[go: up one dir, main page]

WO2022264986A1 - Antiglare laminate, optical laminate, polarizing plate, and image display device - Google Patents

Antiglare laminate, optical laminate, polarizing plate, and image display device Download PDF

Info

Publication number
WO2022264986A1
WO2022264986A1 PCT/JP2022/023709 JP2022023709W WO2022264986A1 WO 2022264986 A1 WO2022264986 A1 WO 2022264986A1 JP 2022023709 W JP2022023709 W JP 2022023709W WO 2022264986 A1 WO2022264986 A1 WO 2022264986A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
less
resin
region
particles
Prior art date
Application number
PCT/JP2022/023709
Other languages
French (fr)
Japanese (ja)
Inventor
玄 古井
隆史 成川
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021098699A external-priority patent/JP2022190395A/en
Priority claimed from JP2021098702A external-priority patent/JP2022190398A/en
Priority claimed from JP2021098704A external-priority patent/JP2022190399A/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to KR1020237042734A priority Critical patent/KR20240019772A/en
Priority to CN202280041558.7A priority patent/CN117480413A/en
Publication of WO2022264986A1 publication Critical patent/WO2022264986A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers

Definitions

  • the present disclosure relates to antiglare laminates, optical laminates, polarizing plates, and image display devices.
  • An antiglare laminate is sometimes installed on the surface of image display devices such as televisions, notebook PCs, desktop PC monitors, etc., in order to impart antiglare properties.
  • the anti-glare property is a property of suppressing reflection of background such as lighting and people.
  • an optical laminate may be provided on the surface of the image display device in order to impart antifouling properties, antireflection properties, antiglare properties, and the like.
  • An antiglare laminate is basically composed of an antiglare layer having an uneven surface on a substrate. Since antiglare laminates are often used as surface members of image display devices and the like, they are often brought into contact with fingers, objects, and the like. Therefore, the antiglare laminate preferably has a high pencil hardness.
  • An optical layered body consists of the basic composition which has an optical function layer on a base material. Since the optical layered body is often used as a surface member of an image display device and the like, there are many opportunities for contact with a person's finger, an object, or the like. Therefore, it is preferable that the optical layered body has good pencil hardness.
  • a cured product of a curable resin composition is preferably used as the resin component of the antiglare layer in order to increase the pencil hardness of the antiglare laminate (for example, Patent Documents 1 and 2).
  • a cured product of a curable resin composition is preferably used as the binder resin for the optical functional layer.
  • the cured product of the curable resin composition tends to improve the pencil hardness of the optical layered body, but tends to be inferior in adhesion to the substrate.
  • Patent Literatures 3 and 4 propose an optical layered body using a cured product of a curable resin composition as a binder resin for an optical functional layer and having good adhesion.
  • the antiglare laminates of Patent Documents 1 and 2 have good pencil hardness because the antiglare layers have high hardness. However, the antiglare laminates of Patent Documents 1 and 2 sometimes have insufficient bending resistance. Specifically, when the antiglare laminates of Patent Documents 1 and 2 are applied to a foldable type image display device or a rollable type image display device, cracks may occur in the antiglare laminate. .
  • the flex resistance described above tends to deteriorate when an acrylic resin base material is used as the base material of the antiglare laminate.
  • the optical laminates of Patent Documents 3 and 4 have good initial adhesion. However, the optical layered bodies of Patent Documents 3 and 4 sometimes deteriorated in adhesion or changed in optical properties over time. Specifically, when the optical laminates of Patent Documents 3 and 4 were subjected to a light resistance test by ultraviolet irradiation, there were cases where the adhesion was lowered and the transmission image clarity was changed.
  • An object of the present disclosure is to provide an antiglare laminate excellent in pencil hardness and flex resistance, and a polarizing plate and an image display device using the same.
  • An object of the present disclosure is to provide an optical layered body, a polarizing plate and an image display device using the same, which can suppress a decrease in adhesion and a change in transmission image definition after a light resistance test. .
  • the present disclosure provides the following [1] to [31] antiglare laminates, optical laminates, polarizing plates, and image display devices.
  • An antiglare laminate having a resin layer on a substrate, The resin layer has a first resin layer and a second resin layer from the substrate side, The resin layer contains first particles having an average particle size of 0.5 ⁇ m or more, 70% or more of the first particles based on the number exist across the first resin layer and the second resin layer, An antiglare laminate that satisfies Formula 1 below.
  • Formula 1 5.0 ⁇ t1/t2 ⁇ 15.0
  • t1 represents the average thickness of the first resin layer
  • t2 represents the average thickness of the second resin layer.
  • An antiglare laminate having a resin layer on a substrate,
  • the resin layer contains first particles having an average particle size of 0.5 ⁇ m or more,
  • the substrate side of the center of the resin layer in the thickness direction is defined as a first region, and the side opposite to the substrate from the center of the resin layer in the thickness direction is defined as a second region, the first particles 70% or more of the number standard exists in the second region,
  • An antiglare laminate that satisfies Condition 1A or Condition 2A below.
  • Condition 1A The average inclination angle of the resin layer-side surface of the base material is 5.0 degrees or more and 20.0 degrees or less.
  • ⁇ Condition 2A> The arithmetic mean height of the resin layer side surface of the base material is 0.10 ⁇ m or more and 0.40 ⁇ m or less.
  • D1 indicating the average particle diameter of the first particles and t indicating the average thickness of the resin layer have a relationship of 2.0 ⁇ t/D1 ⁇ 6.0.
  • antiglare laminate [14] The antiglare laminate according to [12] or [13], wherein the first particles are organic particles.
  • the resin layer contains a cured product of a curable resin composition.
  • An optical laminate having a resin layer on a substrate, The resin layer has a first resin layer and a second resin layer from the substrate side, The first resin layer has a region ⁇ 1 independent of each other and a region ⁇ 2 surrounding the region ⁇ 1, and the resin contained in the region ⁇ 1 and the resin contained in the region ⁇ 2 are different, The second resin layer has a region ⁇ 1 independent of each other and a region ⁇ 2 surrounding the region ⁇ 1, and the resin contained in the region ⁇ 1 and the resin contained in the region ⁇ 2 are different, An optical laminate that satisfies Condition 1B or Condition 2B below.
  • ⁇ Condition 2B> Pa1 indicating the arithmetic mean height of the surface of the base material on the resin layer side and Pa2 indicating the arithmetic mean height of the surface of the first resin layer on the second resin layer side satisfy Pa2 ⁇ Pa1 is the relationship.
  • the base material side of the center of the thickness direction of the first resin layer is defined as a first region, and the second resin layer side of the center of the thickness direction of the first resin layer is defined as a second region.
  • the resin contained in the region ⁇ 1 and the resin contained in the region ⁇ 2 are substantially the same, and the resin contained in the region ⁇ 2 and the resin contained in the region ⁇ 1 are substantially the same.
  • the second resin layer contains the first particles.
  • the optical laminate according to [24] or [25], wherein the first particles are organic particles.
  • the resin layer contains a cured product of a curable resin composition.
  • a polarizing plate having a polarizer, a first transparent protective plate arranged on one side of the polarizer, and a second transparent protective plate arranged on the other side of the polarizer. At least one of the first transparent protective plate and the second transparent protective plate is the antiglare laminate according to [1] to [16] and the optical laminate according to [17] to [28].
  • a polarizing plate which is any antiglare laminate or optical laminate selected from the body. [30] Any antiglare laminate selected from the antiglare laminate described in [1] to [16] and the optical laminate described in [17] to [28] or an optical An image display device having a laminate.
  • the image display device is a foldable type image display device or a rollable type image display device, and the antiglare laminate according to any one of [1] to [16] is provided on the display element.
  • the antiglare laminate of the present disclosure can have good pencil hardness and bending resistance. Since the polarizing plate and the image display device of the present disclosure have an antiglare laminate with excellent pencil hardness and bending resistance, it is possible to increase the degree of freedom in designing the polarizing plate and the image display device.
  • the optical layered body, polarizing plate, and image display device of the present disclosure can suppress deterioration in adhesion and change in transmission image definition after the light resistance test.
  • FIG. 1 is a cross-sectional view showing one embodiment of an antiglare laminate according to a first embodiment of the present disclosure
  • FIG. FIG. 4 is a cross-sectional view showing an antiglare laminate of Comparative Example 1-3.
  • FIG. 4 is a cross-sectional view showing an antiglare laminate of Comparative Example 1-4.
  • 1 is a cross-sectional view showing an embodiment of an image display device of the present disclosure
  • FIG. 4 is a cross-sectional view showing one embodiment of the antiglare laminate of the second embodiment of the present disclosure
  • FIG. 10 is a cross-sectional view showing an antiglare laminate of Comparative Example 2-2
  • 1 is a cross-sectional view showing an embodiment of an image display device of the present disclosure
  • FIG. 1 is a cross-sectional view showing an embodiment of an optical laminate of the present disclosure
  • FIG. It is a figure explaining the method of calculating the position of area
  • 1 is a cross-sectional view showing an embodiment of an image display device of the present disclosure; FIG.
  • the antiglare laminate of the first embodiment of the present disclosure has a resin layer on a substrate, The resin layer has a first resin layer and a second resin layer from the substrate side, The resin layer contains first particles having an average particle size of 0.5 ⁇ m or more, 70% or more of the first particles based on the number exist across the first resin layer and the second resin layer, It is an antiglare laminate that satisfies the following formula 1. 5.0 ⁇ t1/t2 ⁇ 15.0 (Formula 1) [In Formula 1, t1 represents the average thickness of the first resin layer, and t2 represents the average thickness of the second resin layer. ]
  • FIG. 1 is a cross-sectional view showing one embodiment of an antiglare laminate 100A according to the first embodiment of the present disclosure.
  • An antiglare laminate 100A in FIG. 1 has a resin layer 20A on a substrate 10.
  • the resin layer 20A of FIG. 1 has a first resin layer 21A and a second resin layer 22A from the substrate 10 side.
  • the resin layer 20A of FIG. 1 contains first particles 23A having an average particle diameter of 0.5 ⁇ m or more.
  • the first particles 23A in FIG. 1 exist across the first resin layer 21A and the second resin layer 22A.
  • FIG. 1 is a schematic cross-sectional view. That is, the scale of each layer constituting the antiglare laminate 100A, the scale of each material, and the scale of the surface irregularities are schematic for ease of illustration, and are different from the actual scale. Figures other than FIG. 1 are also different from the actual scale.
  • the substrate preferably has good light transmittance, smoothness, heat resistance and mechanical strength.
  • Such substrates include polyester, triacetyl cellulose (TAC), cellulose diacetate, cellulose acetate butyrate, polyamide, polyimide, polyethersulfone, polysulfone, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, Resin substrates containing resins such as polyether ketone, acrylic resin, polycarbonate, polyurethane and amorphous olefin (Cyclo-Olefin-Polymer: COP) can be mentioned.
  • the resin substrate may be a laminate of two or more resin substrates. The resin substrate is preferably stretched in order to improve mechanical strength and dimensional stability.
  • acrylic resin substrates are preferred because they have low hygroscopicity and therefore tend to have good dimensional stability, and have low optical anisotropy and thus tend to have good visibility.
  • the acrylic resin base material has a predetermined composition of the coating liquid for the resin layer and a predetermined drying condition, so that the first resin layer and the second resin layer can be easily formed by one application. can. Since the acrylic resin substrate is hard and brittle, the bending resistance may be insufficient when the resin layer containing the cured product of the curable resin composition is formed on the acrylic resin substrate.
  • acrylic resin means acrylic resin and/or methacrylic resin.
  • the acrylic resin contained in the acrylic resin substrate is not particularly limited. ) those obtained using methyl acrylate are preferred. Further, as the acrylic resin, JP-A-2000-230016, JP-A-2001-151814, JP-A-2002-120326, JP-A-2002-254544, JP-A-2005-146084, etc. things are also mentioned. As the acrylic resin, one having a ring structure such as an acrylic resin having a lactone ring structure or an acrylic resin having an imide ring structure may be used.
  • the acrylic resin preferably has a glass transition point (Tg) of 100° C. or higher and 150° C. or lower, more preferably 105° C. or higher and 135° C. or lower, even more preferably 110° C. or higher and 130° C. or lower.
  • Tg glass transition point
  • the acrylic resin has a glass transition point of 100° C. or higher, excessive dissolution of the acrylic resin base material can be easily suppressed during formation of the resin layer.
  • the glass transition point of the acrylic resin is 150° C. or lower, the degree of dissolution of the acrylic resin base material when forming the resin layer can be easily controlled.
  • the acrylic resin substrate may contain a resin other than the acrylic resin, but the ratio of the acrylic resin to the total resin constituting the acrylic resin substrate is preferably 80% by mass or more, and is 90% by mass or more. is more preferable, and 95% by mass or more is even more preferable.
  • the acrylic resin substrate can be produced, for example, by melt extruding pellets made of a humidity-conditioned acrylic resin, stretching the pellets in the longitudinal direction while cooling, and then stretching the pellets in the transverse direction.
  • a screw having one screw, two screws, or two or more screws can be used, and the direction of rotation, number of rotations, and melting temperature of the screw can be set arbitrarily.
  • Stretching is preferably carried out so as to obtain a desired thickness after stretching.
  • the draw ratio is not limited, it is preferably 1.2 times or more and 4.5 times or less.
  • the temperature and humidity during stretching can be arbitrarily determined.
  • the stretching method may be a general method.
  • the average thickness of the substrate is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and even more preferably 35 ⁇ m or more. By setting the average thickness of the substrate to 10 ⁇ m or more, the antiglare laminate can be easily handled with good performance.
  • the average thickness of the substrate is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and even more preferably 60 ⁇ m or less. By setting the average thickness of the substrate to 100 ⁇ m or less, the anti-glare laminate can be easily improved in flex resistance.
  • Preferred ranges for the average thickness of the substrate are 10 ⁇ m to 100 ⁇ m, 10 ⁇ m to 80 ⁇ m, 10 ⁇ m to 60 ⁇ m, 20 ⁇ m to 100 ⁇ m, 20 ⁇ m to 80 ⁇ m, 20 ⁇ m to 60 ⁇ m, 35 ⁇ m to 100 ⁇ m, and 35 ⁇ m or more. 80 ⁇ m or less, or 35 ⁇ m or more and 60 ⁇ m or less.
  • the average thickness of the base material mentioned above means the average thickness of the base material when the antiglare laminate is completed. As will be described later, when the average thickness of the base material when the antiglare laminate is completed is reduced from the average thickness of the initial base material by partially dissolving the base material by the resin layer coating liquid. There is therefore, it is preferable that the initial average thickness of the base material is greater than the average thickness of the base material when the antiglare laminate is completed.
  • the difference between the initial average thickness of the base material and the average thickness of the base material when the antiglare laminate is completed varies depending on the thickness of the resin layer, the composition of the coating liquid for the resin layer, the drying conditions of the coating liquid, and the like. Therefore, although it cannot be generalized, it is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, and more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the average thickness of the base material can be calculated from the average value of 20 arbitrary points selected from cross-sectional photographs of the antiglare laminate taken by a scanning transmission electron microscope (STEM), for example. It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less. Average thickness of the substrate, thickness of the first resin layer, thickness of the second resin layer, position of the first particles in the thickness direction of the resin layer, average inclination angle of the surface of the substrate on the resin layer side, substrate In order to measure the arithmetic mean height and the like of the surface of the resin layer of , it is necessary to prepare a measurement sample in which the cross section of the antiglare laminate is exposed.
  • STEM scanning transmission electron microscope
  • the sample can be prepared, for example, by steps (A1) to (A2) described later. If the interface is difficult to see due to insufficient contrast, the sample may be dyed with osmium tetroxide, ruthenium tetroxide, phosphotungstic acid, or the like as a pretreatment.
  • various measurements and evaluations, and the atmosphere in which sampling for measurement and evaluation is performed are measured at a temperature of 23 ⁇ 5 ° C. and a relative humidity of 40% or more and 65% or less, unless otherwise specified. and
  • the target antiglare laminate shall be exposed to the atmosphere for 30 minutes or longer before the measurement, evaluation and sampling.
  • the atmosphere described above is common to the antiglare laminate of the first embodiment, the antiglare laminate of the second embodiment, and the optical laminate.
  • the substrate preferably has an average inclination angle of 5.0 degrees or more and 15.0 degrees or less on the resin layer side surface of the substrate.
  • the bending resistance of the antiglare laminate can be easily improved. It is considered that the reason why the bending resistance is improved is that the adhesiveness between the base material and the resin layer is improved so that interfacial peeling does not occur during bending.
  • the average tilt angle By setting the average tilt angle to 15 degrees or less, it is possible to easily suppress an increase in internal haze. Further, in the case of an embodiment in which a part of the substrate is dissolved in the resin layer coating liquid, the pencil hardness can be easily improved by setting the average tilt angle to 15 degrees or less.
  • the reason why the pencil hardness can be easily improved in the above-described embodiment is considered to be that the hardness of the resin layer is less likely to decrease due to the excessive elution of the base material component into the resin layer.
  • the average tilt angle of the substrate is more preferably 5.5 degrees or more, and even more preferably 6.0 degrees or more.
  • the average tilt angle of the substrate is more preferably 14.0 degrees or less, and even more preferably 13.0 degrees or less.
  • Preferred ranges of the average tilt angle of the substrate are 5.0 degrees or more and 15.0 degrees or less, 5.0 degrees or more and 14.0 degrees or less, 5.0 degrees or more and 13.0 degrees or less, and 5.0 degrees or more and 13.0 degrees or less.
  • the average tilt angle of the substrate and the arithmetic average height of the substrate can be measured, for example, as follows.
  • a cross-sectional photograph of the antiglare laminate is taken with a scanning transmission electron microscope (STEM). It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 5000 times or more and 10000 times or less.
  • the substrate preferably has an arithmetic mean height of 0.05 ⁇ m or more and 0.25 ⁇ m or less on the resin layer side surface of the substrate.
  • the arithmetic mean height By setting the arithmetic mean height to 0.05 ⁇ m or more, the bending resistance of the antiglare laminate can be easily improved. It is considered that the reason why the bending resistance is improved is that the adhesiveness between the base material and the resin layer is improved so that interfacial peeling does not occur during bending.
  • the arithmetic mean height By setting the arithmetic mean height to 0.25 ⁇ m or less, it is possible to easily suppress an increase in internal haze.
  • the pencil hardness can be easily improved.
  • the reason why the pencil hardness can be easily improved in the above-described embodiment is considered to be that the hardness of the resin layer is less likely to decrease due to the excessive elution of the base material component into the resin layer.
  • the arithmetic mean height of the substrate is more preferably 0.07 ⁇ m or more, and even more preferably 0.09 ⁇ m or more.
  • the arithmetic mean height of the substrate is more preferably 0.23 ⁇ m or less, and even more preferably 0.20 ⁇ m or less.
  • Embodiments of suitable ranges for the arithmetic mean height of the substrate are 0.05 ⁇ m to 0.25 ⁇ m, 0.05 ⁇ m to 0.23 ⁇ m, 0.05 ⁇ m to 0.20 ⁇ m, 0.07 ⁇ m to 0.25 ⁇ m 0.07 ⁇ m or more and 0.23 ⁇ m or less, 0.07 ⁇ m or more and 0.20 ⁇ m or less, 0.09 ⁇ m or more and 0.25 ⁇ m or less, 0.09 ⁇ m or more and 0.23 ⁇ m or less, and 0.09 ⁇ m or more and 0.20 ⁇ m or less.
  • the resin layer coating liquid has a predetermined composition and predetermined drying conditions. The prescribed composition and prescribed drying conditions will be described later.
  • the base material of the antiglare laminate and the base material of the optical laminate of the first and second embodiments may contain additives such as antioxidants, ultraviolet absorbers, light stabilizers and plasticizers. good.
  • Physical treatment such as corona discharge treatment was applied to the surface of the base material of the antiglare laminate of the first and second embodiments and the surface of the base material of the optical laminate in order to improve adhesion. Treatment or chemical treatment may be applied, or an easy-adhesion layer may be formed.
  • the resin layer is required to have a first resin layer and a second resin layer from the substrate side. Moreover, the first resin layer and the second resin layer need to satisfy the following formula 1. 5.0 ⁇ t1/t2 ⁇ 15.0 (Formula 1) [In formula 1, t1 indicates the average thickness of the first resin layer, and t2 indicates the average thickness of the second resin layer. ]
  • a resin layer coating liquid containing the first particles, a resin component, and a solvent is applied onto the base material, dried, and cured as necessary. It can be formed by The resin layer coating liquid may further contain inorganic fine particles and additives, if necessary.
  • the resin layer coating liquid dissolves a part of the base material, and the region formed by mixing the component eluted from the base material with the resin layer coating liquid becomes the first resin layer.
  • a region containing the resin layer coating liquid as a main component and containing almost no component eluted from the base material serves as the second resin layer. That is, in the above method, the first resin layer and the second resin layer can be formed by one application using one resin layer coating liquid.
  • the method of applying the resin layer coating liquid onto the substrate is not particularly limited, and may be spin coating, dipping, spraying, die coating, bar coating, gravure coating, roll coating, meniscus coating, or flexographic printing. general-purpose coating methods such as coating method, screen printing method, and speed coater method.
  • irradiate ionizing radiation such as ultraviolet rays and electron beams.
  • ultraviolet light sources include ultra-high pressure mercury lamps, high pressure mercury lamps, low pressure mercury lamps, carbon arc lamps, black light fluorescent lamps and metal halide lamps.
  • the wavelength of the ultraviolet rays is preferably in the wavelength range of 190 nm or more and 380 nm or less.
  • electron beam sources include various electron beam accelerators such as Cockcroftwald type, Vandegraft type, resonant transformer type, insulating core transformer type, linear type, dynamitron type, and high frequency type.
  • two resin layer coating liquids were prepared as in Comparative Examples 1-3 and 1-4 described later, and after forming the first resin layer, two resin layers were formed. Means for laminating the resin layers for each layer can be considered.
  • particles are included in the coating liquid for the first layer, it is difficult to improve anti-glare properties, and when particles are included in the coating liquid for the second layer, it is difficult to improve bending resistance.
  • the resin layer is a single layer, it is difficult to improve the flex resistance or pencil hardness of the antiglare laminate.
  • a single resin layer having a high hardness it is difficult to improve the flex resistance of the antiglare laminate.
  • a single resin layer having a low hardness it is difficult to improve the pencil hardness of the antiglare laminate.
  • the resin layer has the first resin layer and the second resin layer, if the formula 1 is not satisfied, it is possible to improve the bending resistance or pencil hardness of the antiglare laminate. Can not.
  • the hardness of the second resin layer tends to be higher than the hardness of the first resin layer. That t1/t2 is 15.0 or more means that the ratio of the thickness of the second resin layer with high hardness is small. Therefore, when t1/t2 is 15.0 or more, the pencil hardness of the antiglare laminate cannot be improved. Further, when t1/t2 is 5.0 or less, it means that the ratio of the thickness of the second resin layer with high hardness is large. Therefore, when t1/t2 is 5.0 or less, the anti-glare laminate cannot have good bending resistance.
  • t1/t2 is preferably 5.5 or more, more preferably 6.0 or more. Also, t1/t2 is preferably 14.0 or less, more preferably 13.5 or less. Embodiments of preferred ranges for t1/t2 are greater than 5.0 and less than 15.0; greater than 5.0 and less than 14.0; greater than 5.0 and less than 13.5; 5 or more and 14.0 or less, 5.5 or more and 13.5 or less, 6.0 or more and less than 15.0, 6.0 or more and 14.0 or less, 6.0 or more and 13.5 or less.
  • the lower limit of the thickness of the entire resin layer is preferably 7.0 ⁇ m or more, more preferably 8.0 ⁇ m or more, and more preferably 9.0 ⁇ m or more. More preferably, the upper limit is preferably 15.0 ⁇ m or less, more preferably 14.0 ⁇ m or less, and even more preferably 13.0 ⁇ m or less.
  • Preferred embodiments of the thickness of the entire resin layer are 7.0 ⁇ m or more and 15.0 ⁇ m or less, 7.0 ⁇ m or more and 14.0 ⁇ m or less, 7.0 ⁇ m or more and 13.0 ⁇ m or less, 8.0 ⁇ m or more and 15.0 ⁇ m or less, 8.0 ⁇ m or more and 14.0 ⁇ m or less, 8.0 ⁇ m or more and 13.0 ⁇ m or less, 9.0 ⁇ m or more and 15.0 ⁇ m or less, 9.0 ⁇ m or more and 14.0 ⁇ m or less, and 9.0 ⁇ m or more and 13.0 ⁇ m or less.
  • the lower limit of the average thickness t1 of the first resin layer is preferably 5.0 ⁇ m or more, more preferably 7.0 ⁇ m or more, and still more preferably 8.5 ⁇ m or more, and the upper limit is preferably 13.0 ⁇ m or less, and 12.0 ⁇ m.
  • the following is more preferable, and 11.0 ⁇ m or less is even more preferable.
  • Embodiments of preferred ranges for t1 are 5.0 ⁇ m to 13.0 ⁇ m, 5.0 ⁇ m to 12.0 ⁇ m, 5.0 ⁇ m to 11.0 ⁇ m, 7.0 ⁇ m to 13.0 ⁇ m, 7.0 ⁇ m or more. 12.0 ⁇ m or less, 7.0 ⁇ m or more and 11.0 ⁇ m or less, 8.5 ⁇ m or more and 13.0 ⁇ m or less, 8.5 ⁇ m or more and 12.0 ⁇ m or less, and 8.5 ⁇ m or more and 11.0 ⁇ m or less.
  • the average thickness t2 of the second resin layer has a lower limit of preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and still more preferably 0.7 ⁇ m or more, and an upper limit of 4.0 ⁇ m or less, preferably 3.0 ⁇ m. The following is more preferable, and 2.7 ⁇ m or less is even more preferable.
  • Embodiments of preferred ranges for t2 are 0.3 ⁇ m to 4.0 ⁇ m, 0.3 ⁇ m to 3.0 ⁇ m, 0.3 ⁇ m to 2.7 ⁇ m, 0.5 ⁇ m to 4.0 ⁇ m, 0.5 ⁇ m or more. 3.0 ⁇ m or less, 0.5 ⁇ m or more and 2.7 ⁇ m or less, 0.7 ⁇ m or more and 4.0 ⁇ m or less, 0.7 ⁇ m or more and 3.0 ⁇ m or less, and 0.7 ⁇ m or more and 2.7 ⁇ m or less.
  • the average thickness of the first resin layer and the average thickness of the second resin layer for example, 20 arbitrary points of cross-sectional photographs of the antiglare laminate taken by a scanning transmission electron microscope (STEM) are selected. , can be calculated from its average value. It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
  • the resin layer is required to contain first particles having an average particle size of 0.5 ⁇ m or more. If the resin layer does not contain the first particles, the antiglare property cannot be imparted to the antiglare laminate.
  • first particles 23A across the first resin layer 21A and the second resin layer 22A means that the first particles 23A extend across the first resin layer 21A and the second resin layer 22A in the thickness direction of the resin layer 20A as shown in FIG. means that it exists on both sides of the resin layer 21A side and the second resin layer 22A side.
  • the first particles 23A do not exist across the first resin layer 21A and the second resin layer 22A, but exist on one side of the second resin layer 22A.
  • the first particles 23A do not exist across the first resin layer 21A and the second resin layer 22A, but exist on one side of the first resin layer 21A.
  • “70% or more of the first particles based on the number exist across the first resin layer and the second resin layer” means “the first particles are positioned in the thickness direction. Satisfy the conditions”.
  • “70% or more of the first particles based on the number do not exist across the first resin layer and the second resin layer” means "the first particles are positioned in the thickness direction. conditions are not met.”
  • first particles do not satisfy the condition of the position in the thickness direction, good antiglare properties and bending resistance cannot be obtained.
  • the first particles do not satisfy the condition of the position in the thickness direction more than 30% of the number-based number of the first particles does not straddle the first resin layer and the second resin layer, and the first resin layer and the second resin layer.
  • the first particles present in either the first resin layer or the second resin layer without straddling the first resin layer and the second resin layer are referred to as "biased first particles". It may be described as "particle of 1". If the first resin layer contains a large amount of uneven first particles, it is difficult for the first particles to form irregularities on the surface of the resin layer, and therefore antiglare properties cannot be improved.
  • the ratio of the first particles present on both the first resin layer side and the second resin layer side in the thickness direction of the resin layer is preferably 80% or more based on the number, and is preferably 90% or more. It is more preferable to have
  • the position of the first particles in the thickness direction of the resin layer can be determined, for example, from a cross-sectional photograph of the antiglare laminate taken with a scanning transmission electron microscope (STEM). Also, the ratio based on the number described above can be calculated from the cross-sectional photograph. In order to increase the reliability of the numerical value, it is preferable to obtain a plurality of cross-sectional photographs, set the total number of the first particles to 50 or more, and then calculate the above-mentioned number-based ratio. It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
  • H1 indicating the indentation hardness in the middle in the thickness direction of the first resin layer and H2 indicating the indentation hardness in the middle in the thickness direction of the second resin layer have a relationship of H1 ⁇ H2. preferable.
  • H1 ⁇ H2 the antiglare laminate can be easily improved in pencil hardness and flex resistance.
  • H1 and H2 are preferably 40 MPa ⁇ H2-H1.
  • H2-H1 is more than 40 MPa, the pencil hardness and flex resistance of the antiglare laminate can be easily improved.
  • H2-H1 is more preferably 45 MPa or more, and even more preferably 50 MPa or more.
  • H2-H1 is preferably 100 MPa or less, more preferably 90 MPa or less, and even more preferably 80 MPa or less.
  • the value of H2 can be adjusted by the resin component that constitutes the resin layer coating liquid.
  • H1 is the value of the mixture of the resin component constituting the resin layer coating liquid and the component eluted from the substrate, it can be adjusted by the two components.
  • Embodiments of preferred ranges of H2-H1 are greater than 40 MPa and less than or equal to 100 MPa, greater than 40 MPa and less than or equal to 90 MPa, greater than 40 MPa and less than or equal to 80 MPa, greater than or equal to 45 MPa and less than or equal to 100 MPa, greater than or equal to 45 MPa and less than or equal to 90 MPa, greater than or equal to 45 MPa and less than or equal to 80 MPa, greater than or equal to 50 MPa and less than or equal to 100 MPa, greater than or equal to 50 MPa and less than or equal to 90 MPa.
  • 50 MPa or more and 80 MPa or less are mentioned.
  • the lower limit of H1 is preferably 150 MPa or more, more preferably 160 MPa or more, and even more preferably 170 MPa or more, in order to facilitate good pencil hardness.
  • the pressure is preferably 250 MPa or less, more preferably 240 MPa or less, and even more preferably 230 MPa or less.
  • suitable ranges for H1 are 150 MPa to 250 MPa, 150 MPa to 240 MPa, 150 MPa to 230 MPa, 160 MPa to 250 MPa, 160 MPa to 240 MPa, 160 MPa to 230 MPa, 170 MPa to 250 MPa, 170 MPa to 240 MPa, 170 MPa or more and 230 MPa or less is mentioned.
  • the lower limit of H2 is preferably 230 MPa or more, more preferably 240 MPa or more, and still more preferably 245 MPa or more, in order to facilitate good pencil hardness.
  • the pressure is preferably 310 MPa or less, more preferably 290 MPa or less, and even more preferably 285 MPa or less.
  • suitable ranges for H2 include: 245 MPa or more and 285 MPa or less can be mentioned.
  • an embedding sample is prepared by embedding the cut sample in a resin.
  • the size of the cut sample is, for example, a strip of 10 mm long ⁇ 3 mm wide.
  • the embedding resin is preferably an epoxy resin.
  • the embedded sample for example, the cut sample is placed in the silicon embedding plate, the embedding resin is poured in, and the embedding resin is cured. can be obtained by taking out the embedding resin enveloping the .
  • the above-described curing step is performed by allowing the resin to stand at room temperature for 12 hours.
  • the shape of the embedded sample is block-like.
  • silicon embedding plates examples include those manufactured by Dosaka EM Co., Ltd.
  • a silicon-embedded plate may also be referred to as a silicon capsule.
  • the epoxy resin for embedding for example, a mixture of a trade name "Epofix” manufactured by Struers and a trade name "Hardener for Epofix” manufactured by the same company at a ratio of 10:1.2 can be used. .
  • a block-shaped embedded sample is cut vertically to prepare a sample for measurement of indentation hardness, in which a cross section of the antiglare laminate is exposed.
  • the shape of the sample for measurement of indentation hardness remains blocky.
  • the embedded sample is preferably cut through the center of the cut sample.
  • Embedded samples are preferably cut with a diamond knife.
  • An example of an apparatus for cutting a block-shaped embedded sample is the product name "Ultramicrotome EM UC7" manufactured by Leica Microsystems. When cutting a block-shaped embedded sample, first cut roughly (rough trimming), and finally trim precisely under the conditions of "SPEED: 1.00 mm/s" and "FEED: 70 nm". is preferred.
  • the section without defects such as holes and having a uniform thickness of 60 nm or more and 100 nm or less is the average thickness of the first resin layer, the first The average thickness of the resin layer of 2, the position of the first particles in the thickness direction of the resin layer, the average inclination angle of the resin layer side surface of the base material, the arithmetic mean height of the resin layer side surface of the base material, the first can be used as a sample for measuring the particle size of the particles and the particle size of the inorganic fine particles.
  • H1 to H3 are measured by pressing a Berkovich indenter (material: diamond triangular pyramid) vertically into a predetermined position on the cut surface of the sample described above.
  • the predetermined position is the middle of the thickness direction of the first resin layer in the measurement of H1, the middle of the thickness direction of the second resin layer in the measurement of H2, and the thickness of the substrate in the measurement of H3. in the middle of the direction.
  • the center in the thickness direction of the first resin layer is preferably the center in the thickness direction of the first resin layer, but a deviation of 0.10 ⁇ m from the center is permissible.
  • the center in the thickness direction of the second resin layer is preferably the center in the thickness direction of the second resin layer, but a deviation of 0.10 ⁇ m from the center is permissible.
  • the center in the thickness direction of the substrate is preferably the center in the thickness direction of the substrate, but a deviation of 0.10 ⁇ m from the center is permissible.
  • the indentation hardness is preferably measured under the following conditions.
  • ⁇ Measurement conditions> ⁇ Used indenter: Berkovich indenter (model number: TI-0039, manufactured by BRUKER) ⁇ Pushing conditions: Load control method ⁇ Maximum load: 50 ⁇ N ⁇ Load application time: 10 seconds (load change rate: 5 ⁇ N / sec) ⁇ Holding time: 5 seconds ⁇ Holding load: 50 ⁇ N ⁇ Load unloading time: 10 seconds (load change rate: -5 ⁇ N / sec)
  • a p is the projected contact area corrected for the tip curvature of the indenter by the Oliver-Pharr method using a standard sample of fused quartz (5-0098 manufactured by BRUKER).
  • H1 to H3 mean the average values of measurements of 20 samples.
  • the first particles are particles having an average particle size of 0.5 ⁇ m or more. If the average particle size is less than 0.5 ⁇ m, it is difficult to form unevenness on the surface of the resin layer, and antiglare properties cannot be improved.
  • resins such as polymethyl methacrylate, polyacrylic-styrene copolymer, melamine resin, polycarbonate, polystyrene, polyvinyl chloride, benzoguanamine-melamine-formaldehyde condensate, silicone, fluorine-based resin and polyester-based resin.
  • inorganic particles formed from one or more inorganic substances such as silica, alumina, zirconia and titania; Among these, organic particles are preferable because they are excellent in dispersion stability and have a relatively small specific gravity, so that the first particles can easily satisfy the positional conditions in the thickness direction.
  • the lower limit of the content of the first particles is preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, with respect to 100 parts by mass of the resin component of the resin layer coating liquid. It is preferably 1.5 parts by mass or more, and the upper limit is preferably 10.0 parts by mass or less, more preferably 5.0 parts by mass or less, and 3.0 parts by mass or less. It is even more preferable to have By setting the content of the first particles to 0.5 parts by mass or more, the antiglare property can be easily improved. Further, by setting the content of the first particles to 10.0 parts by mass or less, it is possible to easily suppress deterioration in bending resistance.
  • An embodiment of a preferred range of the content of the first particles with respect to 100 parts by mass of the resin component is 0.5 parts by mass or more and 10.0 parts by mass or less, 0.5 parts by mass or more and 5.0 parts by mass or less, 0 .5 to 3.0 parts by mass, 1.0 to 10.0 parts by mass, 1.0 to 5.0 parts by mass, 1.0 to 3.0 parts by mass , 1.5 to 10.0 parts by mass, 1.5 to 5.0 parts by mass, and 1.5 to 3.0 parts by mass.
  • the average particle size of the first particles is preferably 0.8 ⁇ m or more, more preferably 1.0 ⁇ m or more.
  • the average particle diameter of the first particles is preferably 3.0 ⁇ m or less, more preferably 2.7 ⁇ m or less, so that the first particles can easily satisfy the position condition in the thickness direction. 0.5 ⁇ m or less is more preferable.
  • Preferred embodiments of the average particle size of the first particles are 0.8 ⁇ m or more and 3.0 ⁇ m or less, 0.8 ⁇ m or more and 2.7 ⁇ m or less, 0.8 ⁇ m or more and 2.5 ⁇ m or less, 1.0 ⁇ m or more and 3.0 ⁇ m or less. 0 ⁇ m or less, 1.0 ⁇ m or more and 2.7 ⁇ m or less, or 1.0 ⁇ m or more and 2.5 ⁇ m or less.
  • the average particle size of the first particles can be calculated, for example, by the following operations (B1) to (B3).
  • B1 Take a transmission observation image of the antiglare laminate with an optical microscope. The magnification is preferably 500 times or more and 2000 times or less.
  • B2 Extract arbitrary 10 particles from the observation image and calculate the particle diameter of each particle. The particle size is measured as the distance between two straight lines that provide the maximum distance between any two parallel straight lines that sandwich the cross section of the particle.
  • B3 Perform the same operation 5 times on observation images of the same sample on different screens, and take the value obtained from the number average of the particle diameters for a total of 50 particles as the average particle diameter of the particles.
  • the average particle diameter of the first particles is calculated by the following (B4) to (B6).
  • B4 Using a microtome, the antiglare laminate is cut so as to have a cross section passing through the center of the first particle.
  • the thickness of the section is preferably 60 nm to 100 nm.
  • a plurality of sections are continuously produced for each first particle, and the section that maximizes the particle diameter calculated from each section by the operation of (B5) is taken as the section that passes through the center of the first particle. be able to.
  • the obtained section is observed with a scanning transmission electron microscope (STEM) to calculate the particle size.
  • STEM scanning transmission electron microscope
  • the magnification is preferably 5,000 times or more and 20,000 times or less.
  • the operations of (B4) to (B5) are performed on 20 particles, and the value obtained from the number average of the particle diameters of 20 particles is taken as the average particle diameter of the first particles.
  • D1 indicating the average particle diameter of the first particles and t2 indicating the average thickness of the second resin layer preferably have a relationship of t2 ⁇ D1.
  • t2 ⁇ D1 the surface of the antiglare layered body can be easily provided with an uneven shape by the first particles, so that the antiglare property can be easily improved.
  • D1-t2 is preferably 0.5 ⁇ m or more, more preferably 0.7 ⁇ m or more.
  • D1-t2 is preferably 2.0 ⁇ m or less, more preferably 1.7 ⁇ m or less, and even more preferably 1.5 ⁇ m or less.
  • Embodiments of preferred ranges for D1-t2 are 0.5 ⁇ m to 2.0 ⁇ m, 0.5 ⁇ m to 1.7 ⁇ m, 0.5 ⁇ m to 1.5 ⁇ m, 0.7 ⁇ m to 2.0 ⁇ m, 0.5 ⁇ m to 1.7 ⁇ m. 7 ⁇ m or more and 1.7 ⁇ m or less, and 0.7 ⁇ m or more and 1.5 ⁇ m or less.
  • D1 indicating the average particle diameter of the first particles and t1 indicating the average thickness of the first resin layer preferably have a relationship of D1 ⁇ t1.
  • the flex resistance can be easily improved.
  • t1-D1 is preferably 4.0 ⁇ m or more, more preferably 5.0 ⁇ m or more, and even more preferably 6.0 ⁇ m or more.
  • t1-D1 is preferably 10.0 ⁇ m or less, more preferably 9.0 ⁇ m or less, and even more preferably 8.5 ⁇ m or less.
  • Embodiments of preferred ranges for t1-D1 are 5.0 ⁇ m to 10.0 ⁇ m, 5.0 ⁇ m to 9.0 ⁇ m, 5.0 ⁇ m to 8.5 ⁇ m, 6.0 ⁇ m to 10.0 ⁇ m; 0 ⁇ m or more and 9.0 ⁇ m or less, and 6.0 ⁇ m or more and 8.5 ⁇ m or less.
  • the resin layer may contain inorganic fine particles. Since the resin layer contains inorganic fine particles having a relatively large specific gravity, the first particles are less likely to sink below the resin layer, so that the first particles can easily satisfy the positional condition in the thickness direction. In addition, the inorganic fine particles can enhance the dispersibility of the first particles and easily suppress the deterioration of the bending resistance.
  • inorganic fine particles mean inorganic particles having an average primary particle size of 200 nm or less.
  • the average particle size of the inorganic fine particles is preferably 1 nm or more and 200 nm or less, more preferably 2 nm or more and 100 nm or less, and even more preferably 5 nm or more and 50 nm or less.
  • the average particle size of the inorganic fine particles can be calculated by the following operations (C1) to (C3).
  • C1 A cross section of the antiglare laminate is imaged with a TEM or STEM.
  • the acceleration voltage of the TEM or STEM is preferably 10 kV or more and 30 kV or less, and the magnification is preferably 50,000 times or more and 300,000 times or less.
  • C2 Any 10 inorganic fine particles are extracted from the observation image, and the particle diameter of each inorganic fine particle is calculated. The particle diameter is measured as the distance between two arbitrary parallel straight lines sandwiching the cross section of the inorganic fine particles, and the distance between the two straight lines being the maximum.
  • C3 Perform the same operation 5 times on observation images of the same sample on different screens, and use the average particle diameter of the inorganic fine particles as the value obtained from the number average of the particle diameters for a total of 50 particles.
  • inorganic fine particles examples include fine particles made of silica, alumina, zirconia, titania, and the like. Among these, silica is preferable since it easily suppresses the generation of internal haze.
  • the lower limit of the content of the inorganic fine particles is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, with respect to 100 parts by mass of the resin component of the resin layer coating liquid. It is more preferably 0.7 parts by mass or more, and the upper limit is preferably 5.0 parts by mass or less, more preferably 3.0 parts by mass or less, and 2.0 parts by mass or less. is more preferred.
  • the content of the inorganic fine particles By setting the content of the inorganic fine particles to 0.1 part by mass or more, the first particles can easily satisfy the positional condition in the thickness direction.
  • the content of the inorganic fine particles to 5.0 parts by mass or less, it is possible to prevent the first particles from floating excessively above the resin layer. Easy to fill.
  • the content of the inorganic fine particles with respect to 100 parts by mass of the resin component is preferably 0.1 parts by mass or more and 5.0 parts by mass or less, 0.1 parts by mass or more and 3.0 parts by mass or less, 0.1 parts by mass to 2.0 parts by mass, 0.5 parts by mass to 5.0 parts by mass, 0.5 parts by mass to 3.0 parts by mass, 0.5 parts by mass to 2.0 parts by mass, 0 7 to 5.0 parts by mass, 0.7 to 3.0 parts by mass, and 0.7 to 2.0 parts by mass.
  • the resin layer preferably contains a cured product of a curable resin composition as a resin component.
  • a curable resin composition As a resin component, it is possible to easily improve the pencil hardness of the antiglare laminate.
  • the cured product of the curable resin composition is preferably contained in both the first resin layer and the second resin layer.
  • the ratio of the curable resin composition to the total amount of the resin component in the resin layer coating liquid is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. Preferably, 100% by mass is most preferable.
  • the cured product of the curable resin composition includes a cured product of a thermosetting resin composition and a cured product of an ionizing radiation-curable resin composition.
  • a cured product of an ionizing radiation-curable resin composition is preferable because it is easy to increase the pencil hardness and to easily dissolve the substrate in the uncured state of the composition.
  • thermosetting resin composition is a composition containing at least a thermosetting resin, and is a resin composition that is cured by heating.
  • Thermosetting resins include acrylic resins, urethane resins, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, silicone resins, and the like. If necessary, a curing agent is added to these curable resins in the thermosetting resin composition.
  • An ionizing radiation-curable resin composition is a composition containing a compound having an ionizing radiation-curable functional group (hereinafter also referred to as an "ionizing radiation-curable compound").
  • ionizing radiation-curable functional groups include ethylenically unsaturated bond groups such as (meth)acryloyl groups, vinyl groups, and allyl groups, epoxy groups, and oxetanyl groups.
  • a compound having an ethylenically unsaturated bond group is preferred.
  • Ionizing radiation refers to electromagnetic waves or charged particle beams that have energy quanta capable of polymerizing or cross-linking molecules.
  • a (meth)acryloyl group refers to an acryloyl group or a methacryloyl group.
  • (meth)acrylate indicates acrylate or methacrylate.
  • both a monofunctional ionizing radiation-curable compound having one ionizing radiation-curable functional group and a polyfunctional ionizing radiation-curable compound having two or more ionizing radiation-curable functional groups are used. be able to. Both monomers and oligomers can be used as the ionizing radiation-curable compound.
  • the following mixtures (a) to (c) can be used as the ionizing radiation-curable compound. is preferred.
  • the following (a) to (c) are preferably compounds having an ethylenically unsaturated bond group as an ionizing radiation-curable functional group, more preferably (meth)acrylate compounds.
  • the (meth)acrylate compound a part of the molecular skeleton modified with ethylene oxide, propylene oxide, caprolactone, isocyanuric acid, alkyl, cyclic alkyl, aromatic, bisphenol or the like can also be used.
  • (a) monofunctional ionizing radiation-curable monomer (b) polyfunctional ionizing radiation-curable monomer (c) polyfunctional ionizing radiation-curable oligomer
  • the monofunctional ionizing radiation-curable monomer (a) as the ionizing radiation-curable compound, a part of the substrate can be easily dissolved, and the component eluted from the substrate can be used for the resin layer. It can be easily dissolved in the components of the coating liquid.
  • the viscosity of the resin layer coating liquid is reduced by including the monofunctional ionizing radiation-curable monomer (a)
  • the mixture of the resin layer coating liquid and the component eluted from the substrate tends to convect. Become.
  • the thickness of the first resin layer becomes larger than the thickness of the second resin layer, so that t1/t2 can easily be made more than 5.
  • the amount of the monofunctional ionizing radiation-curable monomer (a) is too large, the base material will be dissolved excessively, resulting in a decrease in strength of the base material and a decrease in pencil hardness of the antiglare laminate. may decrease.
  • the amount of the monofunctional ionizing radiation-curable monomer (a) is too large, the above-mentioned convection becomes intense, so that the thickness of the first resin layer becomes too large relative to the thickness of the second resin layer. , t1/t2 may exceed 15.
  • the pencil hardness of the antiglare laminate can be easily improved.
  • the amount of the polyfunctional ionizing radiation-curable monomer (b) is too large, the hardness of the resin layer may become too high, and the flex resistance of the antiglare laminate may decrease.
  • the polyfunctional ionizing radiation-curable oligomer (c) as the ionizing radiation-curable compound, curing shrinkage can be easily suppressed while maintaining the pencil hardness of the antiglare laminate.
  • the amount of the polyfunctional ionizing radiation-curable oligomer (c) is too large, the pencil hardness of the antiglare laminate may decrease.
  • the amount of the monofunctional ionizing radiation-curable monomer (a) with respect to the total amount of the ionizing radiation-curable compound is preferably 10% by mass or more and 40% by mass or less, and is 15% by mass or more and 35% by mass or less. is more preferable, and more preferably 17% by mass or more and 33% by mass or less.
  • the amount of the polyfunctional ionizing radiation-curable monomer (b) with respect to the total amount of the ionizing radiation-curable compound is preferably 5% by mass or more and 20% by mass or less, and 6% by mass or more and 15% by mass or less. is more preferable, and more preferably 7% by mass or more and 13% by mass or less.
  • the amount of (c) polyfunctional ionizing radiation-curable oligomer relative to the total amount of ionizing radiation-curable compounds is preferably 40% by mass or more and 80% by mass or less, and is preferably 50% by mass or more and 77% by mass or less. More preferably, it is 55% by mass or more and 75% by mass or less.
