注水的方法
CN210598921U (zh) * 2019-09-16 2020-05-22 中国石油化工股份有限公司 可恢复注水的注酸滑套阀
CN213597938U (zh) * 2020-10-16 2021-07-02 山东大东联石油设备有限公司 一种酸浸分层酸化分层注水一体化管柱

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864921B (zh) * 2010-06-11 2013-05-01 大港油田集团有限责任公司 水平井的完井、采油管柱及其完井、采油工艺
CN103184856A (zh) * 2013-02-28 2013-07-03 中国石油天然气集团公司 适用于多级水力喷射压裂的水力喷射封隔工具
CN108086954B (zh) * 2017-12-07 2020-07-28 中国石油化工股份有限公司华北油气分公司石油工程技术研究院 水平井分级酸洗酸化方法
CN107956457B (zh) * 2018-01-08 2023-09-26 北京合力奇点科技有限公司 采油控水装置、定向井用完井采油管柱及其完井方法
CN210598922U (zh) * 2019-09-16 2020-05-22 中国石油化工股份有限公司 一种酸化单流阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510249A (zh) * 2002-12-23 2004-07-07 北京海能海特石油科技发展有限公司 细分区段调控地层流体或注入流体流动的油气井完井系统
CN207161062U (zh) * 2017-08-30 2018-03-30 中国石油化工股份有限公司 一种定向井自适应二次分段控水完井管柱
CN209483317U (zh) * 2018-11-27 2019-10-11 中国石油天然气股份有限公司 分层注入分层防砂采油管柱
CN210598921U (zh) * 2019-09-16 2020-05-22 中国石油化工股份有限公司 可恢复注水的注酸滑套阀
CN110578501A (zh) * 2019-09-19 2019-12-17 中国石油化工股份有限公司 多地层逐层酸化分层注水的方法
CN213597938U (zh) * 2020-10-16 2021-07-02 山东大东联石油设备有限公司 一种酸浸分层酸化分层注水一体化管柱

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119901876A (zh) * 2025-03-27 2025-04-29 四川省科源工程技术测试中心有限责任公司 一种油气藏流体的相态检测方法及系统

Also Published As

Publication number Publication date
CN217681695U (zh) 2022-10-28
CN217681696U (zh) 2022-10-28
CN115135849A (zh) 2022-09-30
CA3158805A1 (en) 2022-07-27
DE202022101554U1 (de) 2022-04-14
CN217681690U (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
WO2023000169A1 (zh) 油气井用调流控水酸化完井装置及使用方法
RU2705245C2 (ru) Скважинное устройство (варианты), устройство для регулирования потока и способ автономного направления потока флюида в подземный ствол скважины
CN109057755B (zh) 一种井下旋流气液分采管柱和系统分析方法
CN104389553B (zh) 自动相选择控制阀
CN103502567A (zh) 使用离心式切换器的用于引导流体的流动的装置
EP2271822A2 (en) System and method for recompletion of old wells
CN202325434U (zh) 水平井可关闭平衡筛管及其关闭工具
CN108915619A (zh) 一种适用于双梯度钻井的同心管岩屑抽吸破碎装置
CN204113131U (zh) 一种煤层气井用螺杆泵管柱
CN207245672U (zh) 一种新型水平井旋流控水阀
CN103422846B (zh) 裸眼水平井完井压裂一体化管柱
CN111810099B (zh) 水平井过油气阻水装置
CN111980660A (zh) 一种油水自动分离流入控制器
CN108716390A (zh) 一种旋流流入控制器
CN106089158B (zh) 一种水平井隔采管柱和隔采方法
CN212054560U (zh) 钻压控制式井下循环短接
CN210977391U (zh) 旋流发生器
CN115199244B (zh) 自适应调流控水装置及其使用方法
CN109779578A (zh) 基于油水密度差和旋流的自适应水平井控水工具
Simpson Vortex flow technology finding new applications
CN116292448A (zh) 一种井下可换芯与分流同心管射流泵
CA2911725C (en) Fluid control device and fluid control system
CN105863527A (zh) 一种可提高连续油管延伸极限的装置
CN206111148U (zh) 一种水平井隔采管柱
CN115788392B (zh) 一种脉冲振荡旋流增阻式控水稳油装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21950434

Country of ref document: EP

Kind code of ref document: A1