  • Monofunctional ionizing radiation-curable monomers (a) include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, and hexyl (meth)acrylate. , cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, isobornyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate , 2-hydroxypropyl (meth)acrylate and the like.
  • a monofunctional monomer having a hydroxyl group such as 4-hydroxybutyl (meth)acrylate is preferable because it tends to improve adhesion to the substrate.
  • bifunctional ionizing radiation-curable monomers include ethylene glycol di(meth)acrylate, bisphenol A tetraethoxy diacrylate, bisphenol A tetrapropoxy diacrylate, 1, 6-hexanediol diacrylate and the like.
  • the number of functional groups in the polyfunctional ionizing radiation-curable monomer (b) is preferably 3 or more and 5 or less, more preferably 3 or more and 4 or less, in order to increase pencil hardness and suppress curing shrinkage. , 3 is more preferred.
  • polyfunctional ionizing radiation-curable oligomer (c) examples include acrylate polymers such as urethane (meth)acrylate, epoxy (meth)acrylate, polyester (meth)acrylate, and polyether (meth)acrylate.
  • Urethane (meth)acrylates are obtained, for example, by reacting polyhydric alcohols and organic diisocyanates with hydroxy (meth)acrylates.
  • Preferred epoxy (meth)acrylates are (meth)acrylates obtained by reacting tri- or more functional aromatic epoxy resins, alicyclic epoxy resins, aliphatic epoxy resins, etc.
  • (meth)acrylic acid (Meth)acrylates obtained by reacting aromatic epoxy resins, alicyclic epoxy resins, aliphatic epoxy resins, etc. with polybasic acids and (meth)acrylic acid, and bifunctional or higher aromatic epoxy resins, alicyclic It is a (meth)acrylate obtained by reacting a group epoxy resin, an aliphatic epoxy resin, or the like with a phenol and (meth)acrylic acid.
  • the number of functional groups in the polyfunctional ionizing radiation-curable oligomer (c) is preferably 4 or more and 8 or less, more preferably 5 or more and 7 or less, in order to suppress cure shrinkage while maintaining pencil hardness. , 6.
  • the weight average molecular weight of the polyfunctional ionizing radiation-curable oligomer (c) is preferably 1000 or more and 5000 or less, more preferably 1100 or more and 3500 or less, in order to suppress curing shrinkage while maintaining pencil hardness. It is more preferably 1200 or more and 2000 or less.
  • the weight average molecular weight is the average molecular weight measured by GPC analysis and converted to standard polystyrene.
  • the ionizing radiation-curable composition preferably contains additives such as a photopolymerization initiator and a photopolymerization accelerator.
  • additives such as a photopolymerization initiator and a photopolymerization accelerator.
  • the photopolymerization initiator include one or more selected from acetophenone, benzophenone, ⁇ -hydroxyalkylphenone, Michler's ketone, benzoin, benzyldimethylketal, benzoylbenzoate, ⁇ -acyloxime ester, thioxanthones, and the like.
  • the photopolymerization accelerator can reduce polymerization inhibition by air during curing and increase the curing speed, and is selected from, for example, p-dimethylaminobenzoic acid isoamyl ester, p-dimethylaminobenzoic acid ethyl ester, and the like. One or more types are mentioned.
  • the coating liquid for the resin layer may contain leveling agents, refractive index modifiers, antistatic agents, antifouling agents, ultraviolet absorbers, light stabilizers, antioxidants, viscosity modifiers, thermal polymerization initiators, etc., if necessary. It may contain additives.
  • the resin layer coating liquid preferably contains a solvent.
  • a solvent it is preferable to select a solvent that can dissolve the substrate. However, if the base material is dissolved excessively, the strength of the base material is lowered, so it is preferable to select an appropriate solvent according to the type of base material. In addition, it is preferable to select the solvent in consideration of not only the solubility of the base material but also the evaporation rate inherent to the solvent. This is because if the evaporation rate of the solvent is slow, the substrate tends to dissolve excessively.
  • the rate at which the solvent evaporates can also be controlled by the drying conditions. For example, the higher the drying temperature, the faster the solvent will evaporate. Also, the faster the drying air speed, the faster the solvent evaporates. From the above, it is preferable to select the solvent in consideration of the solubility of the substrate, the evaporation rate, and the drying conditions.
  • solvents examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethers such as dioxane and tetrahydrofuran; aliphatic hydrocarbons such as hexane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons; halogenated carbons such as dichloromethane and dichloroethane; esters such as methyl acetate, ethyl acetate and butyl acetate; alcohols such as isopropanol, butanol and cyclohexanol; cellosolves such as methyl cellosolve and ethyl cellosolve; glycol ethers such as propylene glycol monomethyl ether acetate; cellosolve acetates; sulfoxides such as dimethylsulfoxide; amides such as dimethylformamide and dimethylacetamide;
  • the main component is a solvent having a high evaporation rate inherent to the solvent.
  • the main component means 50% by mass or more of the total amount of the solvent, preferably 70% by mass or more, more preferably 90% by mass or more, and most preferably 100% by mass.
  • a solvent with a high evaporation rate means a solvent with an evaporation rate of 100 or more when the evaporation rate of butyl acetate is set to 100.
  • the evaporation rate of the solvent having a high evaporation rate is more preferably 120 or more and 300 or less, more preferably 140 or more and 220 or less.
  • Solvents with high evaporation rates include, for example, isopropyl alcohol (evaporation rate 150), methyl isobutyl ketone (evaporation rate 160), and toluene (evaporation rate 200).
  • Drying conditions can be controlled by drying temperature and air speed in the dryer.
  • the preferred ranges of the drying temperature and wind speed vary depending on the composition of the resin layer coating liquid, so it cannot be generalized. preferable.
  • the drying time is preferably 30 seconds or more and 90 seconds or less.
  • the drying temperature is important. When the drying temperature is lowered, t1/t2 tends to decrease, and when the drying temperature is increased, t1/t2 tends to increase.
  • ionizing radiation is applied.
  • the irradiation of is preferably performed after drying the coating solution.
  • the antiglare layered body of the first embodiment and the second embodiment described later, and the optical layered body described later may have layers other than the substrate and the resin layer.
  • Other layers include an antireflection layer, an antifouling layer, an antistatic layer, and the like.
  • the antiglare laminate of the first embodiment and the second embodiment described later, and the optical laminate described later preferably have a total light transmittance of 70% or more, preferably 80% or more, according to JIS K7361-1:1997. is more preferably 85% or more.
  • the light incident surface for measuring the total light transmittance and haze, which will be described later, is the substrate side.
  • the antiglare laminate of the first embodiment and the second embodiment described later, and the optical laminate described later preferably have a haze of JIS K7136:2000 of 0.5% or more, preferably 1.0% or more. is more preferably 1.5% or more. By setting the haze to 0.5% or more, the antiglare property can be easily improved.
  • the antiglare laminate of the first embodiment and the second embodiment described later, and the optical laminate described later preferably have a haze of 20% or less. , is more preferably 10% or less, and even more preferably 5% or less.
  • Embodiments of preferred ranges of haze for the antiglare laminate and the optical laminate are 0.5% to 20%, 0.5% to 10%, 0.5% to 5%, 1.0 % or more and 20% or less, 1.0% or more and 10% or less, 1.0% or more and 5% or less, 1.5% or more and 20% or less, 1.5% or more and 10% or less, 1.5% or more and 5% or less are mentioned.
  • the arithmetic mean roughness of JIS B0601:2001 of the surface on the resin layer side is The thickness Ra is preferably 0.03 ⁇ m or more, more preferably 0.05 ⁇ m or more. Further, in the antiglare laminates of the first embodiment and the second embodiment described later, and the optical laminate described later, the Ra of the surface on the resin layer side is set to 0.00 in order to easily suppress the deterioration of image resolution. It is preferably 12 ⁇ m or less, more preferably 0.10 ⁇ m or less. Ra means a value at a cutoff value of 0.8 mm.
  • Preferred ranges of Ra on the resin layer side surface are 0.03 ⁇ m to 0.12 ⁇ m, 0.03 ⁇ m to 0.10 ⁇ m, 0.05 ⁇ m to 0.12 ⁇ m, and 0.05 ⁇ m to 0.10 ⁇ m. These include:
  • the antiglare laminates of the first embodiment and the second embodiment described later, and the optical laminates described later may be in the form of sheets cut into a predetermined size, or may be in the form of a long sheet wound into a roll. It may also be in the form of a roll.
  • the size of the sheet is not particularly limited, but the maximum diameter is about 2 inches or more and 500 inches or less.
  • maximum diameter refers to the maximum length of any two points of the antiglare layered body or the optical layered body. For example, when the antiglare layered body or the optical layered body is rectangular, the diagonal line of the rectangle is the maximum diameter.
  • the diameter of the circle is the maximum diameter.
  • the width and length of the roll are not particularly limited, but generally the width is about 500 mm or more and 3000 mm or less, and the length is about 500 m or more and 5000 m or less.
  • the roll-shaped antiglare layered body or optical layered body can be cut into sheets according to the size of an image display device or the like. When cutting, it is preferable to exclude the roll ends whose physical properties are not stable.
  • the shape of the sheet is not particularly limited, and may be, for example, a polygon such as a triangle, quadrangle, or pentagon, a circle, or a random irregular shape.
  • the aspect ratio is not particularly limited as long as there is no problem as a display screen.
  • horizontal:vertical 1:1, 4:3, 16:10, 16:9, 2:1, 5:4, 11:8.
  • the antiglare laminate of the present disclosure has a resin layer on a substrate,
  • the resin layer contains first particles having an average particle size of 0.5 ⁇ m or more,
  • the first particles 70% or more of the number standard exists in the second region, It satisfies the following condition 1A or condition 2A.
  • the average inclination angle of the resin layer-side surface of the base material is 5.0 degrees or more and 20.0 degrees or less.
  • the arithmetic mean height of the resin layer side surface of the base material is 0.10 ⁇ m or more and 0.40 ⁇ m or less.
  • FIG. 5 is a cross-sectional view showing one embodiment of the antiglare laminate 100B of the second embodiment of the present disclosure.
  • Antiglare laminate 100B in FIG. 5 has resin layer 20B on substrate 10 .
  • the resin layer 20B of FIG. 5 contains the first particles 23B having an average particle diameter of 0.5 ⁇ m or more.
  • FIG. 5 is a schematic cross-sectional view.
  • the scale of each layer, the scale of each material, and the scale of the surface irregularities that constitute the antiglare laminate 100B are schematic representations for ease of illustration, and are different from the actual scale. Figures other than FIG. 5 are also different from the actual scale.
  • the substrate preferably has good light transmittance, smoothness, heat resistance and mechanical strength.
  • Such substrates include polyester, triacetyl cellulose (TAC), cellulose diacetate, cellulose acetate butyrate, polyamide, polyimide, polyethersulfone, polysulfone, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, Resin substrates containing resins such as polyether ketone, acrylic resin, polycarbonate, polyurethane and amorphous olefin (Cyclo-Olefin-Polymer: COP) can be mentioned.
  • the resin substrate may be a laminate of two or more resin substrates. The resin substrate is preferably stretched in order to improve mechanical strength and dimensional stability.
  • acrylic resin substrates are preferred because they have low hygroscopicity and therefore tend to have good dimensional stability, and have low optical anisotropy and thus tend to have good visibility. Further, the acrylic resin base material satisfies condition 1A and/or condition 2A by making the resin layer coating liquid a predetermined composition and under predetermined drying conditions, and the position of the first particle in the thickness direction can be easily satisfied. Since the acrylic resin substrate is hard and brittle, the bending resistance may be insufficient when the resin layer containing the cured product of the curable resin composition is formed on the acrylic resin substrate.
  • the flex resistance is reduced by satisfying Condition 1A or Condition 2A. can be suppressed, and the pencil hardness can be easily maintained.
  • the embodiment of the acrylic resin base material of the second embodiment can be the same as the embodiment of the acrylic resin base material of the first embodiment.
  • the embodiment of the glass transition point of the acrylic resin base material of the second embodiment can be the same as the embodiment of the glass transition point of the acrylic resin base material of the first embodiment.
  • the average thickness of the substrate is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and even more preferably 35 ⁇ m or more. By setting the average thickness of the substrate to 10 ⁇ m or more, the antiglare laminate can be easily handled with good performance.
  • the average thickness of the substrate is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and even more preferably 60 ⁇ m or less. By setting the average thickness of the base material to 100 ⁇ m or less, it is possible to easily improve the bending resistance of the antiglare laminate.
  • Preferred ranges for the average thickness of the base material are 10 ⁇ m to 100 ⁇ m, 10 ⁇ m to 80 ⁇ m, 10 ⁇ m to 60 ⁇ m, 20 ⁇ m to 100 ⁇ m, 20 ⁇ m to 80 ⁇ m, 20 ⁇ m to 60 ⁇ m, 35 ⁇ m to 100 ⁇ m, and 35 ⁇ m or more. 80 ⁇ m or less, or 35 ⁇ m or more and 60 ⁇ m or less.
  • the average thickness of the base material mentioned above means the average thickness of the base material when the antiglare laminate is completed. As will be described later, when the average thickness of the base material when the antiglare laminate is completed is reduced from the average thickness of the initial base material by partially dissolving the base material by the resin layer coating liquid. There is therefore, it is preferable that the initial average thickness of the base material is greater than the average thickness of the base material when the antiglare laminate is completed.
  • the difference between the initial average thickness of the base material and the average thickness of the base material when the antiglare laminate is completed varies depending on the thickness of the resin layer, the composition of the coating liquid for the resin layer, the drying conditions of the coating liquid, and the like. Therefore, although it cannot be generalized, it is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, and more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the average thickness of the base material can be calculated from the average value of 20 arbitrary points selected from cross-sectional photographs of the antiglare laminate taken by a scanning transmission electron microscope (STEM), for example. It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less. Average thickness of the base material, thickness of the resin layer, position of the first particles in the thickness direction of the resin layer, average inclination angle of the resin layer side surface of the base material, arithmetic mean height of the resin layer side surface of the base material In order to measure such as, it is necessary to prepare a measurement sample in which the cross section of the antiglare laminate is exposed.
  • STEM scanning transmission electron microscope
  • the sample can be prepared, for example, by the following steps (A1') to (A2'). If the interface is difficult to see due to insufficient contrast, the sample may be dyed with osmium tetroxide, ruthenium tetroxide, phosphotungstic acid, or the like as a pretreatment.
  • Step A1' is the same as step A1 in the first embodiment.
  • a block-shaped embedded sample is cut vertically to prepare a sample for measurement, in which the cross section of the antiglare laminate is exposed.
  • a sample for measurement a thin section cut from the block-shaped embedded sample is used (the conditions for the sample for measurement will be described later).
  • the embedded sample is preferably cut through the center of the cut sample.
  • Embedded samples are preferably cut with a diamond knife.
  • An example of an apparatus for cutting an embedded sample is the product name "Ultramicrotome EM UC7" manufactured by Leica Microsystems. When cutting the embedded sample, it is preferable to first cut roughly (rough trimming) and finally trim precisely under the conditions of "SPEED: 1.00 mm/s" and "FEED: 70 nm".
  • sections without defects such as holes and having a uniform thickness of 60 nm or more and 100 nm or less are the average thickness of the base material, the thickness of the resin layer, The position of the first particles in the thickness direction of the resin layer, the average inclination angle of the resin layer side surface of the base material, the arithmetic mean height of the resin layer side surface of the base material, the particle size of the first particles, the inorganic fine particles can be used as a sample for measuring the particle size of
  • ⁇ Condition 1A, Condition 2A>> The antiglare laminate of the second embodiment of the present disclosure needs to satisfy Condition 1A or Condition 2A below.
  • the antiglare laminate of the second embodiment of the present disclosure should satisfy at least one of Condition 1A and Condition 2A, but preferably satisfies both.
  • ⁇ Condition 1A> The average inclination angle of the resin layer-side surface of the base material is 5.0 degrees or more and 20.0 degrees or less.
  • ⁇ Condition 2A> The arithmetic mean height of the resin layer side surface of the base material is 0.10 ⁇ m or more and 0.40 ⁇ m or less.
  • the average tilt angle of the base material is less than 5.0 degrees, the adhesion between the base material and the resin layer is insufficient, and interfacial peeling occurs when the antiglare laminate is bent. It is difficult to improve bending resistance. If the average tilt angle of the substrate exceeds 20.0 degrees, it means that the substrate components are excessively eluted into the resin layer. Therefore, if the average tilt angle of the substrate exceeds 20.0 degrees, it is difficult to improve the pencil hardness of the antiglare laminate. Further, when the average tilt angle of the base material exceeds 20.0 degrees, the internal haze is increased, and the resolution tends to be lowered.
  • the average tilt angle of the substrate is preferably 6.0 degrees or more, more preferably 8.0 degrees or more, and even more preferably 10.0 degrees or more.
  • the average tilt angle of the substrate is preferably 19.5 degrees or less, more preferably 19.0 degrees or less, and even more preferably 18.5 degrees or less.
  • Preferred ranges of the average tilt angle of the substrate are 5.0 degrees or more and 20.0 degrees or less, 5.0 degrees or more and 19.5 degrees or less, 5.0 degrees or more and 19.0 degrees or less, and 5.0 degrees or more and 19.5 degrees or less.
  • 0 degrees to 18.5 degrees 6.0 degrees to 20.0 degrees, 6.0 degrees to 19.5 degrees, 6.0 degrees to 19.0 degrees, 6.0 degrees to 18.5 degrees 8.0 degrees or more and 20.0 degrees or less, 8.0 degrees or more and 19.5 degrees or less, 8.0 degrees or more and 19.0 degrees or less, 8.0 degrees or more and 18.5 degrees or less, 10.0 degrees 10.0 degrees or more and 19.5 degrees or less, 10.0 degrees or more and 19.0 degrees or less, and 10.0 degrees or more and 18.5 degrees or less.
  • the average inclination angle of the substrate and the arithmetic average height of the substrate can be measured, for example, by the same method as in the first embodiment.
  • the arithmetic mean height of the base material is less than 0.10 ⁇ m, the adhesion between the base material and the resin layer is insufficient, and interfacial peeling occurs when the antiglare laminate is bent. It is difficult to improve flex resistance. If the arithmetic mean height of the base material exceeds 0.40 ⁇ m, it means that the base material components are excessively eluted into the resin layer. Therefore, if the arithmetic mean height of the substrate exceeds 0.40 ⁇ m, it is difficult to improve the pencil hardness of the antiglare laminate. In addition, if the arithmetic mean height of the base material exceeds 0.40 ⁇ m, the internal haze increases, which tends to lower the resolution.
  • the arithmetic mean height of the substrate is preferably 0.15 ⁇ m or more, more preferably 0.20 ⁇ m or more.
  • the arithmetic mean height of the substrate is more preferably 0.38 ⁇ m or less, and even more preferably 0.36 ⁇ m or less.
  • Embodiments of suitable ranges for the arithmetic mean height of the substrate are 0.10 ⁇ m to 0.40 ⁇ m, 0.10 ⁇ m to 0.38 ⁇ m, 0.10 ⁇ m to 0.36 ⁇ m, 0.15 ⁇ m to 0.40 ⁇ m 0.15 ⁇ m or more and 0.38 ⁇ m or less, 0.15 ⁇ m or more and 0.36 ⁇ m or less, 0.20 ⁇ m or more and 0.40 ⁇ m or less, 0.20 ⁇ m or more and 0.38 ⁇ m or less, and 0.20 ⁇ m or more and 0.36 ⁇ m or less.
  • the resin layer coating liquid has a predetermined composition and predetermined drying conditions. The prescribed composition and prescribed drying conditions will be described later.
  • the resin layer needs to contain first particles having an average particle size of 0.5 ⁇ m or more. If the resin layer does not contain the first particles, the antiglare property cannot be imparted to the antiglare laminate.
  • the substrate side of the center of the resin layer in the thickness direction is defined as the first region
  • the side opposite to the substrate from the center of the resin layer in the thickness direction is defined as the second region
  • 70% or more of the number of the first particles exist in the second region. 5 and 6, the first particles 23B in FIG. 5 exist in the second region 22B and the first particles 23B in FIG. 6 exist in the first region 21B.
  • the resin layer is preferably a single layer.
  • the first particles based on the number do not exist in the second region, it means that 30% or more of the first particles based on the number exist in the first region. Since the first particles present in the first region are difficult to make the surface of the resin layer uneven, it is difficult to improve the antiglare property as in Comparative Example 2-2 described later. As in Comparative Example 2-1 described later, if the absolute value of the content of the first particles is large, the antiglare property can be obtained even if 70% or more of the first particles based on the number are not present in the second region. can be made better. However, in this case, since the interface between the first particles and the resin layer increases, which causes a decrease in flex resistance, the flex resistance of the antiglare laminate cannot be improved.
  • the ratio of the first particles existing in the second region is preferably 75% or more, more preferably 80% or more, based on the number.
  • the position of the first particles in the thickness direction of the resin layer is determined by the following methods (1) to (5).
  • a cross-sectional photograph of the antiglare laminate is taken with a scanning transmission electron microscope (STEM). It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
  • the center M in the thickness direction of the resin layer is defined between the altitudes of X1 and X2 (see symbol M in FIG. 5).
  • the first particles present in the first region on the substrate side from the center in the thickness direction of the resin layer, and the second particles on the side opposite to the substrate from the center in the thickness direction of the resin layer counting the number of first particles present in the region;
  • the number of first particles present in both the first region and the second region across the center of the resin layer in the thickness direction is assigned to each region according to the area ratio of each region.
  • 0.4 particles are assigned to the first area and 0.6 particles are assigned to the second area.
  • 0.6 particles are assigned to the second area.
  • the resin layer can be formed, for example, by coating a base material with a resin layer coating liquid containing first particles, a resin component, and a solvent, drying it, and curing it as necessary.
  • the resin layer coating liquid may further contain inorganic fine particles and additives, if necessary.
  • the resin layer coating liquid partially dissolves the base material, thereby roughening the surface of the base material on the resin layer side.
  • the components eluted from the base material are mixed with the resin layer coating liquid and become constituent components of the resin layer.
  • the method of applying the resin layer coating liquid onto the substrate is not particularly limited, and may be spin coating, dipping, spraying, die coating, bar coating, gravure coating, roll coating, meniscus coating, flexographic printing. general-purpose coating methods such as coating method, screen printing method, and speed coater method.
  • ionizing radiation such as ultraviolet rays and electron beams.
  • ultraviolet light sources include ultra-high pressure mercury lamps, high pressure mercury lamps, low pressure mercury lamps, carbon arc lamps, black light fluorescent lamps and metal halide lamps.
  • the wavelength of the ultraviolet rays is preferably in the wavelength range of 190 nm or more and 380 nm or less.
  • Specific examples of electron beam sources include various electron beam accelerators such as Cockcroftwald type, Vandegraft type, resonance transformer type, insulating core transformer type, linear type, dynamitron type, and high frequency type.
  • the lower limit of the average thickness of the resin layer is preferably 6.0 ⁇ m or more, more preferably 7.0 ⁇ m or more, still more preferably 8.0 ⁇ m or more, and the upper limit is preferably 15.0 ⁇ m or less, more preferably 14.0 ⁇ m or less. , 13.0 ⁇ m or less.
  • Preferred embodiments of the average thickness of the resin layer are 6.0 ⁇ m or more and 15.0 ⁇ m or less, 6.0 ⁇ m or more and 14.0 ⁇ m or less, 6.0 ⁇ m or more and 13.0 ⁇ m or less, 7.0 ⁇ m or more and 15.0 ⁇ m or less, 7.0 ⁇ m or more and 14.0 ⁇ m or less, 7.0 ⁇ m or more and 13.0 ⁇ m or less, 8.0 ⁇ m or more and 15.0 ⁇ m or less, 8.0 ⁇ m or more and 14.0 ⁇ m or less, and 8.0 ⁇ m or more and 13.0 ⁇ m or less.
  • the average thickness of the resin layer can be calculated, for example, by selecting 20 arbitrary points in cross-sectional photographs of the antiglare laminate taken by a scanning transmission electron microscope (STEM) and calculating the average value thereof. It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
  • the first particles are particles having an average particle size of 0.5 ⁇ m or more. If the average particle size is less than 0.5 ⁇ m, it is difficult to form unevenness on the surface of the resin layer, and antiglare properties cannot be improved.
  • resins such as polymethyl methacrylate, polyacrylic-styrene copolymer, melamine resin, polycarbonate, polystyrene, polyvinyl chloride, benzoguanamine-melamine-formaldehyde condensate, silicone, fluorine-based resin and polyester-based resin.
  • inorganic particles formed from one or more inorganic substances such as silica, alumina, zirconia and titania; Among these, organic particles are preferable because they are excellent in dispersion stability and have a relatively small specific gravity, so that the first particles can easily satisfy the positional conditions in the thickness direction.
  • the lower limit of the content of the first particles is preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, with respect to 100 parts by mass of the resin component of the resin layer coating liquid. It is preferably 1.5 parts by mass or more, and the upper limit is preferably 10.0 parts by mass or less, more preferably 5.0 parts by mass or less, and 3.0 parts by mass or less. It is even more preferable to have By setting the content of the first particles to 0.5 parts by mass or more, the antiglare property can be easily improved. Further, by setting the content of the first particles to 10.0 parts by mass or less, it is possible to easily suppress deterioration in bending resistance.
  • An embodiment of a preferred range of the content of the first particles with respect to 100 parts by mass of the resin component is 0.5 parts by mass or more and 10.0 parts by mass or less, 0.5 parts by mass or more and 5.0 parts by mass or less, 0 .5 to 3.0 parts by mass, 1.0 to 10.0 parts by mass, 1.0 to 5.0 parts by mass, 1.0 to 3.0 parts by mass , 1.5 to 10.0 parts by mass, 1.5 to 5.0 parts by mass, and 1.5 to 3.0 parts by mass.
  • the average particle size of the first particles is preferably 0.8 ⁇ m or more, more preferably 1.0 ⁇ m or more.
  • the average particle diameter of the first particles is preferably 3.0 ⁇ m or less, more preferably 2.7 ⁇ m or less, so that the first particles can easily satisfy the position condition in the thickness direction. 0.5 ⁇ m or less is more preferable.
  • Preferred embodiments of the average particle size of the first particles are 0.8 ⁇ m or more and 3.0 ⁇ m or less, 0.8 ⁇ m or more and 2.7 ⁇ m or less, 0.8 ⁇ m or more and 2.5 ⁇ m or less, 1.0 ⁇ m or more and 3.0 ⁇ m or less. 0 ⁇ m or less, 1.0 ⁇ m or more and 2.7 ⁇ m or less, or 1.0 ⁇ m or more and 2.5 ⁇ m or less.
  • the average particle size of the first particles can be calculated, for example, by the same method as in the first embodiment.
  • D1 which indicates the average particle diameter of the first particles
  • t which indicates the average thickness of the resin layer
  • t/D1 preferably have a relationship of 2.0 ⁇ t/D1 ⁇ 6.0.
  • t/D1 By setting t/D1 to be less than 6.0, the first particles can easily provide the surface of the antiglare laminate with an uneven shape, so that the antiglare property can be easily improved.
  • t/D1 By setting t/D1 to be more than 2.0, it is possible to easily suppress deterioration in bending resistance due to protrusion of the first particles from the surface of the resin layer.
  • the lower limit of t/D1 is more preferably 2.5 or more, more preferably 3.5 or more, and the upper limit is more preferably 5.0 or less, further preferably 4.5 or less.
  • Embodiments of preferred ranges for t/D1 are greater than 2.0 and less than 6.0; greater than 2.0 and less than 5.0; 5 or more and 5.0 or less, 2.5 or more and 4.5 or less, 3.5 or more and less than 6.0, 3.5 or more and 5.0 or less, 3.5 or more and 4.5 or less.
  • the lower limit of t-D1 is preferably 2.0 ⁇ m or more, more preferably 3.0 ⁇ m or more, and 4.0 ⁇ m or more in order to easily suppress the decrease in bending resistance. is more preferable, and the upper limit is preferably 10 ⁇ m or less, more preferably 8.0 ⁇ m or less, and even more preferably 7.0 ⁇ m or less, in order to easily improve the antiglare property.
  • Embodiments of preferred ranges for t-D1 are 2.0 ⁇ m to 10 ⁇ m, 2.0 ⁇ m to 8.0 ⁇ m, 2.0 ⁇ m to 7.0 ⁇ m, 3.0 ⁇ m to 10 ⁇ m, 3.0 ⁇ m to 8.0 ⁇ m.
  • ⁇ m or less 0 ⁇ m or less, 3.0 ⁇ m or more and 7.0 ⁇ m or less, 4.0 ⁇ m or more and 10 ⁇ m or less, 4.0 ⁇ m or more and 8.0 ⁇ m or less, and 4.0 ⁇ m or more and 7.0 ⁇ m or less.
  • the resin layer may contain inorganic fine particles. Since the resin layer contains inorganic fine particles having a relatively large specific gravity, the first particles are less likely to sink below the resin layer, so that the first particles can easily satisfy the positional condition in the thickness direction. In addition, the inorganic fine particles can enhance the dispersibility of the first particles and easily suppress the deterioration of the bending resistance.
  • the embodiment of the average particle size and type of inorganic fine particles in the second embodiment can be the same as the embodiment of the average particle size and type of inorganic fine particles in the first embodiment.
  • the lower limit of the content of the inorganic fine particles is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, with respect to 100 parts by mass of the resin component of the resin layer coating liquid. It is more preferably 0.7 parts by mass or more, and the upper limit is preferably 5.0 parts by mass or less, more preferably 3.0 parts by mass or less, and 2.0 parts by mass or less. is more preferred.
  • the first particles can easily satisfy the positional condition in the thickness direction.
  • the content of the inorganic fine particles with respect to 100 parts by mass of the resin component is preferably 0.1 parts by mass or more and 5.0 parts by mass or less, 0.1 parts by mass or more and 3.0 parts by mass or less, 0.1 parts by mass to 2.0 parts by mass, 0.5 parts by mass to 5.0 parts by mass, 0.5 parts by mass to 3.0 parts by mass, 0.5 parts by mass to 2.0 parts by mass, 0 7 to 5.0 parts by mass, 0.7 to 3.0 parts by mass, and 0.7 to 2.0 parts by mass.
  • the resin layer preferably contains a cured product of a curable resin composition as a resin component.
  • the ratio of the curable resin composition to the total amount of the resin component in the resin layer coating liquid is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. Preferably, 100% by mass is most preferable.
  • the cured product of the curable resin composition includes a cured product of a thermosetting resin composition and a cured product of an ionizing radiation-curable resin composition.
  • a cured product of an ionizing radiation-curable resin composition is preferable because it is easy to increase the pencil hardness and to easily dissolve the substrate in the uncured state of the composition.
  • thermosetting resin composition of the second embodiment can be the same as the embodiment of the thermosetting resin composition of the first embodiment.
  • the ionizing radiation-curable resin composition is a composition containing a compound having an ionizing radiation-curable functional group (hereinafter also referred to as an "ionizing radiation-curable compound").
  • ionizing radiation-curable functional groups include ethylenically unsaturated bond groups such as (meth)acryloyl groups, vinyl groups, and allyl groups, epoxy groups, and oxetanyl groups.
  • a compound having an ethylenically unsaturated bond group is preferred.
  • Ionizing radiation refers to electromagnetic waves or charged particle beams that have energy quanta capable of polymerizing or cross-linking molecules.
  • a (meth)acryloyl group refers to an acryloyl group or a methacryloyl group.
  • (meth)acrylate indicates acrylate or methacrylate.
  • both a monofunctional ionizing radiation-curable compound having one ionizing radiation-curable functional group and a polyfunctional ionizing radiation-curable compound having two or more ionizing radiation-curable functional groups are used. be able to. Both monomers and oligomers can be used as the ionizing radiation-curable compound.
  • the following mixtures (a) to (c) can be used as the ionizing radiation-curable compound. is preferred.
  • the following (a) to (c) are preferably compounds having an ethylenically unsaturated bond group as an ionizing radiation-curable functional group, more preferably (meth)acrylate compounds.
  • the (meth)acrylate compound a part of the molecular skeleton modified with ethylene oxide, propylene oxide, caprolactone, isocyanuric acid, alkyl, cyclic alkyl, aromatic, bisphenol or the like can also be used.
  • (a) monofunctional ionizing radiation-curable monomer (b) polyfunctional ionizing radiation-curable monomer (c) polyfunctional ionizing radiation-curable oligomer
  • the monofunctional ionizing radiation-curable monomer (a) as the ionizing radiation-curable compound, a part of the substrate can be easily dissolved, so that condition 1A or condition 2A can be easily satisfied.
  • the monofunctional ionizing radiation-curable monomer (a) By including the monofunctional ionizing radiation-curable monomer (a), the components eluted from the substrate can be easily dissolved in the components of the resin layer coating liquid, so that the physical properties of the resin layer can be easily improved. can.
  • the amount of the monofunctional ionizing radiation-curable monomer (a) is too large, the base material will be dissolved excessively, resulting in a decrease in strength of the base material and a decrease in pencil hardness of the antiglare laminate. may decrease.
  • the pencil hardness of the antiglare laminate can be easily improved. However, if the amount of the polyfunctional ionizing radiation-curable monomer (b) is too large, the hardness of the resin layer may become too high, and the flex resistance of the antiglare laminate may decrease.
  • the polyfunctional ionizing radiation-curable oligomer (c) as the ionizing radiation-curable compound, curing shrinkage can be easily suppressed while maintaining the pencil hardness of the antiglare laminate. However, if the amount of the polyfunctional ionizing radiation-curable oligomer (c) is too large, the pencil hardness of the antiglare laminate may decrease.
  • the amount of the monofunctional ionizing radiation-curable monomer (a) with respect to the total amount of the ionizing radiation-curable compound is preferably 10% by mass or more and 40% by mass or less, and is 13% by mass or more and 30% by mass or less. is more preferable, and more preferably 15% by mass or more and 25% by mass or less.
  • the amount of the polyfunctional ionizing radiation-curable monomer (b) with respect to the total amount of the ionizing radiation-curable compound is preferably 5% by mass or more and 20% by mass or less, and 6% by mass or more and 15% by mass or less. is more preferable, and more preferably 7% by mass or more and 13% by mass or less.
  • the amount of (c) polyfunctional ionizing radiation-curable oligomer relative to the total amount of ionizing radiation-curable compounds is preferably 50% by mass or more and 85% by mass or less, and is preferably 60% by mass or more and 80% by mass or less. More preferably, it is 65% by mass or more and 75% by mass or less.
  • inventions of (a) the monofunctional ionizing radiation curable monomer, (b) the multifunctional ionizing radiation curable monomer, and (c) the multifunctional ionizing radiation curable oligomer of the second embodiment are Similar practice to embodiment (a) monofunctional ionizing radiation curable monomer, (b) multifunctional ionizing radiation curable monomer, and (c) multifunctional ionizing radiation curable oligomer embodiment.
  • the ionizing radiation-curable composition preferably contains additives such as photopolymerization initiators and photopolymerization accelerators, as in the first embodiment.
  • the resin layer coating liquid may contain additives, if necessary.
  • the resin layer coating liquid preferably contains a solvent.
  • a solvent it is preferable to select a solvent that can dissolve the substrate. However, if the base material is dissolved excessively, the strength of the base material is lowered, so it is preferable to select an appropriate solvent according to the type of base material.
  • the solvent contains a solvent in which ⁇ p, which is the polar component, is 7.0 (J/cm 3 ) 0.5 or more and 10.0 (J/cm 3 ) 0.5 or less. is preferred.
  • ⁇ p is 7.0 (J/cm 3 ) 0.5 or more, the substrate can be easily dissolved, and when ⁇ p is 10.0 (J/cm 3 ) 0.5 or less, You can try not to overdo it.
  • IPA isopropyl alcohol
  • MEK methyl ethyl ketone
  • MIBK methyl isobutyl ketone
  • the solvent in consideration of not only the solubility of the base material but also the evaporation rate inherent to the solvent. This is because if the evaporation rate of the solvent is slow, the substrate tends to dissolve excessively.
  • the rate at which the solvent evaporates can also be controlled by the drying conditions. For example, the higher the drying temperature, the faster the solvent will evaporate. Also, the faster the drying air speed, the faster the solvent evaporates. From the above, it is preferable to select the solvent in consideration of the solubility of the substrate, the evaporation rate, and the drying conditions.
  • the solvent type embodiment of the second embodiment can be the same embodiment as the solvent type embodiment of the first embodiment.
  • the main component is a solvent having a high evaporation rate inherent to the solvent.
  • the main component means 50% by mass or more of the total amount of the solvent, preferably 70% by mass or more, more preferably 90% by mass or more, and most preferably 100% by mass.
  • a solvent with a high evaporation rate means a solvent with an evaporation rate of 100 or more when the evaporation rate of butyl acetate is set to 100.
  • the evaporation rate of the solvent having a high evaporation rate is more preferably 120 or more and 450 or less, and even more preferably 140 or more and 400 or less.
  • Solvents with high evaporation rates include, for example, isopropyl alcohol (evaporation rate 150), methyl isobutyl ketone (evaporation rate 160), toluene (evaporation rate 200), and methyl ethyl ketone (evaporation rate 370).
  • the solvent preferably contains a solvent with a low molecular weight and high polarity.
  • a highly polar solvent is preferably a solvent in which the Hansen solubility parameter ⁇ p is in the range described above.
  • the acrylic resin base material can be easily and appropriately dissolved.
  • solvents include methyl ethyl ketone.
  • the amount of methyl ethyl ketone is preferably 20% by mass or more and 40% by mass or less of the total amount of the solvent in order to easily satisfy Condition 1A or Condition 2A.
  • ⁇ Drying conditions When forming the resin layer from the resin layer coating liquid, it is preferable to control the drying conditions. Further, in the antiglare laminate of the present disclosure, it is preferable to dry the resin layer coating liquid in two stages. Specifically, it is preferable to weaken the drying intensity in the first stage of drying and increase the drying intensity in the second stage of drying. During the first stage of low-strength drying, the dissolution of the substrate proceeds, and a mixture is formed in which the components eluted from the substrate and the components of the resin layer coating liquid are mixed, and the convection time of the mixture is can be lengthened, the condition of the position of the first grain in the thickness direction can be easily satisfied.
  • the components eluted from the substrate and the components of the resin layer coating liquid can be easily mixed, and the resin layer can be easily made into a single layer. Then, by performing strong drying in the second stage, it is possible to suppress excessive dissolution of the base material, so it is possible to suppress the average inclination angle of the base material and the arithmetic mean height of the base material from becoming too large. can be done easily.
  • Drying conditions can be controlled by drying temperature and air speed in the dryer.
  • the preferred ranges for the drying temperature and air velocity vary depending on the composition of the resin layer coating liquid, so it cannot be generalized, but the following conditions are preferred.
  • the drying temperature is preferably 65° C. or higher and 85° C. or lower, and the drying wind speed is preferably 0.5 m/s or higher and 2 m/s or lower.
  • the drying time is preferably 20 seconds or more and 40 seconds or less.
  • ⁇ Second stage drying> The drying temperature is preferably 65° C. or higher and 85° C. or lower, and the drying wind speed is preferably 15 m/s or higher and 25 m/s or lower.
  • the drying time is preferably 20 seconds or more and 40 seconds or less.
  • Ionizing radiation is applied after drying the coating liquid in order to dissolve a part of the base material with the coating liquid for the resin layer and to facilitate sufficient mixing of the components eluted from the base material and the coating liquid for the resin layer. is preferred.
  • the optical laminate of the present disclosure has a resin layer on a substrate,
  • the resin layer has a first resin layer and a second resin layer from the substrate side,
  • the first resin layer has a region ⁇ 1 independent of each other and a region ⁇ 2 surrounding the region ⁇ 1, and the resin contained in the region ⁇ 1 and the resin contained in the region ⁇ 2 are different
  • the second resin layer has a region ⁇ 1 independent of each other and a region ⁇ 2 surrounding the region ⁇ 1, and the resin contained in the region ⁇ 1 and the resin contained in the region ⁇ 2 are different, It satisfies the following condition 1B or condition 2B.
  • ⁇ Condition 2B> Pa1 indicating the arithmetic mean height of the surface of the base material on the resin layer side and Pa2 indicating the arithmetic mean height of the surface of the first resin layer on the second resin layer side satisfy Pa2 ⁇ Pa1 is the relationship.
  • FIG. 8 is a cross-sectional view showing one embodiment of an optical laminate 100C of the present disclosure.
  • An optical layered body 100C in FIG. 8 has a resin layer 20C on a substrate 10.
  • the first resin layer 21C of FIG. 8 has a region ⁇ 1 independent of each other and a region ⁇ 2 surrounding the region ⁇ 1.
  • the second resin layer 22C of FIG. 8 has a region ⁇ 1 independent of each other and a region ⁇ 2 surrounding the region ⁇ 1.
  • FIG. 8 is referred to as a "sea-island structure.” sometimes referred to as Note that FIG. 8 is a schematic cross-sectional view. That is, the reduced scale of each layer, the reduced scale of each material, and the reduced scale of surface irregularities constituting the optical layered body 100C are schematic representations for ease of illustration, and are different from the actual reduced scale. Figures other than FIG. 8 are also different from the actual scale.
  • the substrate preferably has good light transmittance, smoothness, heat resistance and mechanical strength.
  • Such substrates include polyester, triacetyl cellulose (TAC), cellulose diacetate, cellulose acetate butyrate, polyamide, polyimide, polyethersulfone, polysulfone, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, Resin substrates containing resins such as polyether ketone, acrylic resin, polycarbonate, polyurethane and amorphous olefin (Cyclo-Olefin-Polymer: COP) can be mentioned.
  • the resin substrate may be a laminate of two or more resin substrates. The resin substrate is preferably stretched in order to improve mechanical strength and dimensional stability.
  • acrylic resin substrates are preferable because they have low hygroscopicity and therefore tend to have good dimensional stability, and because they have low optical anisotropy, they tend to have good visibility. Further, the acrylic resin substrate satisfies Condition 1B and/or Condition 2B by making the resin layer coating liquid a predetermined composition and under predetermined drying conditions, and the first resin layer and the second resin layer The resin layer can easily have a sea-island structure. Since the acrylic resin substrate is hard and brittle, it is difficult to achieve good adhesion when another layer is formed on the acrylic resin substrate.
  • the adhesion between the substrate and the resin layer tends to be insufficient.
  • the optical laminate of the present disclosure satisfies condition 1B or condition 2B even if a resin layer containing a cured product of a curable resin composition is formed on an acrylic resin substrate, and the resin layer has a sea-island structure. For example, it is possible to suppress a decrease in adhesion and to easily suppress a change in image definition.
  • acrylic resin means acrylic resin and/or methacrylic resin.
  • the embodiment of the acrylic resin base material of the optical laminate can be the same as the embodiment of the acrylic resin base material of the first embodiment.
  • the embodiment of the glass transition point of the acrylic resin substrate of the optical layered body can be the same as the embodiment of the glass transition point of the acrylic resin substrate of the first embodiment.
  • the resin such as acrylic resin contained in the resin base material preferably has a weight average molecular weight of 10,000 or more and 500,000 or less, more preferably 50,000 or more and 300,000 or less.
  • the average thickness of the substrate is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and even more preferably 35 ⁇ m or more. By setting the average thickness of the substrate to 10 ⁇ m or more, the optical layered body can be easily handled well.
  • the average thickness of the substrate is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and even more preferably 60 ⁇ m or less. By setting the average thickness of the base material to 100 ⁇ m or less, the flexibility resistance of the optical layered body can be easily improved.
  • Preferred ranges for the average thickness of the base material are 10 ⁇ m to 100 ⁇ m, 10 ⁇ m to 80 ⁇ m, 10 ⁇ m to 60 ⁇ m, 20 ⁇ m to 100 ⁇ m, 20 ⁇ m to 80 ⁇ m, 20 ⁇ m to 60 ⁇ m, 35 ⁇ m to 100 ⁇ m, and 35 ⁇ m or more. 80 ⁇ m or less, or 35 ⁇ m or more and 60 ⁇ m or less.
  • the average thickness of the base material mentioned above means the average thickness of the base material when the optical laminate is completed. As will be described later, part of the base material is dissolved by the resin layer coating liquid, so that the average thickness of the base material when the optical layered body is completed may be smaller than the initial average thickness of the base material. . Therefore, it is preferable that the initial average thickness of the base material is greater than the average thickness of the base material when the optical layered body is completed.
  • the difference between the initial average thickness of the base material and the average thickness of the base material when the optical layered body is completed varies depending on the thickness of the resin layer, the composition of the coating liquid for the resin layer, the drying conditions of the coating liquid, and the like. However, it is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, and more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the average thickness of the substrate can be calculated, for example, by selecting 20 arbitrary points in a cross-sectional photograph of the optical layered body taken by a scanning transmission electron microscope (STEM) and calculating the average value thereof. It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less. Average thickness of the substrate, thickness of the first resin layer, thickness of the second resin layer, position of the region ⁇ 1 in the thickness direction of the first resin layer, position of the first particles in the thickness direction of the resin layer, ⁇ a1 , ⁇ a2, Pa1, Pa2, etc., it is necessary to prepare a measurement sample in which the cross section of the optical layered body is exposed.
  • STEM scanning transmission electron microscope
  • the sample can be prepared, for example, by the following steps (A1'') to (A2''). If the interface is difficult to see due to insufficient contrast, the sample may be dyed with osmium tetroxide, ruthenium tetroxide, phosphotungstic acid, or the like as a pretreatment.
  • Process A1'' is the same as process A1 in the first embodiment.
  • a block-shaped embedded sample is cut vertically to prepare a sample for measurement in which the cross section of the optical layered body is exposed.
  • a sample for measurement a thin section cut from the block-shaped embedded sample is used (the conditions for the sample for measurement will be described later).
  • the embedded sample is preferably cut through the center of the cut sample.
  • Embedded samples are preferably cut with a diamond knife.
  • An example of an apparatus for cutting an embedded sample is the product name "Ultramicrotome EM UC7" manufactured by Leica Microsystems. When cutting the embedded sample, it is preferable to first cut roughly (rough trimming) and finally trim precisely under the conditions of "SPEED: 1.00 mm/s" and "FEED: 70 nm".
  • the section without defects such as holes and having a uniform thickness of 60 nm or more and 100 nm or less is the average thickness of the base material, the first resin layer thickness of the second resin layer, the position of the region ⁇ 1 in the thickness direction of the first resin layer, the position of the first particles in the thickness direction of the resin layer, ⁇ a1, ⁇ a2, Pa1, Pa2, the first particles can be used as a sample for measuring the particle size of the inorganic fine particles.
  • the resin layer is required to have a first resin layer and a second resin layer from the substrate side.
  • the resin layer is a single layer, it is difficult to improve the bending resistance or pencil hardness of the optical laminate.
  • a single resin layer having a high hardness it is difficult to improve the bending resistance of the optical layered body.
  • a single resin layer having a low hardness it is difficult to improve the pencil hardness of the optical layered body.
  • the first resin layer and the second resin layer are formed, for example, by coating a base material with a resin layer coating liquid containing a resin component and a solvent, drying it, and curing it as necessary. be able to.
  • the resin layer coating liquid may further contain first particles, inorganic fine particles, and additives, if necessary.
  • the resin layer coating liquid dissolves a part of the base material, and the resin component eluted from the base material is the main component, and the region containing a small amount of the resin component of the resin layer coating liquid is the first Furthermore, the content of the resin component eluted from the base material is small, and the second resin layer can be formed from the region containing the resin component as the main component of the coating liquid for the resin layer . That is, in the above method, the first resin layer and the second resin layer can be formed by one application using one resin layer coating liquid. Moreover, since the content of the resin component eluted from the substrate is small in the second resin layer formed by the above method, the pencil hardness can be easily improved.
  • the method of applying the resin layer coating liquid onto the substrate is not particularly limited, and may be spin coating, dipping, spraying, die coating, bar coating, gravure coating, roll coating, meniscus coating, or flexographic printing. general-purpose coating methods such as coating method, screen printing method, and speed coater method.
  • irradiate ionizing radiation such as ultraviolet rays and electron beams.
  • ultraviolet light sources include ultra-high pressure mercury lamps, high pressure mercury lamps, low pressure mercury lamps, carbon arc lamps, black light fluorescent lamps and metal halide lamps.
  • a wavelength range of 190 nm or more and 380 nm or less is preferable.
  • electron beam sources include various electron beam accelerators such as Cockcroftwald type, Vandegraft type, resonant transformer type, insulating core transformer type, linear type, dynamitron type, and high frequency type.
  • the first resin layer has a region ⁇ 1 independent of each other and a region ⁇ 2 surrounding the region ⁇ 1, and the resin contained in the region ⁇ 1 and the resin contained in the region ⁇ 2 are required to be different. Furthermore, the second resin layer has a region ⁇ 1 independent of each other and a region ⁇ 2 surrounding the region ⁇ 1, and the resin contained in the region ⁇ 1 and the resin contained in the region ⁇ 2 are required to be different. . Since the first resin layer has the regions ⁇ 1 and ⁇ 2 and the second resin layer has the regions ⁇ 1 and ⁇ 2, the adhesion after the light resistance test can be easily improved.
  • the difference between the resin contained in the region ⁇ 1 and the resin contained in the region ⁇ 2 means that at least one of the composition and molecular weight of the resin is different. It is preferable that the resin contained in the region ⁇ 1 and the resin contained in the region ⁇ 2 have different resin compositions. Examples of different resin compositions include the case where the region ⁇ 1 and the region ⁇ 2 contain different types of resin, and the case where the region ⁇ 1 and the region ⁇ 2 contain the same type of resin but have different resin mixing ratios. The difference between the resin contained in the region ⁇ 1 and the resin contained in the region ⁇ 2 means that at least one of resin composition and molecular weight is different.
  • the resin contained in the region ⁇ 1 and the resin contained in the region ⁇ 2 have different resin compositions.
  • different resin compositions include a case where the region ⁇ 1 and the region ⁇ 2 contain different types of resin, and a case where the region ⁇ 1 and the region ⁇ 2 contain the same type of resin but at different resin mixing ratios.
  • the resins of the region ⁇ 1, region ⁇ 2, region ⁇ 1 and region ⁇ 2 mean so-called binder resins. For this reason, particles such as first particles to be described later do not mean the resin of the region ⁇ 1, the region ⁇ 2, the region ⁇ 1, and the region ⁇ 2.
  • the area ratio between the area ⁇ 1 and the area ⁇ 2 is preferably 1:99 to 10:90, more preferably 2:98 to 5:95. If the proportion of the region ⁇ 1 is large, the hardness tends to be insufficient, and if the proportion of the region ⁇ 2 is large, the adhesion tends to deteriorate. Therefore, the area ratio between the region ⁇ 1 and the region ⁇ 2 is preferably 5:95 to 50:50, more preferably 10:90 to 40:60.
  • the above area ratio can be calculated from a cross-sectional photograph of the optical laminate taken by a scanning transmission electron microscope (STEM). In order to increase the reliability of the numerical values, a plurality of cross-sectional photographs are obtained, and the area ratio is calculated after setting the total number of the regions ⁇ 1 or ⁇ 1 to 50 or more.
  • STEM scanning transmission electron microscope
  • the resin contained in the region ⁇ 1 and the resin contained in the region ⁇ 2 are preferably substantially the same, and the resin contained in the region ⁇ 2 and the resin contained in the region ⁇ 1 It is preferable that the contained resin is substantially the same.
  • the compatibility between the components contained in the resin layer coating liquid or to reduce the compatibility between the components contained in the resin layer coating liquid and the components eluted from the substrate. It is believed that by lowering the compatibility as described above, the first resin layer and the second resin layer can be easily formed in the optical layered body of the present disclosure due to the events (1) to (4) below. be done. (1) Part of the substrate dissolves when the resin layer coating liquid is applied onto the substrate.
  • the resin component eluted from the base material is the main component, and the region containing a small amount of the resin component of the resin layer coating liquid serves as the first resin layer, and the content of the resin component eluted from the base material is small, A region containing the resin component of the resin layer coating liquid as a main component becomes the second resin layer.
  • the resin component of the resin layer coating liquid contained in a small amount in the first resin layer forms the region ⁇ 1
  • the resin component eluted from the base material forms the region ⁇ 1.
  • the proportion of the regions ⁇ 1 existing in the second regions is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more based on the number.
  • the position of the region ⁇ 1 in the thickness direction of the first resin layer is determined by the following methods (1) to (5).
  • a cross-sectional photograph of the optical laminate is taken with a scanning transmission electron microscope (STEM). It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
  • the center M in the thickness direction of the first resin layer is defined as the middle point between X1 and X2 (see symbol M in FIG. 9).
  • the region ⁇ 1 existing in the first region on the substrate side from the center of the first resin layer in the thickness direction, and the second resin layer from the center of the thickness direction of the first resin layer The number of regions ⁇ 1 existing in the second region on the side is counted.
  • the number of regions ⁇ 1 existing in both the first region and the second region across the center in the thickness direction of the first resin layer is in the first region and the second region according to the area ratio of the region ⁇ 1 Allocate For example, for a region ⁇ 1 with an area ratio of 40% in the first region and 60% in the second region, 0.4 is allocated to the first region and 0.6 to the second region. Allocate. (5) In order to increase the reliability of the numerical value, obtain a plurality of cross-sectional photographs, set the total number of the regions ⁇ 1 to 50 or more, and the number-based ratio of the regions ⁇ 1 existing in the first region and the second region Calculate
  • the lower limit of the thickness of the entire resin layer is preferably 4.0 ⁇ m or more, more preferably 5.0 ⁇ m or more, and more preferably 6.0 ⁇ m or more. More preferably, the upper limit is preferably 15.0 ⁇ m or less, more preferably 12.0 ⁇ m or less, and even more preferably 10.0 ⁇ m or less.
  • Preferred embodiments of the thickness of the entire resin layer are 4.0 ⁇ m or more and 15.0 ⁇ m or less, 4.0 ⁇ m or more and 12.0 ⁇ m or less, 4.0 ⁇ m or more and 10.0 ⁇ m or less, 5.0 ⁇ m or more and 15.0 ⁇ m or less, 5.0 ⁇ m or more and 12.0 ⁇ m or less, 5.0 ⁇ m or more and 10.0 ⁇ m or less, 6.0 ⁇ m or more and 15.0 ⁇ m or less, 6.0 ⁇ m or more and 12.0 ⁇ m or less, and 6.0 ⁇ m or more and 10.0 ⁇ m or less.
  • the average thickness t1 of the first resin layer has a lower limit of preferably 3.0 ⁇ m or more, more preferably 4.0 ⁇ m or more, and still more preferably 4.5 ⁇ m or more, and an upper limit of 10.0 ⁇ m or less, preferably 8.0 ⁇ m.
  • the following is more preferable, and 7.0 ⁇ m or less is even more preferable.
  • Embodiments of preferred ranges for t1 are 3.0 ⁇ m to 10.0 ⁇ m, 3.0 ⁇ m to 8.0 ⁇ m, 3.0 ⁇ m to 7.0 ⁇ m, 4.0 ⁇ m to 10.0 ⁇ m, 4.0 ⁇ m or more. 8.0 ⁇ m or less, 4.0 ⁇ m or more and 7.0 ⁇ m or less, 4.5 ⁇ m or more and 10.0 ⁇ m or less, 4.5 ⁇ m or more and 8.0 ⁇ m or less, and 4.5 ⁇ m or more and 7.0 ⁇ m or less.
  • the average thickness t2 of the second resin layer has a lower limit of preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and still more preferably 1.0 ⁇ m or more, and an upper limit of 4.0 ⁇ m or less, preferably 3.0 ⁇ m. The following is more preferable, and 2.7 ⁇ m or less is even more preferable.
  • Embodiments of preferred ranges for t2 are 0.3 ⁇ m to 4.0 ⁇ m, 0.3 ⁇ m to 3.0 ⁇ m, 0.3 ⁇ m to 2.7 ⁇ m, 0.5 ⁇ m to 4.0 ⁇ m, 0.5 ⁇ m or more. 3.0 ⁇ m or less, 0.5 ⁇ m or more and 2.7 ⁇ m or less, 1.0 ⁇ m or more and 4.0 ⁇ m or less, 1.0 ⁇ m or more and 3.0 ⁇ m or less, and 1.0 ⁇ m or more and 2.7 ⁇ m or less.
  • t1/t2 is preferably 1.5 or more, more preferably 1.8 or more, and further preferably 2.0 or more, in order to easily suppress deterioration in adhesion and bending resistance.
  • t1/t2 is preferably 10.0 or less, more preferably 5.0 or less, and even more preferably 3.0 or less, in order to easily improve the pencil hardness.
  • Embodiments of preferred ranges for t1/t2 are 1.5 to 10.0, 1.5 to 5.0, 1.5 to 3.0, 1.8 to 10.0, 1. 8 or more and 5.0 or less, 1.8 or more and 3.0 or less, 2.0 or more and 10.0 or less, 2.0 or more and 5.0 or less, and 2.0 or more and 3.0 or less.
  • the average thickness of the first resin layer and the average thickness of the second resin layer are determined, for example, by selecting 20 arbitrary points in a cross-sectional photograph of the optical layered body taken by a scanning transmission electron microscope (STEM). It can be calculated from the average value. It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
  • the resin layer preferably contains a cured product of a curable resin composition as a resin component.
  • the ratio of the curable resin composition to the total amount of the resin component in the resin layer coating liquid is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. Preferably, 100% by mass is most preferable.
  • the cured product of the curable resin composition includes a cured product of a thermosetting resin composition and a cured product of an ionizing radiation-curable resin composition.
  • a cured product of an ionizing radiation-curable resin composition is preferable because it is easy to increase the pencil hardness and to easily dissolve the substrate in the uncured state of the composition.
  • thermosetting resin composition of the optical layered body can be the same as the embodiment of the thermosetting resin composition of the anti-glare layered body of the first embodiment.
  • An ionizing radiation-curable resin composition is a composition containing a compound having an ionizing radiation-curable functional group (hereinafter also referred to as an "ionizing radiation-curable compound").
  • ionizing radiation-curable functional groups include ethylenically unsaturated bond groups such as (meth)acryloyl groups, vinyl groups, and allyl groups, epoxy groups, and oxetanyl groups.
  • a compound having an ethylenically unsaturated bond group is preferred.
  • Ionizing radiation refers to electromagnetic waves or charged particle beams that have energy quanta capable of polymerizing or cross-linking molecules.
  • a (meth)acryloyl group refers to an acryloyl group or a methacryloyl group.
  • (meth)acrylate indicates acrylate or methacrylate.
  • both a monofunctional ionizing radiation-curable compound having one ionizing radiation-curable functional group and a polyfunctional ionizing radiation-curable compound having two or more ionizing radiation-curable functional groups are used. be able to. Both monomers and oligomers can be used as the ionizing radiation-curable compound. Since the monofunctional ionizing radiation-curable monomer tends to have good compatibility with other resin components, it tends to be difficult to form a sea-island structure in the first resin layer and the second resin layer. When using monofunctional ionizing radiation-curable monomers, the aforementioned properties should be noted.
  • the following mixtures (a) to (c) are preferably compounds having an ethylenically unsaturated bond group as an ionizing radiation-curable functional group, more preferably (meth)acrylate compounds.
  • the (meth)acrylate compound a part of the molecular skeleton modified with ethylene oxide, propylene oxide, caprolactone, isocyanuric acid, alkyl, cyclic alkyl, aromatic, bisphenol or the like can also be used.
  • difunctional ionizing radiation-curable monomer (b) trifunctional or higher ionizing radiation-curable monomer (c) polyfunctional ionizing radiation-curable oligomer
  • the bifunctional ionizing radiation-curable monomer (a) as the ionizing radiation-curable compound, a part of the base material can be easily dissolved, so that ⁇ a1 or Pa1 can be easily increased.
  • the amount of the bifunctional ionizing radiation-curable monomer (a) is too large, the substrate may be excessively dissolved, resulting in a decrease in the strength of the substrate or a decrease in the pencil hardness of the optical laminate.
  • the trifunctional or higher ionizing radiation-curable monomer (b) as the ionizing radiation-curable compound, the pencil hardness of the optical layered body can be easily improved.
  • the amount of the trifunctional or higher ionizing radiation-curable monomer (b) is too large, the hardness of the resin layer may become too high, and the flex resistance of the optical layered body may decrease.
  • the polyfunctional ionizing radiation-curable oligomer (c) as the ionizing radiation-curable compound, curing shrinkage can be easily suppressed while maintaining the pencil hardness of the optical laminate.
  • the amount of the polyfunctional ionizing radiation-curable oligomer (c) is too large, the pencil hardness of the optical laminate may decrease.
  • the amount of the bifunctional ionizing radiation-curable monomer (a) with respect to the total amount of the ionizing radiation-curable compound is preferably 10% by mass or more and 40% by mass or less, and is 13% by mass or more and 30% by mass or less. is more preferable, and more preferably 15% by mass or more and 25% by mass or less.
  • the amount of the trifunctional or higher ionizing radiation-curable monomer (b) with respect to the total amount of the ionizing radiation-curable compound is preferably 25% by mass or more and 55% by mass or less, and is 30% by mass or more and 50% by mass or less. is more preferable, and more preferably 35% by mass or more and 45% by mass or less.
  • the amount of (c) polyfunctional ionizing radiation-curable oligomer relative to the total amount of ionizing radiation-curable compounds is preferably 25% by mass or more and 55% by mass or less, and is preferably 30% by mass or more and 50% by mass or less. More preferably, it is 35% by mass or more and 45% by mass or less.
  • Embodiments of (a) a monofunctional ionizing radiation-curable monomer, (b) a multifunctional ionizing radiation-curable monomer, and (c) a multifunctional ionizing radiation-curable oligomer of the optical laminate comprise a first Implementation of (a) monofunctional ionizing radiation-curable monomer, (b) polyfunctional ionizing radiation-curable monomer, and (c) polyfunctional ionizing radiation-curable oligomer of the antiglare laminate of the embodiment It can be an embodiment similar to the form.
  • the ionizing radiation-curable compound is an ultraviolet-curable compound
  • the ionizing radiation-curable composition preferably contains additives such as a photopolymerization initiator and a photopolymerization accelerator, as in the first embodiment. .
  • the resin layer preferably contains first particles having an average particle size of 0.5 ⁇ m or more in order to easily improve the antiglare property. In order to facilitate better antiglare properties, it is more preferable that the second resin layer contains the first particles.
  • the first particles it is preferable that 70% or more of the number of the first particles exist on the second resin layer side in order to easily improve the antiglare property.
  • the ratio is preferably 80% or more, more preferably 90% or more.
  • the position of the first particles in the thickness direction of the resin layer can be determined, for example, from a cross-sectional photograph of the optical layered body taken with a scanning transmission electron microscope (STEM). Also, the ratio based on the number described above can be calculated from the cross-sectional photograph. In order to increase the reliability of the numerical value, it is preferable to obtain a plurality of cross-sectional photographs, set the total number of the first particles to 50 or more, and then calculate the above-mentioned number-based ratio. In addition, the first particles present in both the first resin layer and the second resin layer straddling the first resin layer and the second resin layer are divided according to the area ratio of each layer.
  • STEM scanning transmission electron microscope
  • resins such as polymethyl methacrylate, polyacrylic-styrene copolymer, melamine resin, polycarbonate, polystyrene, polyvinyl chloride, benzoguanamine-melamine-formaldehyde condensate, silicone, fluorine-based resin and polyester-based resin.
  • inorganic particles formed from one or more inorganic substances such as silica, alumina, zirconia and titania; Among these, organic particles are preferable because they are excellent in dispersion stability and have a relatively small specific gravity, so that the first particles can be easily positioned in the second resin layer.
  • the lower limit of the content of the first particles is preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, with respect to 100 parts by mass of the resin component of the resin layer coating liquid. It is preferably 1.3 parts by mass or more, and the upper limit is preferably 10.0 parts by mass or less, more preferably 5.0 parts by mass or less, and 3.0 parts by mass or less. It is even more preferable to have By setting the content of the first particles to 0.5 parts by mass or more, the antiglare property can be easily improved. Further, by setting the content of the first particles to 10.0 parts by mass or less, it is possible to easily suppress deterioration in bending resistance.
  • An embodiment of a preferred range of the content of the first particles with respect to 100 parts by mass of the resin component is 0.5 parts by mass or more and 10.0 parts by mass or less, 0.5 parts by mass or more and 5.0 parts by mass or less, 0 .5 to 3.0 parts by mass, 1.0 to 10.0 parts by mass, 1.0 to 5.0 parts by mass, 1.0 to 3.0 parts by mass , 1.3 to 10.0 parts by mass, 1.3 to 5.0 parts by mass, and 1.3 to 3.0 parts by mass. You can easily control the bottom.
  • the average particle size of the first particles is preferably 0.8 ⁇ m or more, more preferably 1.0 ⁇ m or more, in order to facilitate good antiglare properties.
  • the average particle size of the first particles is preferably 3.0 ⁇ m or less, more preferably 2.7 ⁇ m or less, and 2.5 ⁇ m or less in order to easily suppress deterioration in bending resistance. is more preferred.
  • Preferred embodiments of the average particle size of the first particles are 0.8 ⁇ m or more and 3.0 ⁇ m or less, 0.8 ⁇ m or more and 2.7 ⁇ m or less, 0.8 ⁇ m or more and 2.5 ⁇ m or less, 1.0 ⁇ m or more and 3.0 ⁇ m or less.
  • the average particle size of the first particles can be calculated, for example, by the same method as for the antiglare laminate of the first embodiment.
  • t2-D1 is preferably ⁇ 0.5 ⁇ m or more and 2.0 ⁇ m or less. is preferred.
  • t2 ⁇ D1 is ⁇ 0.5 ⁇ m or more
  • the first particles can easily provide the surface of the optical layered body with an uneven shape, so that the antiglare property can be easily improved.
  • t2-D1 is more preferably 0 ⁇ m or more, further preferably 0.1 ⁇ m or more.
  • t2 ⁇ D1 is 2.0 ⁇ m or less, the first particles are less likely to protrude from the surface of the second resin layer, thereby making it easier to improve the scratch resistance.
  • t2-D1 is more preferably 1.5 ⁇ m or less, and even more preferably 0.8 ⁇ m or less.
  • Embodiments of preferred ranges for t2-D1 are ⁇ 0.5 ⁇ m to 2.0 ⁇ m, ⁇ 0.5 ⁇ m to 1.5 ⁇ m, ⁇ 0.5 ⁇ m to 0.8 ⁇ m, 0 ⁇ m to 2.0 ⁇ m, 0 ⁇ m 0 ⁇ m or more and 0.8 ⁇ m or less, 0.1 ⁇ m or more and 2.0 ⁇ m or less, 0.1 ⁇ m or more and 1.5 ⁇ m or less, and 0.1 ⁇ m or more and 0.8 ⁇ m or less.
  • the resin layer may contain inorganic fine particles. Since the resin layer contains inorganic fine particles having a relatively large specific gravity, the first particles are less likely to sink below the resin layer, and the first particles can be easily positioned in the second resin layer. In addition, the inorganic fine particles can enhance the dispersibility of the first particles and easily suppress the deterioration of the bending resistance.
  • the embodiment of the average particle size and type of the inorganic fine particles in the optical layered body can be the same as the embodiment of the average particle size and type of the inorganic fine particles in the anti-glare layered body of the first embodiment.
  • the lower limit of the content of the inorganic fine particles is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, with respect to 100 parts by mass of the resin component of the resin layer coating liquid. It is more preferably 0.7 parts by mass or more, and the upper limit is preferably 5.0 parts by mass or less, more preferably 3.0 parts by mass or less, and 2.0 parts by mass or less. is more preferred.
  • Preferred range of content of the inorganic fine particles with respect to 100 parts by mass of the resin component is 0.1 parts by mass or more and 5.0 parts by mass or less, 0.1 parts by mass or more and 3.0 parts by mass or less, 0.1 parts by mass to 2.0 parts by mass, 0.5 parts by mass to 5.0 parts by mass, 0.5 parts by mass to 3.0 parts by mass, 0.5 parts by mass to 2.0 parts by mass, 0 .7 parts by mass to 5.0 parts by mass, 0.7 parts by mass to 3.0 parts by mass, and 0.7 parts by mass to 2.0 parts by mass.
  • the resin layer coating liquid may contain additives as necessary.
  • the resin layer coating liquid preferably contains a solvent.
  • a solvent it is preferable to select a solvent that can dissolve the substrate.
  • the values of ⁇ a1 and Pa1 tend to increase as the solvent that dissolves the base material is used more easily.
  • the solvent it is preferable to select an appropriate solvent according to the type of base material.
  • the rate at which the solvent evaporates can also be controlled by the drying conditions. For example, the higher the drying temperature, the faster the solvent will evaporate. Also, the faster the drying air speed, the faster the solvent evaporates.
  • the drying of the solvent is slow, the dissolution of the substrate proceeds, and ⁇ a1 and Pa1 tend to increase. Further, if the drying of the solvent is slow and the temperature during drying is high, the resin component moves rapidly between the first resin layer and the second resin layer, and ⁇ a2 and Pa2 tend to increase. From the above, it is preferable to select the solvent in consideration of the solubility of the substrate, the evaporation rate, and the drying conditions.
  • the embodiment of the type of solvent for the optical layered body can be the same as the embodiment of the type of solvent for the anti-glare layered body of the first embodiment.
  • a solvent with a high evaporation rate means a solvent with an evaporation rate of 100 or more when the evaporation rate of butyl acetate is set to 100.
  • a solvent with a slow evaporation rate means a solvent with an evaporation rate of less than 100 when the evaporation rate of butyl acetate is 100.
  • the evaporation rate of the solvent having a high evaporation rate is more preferably 120 or more and 450 or less, and even more preferably 140 or more and 400 or less.
  • Solvents with high evaporation rates include, for example, isopropyl alcohol (evaporation rate of 150), methyl isobutyl ketone (evaporation rate of 160), toluene (evaporation rate of 200), and methyl ethyl ketone (evaporation rate of 370).
  • the solvent having a fast evaporation rate is preferably 75% by mass or more and 85% by mass or less of the total amount of the solvent.
  • the solvent should contain a solvent that has a slow evaporation rate, high polarity, and a large molecular weight. is preferred.
  • a solvent having the properties described above increases the viscosity of the coating liquid, so that the coating liquid tends to gel. Therefore, the solvent having the properties described above can easily reduce the compatibility of the coating liquid, so that the sea-island structure can be easily formed.
  • Solvents with the properties described above include cyclohexanone and diacetone alcohol.
  • the solvent that evaporates slowly, has high polarity, and has a large molecular weight preferably accounts for 15% by mass or more and 25% by mass or less of the total amount of the solvent.
  • ⁇ Drying conditions When forming the resin layer from the resin layer coating liquid, it is preferable to control the drying conditions. Further, in the optical layered body of the present disclosure, it is preferable to dry the resin layer coating liquid in two stages. Specifically, it is preferable to reduce the drying air velocity in the first stage of drying and increase the drying air velocity in the second stage of drying. At the time of drying in the first stage, a first resin layer is formed by a region containing a resin component eluted from the base material as a main component and containing a small amount of the resin component of the resin layer coating liquid, and the resin eluted from the base material.
  • a second resin layer can be formed by a region containing a small amount of the component and containing the resin component of the resin layer coating liquid as a main component. Furthermore, by increasing the drying temperature in the first step, the resin component can be easily moved, thereby facilitating the formation of the islands-in-the-sea structure. By performing the second stage of drying, excessive dissolution of the base material can be suppressed, so that ⁇ a1 and Pa1 can be easily suppressed from becoming too large.
  • a longer drying time for drying the coating liquid for the resin layer means that it takes longer to irradiate the resin component of the coating liquid for the resin layer with the ionizing radiation.
  • lengthening the drying time of the resin layer coating liquid means that the resin component of the resin layer coating liquid maintains an uncured and fluid state for a long time. Therefore, if the drying time for drying the coating solution for the resin layer becomes long, the resin component moves rapidly between the first resin layer and the second resin layer, and ⁇ a2 and Pa2 tend to increase. , conditions 1B and 2B are less likely to be satisfied.
  • Drying conditions can be controlled by drying temperature and air speed in the dryer.
  • the preferred ranges for the drying temperature and air velocity vary depending on the composition of the resin layer coating liquid, so it cannot be generalized, but the following conditions are preferred.
  • the drying temperature is preferably 75° C. or higher and 95° C. or lower, and the drying wind speed is preferably 1 m/s or higher and 10 m/s or lower.
  • the drying time is preferably 20 seconds or more and 40 seconds or less.
  • the drying temperature is preferably 75° C. or higher and 95° C. or lower, and the drying wind speed is preferably 15 m/s or higher and 30 m/s or lower.
  • the drying time is preferably 20 seconds or more and 40 seconds or less.
  • Ionizing radiation is applied after drying the coating liquid in order to dissolve a part of the base material with the coating liquid for the resin layer and to facilitate sufficient mixing of the components eluted from the base material and the coating liquid for the resin layer. is preferred.
  • ⁇ Condition 1B, Condition 2B> The optical layered body of the present disclosure needs to satisfy Condition 1B or Condition 2B below. Although the optical layered body of the present disclosure should satisfy at least one of Condition 1B and Condition 2B, it preferably satisfies both.
  • ⁇ Condition 1B> ⁇ a1 indicating the average inclination angle of the surface of the base material facing the resin layer and ⁇ a2 indicating the average inclination angle of the surface of the first resin layer facing the second resin layer have a relationship of ⁇ a2 ⁇ a1. is.
  • Pa1 indicating the arithmetic mean height of the surface of the base material on the resin layer side and Pa2 indicating the arithmetic mean height of the surface of the first resin layer on the second resin layer side satisfy Pa2 ⁇ Pa1 is the relationship.
  • the transmission image definition changes before and after the light resistance test is considered to be that the refractive index difference at the interface between the first resin layer and the second resin layer changes between before and after the light resistance test.
  • the optical laminate of the present disclosure there is not only the interface between the first resin layer and the second resin layer, but also the interface between the substrate and the first resin layer.
  • Substrates are relatively resistant to denaturation in lightfastness tests.
  • the resin component of the resin layer coating liquid is relatively easily denatured by the light resistance test. For this reason, the refractive index of the second resin layer, which contains a small amount of the resin component of the substrate, tends to change before and after the light resistance test.
  • the substrate and the first resin layer containing a large amount of the resin component of the substrate are less likely to change in refractive index before and after the light resistance test. Therefore, if the relationship ⁇ a2 ⁇ a1 is not satisfied due to the large ⁇ a2, it is considered difficult to suppress the change in the clarity of the transmitted image after the lightfastness test.
  • ⁇ a1 is preferably 5.0 degrees or more, more preferably 8.0 degrees or more, and still more preferably 10.0 degrees or more, in order to facilitate good initial adhesion.
  • ⁇ a1 is preferably 20.0 degrees or less, more preferably 18.0 degrees or less, and even more preferably 17.0 degrees or less, in order to easily improve the pencil hardness.
  • Preferred ranges of ⁇ a1 are 5.0 degrees to 20.0 degrees, 5.0 degrees to 18.0 degrees, 5.0 degrees to 17.0 degrees, and 8.0 degrees to 20.0 degrees. 0 degrees or less, 8.0 degrees or more and 18.0 degrees or less, 8.0 degrees or more and 17.0 degrees or less, 10.0 degrees or more and 20.0 degrees or less, 10.0 degrees or more and 18.0 degrees or less, 10. 0 degrees or more and 17.0 degrees or less.
  • ⁇ a2 is preferably 10.0 degrees or less, more preferably 8.0 degrees or less, still more preferably 6.0 degrees or less, in order to easily suppress changes in transmission image definition after the light resistance test, and 4.0 degrees. degree or less is even more preferable.
  • ⁇ a2 is preferably greater than 0 degrees, more preferably 1.0 degrees or more, and even more preferably 2.0 degrees or more, in order to facilitate good adhesion.
  • Embodiments of preferred ranges for ⁇ a2 are: 0 degrees to 10.0 degrees, 0 degrees to 8.0 degrees, 0 degrees to 6.0 degrees, 0 degrees to 4.0 degrees, 1.0 degrees 1.0 degrees or more and 8.0 degrees or less, 1.0 degrees or more and 6.0 degrees or less, 1.0 degrees or more and 4.0 degrees or less, 2.0 degrees or more and 10.0 degrees or less , 2.0 degrees or more and 8.0 degrees or less, 2.0 degrees or more and 6.0 degrees or less, and 2.0 degrees or more and 4.0 degrees or less.
  • Pa1 is preferably 0.05 ⁇ m or more, more preferably 0.07 ⁇ m or more, and even more preferably 0.10 ⁇ m or more, in order to facilitate good initial adhesion. Pa1 is preferably 0.25 ⁇ m or less, more preferably 0.23 ⁇ m or less, and even more preferably 0.20 ⁇ m or less, in order to easily improve the pencil hardness.
  • Embodiments of suitable ranges for Pa1 are 0.05 ⁇ m to 0.25 ⁇ m, 0.05 ⁇ m to 0.23 ⁇ m, 0.05 ⁇ m to 0.20 ⁇ m, 0.07 ⁇ m to 0.25 ⁇ m, 0.07 ⁇ m or more 0.23 ⁇ m or less, 0.07 ⁇ m or more and 0.20 ⁇ m or less, 0.10 ⁇ m or more and 0.25 ⁇ m or less, 0.10 ⁇ m or more and 0.23 ⁇ m or less, and 0.10 ⁇ m or more and 0.20 ⁇ m or less.
  • Pa2 is preferably 0.15 ⁇ m or less, more preferably 0.13 ⁇ m or less, still more preferably 0.10 ⁇ m or less, and more preferably 0.06 ⁇ m or less, in order to easily suppress a change in transmission image definition after the light resistance test. More preferred. Pa2 is preferably 0.02 ⁇ m or more, more preferably 0.04 ⁇ m or more, and still more preferably 0.05 ⁇ m or more, in order to facilitate good adhesion.
  • Embodiments of suitable ranges for Pa2 are 0.02 ⁇ m to 0.15 ⁇ m, 0.02 ⁇ m to 0.13 ⁇ m, 0.02 ⁇ m to 0.10 ⁇ m, 0.04 ⁇ m to 0.15 ⁇ m, 0.04 ⁇ m or more 0.13 ⁇ m or less, 0.04 ⁇ m or more and 0.10 ⁇ m or less, 0.05 ⁇ m or more and 0.15 ⁇ m or less, 0.05 ⁇ m or more and 0.13 ⁇ m or less, and 0.05 ⁇ m or more and 0.10 ⁇ m or less.
  • ⁇ a1 and ⁇ a2 and Pa1 and Pa2 can be measured, for example, as follows.
  • a cross-sectional photograph of the optical laminate is taken with a scanning transmission electron microscope (STEM). It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 5000 times or more and 10000 times or less.
  • the ridgeline of the interface between the base material and the resin layer and the ridgeline of the interface between the first resin layer and the second resin layer are obtained, and height data is obtained. Specifically, procedures (a) to (l) of the first embodiment are performed. The interface between the substrate and the resin layer corresponds to the surface of the substrate on the resin layer side.
  • the interface between the first resin layer and the second resin layer corresponds to the surface of the first resin layer on the second resin layer side.
  • ⁇ a1 and ⁇ a2 and Pa1 and Pa2 mean average values of measured values of 20 samples.
  • a part of the base material should be dissolved in the resin layer coating liquid, and the composition of the resin layer coating liquid should be appropriately prepared. It is important to set the drying conditions of the resin layer coating liquid within an appropriate range.
  • a polarizing plate of the present disclosure has a polarizer, a first transparent protective plate arranged on one side of the polarizer, and a second transparent protective plate arranged on the other side of the polarizer.
  • a polarizing plate, wherein at least one of the first transparent protective plate and the second transparent protective plate is the antiglare laminate according to the first embodiment of the present disclosure described above, or the second embodiment of the present disclosure described above. and any antiglare laminate or optical laminate selected from the optical laminate of the present disclosure described above.
  • a polarizing plate is used, for example, to impart antireflection properties by combining a polarizing plate and a ⁇ /4 retardation plate.
  • the ⁇ /4 retardation plate is arranged on the display element of the image display device, and the polarizing plate is arranged on the viewer side of the ⁇ /4 retardation plate.
  • the polarizing plate is used to provide the function of a liquid crystal shutter.
  • the liquid crystal display device is arranged in the order of the lower polarizing plate, the liquid crystal display element, and the upper polarizing plate, and the absorption axis of the polarizer of the lower polarizing plate and the absorption axis of the polarizer of the upper polarizing plate are perpendicular to each other. placed.
  • the polarizing plate of the present disclosure is preferably used as the upper polarizing plate.
  • the first transparent protective plate and the second transparent protective plate is the antiglare laminate of the first embodiment of the present disclosure described above and the second embodiment of the present disclosure described above. and any antiglare laminate or optical laminate selected from the optical laminate of the present disclosure described above.
  • the transparent protective plate on the light emitting side is the antiglare laminate of the first embodiment of the present disclosure described above, or the antiglare laminate of the first embodiment of the present disclosure described above. and any antiglare laminate or optical laminate selected from the antiglare laminate of the second embodiment and the optical laminate of the present disclosure described above.
  • the antiglare layered body and the optical layered body are preferably arranged so that the substrate-side surface faces the polarizer.
  • first transparent protective plate and the second transparent protective plate is the antiglare laminate of the first embodiment of the present disclosure described above, the antiglare laminate of the second embodiment of the present disclosure described above, and
  • the other transparent protective plate is not particularly limited, but an optically isotropic transparent protective plate is preferable.
  • optically isotropic refers to an in-plane retardation of 20 nm or less, preferably 10 nm or less, more preferably 5 nm or less.
  • Acrylic films and triacetyl cellulose (TAC) films are easy to impart optical isotropy.
  • polarizer for example, sheet-type polarizers such as polyvinyl alcohol film, polyvinyl formal film, polyvinyl acetal film, ethylene-vinyl acetate copolymer system saponified film dyed with iodine or the like and stretched; wire grid type polarizers made of metal wires, coating type polarizers coated with lyotropic liquid crystals or dichroic guest-host materials, multilayer thin film type polarizers, and the like. These polarizers may be reflective polarizers having the function of reflecting non-transmissive polarized light components.
  • Embodiments of the size and shape of the polarizing plate of the present disclosure can be the same as the above-described embodiments of the size and shape of the antiglare laminate of the present disclosure or the optical laminate of the present disclosure. .
  • the image display device of the present disclosure includes the above-described antiglare laminate of the first embodiment of the present disclosure, the above-described antiglare laminate of the second embodiment of the present disclosure, and the above-described antiglare laminate of the present disclosure on the display element. It has any antiglare laminate or optical laminate selected from optical laminates.
  • the image display device 500 of FIG. 4 has the antiglare laminate 100A of the first embodiment of the present disclosure on the display element 200.
  • An image display device 500 of FIG. 7 has an antiglare laminate 100B of the second embodiment of the present disclosure on a display element 200.
  • An image display device 500 in FIG. 10 has an optical layered body 100C of the present disclosure on a display element 200.
  • the antiglare layered body or the optical layered body is preferably arranged so that the substrate side faces the display element side.
  • Display elements include liquid crystal display elements; EL display elements (organic EL display elements, inorganic EL display elements); plasma display elements; display elements using QD (Quantum dot); LED displays such as mini LED and micro LED display elements element; and the like. These display elements may have a touch panel function inside the display element.
  • the liquid crystal display method of the liquid crystal display element includes an IPS method, a VA method, a multi-domain method, an OCB method, an STN method, a TSTN method, and the like. If the display element is a liquid crystal display element, a backlight is required. The backlight is arranged on the side of the liquid crystal display element opposite to the side where the antiglare laminate or the optical laminate is arranged.
  • the image display device of the present disclosure may be an image display device with a touch panel having a touch panel between the display element and the antiglare laminate.
  • the antiglare laminate or optical laminate is arranged on the outermost surface of the image display device with a touch panel, and the substrate side of the antiglare laminate or optical laminate is arranged so as to face the display element side. is preferred.
  • the size of the image display device is not particularly limited, but the maximum diameter of the effective display area is preferably 2 inches or more and 500 inches or less.
  • the effective display area of an image display device is an area in which an image can be displayed. For example, when the image display device has a housing that surrounds the display element, the area inside the housing becomes the effective image area.
  • the maximum diameter of the effective image area is defined as the maximum length obtained by connecting any two points within the effective image area. For example, if the effective image area is rectangular, the diagonal of the rectangle is the maximum diameter. Also, when the effective image area is circular, the diameter of the circle is the maximum diameter.
  • the antiglare laminate of the first embodiment of the present disclosure and the antiglare laminate of the second embodiment of the present disclosure are excellent in bending resistance. Therefore, the image display device having the antiglare laminate of the first embodiment of the present disclosure or the antiglare laminate of the second embodiment of the present disclosure on the display element is a foldable type image display device or A rollable type image display device is preferable.
  • Example of Antiglare Laminate of First Embodiment 1. Measurement and Evaluation Measurement and evaluation of the antiglare laminates of Examples and Comparative Examples were performed as follows. The atmosphere during each measurement and evaluation was set at a temperature of 23 ⁇ 5° C. and a relative humidity of 40% or more and 65% or less. Moreover, before starting each measurement and evaluation, the target sample was exposed to the atmosphere for 30 minutes or more, and then the measurement and evaluation were performed. Table 2 shows the results. Since the resin layer of the antiglare laminate of Comparative Example 1-7 had a single-layer structure, in Table 2, the numerical value of the second resin layer is indicated as "-".
  • Total light transmittance (Tt) and haze (Hz) The antiglare laminates of Examples and Comparative Examples were cut into 10 cm squares. After visually confirming that there were no abnormalities such as dust or scratches, the cutting sites were selected at random. Using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory), the total light transmittance of each sample according to JIS K7361-1:1997 and the haze according to JIS K7136:2000 were measured. In order to stabilize the light source, turn on the power switch of the device and wait at least 15 minutes before performing calibration without setting anything at the entrance opening (the place where the measurement sample is installed). A sample was set and measured. The light incident surface was on the substrate side.
  • Tt Total light transmittance
  • Hz haze
  • Pencil Hardness Samples were prepared by cutting the antiglare laminates of Examples and Comparative Examples into a size of 50 mm ⁇ 100 mm. In accordance with JIS K5600-5-4:1999, the pencil hardness of the upper surface of the resin layer of the sample was measured under conditions of a load of 500 g and a speed of 1.4 mm/sec. For the measurement, a pencil hardness tester manufactured by Toyo Seiki Seisakusho (product number: NP type pencil scratch coating film hardness tester) was used. Using a mending tape (manufactured by 3M, product number "810-3-18"), both ends of the cut sample were attached to the base of a pencil hardness tester.
  • the pencil hardness test was performed 5 times, and the hardness when no appearance abnormality such as scratches was observed 3 times or more was taken as the value of the pencil hardness of each sample.
  • the pencil hardness of the antiglare laminate is 2H if the test is performed five times using a 2H pencil and no abnormality in appearance occurs three times.
  • appearance abnormality scratches and dents were checked, but discoloration was not included.
  • a pencil hardness of 2H or more is an acceptable level.
  • Antiglare property A 25 ⁇ m thick transparent pressure-sensitive adhesive layer (Panac), trade name “Panaclean PD-S1”, refractive index 1.49) was placed on the substrate side of the antiglare laminates of Examples and Comparative Examples.
  • a black plate Kuraray Co., Ltd., trade name “Comoglass DFA2CG 502K (black)”, total light transmittance 0%, thickness 2 mm, refractive index 1.49) was laminated to prepare a sample (sample size: 10 cm long x 10 cm wide).
  • Example 1-1 (Manufacture of base material) A copolymer of methyl methacrylate and methyl acrylate was kneaded at 260° C. using a twin-screw extruder to obtain a pellet-like composition (glass transition point: 134° C.). The resulting pellet-like composition was melt-extruded with a T-die (T-die temperature: 260°C) and discharged onto a cooling roll at 130°C. Next, the film was successively biaxially stretched at a stretching temperature of 145° C. in the machine direction and the transverse direction at a draw ratio of 1.5 times. After cooling, an acrylic resin substrate having a thickness of 40 ⁇ m was obtained.
  • the resin layer coating liquid of Example 1-1 in Table 1 was applied onto the acrylic resin base material by a Meyer bar coating method in a coating amount of 6.0 g/m 2 , and then the wind speed was 15 m/s and the temperature was It was dried with warm air at 100°C for 60 seconds. Next, in a nitrogen atmosphere with an oxygen concentration of 200 ppm or less, the ionizing radiation-curable resin composition of the resin layer coating liquid is cured by irradiating with ultraviolet rays so that the integrated light amount is 100 mJ/cm 2 , and the first A resin layer and a second resin layer were formed to obtain an antiglare laminate of Example 1-1.
  • the coating amount means the coating amount after drying.
  • Example 1-7 [Examples 1-2 to 1-4], [Comparative Examples 1-1 to 1-2, 1-5 to 1-7]
  • Example 1-1 In the same manner as in Example 1-1, except that the composition of the resin layer coating liquid, the coating amount of the resin layer coating liquid, and the drying conditions of the resin layer coating liquid were changed to the compositions shown in Table 1, Antiglare laminates of Examples 1-2 to 1-4 and Comparative Examples 1-1 to 1-2 and 1-5 to 1-7 were obtained.
  • the antiglare laminate of Comparative Example 1-7 had a single-layer structure in which the resin layer was the first resin layer.
  • the coating liquid for the second resin layer of Comparative Examples 1-3 in Table 1 was applied by a Meyer bar coating method at a coating amount of 2.0 g/m 2 , and then the wind speed It was dried with hot air of 15 m/s and a temperature of 70° C. for 60 seconds.
  • the ionizing radiation curable resin composition of the second resin layer coating liquid is cured by irradiating with ultraviolet rays so that the integrated light amount becomes 100 mJ/cm 2 .
  • a second resin layer was formed to obtain an antiglare laminate of Comparative Example 1-3.
  • Comparative Example 1-4 The composition of the coating solution for the first and second resin layers, the coating amount of the coating solution for the first and second resin layers, and the drying conditions for the coating solution for the first and second resin layers An antiglare laminate of Comparative Example 1-4 was obtained in the same manner as in Comparative Example 1-3, except that the composition was changed to that shown in Table 1.
  • the hexafunctional urethane acrylate oligomer is Mitsubishi Chemical Corp.'s urethane acrylate oligomer (trade name: Shikou UV-7600B, weight average molecular weight: 1400), and the bifunctional acrylate monomer is tetraethylene glycol diacrylate.
  • the trifunctional acrylate monomer is pentaerythritol triacrylate, the monofunctional acrylate monomer is 4-hydroxybutyl acrylate, and the photopolymerization initiator is IGM Resins B.V.'s product name "Omnirad 184".
  • the antiglare laminates of Examples of the first embodiment have good pencil hardness, bending resistance, and antiglare properties.
  • Example of Antiglare Laminate of Second Embodiment 3. Measurement and Evaluation Measurement and evaluation of the antiglare laminates of Examples and Comparative Examples were performed as follows. The atmosphere during each measurement and evaluation was set at a temperature of 23 ⁇ 5° C. and a relative humidity of 40% or more and 65% or less. Moreover, before starting each measurement and evaluation, the target sample was exposed to the atmosphere for 30 minutes or more, and then the measurement and evaluation were performed. Table 4 shows the results.
  • Total light transmittance (Tt) and haze (Hz) The total light transmittance and haze of the antiglare laminates of Examples and Comparative Examples were measured in the same manner as in 1-5 above.
  • the resin layer coating liquid of Example 2-1 in Table 3 was applied onto the acrylic resin base material by the Meyer bar coating method at a coating amount of 6.0 g/m 2 , and then the wind speed was 1 m/s and the temperature was Drying was performed with hot air at 70° C. for 30 seconds to perform the first stage of drying. Further, the coating liquid was dried for 30 seconds with hot air at a wind speed of 20 m/s and a temperature of 70° C., thereby carrying out the second stage of drying.
  • the ionizing radiation-curable resin composition of the resin layer coating liquid is cured by irradiating with ultraviolet rays so that the integrated light amount becomes 100 mJ/cm 2 , and the resin layer is formed. to obtain an antiglare laminate of Example 2-1.
  • the coating amount means the coating amount after drying.
  • Example 2-2 to 2-4 [Comparative Examples 2-1 to 2-4] In the same manner as in Example 2-1, except that the composition of the resin layer coating liquid, the coating amount of the resin layer coating liquid, and the drying conditions of the resin layer coating liquid were changed to the compositions shown in Table 3, Antiglare laminates of Examples 2-2 to 2-4 and Comparative Examples 2-1 to 2-4 were obtained.
  • the hexafunctional urethane acrylate oligomer is Mitsubishi Chemical Corp.'s urethane acrylate oligomer (trade name: Shikou UV-7600B, weight average molecular weight: 1400), and the bifunctional acrylate monomer is tetraethylene glycol diacrylate.
  • the trifunctional acrylate monomer is pentaerythritol triacrylate
  • the tetrafunctional acrylate monomer is pentaerythritol tetraacrylate
  • the monofunctional acrylate monomer is 4-hydroxybutyl acrylate
  • the photopolymerization initiator is IGM Resins B.V. product name "Omnirad 184".
  • the antiglare laminates of Examples have good pencil hardness, bending resistance, and antiglare properties.
  • 70% or more of the first particles based on the number do not exist in the second region.
  • 70% or more of the first particles based on the number are not present in the second region, but the content of the first particles is large, so the antiglare property is at an acceptable level. is.
  • the antiglare laminate of Comparative Example 2-1 contains a large amount of the first particles, the interface between the first particles and the resin layer increases, which causes a decrease in bending resistance.
  • the optical laminate of Comparative Example 2-3 has a large average tilt angle of the substrate and a large arithmetic average height of the substrate.
  • the optical layered body of Comparative Example 2-4 does not contain a monofunctional monomer and does not contain highly polar methyl ethyl ketone, the elution of the substrate does not proceed, and the average tilt angle of the substrate and the arithmetic average height of the substrate It is thought that the size became smaller.
  • the optical layered body of Comparative Example 2-2 also does not contain a monofunctional monomer and does not contain highly polar methyl ethyl ketone, but the optical layered body of Comparative Example 2-2 contains a bifunctional monomer with a small number of functional groups. Since it contains a large amount, it is considered that the base material is dissolved.
  • Example of Optical Laminate ⁇ Example of Optical Laminate> 5. Measurement and Evaluation Measurements and evaluations of the optical layered bodies of Examples and Comparative Examples were performed as follows. The atmosphere during each measurement and evaluation was set at a temperature of 23 ⁇ 5° C. and a relative humidity of 40% or more and 65% or less. Moreover, before starting each measurement and evaluation, the target sample was exposed to the atmosphere for 30 minutes or more, and then the measurement and evaluation were performed. Table 6 shows the results.
  • the difference between the resin contained in the region ⁇ 1 and the resin contained in the region ⁇ 2 can be determined from the difference in brightness in the photograph. Furthermore, the number-based ratio of the regions ⁇ existing in the second region was calculated. In calculating the ratio, a plurality of cross-sectional photographs were taken until the total number of regions ⁇ exceeded 50.
  • Total light transmittance (Tt) and haze (Hz) The optical laminates of Examples and Comparative Examples were cut into 10 cm squares. After visually confirming that there were no abnormalities such as dust or scratches, the cutting sites were selected at random. Using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory), the total light transmittance of each sample according to JIS K7361-1:1997 and the haze according to JIS K7136:2000 were measured. In order to stabilize the light source, turn on the power switch of the device and wait at least 15 minutes before performing calibration without setting anything at the entrance opening (the place where the measurement sample is installed). A sample was set and measured. The light incident surface was on the substrate side.
  • Tt Total light transmittance
  • Hz haze
  • Adhesion Adhesion of the optical laminates of Examples and Comparative Examples was evaluated by the following method. Furthermore, the adhesion of the optical laminates of Examples and Comparative Examples was evaluated after the following light resistance test was carried out. A sample for evaluation was cross-cut into a grid of 10 squares in total, ie, 10 squares vertically and 10 squares horizontally. The cut interval was 1 mm. When cutting, the blade of the cutter was inserted from the second resin layer side, and cross-cut was performed so that the blade of the cutter reached the top of the substrate.
  • Adhesive tape (manufactured by Nichiban Co., Ltd., product name "Cellotape (registered trademark)" is attached to the surface of the cross-cut sample, and the cross-cut method specified in JIS K 5600-5-6: 1999 is compliant. A peel test was performed. Based on the results of the peel test, adhesion was evaluated according to the following evaluation criteria. ⁇ Evaluation Criteria> A: Less than 5% of the cross-cut portions where peeling can be confirmed in the lattice pattern. B: 5% or more and less than 15% of cross-cut portions where peeling can be confirmed in the grid pattern. C: 15% or more cross-cut portions where peeling can be confirmed in the lattice pattern.
  • Transmission image clarity JIS K7374:2007 transmission image clarity
  • the transmission image clarity of the optical laminates of Examples and Comparative Examples was measured.
  • the light incident surface was on the substrate side.
  • an image clarity measuring instrument (trade name: ICM-1T) manufactured by Suga Test Instruments Co., Ltd. was used.
  • the sum of the transmitted image sharpness for the four optical comb widths is shown in Table 6 (unit is "%").
  • Four comb widths of 0.125 mm, 0.5 mm, 1.0 mm and 2.0 mm were used.
  • the transmission image definition was measured in the same manner as described above for the optical layered bodies of Examples and Comparative Examples after the light resistance test.
  • Table 6 The sum of the transmitted image sharpness for the four optical comb widths is shown in Table 6 (unit is "%"). Table 6 shows the difference in transmission image clarity before and after the lightfastness test (unit: %). A pass level of the difference is 10.0% or less, and among the pass levels, a difference of 5.0% or less is more preferable.
  • a transparent adhesive layer (Panac) with a thickness of 25 ⁇ m (trade name: "Panaclean PD-S1", refractive index: 1.49) was interposed therebetween.
  • a sample was prepared by bonding a black plate (Kuraray Co., Ltd., trade name “Comoglass DFA2CG 502K (black) system”, total light transmittance 0%, thickness 2 mm, refractive index 1.49) (sample size: length 20 cm x width 30 cm).
  • the resin layer coating liquid of Example 3-1 in Table 5 was applied onto the acrylic resin base material by a Meyer bar coating method at a coating amount of 6.0 g/m 2 , followed by a wind speed of 5 m/s and a temperature Drying was performed with hot air at 90° C. for 30 seconds to perform the first stage of drying. Further, the coating liquid was dried for 30 seconds with hot air at a wind speed of 20 m/s and a temperature of 90° C. to carry out a second stage of drying.
  • the ionizing radiation-curable resin composition of the resin layer coating liquid is cured by irradiating with ultraviolet rays so that the integrated light amount is 100 mJ/cm 2 , and the first A resin layer and a second resin layer were formed to obtain an optical laminate of Example 3-1.
  • the coating amount means the coating amount after drying.
  • Examples 3-2 to 3-4 [Comparative Examples 3-1 to 3-3] In the same manner as in Example 3-1, except that the composition of the resin layer coating liquid, the coating amount of the resin layer coating liquid, and the drying conditions of the resin layer coating liquid were changed to the compositions shown in Table 5, Optical laminates of Examples 3-2 to 3-4 and Comparative Examples 3-1 to 3-3 were obtained.
  • the hexafunctional urethane acrylate oligomer is Mitsubishi Chemical Corp.'s urethane acrylate oligomer (trade name: Shikou UV-7600B, weight average molecular weight: 1400), and the bifunctional acrylate monomer is tetraethylene glycol diacrylate.
  • the trifunctional acrylate monomer is pentaerythritol triacrylate, the monofunctional acrylate monomer is 4-hydroxybutyl acrylate, and the photopolymerization initiator is IGM Resins B.V.'s product name "Omnirad 184".
  • the optical layered bodies of Examples can suppress a decrease in adhesion and a change in transmission image definition after the light resistance test.
  • the first resin layer does not have the region ⁇ 1. Therefore, in the optical layered body of Comparative Example 3-1, the affinity between the first resin layer and the second resin layer cannot be improved, and the adhesion after the light resistance test is lowered. It was something.
  • the resin layer coating liquid contains a monofunctional monomer, the compatibility is good, so the sea-island structure is difficult to form, and the region ⁇ 1 was not formed.
  • the optical layered body of Comparative Example 3-2 has large ⁇ a1 and Pa1, and satisfies neither Condition 1B nor Condition 2B. For this reason, the optical layered body of Comparative Example 3-2 had a sharp change in transmission image clarity after the light resistance test.
  • the reason why Comparative Example 3-2 does not satisfy the conditions 1B and 2B is that the long drying time causes the resin component to move rapidly between the first resin layer and the second resin layer, resulting in ⁇ a2 and This is probably because Pa2 increased.
  • the optical layered body of Comparative Example 3-3 has small ⁇ a1 and Pa1, and satisfies neither Condition 1B nor Condition 2B. For this reason, the optical layered body of Comparative Example 3-3 could not have good adhesion after the light resistance test.
  • the optical layered body of Comparative Example 3-3 also had insufficient adhesion before the light resistance test.
  • the reason why Comparative Example 3-3 does not satisfy Conditions 1B and 2B is considered to be that the resin layer coating liquid does not contain a bifunctional monomer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nonlinear Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is an antiglare laminate having excellent pencil hardness and bending resistance. This antiglare laminate includes resin layers on a substrate. The resin layers include, from the substrate side, a first resin layer and a second resin layer. The resin layers contain first particles having an average particle size of 0.5 μm or greater, with 70% or more of the first particles, based on the number thereof, straddling across the first resin layer and the second resin layer, and the resin layers satisfy formula 1 below. Formula 1: 5 < t1/t2 < 15 (In formula 1, t1 denotes the average thickness of the first resin layer, and t2 denotes the average thickness of the second resin layer.)

Description

防眩性積層体、光学積層体、偏光板及び画像表示装置Antiglare laminate, optical laminate, polarizing plate, and image display device
 本開示は、防眩性積層体、光学積層体、偏光板及び画像表示装置に関する。 The present disclosure relates to antiglare laminates, optical laminates, polarizing plates, and image display devices.
 テレビ、ノートPC、デスクトップPCのモニター等の画像表示装置の表面には、防眩性を付与するために、防眩性積層体が設置される場合がある。防眩性とは、照明及び人物等の背景の映り込みを抑制する特性である。
 また、画像表示装置の表面には、防汚性、反射防止性及び防眩性等を付与するために、光学積層体が設置される場合がある。
An antiglare laminate is sometimes installed on the surface of image display devices such as televisions, notebook PCs, desktop PC monitors, etc., in order to impart antiglare properties. The anti-glare property is a property of suppressing reflection of background such as lighting and people.
Further, an optical laminate may be provided on the surface of the image display device in order to impart antifouling properties, antireflection properties, antiglare properties, and the like.
 防眩性積層体は、基材上に表面が凹凸形状である防眩層を有する基本構成からなる。防眩性積層体は、画像表示装置等の表面部材として使用される場合が多いため、人の指及び物等が接触する機会が多い。このため、防眩性積層体は鉛筆硬度が高いことが好ましい。
 光学積層体は、基材上に光学機能層を有する基本構成からなる。光学積層体は、画像表示装置等の表面部材として使用される場合が多いため、人の指及び物等が接触する機会が多い。このため、光学積層体は鉛筆硬度が良好であることが好ましい。
An antiglare laminate is basically composed of an antiglare layer having an uneven surface on a substrate. Since antiglare laminates are often used as surface members of image display devices and the like, they are often brought into contact with fingers, objects, and the like. Therefore, the antiglare laminate preferably has a high pencil hardness.
An optical layered body consists of the basic composition which has an optical function layer on a base material. Since the optical layered body is often used as a surface member of an image display device and the like, there are many opportunities for contact with a person's finger, an object, or the like. Therefore, it is preferable that the optical layered body has good pencil hardness.
 防眩性積層体の鉛筆硬度を高くするため、防眩層の樹脂成分としては、硬化性樹脂組成物の硬化物が好ましく用いられている(例えば、特許文献1~2)。 A cured product of a curable resin composition is preferably used as the resin component of the antiglare layer in order to increase the pencil hardness of the antiglare laminate (for example, Patent Documents 1 and 2).
 光学積層体の鉛筆硬度を良好にするため、光学機能層のバインダー樹脂としては、硬化性樹脂組成物の硬化物が好ましく用いられている。
 硬化性樹脂組成物の硬化物は、光学積層体の鉛筆硬度を良好にしやすいが、基材との密着性に劣る傾向がある。特許文献3及び4には、光学機能層のバインダー樹脂として、硬化性樹脂組成物の硬化物を用い、かつ、密着性が良好な光学積層体が提案されている。
In order to improve the pencil hardness of the optical layered body, a cured product of a curable resin composition is preferably used as the binder resin for the optical functional layer.
The cured product of the curable resin composition tends to improve the pencil hardness of the optical layered body, but tends to be inferior in adhesion to the substrate. Patent Literatures 3 and 4 propose an optical layered body using a cured product of a curable resin composition as a binder resin for an optical functional layer and having good adhesion.
特許第6840215号公報Japanese Patent No. 6840215 国際公開番号WO2018/070426International publication number WO2018/070426 特開2012-234163号公報JP 2012-234163 A 特開2015-188772号公報JP 2015-188772 A
 特許文献1~2の防眩性積層体は、防眩層の硬度が高いため、鉛筆硬度は良好である。しかし、特許文献1~2の防眩性積層体は耐屈曲性が不十分な場合があった。具体的には、特許文献1~2の防眩性積層体をフォルダブルタイプの画像表示装置又はローラブルタイプの画像表示装置に適用した場合、防眩性積層体にクラックが生じる場合があった。前述した耐屈曲性は、防眩性積層体の基材としてアクリル樹脂基材を用いた場合に悪化する傾向があった。 The antiglare laminates of Patent Documents 1 and 2 have good pencil hardness because the antiglare layers have high hardness. However, the antiglare laminates of Patent Documents 1 and 2 sometimes have insufficient bending resistance. Specifically, when the antiglare laminates of Patent Documents 1 and 2 are applied to a foldable type image display device or a rollable type image display device, cracks may occur in the antiglare laminate. . The flex resistance described above tends to deteriorate when an acrylic resin base material is used as the base material of the antiglare laminate.
 特許文献3~4の光学積層体は、初期の密着性は良好である。しかし、特許文献3~4の光学積層体は、経時的に密着性が低下したり、光学特性が変化する場合があった。具体的には、特許文献3~4の光学積層体に対して、紫外線照射による耐光性試験を実施した場合、密着性が低下したり、透過像鮮明度が変化したりする場合があった。 The optical laminates of Patent Documents 3 and 4 have good initial adhesion. However, the optical layered bodies of Patent Documents 3 and 4 sometimes deteriorated in adhesion or changed in optical properties over time. Specifically, when the optical laminates of Patent Documents 3 and 4 were subjected to a light resistance test by ultraviolet irradiation, there were cases where the adhesion was lowered and the transmission image clarity was changed.
 本開示は、鉛筆硬度及び耐屈曲性に優れた防眩性積層体、並びに、それを用いた偏光板及び画像表示装置を提供することを課題とする。 An object of the present disclosure is to provide an antiglare laminate excellent in pencil hardness and flex resistance, and a polarizing plate and an image display device using the same.
 本開示は、耐光性試験後における、密着性の低下及び透過像鮮明度の変化を抑制し得る、光学積層体、並びに、それを用いた偏光板及び画像表示装置を提供することを課題とする。 An object of the present disclosure is to provide an optical layered body, a polarizing plate and an image display device using the same, which can suppress a decrease in adhesion and a change in transmission image definition after a light resistance test. .
 本開示は、以下の[1]~[31]の防眩性積層体、光学積層体、偏光板及び画像表示装置を提供する。 The present disclosure provides the following [1] to [31] antiglare laminates, optical laminates, polarizing plates, and image display devices.
[1] 基材上に樹脂層を有する防眩性積層体であって、
 前記樹脂層は、前記基材側から、第1の樹脂層と、第2の樹脂層とを有し、
 前記樹脂層は、平均粒子径0.5μm以上の第1の粒子を含み、
 前記第1の粒子の個数基準の70%以上が、前記第1の樹脂層及び前記第2の樹脂層に跨って存在し、
 下記式1を満たす、防眩性積層体。
 5.0<t1/t2<15.0 (式1)
 [式1中、t1は前記第1の樹脂層の平均厚みを示し、t2は前記第2の樹脂層の平均厚みを示す。]
[2] 前記第1の粒子の平均粒子径を示すD1と、前記第2の樹脂層の平均厚みを示すt2とが、t2<D1の関係である、[1]に記載の防眩性積層体。
[3] 前記第1の粒子の平均粒子径を示すD1と、前記第1の樹脂層の平均厚みを示すt1とが、D1<t1の関係である、[1]又は[2]に記載の防眩性積層体。
[4] 前記第1の粒子が有機粒子である、[1]~[3]の何れかに記載の防眩性積層体。
[5] 前記基材の前記樹脂層側の表面の平均傾斜角が5.0度以上15.0度以下である、[1]~[4]の何れかに記載の防眩性積層体。
[6] 前記基材の前記樹脂層側の表面の算術平均高さが0.05μm以上0.25μm以下である、[1]~[5]の何れかに記載の防眩性積層体。
[7] 前記第1の樹脂層の厚み方向の真ん中のインデンテーション硬さを示すH1と、前記第2の樹脂層の厚み方向の真ん中のインデンテーション硬さを示すH2とが、H1<H2の関係である、[1]~[6]の何れかに記載の防眩性積層体。
[8] 40MPa<H2-H1である、[7]に記載の防眩性積層体。
[9] 40MPa<H2-H1≦100MPaである、[7]に記載の防眩性積層体。
[10] 前記樹脂層が、硬化性樹脂組成物の硬化物を含む、[1]~[9]の何れかに記載の防眩性積層体。
[11] 前記基材がアクリル樹脂基材である、[1]~[10]の何れかに記載の防眩性積層体。
[1] An antiglare laminate having a resin layer on a substrate,
The resin layer has a first resin layer and a second resin layer from the substrate side,
The resin layer contains first particles having an average particle size of 0.5 μm or more,
70% or more of the first particles based on the number exist across the first resin layer and the second resin layer,
An antiglare laminate that satisfies Formula 1 below.
5.0<t1/t2<15.0 (Formula 1)
[In Formula 1, t1 represents the average thickness of the first resin layer, and t2 represents the average thickness of the second resin layer. ]
[2] The antiglare laminate according to [1], wherein D1 indicating the average particle diameter of the first particles and t2 indicating the average thickness of the second resin layer have a relationship of t2<D1. body.
[3] D1 indicating the average particle diameter of the first particles and t1 indicating the average thickness of the first resin layer are in a relationship of D1<t1. Antiglare laminate.
[4] The antiglare laminate according to any one of [1] to [3], wherein the first particles are organic particles.
[5] The antiglare laminate according to any one of [1] to [4], wherein the resin layer-side surface of the base material has an average inclination angle of 5.0 degrees or more and 15.0 degrees or less.
[6] The antiglare laminate according to any one of [1] to [5], wherein the resin layer side surface of the substrate has an arithmetic mean height of 0.05 μm or more and 0.25 μm or less.
[7] H1 indicating the indentation hardness in the middle in the thickness direction of the first resin layer and H2 indicating the indentation hardness in the middle in the thickness direction of the second resin layer satisfy H1<H2. The antiglare laminate according to any one of [1] to [6], wherein:
[8] The antiglare laminate according to [7], wherein 40 MPa<H2-H1.
[9] The antiglare laminate according to [7], wherein 40 MPa<H2−H1≦100 MPa.
[10] The antiglare laminate according to any one of [1] to [9], wherein the resin layer contains a cured product of a curable resin composition.
[11] The antiglare laminate according to any one of [1] to [10], wherein the substrate is an acrylic resin substrate.
[12] 基材上に樹脂層を有する防眩性積層体であって、
 前記樹脂層は、平均粒子径0.5μm以上の第1の粒子を含み、
 前記樹脂層の厚み方向の中心より前記基材側を第1領域、前記樹脂層の厚み方向の中心より前記基材とは反対側を第2領域と定義した際に、前記第1の粒子の個数基準の70%以上が前記第2領域に存在し、
 下記条件1A又は条件2Aを満たす、防眩性積層体。
<条件1A>
 前記基材の前記樹脂層側の表面の平均傾斜角が5.0度以上20.0度以下。
<条件2A>
 前記基材の前記樹脂層側の表面の算術平均高さが0.10μm以上0.40μm以下。
[13] 前記第1の粒子の平均粒子径を示すD1と、前記樹脂層の平均厚みを示すtとが、2.0<t/D1<6.0の関係である、[12]に記載の防眩性積層体。
[14] 前記第1の粒子が有機粒子である、[12]又は[13]に記載の防眩性積層体。
[15] 前記樹脂層が、硬化性樹脂組成物の硬化物を含む、[12]~[14]の何れかに記載の防眩性積層体。
[16] 前記基材がアクリル樹脂基材である、[12]~[15]の何れかに記載の防眩性積層体。
[12] An antiglare laminate having a resin layer on a substrate,
The resin layer contains first particles having an average particle size of 0.5 μm or more,
When the substrate side of the center of the resin layer in the thickness direction is defined as a first region, and the side opposite to the substrate from the center of the resin layer in the thickness direction is defined as a second region, the first particles 70% or more of the number standard exists in the second region,
An antiglare laminate that satisfies Condition 1A or Condition 2A below.
<Condition 1A>
The average inclination angle of the resin layer-side surface of the base material is 5.0 degrees or more and 20.0 degrees or less.
<Condition 2A>
The arithmetic mean height of the resin layer side surface of the base material is 0.10 μm or more and 0.40 μm or less.
[13] The description of [12], wherein D1 indicating the average particle diameter of the first particles and t indicating the average thickness of the resin layer have a relationship of 2.0<t/D1<6.0. antiglare laminate.
[14] The antiglare laminate according to [12] or [13], wherein the first particles are organic particles.
[15] The antiglare laminate according to any one of [12] to [14], wherein the resin layer contains a cured product of a curable resin composition.
[16] The antiglare laminate according to any one of [12] to [15], wherein the substrate is an acrylic resin substrate.
[17] 基材上に樹脂層を有する光学積層体であって、
 前記樹脂層は、前記基材側から、第1の樹脂層と、第2の樹脂層とを有し、
 前記第1の樹脂層は、互いに独立した領域α1と、前記領域α1を取り囲む領域α2とを有し、前記領域α1に含まれる樹脂と前記領域α2に含まれる樹脂とが異なり、
 前記第2の樹脂層は、互いに独立した領域β1と、前記領域β1を取り囲む領域β2とを有し、前記領域β1に含まれる樹脂と前記領域β2に含まれる樹脂とが異なり、
 下記条件1B又は条件2Bを満たす、光学積層体。
<条件1B>
 前記基材の前記樹脂層側の表面の平均傾斜角を示すθa1と、前記第1の樹脂層の前記第2の樹脂層側の表面の平均傾斜角を示すθa2とが、θa2<θa1の関係である。
<条件2B>
 前記基材の前記樹脂層側の表面の算術平均高さを示すPa1と、前記第1の樹脂層の前記第2の樹脂層側の表面の算術平均高さを示すPa2とが、Pa2<Pa1の関係である。
[18] 前記θa1が5.0度以上20.0度以下である、[17]に記載の光学積層体。
[19] 前記θa2が10.0度以下である、[17]又は[18]に記載の光学積層体。
[20] 前記Pa1が0.05μm以上0.25μm以下である、[17]に記載の光学積層体。
[21] 前記Pa2が0.15μm以下である、[17]又は[18]に記載の光学積層体。
[22] 前記第1の樹脂層の厚み方向の中心より前記基材側を第1領域、前記第1の樹脂層の厚み方向の中心より前記第2の樹脂層側を第2領域と定義した際に、前記領域α1の70%以上が前記第2領域に存在する、[17]~[21]の何れかに記載の光学積層体。
[23] 前記領域α1に含まれる樹脂と前記領域β2に含まれる樹脂とが実質的に同一であり、前記領域α2に含まれる樹脂と前記領域β1に含まれる樹脂とが実質的に同一である、[17]~[22]の何れかに記載の光学積層体。
[24] 前記樹脂層が平均粒子径0.5μm以上の第1の粒子を含む、[17]~[23]の何れかに記載の光学積層体。
[25] 前記第2の樹脂層が前記第1の粒子を含む、[24]に記載の光学積層体。
[26] 前記第1の粒子が有機粒子である、[24]又は[25]に記載の光学積層体。
[27] 前記基材がアクリル樹脂基材である、[17]~[26]の何れかに記載の光学積層体。
[28] 前記樹脂層が、硬化性樹脂組成物の硬化物を含む、[17]~[27]の何れかに記載の光学積層体。
[17] An optical laminate having a resin layer on a substrate,
The resin layer has a first resin layer and a second resin layer from the substrate side,
The first resin layer has a region α1 independent of each other and a region α2 surrounding the region α1, and the resin contained in the region α1 and the resin contained in the region α2 are different,
The second resin layer has a region β1 independent of each other and a region β2 surrounding the region β1, and the resin contained in the region β1 and the resin contained in the region β2 are different,
An optical laminate that satisfies Condition 1B or Condition 2B below.
<Condition 1B>
θa1 indicating the average inclination angle of the surface of the base material facing the resin layer and θa2 indicating the average inclination angle of the surface of the first resin layer facing the second resin layer have a relationship of θa2<θa1. is.
<Condition 2B>
Pa1 indicating the arithmetic mean height of the surface of the base material on the resin layer side and Pa2 indicating the arithmetic mean height of the surface of the first resin layer on the second resin layer side satisfy Pa2<Pa1 is the relationship.
[18] The optical laminate according to [17], wherein θa1 is 5.0 degrees or more and 20.0 degrees or less.
[19] The optical laminate according to [17] or [18], wherein θa2 is 10.0 degrees or less.
[20] The optical laminate according to [17], wherein Pa1 is 0.05 μm or more and 0.25 μm or less.
[21] The optical laminate according to [17] or [18], wherein the Pa2 is 0.15 μm or less.
[22] The base material side of the center of the thickness direction of the first resin layer is defined as a first region, and the second resin layer side of the center of the thickness direction of the first resin layer is defined as a second region. The optical laminate according to any one of [17] to [21], wherein 70% or more of the region α1 is present in the second region.
[23] The resin contained in the region α1 and the resin contained in the region β2 are substantially the same, and the resin contained in the region α2 and the resin contained in the region β1 are substantially the same. , the optical laminate according to any one of [17] to [22].
[24] The optical laminate according to any one of [17] to [23], wherein the resin layer contains first particles having an average particle size of 0.5 μm or more.
[25] The optical laminate according to [24], wherein the second resin layer contains the first particles.
[26] The optical laminate according to [24] or [25], wherein the first particles are organic particles.
[27] The optical laminate according to any one of [17] to [26], wherein the substrate is an acrylic resin substrate.
[28] The optical laminate according to any one of [17] to [27], wherein the resin layer contains a cured product of a curable resin composition.
[29] 偏光子と、前記偏光子の一方の側に配置された第1の透明保護板と、前記偏光子の他方の側に配置された第2の透明保護板とを有する偏光板であって、前記第1の透明保護板及び前記第2の透明保護板の少なくとも一方が、[1]~[16]に記載の防眩性積層体及び[17]~[28]に記載の光学積層体から選ばれる何れかの防眩性積層体又は光学積層体である、偏光板。
[30] 表示素子上に、[1]~[16]に記載の防眩性積層体及び[17]~[28]に記載の光学積層体から選ばれる何れかの防眩性積層体又は光学積層体を有する、画像表示装置。
[31] 前記画像表示装置が、フォルダブルタイプの画像表示装置又はローラブルタイプの画像表示装置であり、前記表示素子上に、[1]~[16]の何れかに記載の防眩性積層体を有する、[30]に記載の画像表示装置。
[29] A polarizing plate having a polarizer, a first transparent protective plate arranged on one side of the polarizer, and a second transparent protective plate arranged on the other side of the polarizer. At least one of the first transparent protective plate and the second transparent protective plate is the antiglare laminate according to [1] to [16] and the optical laminate according to [17] to [28]. A polarizing plate, which is any antiglare laminate or optical laminate selected from the body.
[30] Any antiglare laminate selected from the antiglare laminate described in [1] to [16] and the optical laminate described in [17] to [28] or an optical An image display device having a laminate.
[31] The image display device is a foldable type image display device or a rollable type image display device, and the antiglare laminate according to any one of [1] to [16] is provided on the display element. The image display device according to [30], having a body.
 本開示の防眩性積層体は、鉛筆硬度及び耐屈曲性を良好にすることができる。本開示の偏光板及び画像表示装置は、鉛筆硬度及び耐屈曲性に優れた防眩性積層体を有するため、偏光板及び画像表示装置の設計の自由度を高めることができる。 The antiglare laminate of the present disclosure can have good pencil hardness and bending resistance. Since the polarizing plate and the image display device of the present disclosure have an antiglare laminate with excellent pencil hardness and bending resistance, it is possible to increase the degree of freedom in designing the polarizing plate and the image display device.
 本開示の光学積層体、偏光板及び画像表示装置は、耐光性試験後における、密着性の低下及び透過像鮮明度の変化を抑制することができる。 The optical layered body, polarizing plate, and image display device of the present disclosure can suppress deterioration in adhesion and change in transmission image definition after the light resistance test.
本開示の第1実施形態の防眩性積層体の一実施形態を示す断面図である。1 is a cross-sectional view showing one embodiment of an antiglare laminate according to a first embodiment of the present disclosure; FIG. 比較例1-3の防眩性積層体を示す断面図である。FIG. 4 is a cross-sectional view showing an antiglare laminate of Comparative Example 1-3. 比較例1-4の防眩性積層体を示す断面図である。FIG. 4 is a cross-sectional view showing an antiglare laminate of Comparative Example 1-4. 本開示の画像表示装置の一実施形態を示す断面図である。1 is a cross-sectional view showing an embodiment of an image display device of the present disclosure; FIG. 本開示の第2実施形態の防眩性積層体の一実施形態を示す断面図である。FIG. 4 is a cross-sectional view showing one embodiment of the antiglare laminate of the second embodiment of the present disclosure; 比較例2-2の防眩性積層体を示す断面図である。FIG. 10 is a cross-sectional view showing an antiglare laminate of Comparative Example 2-2; 本開示の画像表示装置の一実施形態を示す断面図である。1 is a cross-sectional view showing an embodiment of an image display device of the present disclosure; FIG. 本開示の光学積層体の一実施形態を示す断面図である。1 is a cross-sectional view showing an embodiment of an optical laminate of the present disclosure; FIG. 光学積層体の第1の樹脂層の厚み方向における領域α1の位置を算出する手法を説明する図である。It is a figure explaining the method of calculating the position of area|region (alpha)1 in the thickness direction of the 1st resin layer of an optical laminated body. 本開示の画像表示装置の一実施形態を示す断面図である。1 is a cross-sectional view showing an embodiment of an image display device of the present disclosure; FIG.
 以下、本開示の実施形態を説明する。
[第1実施形態の防眩性積層体]
 本開示の第1実施形態の防眩性積層体は、基材上に樹脂層を有し、
 前記樹脂層は、前記基材側から、第1の樹脂層と、第2の樹脂層とを有し、
 前記樹脂層は、平均粒子径0.5μm以上の第1の粒子を含み、
 前記第1の粒子の個数基準の70%以上が、前記第1の樹脂層及び前記第2の樹脂層に跨って存在し、
 下記式1を満たす、防眩性積層体である。
 5.0<t1/t2<15.0 (式1)
 [式1中、t1は前記第1の樹脂層の平均厚みを示し、t2は前記第2の樹脂層の平均厚みを示す。]
Embodiments of the present disclosure will be described below.
[Anti-glare laminate of the first embodiment]
The antiglare laminate of the first embodiment of the present disclosure has a resin layer on a substrate,
The resin layer has a first resin layer and a second resin layer from the substrate side,
The resin layer contains first particles having an average particle size of 0.5 μm or more,
70% or more of the first particles based on the number exist across the first resin layer and the second resin layer,
It is an antiglare laminate that satisfies the following formula 1.
5.0<t1/t2<15.0 (Formula 1)
[In Formula 1, t1 represents the average thickness of the first resin layer, and t2 represents the average thickness of the second resin layer. ]
 図1は、本開示の第1実施形態の防眩性積層体100Aの一実施形態を示す断面図である。
 図1の防眩性積層体100Aは、基材10上に樹脂層20Aを有している。また、図1の樹脂層20Aは、基材10側から、第1の樹脂層21Aと、第2の樹脂層22Aとを有している。また、図1の樹脂層20Aは、平均粒子径0.5μm以上の第1の粒子23Aを含有している。また、図1中の第1の粒子23Aは、第1の樹脂層21A及び第2の樹脂層22Aに跨って存在している。
 なお、図1は模式的な断面図である。すなわち、防眩性積層体100Aを構成する各層の縮尺、各材料の縮尺、及び表面凹凸の縮尺は、図示しやすくするために模式化したものであり、実際の縮尺とは相違している。図1以外の図も同様に実際の縮尺とは相違している。
FIG. 1 is a cross-sectional view showing one embodiment of an antiglare laminate 100A according to the first embodiment of the present disclosure.
An antiglare laminate 100A in FIG. 1 has a resin layer 20A on a substrate 10. As shown in FIG. Moreover, the resin layer 20A of FIG. 1 has a first resin layer 21A and a second resin layer 22A from the substrate 10 side. Moreover, the resin layer 20A of FIG. 1 contains first particles 23A having an average particle diameter of 0.5 μm or more. Further, the first particles 23A in FIG. 1 exist across the first resin layer 21A and the second resin layer 22A.
Note that FIG. 1 is a schematic cross-sectional view. That is, the scale of each layer constituting the antiglare laminate 100A, the scale of each material, and the scale of the surface irregularities are schematic for ease of illustration, and are different from the actual scale. Figures other than FIG. 1 are also different from the actual scale.
<基材>
 基材としては、光透過性、平滑性、耐熱性及び機械的強度が良好であることが好ましい。このような基材としては、ポリエステル、トリアセチルセルロース(TAC)、セルロースジアセテート、セルロースアセテートブチレート、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、アクリル樹脂、ポリカーボネート、ポリウレタン及び非晶質オレフィン(Cyclo-Olefin-Polymer:COP)等の樹脂を含む樹脂基材が挙げられる。樹脂基材は、2以上の樹脂基材を貼り合わせたものであってもよい。
 樹脂基材は、機械的強度及び寸法安定性を良好にするため、延伸処理されていることが好ましい。
<Base material>
The substrate preferably has good light transmittance, smoothness, heat resistance and mechanical strength. Such substrates include polyester, triacetyl cellulose (TAC), cellulose diacetate, cellulose acetate butyrate, polyamide, polyimide, polyethersulfone, polysulfone, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, Resin substrates containing resins such as polyether ketone, acrylic resin, polycarbonate, polyurethane and amorphous olefin (Cyclo-Olefin-Polymer: COP) can be mentioned. The resin substrate may be a laminate of two or more resin substrates.
The resin substrate is preferably stretched in order to improve mechanical strength and dimensional stability.
 樹脂基材の中でも、吸湿性が低いため寸法安定性を良好にしやすく、かつ、光学的異方性が低いため視認性を良好にしやすい、アクリル樹脂基材が好ましい。また、アクリル樹脂基材は、樹脂層用塗布液を所定の組成として、かつ、所定の乾燥条件とすることにより、第1の樹脂層及び第2の樹脂層を1回の塗布で形成しやすくできる。
 アクリル樹脂基材は、硬くて脆いため、アクリル樹脂基材上に硬化性樹脂組成物の硬化物を含む樹脂層を形成すると、耐屈曲性が不十分になる場合がある。本開示の防眩性積層体は、アクリル樹脂基材上に硬化性樹脂組成物の硬化物を含む樹脂層を形成しても、樹脂層の厚み方向の所定の位置に第1の粒子を存在させること、及び、式1を満たすことなどにより、耐屈曲性の低下を抑制しやすくできる。
 本明細書において、アクリル樹脂とは、アクリル系樹脂及び/又はメタクリル系樹脂を意味する。
Among the resin substrates, acrylic resin substrates are preferred because they have low hygroscopicity and therefore tend to have good dimensional stability, and have low optical anisotropy and thus tend to have good visibility. In addition, the acrylic resin base material has a predetermined composition of the coating liquid for the resin layer and a predetermined drying condition, so that the first resin layer and the second resin layer can be easily formed by one application. can.
Since the acrylic resin substrate is hard and brittle, the bending resistance may be insufficient when the resin layer containing the cured product of the curable resin composition is formed on the acrylic resin substrate. In the antiglare laminate of the present disclosure, even if a resin layer containing a cured product of a curable resin composition is formed on an acrylic resin substrate, the first particles are present at predetermined positions in the thickness direction of the resin layer. and satisfying Formula 1, the decrease in bending resistance can be easily suppressed.
As used herein, acrylic resin means acrylic resin and/or methacrylic resin.
 アクリル樹脂基材が含有するアクリル樹脂としては特に制限されないが、例えば、(メタ)アクリル酸アルキルエステルを1種又は2種以上組み合わせて重合してなるものが好ましく、より具体的には、(メタ)アクリル酸メチルを用いて得られるものが好ましい。また、アクリル樹脂としては、特開2000-230016号公報、特開2001-151814号公報、特開2002-120326号公報、特開2002-254544号公報、特開2005-146084号公報等に記載のものも挙げられる。アクリル樹脂として、ラクトン環構造を有するアクリル樹脂、イミド環構造を有するアクリル樹脂等の環構造を有するものを用いてもよい。 The acrylic resin contained in the acrylic resin substrate is not particularly limited. ) those obtained using methyl acrylate are preferred. Further, as the acrylic resin, JP-A-2000-230016, JP-A-2001-151814, JP-A-2002-120326, JP-A-2002-254544, JP-A-2005-146084, etc. things are also mentioned. As the acrylic resin, one having a ring structure such as an acrylic resin having a lactone ring structure or an acrylic resin having an imide ring structure may be used.
 アクリル樹脂は、ガラス転移点(Tg)が、100℃以上150℃以下であることが好ましく、105℃以上135℃以下であることがより好ましく、110℃以上130℃以下であることがさらに好ましい。
 アクリル樹脂のガラス転移点が100℃以上であると、樹脂層を形成する際にアクリル樹脂基材が過度に溶解することを抑制しやすくできる。アクリル樹脂のガラス転移点が150℃以下であると、樹脂層を形成する際のアクリル樹脂基材が溶解する度合いをコントロールしやすくできる。
The acrylic resin preferably has a glass transition point (Tg) of 100° C. or higher and 150° C. or lower, more preferably 105° C. or higher and 135° C. or lower, even more preferably 110° C. or higher and 130° C. or lower.
When the acrylic resin has a glass transition point of 100° C. or higher, excessive dissolution of the acrylic resin base material can be easily suppressed during formation of the resin layer. When the glass transition point of the acrylic resin is 150° C. or lower, the degree of dissolution of the acrylic resin base material when forming the resin layer can be easily controlled.
  アクリル樹脂基材は、アクリル樹脂以外の樹脂を含んでいてもよいが、アクリル樹脂基材を構成する全樹脂に対するアクリル樹脂の割合が80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。 The acrylic resin substrate may contain a resin other than the acrylic resin, but the ratio of the acrylic resin to the total resin constituting the acrylic resin substrate is preferably 80% by mass or more, and is 90% by mass or more. is more preferable, and 95% by mass or more is even more preferable.
 アクリル樹脂基材は、例えば、調湿したアクリル樹脂からなるペレットを溶融押し出し後、冷却しながら、縦方向に延伸し、その後、横方向に延伸することで製造することができる。
  溶融押し出し工程では、1軸、2軸、又は2軸以上のスクリューを使用することができ、スクリューの回転方向、回転数、溶融温度は任意に設定できる。
  延伸は、延伸後に所望の厚みになるように行うことが好ましい。また、延伸倍率は限定されないが、1.2倍以上4.5倍以下が好ましい。延伸時の温度、湿度は任意に決められる。延伸方法は、一般的な方法でよい。
The acrylic resin substrate can be produced, for example, by melt extruding pellets made of a humidity-conditioned acrylic resin, stretching the pellets in the longitudinal direction while cooling, and then stretching the pellets in the transverse direction.
In the melt-extrusion step, a screw having one screw, two screws, or two or more screws can be used, and the direction of rotation, number of rotations, and melting temperature of the screw can be set arbitrarily.
Stretching is preferably carried out so as to obtain a desired thickness after stretching. Moreover, although the draw ratio is not limited, it is preferably 1.2 times or more and 4.5 times or less. The temperature and humidity during stretching can be arbitrarily determined. The stretching method may be a general method.
 基材の平均厚みは、10μm以上が好ましく、20μm以上がより好ましく、35μm以上がさらに好ましい。基材の平均厚みを10μm以上とすることにより、防眩性積層体の取り扱い性を良好にしやすくできる。
 基材の平均厚みは、100μm以下が好ましく、80μm以下がより好ましく、60μm以下がさらに好ましい。基材の平均厚みを100μm以下とすることにより、防眩性積層体の耐屈曲性をより良好にしやすくできる。
 基材の平均厚みの好適範囲の実施形態は、10μm以上100μm以下、10μm以上80μm以下、10μm以上60μm以下、20μm以上100μm以下、20μm以上80μm以下、20μm以上60μm以下、35μm以上100μm以下、35μm以上80μm以下、35μm以上60μm以下が挙げられる。
The average thickness of the substrate is preferably 10 µm or more, more preferably 20 µm or more, and even more preferably 35 µm or more. By setting the average thickness of the substrate to 10 μm or more, the antiglare laminate can be easily handled with good performance.
The average thickness of the substrate is preferably 100 µm or less, more preferably 80 µm or less, and even more preferably 60 µm or less. By setting the average thickness of the substrate to 100 μm or less, the anti-glare laminate can be easily improved in flex resistance.
Preferred ranges for the average thickness of the substrate are 10 μm to 100 μm, 10 μm to 80 μm, 10 μm to 60 μm, 20 μm to 100 μm, 20 μm to 80 μm, 20 μm to 60 μm, 35 μm to 100 μm, and 35 μm or more. 80 μm or less, or 35 μm or more and 60 μm or less.
 上述した基材の平均厚みは、防眩性積層体の完成時の基材の平均厚みを意味する。後述するように、樹脂層用塗布液により基材の一部が溶解することによって、防眩性積層体の完成時の基材の平均厚みは、初期の基材の平均厚みよりも減少する場合がある。このため、初期の基材の平均厚みは、防眩性積層体の完成時の基材の平均厚みよりも厚くすることが好ましい。初期の基材の平均厚みと、防眩性積層体の完成時の基材の平均厚みとの差は、樹脂層の厚み、樹脂層用塗布液の組成、前記塗布液の乾燥条件等により異なるため一概にはいえないが、0.1μm以上10μm以下であることが好ましく、1μm以上5μm以下であることがより好ましい。 The average thickness of the base material mentioned above means the average thickness of the base material when the antiglare laminate is completed. As will be described later, when the average thickness of the base material when the antiglare laminate is completed is reduced from the average thickness of the initial base material by partially dissolving the base material by the resin layer coating liquid. There is Therefore, it is preferable that the initial average thickness of the base material is greater than the average thickness of the base material when the antiglare laminate is completed. The difference between the initial average thickness of the base material and the average thickness of the base material when the antiglare laminate is completed varies depending on the thickness of the resin layer, the composition of the coating liquid for the resin layer, the drying conditions of the coating liquid, and the like. Therefore, although it cannot be generalized, it is preferably 0.1 μm or more and 10 μm or less, and more preferably 1 μm or more and 5 μm or less.
 基材の平均厚みは、例えば、走査型透過電子顕微鏡(STEM)により撮像した防眩性積層体の断面写真の任意の箇所を20点選び、その平均値により算出できる。STEMの加速電圧は10kV以上30kV以下、STEMの倍率は1000倍以上7000倍以下とすることが好ましい。
 基材の平均厚み、第1の樹脂層の厚み、第2の樹脂層の厚み、樹脂層の厚み方向における第1の粒子の位置、基材の樹脂層側の表面の平均傾斜角、基材の樹脂層側の表面の算術平均高さ等を測定するためには、防眩性積層体の断面が露出した測定用のサンプルを作製する必要がある。前記サンプルは、例えば、後述する(A1)~(A2)の工程で作製できる。なお、コントラスト不足で界面等が見え難い場合には、前処理として、四酸化オスミウム、四酸化ルテニウム、リンタングステン酸などで前記サンプルに染色処理を施してもよい。
The average thickness of the base material can be calculated from the average value of 20 arbitrary points selected from cross-sectional photographs of the antiglare laminate taken by a scanning transmission electron microscope (STEM), for example. It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
Average thickness of the substrate, thickness of the first resin layer, thickness of the second resin layer, position of the first particles in the thickness direction of the resin layer, average inclination angle of the surface of the substrate on the resin layer side, substrate In order to measure the arithmetic mean height and the like of the surface of the resin layer of , it is necessary to prepare a measurement sample in which the cross section of the antiglare laminate is exposed. The sample can be prepared, for example, by steps (A1) to (A2) described later. If the interface is difficult to see due to insufficient contrast, the sample may be dyed with osmium tetroxide, ruthenium tetroxide, phosphotungstic acid, or the like as a pretreatment.
 本明細書において、各種の測定及び評価、並びに、測定及び評価のためのサンプリングを実施する雰囲気は、特に断りのない限り、温度23±5℃、相対湿度40%以上65%以下で測定したものとする。また、測定、評価及びサンプリングを実施前に、対象となる防眩性積層体を前記雰囲気に30分以上晒すものとする。前述した雰囲気は、第1実施形態の防眩性積層体、第2実施形態の防眩性積層体、光学積層体に共通の雰囲気である。 In this specification, various measurements and evaluations, and the atmosphere in which sampling for measurement and evaluation is performed are measured at a temperature of 23 ± 5 ° C. and a relative humidity of 40% or more and 65% or less, unless otherwise specified. and In addition, the target antiglare laminate shall be exposed to the atmosphere for 30 minutes or longer before the measurement, evaluation and sampling. The atmosphere described above is common to the antiglare laminate of the first embodiment, the antiglare laminate of the second embodiment, and the optical laminate.
 基材は、基材の樹脂層側の表面の平均傾斜角が5.0度以上15.0度以下であることが好ましい。
 平均傾斜角を5度以上とすることにより、防眩性積層体の耐屈曲性をより良好にしやすくできる。耐屈曲性が良好になる理由は、基材と樹脂層との密着性が良好になることにより、屈曲時に界面剥離が生じないためと考えられる。
 平均傾斜角を15度以下とすることにより、内部ヘイズが上昇することを抑制しやすくできる。また、基材の一部が樹脂層用塗布液により溶解している実施形態の場合には、平均傾斜角を15度以下とすることにより、鉛筆硬度を良好にしやすくできる。前述の実施形態において鉛筆硬度を良好にしやすくできる理由は、樹脂層に基材成分が過度に溶出しないことによって、樹脂層の硬度が低下しにくくなるためと考えられる。
 基材の平均傾斜角は、5.5度以上がより好ましく、6.0度以上がさらに好ましい。基材の平均傾斜角は、14.0度以下がより好ましく、13.0度以下がさらに好ましい。
 基材の平均傾斜角の好適な範囲の実施形態は、5.0度以上15.0度以下、5.0度以上14.0度以下、5.0度以上13.0度以下、5.5度以上15.0度以下、5.5度以上14.0度以下、5.5度以上13.0度以下、6.0度以上15.0度以下、6.0度以上14.0度以下、6.0度以上13.0度以下が挙げられる。
The substrate preferably has an average inclination angle of 5.0 degrees or more and 15.0 degrees or less on the resin layer side surface of the substrate.
By setting the average inclination angle to 5 degrees or more, the bending resistance of the antiglare laminate can be easily improved. It is considered that the reason why the bending resistance is improved is that the adhesiveness between the base material and the resin layer is improved so that interfacial peeling does not occur during bending.
By setting the average tilt angle to 15 degrees or less, it is possible to easily suppress an increase in internal haze. Further, in the case of an embodiment in which a part of the substrate is dissolved in the resin layer coating liquid, the pencil hardness can be easily improved by setting the average tilt angle to 15 degrees or less. The reason why the pencil hardness can be easily improved in the above-described embodiment is considered to be that the hardness of the resin layer is less likely to decrease due to the excessive elution of the base material component into the resin layer.
The average tilt angle of the substrate is more preferably 5.5 degrees or more, and even more preferably 6.0 degrees or more. The average tilt angle of the substrate is more preferably 14.0 degrees or less, and even more preferably 13.0 degrees or less.
Preferred ranges of the average tilt angle of the substrate are 5.0 degrees or more and 15.0 degrees or less, 5.0 degrees or more and 14.0 degrees or less, 5.0 degrees or more and 13.0 degrees or less, and 5.0 degrees or more and 13.0 degrees or less. 5 degrees or more and 15.0 degrees or less, 5.5 degrees or more and 14.0 degrees or less, 5.5 degrees or more and 13.0 degrees or less, 6.0 degrees or more and 15.0 degrees or less, 6.0 degrees or more and 14.0 degrees degrees or less, and 6.0 degrees or more and 13.0 degrees or less.
 基材の平均傾斜角及び基材の算術平均高さは、例えば、以下のように測定することができる。
(1)防眩性積層体の断面写真を、走査型透過電子顕微鏡(STEM)で撮像する。STEMの加速電圧は10kV以上30kV以下、STEMの倍率は5000倍以上10000倍以下とすることが好ましい。
(2)断面写真の画像から、基材と樹脂層との界面の稜線を取得し、高さデータを取得する。具体的には下記(a)~(l)のようにする。基材と樹脂層との界面は、基材の樹脂層側の表面に相当する。
(a)撮影した画像を、オープンソースでパブリックドメインの画像処理ソフトウェアImageJ(version 1.52a)にて表示する。
(b)画像中に表示されたスケール表示から、ピクセル当たりの長さを求める。
(c)“FreeHand Selections”を選択して、界面を含むようにROIをつくり、Brightnessを調節して、界面を境に色が明確に異なるようにする。
(d)Process-Smoothを2回かける。
(e)Image-Typeを8bitにする。
(f)“Straight”を選択して、界面に沿って線を引く。
(g)ImageJのPluginであるABSnakeを導入して実行する。その際”Gradient threshold”を10に設定し、Draw colorをRedに設定する。その他の設定はデフォルトのままとする。
(h)目視で、界面がRedでトレースできていることを確認する。不良の場合は、(f)からやり直す。
(i)Image-Adjust-Color Thresholdを実行。Redとそれ以外を分けるようにしきい値を設定する。具体的には、Color spaceをRGBにして、「Red」「Green」及び「Blue」の「Pass」にチェックをつけ、Redの範囲の上下限を最大値(255)にし、「Green」及び「Blue」の範囲の上下限を最小値(0)にする。
(j)Process-Binary-Make Binaryを実行して、界面のトレース線の部分と、前記トレース線以外の部分とで2値化する。
(k)File-Save Asで”Text Image”で2値化されたデータを保存する。
(l)2値化されたデータから、界面を高さデータ点列に変換する。
(3)高さデータ点列から、下記(m)~(q)の手順で、平均傾斜角、算術平均高さを算出する。
(m) 最小二乗法の二次回帰により高さデータの中心線を求めて、高さデータから差し引くことで、中心線を0とし上方向を正、下方向を負とするように変換する。中心線の方向をx軸、それに垂直な方向(高さ方向)をy軸とする。
(n) (b)で求めたピクセル当たりの長さを用いて、高さデータを長さに換算する。
(o)カットオフ波長0.5μmのガウシャンによるローパスフィルターを適用する。
(p)tan-1((yi+1-yi-1)/2Δx)[yは高さデータ点列のi番目の点における高さ、Δxは隣り合う点のx軸方向の距離]により求められる各点の傾斜角度の絶対値の算術平均を算出することにより、平均傾斜角を求める。
(q)各点の高さの絶対値の算術平均を算出することにより、算術平均高さを求める。
The average tilt angle of the substrate and the arithmetic average height of the substrate can be measured, for example, as follows.
(1) A cross-sectional photograph of the antiglare laminate is taken with a scanning transmission electron microscope (STEM). It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 5000 times or more and 10000 times or less.
(2) Acquire the ridgeline of the interface between the substrate and the resin layer from the image of the cross-sectional photograph, and acquire the height data. Specifically, the following (a) to (l) are performed. The interface between the substrate and the resin layer corresponds to the surface of the substrate on the resin layer side.
(a) Display captured images with the open source and public domain image processing software ImageJ (version 1.52a).
(b) Obtain the length per pixel from the scale representation displayed in the image.
(c) Select “FreeHand Selections”, create a ROI that includes the interface, and adjust the Brightness so that the colors are clearly different across the interface.
(d) Apply Process-Smooth twice.
(e) Set Image-Type to 8bit.
(f) Select “Straight” to draw a line along the interface.
(g) Install and run ABSnake, which is a Plugin of ImageJ. At that time, set “Gradient threshold” to 10 and set Draw color to Red. Leave other settings as default.
(h) Visually confirm that the interface is traced with Red. If it is defective, start over from (f).
(i) Run Image-Adjust-Color Threshold. Set a threshold to separate Red from the rest. Specifically, set the color space to RGB, check "Pass" for "Red", "Green" and "Blue", set the upper and lower limits of the Red range to the maximum value (255), and set "Green" and " Set the upper and lower limits of the range of "Blue" to the minimum value (0).
(j) Execute Process-Binary-Make Binary to binarize the trace line portion of the interface and the portion other than the trace line.
(k) Save the binarized data with “Text Image” with File-Save As.
(l) From the binarized data, convert the interface into a height data point sequence.
(3) Calculate the average tilt angle and the arithmetic average height from the height data point sequence according to the following procedures (m) to (q).
(m) Obtain the center line of the height data by quadratic regression using the least squares method, and subtract the center line from the height data so that the center line is 0 and the upward direction is positive, and the downward direction is negative. Let the direction of the center line be the x-axis, and the direction perpendicular to it (height direction) be the y-axis.
(n) Convert the height data to length using the length per pixel obtained in (b).
(o) Apply a Gaussian low-pass filter with a cut-off wavelength of 0.5 μm.
(p) tan −1 ((y i+1 −y i−1 )/2Δx) [y i is the height at the i-th point in the height data point sequence, Δx is the x-axis distance between adjacent points] The average tilt angle is obtained by calculating the arithmetic mean of the absolute values of the tilt angles of the obtained points.
(q) Calculate the arithmetic mean height by calculating the arithmetic mean of the absolute values of the height of each point.
 基材は、基材の樹脂層側の表面の算術平均高さが0.05μm以上0.25μm以下であることが好ましい。
 算術平均高さを0.05μm以上とすることにより、防眩性積層体の耐屈曲性をより良好にしやすくできる。耐屈曲性が良好になる理由は、基材と樹脂層との密着性が良好になることにより、屈曲時に界面剥離が生じないためと考えられる。
 算術平均高さを0.25μm以下とすることにより、内部ヘイズが上昇することを抑制しやすくできる。また、基材の一部が樹脂層用塗布液により溶解している実施形態の場合には、算術平均高さを0.25μm以下とすることにより、鉛筆硬度を良好にしやすくできる。前述の実施形態において鉛筆硬度を良好にしやすくできる理由は、樹脂層に基材成分が過度に溶出しないことによって、樹脂層の硬度が低下しにくくなるためと考えられる。
 基材の算術平均高さは、0.07μm以上がより好ましく、0.09μm以上がさらに好ましい。基材の算術平均高さは、0.23μm以下がより好ましく、0.20μm以下がさらに好ましい。
 基材の算術平均高さの好適な範囲の実施形態は、0.05μm以上0.25μm以下、0.05μm以上0.23μm以下、0.05μm以上0.20μm以下、0.07μm以上0.25μm以下、0.07μm以上0.23μm以下、0.07μm以上0.20μm以下、0.09μm以上0.25μm以下、0.09μm以上0.23μm以下、0.09μm以上0.20μm以下が挙げられる。
The substrate preferably has an arithmetic mean height of 0.05 μm or more and 0.25 μm or less on the resin layer side surface of the substrate.
By setting the arithmetic mean height to 0.05 μm or more, the bending resistance of the antiglare laminate can be easily improved. It is considered that the reason why the bending resistance is improved is that the adhesiveness between the base material and the resin layer is improved so that interfacial peeling does not occur during bending.
By setting the arithmetic mean height to 0.25 μm or less, it is possible to easily suppress an increase in internal haze. Further, in the case of an embodiment in which a part of the substrate is dissolved in the resin layer coating liquid, by setting the arithmetic mean height to 0.25 μm or less, the pencil hardness can be easily improved. The reason why the pencil hardness can be easily improved in the above-described embodiment is considered to be that the hardness of the resin layer is less likely to decrease due to the excessive elution of the base material component into the resin layer.
The arithmetic mean height of the substrate is more preferably 0.07 μm or more, and even more preferably 0.09 μm or more. The arithmetic mean height of the substrate is more preferably 0.23 μm or less, and even more preferably 0.20 μm or less.
Embodiments of suitable ranges for the arithmetic mean height of the substrate are 0.05 μm to 0.25 μm, 0.05 μm to 0.23 μm, 0.05 μm to 0.20 μm, 0.07 μm to 0.25 μm 0.07 μm or more and 0.23 μm or less, 0.07 μm or more and 0.20 μm or less, 0.09 μm or more and 0.25 μm or less, 0.09 μm or more and 0.23 μm or less, and 0.09 μm or more and 0.20 μm or less.
 基材の樹脂層側の表面の平均傾斜角及び算術平均高さを上述した範囲とするためには、基材の一部を樹脂層用塗布液で溶解させることが好ましい。但し、基材を樹脂層用塗布液で溶解する際には、樹脂層用塗布液を所定の組成として、かつ、所定の乾燥条件とすることが好ましい。所定の組成及び所定の乾燥条件については後述する。 In order to keep the average inclination angle and the arithmetic mean height of the surface of the resin layer side of the base material within the ranges described above, it is preferable to dissolve part of the base material in the resin layer coating liquid. However, when the substrate is dissolved in the resin layer coating liquid, it is preferable that the resin layer coating liquid has a predetermined composition and predetermined drying conditions. The prescribed composition and prescribed drying conditions will be described later.
  第1実施形態及び第2実施形態の防眩性積層体の基材、並びに、光学積層体の基材は、酸化防止剤、紫外線吸収剤、光安定剤及び可塑剤等の添加剤を含んでもよい。
 第1実施形態及び第2実施形態の防眩性積層体の基材の表面、、並びに、光学積層体の基材の表面には、密着性向上のために、コロナ放電処理等の物理的な処理又は化学的な処理を施したり、易接着層を形成したりしてもよい。
The base material of the antiglare laminate and the base material of the optical laminate of the first and second embodiments may contain additives such as antioxidants, ultraviolet absorbers, light stabilizers and plasticizers. good.
Physical treatment such as corona discharge treatment was applied to the surface of the base material of the antiglare laminate of the first and second embodiments and the surface of the base material of the optical laminate in order to improve adhesion. Treatment or chemical treatment may be applied, or an easy-adhesion layer may be formed.
<樹脂層>
 樹脂層は、基材側から、第1の樹脂層と、第2の樹脂層とを有することを要する。
 また、第1の樹脂層と、第2の樹脂層とは、下記式1を満たすことを要する。
 5.0<t1/t2<15.0 (式1)
 [式1中、t1は第1の樹脂層の平均厚みを示し、t2は第2の樹脂層の平均厚みを示す。]
<Resin layer>
The resin layer is required to have a first resin layer and a second resin layer from the substrate side.
Moreover, the first resin layer and the second resin layer need to satisfy the following formula 1.
5.0<t1/t2<15.0 (Formula 1)
[In formula 1, t1 indicates the average thickness of the first resin layer, and t2 indicates the average thickness of the second resin layer. ]
 第1の樹脂層及び第2の樹脂層は、例えば、基材上に、第1の粒子、樹脂となる成分、及び溶媒を含む樹脂層用塗布液を塗布、乾燥し、必要に応じて硬化することにより形成することができる。樹脂層用塗布液は、さらに、必要に応じて、無機微粒子、添加剤を含有してもよい。
 上記の手法の場合、樹脂層用塗布液が基材の一部を溶解し、基材から溶出した成分と樹脂層用塗布液とが混合して形成される領域が第1の樹脂層となり、基材から溶出した成分を殆ど含まず、樹脂層用塗布液を主成分とする領域が第2の樹脂層となる。すなわち、上記の手法では、1つの樹脂層用塗布液を用いた1回の塗布により、第1の樹脂層及び第2の樹脂層を形成することができる。
 上記の手法では、樹脂層用塗布液を所定の組成として、かつ、所定の乾燥条件とすることが肝要である。所定の組成及び所定の乾燥条件については後述する。
 基材上に樹脂層用塗布液を塗布する方法は特に制限されず、スピンコート法、ディップ法、スプレー法、ダイコート法、バーコート法、グラビアコート法、ロールコーター法、メニスカスコーター法、フレキソ印刷法、スクリーン印刷法、ピードコーター法等の汎用の塗布方法が挙げられる。
 樹脂層用塗布液を硬化する際には、紫外線及び電子線等の電離放射線を照射することが好ましい。紫外線源の具体例としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク灯、ブラックライト蛍光灯及びメタルハライドランプ灯等が挙げられる。また、紫外線の波長としては、190nm以上380nm以下の波長域が好ましい。電子線源の具体例としては、コッククロフトワルト型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種の電子線加速器が挙げられる。
For the first resin layer and the second resin layer, for example, a resin layer coating liquid containing the first particles, a resin component, and a solvent is applied onto the base material, dried, and cured as necessary. It can be formed by The resin layer coating liquid may further contain inorganic fine particles and additives, if necessary.
In the case of the above method, the resin layer coating liquid dissolves a part of the base material, and the region formed by mixing the component eluted from the base material with the resin layer coating liquid becomes the first resin layer. A region containing the resin layer coating liquid as a main component and containing almost no component eluted from the base material serves as the second resin layer. That is, in the above method, the first resin layer and the second resin layer can be formed by one application using one resin layer coating liquid.
In the above method, it is important to set the resin layer coating liquid to a predetermined composition and to set the drying conditions to predetermined conditions. The prescribed composition and prescribed drying conditions will be described later.
The method of applying the resin layer coating liquid onto the substrate is not particularly limited, and may be spin coating, dipping, spraying, die coating, bar coating, gravure coating, roll coating, meniscus coating, or flexographic printing. general-purpose coating methods such as coating method, screen printing method, and speed coater method.
When curing the resin layer coating liquid, it is preferable to irradiate ionizing radiation such as ultraviolet rays and electron beams. Specific examples of ultraviolet light sources include ultra-high pressure mercury lamps, high pressure mercury lamps, low pressure mercury lamps, carbon arc lamps, black light fluorescent lamps and metal halide lamps. Moreover, the wavelength of the ultraviolet rays is preferably in the wavelength range of 190 nm or more and 380 nm or less. Specific examples of electron beam sources include various electron beam accelerators such as Cockcroftwald type, Vandegraft type, resonant transformer type, insulating core transformer type, linear type, dynamitron type, and high frequency type.
 なお、樹脂層を2層にする手段として、後述する比較例1-3及び1-4のように、2つの樹脂層用塗布液を準備し、1層目の樹脂層を形成した後、2層目の樹脂層を積層する手段が考えられる。しかし、1層目の塗布液に粒子を含ませた場合には、防眩性を良好にしにくく、2層目の塗布液に粒子を含ませた場合には、耐屈曲性を良好にしにくい。また、2つの樹脂層用塗布液を用いて樹脂層を2層にする手段では、1層目と2層目との密着性を良好にしにくい。
 このため、上述した手法のように、1つの樹脂層用塗布液を用いた1回の塗布により、第1の樹脂層及び第2の樹脂層を形成することが好ましい。
As a means for forming two resin layers, two resin layer coating liquids were prepared as in Comparative Examples 1-3 and 1-4 described later, and after forming the first resin layer, two resin layers were formed. Means for laminating the resin layers for each layer can be considered. However, when particles are included in the coating liquid for the first layer, it is difficult to improve anti-glare properties, and when particles are included in the coating liquid for the second layer, it is difficult to improve bending resistance. In addition, it is difficult to achieve good adhesion between the first layer and the second layer by means of forming two resin layers using two resin layer coating liquids.
Therefore, it is preferable to form the first resin layer and the second resin layer by one application using one resin layer coating liquid, as in the method described above.
 樹脂層が単層の場合、防眩性積層体の耐屈曲性又は鉛筆硬度を良好にすることが困難である。例えば、硬度の高い樹脂層の単層の場合、防眩性積層体の耐屈曲性を良好にすることが困難である。また、硬度の低い樹脂層の単層の場合、防眩性積層体の鉛筆硬度を良好にすることが困難である。
 さらに、樹脂層が、第1の樹脂層と第2の樹脂層とを有していても、式1を満たさない場合、防眩性積層体の耐屈曲性又は鉛筆硬度を良好にすることができない。第2の樹脂層は第1の樹脂層よりも基材から遠いため、基材から溶出した成分の含有量は、第1の樹脂層よりも第2の樹脂層の方が少なくなる。よって、第2の樹脂層の硬度は、第1の樹脂層の硬度よりも高くなりやすい。t1/t2が15.0以上であることは、硬度の高い第2の樹脂層の厚みの割合が小さいこと意味する。このため、t1/t2が15.0以上の場合、防眩性積層体の鉛筆硬度を良好にすることができない。また、t1/t2が5.0以下であることは、硬度の高い第2の樹脂層の厚みの割合が大きいこと意味する。このため、t1/t2が5.0以下の場合、防眩性積層体の耐屈曲性を良好にすることができない。
When the resin layer is a single layer, it is difficult to improve the flex resistance or pencil hardness of the antiglare laminate. For example, in the case of a single resin layer having a high hardness, it is difficult to improve the flex resistance of the antiglare laminate. Moreover, in the case of a single resin layer having a low hardness, it is difficult to improve the pencil hardness of the antiglare laminate.
Furthermore, even if the resin layer has the first resin layer and the second resin layer, if the formula 1 is not satisfied, it is possible to improve the bending resistance or pencil hardness of the antiglare laminate. Can not. Since the second resin layer is farther from the substrate than the first resin layer, the content of the component eluted from the substrate is smaller in the second resin layer than in the first resin layer. Therefore, the hardness of the second resin layer tends to be higher than the hardness of the first resin layer. That t1/t2 is 15.0 or more means that the ratio of the thickness of the second resin layer with high hardness is small. Therefore, when t1/t2 is 15.0 or more, the pencil hardness of the antiglare laminate cannot be improved. Further, when t1/t2 is 5.0 or less, it means that the ratio of the thickness of the second resin layer with high hardness is large. Therefore, when t1/t2 is 5.0 or less, the anti-glare laminate cannot have good bending resistance.
 t1/t2は、5.5以上であることが好ましく、6.0以上であることがより好ましい。また、t1/t2は、14.0以下であることが好ましく、13.5以下であることがより好ましい。
 t1/t2の好適な範囲の実施形態は、5.0超15.0未満、5.0超14.0以下、5.0超13.5以下、5.5以上15.0未満、5.5以上14.0以下、5.5以上13.5以下、6.0以上15.0未満、6.0以上14.0以下、6.0以上13.5以下が挙げられる。
t1/t2 is preferably 5.5 or more, more preferably 6.0 or more. Also, t1/t2 is preferably 14.0 or less, more preferably 13.5 or less.
Embodiments of preferred ranges for t1/t2 are greater than 5.0 and less than 15.0; greater than 5.0 and less than 14.0; greater than 5.0 and less than 13.5; 5 or more and 14.0 or less, 5.5 or more and 13.5 or less, 6.0 or more and less than 15.0, 6.0 or more and 14.0 or less, 6.0 or more and 13.5 or less.
 樹脂層全体の厚み(言い換えると、第1の樹脂層と第2の樹脂層との合計厚み)は、下限は、7.0μm以上が好ましく、8.0μm以上がより好ましく、9.0μm以上がさらに好ましく、上限は、15.0μm以下が好ましく、14.0μm以下がより好ましく、13.0μm以下がさらに好ましい。
 樹脂層全体の厚みの好適な範囲の実施形態は、7.0μm以上15.0μm以下、7.0μm以上14.0μm以下、7.0μm以上13.0μm以下、8.0μm以上15.0μm以下、8.0μm以上14.0μm以下、8.0μm以上13.0μm以下、9.0μm以上15.0μm以下、9.0μm以上14.0μm以下、9.0μm以上13.0μm以下が挙げられる。
 第1の樹脂層の平均厚みt1は、下限は、5.0μm以上が好ましく、7.0μm以上がより好ましく、8.5μm以上がさらに好ましく、上限は、13.0μm以下が好ましく、12.0μm以下がより好ましく、11.0μm以下がさらに好ましい。t1を5.0μm以上とすることにより、耐屈曲性を良好にしやすくでき、t1を13.0μm以下とすることにより、鉛筆硬度の低下を抑制しやすくできる。
 t1の好適な範囲の実施形態は、5.0μm以上13.0μm以下、5.0μm以上12.0μm以下、5.0μm以上11.0μm以下、7.0μm以上13.0μm以下、7.0μm以上12.0μm以下、7.0μm以上11.0μm以下、8.5μm以上13.0μm以下、8.5μm以上12.0μm以下、8.5μm以上11.0μm以下が挙げられる。
 第2の樹脂層の平均厚みt2は、下限は、0.3μm以上が好ましく、0.5μm以上がより好ましく、0.7μm以上がさらに好ましく、上限は、4.0μm以下が好ましく、3.0μm以下がより好ましく、2.7μm以下がさらに好ましい。t2を0.3μm以上とすることにより、鉛筆硬度を良好にしやすくでき、t2を4.0μm以下とすることにより、耐屈曲性の低下を抑制しやすくできる。
 t2の好適な範囲の実施形態は、0.3μm以上4.0μm以下、0.3μm以上3.0μm以下、0.3μm以上2.7μm以下、0.5μm以上4.0μm以下、0.5μm以上3.0μm以下、0.5μm以上2.7μm以下、0.7μm以上4.0μm以下、0.7μm以上3.0μm以下、0.7μm以上2.7μm以下が挙げられる。
The lower limit of the thickness of the entire resin layer (in other words, the total thickness of the first resin layer and the second resin layer) is preferably 7.0 μm or more, more preferably 8.0 μm or more, and more preferably 9.0 μm or more. More preferably, the upper limit is preferably 15.0 μm or less, more preferably 14.0 μm or less, and even more preferably 13.0 μm or less.
Preferred embodiments of the thickness of the entire resin layer are 7.0 μm or more and 15.0 μm or less, 7.0 μm or more and 14.0 μm or less, 7.0 μm or more and 13.0 μm or less, 8.0 μm or more and 15.0 μm or less, 8.0 μm or more and 14.0 μm or less, 8.0 μm or more and 13.0 μm or less, 9.0 μm or more and 15.0 μm or less, 9.0 μm or more and 14.0 μm or less, and 9.0 μm or more and 13.0 μm or less.
The lower limit of the average thickness t1 of the first resin layer is preferably 5.0 μm or more, more preferably 7.0 μm or more, and still more preferably 8.5 μm or more, and the upper limit is preferably 13.0 μm or less, and 12.0 μm. The following is more preferable, and 11.0 μm or less is even more preferable. By setting t1 to 5.0 μm or more, it is possible to easily improve the bending resistance, and by setting t1 to be 13.0 μm or less, it is possible to easily suppress a decrease in pencil hardness.
Embodiments of preferred ranges for t1 are 5.0 μm to 13.0 μm, 5.0 μm to 12.0 μm, 5.0 μm to 11.0 μm, 7.0 μm to 13.0 μm, 7.0 μm or more. 12.0 μm or less, 7.0 μm or more and 11.0 μm or less, 8.5 μm or more and 13.0 μm or less, 8.5 μm or more and 12.0 μm or less, and 8.5 μm or more and 11.0 μm or less.
The average thickness t2 of the second resin layer has a lower limit of preferably 0.3 μm or more, more preferably 0.5 μm or more, and still more preferably 0.7 μm or more, and an upper limit of 4.0 μm or less, preferably 3.0 μm. The following is more preferable, and 2.7 μm or less is even more preferable. By setting t2 to 0.3 μm or more, the pencil hardness can be easily improved, and by setting t2 to 4.0 μm or less, deterioration of bending resistance can be easily suppressed.
Embodiments of preferred ranges for t2 are 0.3 μm to 4.0 μm, 0.3 μm to 3.0 μm, 0.3 μm to 2.7 μm, 0.5 μm to 4.0 μm, 0.5 μm or more. 3.0 μm or less, 0.5 μm or more and 2.7 μm or less, 0.7 μm or more and 4.0 μm or less, 0.7 μm or more and 3.0 μm or less, and 0.7 μm or more and 2.7 μm or less.
 第1の樹脂層の平均厚み、及び、第2の樹脂層の平均厚みは、例えば、走査型透過電子顕微鏡(STEM)により撮像した防眩性積層体の断面写真の任意の箇所を20点選び、その平均値により算出できる。STEMの加速電圧は10kV以上30kV以下、STEMの倍率は1000倍以上7000倍以下とすることが好ましい。 For the average thickness of the first resin layer and the average thickness of the second resin layer, for example, 20 arbitrary points of cross-sectional photographs of the antiglare laminate taken by a scanning transmission electron microscope (STEM) are selected. , can be calculated from its average value. It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
 樹脂層は、平均粒子径0.5μm以上の第1の粒子を含むことを要する。
 樹脂層が第1の粒子を含まない場合、防眩性積層体に防眩性を付与することができない。
The resin layer is required to contain first particles having an average particle size of 0.5 μm or more.
If the resin layer does not contain the first particles, the antiglare property cannot be imparted to the antiglare laminate.
 樹脂層は、第1の粒子の個数基準の70%以上が、第1の樹脂層及び第2の樹脂層に跨って存在することを要する。
 第1の粒子23Aが第1の樹脂層21A及び第2の樹脂層22Aに跨って存在するとは、図1に示すように、樹脂層20Aの厚み方向において、第1の粒子23Aが、第1の樹脂層21A側及び第2の樹脂層22A側の両側に存在することを意味する。一方、図2では、第1の粒子23Aは、第1の樹脂層21A及び第2の樹脂層22Aに跨って存在せず、第2の樹脂層22A側の片側に存在している。図3では、第1の粒子23Aは、第1の樹脂層21A及び第2の樹脂層22Aに跨って存在せず、第1の樹脂層21A側の片側に存在している。
 本明細書において、“第1の粒子の個数基準の70%以上が、第1の樹脂層及び第2の樹脂層に跨って存在する”ことを、“第1の粒子が厚み方向の位置の条件を満たす”と記述する場合がある。本明細書において、“第1の粒子の個数基準の70%以上が、第1の樹脂層及び第2の樹脂層に跨って存在しない”ことを、“第1の粒子が厚み方向の位置の条件を満たさない”と記述する場合がある。
In the resin layer, 70% or more based on the number of the first particles need to exist across the first resin layer and the second resin layer.
The existence of the first particles 23A across the first resin layer 21A and the second resin layer 22A means that the first particles 23A extend across the first resin layer 21A and the second resin layer 22A in the thickness direction of the resin layer 20A as shown in FIG. means that it exists on both sides of the resin layer 21A side and the second resin layer 22A side. On the other hand, in FIG. 2, the first particles 23A do not exist across the first resin layer 21A and the second resin layer 22A, but exist on one side of the second resin layer 22A. In FIG. 3, the first particles 23A do not exist across the first resin layer 21A and the second resin layer 22A, but exist on one side of the first resin layer 21A.
In this specification, "70% or more of the first particles based on the number exist across the first resin layer and the second resin layer" means "the first particles are positioned in the thickness direction. Satisfy the conditions”. In this specification, "70% or more of the first particles based on the number do not exist across the first resin layer and the second resin layer" means "the first particles are positioned in the thickness direction. conditions are not met.”
 第1の粒子が厚み方向の位置の条件を満たさない場合、防眩性及び耐屈曲性を良好にすることができない。
 第1の粒子が厚み方向の位置の条件を満たさない場合、第1の粒子の個数基準の30%超が、第1の樹脂層及び第2の樹脂層を跨ぐことなく、第1の樹脂層及び第2の樹脂層の何れかに存在することになる。本明細書において、第1の樹脂層及び第2の樹脂層を跨ぐことなく、第1の樹脂層及び第2の樹脂層の何れかに存在する第1の粒子のことを、“偏った第1の粒子”と記述する場合がある。第1の樹脂層に偏った第1の粒子が多く含まれる場合、第1の粒子によって樹脂層の表面に凹凸が形成されにくくなるため、防眩性を良好にすることができない。また、防眩性積層体を屈曲した際には、第1の粒子と樹脂層との界面で剥離が生じる場合があり、前記剥離が耐屈曲性を低下させる原因となる。第1の粒子と樹脂層との界面の剥離は、樹脂層の硬度が硬い方が抑制しにくい。このため、第2の樹脂層に偏った第1の粒子が多く含まれる場合、耐屈曲性を良好にすることができない。
If the first particles do not satisfy the condition of the position in the thickness direction, good antiglare properties and bending resistance cannot be obtained.
When the first particles do not satisfy the condition of the position in the thickness direction, more than 30% of the number-based number of the first particles does not straddle the first resin layer and the second resin layer, and the first resin layer and the second resin layer. In this specification, the first particles present in either the first resin layer or the second resin layer without straddling the first resin layer and the second resin layer are referred to as "biased first particles". It may be described as "particle of 1". If the first resin layer contains a large amount of uneven first particles, it is difficult for the first particles to form irregularities on the surface of the resin layer, and therefore antiglare properties cannot be improved. Moreover, when the antiglare laminate is bent, peeling may occur at the interface between the first particles and the resin layer, and the peeling causes deterioration of the bending resistance. Separation at the interface between the first particles and the resin layer is more difficult to suppress when the hardness of the resin layer is higher. For this reason, when the second resin layer contains a large amount of the first particles which are unevenly distributed, the flex resistance cannot be improved.
 第1の粒子が、樹脂層の厚み方向において、第1の樹脂層側及び第2の樹脂層側の両側に存在する割合は、個数基準で80%以上であることが好ましく、90%以上であることがより好ましい。 The ratio of the first particles present on both the first resin layer side and the second resin layer side in the thickness direction of the resin layer is preferably 80% or more based on the number, and is preferably 90% or more. It is more preferable to have
 樹脂層の厚み方向における第1の粒子が存在する位置は、例えば、走査型透過電子顕微鏡(STEM)により撮像した防眩性積層体の断面写真から判別できる。また、上述した個数基準の割合は、前記断面写真から算出できる。なお、数値の信頼性を高めるために、複数の断面写真を取得し、第1の粒子の合計数を50以上とした上で、上述した個数基準の割合を算出することが好ましい。
 STEMの加速電圧は10kV以上30kV以下、STEMの倍率は1000倍以上7000倍以下とすることが好ましい。
The position of the first particles in the thickness direction of the resin layer can be determined, for example, from a cross-sectional photograph of the antiglare laminate taken with a scanning transmission electron microscope (STEM). Also, the ratio based on the number described above can be calculated from the cross-sectional photograph. In order to increase the reliability of the numerical value, it is preferable to obtain a plurality of cross-sectional photographs, set the total number of the first particles to 50 or more, and then calculate the above-mentioned number-based ratio.
It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
 第1の樹脂層の厚み方向の真ん中のインデンテーション硬さを示すH1と、第2の樹脂層の厚み方向の真ん中のインデンテーション硬さを示すH2とは、H1<H2の関係であることが好ましい。
 H1<H2の関係を満たすことにより、防眩性積層体の鉛筆硬度及び耐屈曲性を良好にしやすくできる。
H1 indicating the indentation hardness in the middle in the thickness direction of the first resin layer and H2 indicating the indentation hardness in the middle in the thickness direction of the second resin layer have a relationship of H1<H2. preferable.
By satisfying the relationship H1<H2, the antiglare laminate can be easily improved in pencil hardness and flex resistance.
 H1とH2とは、40MPa<H2-H1であることが好ましい。H2-H1を40MPa超とすることにより、防眩性積層体の鉛筆硬度及び耐屈曲性を良好にしやすくできる。H2-H1は、45MPa以上であることがより好ましく、50MPa以上であることがさらに好ましい。
 H2-H1が大きすぎると、H2が大きすぎることにより防眩性積層体の耐屈曲性が低下したり、H1が小さすぎることにより防眩性積層体の鉛筆硬度が低下しやすくなる。このため、H2-H1は、100MPa以下であることが好ましく、90MPa以下であることがより好ましく、80MPa以下であることがさらに好ましい。
 H2の値は、樹脂層用塗布液を構成する樹脂成分により調整することができる。H1の値は、樹脂層用塗布液を構成する樹脂成分と、基材から溶出した成分との混合物の値であるため、前記2つの成分により調整することができる。
 H2-H1の好適な範囲の実施形態は、40MPa超100MPa以下、40MPa超90MPa以下、40MPa超80MPa以下、45MPa以上100MPa以下、45MPa以上90MPa以下、45MPa以上80MPa以下、50MPa以上100MPa以下、50MPa以上90MPa以下、50MPa以上80MPa以下が挙げられる。
H1 and H2 are preferably 40 MPa<H2-H1. When H2-H1 is more than 40 MPa, the pencil hardness and flex resistance of the antiglare laminate can be easily improved. H2-H1 is more preferably 45 MPa or more, and even more preferably 50 MPa or more.
When H2-H1 is too large, the bending resistance of the antiglare laminate tends to decrease due to too large H2, and the pencil hardness of the antiglare laminate tends to decrease due to too small H1. Therefore, H2-H1 is preferably 100 MPa or less, more preferably 90 MPa or less, and even more preferably 80 MPa or less.
The value of H2 can be adjusted by the resin component that constitutes the resin layer coating liquid. Since the value of H1 is the value of the mixture of the resin component constituting the resin layer coating liquid and the component eluted from the substrate, it can be adjusted by the two components.
Embodiments of preferred ranges of H2-H1 are greater than 40 MPa and less than or equal to 100 MPa, greater than 40 MPa and less than or equal to 90 MPa, greater than 40 MPa and less than or equal to 80 MPa, greater than or equal to 45 MPa and less than or equal to 100 MPa, greater than or equal to 45 MPa and less than or equal to 90 MPa, greater than or equal to 45 MPa and less than or equal to 80 MPa, greater than or equal to 50 MPa and less than or equal to 100 MPa, greater than or equal to 50 MPa and less than or equal to 90 MPa. Below, 50 MPa or more and 80 MPa or less are mentioned.
 H1は、下限は、鉛筆硬度を良好にしやすくするため、150MPa以上であることが好ましく、160MPa以上であることがより好ましく、170MPa以上であることがさらに好ましく、上限は、耐屈曲性の低下を抑制しやすくするため、250MPa以下であることが好ましく、240MPa以下であることがより好ましく、230MPa以下であることがさらに好ましい。
 H1の好適な範囲の実施形態は、150MPa以上250MPa以下、150MPa以上240MPa以下、150MPa以上230MPa以下、160MPa以上250MPa以下、160MPa以上240MPa以下、160MPa以上230MPa以下、170MPa以上250MPa以下、170MPa以上240MPa以下、170MPa以上230MPa以下が挙げられる。
 H2は、下限は、鉛筆硬度を良好にしやすくするため、230MPa以上であることが好ましく、240MPa以上であることがより好ましく、245MPa以上であることがさらに好ましく、上限は、耐屈曲性の低下を抑制しやすくするため、310MPa以下であることが好ましく、290MPa以下であることがより好ましく、285MPa以下であることがさらに好ましい。
 H2の好適な範囲の実施形態は、230MPa以上310MPa以下、230MPa以上290MPa以下、230MPa以上285MPa以下、240MPa以上310MPa以下、240MPa以上290MPa以下、240MPa以上285MPa以下、245MPa以上310MPa以下、245MPa以上290MPa以下、245MPa以上285MPa以下が挙げられる。
The lower limit of H1 is preferably 150 MPa or more, more preferably 160 MPa or more, and even more preferably 170 MPa or more, in order to facilitate good pencil hardness. To facilitate suppression, the pressure is preferably 250 MPa or less, more preferably 240 MPa or less, and even more preferably 230 MPa or less.
Embodiments of suitable ranges for H1 are 150 MPa to 250 MPa, 150 MPa to 240 MPa, 150 MPa to 230 MPa, 160 MPa to 250 MPa, 160 MPa to 240 MPa, 160 MPa to 230 MPa, 170 MPa to 250 MPa, 170 MPa to 240 MPa, 170 MPa or more and 230 MPa or less is mentioned.
The lower limit of H2 is preferably 230 MPa or more, more preferably 240 MPa or more, and still more preferably 245 MPa or more, in order to facilitate good pencil hardness. To facilitate suppression, the pressure is preferably 310 MPa or less, more preferably 290 MPa or less, and even more preferably 285 MPa or less.
Embodiments of suitable ranges for H2 include: 245 MPa or more and 285 MPa or less can be mentioned.
-インデンテーション硬さの測定方法-
 H1~H3を測定するためには、測定対象の層の断面が露出した測定用のサンプルを作製する必要がある。前記サンプルは、例えば、下記(A1)~(A2)の工程で作製できる。
-Method for measuring indentation hardness-
In order to measure H1 to H3, it is necessary to prepare a measurement sample in which the cross section of the layer to be measured is exposed. The sample can be prepared, for example, by the following steps (A1) to (A2).
(A1)防眩性積層体を任意の大きさに切断したカットサンプルを作製した後、前記カットサンプルを樹脂で包埋した包埋サンプルを作製する。カットサンプルの大きさは、例えば、縦10mm×横3mmの短冊状とする。包埋用の樹脂はエポキシ樹脂が好ましい。
 包埋サンプルは、例えば、シリコン包埋板内にカットサンプルを配置した後に包埋用の樹脂を流し込み、さらに、包埋用の樹脂を硬化させた後、シリコン包埋板から、カットサンプル及びこれを包む包埋用の樹脂を取り出すことにより得ることができる。以下に例示するストルアス社製のエポキシ樹脂の場合、前述した硬化の工程は、常温で12時間放置して硬化することが好ましい。包埋サンプルの形状はブロック状である。
 シリコン包埋板は、例えば、堂阪イーエム社製のものが挙げられる。シリコン包埋板は、シリコンカプセルと称する場合もある。包埋用のエポキシ樹脂は、例えば、ストルアス社製の商品名「エポフィックス」と、同社製の商品名「エポフィックス用硬化剤」とを10:1.2で混合したものを用いることができる。
(A1) After preparing a cut sample by cutting the antiglare laminate into an arbitrary size, an embedding sample is prepared by embedding the cut sample in a resin. The size of the cut sample is, for example, a strip of 10 mm long×3 mm wide. The embedding resin is preferably an epoxy resin.
For the embedded sample, for example, the cut sample is placed in the silicon embedding plate, the embedding resin is poured in, and the embedding resin is cured. can be obtained by taking out the embedding resin enveloping the . In the case of the following epoxy resin manufactured by Struers, it is preferable that the above-described curing step is performed by allowing the resin to stand at room temperature for 12 hours. The shape of the embedded sample is block-like.
Examples of silicon embedding plates include those manufactured by Dosaka EM Co., Ltd. A silicon-embedded plate may also be referred to as a silicon capsule. As the epoxy resin for embedding, for example, a mixture of a trade name "Epofix" manufactured by Struers and a trade name "Hardener for Epofix" manufactured by the same company at a ratio of 10:1.2 can be used. .
(A2)ブロック状の包埋サンプルを垂直に切断し、防眩性積層体の断面が露出してなる、インデンテーション硬さの測定用のサンプルを作製する。インデンテーション硬さの測定用のサンプルの形状はブロック状を維持している。包埋サンプルは、カットサンプルの中心を通るように切断することが好ましい。包埋サンプルはダイヤモンドナイフで切断することが好ましい。
 ブロック状の包埋サンプルを切断する装置としては、例えば、ライカマイクロシステムズ社製の商品名「ウルトラミクロトーム EM UC7」が挙げられる。ブロック状の包埋サンプルを切断する際は、最初は大まかに切断し(粗トリミング)、最終的には、「SPEED:1.00mm/s」、「FEED:70nm」の条件で精密にトリミングすることが好ましい。
 上記のように、ブロック状の包埋サンプルから切断された切片のうち、穴等の欠陥がなく、かつ、厚みが60nm以上100nm以下で均一な切片は、第1の樹脂層の平均厚み、第2の樹脂層の平均厚み、樹脂層の厚み方向における第1の粒子の位置、基材の樹脂層側の表面の平均傾斜角、基材の樹脂層側の表面の算術平均高さ、第1の粒子の粒子径、無機微粒子の粒子径の測定用サンプルとして用いることができる。
(A2) A block-shaped embedded sample is cut vertically to prepare a sample for measurement of indentation hardness, in which a cross section of the antiglare laminate is exposed. The shape of the sample for measurement of indentation hardness remains blocky. The embedded sample is preferably cut through the center of the cut sample. Embedded samples are preferably cut with a diamond knife.
An example of an apparatus for cutting a block-shaped embedded sample is the product name "Ultramicrotome EM UC7" manufactured by Leica Microsystems. When cutting a block-shaped embedded sample, first cut roughly (rough trimming), and finally trim precisely under the conditions of "SPEED: 1.00 mm/s" and "FEED: 70 nm". is preferred.
As described above, among the sections cut from the block-shaped embedded sample, the section without defects such as holes and having a uniform thickness of 60 nm or more and 100 nm or less is the average thickness of the first resin layer, the first The average thickness of the resin layer of 2, the position of the first particles in the thickness direction of the resin layer, the average inclination angle of the resin layer side surface of the base material, the arithmetic mean height of the resin layer side surface of the base material, the first can be used as a sample for measuring the particle size of the particles and the particle size of the inorganic fine particles.
 H1~H3は、上述したサンプルの切断面の所定の位置に、バーコビッチ圧子(材質:ダイヤモンド三角錐)を垂直に押し込んで測定する。
 所定の位置は、H1の測定では、第1の樹脂層の厚み方向の真ん中であり、H2の測定では、第2の樹脂層の厚み方向の真ん中であり、H3の測定では、基材の厚み方向の真ん中である。第1の樹脂層の厚み方向の真ん中は、第1の樹脂層の厚み方向の中心であることが好ましいが、前記中心からのズレが0.10μmは許容できる。同様に、第2の樹脂層の厚み方向の真ん中は、第2の樹脂層の厚み方向の中心であることが好ましいが、前記中心からのズレが0.10μmは許容できる。同様に、基材の厚み方向の真ん中は、基材の厚み方向の中心であることが好ましいが、前記中心からのズレが0.10μmは許容できる。
H1 to H3 are measured by pressing a Berkovich indenter (material: diamond triangular pyramid) vertically into a predetermined position on the cut surface of the sample described above.
The predetermined position is the middle of the thickness direction of the first resin layer in the measurement of H1, the middle of the thickness direction of the second resin layer in the measurement of H2, and the thickness of the substrate in the measurement of H3. in the middle of the direction. The center in the thickness direction of the first resin layer is preferably the center in the thickness direction of the first resin layer, but a deviation of 0.10 μm from the center is permissible. Similarly, the center in the thickness direction of the second resin layer is preferably the center in the thickness direction of the second resin layer, but a deviation of 0.10 μm from the center is permissible. Similarly, the center in the thickness direction of the substrate is preferably the center in the thickness direction of the substrate, but a deviation of 0.10 μm from the center is permissible.
 インデンテーション硬さは、下記の条件で測定することが好ましい。
<測定条件>
・使用圧子:バーコビッチ圧子(型番:TI-0039、BRUKER社製)
・押し込み条件:荷重制御方式
・最大荷重:50μN
・荷重印加時間:10秒間(荷重変化率:5μN/sec)
・保持時間:5秒間
・保持荷重:50μN
・荷重除荷時間:10秒間(荷重変化率:-5μN/sec)
The indentation hardness is preferably measured under the following conditions.
<Measurement conditions>
・ Used indenter: Berkovich indenter (model number: TI-0039, manufactured by BRUKER)
・Pushing conditions: Load control method ・Maximum load: 50 μN
・Load application time: 10 seconds (load change rate: 5 μN / sec)
・Holding time: 5 seconds ・Holding load: 50 μN
・ Load unloading time: 10 seconds (load change rate: -5 μN / sec)
 インデンテーション硬さは、下記のようにして算出することができる。
 まず、押し込み荷重F(N)に対応する押し込み深さh(nm)を連続的に測定することにより、荷重-変位曲線を作成する。作成した荷重-変位曲線を解析することにより、最大押し込み荷重Fmax(N)を、圧子と測定対象の層とが接している投影面積A(mm)で除した値として、インデンテーション硬さHITを算出することができる(下記式2)。
 HIT=Fmax/A   (式2)
 ここで、Aは標準試料の溶融石英(BRUKER社製の5-0098)を用いてOliver-Pharr法で圧子先端曲率を補正した接触投影面積である。
 本明細書において、H1~H3は、20個のサンプルの測定値の平均値を意味する。
The indentation hardness can be calculated as follows.
First, a load-displacement curve is created by continuously measuring the indentation depth h (nm) corresponding to the indentation load F (N). By analyzing the created load-displacement curve, the indentation hardness was obtained as a value obtained by dividing the maximum indentation load F max (N) by the projected area A p (mm 2 ) where the indenter and the layer to be measured are in contact. HIT can be calculated (formula 2 below).
HIT = Fmax / Ap (equation 2)
Here, A p is the projected contact area corrected for the tip curvature of the indenter by the Oliver-Pharr method using a standard sample of fused quartz (5-0098 manufactured by BRUKER).
As used herein, H1 to H3 mean the average values of measurements of 20 samples.
《第1の粒子》
 第1の粒子は、平均粒子径が0.5μm以上の粒子である。平均粒子径が0.5μm未満の場合、樹脂層の表面に凹凸形状を形成することが困難であり、防眩性を良好にすることができない。
《First particle》
The first particles are particles having an average particle size of 0.5 μm or more. If the average particle size is less than 0.5 μm, it is difficult to form unevenness on the surface of the resin layer, and antiglare properties cannot be improved.
 第1の粒子としては、ポリメチルメタクリレート、ポリアクリル-スチレン共重合体、メラミン樹脂、ポリカーボネート、ポリスチレン、ポリ塩化ビニル、ベンゾグアナミン-メラミン-ホルムアルデヒド縮合物、シリコーン、フッ素系樹脂及びポリエステル系樹脂等の樹脂の1種以上から形成される有機粒子;シリカ、アルミナ、ジルコニア及びチタニア等の無機物の1種以上から形成される無機粒子;が挙げられる。これらの中でも、有機粒子は、分散安定性に優れ、かつ、比重が比較的小さいため、第1の粒子が厚み方向の位置の条件を満たしやすくできる点で好ましい。 As the first particles, resins such as polymethyl methacrylate, polyacrylic-styrene copolymer, melamine resin, polycarbonate, polystyrene, polyvinyl chloride, benzoguanamine-melamine-formaldehyde condensate, silicone, fluorine-based resin and polyester-based resin. inorganic particles formed from one or more inorganic substances such as silica, alumina, zirconia and titania; Among these, organic particles are preferable because they are excellent in dispersion stability and have a relatively small specific gravity, so that the first particles can easily satisfy the positional conditions in the thickness direction.
 第1の粒子の含有量は、樹脂層用塗布液の樹脂成分100質量部に対して、下限は、0.5質量部以上であることが好ましく、1.0質量部以上であることがより好ましく、1.5質量部以上であることがさらに好ましく、上限は、10.0質量部以下であることが好ましく、5.0質量部以下であることがより好ましく、3.0質量部以下であることがさらに好ましい。
 第1の粒子の含有量を0.5質量部以上とすることにより、防眩性を良好にしやすくできる。また、第1の粒子の含有量を10.0質量部以下とすることにより、耐屈曲性の低下を抑制しやすくできる。
 樹脂成分100質量部に対する、第1の粒子の含有量の好適な範囲の実施形態は、0.5質量部以上10.0質量部以下、0.5質量部以上5.0質量部以下、0.5質量部以上3.0質量部以下、1.0質量部以上10.0質量部以下、1.0質量部以上5.0質量部以下、1.0質量部以上3.0質量部以下、1.5質量部以上10.0質量部以下、1.5質量部以上5.0質量部以下、1.5質量部以上3.0質量部以下が挙げられる。
The lower limit of the content of the first particles is preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, with respect to 100 parts by mass of the resin component of the resin layer coating liquid. It is preferably 1.5 parts by mass or more, and the upper limit is preferably 10.0 parts by mass or less, more preferably 5.0 parts by mass or less, and 3.0 parts by mass or less. It is even more preferable to have
By setting the content of the first particles to 0.5 parts by mass or more, the antiglare property can be easily improved. Further, by setting the content of the first particles to 10.0 parts by mass or less, it is possible to easily suppress deterioration in bending resistance.
An embodiment of a preferred range of the content of the first particles with respect to 100 parts by mass of the resin component is 0.5 parts by mass or more and 10.0 parts by mass or less, 0.5 parts by mass or more and 5.0 parts by mass or less, 0 .5 to 3.0 parts by mass, 1.0 to 10.0 parts by mass, 1.0 to 5.0 parts by mass, 1.0 to 3.0 parts by mass , 1.5 to 10.0 parts by mass, 1.5 to 5.0 parts by mass, and 1.5 to 3.0 parts by mass.
 第1の粒子の平均粒子径は、0.8μm以上であることが好ましく、1.0μm以上であることがより好ましい。
 第1の粒子が厚み方向の位置の条件を満たしやすくするために、第1の粒子の平均粒子径は、3.0μm以下であることが好ましく、2.7μm以下であることがより好ましく、2.5μm以下であることがさらに好ましい。
 第1の粒子の平均粒子径の好適な範囲の実施形態は、0.8μm以上3.0μm以下、0.8μm以上2.7μm以下、0.8μm以上2.5μm以下、1.0μm以上3.0μm以下、1.0μm以上2.7μm以下、1.0μm以上2.5μm以下が挙げられる。
The average particle size of the first particles is preferably 0.8 μm or more, more preferably 1.0 μm or more.
The average particle diameter of the first particles is preferably 3.0 μm or less, more preferably 2.7 μm or less, so that the first particles can easily satisfy the position condition in the thickness direction. 0.5 μm or less is more preferable.
Preferred embodiments of the average particle size of the first particles are 0.8 μm or more and 3.0 μm or less, 0.8 μm or more and 2.7 μm or less, 0.8 μm or more and 2.5 μm or less, 1.0 μm or more and 3.0 μm or less. 0 μm or less, 1.0 μm or more and 2.7 μm or less, or 1.0 μm or more and 2.5 μm or less.
 第1の粒子の平均粒子径は、例えば、以下の(B1)~(B3)の作業により算出できる。
(B1)光学顕微鏡にて防眩性積層体の透過観察画像を撮像する。倍率は500倍以上2000倍以下が好ましい。
(B2)観察画像から任意の10個の粒子を抽出し、個々の粒子の粒子径を算出する。粒子径は、粒子の断面を任意の平行な2本の直線で挟んだとき、該2本の直線間距離が最大となるような2本の直線の組み合わせにおける直線間距離として測定される。
(B3)同じサンプルの別画面の観察画像において同様の作業を5回行って、合計50個分の粒子径の数平均から得られる値を粒子の平均粒子径とする。
 ただし、光学的に第1の粒子が観察できないときは、以下の(B4)~(B6)により第1の粒子の平均粒子径を算出する。
(B4)防眩性積層体から、第1の粒子の中心を通る断面となるような切片をミクロトームにて作製する。切片の厚さは60nm~100nmが好ましい。1つの第1の粒子につき連続で複数の切片を作製し、各切片から(B5)の作業により算出した粒子径が極大となる切片を、第1の粒子の中心を通る断面となる切片とすることができる。
(B5)得られた切片を走査型透過電子顕微鏡(STEM)にて観察して粒子径を算出する。粒子径の算出方法は(B2)と同様とする。倍率は5000倍以上20000倍以下が好ましい。
(B6)(B4)~(B5)の作業を20個分の粒子に対して行って、20個分の粒子径の数平均から得られる値を第1の粒子の平均粒子径とする。
The average particle size of the first particles can be calculated, for example, by the following operations (B1) to (B3).
(B1) Take a transmission observation image of the antiglare laminate with an optical microscope. The magnification is preferably 500 times or more and 2000 times or less.
(B2) Extract arbitrary 10 particles from the observation image and calculate the particle diameter of each particle. The particle size is measured as the distance between two straight lines that provide the maximum distance between any two parallel straight lines that sandwich the cross section of the particle.
(B3) Perform the same operation 5 times on observation images of the same sample on different screens, and take the value obtained from the number average of the particle diameters for a total of 50 particles as the average particle diameter of the particles.
However, when the first particles cannot be optically observed, the average particle diameter of the first particles is calculated by the following (B4) to (B6).
(B4) Using a microtome, the antiglare laminate is cut so as to have a cross section passing through the center of the first particle. The thickness of the section is preferably 60 nm to 100 nm. A plurality of sections are continuously produced for each first particle, and the section that maximizes the particle diameter calculated from each section by the operation of (B5) is taken as the section that passes through the center of the first particle. be able to.
(B5) The obtained section is observed with a scanning transmission electron microscope (STEM) to calculate the particle size. The method for calculating the particle size is the same as in (B2). The magnification is preferably 5,000 times or more and 20,000 times or less.
(B6) The operations of (B4) to (B5) are performed on 20 particles, and the value obtained from the number average of the particle diameters of 20 particles is taken as the average particle diameter of the first particles.
 第1の粒子の平均粒子径を示すD1と、第2の樹脂層の平均厚みを示すt2とは、t2<D1の関係であることが好ましい。t2<D1とすることにより、第1の粒子によって、防眩性積層体の表面に凹凸形状を付与しやすくできるため、防眩性を良好にしやすくできる。
 D1-t2は、0.5μm以上であることが好ましく、0.7μm以上であることがより好ましい。
D1 indicating the average particle diameter of the first particles and t2 indicating the average thickness of the second resin layer preferably have a relationship of t2<D1. When t2<D1, the surface of the antiglare layered body can be easily provided with an uneven shape by the first particles, so that the antiglare property can be easily improved.
D1-t2 is preferably 0.5 μm or more, more preferably 0.7 μm or more.
 D1-t2が大きすぎると、第1の粒子が第2の樹脂層の表面から突出することにより、耐屈曲性が低下する場合がある。このため、D1-t2は、2.0μm以下であることが好ましく、1.7μm以下であることがより好ましく、1.5μm以下であることがさらに好ましい。
 D1-t2の好適な範囲の実施形態は、0.5μm以上2.0μm以下、0.5μm以上1.7μm以下、0.5μm以上1.5μm以下、0.7μm以上2.0μm以下、0.7μm以上1.7μm以下、0.7μm以上1.5μm以下が挙げられる。
If D1-t2 is too large, the first particles protrude from the surface of the second resin layer, which may reduce the bending resistance. Therefore, D1-t2 is preferably 2.0 μm or less, more preferably 1.7 μm or less, and even more preferably 1.5 μm or less.
Embodiments of preferred ranges for D1-t2 are 0.5 μm to 2.0 μm, 0.5 μm to 1.7 μm, 0.5 μm to 1.5 μm, 0.7 μm to 2.0 μm, 0.5 μm to 1.7 μm. 7 μm or more and 1.7 μm or less, and 0.7 μm or more and 1.5 μm or less.
 第1の粒子の平均粒子径を示すD1と、第1の樹脂層の平均厚みを示すt1とは、D1<t1の関係であることが好ましい。D1<t1とすることにより、耐屈曲性をより良好にしやすくできる。
 t1-D1は、4.0μm以上であることが好ましく、5.0μm以上であることがより好ましく、6.0μm以上であることがさらに好ましい。
D1 indicating the average particle diameter of the first particles and t1 indicating the average thickness of the first resin layer preferably have a relationship of D1<t1. By setting D1<t1, the flex resistance can be easily improved.
t1-D1 is preferably 4.0 μm or more, more preferably 5.0 μm or more, and even more preferably 6.0 μm or more.
 t1-D1が大きすぎると、硬度の低い第1の樹脂層の厚みが増すことにより、鉛筆硬度が低下する場合がある。このため、t1-D1は、10.0μm以下であることが好ましく、9.0μm以下であることがより好ましく、8.5μm以下であることがさらに好ましい。
 t1-D1の好適な範囲の実施形態は、5.0μm以上10.0μm以下、5.0μm以上9.0μm以下、5.0μm以上8.5μm以下、6.0μm以上10.0μm以下、6.0μm以上9.0μm以下、6.0μm以上8.5μm以下が挙げられる。
If t1-D1 is too large, the thickness of the first resin layer with low hardness increases, which may lower the pencil hardness. Therefore, t1-D1 is preferably 10.0 μm or less, more preferably 9.0 μm or less, and even more preferably 8.5 μm or less.
Embodiments of preferred ranges for t1-D1 are 5.0 μm to 10.0 μm, 5.0 μm to 9.0 μm, 5.0 μm to 8.5 μm, 6.0 μm to 10.0 μm; 0 μm or more and 9.0 μm or less, and 6.0 μm or more and 8.5 μm or less.
《無機微粒子》
 樹脂層は、無機微粒子を含んでいてもよい。樹脂層が比較的比重の大きい無機微粒子を含むことにより、第1の粒子が樹脂層の下方に沈みにくくなるため、第1の粒子が厚み方向の位置の条件を満たしやすくできる。また、無機微粒子は、第1の粒子の分散性を高め、耐屈曲性の低下を抑制しやすくできる。
 本明細書において、無機微粒子とは、平均一次粒子径が200nm以下の無機粒子を意味する。
 無機微粒子の平均粒子径は、1nm以上200nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、5nm以上50nm以下であることがさらに好ましい。
《Inorganic fine particles》
The resin layer may contain inorganic fine particles. Since the resin layer contains inorganic fine particles having a relatively large specific gravity, the first particles are less likely to sink below the resin layer, so that the first particles can easily satisfy the positional condition in the thickness direction. In addition, the inorganic fine particles can enhance the dispersibility of the first particles and easily suppress the deterioration of the bending resistance.
In this specification, inorganic fine particles mean inorganic particles having an average primary particle size of 200 nm or less.
The average particle size of the inorganic fine particles is preferably 1 nm or more and 200 nm or less, more preferably 2 nm or more and 100 nm or less, and even more preferably 5 nm or more and 50 nm or less.
 無機微粒子の平均粒子径は、以下の(C1)~(C3)の作業により算出できる。
(C1)防眩性積層体の断面をTEM又はSTEMで撮像する。TEM又はSTEMの加速電圧は10kV以上30kV以下、倍率は5万倍以上30万倍以下とすることが好ましい。
(C2)観察画像から任意の10個の無機微粒子を抽出し、個々の無機微粒子の粒子径を算出する。粒子径は、無機微粒子の断面を任意の平行な2本の直線で挟んだとき、該2本の直線間距離が最大となるような2本の直線の組み合わせにおける直線間距離として測定される。
(C3)同じサンプルの別画面の観察画像において同様の作業を5回行って、合計50個分の粒子径の数平均から得られる値を無機微粒子の平均粒子径とする。
The average particle size of the inorganic fine particles can be calculated by the following operations (C1) to (C3).
(C1) A cross section of the antiglare laminate is imaged with a TEM or STEM. The acceleration voltage of the TEM or STEM is preferably 10 kV or more and 30 kV or less, and the magnification is preferably 50,000 times or more and 300,000 times or less.
(C2) Any 10 inorganic fine particles are extracted from the observation image, and the particle diameter of each inorganic fine particle is calculated. The particle diameter is measured as the distance between two arbitrary parallel straight lines sandwiching the cross section of the inorganic fine particles, and the distance between the two straight lines being the maximum.
(C3) Perform the same operation 5 times on observation images of the same sample on different screens, and use the average particle diameter of the inorganic fine particles as the value obtained from the number average of the particle diameters for a total of 50 particles.
 無機微粒子としては、シリカ、アルミナ、ジルコニア及びチタニア等からなる微粒子が挙げられる。これらの中でも、内部ヘイズの発生を抑制しやすいシリカが好適である。 Examples of inorganic fine particles include fine particles made of silica, alumina, zirconia, titania, and the like. Among these, silica is preferable since it easily suppresses the generation of internal haze.
 無機微粒子の含有量は、樹脂層用塗布液の樹脂成分100質量部に対して、下限は、0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、0.7質量部以上であることがさらに好ましく、上限は、5.0質量部以下であることが好ましく、3.0質量部以下であることがより好ましく、2.0質量部以下であることがさらに好ましい。
 無機微粒子の含有量を0.1質量部以上とすることにより、第1の粒子が厚み方向の位置の条件を満たしやすくできる。また、無機微粒子の含有量を5.0質量部以下とすることにより、第1の粒子が樹脂層の上方に過度に浮かぶことを抑制できるため、第1の粒子が厚み方向の位置の条件を満たしやすくできる。
 樹脂成分100質量部に対する、無機微粒子の含有量の好適な範囲の実施形態は、0.1質量部以上5.0質量部以下、0.1質量部以上3.0質量部以下、0.1質量部以上2.0質量部以下、0.5質量部以上5.0質量部以下、0.5質量部以上3.0質量部以下、0.5質量部以上2.0質量部以下、0.7質量部以上5.0質量部以下、0.7質量部以上3.0質量部以下、0.7質量部以上2.0質量部以下が挙げられる。
The lower limit of the content of the inorganic fine particles is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, with respect to 100 parts by mass of the resin component of the resin layer coating liquid. It is more preferably 0.7 parts by mass or more, and the upper limit is preferably 5.0 parts by mass or less, more preferably 3.0 parts by mass or less, and 2.0 parts by mass or less. is more preferred.
By setting the content of the inorganic fine particles to 0.1 part by mass or more, the first particles can easily satisfy the positional condition in the thickness direction. In addition, by setting the content of the inorganic fine particles to 5.0 parts by mass or less, it is possible to prevent the first particles from floating excessively above the resin layer. Easy to fill.
In embodiments, the content of the inorganic fine particles with respect to 100 parts by mass of the resin component is preferably 0.1 parts by mass or more and 5.0 parts by mass or less, 0.1 parts by mass or more and 3.0 parts by mass or less, 0.1 parts by mass to 2.0 parts by mass, 0.5 parts by mass to 5.0 parts by mass, 0.5 parts by mass to 3.0 parts by mass, 0.5 parts by mass to 2.0 parts by mass, 0 7 to 5.0 parts by mass, 0.7 to 3.0 parts by mass, and 0.7 to 2.0 parts by mass.
《樹脂成分》
 樹脂層は、樹脂成分として、硬化性樹脂組成物の硬化物を含むことが好ましい。樹脂層が硬化性樹脂組成物の硬化物を含むことにより、防眩性積層体の鉛筆硬度を良好にしやすくできる。硬化性樹脂組成物の硬化物は、第1の樹脂層及び第2の樹脂層の両方に含まれることが好ましい。
《Resin component》
The resin layer preferably contains a cured product of a curable resin composition as a resin component. By including the cured product of the curable resin composition in the resin layer, it is possible to easily improve the pencil hardness of the antiglare laminate. The cured product of the curable resin composition is preferably contained in both the first resin layer and the second resin layer.
 樹脂層用塗布液の樹脂成分の全量に対する硬化性樹脂組成物の割合は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、100質量%であることが最も好ましい。 The ratio of the curable resin composition to the total amount of the resin component in the resin layer coating liquid is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. Preferably, 100% by mass is most preferable.
 硬化性樹脂組成物の硬化物としては、熱硬化性樹脂組成物の硬化物及び電離放射線硬化性樹脂組成物の硬化物が挙げられる。これらの中でも、鉛筆硬度を高くしやすく、かつ、未硬化の組成物の状態において基材を溶解しやすい、電離放射線硬化性樹脂組成物の硬化物が好ましい。 The cured product of the curable resin composition includes a cured product of a thermosetting resin composition and a cured product of an ionizing radiation-curable resin composition. Among these, a cured product of an ionizing radiation-curable resin composition is preferable because it is easy to increase the pencil hardness and to easily dissolve the substrate in the uncured state of the composition.
 熱硬化性樹脂組成物は、少なくとも熱硬化性樹脂を含む組成物であり、加熱により、硬化する樹脂組成物である。
 熱硬化性樹脂としては、アクリル樹脂、ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。熱硬化性樹脂組成物には、これら硬化性樹脂に、必要に応じて硬化剤が添加される。
A thermosetting resin composition is a composition containing at least a thermosetting resin, and is a resin composition that is cured by heating.
Thermosetting resins include acrylic resins, urethane resins, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, silicone resins, and the like. If necessary, a curing agent is added to these curable resins in the thermosetting resin composition.
 電離放射線硬化性樹脂組成物は、電離放射線硬化性官能基を有する化合物(以下、「電離放射線硬化性化合物」ともいう)を含む組成物である。電離放射線硬化性官能基としては、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合基、及びエポキシ基、オキセタニル基等が挙げられる。電離放射線硬化性化合物としては、エチレン性不飽和結合基を有する化合物が好ましい。
 電離放射線とは、電磁波又は荷電粒子線のうち、分子を重合あるいは架橋し得るエネルギー量子を有するものを意味し、通常、紫外線又は電子線が用いられるが、その他、X線、γ線などの電磁波、α線、イオン線などの荷電粒子線も使用可能である。
 本明細書において、(メタ)アクリロイル基とは、アクリロイル基又はメタクロイル基を示す。また、本明細書において、(メタ)アクリレートとは、アクリレート又はメタクリレートを示す。
An ionizing radiation-curable resin composition is a composition containing a compound having an ionizing radiation-curable functional group (hereinafter also referred to as an "ionizing radiation-curable compound"). Examples of ionizing radiation-curable functional groups include ethylenically unsaturated bond groups such as (meth)acryloyl groups, vinyl groups, and allyl groups, epoxy groups, and oxetanyl groups. As the ionizing radiation-curable compound, a compound having an ethylenically unsaturated bond group is preferred.
Ionizing radiation refers to electromagnetic waves or charged particle beams that have energy quanta capable of polymerizing or cross-linking molecules. Usually, ultraviolet rays or electron beams are used, but other electromagnetic waves such as X-rays and gamma rays are also used. , α-rays, ion beams, and other charged particle beams can also be used.
As used herein, a (meth)acryloyl group refers to an acryloyl group or a methacryloyl group. Moreover, in this specification, (meth)acrylate indicates acrylate or methacrylate.
 電離放射線硬化性化合物としては、電離放射線硬化性官能基を1つ有する単官能の電離放射線硬化性化合物、電離放射線硬化性官能基を2つ以上有する多官能の電離放射線硬化性化合物のいずれも用いることができる。また、電離放射線硬化性化合物としては、モノマー及びオリゴマーのいずれも用いることができる。
 基材の一部を溶解し、かつ、鉛筆硬度を高くし、かつ、硬化収縮を抑制しやすくするためには、電離放射線硬化性化合物として、下記(a)~(c)の混合物を用いることが好ましい。下記(a)~(c)は、電離放射線硬化性官能基としてエチレン性不飽和結合基を有する化合物であることが好ましく、(メタ)アクリレート系化合物であることがより好ましい。(メタ)アクリレート系化合物は、エチレンオキサイド、プロピレンオキサイド、カプロラクトン、イソシアヌル酸、アルキル、環状アルキル、芳香族、ビスフェノール等により分子骨格の一部を変性したものも使用することができる。
(a)単官能の電離放射線硬化性モノマー
(b)多官能の電離放射線硬化性モノマー
(c)多官能の電離放射線硬化性オリゴマー
As the ionizing radiation-curable compound, both a monofunctional ionizing radiation-curable compound having one ionizing radiation-curable functional group and a polyfunctional ionizing radiation-curable compound having two or more ionizing radiation-curable functional groups are used. be able to. Both monomers and oligomers can be used as the ionizing radiation-curable compound.
In order to partially dissolve the base material, increase the pencil hardness, and make it easier to suppress cure shrinkage, the following mixtures (a) to (c) can be used as the ionizing radiation-curable compound. is preferred. The following (a) to (c) are preferably compounds having an ethylenically unsaturated bond group as an ionizing radiation-curable functional group, more preferably (meth)acrylate compounds. As the (meth)acrylate compound, a part of the molecular skeleton modified with ethylene oxide, propylene oxide, caprolactone, isocyanuric acid, alkyl, cyclic alkyl, aromatic, bisphenol or the like can also be used.
(a) monofunctional ionizing radiation-curable monomer (b) polyfunctional ionizing radiation-curable monomer (c) polyfunctional ionizing radiation-curable oligomer
 電離放射線硬化性化合物として、(a)の単官能の電離放射線硬化性モノマーを含むことにより、基材の一部を溶解しやすくすることができ、かつ、基材から溶出した成分を樹脂層用塗布液の成分に相溶させやすくできる。また、(a)の単官能の電離放射線硬化性モノマーを含むことにより、樹脂層用塗布液の粘度が低下するため、樹脂層用塗布液と基材から溶出した成分との混合物が対流しやすくなる。この結果、第2の樹脂層の厚みに対して第1の樹脂層の厚みが大きくなるため、t1/t2を5超にしやすくできる。
 但し、(a)の単官能の電離放射線硬化性モノマーの量が多過ぎると、基材を過度に溶解してしまうため、基材の強度が低下したり、防眩性積層体の鉛筆硬度が低下する場合がある。また、(a)の単官能の電離放射線硬化性モノマーの量が多過ぎると、上述した対流が激しくなるため、第2の樹脂層の厚みに対して第1の樹脂層の厚みが大きくなり過ぎ、t1/t2が15を超える場合がある。
 電離放射線硬化性化合物として、(b)の多官能の電離放射線硬化性モノマーを含むことにより、防眩性積層体の鉛筆硬度を良好にしやすくできる。但し、(b)の多官能の電離放射線硬化性モノマーの量が多過ぎると、樹脂層の硬度が高くなり過ぎて、防眩性積層体の耐屈曲性が低下する場合がある。
 電離放射線硬化性化合物として、(c)の多官能の電離放射線硬化性オリゴマーを含むことにより、防眩性積層体の鉛筆硬度を維持しつつ、硬化収縮を抑制しやすくできる。但し、(c)の多官能の電離放射線硬化性オリゴマーの量が多過ぎると、防眩性積層体の鉛筆硬度が低下する場合がある。
By including the monofunctional ionizing radiation-curable monomer (a) as the ionizing radiation-curable compound, a part of the substrate can be easily dissolved, and the component eluted from the substrate can be used for the resin layer. It can be easily dissolved in the components of the coating liquid. In addition, since the viscosity of the resin layer coating liquid is reduced by including the monofunctional ionizing radiation-curable monomer (a), the mixture of the resin layer coating liquid and the component eluted from the substrate tends to convect. Become. As a result, the thickness of the first resin layer becomes larger than the thickness of the second resin layer, so that t1/t2 can easily be made more than 5.
However, if the amount of the monofunctional ionizing radiation-curable monomer (a) is too large, the base material will be dissolved excessively, resulting in a decrease in strength of the base material and a decrease in pencil hardness of the antiglare laminate. may decrease. In addition, if the amount of the monofunctional ionizing radiation-curable monomer (a) is too large, the above-mentioned convection becomes intense, so that the thickness of the first resin layer becomes too large relative to the thickness of the second resin layer. , t1/t2 may exceed 15.
By including the polyfunctional ionizing radiation-curable monomer (b) as the ionizing radiation-curable compound, the pencil hardness of the antiglare laminate can be easily improved. However, if the amount of the polyfunctional ionizing radiation-curable monomer (b) is too large, the hardness of the resin layer may become too high, and the flex resistance of the antiglare laminate may decrease.
By containing the polyfunctional ionizing radiation-curable oligomer (c) as the ionizing radiation-curable compound, curing shrinkage can be easily suppressed while maintaining the pencil hardness of the antiglare laminate. However, if the amount of the polyfunctional ionizing radiation-curable oligomer (c) is too large, the pencil hardness of the antiglare laminate may decrease.
 電離放射線硬化性化合物の総量に対する、(a)の単官能の電離放射線硬化性モノマーの量は、10質量%以上40質量%以下であることが好ましく、15質量%以上35質量%以下であることがより好ましく、17質量%以上33質量%以下であることがさらに好ましい。
 電離放射線硬化性化合物の総量に対する、(b)の多官能の電離放射線硬化性モノマーの量は、5質量%以上20質量%以下であることが好ましく、6質量%以上15質量%以下であることがより好ましく、7質量%以上13質量%以下であることがさらに好ましい。
 電離放射線硬化性化合物の総量に対する、(c)多官能の電離放射線硬化性オリゴマーの量は、40質量%以上80質量%以下であることが好ましく、50質量%以上77質量%以下であることがより好ましく、55質量%以上75質量%以下であることがさらに好ましい。
The amount of the monofunctional ionizing radiation-curable monomer (a) with respect to the total amount of the ionizing radiation-curable compound is preferably 10% by mass or more and 40% by mass or less, and is 15% by mass or more and 35% by mass or less. is more preferable, and more preferably 17% by mass or more and 33% by mass or less.
The amount of the polyfunctional ionizing radiation-curable monomer (b) with respect to the total amount of the ionizing radiation-curable compound is preferably 5% by mass or more and 20% by mass or less, and 6% by mass or more and 15% by mass or less. is more preferable, and more preferably 7% by mass or more and 13% by mass or less.
The amount of (c) polyfunctional ionizing radiation-curable oligomer relative to the total amount of ionizing radiation-curable compounds is preferably 40% by mass or more and 80% by mass or less, and is preferably 50% by mass or more and 77% by mass or less. More preferably, it is 55% by mass or more and 75% by mass or less.
 (a)の単官能の電離放射線硬化性モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等が挙げられる。これらの中でも、4-ヒドロキシブチル(メタ)アクリレート等の水酸基を有する単官能モノマーは、基材との密着性を良好にしやすいため好ましい。 Monofunctional ionizing radiation-curable monomers (a) include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, and hexyl (meth)acrylate. , cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, isobornyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate , 2-hydroxypropyl (meth)acrylate and the like. Among these, a monofunctional monomer having a hydroxyl group such as 4-hydroxybutyl (meth)acrylate is preferable because it tends to improve adhesion to the substrate.
 (b)の多官能の電離放射線硬化性モノマーのうち、2官能の電離放射線硬化性モノマーとしては、エチレングリコールジ(メタ)アクリレート、ビスフェノールAテトラエトキシジアクリレート、ビスフェノールAテトラプロポキシジアクリレート、1,6-ヘキサンジオールジアクリレート等が挙げられる。3官能以上の電離放射線硬化性モノマーとしては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、イソシアヌル酸変性トリ(メタ)アクリレート等が挙げられる。
 (b)の多官能の電離放射線硬化性モノマーの官能基数は、鉛筆硬度を高くしつつ硬化収縮を抑制するため、3以上5以下であることが好ましく、3以上4以下であることがより好ましく、3であることがさらに好ましい。
Among the polyfunctional ionizing radiation-curable monomers (b), bifunctional ionizing radiation-curable monomers include ethylene glycol di(meth)acrylate, bisphenol A tetraethoxy diacrylate, bisphenol A tetrapropoxy diacrylate, 1, 6-hexanediol diacrylate and the like. Trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol tetra (Meth)acrylates, isocyanuric acid-modified tri(meth)acrylates, and the like.
The number of functional groups in the polyfunctional ionizing radiation-curable monomer (b) is preferably 3 or more and 5 or less, more preferably 3 or more and 4 or less, in order to increase pencil hardness and suppress curing shrinkage. , 3 is more preferred.
 (c)の多官能の電離放射線硬化性オリゴマーとしては、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート等のアクリレート系重合体等が挙げられる。
 ウレタン(メタ)アクリレートは、例えば、多価アルコール及び有機ジイソシアネートとヒドロキシ(メタ)アクリレートとの反応によって得られる。
 好ましいエポキシ(メタ)アクリレートは、3官能以上の芳香族エポキシ樹脂、脂環族エポキシ樹脂、脂肪族エポキシ樹脂等と(メタ)アクリル酸とを反応させて得られる(メタ)アクリレート、2官能以上の芳香族エポキシ樹脂、脂環族エポキシ樹脂、脂肪族エポキシ樹脂等と多塩基酸と(メタ)アクリル酸とを反応させて得られる(メタ)アクリレート、及び2官能以上の芳香族エポキシ樹脂、脂環族エポキシ樹脂、脂肪族エポキシ樹脂等とフェノール類と(メタ)アクリル酸とを反応させて得られる(メタ)アクリレートである。
Examples of the polyfunctional ionizing radiation-curable oligomer (c) include acrylate polymers such as urethane (meth)acrylate, epoxy (meth)acrylate, polyester (meth)acrylate, and polyether (meth)acrylate.
Urethane (meth)acrylates are obtained, for example, by reacting polyhydric alcohols and organic diisocyanates with hydroxy (meth)acrylates.
Preferred epoxy (meth)acrylates are (meth)acrylates obtained by reacting tri- or more functional aromatic epoxy resins, alicyclic epoxy resins, aliphatic epoxy resins, etc. with (meth)acrylic acid; (Meth)acrylates obtained by reacting aromatic epoxy resins, alicyclic epoxy resins, aliphatic epoxy resins, etc. with polybasic acids and (meth)acrylic acid, and bifunctional or higher aromatic epoxy resins, alicyclic It is a (meth)acrylate obtained by reacting a group epoxy resin, an aliphatic epoxy resin, or the like with a phenol and (meth)acrylic acid.
 (c)の多官能の電離放射線硬化性オリゴマーの官能基数は、鉛筆硬度を維持しつつ硬化収縮を抑制するため、4以上8以下であることが好ましく、5以上7以下であることがより好ましく、6であることがさらに好ましい。
 (c)の多官能の電離放射線硬化性オリゴマーの重量平均分子量は、鉛筆硬度を維持しつつ硬化収縮を抑制するため、1000以上5000以下であることが好ましく、1100以上3500以下であることがより好ましく、1200以上2000以下であることがさらに好ましい。
 本明細書において、重量平均分子量は、GPC分析によって測定され、かつ標準ポリスチレンで換算された平均分子量である。
The number of functional groups in the polyfunctional ionizing radiation-curable oligomer (c) is preferably 4 or more and 8 or less, more preferably 5 or more and 7 or less, in order to suppress cure shrinkage while maintaining pencil hardness. , 6.
The weight average molecular weight of the polyfunctional ionizing radiation-curable oligomer (c) is preferably 1000 or more and 5000 or less, more preferably 1100 or more and 3500 or less, in order to suppress curing shrinkage while maintaining pencil hardness. It is more preferably 1200 or more and 2000 or less.
As used herein, the weight average molecular weight is the average molecular weight measured by GPC analysis and converted to standard polystyrene.
 電離放射線硬化性化合物が紫外線硬化性化合物である場合には、電離放射線硬化性組成物は、光重合開始剤や光重合促進剤等の添加剤を含むことが好ましい。
 光重合開始剤としては、アセトフェノン、ベンゾフェノン、α-ヒドロキシアルキルフェノン、ミヒラーケトン、ベンゾイン、ベンジルジメチルケタール、ベンゾイルベンゾエート、α-アシルオキシムエステル、チオキサントン類等から選ばれる1種以上が挙げられる。
 光重合促進剤は、硬化時の空気による重合阻害を軽減させ硬化速度を速めることができるものであり、例えば、p-ジメチルアミノ安息香酸イソアミルエステル、p-ジメチルアミノ安息香酸エチルエステル等から選ばれる1種以上が挙げられる。
When the ionizing radiation-curable compound is an ultraviolet-curable compound, the ionizing radiation-curable composition preferably contains additives such as a photopolymerization initiator and a photopolymerization accelerator.
Examples of the photopolymerization initiator include one or more selected from acetophenone, benzophenone, α-hydroxyalkylphenone, Michler's ketone, benzoin, benzyldimethylketal, benzoylbenzoate, α-acyloxime ester, thioxanthones, and the like.
The photopolymerization accelerator can reduce polymerization inhibition by air during curing and increase the curing speed, and is selected from, for example, p-dimethylaminobenzoic acid isoamyl ester, p-dimethylaminobenzoic acid ethyl ester, and the like. One or more types are mentioned.
《添加剤》
 樹脂層用塗布液は、必要に応じて、レベリング剤、屈折率調整剤、帯電防止剤、防汚剤、紫外線吸収剤、光安定剤、酸化防止剤、粘度調整剤及び熱重合開始剤等の添加剤を含んでいてもよい。
"Additive"
The coating liquid for the resin layer may contain leveling agents, refractive index modifiers, antistatic agents, antifouling agents, ultraviolet absorbers, light stabilizers, antioxidants, viscosity modifiers, thermal polymerization initiators, etc., if necessary. It may contain additives.
《溶媒》
 樹脂層用塗布液は、溶媒を含むことが好ましい。
 溶媒としては、基材を溶解し得る溶媒を選択することが好ましい。但し、基材を過度に溶解すると、基材の強度が低下するため、基材の種類に応じて、適切な溶媒を選択することが好ましい。
 また、溶媒は、基材の溶解性だけではなく、溶媒に固有の蒸発速度を考慮して選択することが好ましい。溶媒の蒸発速度が遅い場合、基材を過度に溶解しやすいためである。溶媒が蒸発する速度は、乾燥条件によっても制御できる。例えば、乾燥温度を高くすれば溶媒が蒸発する速度は速くなる。また、乾燥風速を速くすれば溶媒が蒸発する速度は速くなる。
 以上のことから、基材の溶解性、蒸発速度、乾燥条件を考慮して、溶媒を選択することが好ましい。
"solvent"
The resin layer coating liquid preferably contains a solvent.
As the solvent, it is preferable to select a solvent that can dissolve the substrate. However, if the base material is dissolved excessively, the strength of the base material is lowered, so it is preferable to select an appropriate solvent according to the type of base material.
In addition, it is preferable to select the solvent in consideration of not only the solubility of the base material but also the evaporation rate inherent to the solvent. This is because if the evaporation rate of the solvent is slow, the substrate tends to dissolve excessively. The rate at which the solvent evaporates can also be controlled by the drying conditions. For example, the higher the drying temperature, the faster the solvent will evaporate. Also, the faster the drying air speed, the faster the solvent evaporates.
From the above, it is preferable to select the solvent in consideration of the solubility of the substrate, the evaporation rate, and the drying conditions.
 溶媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;ジオキサン、テトラヒドロフラン等のエーテル類;ヘキサン等の脂肪族炭化水素類;シクロヘキサン等の脂環式炭化水素類;トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、ジクロロエタン等のハロゲン化炭素類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;イソプロパノール、ブタノール、シクロヘキサノール等のアルコール類;メチルセロソルブ、エチルセロソルブ等のセロソルブ類;プロピレングリコールモノメチルエーテルアセタート等のグリコールエーテル類;セロソルブアセテート類;ジメチルスルホキシド等のスルホキシド類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;等が挙げられる。溶媒は、1種単独でもよいし、2種以上の混合物であってもよい。 Examples of solvents include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethers such as dioxane and tetrahydrofuran; aliphatic hydrocarbons such as hexane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons; halogenated carbons such as dichloromethane and dichloroethane; esters such as methyl acetate, ethyl acetate and butyl acetate; alcohols such as isopropanol, butanol and cyclohexanol; cellosolves such as methyl cellosolve and ethyl cellosolve; glycol ethers such as propylene glycol monomethyl ether acetate; cellosolve acetates; sulfoxides such as dimethylsulfoxide; amides such as dimethylformamide and dimethylacetamide; The solvent may be used singly or as a mixture of two or more.
 アクリル樹脂基材は溶媒に溶解しやすい。このため、基材としてアクリル樹脂基材を用いる場合、溶媒に固有の蒸発速度が速い溶媒を主成分とすることが好ましい。主成分とは、溶媒の全量の50質量%以上であることを意味し、好ましくは70質量%以上、より好ましくは90質量%以上、最も好ましくは100質量%である。
 本明細書において、蒸発速度が速い溶媒は、酢酸ブチルの蒸発速度を100とした際に、蒸発速度が100以上の溶媒を意味する。蒸発速度が速い溶媒の蒸発速度は、120以上300以下であることがより好ましく、140以上220以下であることがさらに好ましい。
 蒸発速度が速い溶媒としては、例えば、イソプロピルアルコール(蒸発速度150)、メチルイソブチルケトン(蒸発速度160)、トルエン(蒸発速度200)が挙げられる。
An acrylic resin base material is easily dissolved in a solvent. For this reason, when an acrylic resin base material is used as the base material, it is preferable that the main component is a solvent having a high evaporation rate inherent to the solvent. The main component means 50% by mass or more of the total amount of the solvent, preferably 70% by mass or more, more preferably 90% by mass or more, and most preferably 100% by mass.
In the present specification, a solvent with a high evaporation rate means a solvent with an evaporation rate of 100 or more when the evaporation rate of butyl acetate is set to 100. The evaporation rate of the solvent having a high evaporation rate is more preferably 120 or more and 300 or less, more preferably 140 or more and 220 or less.
Solvents with high evaporation rates include, for example, isopropyl alcohol (evaporation rate 150), methyl isobutyl ketone (evaporation rate 160), and toluene (evaporation rate 200).
《乾燥条件》
 樹脂層用塗布液から樹脂層を形成する際には、乾燥条件を制御することが好ましい。
 乾燥条件は、乾燥温度及び乾燥機内の風速により制御することができる。乾燥温度及び風速の好ましい範囲は、樹脂層用塗布液の組成により異なるため一概にはいえないが、乾燥温度は85℃以上105℃以下が好ましく、乾燥風速は5m/s以上20m/s以下が好ましい。乾燥時間は30秒以上90秒以下が好ましい。乾燥条件の中でも、乾燥温度は重要である。乾燥温度を低くするとt1/t2が小さくなる傾向があり、乾燥温度を高くするとt1/t2が大きくなる傾向がある。樹脂層用塗布液により基材の一部を溶解させ、かつ、基材から溶出した成分と樹脂層用塗布液との混合物を流動させて第1の樹脂層の厚みを確保するため、電離放射線の照射は塗布液の乾燥後に行うことが好適である。
《Drying conditions》
When forming the resin layer from the resin layer coating liquid, it is preferable to control the drying conditions.
Drying conditions can be controlled by drying temperature and air speed in the dryer. The preferred ranges of the drying temperature and wind speed vary depending on the composition of the resin layer coating liquid, so it cannot be generalized. preferable. The drying time is preferably 30 seconds or more and 90 seconds or less. Among the drying conditions, the drying temperature is important. When the drying temperature is lowered, t1/t2 tends to decrease, and when the drying temperature is increased, t1/t2 tends to increase. In order to dissolve a part of the substrate with the resin layer coating liquid and to flow the mixture of the components eluted from the substrate and the resin layer coating liquid to ensure the thickness of the first resin layer, ionizing radiation is applied. The irradiation of is preferably performed after drying the coating solution.
<その他の層>
 第1実施形態及び後述する第2実施形態の防眩性積層体、並びに後述する光学積層体は、基材及び樹脂層以外の層を有していてもよい。その他の層としては、反射防止層、防汚層及び帯電防止層等が挙げられる。
<Other layers>
The antiglare layered body of the first embodiment and the second embodiment described later, and the optical layered body described later may have layers other than the substrate and the resin layer. Other layers include an antireflection layer, an antifouling layer, an antistatic layer, and the like.
<光学特性、表面形状>
 第1実施形態及び後述する第2実施形態の防眩性積層体、並びに後述する光学積層体は、JIS K7361-1:1997の全光線透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。
 全光線透過率、及び、後述するヘイズを測定する際の光入射面は、基材側とする。
<Optical properties, surface shape>
The antiglare laminate of the first embodiment and the second embodiment described later, and the optical laminate described later preferably have a total light transmittance of 70% or more, preferably 80% or more, according to JIS K7361-1:1997. is more preferably 85% or more.
The light incident surface for measuring the total light transmittance and haze, which will be described later, is the substrate side.
 第1実施形態及び後述する第2実施形態の防眩性積層体、並びに後述する光学積層体は、JIS K7136:2000のヘイズが、0.5%以上であることが好ましく、1.0%以上であることがより好ましく、1.5%以上であることがさらに好ましい。ヘイズを0.5%以上とすることにより、防眩性を良好にしやすくできる。
 また、映像の解像度の低下を抑制しやすくするため、第1実施形態及び後述する第2実施形態の防眩性積層体、並びに後述する光学積層体は、ヘイズが20%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることがさらに好ましい。
 防眩性積層体及び光学積層体のヘイズの好適な範囲の実施形態は、0.5%以上20%以下、0.5%以上10%以下、0.5%以上5%以下、1.0%以上20%以下、1.0%以上10%以下、1.0%以上5%以下、1.5%以上20%以下、1.5%以上10%以下、1.5%以上5%以下が挙げられる。
The antiglare laminate of the first embodiment and the second embodiment described later, and the optical laminate described later preferably have a haze of JIS K7136:2000 of 0.5% or more, preferably 1.0% or more. is more preferably 1.5% or more. By setting the haze to 0.5% or more, the antiglare property can be easily improved.
In addition, in order to easily suppress deterioration of image resolution, the antiglare laminate of the first embodiment and the second embodiment described later, and the optical laminate described later preferably have a haze of 20% or less. , is more preferably 10% or less, and even more preferably 5% or less.
Embodiments of preferred ranges of haze for the antiglare laminate and the optical laminate are 0.5% to 20%, 0.5% to 10%, 0.5% to 5%, 1.0 % or more and 20% or less, 1.0% or more and 10% or less, 1.0% or more and 5% or less, 1.5% or more and 20% or less, 1.5% or more and 10% or less, 1.5% or more and 5% or less are mentioned.
 第1実施形態及び後述する第2実施形態の防眩性積層体、並びに後述する光学積層体は、防眩性を良好にしやすくするため、樹脂層側の表面のJIS B0601:2001の算術平均粗さRaが、0.03μm以上であることが好ましく、0.05μm以上であることがより好ましい。また、第1実施形態及び後述する第2実施形態の防眩性積層体、並びに後述する光学積層体は、映像の解像度の低下を抑制しやすくするため、樹脂層側の表面のRaが0.12μm以下であることが好ましく、0.10μm以下であることがより好ましい。Raは、カットオフ値0.8mmにおける値を意味する。
 樹脂層側の表面のRaの好適な範囲の実施形態は、0.03μm以上0.12μm以下、0.03μm以上0.10μm以下、0.05μm以上0.12μm以下、0.05μm以上0.10μm以下が挙げられる。
In the antiglare laminates of the first embodiment and the second embodiment described later, and the optical laminate described later, in order to easily improve the antiglare property, the arithmetic mean roughness of JIS B0601:2001 of the surface on the resin layer side is The thickness Ra is preferably 0.03 μm or more, more preferably 0.05 μm or more. Further, in the antiglare laminates of the first embodiment and the second embodiment described later, and the optical laminate described later, the Ra of the surface on the resin layer side is set to 0.00 in order to easily suppress the deterioration of image resolution. It is preferably 12 μm or less, more preferably 0.10 μm or less. Ra means a value at a cutoff value of 0.8 mm.
Preferred ranges of Ra on the resin layer side surface are 0.03 μm to 0.12 μm, 0.03 μm to 0.10 μm, 0.05 μm to 0.12 μm, and 0.05 μm to 0.10 μm. These include:
<大きさ、形状等>
 第1実施形態及び後述する第2実施形態の防眩性積層体、並びに後述する光学積層体は、所定の大きさにカットした枚葉状の形態でもよいし、長尺シートをロール状に巻き取ったロール状の形態であってもよい。枚葉の大きさは特に限定されないが、最大径が2インチ以上500インチ以下程度である。“最大径”とは、防眩性積層体又は光学積層体の任意の2点を結んだ際の最大長さをいうものとする。例えば、防眩性積層体又は光学積層体が長方形の場合は、長方形の対角線が最大径となる。防眩性積層体又は光学積層体が円形の場合は、円の直径が最大径となる。
 ロール状の幅及び長さは特に限定されないが、一般的には、幅は500mm以上3000mm以下、長さは500m以上5000m以下程度である。ロール状の形態の防眩性積層体又は光学積層体は、画像表示装置等の大きさに合わせて、枚葉状にカットして用いることができる。カットする際、物性が安定しないロール端部は除外することが好ましい。
 枚葉の形状も特に限定されず、例えば、三角形、四角形、五角形等の多角形であってもよいし、円形であってもよいし、ランダムな不定形であってもよい。より具体的には、防眩性積層体又は光学積層体が四角形状である場合には、縦横比は表示画面として問題がなければ特に限定されない。例えば、横:縦=1:1、4:3、16:10、16:9、2:1、5:4、11:8等が挙げられる。
<Size, shape, etc.>
The antiglare laminates of the first embodiment and the second embodiment described later, and the optical laminates described later may be in the form of sheets cut into a predetermined size, or may be in the form of a long sheet wound into a roll. It may also be in the form of a roll. The size of the sheet is not particularly limited, but the maximum diameter is about 2 inches or more and 500 inches or less. The term “maximum diameter” refers to the maximum length of any two points of the antiglare layered body or the optical layered body. For example, when the antiglare layered body or the optical layered body is rectangular, the diagonal line of the rectangle is the maximum diameter. When the antiglare layered body or the optical layered body is circular, the diameter of the circle is the maximum diameter.
The width and length of the roll are not particularly limited, but generally the width is about 500 mm or more and 3000 mm or less, and the length is about 500 m or more and 5000 m or less. The roll-shaped antiglare layered body or optical layered body can be cut into sheets according to the size of an image display device or the like. When cutting, it is preferable to exclude the roll ends whose physical properties are not stable.
The shape of the sheet is not particularly limited, and may be, for example, a polygon such as a triangle, quadrangle, or pentagon, a circle, or a random irregular shape. More specifically, when the antiglare layered body or the optical layered body has a square shape, the aspect ratio is not particularly limited as long as there is no problem as a display screen. For example, horizontal:vertical=1:1, 4:3, 16:10, 16:9, 2:1, 5:4, 11:8.
[第2実施形態の防眩性積層体]
 本開示の防眩性積層体は、基材上に樹脂層を有し、
 前記樹脂層は、平均粒子径0.5μm以上の第1の粒子を含み、
 前記樹脂層の厚み方向の中心より前記基材側を第1領域、前記樹脂層の厚み方向の中心より前記基材とは反対側を第2領域と定義した際に、前記第1の粒子の個数基準の70%以上が前記第2領域に存在し、
 下記条件1A又は条件2Aを満たす、ものである。
<条件1A>
 前記基材の前記樹脂層側の表面の平均傾斜角が5.0度以上20.0度以下。
<条件2A>
 前記基材の前記樹脂層側の表面の算術平均高さが0.10μm以上0.40μm以下。
[Anti-glare laminate of the second embodiment]
The antiglare laminate of the present disclosure has a resin layer on a substrate,
The resin layer contains first particles having an average particle size of 0.5 μm or more,
When the substrate side of the center of the resin layer in the thickness direction is defined as a first region, and the side opposite to the substrate from the center of the resin layer in the thickness direction is defined as a second region, the first particles 70% or more of the number standard exists in the second region,
It satisfies the following condition 1A or condition 2A.
<Condition 1A>
The average inclination angle of the resin layer-side surface of the base material is 5.0 degrees or more and 20.0 degrees or less.
<Condition 2A>
The arithmetic mean height of the resin layer side surface of the base material is 0.10 μm or more and 0.40 μm or less.
 図5は、本開示の第2実施形態の防眩性積層体100Bの一実施形態を示す断面図である。
 図5の防眩性積層体100Bは、基材10上に樹脂層20Bを有している。また、図5の樹脂層20Bは、平均粒子径0.5μm以上の第1の粒子23Bを含有している。また、樹脂層20Bの厚み方向の中心より基材10側を第1領域21B、樹脂層20Bの厚み方向の中心より基材10とは反対側を第2領域22Bと定義した際に、図5中の第1の粒子23Bは、第2領域22Bに存在している。
 なお、図5は模式的な断面図である。すなわち、防眩性積層体100Bを構成する各層の縮尺、各材料の縮尺、及び表面凹凸の縮尺は、図示しやすくするために模式化したものであり、実際の縮尺とは相違している。図5以外の図も同様に実際の縮尺とは相違している。
FIG. 5 is a cross-sectional view showing one embodiment of the antiglare laminate 100B of the second embodiment of the present disclosure.
Antiglare laminate 100B in FIG. 5 has resin layer 20B on substrate 10 . Moreover, the resin layer 20B of FIG. 5 contains the first particles 23B having an average particle diameter of 0.5 μm or more. Further, when defining the substrate 10 side from the center of the thickness direction of the resin layer 20B as the first region 21B, and defining the side opposite to the substrate 10 from the center of the thickness direction of the resin layer 20B as the second region 22B, FIG. The first particles 23B inside are present in the second region 22B.
Note that FIG. 5 is a schematic cross-sectional view. That is, the scale of each layer, the scale of each material, and the scale of the surface irregularities that constitute the antiglare laminate 100B are schematic representations for ease of illustration, and are different from the actual scale. Figures other than FIG. 5 are also different from the actual scale.
<基材>
 基材としては、光透過性、平滑性、耐熱性及び機械的強度が良好であることが好ましい。このような基材としては、ポリエステル、トリアセチルセルロース(TAC)、セルロースジアセテート、セルロースアセテートブチレート、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、アクリル樹脂、ポリカーボネート、ポリウレタン及び非晶質オレフィン(Cyclo-Olefin-Polymer:COP)等の樹脂を含む樹脂基材が挙げられる。樹脂基材は、2以上の樹脂基材を貼り合わせたものであってもよい。
 樹脂基材は、機械的強度及び寸法安定性を良好にするため、延伸処理されていることが好ましい。
<Base material>
The substrate preferably has good light transmittance, smoothness, heat resistance and mechanical strength. Such substrates include polyester, triacetyl cellulose (TAC), cellulose diacetate, cellulose acetate butyrate, polyamide, polyimide, polyethersulfone, polysulfone, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, Resin substrates containing resins such as polyether ketone, acrylic resin, polycarbonate, polyurethane and amorphous olefin (Cyclo-Olefin-Polymer: COP) can be mentioned. The resin substrate may be a laminate of two or more resin substrates.
The resin substrate is preferably stretched in order to improve mechanical strength and dimensional stability.
 樹脂基材の中でも、吸湿性が低いため寸法安定性を良好にしやすく、かつ、光学的異方性が低いため視認性を良好にしやすい、アクリル樹脂基材が好ましい。また、アクリル樹脂基材は、樹脂層用塗布液を所定の組成として、かつ、所定の乾燥条件とすることにより、条件1A及又は条件2Aを満たし、かつ、第1の粒子の厚み方向の位置を満たしやすくできる。
 アクリル樹脂基材は、硬くて脆いため、アクリル樹脂基材上に硬化性樹脂組成物の硬化物を含む樹脂層を形成すると、耐屈曲性が不十分になる場合がある。本開示の防眩性積層体は、アクリル樹脂基材上に硬化性樹脂組成物の硬化物を含む樹脂層を形成しても、条件1A又は条件2Aを満たすことなどにより、耐屈曲性の低下を抑制し、かつ、鉛筆硬度を維持しやすくできる。
Among the resin substrates, acrylic resin substrates are preferred because they have low hygroscopicity and therefore tend to have good dimensional stability, and have low optical anisotropy and thus tend to have good visibility. Further, the acrylic resin base material satisfies condition 1A and/or condition 2A by making the resin layer coating liquid a predetermined composition and under predetermined drying conditions, and the position of the first particle in the thickness direction can be easily satisfied.
Since the acrylic resin substrate is hard and brittle, the bending resistance may be insufficient when the resin layer containing the cured product of the curable resin composition is formed on the acrylic resin substrate. In the antiglare laminate of the present disclosure, even if a resin layer containing a cured product of a curable resin composition is formed on an acrylic resin substrate, the flex resistance is reduced by satisfying Condition 1A or Condition 2A. can be suppressed, and the pencil hardness can be easily maintained.
 第2実施形態のアクリル樹脂基材の実施の形態は、特に断りのない限り、第1実施形態のアクリル樹脂基材の実施の形態と同様の実施形態とすることができる。例えば、第2実施形態のアクリル樹脂基材のガラス転移点の実施形態は、第1実施形態のアクリル樹脂基材のガラス転移点の実施形態と同様の実施形態とすることができる。 Unless otherwise specified, the embodiment of the acrylic resin base material of the second embodiment can be the same as the embodiment of the acrylic resin base material of the first embodiment. For example, the embodiment of the glass transition point of the acrylic resin base material of the second embodiment can be the same as the embodiment of the glass transition point of the acrylic resin base material of the first embodiment.
 基材の平均厚みは、10μm以上が好ましく、20μm以上がより好ましく、35μm以上がさらに好ましい。基材の平均厚みを10μm以上とすることにより、防眩性積層体の取り扱い性を良好にしやすくできる。
 基材の平均厚みは、100μm以下が好ましく、80μm以下がより好ましく、60μm以下がさらに好ましい。基材の平均厚みを100μm以下とすることにより、防眩性積層体の耐屈曲性をより良好にしやすくできる。
 基材の平均厚みの好適範囲の実施形態は、10μm以上100μm以下、10μm以上80μm以下、10μm以上60μm以下、20μm以上100μm以下、20μm以上80μm以下、20μm以上60μm以下、35μm以上100μm以下、35μm以上80μm以下、35μm以上60μm以下が挙げられる。
The average thickness of the substrate is preferably 10 µm or more, more preferably 20 µm or more, and even more preferably 35 µm or more. By setting the average thickness of the substrate to 10 μm or more, the antiglare laminate can be easily handled with good performance.
The average thickness of the substrate is preferably 100 µm or less, more preferably 80 µm or less, and even more preferably 60 µm or less. By setting the average thickness of the base material to 100 μm or less, it is possible to easily improve the bending resistance of the antiglare laminate.
Preferred ranges for the average thickness of the base material are 10 μm to 100 μm, 10 μm to 80 μm, 10 μm to 60 μm, 20 μm to 100 μm, 20 μm to 80 μm, 20 μm to 60 μm, 35 μm to 100 μm, and 35 μm or more. 80 μm or less, or 35 μm or more and 60 μm or less.
 上述した基材の平均厚みは、防眩性積層体の完成時の基材の平均厚みを意味する。後述するように、樹脂層用塗布液により基材の一部が溶解することによって、防眩性積層体の完成時の基材の平均厚みは、初期の基材の平均厚みよりも減少する場合がある。このため、初期の基材の平均厚みは、防眩性積層体の完成時の基材の平均厚みよりも厚くすることが好ましい。初期の基材の平均厚みと、防眩性積層体の完成時の基材の平均厚みとの差は、樹脂層の厚み、樹脂層用塗布液の組成、前記塗布液の乾燥条件等により異なるため一概にはいえないが、0.1μm以上10μm以下であることが好ましく、1μm以上5μm以下であることがより好ましい。 The average thickness of the base material mentioned above means the average thickness of the base material when the antiglare laminate is completed. As will be described later, when the average thickness of the base material when the antiglare laminate is completed is reduced from the average thickness of the initial base material by partially dissolving the base material by the resin layer coating liquid. There is Therefore, it is preferable that the initial average thickness of the base material is greater than the average thickness of the base material when the antiglare laminate is completed. The difference between the initial average thickness of the base material and the average thickness of the base material when the antiglare laminate is completed varies depending on the thickness of the resin layer, the composition of the coating liquid for the resin layer, the drying conditions of the coating liquid, and the like. Therefore, although it cannot be generalized, it is preferably 0.1 μm or more and 10 μm or less, and more preferably 1 μm or more and 5 μm or less.
 基材の平均厚みは、例えば、走査型透過電子顕微鏡(STEM)により撮像した防眩性積層体の断面写真の任意の箇所を20点選び、その平均値により算出できる。STEMの加速電圧は10kV以上30kV以下、STEMの倍率は1000倍以上7000倍以下とすることが好ましい。
 基材の平均厚み、樹脂層の厚み、樹脂層の厚み方向における第1の粒子の位置、基材の樹脂層側の表面の平均傾斜角、基材の樹脂層側の表面の算術平均高さ等を測定するためには、防眩性積層体の断面が露出した測定用のサンプルを作製する必要がある。前記サンプルは、例えば、下記の(A1’)~(A2’)の工程で作製できる。なお、コントラスト不足で界面等が見え難い場合には、前処理として、四酸化オスミウム、四酸化ルテニウム、リンタングステン酸などで前記サンプルに染色処理を施してもよい。
The average thickness of the base material can be calculated from the average value of 20 arbitrary points selected from cross-sectional photographs of the antiglare laminate taken by a scanning transmission electron microscope (STEM), for example. It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
Average thickness of the base material, thickness of the resin layer, position of the first particles in the thickness direction of the resin layer, average inclination angle of the resin layer side surface of the base material, arithmetic mean height of the resin layer side surface of the base material In order to measure such as, it is necessary to prepare a measurement sample in which the cross section of the antiglare laminate is exposed. The sample can be prepared, for example, by the following steps (A1') to (A2'). If the interface is difficult to see due to insufficient contrast, the sample may be dyed with osmium tetroxide, ruthenium tetroxide, phosphotungstic acid, or the like as a pretreatment.
(A1’)工程A1’は、第1実施形態の工程A1と同様である。 (A1') Step A1' is the same as step A1 in the first embodiment.
(A2’)ブロック状の包埋サンプルを垂直に切断し、防眩性積層体の断面が露出してなる、測定用のサンプルを作製する。測定用のサンプルとしては、ブロック状の包埋サンプルから切断された薄い切片の方を用いる(測定のサンプルの条件は後述する。)。包埋サンプルは、カットサンプルの中心を通るように切断することが好ましい。包埋サンプルはダイヤモンドナイフで切断することが好ましい。
 包埋サンプルを切断する装置としては、例えば、ライカマイクロシステムズ社製の商品名「ウルトラミクロトーム EM UC7」が挙げられる。包埋サンプルを切断する際は、最初は大まかに切断し(粗トリミング)、最終的には、「SPEED:1.00mm/s」、「FEED:70nm」の条件で精密にトリミングすることが好ましい。
 上記のようにブロック状の包埋サンプルから切断された切片のうち、穴等の欠陥がなく、かつ、厚みが60nm以上100nm以下で均一な切片は、基材の平均厚み、樹脂層の厚み、樹脂層の厚み方向における第1の粒子の位置、基材の樹脂層側の表面の平均傾斜角、基材の樹脂層側の表面の算術平均高さ、第1の粒子の粒子径、無機微粒子の粒子径の測定用サンプルとして用いることができる。
(A2′) A block-shaped embedded sample is cut vertically to prepare a sample for measurement, in which the cross section of the antiglare laminate is exposed. As a sample for measurement, a thin section cut from the block-shaped embedded sample is used (the conditions for the sample for measurement will be described later). The embedded sample is preferably cut through the center of the cut sample. Embedded samples are preferably cut with a diamond knife.
An example of an apparatus for cutting an embedded sample is the product name "Ultramicrotome EM UC7" manufactured by Leica Microsystems. When cutting the embedded sample, it is preferable to first cut roughly (rough trimming) and finally trim precisely under the conditions of "SPEED: 1.00 mm/s" and "FEED: 70 nm".
Among the sections cut from the block-shaped embedded sample as described above, sections without defects such as holes and having a uniform thickness of 60 nm or more and 100 nm or less are the average thickness of the base material, the thickness of the resin layer, The position of the first particles in the thickness direction of the resin layer, the average inclination angle of the resin layer side surface of the base material, the arithmetic mean height of the resin layer side surface of the base material, the particle size of the first particles, the inorganic fine particles can be used as a sample for measuring the particle size of
《条件1A、条件2A》
 本開示の第2実施形態の防眩性積層体は、下記の条件1A又は条件2Aを満たすことを要する。本開示の第2実施形態の防眩性積層体は、条件1A及び条件2Aの少なくとも一方を満たせば良いが、両方を満たすことが好ましい。
<条件1A>
 前記基材の前記樹脂層側の表面の平均傾斜角が5.0度以上20.0度以下。
<条件2A>
 前記基材の前記樹脂層側の表面の算術平均高さが0.10μm以上0.40μm以下。
<<Condition 1A, Condition 2A>>
The antiglare laminate of the second embodiment of the present disclosure needs to satisfy Condition 1A or Condition 2A below. The antiglare laminate of the second embodiment of the present disclosure should satisfy at least one of Condition 1A and Condition 2A, but preferably satisfies both.
<Condition 1A>
The average inclination angle of the resin layer-side surface of the base material is 5.0 degrees or more and 20.0 degrees or less.
<Condition 2A>
The arithmetic mean height of the resin layer side surface of the base material is 0.10 μm or more and 0.40 μm or less.
-条件1A-
 基材の平均傾斜角が5.0度未満の場合、基材と樹脂層との密着性が不足することにより、防眩性積層体の屈曲時に界面剥離が生じるため、防眩性積層体の耐屈曲性を良好にすることが困難である。
 基材の平均傾斜角が20.0度を超えると、樹脂層に基材成分が過度に溶出することを意味する。このため、基材の平均傾斜角が20.0度を超えると、防眩性積層体の鉛筆硬度を良好にすることが困難である。また、基材の平均傾斜角が20.0度を超えると、内部ヘイズが上昇することにより、解像度が低下しやすくなる。
 基材の平均傾斜角は、6.0度以上が好ましく、8.0度以上がより好ましく、10.0度以上がさらに好ましい。基材の平均傾斜角は、19.5度以下が好ましく、19.0度以下がより好ましく、18.5度以下がさらに好ましい。
 基材の平均傾斜角の好適な範囲の実施形態は、5.0度以上20.0度以下、5.0度以上19.5度以下、5.0度以上19.0度以下、5.0度以上18.5度以下、6.0度以上20.0度以下、6.0度以上19.5度以下、6.0度以上19.0度以下、6.0度以上18.5度以下、8.0度以上20.0度以下、8.0度以上19.5度以下、8.0度以上19.0度以下、8.0度以上18.5度以下、10.0度以上20.0度以下、10.0度以上19.5度以下、10.0度以上19.0度以下、10.0度以上18.5度以下が挙げられる。
-Condition 1A-
If the average tilt angle of the base material is less than 5.0 degrees, the adhesion between the base material and the resin layer is insufficient, and interfacial peeling occurs when the antiglare laminate is bent. It is difficult to improve bending resistance.
If the average tilt angle of the substrate exceeds 20.0 degrees, it means that the substrate components are excessively eluted into the resin layer. Therefore, if the average tilt angle of the substrate exceeds 20.0 degrees, it is difficult to improve the pencil hardness of the antiglare laminate. Further, when the average tilt angle of the base material exceeds 20.0 degrees, the internal haze is increased, and the resolution tends to be lowered.
The average tilt angle of the substrate is preferably 6.0 degrees or more, more preferably 8.0 degrees or more, and even more preferably 10.0 degrees or more. The average tilt angle of the substrate is preferably 19.5 degrees or less, more preferably 19.0 degrees or less, and even more preferably 18.5 degrees or less.
Preferred ranges of the average tilt angle of the substrate are 5.0 degrees or more and 20.0 degrees or less, 5.0 degrees or more and 19.5 degrees or less, 5.0 degrees or more and 19.0 degrees or less, and 5.0 degrees or more and 19.5 degrees or less. 0 degrees to 18.5 degrees, 6.0 degrees to 20.0 degrees, 6.0 degrees to 19.5 degrees, 6.0 degrees to 19.0 degrees, 6.0 degrees to 18.5 degrees 8.0 degrees or more and 20.0 degrees or less, 8.0 degrees or more and 19.5 degrees or less, 8.0 degrees or more and 19.0 degrees or less, 8.0 degrees or more and 18.5 degrees or less, 10.0 degrees 10.0 degrees or more and 19.5 degrees or less, 10.0 degrees or more and 19.0 degrees or less, and 10.0 degrees or more and 18.5 degrees or less.
 基材の平均傾斜角及び基材の算術平均高さは、例えば、第1実施形態と同様の手法で測定することができる。 The average inclination angle of the substrate and the arithmetic average height of the substrate can be measured, for example, by the same method as in the first embodiment.
-条件2A-
 基材の算術平均高さが0.10μm未満の場合、基材と樹脂層との密着性が不足することにより、防眩性積層体の屈曲時に界面剥離が生じるため、防眩性積層体の耐屈曲性を良好にすることが困難である。
 基材の算術平均高さが0.40μmを超えると、樹脂層に基材成分が過度に溶出することを意味する。このため、基材の算術平均高さが0.40μmを超えると、防眩性積層体の鉛筆硬度を良好にすることが困難である。また、基材の算術平均高さが0.40μmを超えると、内部ヘイズが上昇することにより、解像度が低下しやすくなる。
 基材の算術平均高さは、0.15μm以上が好ましく、0.20μm以上がより好ましい。基材の算術平均高さは、0.38μm以下がより好ましく、0.36μm以下がさらに好ましい。
 基材の算術平均高さの好適な範囲の実施形態は、0.10μm以上0.40μm以下、0.10μm以上0.38μm以下、0.10μm以上0.36μm以下、0.15μm以上0.40μm以下、0.15μm以上0.38μm以下、0.15μm以上0.36μm以下、0.20μm以上0.40μm以下、0.20μm以上0.38μm以下、0.20μm以上0.36μm以下が挙げられる。
-Condition 2A-
When the arithmetic mean height of the base material is less than 0.10 μm, the adhesion between the base material and the resin layer is insufficient, and interfacial peeling occurs when the antiglare laminate is bent. It is difficult to improve flex resistance.
If the arithmetic mean height of the base material exceeds 0.40 μm, it means that the base material components are excessively eluted into the resin layer. Therefore, if the arithmetic mean height of the substrate exceeds 0.40 μm, it is difficult to improve the pencil hardness of the antiglare laminate. In addition, if the arithmetic mean height of the base material exceeds 0.40 μm, the internal haze increases, which tends to lower the resolution.
The arithmetic mean height of the substrate is preferably 0.15 μm or more, more preferably 0.20 μm or more. The arithmetic mean height of the substrate is more preferably 0.38 μm or less, and even more preferably 0.36 μm or less.
Embodiments of suitable ranges for the arithmetic mean height of the substrate are 0.10 μm to 0.40 μm, 0.10 μm to 0.38 μm, 0.10 μm to 0.36 μm, 0.15 μm to 0.40 μm 0.15 μm or more and 0.38 μm or less, 0.15 μm or more and 0.36 μm or less, 0.20 μm or more and 0.40 μm or less, 0.20 μm or more and 0.38 μm or less, and 0.20 μm or more and 0.36 μm or less.
 基材の樹脂層側の表面の平均傾斜角及び算術平均高さを上述した範囲とするためには、基材の一部を樹脂層用塗布液で溶解させることが好ましい。但し、基材を樹脂層用塗布液で溶解する際には、樹脂層用塗布液を所定の組成として、かつ、所定の乾燥条件とすることが好ましい。所定の組成及び所定の乾燥条件については後述する。 In order to keep the average inclination angle and the arithmetic mean height of the surface of the resin layer side of the base material within the ranges described above, it is preferable to dissolve part of the base material in the resin layer coating liquid. However, when the substrate is dissolved in the resin layer coating liquid, it is preferable that the resin layer coating liquid has a predetermined composition and predetermined drying conditions. The prescribed composition and prescribed drying conditions will be described later.
<樹脂層>
 樹脂層は、平均粒子径0.5μm以上の第1の粒子を含むことを要する。
 樹脂層が第1の粒子を含まない場合、防眩性積層体に防眩性を付与することができない。
<Resin layer>
The resin layer needs to contain first particles having an average particle size of 0.5 μm or more.
If the resin layer does not contain the first particles, the antiglare property cannot be imparted to the antiglare laminate.
 本開示の防眩性積層体は、樹脂層の厚み方向の中心より基材側を第1領域、樹脂層の厚み方向の中心より基材とは反対側を第2領域と定義した際に、第1の粒子の個数基準の70%以上が第2領域に存在することを要する。
 図5及び図6を参照すると、図5中の第1の粒子23Bは第2領域22Bに存在し、図6中の第1の粒子23Bは第1領域21Bに存在している。
 第2実施形態において、樹脂層は単層であることが好ましい。
In the anti-glare laminate of the present disclosure, when the substrate side of the center of the resin layer in the thickness direction is defined as the first region, and the side opposite to the substrate from the center of the resin layer in the thickness direction is defined as the second region, It is required that 70% or more of the number of the first particles exist in the second region.
5 and 6, the first particles 23B in FIG. 5 exist in the second region 22B and the first particles 23B in FIG. 6 exist in the first region 21B.
In the second embodiment, the resin layer is preferably a single layer.
 第1の粒子の個数基準の70%以上が第2領域に存在しないことは、第1の粒子の個数基準の30%以上が第1領域に存在することになる。
 第1領域に存在する第1の粒子は、樹脂層の表面を凹凸形状にしにくいため、後述の比較例2-2のように防眩性を良好にしにくい。
 後述の比較例2-1のように、第1の粒子の含有量の絶対値が多ければ、第1の粒子の個数基準の70%以上が第2領域に存在しなくても防眩性を良好にすることができる。しかし、この場合、耐屈曲性の低下の原因となる、第1の粒子と樹脂層との界面が増加するため、防眩性積層体の耐屈曲性を良好にすることができない。
If 70% or more of the first particles based on the number do not exist in the second region, it means that 30% or more of the first particles based on the number exist in the first region.
Since the first particles present in the first region are difficult to make the surface of the resin layer uneven, it is difficult to improve the antiglare property as in Comparative Example 2-2 described later.
As in Comparative Example 2-1 described later, if the absolute value of the content of the first particles is large, the antiglare property can be obtained even if 70% or more of the first particles based on the number are not present in the second region. can be made better. However, in this case, since the interface between the first particles and the resin layer increases, which causes a decrease in flex resistance, the flex resistance of the antiglare laminate cannot be improved.
 第1の粒子が第2領域に存在する割合は、個数基準で75%以上であることが好ましく、80%以上であることがより好ましい。 The ratio of the first particles existing in the second region is preferably 75% or more, more preferably 80% or more, based on the number.
 本明細書において、樹脂層の厚み方向における第1の粒子が存在する位置は、下記(1)~(5)の手法で判別するものとする。
(1)走査型透過電子顕微鏡(STEM)により、防眩性積層体の断面写真を撮像する。 STEMの加速電圧は10kV以上30kV以下、STEMの倍率は1000倍以上7000倍以下とすることが好ましい。
(2)断面写真に基づき、樹脂層の基材側の表面の稜線の標高の平均X1、樹脂層の基材とは反対側の表面の稜線の標高の平均X2を算出する(図5の符号X1及びX2参照)。
(3)X1及びX2の標高の中間を、樹脂層の厚み方向の中心Mと定義する(図5の符号M参照)。
(4)断面写真に基づき、樹脂層の厚み方向の中心より基材側の第1領域に存在する第1の粒子、及び、樹脂層の厚み方向の中心より基材とは反対側の第2領域に存在する第1の粒子、の個数をカウントする。樹脂層の厚み方向の中心を跨いで、第1領域及び第2領域の両方に存在している第1の粒子は、各領域の面積割合に応じて、各領域に個数を割り振る。例えば、第1領域の面積割合が40%で第2領域の面積割合が60%の第1の粒子は、第1領域に0.4個を割り振り、第2領域に0.6個を割り振る。
(5)数値の信頼性を高めるために、複数の断面写真を取得し、第1の粒子の合計数を50以上とした上で、第1領域及び第2領域に存在する第1の粒子の個数基準の割合を算出する。
In this specification, the position of the first particles in the thickness direction of the resin layer is determined by the following methods (1) to (5).
(1) A cross-sectional photograph of the antiglare laminate is taken with a scanning transmission electron microscope (STEM). It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
(2) Based on the cross-sectional photograph, calculate the average X1 of the elevation of the ridges on the surface of the resin layer on the substrate side and the average X2 of the elevations of the ridges on the surface of the resin layer on the opposite side from the substrate (symbols in FIG. 5 See X1 and X2).
(3) The center M in the thickness direction of the resin layer is defined between the altitudes of X1 and X2 (see symbol M in FIG. 5).
(4) Based on the cross-sectional photograph, the first particles present in the first region on the substrate side from the center in the thickness direction of the resin layer, and the second particles on the side opposite to the substrate from the center in the thickness direction of the resin layer counting the number of first particles present in the region; The number of first particles present in both the first region and the second region across the center of the resin layer in the thickness direction is assigned to each region according to the area ratio of each region. For example, for a first particle having an area ratio of 40% in the first region and an area ratio of 60% in the second region, 0.4 particles are assigned to the first area and 0.6 particles are assigned to the second area.
(5) In order to increase the reliability of the numerical value, a plurality of cross-sectional photographs are taken, the total number of the first particles is set to 50 or more, and the number of the first particles present in the first region and the second region is Calculate the number-based ratio.
 樹脂層は、例えば、基材上に、第1の粒子、樹脂となる成分、及び溶媒を含む樹脂層用塗布液を塗布、乾燥し、必要に応じて硬化することにより形成することができる。樹脂層用塗布液は、さらに、必要に応じて、無機微粒子、添加剤を含有してもよい。
 上記の手法の場合、樹脂層用塗布液が基材の一部を溶解することにより、基材の樹脂層側の表面を凹凸化する。基材から溶出した成分は、樹脂層用塗布液と混合し、樹脂層の構成成分となる。
 上記の手法では、樹脂層用塗布液を所定の組成として、かつ、所定の乾燥条件とすることが肝要である。所定の組成及び所定の乾燥条件については後述する。
 基材上に樹脂層用塗布液を塗布する方法は特に制限されず、スピンコート法、ディップ法、スプレー法、ダイコート法、バーコート法、グラビアコート法、ロールコーター法、メニスカスコーター法、フレキソ印刷法、スクリーン印刷法、ピードコーター法等の汎用の塗布方法が挙げられる。
 樹脂層用塗布液を硬化する際には、紫外線及び電子線等の電離放射線を照射することが好ましい。紫外線源の具体例としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク灯、ブラックライト蛍光灯及びメタルハライドランプ灯等が挙げられる。また、紫外線の波長としては、190nm以上380nm以下の波長域が好ましい。電子線源の具体例としては、コッククロフトワルト型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種の電子線加速器が挙げられる。
The resin layer can be formed, for example, by coating a base material with a resin layer coating liquid containing first particles, a resin component, and a solvent, drying it, and curing it as necessary. The resin layer coating liquid may further contain inorganic fine particles and additives, if necessary.
In the case of the above method, the resin layer coating liquid partially dissolves the base material, thereby roughening the surface of the base material on the resin layer side. The components eluted from the base material are mixed with the resin layer coating liquid and become constituent components of the resin layer.
In the above method, it is important to set the resin layer coating liquid to a predetermined composition and to set the drying conditions to predetermined conditions. The prescribed composition and prescribed drying conditions will be described later.
The method of applying the resin layer coating liquid onto the substrate is not particularly limited, and may be spin coating, dipping, spraying, die coating, bar coating, gravure coating, roll coating, meniscus coating, flexographic printing. general-purpose coating methods such as coating method, screen printing method, and speed coater method.
When curing the resin layer coating liquid, it is preferable to irradiate ionizing radiation such as ultraviolet rays and electron beams. Specific examples of ultraviolet light sources include ultra-high pressure mercury lamps, high pressure mercury lamps, low pressure mercury lamps, carbon arc lamps, black light fluorescent lamps and metal halide lamps. Moreover, the wavelength of the ultraviolet rays is preferably in the wavelength range of 190 nm or more and 380 nm or less. Specific examples of electron beam sources include various electron beam accelerators such as Cockcroftwald type, Vandegraft type, resonance transformer type, insulating core transformer type, linear type, dynamitron type, and high frequency type.
 樹脂層の平均厚みは、下限は、6.0μm以上が好ましく、7.0μm以上がより好ましく、8.0μm以上がさらに好ましく、上限は、15.0μm以下が好ましく、14.0μm以下がより好ましく、13.0μm以下がさらに好ましい。
 樹脂層の平均厚みを6.0μm以上とすることにより、鉛筆硬度を良好にしやすくできる。樹脂層の平均厚みを15.0μm以下とすることにより、耐屈曲性の低下を抑制しやすくできる。
 樹脂層の平均厚みの好適な範囲の実施形態は、6.0μm以上15.0μm以下、6.0μm以上14.0μm以下、6.0μm以上13.0μm以下、7.0μm以上15.0μm以下、7.0μm以上14.0μm以下、7.0μm以上13.0μm以下、8.0μm以上15.0μm以下、8.0μm以上14.0μm以下、8.0μm以上13.0μm以下が挙げられる。
The lower limit of the average thickness of the resin layer is preferably 6.0 µm or more, more preferably 7.0 µm or more, still more preferably 8.0 µm or more, and the upper limit is preferably 15.0 µm or less, more preferably 14.0 µm or less. , 13.0 μm or less.
By setting the average thickness of the resin layer to 6.0 μm or more, the pencil hardness can be easily improved. By setting the average thickness of the resin layer to 15.0 μm or less, it is possible to easily suppress deterioration in flex resistance.
Preferred embodiments of the average thickness of the resin layer are 6.0 μm or more and 15.0 μm or less, 6.0 μm or more and 14.0 μm or less, 6.0 μm or more and 13.0 μm or less, 7.0 μm or more and 15.0 μm or less, 7.0 μm or more and 14.0 μm or less, 7.0 μm or more and 13.0 μm or less, 8.0 μm or more and 15.0 μm or less, 8.0 μm or more and 14.0 μm or less, and 8.0 μm or more and 13.0 μm or less.
 樹脂層の平均厚みは、例えば、走査型透過電子顕微鏡(STEM)により撮像した防眩性積層体の断面写真の任意の箇所を20点選び、その平均値により算出できる。STEMの加速電圧は10kV以上30kV以下、STEMの倍率は1000倍以上7000倍以下とすることが好ましい。 The average thickness of the resin layer can be calculated, for example, by selecting 20 arbitrary points in cross-sectional photographs of the antiglare laminate taken by a scanning transmission electron microscope (STEM) and calculating the average value thereof. It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
《第1の粒子》
 第1の粒子は、平均粒子径が0.5μm以上の粒子である。平均粒子径が0.5μm未満の場合、樹脂層の表面に凹凸形状を形成することが困難であり、防眩性を良好にすることができない。
《First particle》
The first particles are particles having an average particle size of 0.5 μm or more. If the average particle size is less than 0.5 μm, it is difficult to form unevenness on the surface of the resin layer, and antiglare properties cannot be improved.
 第1の粒子としては、ポリメチルメタクリレート、ポリアクリル-スチレン共重合体、メラミン樹脂、ポリカーボネート、ポリスチレン、ポリ塩化ビニル、ベンゾグアナミン-メラミン-ホルムアルデヒド縮合物、シリコーン、フッ素系樹脂及びポリエステル系樹脂等の樹脂の1種以上から形成される有機粒子;シリカ、アルミナ、ジルコニア及びチタニア等の無機物の1種以上から形成される無機粒子;が挙げられる。これらの中でも、有機粒子は、分散安定性に優れ、かつ、比重が比較的小さいため、第1の粒子が厚み方向の位置の条件を満たしやすくできる点で好ましい。 As the first particles, resins such as polymethyl methacrylate, polyacrylic-styrene copolymer, melamine resin, polycarbonate, polystyrene, polyvinyl chloride, benzoguanamine-melamine-formaldehyde condensate, silicone, fluorine-based resin and polyester-based resin. inorganic particles formed from one or more inorganic substances such as silica, alumina, zirconia and titania; Among these, organic particles are preferable because they are excellent in dispersion stability and have a relatively small specific gravity, so that the first particles can easily satisfy the positional conditions in the thickness direction.
 第1の粒子の含有量は、樹脂層用塗布液の樹脂成分100質量部に対して、下限は、0.5質量部以上であることが好ましく、1.0質量部以上であることがより好ましく、1.5質量部以上であることがさらに好ましく、上限は、10.0質量部以下であることが好ましく、5.0質量部以下であることがより好ましく、3.0質量部以下であることがさらに好ましい。
 第1の粒子の含有量を0.5質量部以上とすることにより、防眩性を良好にしやすくできる。また、第1の粒子の含有量を10.0質量部以下とすることにより、耐屈曲性の低下を抑制しやすくできる。
 樹脂成分100質量部に対する、第1の粒子の含有量の好適な範囲の実施形態は、0.5質量部以上10.0質量部以下、0.5質量部以上5.0質量部以下、0.5質量部以上3.0質量部以下、1.0質量部以上10.0質量部以下、1.0質量部以上5.0質量部以下、1.0質量部以上3.0質量部以下、1.5質量部以上10.0質量部以下、1.5質量部以上5.0質量部以下、1.5質量部以上3.0質量部以下が挙げられる。
The lower limit of the content of the first particles is preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, with respect to 100 parts by mass of the resin component of the resin layer coating liquid. It is preferably 1.5 parts by mass or more, and the upper limit is preferably 10.0 parts by mass or less, more preferably 5.0 parts by mass or less, and 3.0 parts by mass or less. It is even more preferable to have
By setting the content of the first particles to 0.5 parts by mass or more, the antiglare property can be easily improved. Further, by setting the content of the first particles to 10.0 parts by mass or less, it is possible to easily suppress deterioration in bending resistance.
An embodiment of a preferred range of the content of the first particles with respect to 100 parts by mass of the resin component is 0.5 parts by mass or more and 10.0 parts by mass or less, 0.5 parts by mass or more and 5.0 parts by mass or less, 0 .5 to 3.0 parts by mass, 1.0 to 10.0 parts by mass, 1.0 to 5.0 parts by mass, 1.0 to 3.0 parts by mass , 1.5 to 10.0 parts by mass, 1.5 to 5.0 parts by mass, and 1.5 to 3.0 parts by mass.
 第1の粒子の平均粒子径は、0.8μm以上であることが好ましく、1.0μm以上であることがより好ましい。
 第1の粒子が厚み方向の位置の条件を満たしやすくするために、第1の粒子の平均粒子径は、3.0μm以下であることが好ましく、2.7μm以下であることがより好ましく、2.5μm以下であることがさらに好ましい。
 第1の粒子の平均粒子径の好適な範囲の実施形態は、0.8μm以上3.0μm以下、0.8μm以上2.7μm以下、0.8μm以上2.5μm以下、1.0μm以上3.0μm以下、1.0μm以上2.7μm以下、1.0μm以上2.5μm以下が挙げられる。
The average particle size of the first particles is preferably 0.8 μm or more, more preferably 1.0 μm or more.
The average particle diameter of the first particles is preferably 3.0 μm or less, more preferably 2.7 μm or less, so that the first particles can easily satisfy the position condition in the thickness direction. 0.5 μm or less is more preferable.
Preferred embodiments of the average particle size of the first particles are 0.8 μm or more and 3.0 μm or less, 0.8 μm or more and 2.7 μm or less, 0.8 μm or more and 2.5 μm or less, 1.0 μm or more and 3.0 μm or less. 0 μm or less, 1.0 μm or more and 2.7 μm or less, or 1.0 μm or more and 2.5 μm or less.
 第1の粒子の平均粒子径は、例えば、第1実施形態と同様の手法で算出することができる。 The average particle size of the first particles can be calculated, for example, by the same method as in the first embodiment.
 第1の粒子の平均粒子径を示すD1と、樹脂層の平均厚みを示すtとは、2.0<t/D1<6.0の関係の関係であることが好ましい。
 t/D1を6.0未満とすることにより、第1の粒子によって、防眩性積層体の表面に凹凸形状を付与しやすくできるため、防眩性を良好にしやすくできる。t/D1を2.0超とすることにより、第1の粒子が樹脂層の表面から突出することによって耐屈曲性が低下することを抑制しやすくできる。
 t/D1は、下限は、2.5以上がより好ましく、3.5以上がさらに好ましく、上限は、5.0以下がより好ましく、4.5以下がさらに好ましい。
 t/D1の好適な範囲の実施形態は、2.0超6.0未満、2.0超5.0以下、2.0超4.5以下、2.5以上6.0未満、2.5以上5.0以下、2.5以上4.5以下、3.5以上6.0未満、3.5以上5.0以下、3.5以上4.5以下が挙げられる。
D1, which indicates the average particle diameter of the first particles, and t, which indicates the average thickness of the resin layer, preferably have a relationship of 2.0<t/D1<6.0.
By setting t/D1 to be less than 6.0, the first particles can easily provide the surface of the antiglare laminate with an uneven shape, so that the antiglare property can be easily improved. By setting t/D1 to be more than 2.0, it is possible to easily suppress deterioration in bending resistance due to protrusion of the first particles from the surface of the resin layer.
The lower limit of t/D1 is more preferably 2.5 or more, more preferably 3.5 or more, and the upper limit is more preferably 5.0 or less, further preferably 4.5 or less.
Embodiments of preferred ranges for t/D1 are greater than 2.0 and less than 6.0; greater than 2.0 and less than 5.0; 5 or more and 5.0 or less, 2.5 or more and 4.5 or less, 3.5 or more and less than 6.0, 3.5 or more and 5.0 or less, 3.5 or more and 4.5 or less.
 t-D1は、下限は、耐屈曲性が低下することを抑制しやすくするため、2.0μm以上であることが好ましく、3.0μm以上であることがより好ましく、4.0μm以上であることがさらに好ましく、上限は、防眩性を良好にしやすくするため、10μm以下であることが好ましく、8.0μm以下であることがより好ましく、7.0μm以下であることがさらに好ましい。
 t-D1の好適な範囲の実施形態は、2.0μm以上10μm以下、2.0μm以上8.0μm以下、2.0μm以上7.0μm以下、3.0μm以上10μm以下、3.0μm以上8.0μm以下、3.0μm以上7.0μm以下、4.0μm以上10μm以下、4.0μm以上8.0μm以下、4.0μm以上7.0μm以下が挙げられる。
The lower limit of t-D1 is preferably 2.0 μm or more, more preferably 3.0 μm or more, and 4.0 μm or more in order to easily suppress the decrease in bending resistance. is more preferable, and the upper limit is preferably 10 μm or less, more preferably 8.0 μm or less, and even more preferably 7.0 μm or less, in order to easily improve the antiglare property.
Embodiments of preferred ranges for t-D1 are 2.0 μm to 10 μm, 2.0 μm to 8.0 μm, 2.0 μm to 7.0 μm, 3.0 μm to 10 μm, 3.0 μm to 8.0 μm. 0 μm or less, 3.0 μm or more and 7.0 μm or less, 4.0 μm or more and 10 μm or less, 4.0 μm or more and 8.0 μm or less, and 4.0 μm or more and 7.0 μm or less.
《無機微粒子》
 樹脂層は、無機微粒子を含んでいてもよい。樹脂層が比較的比重の大きい無機微粒子を含むことにより、第1の粒子が樹脂層の下方に沈みにくくなるため、第1の粒子が厚み方向の位置の条件を満たしやすくできる。また、無機微粒子は、第1の粒子の分散性を高め、耐屈曲性の低下を抑制しやすくできる。
《Inorganic fine particles》
The resin layer may contain inorganic fine particles. Since the resin layer contains inorganic fine particles having a relatively large specific gravity, the first particles are less likely to sink below the resin layer, so that the first particles can easily satisfy the positional condition in the thickness direction. In addition, the inorganic fine particles can enhance the dispersibility of the first particles and easily suppress the deterioration of the bending resistance.
 第2実施形態の無機微粒子の平均粒子径及び種類の実施形態は、第1実施形態の無機微粒子の平均粒子径及び種類の実施形態と同様の実施形態とすることができる。 The embodiment of the average particle size and type of inorganic fine particles in the second embodiment can be the same as the embodiment of the average particle size and type of inorganic fine particles in the first embodiment.
 無機微粒子の含有量は、樹脂層用塗布液の樹脂成分100質量部に対して、下限は、0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、0.7質量部以上であることがさらに好ましく、上限は、5.0質量部以下であることが好ましく、3.0質量部以下であることがより好ましく、2.0質量部以下であることがさらに好ましい。
 無機微粒子の含有量を0.1質量部以上とすることにより、第1の粒子が厚み方向の位置の条件を満たしやすくできる。また、無機微粒子の含有量を5.0質量部以下とすることにより、第1の粒子が樹脂層の上方に過度に浮かぶことを抑制できるため、耐屈曲性の低下を抑制しやすくできる。
 樹脂成分100質量部に対する、無機微粒子の含有量の好適な範囲の実施形態は、0.1質量部以上5.0質量部以下、0.1質量部以上3.0質量部以下、0.1質量部以上2.0質量部以下、0.5質量部以上5.0質量部以下、0.5質量部以上3.0質量部以下、0.5質量部以上2.0質量部以下、0.7質量部以上5.0質量部以下、0.7質量部以上3.0質量部以下、0.7質量部以上2.0質量部以下が挙げられる。
The lower limit of the content of the inorganic fine particles is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, with respect to 100 parts by mass of the resin component of the resin layer coating liquid. It is more preferably 0.7 parts by mass or more, and the upper limit is preferably 5.0 parts by mass or less, more preferably 3.0 parts by mass or less, and 2.0 parts by mass or less. is more preferred.
By setting the content of the inorganic fine particles to 0.1 part by mass or more, the first particles can easily satisfy the positional condition in the thickness direction. In addition, by setting the content of the inorganic fine particles to 5.0 parts by mass or less, it is possible to prevent the first particles from excessively floating above the resin layer, so that it is possible to easily prevent deterioration in bending resistance.
In embodiments, the content of the inorganic fine particles with respect to 100 parts by mass of the resin component is preferably 0.1 parts by mass or more and 5.0 parts by mass or less, 0.1 parts by mass or more and 3.0 parts by mass or less, 0.1 parts by mass to 2.0 parts by mass, 0.5 parts by mass to 5.0 parts by mass, 0.5 parts by mass to 3.0 parts by mass, 0.5 parts by mass to 2.0 parts by mass, 0 7 to 5.0 parts by mass, 0.7 to 3.0 parts by mass, and 0.7 to 2.0 parts by mass.
《樹脂成分》
 樹脂層は、樹脂成分として、硬化性樹脂組成物の硬化物を含むことが好ましい。樹脂層が硬化性樹脂組成物の硬化物を含むことにより、防眩性積層体の鉛筆硬度を良好にしやすくできる。
《Resin component》
The resin layer preferably contains a cured product of a curable resin composition as a resin component. By including the cured product of the curable resin composition in the resin layer, it is possible to easily improve the pencil hardness of the antiglare laminate.
 樹脂層用塗布液の樹脂成分の全量に対する硬化性樹脂組成物の割合は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、100質量%であることが最も好ましい。 The ratio of the curable resin composition to the total amount of the resin component in the resin layer coating liquid is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. Preferably, 100% by mass is most preferable.
 硬化性樹脂組成物の硬化物としては、熱硬化性樹脂組成物の硬化物及び電離放射線硬化性樹脂組成物の硬化物が挙げられる。これらの中でも、鉛筆硬度を高くしやすく、かつ、未硬化の組成物の状態において基材を溶解しやすい、電離放射線硬化性樹脂組成物の硬化物が好ましい。 The cured product of the curable resin composition includes a cured product of a thermosetting resin composition and a cured product of an ionizing radiation-curable resin composition. Among these, a cured product of an ionizing radiation-curable resin composition is preferable because it is easy to increase the pencil hardness and to easily dissolve the substrate in the uncured state of the composition.
 第2実施形態の熱硬化性樹脂組成物の実施形態は、第1実施形態の熱硬化性樹脂組成物の実施形態と同様の実施形態とすることができる。 The embodiment of the thermosetting resin composition of the second embodiment can be the same as the embodiment of the thermosetting resin composition of the first embodiment.
 電離放射線硬化性樹脂組成物は、電離放射線硬化性官能基を有する化合物(以下、「電離放射線硬化性化合物」ともいう)を含む組成物である。電離放射線硬化性官能基としては、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合基、及びエポキシ基、オキセタニル基等が挙げられる。電離放射線硬化性化合物としては、エチレン性不飽和結合基を有する化合物が好ましい。
 電離放射線とは、電磁波又は荷電粒子線のうち、分子を重合あるいは架橋し得るエネルギー量子を有するものを意味し、通常、紫外線又は電子線が用いられるが、その他、X線、γ線などの電磁波、α線、イオン線などの荷電粒子線も使用可能である。
 本明細書において、(メタ)アクリロイル基とは、アクリロイル基又はメタクロイル基を示す。また、本明細書において、(メタ)アクリレートとは、アクリレート又はメタクリレートを示す。
The ionizing radiation-curable resin composition is a composition containing a compound having an ionizing radiation-curable functional group (hereinafter also referred to as an "ionizing radiation-curable compound"). Examples of ionizing radiation-curable functional groups include ethylenically unsaturated bond groups such as (meth)acryloyl groups, vinyl groups, and allyl groups, epoxy groups, and oxetanyl groups. As the ionizing radiation-curable compound, a compound having an ethylenically unsaturated bond group is preferred.
Ionizing radiation refers to electromagnetic waves or charged particle beams that have energy quanta capable of polymerizing or cross-linking molecules. Usually, ultraviolet rays or electron beams are used, but other electromagnetic waves such as X-rays and gamma rays are also used. , α-rays, ion beams, and other charged particle beams can also be used.
As used herein, a (meth)acryloyl group refers to an acryloyl group or a methacryloyl group. Moreover, in this specification, (meth)acrylate indicates acrylate or methacrylate.
 電離放射線硬化性化合物としては、電離放射線硬化性官能基を1つ有する単官能の電離放射線硬化性化合物、電離放射線硬化性官能基を2つ以上有する多官能の電離放射線硬化性化合物のいずれも用いることができる。また、電離放射線硬化性化合物としては、モノマー及びオリゴマーのいずれも用いることができる。
 基材の一部を溶解し、かつ、鉛筆硬度を高くし、かつ、硬化収縮を抑制しやすくするためには、電離放射線硬化性化合物として、下記(a)~(c)の混合物を用いることが好ましい。下記(a)~(c)は、電離放射線硬化性官能基としてエチレン性不飽和結合基を有する化合物であることが好ましく、(メタ)アクリレート系化合物であることがより好ましい。(メタ)アクリレート系化合物は、エチレンオキサイド、プロピレンオキサイド、カプロラクトン、イソシアヌル酸、アルキル、環状アルキル、芳香族、ビスフェノール等により分子骨格の一部を変性したものも使用することができる。
(a)単官能の電離放射線硬化性モノマー
(b)多官能の電離放射線硬化性モノマー
(c)多官能の電離放射線硬化性オリゴマー
As the ionizing radiation-curable compound, both a monofunctional ionizing radiation-curable compound having one ionizing radiation-curable functional group and a polyfunctional ionizing radiation-curable compound having two or more ionizing radiation-curable functional groups are used. be able to. Both monomers and oligomers can be used as the ionizing radiation-curable compound.
In order to partially dissolve the base material, increase the pencil hardness, and make it easier to suppress cure shrinkage, the following mixtures (a) to (c) can be used as the ionizing radiation-curable compound. is preferred. The following (a) to (c) are preferably compounds having an ethylenically unsaturated bond group as an ionizing radiation-curable functional group, more preferably (meth)acrylate compounds. As the (meth)acrylate compound, a part of the molecular skeleton modified with ethylene oxide, propylene oxide, caprolactone, isocyanuric acid, alkyl, cyclic alkyl, aromatic, bisphenol or the like can also be used.
(a) monofunctional ionizing radiation-curable monomer (b) polyfunctional ionizing radiation-curable monomer (c) polyfunctional ionizing radiation-curable oligomer
 電離放射線硬化性化合物として、(a)の単官能の電離放射線硬化性モノマーを含むことにより、基材の一部を溶解しやすくすることができるため、条件1A又は条件2Aを満たしやすくできる。また、(a)の単官能の電離放射線硬化性モノマーを含むことにより、基材から溶出した成分を樹脂層用塗布液の成分に相溶させやすくできるため、樹脂層の物理特性を良好にしやすくできる。
 但し、(a)の単官能の電離放射線硬化性モノマーの量が多過ぎると、基材を過度に溶解してしまうため、基材の強度が低下したり、防眩性積層体の鉛筆硬度が低下する場合がある。
 電離放射線硬化性化合物として、(b)の多官能の電離放射線硬化性モノマーを含むことにより、防眩性積層体の鉛筆硬度を良好にしやすくできる。但し、(b)の多官能の電離放射線硬化性モノマーの量が多過ぎると、樹脂層の硬度が高くなり過ぎて、防眩性積層体の耐屈曲性が低下する場合がある。
 電離放射線硬化性化合物として、(c)の多官能の電離放射線硬化性オリゴマーを含むことにより、防眩性積層体の鉛筆硬度を維持しつつ、硬化収縮を抑制しやすくできる。但し、(c)の多官能の電離放射線硬化性オリゴマーの量が多過ぎると、防眩性積層体の鉛筆硬度が低下する場合がある。
By including the monofunctional ionizing radiation-curable monomer (a) as the ionizing radiation-curable compound, a part of the substrate can be easily dissolved, so that condition 1A or condition 2A can be easily satisfied. In addition, by including the monofunctional ionizing radiation-curable monomer (a), the components eluted from the substrate can be easily dissolved in the components of the resin layer coating liquid, so that the physical properties of the resin layer can be easily improved. can.
However, if the amount of the monofunctional ionizing radiation-curable monomer (a) is too large, the base material will be dissolved excessively, resulting in a decrease in strength of the base material and a decrease in pencil hardness of the antiglare laminate. may decrease.
By including the polyfunctional ionizing radiation-curable monomer (b) as the ionizing radiation-curable compound, the pencil hardness of the antiglare laminate can be easily improved. However, if the amount of the polyfunctional ionizing radiation-curable monomer (b) is too large, the hardness of the resin layer may become too high, and the flex resistance of the antiglare laminate may decrease.
By containing the polyfunctional ionizing radiation-curable oligomer (c) as the ionizing radiation-curable compound, curing shrinkage can be easily suppressed while maintaining the pencil hardness of the antiglare laminate. However, if the amount of the polyfunctional ionizing radiation-curable oligomer (c) is too large, the pencil hardness of the antiglare laminate may decrease.
 電離放射線硬化性化合物の総量に対する、(a)の単官能の電離放射線硬化性モノマーの量は、10質量%以上40質量%以下であることが好ましく、13質量%以上30質量%以下であることがより好ましく、15質量%以上25質量%以下であることがさらに好ましい。
 電離放射線硬化性化合物の総量に対する、(b)の多官能の電離放射線硬化性モノマーの量は、5質量%以上20質量%以下であることが好ましく、6質量%以上15質量%以下であることがより好ましく、7質量%以上13質量%以下であることがさらに好ましい。
 電離放射線硬化性化合物の総量に対する、(c)多官能の電離放射線硬化性オリゴマーの量は、50質量%以上85質量%以下であることが好ましく、60質量%以上80質量%以下であることがより好ましく、65質量%以上75質量%以下であることがさらに好ましい。
The amount of the monofunctional ionizing radiation-curable monomer (a) with respect to the total amount of the ionizing radiation-curable compound is preferably 10% by mass or more and 40% by mass or less, and is 13% by mass or more and 30% by mass or less. is more preferable, and more preferably 15% by mass or more and 25% by mass or less.
The amount of the polyfunctional ionizing radiation-curable monomer (b) with respect to the total amount of the ionizing radiation-curable compound is preferably 5% by mass or more and 20% by mass or less, and 6% by mass or more and 15% by mass or less. is more preferable, and more preferably 7% by mass or more and 13% by mass or less.
The amount of (c) polyfunctional ionizing radiation-curable oligomer relative to the total amount of ionizing radiation-curable compounds is preferably 50% by mass or more and 85% by mass or less, and is preferably 60% by mass or more and 80% by mass or less. More preferably, it is 65% by mass or more and 75% by mass or less.
 第2実施形態の(a)の単官能の電離放射線硬化性モノマー、(b)の多官能の電離放射線硬化性モノマー、及び(c)の多官能の電離放射線硬化性オリゴマーの実施形態は、第1実施形態の(a)の単官能の電離放射線硬化性モノマー、(b)の多官能の電離放射線硬化性モノマー、及び(c)の多官能の電離放射線硬化性オリゴマーの実施形態と同様の実施形態とすることができる。 The embodiments of (a) the monofunctional ionizing radiation curable monomer, (b) the multifunctional ionizing radiation curable monomer, and (c) the multifunctional ionizing radiation curable oligomer of the second embodiment are Similar practice to embodiment (a) monofunctional ionizing radiation curable monomer, (b) multifunctional ionizing radiation curable monomer, and (c) multifunctional ionizing radiation curable oligomer embodiment. can be in the form
 電離放射線硬化性化合物が紫外線硬化性化合物である場合には、電離放射線硬化性組成物は、第1実施形態と同様に、光重合開始剤や光重合促進剤等の添加剤を含むことが好ましい。
 樹脂層用塗布液は、第1実施形態と同様に、必要に応じて、添加剤を含んでいてもよい。
When the ionizing radiation-curable compound is an ultraviolet-curable compound, the ionizing radiation-curable composition preferably contains additives such as photopolymerization initiators and photopolymerization accelerators, as in the first embodiment. .
As in the first embodiment, the resin layer coating liquid may contain additives, if necessary.
《溶媒》
 樹脂層用塗布液は、溶媒を含むことが好ましい。
 溶媒としては、基材を溶解し得る溶媒を選択することが好ましい。但し、基材を過度に溶解すると、基材の強度が低下するため、基材の種類に応じて、適切な溶媒を選択することが好ましい。溶媒は、Hansen溶解度パラメータの3成分のうち、極性成分であるδpが7.0(J/cm0.5以上10.0(J/cm0.5以下である溶媒を含むことが好ましい。δpが7.0(J/cm0.5以上であることで、基材を溶解させやすくすることができ、10.0(J/cm0.5以下であることで、溶解させすぎないようにすることができる。トルエン、イソプロピルアルコール(IPA)、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)のδp[(J/cm0.5]の値は下記の通りである。
([トルエン:1.4、IPA:6.1、MEK:9.0、MIBK:6.1])
 また、溶媒は、基材の溶解性だけではなく、溶媒に固有の蒸発速度を考慮して選択することが好ましい。溶媒の蒸発速度が遅い場合、基材を過度に溶解しやすいためである。溶媒が蒸発する速度は、乾燥条件によっても制御できる。例えば、乾燥温度を高くすれば溶媒が蒸発する速度は速くなる。また、乾燥風速を速くすれば溶媒が蒸発する速度は速くなる。
 以上のことから、基材の溶解性、蒸発速度、乾燥条件を考慮して、溶媒を選択することが好ましい。
"solvent"
The resin layer coating liquid preferably contains a solvent.
As the solvent, it is preferable to select a solvent that can dissolve the substrate. However, if the base material is dissolved excessively, the strength of the base material is lowered, so it is preferable to select an appropriate solvent according to the type of base material. Among the three components of the Hansen solubility parameter, the solvent contains a solvent in which δp, which is the polar component, is 7.0 (J/cm 3 ) 0.5 or more and 10.0 (J/cm 3 ) 0.5 or less. is preferred. When δp is 7.0 (J/cm 3 ) 0.5 or more, the substrate can be easily dissolved, and when δp is 10.0 (J/cm 3 ) 0.5 or less, You can try not to overdo it. The values of δp[(J/cm 3 ) 0.5 ] of toluene, isopropyl alcohol (IPA), methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK) are as follows.
([Toluene: 1.4, IPA: 6.1, MEK: 9.0, MIBK: 6.1])
In addition, it is preferable to select the solvent in consideration of not only the solubility of the base material but also the evaporation rate inherent to the solvent. This is because if the evaporation rate of the solvent is slow, the substrate tends to dissolve excessively. The rate at which the solvent evaporates can also be controlled by the drying conditions. For example, the higher the drying temperature, the faster the solvent will evaporate. Also, the faster the drying air speed, the faster the solvent evaporates.
From the above, it is preferable to select the solvent in consideration of the solubility of the substrate, the evaporation rate, and the drying conditions.
 第2実施形態の溶媒の種類の実施形態は、第1実施形態の溶媒の種類の実施形態と同様の実施形態とすることができる。 The solvent type embodiment of the second embodiment can be the same embodiment as the solvent type embodiment of the first embodiment.
 アクリル樹脂基材は溶媒に溶解しやすい。このため、基材としてアクリル樹脂基材を用いる場合、溶媒に固有の蒸発速度が速い溶媒を主成分とすることが好ましい。主成分とは、溶媒の全量の50質量%以上であることを意味し、好ましくは70質量%以上、より好ましくは90質量%以上、最も好ましくは100質量%である。
 本明細書において、蒸発速度が速い溶媒は、酢酸ブチルの蒸発速度を100とした際に、蒸発速度が100以上の溶媒を意味する。蒸発速度が速い溶媒の蒸発速度は、120以上450以下であることがより好ましく、140以上400以下であることがさらに好ましい。
 蒸発速度が速い溶媒としては、例えば、イソプロピルアルコール(蒸発速度150)、メチルイソブチルケトン(蒸発速度160)、トルエン(蒸発速度200)、メチルエチルケトン(蒸発速度370)が挙げられる。
An acrylic resin base material is easily dissolved in a solvent. For this reason, when an acrylic resin base material is used as the base material, it is preferable that the main component is a solvent having a high evaporation rate inherent to the solvent. The main component means 50% by mass or more of the total amount of the solvent, preferably 70% by mass or more, more preferably 90% by mass or more, and most preferably 100% by mass.
In the present specification, a solvent with a high evaporation rate means a solvent with an evaporation rate of 100 or more when the evaporation rate of butyl acetate is set to 100. The evaporation rate of the solvent having a high evaporation rate is more preferably 120 or more and 450 or less, and even more preferably 140 or more and 400 or less.
Solvents with high evaporation rates include, for example, isopropyl alcohol (evaporation rate 150), methyl isobutyl ketone (evaporation rate 160), toluene (evaporation rate 200), and methyl ethyl ketone (evaporation rate 370).
 さらに、溶媒は、分子量が小さく、極性が高い溶媒を含むことが好ましい。極性が高い溶媒は、Hansen溶解度パラメータのδpが上述した範囲の溶媒が好ましい。分子量が小さく、極性が高く、かつ、上述した蒸発速度の溶媒を含むことにより、アクリル樹脂基材を適切に溶解しやすくできる。かかる溶媒としては、メチルエチルケトンが挙げられる。
 メチルエチルケトンの量は、条件1A又は条件2Aを満たしやすくするため、溶媒の全量の20質量%以上40質量%以下であることが好ましい。
Furthermore, the solvent preferably contains a solvent with a low molecular weight and high polarity. A highly polar solvent is preferably a solvent in which the Hansen solubility parameter δp is in the range described above. By containing a solvent having a small molecular weight, a high polarity, and an evaporation rate as described above, the acrylic resin base material can be easily and appropriately dissolved. Such solvents include methyl ethyl ketone.
The amount of methyl ethyl ketone is preferably 20% by mass or more and 40% by mass or less of the total amount of the solvent in order to easily satisfy Condition 1A or Condition 2A.
《乾燥条件》
 樹脂層用塗布液から樹脂層を形成する際には、乾燥条件を制御することが好ましい。
 また、本開示の防眩性積層体は、樹脂層用塗布液を2段階で乾燥することが好ましい。具体的には、1段階目の乾燥は乾燥の強度を弱くし、2段階目の乾燥は乾燥の強度を強くすることが好ましい。1段階目の強度の弱い乾燥時に、基材の溶解が進み、かつ、基材から溶出した成分と、樹脂層用塗布液の成分とが混合した混合物が形成され、かつ、前記混合物の対流時間を長くできるため、第1の粒子の厚み方向の位置の条件を満たしやすくできる。また、1段階目の乾燥の強度を弱くすることで、基材から溶出した成分と、樹脂層用塗布液の成分とが混合しやすくなり、樹脂層を単一の層にしやすくできる。そして、2段階目で強度の強い乾燥を実施することにより、基材が過度に溶解することを抑制できるため、基材の平均傾斜角及び基材の算術平均高さが大きくなり過ぎることを抑制しやすくできる。
《Drying conditions》
When forming the resin layer from the resin layer coating liquid, it is preferable to control the drying conditions.
Further, in the antiglare laminate of the present disclosure, it is preferable to dry the resin layer coating liquid in two stages. Specifically, it is preferable to weaken the drying intensity in the first stage of drying and increase the drying intensity in the second stage of drying. During the first stage of low-strength drying, the dissolution of the substrate proceeds, and a mixture is formed in which the components eluted from the substrate and the components of the resin layer coating liquid are mixed, and the convection time of the mixture is can be lengthened, the condition of the position of the first grain in the thickness direction can be easily satisfied. In addition, by weakening the strength of the drying in the first stage, the components eluted from the substrate and the components of the resin layer coating liquid can be easily mixed, and the resin layer can be easily made into a single layer. Then, by performing strong drying in the second stage, it is possible to suppress excessive dissolution of the base material, so it is possible to suppress the average inclination angle of the base material and the arithmetic mean height of the base material from becoming too large. can be done easily.
 乾燥条件は、乾燥温度及び乾燥機内の風速により制御することができる。乾燥温度及び風速の好ましい範囲は、樹脂層用塗布液の組成により異なるため一概にはいえないが、下記の条件とすることが好ましい。
<1段階目の乾燥>
 乾燥温度は65℃以上85℃以下が好ましく、乾燥風速は0.5m/s以上2m/s以下が好ましい。乾燥時間は20秒以上40秒以下が好ましい。
<2段階目の乾燥>
 乾燥温度は65℃以上85℃以下が好ましく、乾燥風速は15m/s以上25m/s以下が好ましい。乾燥時間は20秒以上40秒以下が好ましい。
Drying conditions can be controlled by drying temperature and air speed in the dryer. The preferred ranges for the drying temperature and air velocity vary depending on the composition of the resin layer coating liquid, so it cannot be generalized, but the following conditions are preferred.
<Drying in the first stage>
The drying temperature is preferably 65° C. or higher and 85° C. or lower, and the drying wind speed is preferably 0.5 m/s or higher and 2 m/s or lower. The drying time is preferably 20 seconds or more and 40 seconds or less.
<Second stage drying>
The drying temperature is preferably 65° C. or higher and 85° C. or lower, and the drying wind speed is preferably 15 m/s or higher and 25 m/s or lower. The drying time is preferably 20 seconds or more and 40 seconds or less.
 樹脂層用塗布液により基材の一部を溶解させ、かつ、基材から溶出した成分と樹脂層用塗布液とを十分に混合させやすくするため、電離放射線の照射は塗布液の乾燥後に行うことが好適である。 Ionizing radiation is applied after drying the coating liquid in order to dissolve a part of the base material with the coating liquid for the resin layer and to facilitate sufficient mixing of the components eluted from the base material and the coating liquid for the resin layer. is preferred.
[光学積層体]
 本開示の光学積層体は、基材上に樹脂層を有し、
 前記樹脂層は、前記基材側から、第1の樹脂層と、第2の樹脂層とを有し、
 前記第1の樹脂層は、互いに独立した領域α1と、前記領域α1を取り囲む領域α2とを有し、前記領域α1に含まれる樹脂と前記領域α2に含まれる樹脂とが異なり、
 前記第2の樹脂層は、互いに独立した領域β1と、前記領域β1を取り囲む領域β2とを有し、前記領域β1に含まれる樹脂と前記領域β2に含まれる樹脂とが異なり、
 下記条件1B又は条件2Bを満たす、ものである。
<条件1B>
 前記基材の前記樹脂層側の表面の平均傾斜角を示すθa1と、前記第1の樹脂層の前記第2の樹脂層側の表面の平均傾斜角を示すθa2とが、θa2<θa1の関係である。
<条件2B>
 前記基材の前記樹脂層側の表面の算術平均高さを示すPa1と、前記第1の樹脂層の前記第2の樹脂層側の表面の算術平均高さを示すPa2とが、Pa2<Pa1の関係である。
[Optical laminate]
The optical laminate of the present disclosure has a resin layer on a substrate,
The resin layer has a first resin layer and a second resin layer from the substrate side,
The first resin layer has a region α1 independent of each other and a region α2 surrounding the region α1, and the resin contained in the region α1 and the resin contained in the region α2 are different,
The second resin layer has a region β1 independent of each other and a region β2 surrounding the region β1, and the resin contained in the region β1 and the resin contained in the region β2 are different,
It satisfies the following condition 1B or condition 2B.
<Condition 1B>
θa1 indicating the average inclination angle of the surface of the base material on the resin layer side and θa2 indicating the average inclination angle of the surface of the first resin layer on the second resin layer side have a relationship of θa2<θa1. is.
<Condition 2B>
Pa1 indicating the arithmetic mean height of the surface of the base material on the resin layer side and Pa2 indicating the arithmetic mean height of the surface of the first resin layer on the second resin layer side satisfy Pa2<Pa1 is the relationship.
 図8は、本開示の光学積層体100Cの一実施形態を示す断面図である。
 図8の光学積層体100Cは、基材10上に樹脂層20Cを有している。また、図8の樹脂層20Cは、基材10側から、第1の樹脂層21Cと、第2の樹脂層22Cとを有している。
 また、図8の第1の樹脂層21Cは、互いに独立した領域α1と、前記領域α1を取り囲む領域α2とを有している。また、図8の第2の樹脂層22Cは、互いに独立した領域β1と、前記領域β1を取り囲む領域β2とを有している。本明細書において、図8の第1の樹脂層及び第2の樹脂層のように、互いに独立した領域n1と、前記領域n1を取り囲む領域n2とを有する構造のことを、“海島構造”と称する場合がある。
 なお、図8は模式的な断面図である。すなわち、光学積層体100Cを構成する各層の縮尺、各材料の縮尺、及び表面凹凸の縮尺は、図示しやすくするために模式化したものであり、実際の縮尺とは相違している。図8以外の図も同様に実際の縮尺とは相違している。
FIG. 8 is a cross-sectional view showing one embodiment of an optical laminate 100C of the present disclosure.
An optical layered body 100C in FIG. 8 has a resin layer 20C on a substrate 10. As shown in FIG. 8 has a first resin layer 21C and a second resin layer 22C from the substrate 10 side.
The first resin layer 21C of FIG. 8 has a region α1 independent of each other and a region α2 surrounding the region α1. Further, the second resin layer 22C of FIG. 8 has a region β1 independent of each other and a region β2 surrounding the region β1. In this specification, a structure having a region n1 independent of each other and a region n2 surrounding the region n1, such as the first resin layer and the second resin layer in FIG. 8, is referred to as a "sea-island structure." sometimes referred to as
Note that FIG. 8 is a schematic cross-sectional view. That is, the reduced scale of each layer, the reduced scale of each material, and the reduced scale of surface irregularities constituting the optical layered body 100C are schematic representations for ease of illustration, and are different from the actual reduced scale. Figures other than FIG. 8 are also different from the actual scale.
<基材>
 基材としては、光透過性、平滑性、耐熱性及び機械的強度が良好であることが好ましい。このような基材としては、ポリエステル、トリアセチルセルロース(TAC)、セルロースジアセテート、セルロースアセテートブチレート、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、アクリル樹脂、ポリカーボネート、ポリウレタン及び非晶質オレフィン(Cyclo-Olefin-Polymer:COP)等の樹脂を含む樹脂基材が挙げられる。樹脂基材は、2以上の樹脂基材を貼り合わせたものであってもよい。
 樹脂基材は、機械的強度及び寸法安定性を良好にするため、延伸処理されていることが好ましい。
<Base material>
The substrate preferably has good light transmittance, smoothness, heat resistance and mechanical strength. Such substrates include polyester, triacetyl cellulose (TAC), cellulose diacetate, cellulose acetate butyrate, polyamide, polyimide, polyethersulfone, polysulfone, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, Resin substrates containing resins such as polyether ketone, acrylic resin, polycarbonate, polyurethane and amorphous olefin (Cyclo-Olefin-Polymer: COP) can be mentioned. The resin substrate may be a laminate of two or more resin substrates.
The resin substrate is preferably stretched in order to improve mechanical strength and dimensional stability.
 樹脂基材の中でも、吸湿性が低いため寸法安定性を良好にしやすく、かつ、光学的異方性が低いため視認性を良好にしやすい、アクリル樹脂基材が好ましい。また、アクリル樹脂基材は、樹脂層用塗布液を所定の組成として、かつ、所定の乾燥条件とすることにより、条件1B及又は条件2Bを満たし、かつ、第1の樹脂層及び第2の樹脂層を海島構造としやすくできる。
 アクリル樹脂基材は、硬くて脆いため、アクリル樹脂基材上に他の層を形成した場合、密着性を良好にしにくい。特に、アクリル樹脂基材上に、硬化性樹脂組成物の硬化物を含む樹脂層のような硬い樹脂層を形成した場合には、基材と樹脂層との密着性が不十分になりやすい。本開示の光学積層体は、アクリル樹脂基材上に硬化性樹脂組成物の硬化物を含む樹脂層を形成しても、条件1B又は条件2Bを満たし、かつ、樹脂層が海島構造を有することなどにより、密着性の低下を抑制し、かつ、像鮮明度の変化を抑制しやすくできる。
 本明細書において、アクリル樹脂とは、アクリル系樹脂及び/又はメタクリル系樹脂を意味する。
Among the resin substrates, acrylic resin substrates are preferable because they have low hygroscopicity and therefore tend to have good dimensional stability, and because they have low optical anisotropy, they tend to have good visibility. Further, the acrylic resin substrate satisfies Condition 1B and/or Condition 2B by making the resin layer coating liquid a predetermined composition and under predetermined drying conditions, and the first resin layer and the second resin layer The resin layer can easily have a sea-island structure.
Since the acrylic resin substrate is hard and brittle, it is difficult to achieve good adhesion when another layer is formed on the acrylic resin substrate. In particular, when a hard resin layer such as a resin layer containing a cured product of a curable resin composition is formed on an acrylic resin substrate, the adhesion between the substrate and the resin layer tends to be insufficient. The optical laminate of the present disclosure satisfies condition 1B or condition 2B even if a resin layer containing a cured product of a curable resin composition is formed on an acrylic resin substrate, and the resin layer has a sea-island structure. For example, it is possible to suppress a decrease in adhesion and to easily suppress a change in image definition.
As used herein, acrylic resin means acrylic resin and/or methacrylic resin.
 光学積層体のアクリル樹脂基材の実施の形態は、特に断りのない限り、第1実施形態のアクリル樹脂基材の実施の形態と同様の実施形態とすることができる。例えば、光学積層体のアクリル樹脂基材のガラス転移点の実施形態は、第1実施形態のアクリル樹脂基材のガラス転移点の実施形態と同様の実施形態とすることができる。 Unless otherwise specified, the embodiment of the acrylic resin base material of the optical laminate can be the same as the embodiment of the acrylic resin base material of the first embodiment. For example, the embodiment of the glass transition point of the acrylic resin substrate of the optical layered body can be the same as the embodiment of the glass transition point of the acrylic resin substrate of the first embodiment.
 樹脂基材に含まれるアクリル樹脂等の樹脂は、重量平均分子量が10,000以上500,000以下であることが好ましく、50,000以上300,000以下であることがより好ましい。樹脂の重量平均分子量を前記範囲とすることにより、条件1B、条件2B、上記海島構造を制御しやすくできる。 The resin such as acrylic resin contained in the resin base material preferably has a weight average molecular weight of 10,000 or more and 500,000 or less, more preferably 50,000 or more and 300,000 or less. By setting the weight-average molecular weight of the resin within the above range, the condition 1B, the condition 2B, and the sea-island structure can be easily controlled.
 基材の平均厚みは、10μm以上が好ましく、20μm以上がより好ましく、35μm以上がさらに好ましい。基材の平均厚みを10μm以上とすることにより、光学積層体の取り扱い性を良好にしやすくできる。
 基材の平均厚みは、100μm以下が好ましく、80μm以下がより好ましく、60μm以下がさらに好ましい。基材の平均厚みを100μm以下とすることにより、光学積層体の耐屈曲性をより良好にしやすくできる。
 基材の平均厚みの好適範囲の実施形態は、10μm以上100μm以下、10μm以上80μm以下、10μm以上60μm以下、20μm以上100μm以下、20μm以上80μm以下、20μm以上60μm以下、35μm以上100μm以下、35μm以上80μm以下、35μm以上60μm以下が挙げられる。
The average thickness of the substrate is preferably 10 µm or more, more preferably 20 µm or more, and even more preferably 35 µm or more. By setting the average thickness of the substrate to 10 μm or more, the optical layered body can be easily handled well.
The average thickness of the substrate is preferably 100 µm or less, more preferably 80 µm or less, and even more preferably 60 µm or less. By setting the average thickness of the base material to 100 μm or less, the flexibility resistance of the optical layered body can be easily improved.
Preferred ranges for the average thickness of the base material are 10 μm to 100 μm, 10 μm to 80 μm, 10 μm to 60 μm, 20 μm to 100 μm, 20 μm to 80 μm, 20 μm to 60 μm, 35 μm to 100 μm, and 35 μm or more. 80 μm or less, or 35 μm or more and 60 μm or less.
 上述した基材の平均厚みは、光学積層体の完成時の基材の平均厚みを意味する。後述するように、樹脂層用塗布液により基材の一部が溶解することによって、光学積層体の完成時の基材の平均厚みは、初期の基材の平均厚みよりも減少する場合がある。このため、初期の基材の平均厚みは、光学積層体の完成時の基材の平均厚みよりも厚くすることが好ましい。初期の基材の平均厚みと、光学積層体の完成時の基材の平均厚みとの差は、樹脂層の厚み、樹脂層用塗布液の組成、前記塗布液の乾燥条件等により異なるため一概にはいえないが、0.1μm以上10μm以下であることが好ましく、1μm以上5μm以下であることがより好ましい。 The average thickness of the base material mentioned above means the average thickness of the base material when the optical laminate is completed. As will be described later, part of the base material is dissolved by the resin layer coating liquid, so that the average thickness of the base material when the optical layered body is completed may be smaller than the initial average thickness of the base material. . Therefore, it is preferable that the initial average thickness of the base material is greater than the average thickness of the base material when the optical layered body is completed. The difference between the initial average thickness of the base material and the average thickness of the base material when the optical layered body is completed varies depending on the thickness of the resin layer, the composition of the coating liquid for the resin layer, the drying conditions of the coating liquid, and the like. However, it is preferably 0.1 μm or more and 10 μm or less, and more preferably 1 μm or more and 5 μm or less.
 基材の平均厚みは、例えば、走査型透過電子顕微鏡(STEM)により撮像した光学積層体の断面写真の任意の箇所を20点選び、その平均値により算出できる。STEMの加速電圧は10kV以上30kV以下、STEMの倍率は1000倍以上7000倍以下とすることが好ましい。
 基材の平均厚み、第1の樹脂層の厚み、第2の樹脂層の厚み、第1の樹脂層の厚み方向における領域α1の位置、樹脂層の厚み方向における第1の粒子の位置、θa1、θa2、Pa1、Pa2等を測定するためには、光学積層体の断面が露出した測定用のサンプルを作製する必要がある。前記サンプルは、例えば、下記の(A1’’)~(A2’’)の工程で作製できる。なお、コントラスト不足で界面等が見え難い場合には、前処理として、四酸化オスミウム、四酸化ルテニウム、リンタングステン酸などで前記サンプルに染色処理を施してもよい。
The average thickness of the substrate can be calculated, for example, by selecting 20 arbitrary points in a cross-sectional photograph of the optical layered body taken by a scanning transmission electron microscope (STEM) and calculating the average value thereof. It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
Average thickness of the substrate, thickness of the first resin layer, thickness of the second resin layer, position of the region α1 in the thickness direction of the first resin layer, position of the first particles in the thickness direction of the resin layer, θa1 , θa2, Pa1, Pa2, etc., it is necessary to prepare a measurement sample in which the cross section of the optical layered body is exposed. The sample can be prepared, for example, by the following steps (A1'') to (A2''). If the interface is difficult to see due to insufficient contrast, the sample may be dyed with osmium tetroxide, ruthenium tetroxide, phosphotungstic acid, or the like as a pretreatment.
(A1’’)工程A1’’は、第1実施形態の工程A1と同様である。 (A1'') Process A1'' is the same as process A1 in the first embodiment.
(A2’’)ブロック状の包埋サンプルを垂直に切断し、光学積層体の断面が露出してなる、測定用のサンプルを作製する。測定用のサンプルとしては、ブロック状の包埋サンプルから切断された薄い切片の方を用いる(測定のサンプルの条件は後述する。)。包埋サンプルは、カットサンプルの中心を通るように切断することが好ましい。包埋サンプルはダイヤモンドナイフで切断することが好ましい。
 包埋サンプルを切断する装置としては、例えば、ライカマイクロシステムズ社製の商品名「ウルトラミクロトーム EM UC7」が挙げられる。包埋サンプルを切断する際は、最初は大まかに切断し(粗トリミング)、最終的には、「SPEED:1.00mm/s」、「FEED:70nm」の条件で精密にトリミングすることが好ましい。
 上記のようにブロック状の包埋サンプルから切断された切片のうち、穴等の欠陥がなく、かつ、厚みが60nm以上100nm以下で均一な切片は、基材の平均厚み、第1の樹脂層の厚み、第2の樹脂層の厚み、第1の樹脂層の厚み方向における領域α1の位置、樹脂層の厚み方向における第1の粒子の位置、θa1、θa2、Pa1、Pa2、第1の粒子の粒子径、無機微粒子の粒子径の測定用サンプルとして用いることができる。
(A2'') A block-shaped embedded sample is cut vertically to prepare a sample for measurement in which the cross section of the optical layered body is exposed. As a sample for measurement, a thin section cut from the block-shaped embedded sample is used (the conditions for the sample for measurement will be described later). The embedded sample is preferably cut through the center of the cut sample. Embedded samples are preferably cut with a diamond knife.
An example of an apparatus for cutting an embedded sample is the product name "Ultramicrotome EM UC7" manufactured by Leica Microsystems. When cutting the embedded sample, it is preferable to first cut roughly (rough trimming) and finally trim precisely under the conditions of "SPEED: 1.00 mm/s" and "FEED: 70 nm".
Among the sections cut from the block-shaped embedded sample as described above, the section without defects such as holes and having a uniform thickness of 60 nm or more and 100 nm or less is the average thickness of the base material, the first resin layer thickness of the second resin layer, the position of the region α1 in the thickness direction of the first resin layer, the position of the first particles in the thickness direction of the resin layer, θa1, θa2, Pa1, Pa2, the first particles can be used as a sample for measuring the particle size of the inorganic fine particles.
<樹脂層>
 樹脂層は、基材側から、第1の樹脂層と、第2の樹脂層とを有することを要する。樹脂層として、第1の樹脂層及び第2の樹脂層を有することにより、密着性を良好にしつつ、鉛筆硬度の低下を抑制しやすくできる。
<Resin layer>
The resin layer is required to have a first resin layer and a second resin layer from the substrate side. By having the first resin layer and the second resin layer as the resin layers, it is possible to easily suppress a decrease in pencil hardness while improving adhesion.
 樹脂層が単層の場合、光学積層体の耐屈曲性又は鉛筆硬度を良好にしにくい。例えば、硬度の高い樹脂層の単層の場合、光学積層体の耐屈曲性を良好にしにくい。また、硬度の低い樹脂層の単層の場合、光学積層体の鉛筆硬度を良好にしにくい。 When the resin layer is a single layer, it is difficult to improve the bending resistance or pencil hardness of the optical laminate. For example, in the case of a single resin layer having a high hardness, it is difficult to improve the bending resistance of the optical layered body. Further, in the case of a single resin layer having a low hardness, it is difficult to improve the pencil hardness of the optical layered body.
 第1の樹脂層及び第2の樹脂層は、例えば、基材上に、樹脂となる成分、及び溶媒を含む樹脂層用塗布液を塗布、乾燥し、必要に応じて硬化することにより形成することができる。樹脂層用塗布液は、さらに、必要に応じて、第1の粒子、無機微粒子、添加剤を含有してもよい。
 上記の手法の場合、例えば、樹脂層用塗布液が基材の一部を溶解し、基材から溶出した樹脂成分を主成分として、樹脂層用塗布液の樹脂成分を少量含む領域により第1の樹脂層を形成し、さらに、基材から溶出した樹脂成分の含有量は少量であり、樹脂層用塗布液の樹脂成分を主成分とする領域により第2の樹脂層を形成することができる。すなわち、上記の手法では、1つの樹脂層用塗布液を用いた1回の塗布により、第1の樹脂層及び第2の樹脂層を形成することができる。また、上記の手法により形成した第2の樹脂層は、基材から溶出した樹脂成分の含有量が少量であるため、鉛筆硬度を良好にしやすくできる。
 上記の手法では、樹脂層用塗布液を所定の組成として、かつ、所定の乾燥条件とすることが肝要である。所定の組成及び所定の乾燥条件については後述する。
 基材上に樹脂層用塗布液を塗布する方法は特に制限されず、スピンコート法、ディップ法、スプレー法、ダイコート法、バーコート法、グラビアコート法、ロールコーター法、メニスカスコーター法、フレキソ印刷法、スクリーン印刷法、ピードコーター法等の汎用の塗布方法が挙げられる。
 樹脂層用塗布液を硬化する際には、紫外線及び電子線等の電離放射線を照射することが好ましい。紫外線源の具体例としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク灯、ブラックライト蛍光灯及びメタルハライドランプ灯等が挙げられる。また、紫外線の波長としては、190nm以上380nm以下の波長域が好ましい。電子線源の具体例としては、コッククロフトワルト型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種の電子線加速器が挙げられる。
The first resin layer and the second resin layer are formed, for example, by coating a base material with a resin layer coating liquid containing a resin component and a solvent, drying it, and curing it as necessary. be able to. The resin layer coating liquid may further contain first particles, inorganic fine particles, and additives, if necessary.
In the case of the above method, for example, the resin layer coating liquid dissolves a part of the base material, and the resin component eluted from the base material is the main component, and the region containing a small amount of the resin component of the resin layer coating liquid is the first Furthermore, the content of the resin component eluted from the base material is small, and the second resin layer can be formed from the region containing the resin component as the main component of the coating liquid for the resin layer . That is, in the above method, the first resin layer and the second resin layer can be formed by one application using one resin layer coating liquid. Moreover, since the content of the resin component eluted from the substrate is small in the second resin layer formed by the above method, the pencil hardness can be easily improved.
In the above method, it is important to set the resin layer coating liquid to a predetermined composition and to set the drying conditions to predetermined conditions. The prescribed composition and prescribed drying conditions will be described later.
The method of applying the resin layer coating liquid onto the substrate is not particularly limited, and may be spin coating, dipping, spraying, die coating, bar coating, gravure coating, roll coating, meniscus coating, or flexographic printing. general-purpose coating methods such as coating method, screen printing method, and speed coater method.
When curing the resin layer coating liquid, it is preferable to irradiate ionizing radiation such as ultraviolet rays and electron beams. Specific examples of ultraviolet light sources include ultra-high pressure mercury lamps, high pressure mercury lamps, low pressure mercury lamps, carbon arc lamps, black light fluorescent lamps and metal halide lamps. Moreover, as a wavelength of ultraviolet rays, a wavelength range of 190 nm or more and 380 nm or less is preferable. Specific examples of electron beam sources include various electron beam accelerators such as Cockcroftwald type, Vandegraft type, resonant transformer type, insulating core transformer type, linear type, dynamitron type, and high frequency type.
 第1の樹脂層は、互いに独立した領域α1と、前記領域α1を取り囲む領域α2とを有し、前記領域α1に含まれる樹脂と前記領域α2に含まれる樹脂とが異なることを要する。さらに、前記第2の樹脂層は、互いに独立した領域β1と、前記領域β1を取り囲む領域β2とを有し、前記領域β1に含まれる樹脂と前記領域β2に含まれる樹脂とが異なることを要する。
 第1の樹脂層が前記領域α1及び前記領域α2を有し、かつ、第2の樹脂層が前記領域β1及び前記領域β2を有することにより、耐光性試験後の密着性を良好にしやすくできる。
The first resin layer has a region α1 independent of each other and a region α2 surrounding the region α1, and the resin contained in the region α1 and the resin contained in the region α2 are required to be different. Furthermore, the second resin layer has a region β1 independent of each other and a region β2 surrounding the region β1, and the resin contained in the region β1 and the resin contained in the region β2 are required to be different. .
Since the first resin layer has the regions α1 and α2 and the second resin layer has the regions β1 and β2, the adhesion after the light resistance test can be easily improved.
 領域α1に含まれる樹脂と領域α2に含まれる樹脂とが異なるとは、樹脂の組成及び分子量の少なくとも何れかが異なることを意味する。領域α1に含まれる樹脂と領域α2に含まれる樹脂とは、樹脂の組成が異なることが好ましい。樹脂の組成が異なる例としては、領域α1と領域α2とが異なる種類の樹脂を含む場合、領域α1と領域α2とが同じ種類の樹脂を含むが樹脂の混合割合が異なる場合等が挙げられる。
 領域β1に含まれる樹脂と領域β2に含まれる樹脂とが異なるとは、樹脂の組成及び分子量の少なくとも何れかが異なることを意味する。領域β1に含まれる樹脂と領域β2に含まれる樹脂とは、樹脂の組成が異なることが好ましい。樹脂の組成が異なる例としては、領域β1と領域β2とが異なる種類の樹脂を含む場合、領域β1と領域β2とが同じ種類の樹脂を含むが樹脂の混合割合が異なる場合等が挙げられる。
The difference between the resin contained in the region α1 and the resin contained in the region α2 means that at least one of the composition and molecular weight of the resin is different. It is preferable that the resin contained in the region α1 and the resin contained in the region α2 have different resin compositions. Examples of different resin compositions include the case where the region α1 and the region α2 contain different types of resin, and the case where the region α1 and the region α2 contain the same type of resin but have different resin mixing ratios.
The difference between the resin contained in the region β1 and the resin contained in the region β2 means that at least one of resin composition and molecular weight is different. It is preferable that the resin contained in the region β1 and the resin contained in the region β2 have different resin compositions. Examples of different resin compositions include a case where the region β1 and the region β2 contain different types of resin, and a case where the region β1 and the region β2 contain the same type of resin but at different resin mixing ratios.
 本明細書において、領域α1、領域α2、領域β1及び領域β2の樹脂は、いわゆるバインダー樹脂を意味する。このため、後述する第1の粒子等の粒子は、領域α1、領域α2、領域β1及び領域β2の樹脂を意味しない。 In this specification, the resins of the region α1, region α2, region β1 and region β2 mean so-called binder resins. For this reason, particles such as first particles to be described later do not mean the resin of the region α1, the region α2, the region β1, and the region β2.
 領域α1の割合が多いと硬度が不十分になりやすく、領域α2の割合が多いと密着性が悪化しやすい。このため、領域α1と領域α2との面積比は、1:99~10:90であることが好ましく、2:98~5:95であることがより好ましい。
 領域β1の割合が多いと硬度が不十分になりやすく、領域β2の割合が多いと密着性が悪化しやすい。このため、領域β1と領域β2との面積比は、5:95~50:50であることが好ましく、10:90~40:60であることがより好ましい。
 上記の面積比は、走査型透過電子顕微鏡(STEM)により撮像した光学積層体の断面写真から算出できる。数値の信頼性を高めるために、複数の断面写真を取得し、領域α1又は領域β1の合計数を50以上とした上で、面積割合を算出するものとする。
If the ratio of the region α1 is large, the hardness tends to be insufficient, and if the ratio of the region α2 is large, the adhesion tends to deteriorate. Therefore, the area ratio between the area α1 and the area α2 is preferably 1:99 to 10:90, more preferably 2:98 to 5:95.
If the proportion of the region β1 is large, the hardness tends to be insufficient, and if the proportion of the region β2 is large, the adhesion tends to deteriorate. Therefore, the area ratio between the region β1 and the region β2 is preferably 5:95 to 50:50, more preferably 10:90 to 40:60.
The above area ratio can be calculated from a cross-sectional photograph of the optical laminate taken by a scanning transmission electron microscope (STEM). In order to increase the reliability of the numerical values, a plurality of cross-sectional photographs are obtained, and the area ratio is calculated after setting the total number of the regions α1 or β1 to 50 or more.
 第1の樹脂層及び第2の樹脂層は、領域α1に含まれる樹脂と領域β2に含まれる樹脂とが実質的に同一であることが好ましく、かつ、領域α2に含まれる樹脂と領域β1に含まれる樹脂とが実質的に同一であることが好ましい。前記構成を備えることにより、耐光性試験後の密着性を良好にしやすくできる。前記構成により耐光性試験後の密着性を良好にしやすくできる原因は、第1の樹脂層と第2の樹脂層との親和性が高まることにより、耐光性試験等の過酷な環境においても、第1の樹脂層と第2の樹脂層との界面の密着性が低下しにくくなるためと考えられる。 In the first resin layer and the second resin layer, the resin contained in the region α1 and the resin contained in the region β2 are preferably substantially the same, and the resin contained in the region α2 and the resin contained in the region β1 It is preferable that the contained resin is substantially the same. By providing the above configuration, it is possible to easily improve the adhesion after the light resistance test. The reason why the adhesion after the light resistance test can be easily improved by the above configuration is that the affinity between the first resin layer and the second resin layer is increased, so that even in a harsh environment such as a light resistance test, the second It is considered that this is because the adhesiveness at the interface between the first resin layer and the second resin layer is less likely to deteriorate.
 第1の樹脂層が前記領域α1及び前記領域α2を有するように構成しやすくするため、及び、第2の樹脂層が前記領域β1及び前記領域β2を有するように構成しやすくするためには、樹脂層用塗布液に含まれる成分同士の相溶性を低くしたり、樹脂層用塗布液に含まれる成分と基材から溶出した成分との相溶性を低くすることが好ましい。
 上記のように相溶性を低くすることにより、下記(1)~(4)の事象により、本開示の光学積層体において、第1の樹脂層及び第2の樹脂層を形成しやすくできると考えられる。
(1)基材上に樹脂層用塗布液を塗布した際に、基材の一部が溶解する。
(2)基材から溶出した樹脂成分を主成分として、樹脂層用塗布液の樹脂成分を少量含む領域が第1の樹脂層となり、基材から溶出した樹脂成分の含有量は少量であり、樹脂層用塗布液の樹脂成分を主成分とする領域が第2の樹脂層となる。
(3)相溶性が低いため、上記(2)の際に、第1の樹脂層に少量含まれる樹脂層用塗布液の樹脂成分が領域α1を形成し、基材から溶出した樹脂成分が領域α2を形成する。
(4)相溶性が低いため、上記(2)の際に、第2の樹脂層に少量含まれる基材から溶出した樹脂成分が領域β1を形成し、樹脂層用塗布液の樹脂成分が領域β2を形成する。
In order to make it easier to configure the first resin layer to have the region α1 and the region α2, and to make it easy to configure the second resin layer to have the region β1 and the region β2, It is preferable to reduce the compatibility between the components contained in the resin layer coating liquid, or to reduce the compatibility between the components contained in the resin layer coating liquid and the components eluted from the substrate.
It is believed that by lowering the compatibility as described above, the first resin layer and the second resin layer can be easily formed in the optical layered body of the present disclosure due to the events (1) to (4) below. be done.
(1) Part of the substrate dissolves when the resin layer coating liquid is applied onto the substrate.
(2) The resin component eluted from the base material is the main component, and the region containing a small amount of the resin component of the resin layer coating liquid serves as the first resin layer, and the content of the resin component eluted from the base material is small, A region containing the resin component of the resin layer coating liquid as a main component becomes the second resin layer.
(3) Due to the low compatibility, in the above (2), the resin component of the resin layer coating liquid contained in a small amount in the first resin layer forms the region α1, and the resin component eluted from the base material forms the region α1. Form α2.
(4) Due to the low compatibility, in the above (2), the resin component eluted from the base material contained in a small amount in the second resin layer forms the region β1, and the resin component of the resin layer coating liquid forms the region β1. β2 is formed.
 第1の樹脂層の厚み方向の中心より基材側を第1領域、第1の樹脂層の厚み方向の中心より第2の樹脂層側を第2領域と定義した際に、領域α1の70%以上が前記第2領域に存在することが好ましい。前記構成を有することにより、耐光性試験後の密着性をより良好にしやすくできる。 When defining the base material side from the center of the thickness direction of the first resin layer as the first region and the second resin layer side from the center of the thickness direction of the first resin layer as the second region, 70 of the region α1 % or more is present in the second region. By having the said structure, the adhesiveness after a light resistance test can be made more favorable easily.
 領域α1が第2領域に存在する割合は、個数基準で80%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましい。 The proportion of the regions α1 existing in the second regions is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more based on the number.
 本明細書において、第1の樹脂層の厚み方向における領域α1が存在する位置は、下記(1)~(5)の手法で判別するものとする。
(1)走査型透過電子顕微鏡(STEM)により、光学積層体の断面写真を撮像する。 STEMの加速電圧は10kV以上30kV以下、STEMの倍率は1000倍以上7000倍以下とすることが好ましい。
(2)断面写真に基づき、第1の樹脂層の基材側の表面の稜線の標高の平均X1、第1の樹脂層の第2の樹脂層側の表面の稜線の標高の平均X2を算出する(図9の符号X1及びX2参照)。
(3)X1及びX2の標高の中間を、第1の樹脂層の厚み方向の中心Mと定義する(図9の符号M参照)。
(4)断面写真に基づき、第1の樹脂層の厚み方向の中心より基材側の第1領域に存在する領域α1、及び、第1の樹脂層の厚み方向の中心より第2の樹脂層側の第2領域に存在する領域α1、の個数をカウントする。第1の樹脂層の厚み方向の中心を跨いで、第1領域及び第2領域の両方に存在している領域α1は、領域α1の面積割合に応じて、第1領域及び第2領域に個数を割り振る。例えば、第1領域に存在する面積割合が40%で第2領域に存在する面積割合が60%の領域α1は、第1領域に0.4個を割り振り、第2領域に0.6個を割り振る。
(5)数値の信頼性を高めるために、複数の断面写真を取得し、領域α1の合計数を50以上とした上で、第1領域及び第2領域に存在する領域α1の個数基準の割合を算出する。
In this specification, the position of the region α1 in the thickness direction of the first resin layer is determined by the following methods (1) to (5).
(1) A cross-sectional photograph of the optical laminate is taken with a scanning transmission electron microscope (STEM). It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
(2) Based on the cross-sectional photograph, calculate the average altitude X1 of the ridgelines of the surface of the first resin layer on the substrate side and the average altitude X2 of the ridgelines of the surface of the first resin layer on the second resin layer side. (see symbols X1 and X2 in FIG. 9).
(3) The center M in the thickness direction of the first resin layer is defined as the middle point between X1 and X2 (see symbol M in FIG. 9).
(4) Based on the cross-sectional photograph, the region α1 existing in the first region on the substrate side from the center of the first resin layer in the thickness direction, and the second resin layer from the center of the thickness direction of the first resin layer The number of regions α1 existing in the second region on the side is counted. The number of regions α1 existing in both the first region and the second region across the center in the thickness direction of the first resin layer is in the first region and the second region according to the area ratio of the region α1 Allocate For example, for a region α1 with an area ratio of 40% in the first region and 60% in the second region, 0.4 is allocated to the first region and 0.6 to the second region. Allocate.
(5) In order to increase the reliability of the numerical value, obtain a plurality of cross-sectional photographs, set the total number of the regions α1 to 50 or more, and the number-based ratio of the regions α1 existing in the first region and the second region Calculate
 樹脂層全体の厚み(言い換えると、第1の樹脂層と第2の樹脂層との合計厚み)は、下限は、4.0μm以上が好ましく、5.0μm以上がより好ましく、6.0μm以上がさらに好ましく、上限は、15.0μm以下が好ましく、12.0μm以下がより好ましく、10.0μm以下がさらに好ましい。
 樹脂層全体の厚みの好適な範囲の実施形態は、4.0μm以上15.0μm以下、4.0μm以上12.0μm以下、4.0μm以上10.0μm以下、5.0μm以上15.0μm以下、5.0μm以上12.0μm以下、5.0μm以上10.0μm以下、6.0μm以上15.0μm以下、6.0μm以上12.0μm以下、6.0μm以上10.0μm以下が挙げられる。
 第1の樹脂層の平均厚みt1は、下限は、3.0μm以上が好ましく、4.0μm以上がより好ましく、4.5μm以上がさらに好ましく、上限は、10.0μm以下が好ましく、8.0μm以下がより好ましく、7.0μm以下がさらに好ましい。t1を3.0μm以上とすることにより、密着性及び耐屈曲性を良好にしやすくでき、t1を10.0μm以下とすることにより、鉛筆硬度の低下を抑制しやすくできる。
 t1の好適な範囲の実施形態は、3.0μm以上10.0μm以下、3.0μm以上8.0μm以下、3.0μm以上7.0μm以下、4.0μm以上10.0μm以下、4.0μm以上8.0μm以下、4.0μm以上7.0μm以下、4.5μm以上10.0μm以下、4.5μm以上8.0μm以下、4.5μm以上7.0μm以下が挙げられる。
 第2の樹脂層の平均厚みt2は、下限は、0.3μm以上が好ましく、0.5μm以上がより好ましく、1.0μm以上がさらに好ましく、上限は、4.0μm以下が好ましく、3.0μm以下がより好ましく、2.7μm以下がさらに好ましい。t2を0.3μm以上とすることにより、鉛筆硬度を良好にしやすくでき、t2を4.0μm以下とすることにより、耐屈曲性の低下を抑制しやすくできる。
 t2の好適な範囲の実施形態は、0.3μm以上4.0μm以下、0.3μm以上3.0μm以下、0.3μm以上2.7μm以下、0.5μm以上4.0μm以下、0.5μm以上3.0μm以下、0.5μm以上2.7μm以下、1.0μm以上4.0μm以下、1.0μm以上3.0μm以下、1.0μm以上2.7μm以下が挙げられる。
The lower limit of the thickness of the entire resin layer (in other words, the total thickness of the first resin layer and the second resin layer) is preferably 4.0 μm or more, more preferably 5.0 μm or more, and more preferably 6.0 μm or more. More preferably, the upper limit is preferably 15.0 μm or less, more preferably 12.0 μm or less, and even more preferably 10.0 μm or less.
Preferred embodiments of the thickness of the entire resin layer are 4.0 μm or more and 15.0 μm or less, 4.0 μm or more and 12.0 μm or less, 4.0 μm or more and 10.0 μm or less, 5.0 μm or more and 15.0 μm or less, 5.0 μm or more and 12.0 μm or less, 5.0 μm or more and 10.0 μm or less, 6.0 μm or more and 15.0 μm or less, 6.0 μm or more and 12.0 μm or less, and 6.0 μm or more and 10.0 μm or less.
The average thickness t1 of the first resin layer has a lower limit of preferably 3.0 µm or more, more preferably 4.0 µm or more, and still more preferably 4.5 µm or more, and an upper limit of 10.0 µm or less, preferably 8.0 µm. The following is more preferable, and 7.0 μm or less is even more preferable. By setting t1 to 3.0 μm or more, adhesion and bending resistance can be easily improved, and by setting t1 to 10.0 μm or less, it is possible to easily suppress a decrease in pencil hardness.
Embodiments of preferred ranges for t1 are 3.0 μm to 10.0 μm, 3.0 μm to 8.0 μm, 3.0 μm to 7.0 μm, 4.0 μm to 10.0 μm, 4.0 μm or more. 8.0 μm or less, 4.0 μm or more and 7.0 μm or less, 4.5 μm or more and 10.0 μm or less, 4.5 μm or more and 8.0 μm or less, and 4.5 μm or more and 7.0 μm or less.
The average thickness t2 of the second resin layer has a lower limit of preferably 0.3 μm or more, more preferably 0.5 μm or more, and still more preferably 1.0 μm or more, and an upper limit of 4.0 μm or less, preferably 3.0 μm. The following is more preferable, and 2.7 μm or less is even more preferable. By setting t2 to 0.3 μm or more, the pencil hardness can be easily improved, and by setting t2 to 4.0 μm or less, deterioration of bending resistance can be easily suppressed.
Embodiments of preferred ranges for t2 are 0.3 μm to 4.0 μm, 0.3 μm to 3.0 μm, 0.3 μm to 2.7 μm, 0.5 μm to 4.0 μm, 0.5 μm or more. 3.0 μm or less, 0.5 μm or more and 2.7 μm or less, 1.0 μm or more and 4.0 μm or less, 1.0 μm or more and 3.0 μm or less, and 1.0 μm or more and 2.7 μm or less.
 t1/t2は、密着性及び耐屈曲性の低下を抑制しやすくするため、1.5以上であることが好ましく、1.8以上であることがより好ましく、2.0以上であることがさらに好ましい。また、t1/t2は、鉛筆硬度を良好にしやすくするため、10.0以下であることが好ましく、5.0以下であることがより好ましく、3.0以下であることがさらに好ましい。
 t1/t2の好適な範囲の実施形態は、1.5以上10.0以下、1.5以上5.0以下、1.5以上3.0以下、1.8以上10.0以下、1.8以上5.0以下、1.8以上3.0以下、2.0以上10.0以下、2.0以上5.0以下、2.0以上3.0以下が挙げられる。
t1/t2 is preferably 1.5 or more, more preferably 1.8 or more, and further preferably 2.0 or more, in order to easily suppress deterioration in adhesion and bending resistance. preferable. Also, t1/t2 is preferably 10.0 or less, more preferably 5.0 or less, and even more preferably 3.0 or less, in order to easily improve the pencil hardness.
Embodiments of preferred ranges for t1/t2 are 1.5 to 10.0, 1.5 to 5.0, 1.5 to 3.0, 1.8 to 10.0, 1. 8 or more and 5.0 or less, 1.8 or more and 3.0 or less, 2.0 or more and 10.0 or less, 2.0 or more and 5.0 or less, and 2.0 or more and 3.0 or less.
 第1の樹脂層の平均厚み、及び、第2の樹脂層の平均厚みは、例えば、走査型透過電子顕微鏡(STEM)により撮像した光学積層体の断面写真の任意の箇所を20点選び、その平均値により算出できる。STEMの加速電圧は10kV以上30kV以下、STEMの倍率は1000倍以上7000倍以下とすることが好ましい。 The average thickness of the first resin layer and the average thickness of the second resin layer are determined, for example, by selecting 20 arbitrary points in a cross-sectional photograph of the optical layered body taken by a scanning transmission electron microscope (STEM). It can be calculated from the average value. It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
《樹脂成分》
 樹脂層は、樹脂成分として、硬化性樹脂組成物の硬化物を含むことが好ましい。樹脂層が硬化性樹脂組成物の硬化物を含むことにより、光学積層体の鉛筆硬度を良好にしやすくできる。
《Resin component》
The resin layer preferably contains a cured product of a curable resin composition as a resin component. By including the cured product of the curable resin composition in the resin layer, it is possible to easily improve the pencil hardness of the optical layered body.
 樹脂層用塗布液の樹脂成分の全量に対する硬化性樹脂組成物の割合は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、100質量%であることが最も好ましい。 The ratio of the curable resin composition to the total amount of the resin component in the resin layer coating liquid is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. Preferably, 100% by mass is most preferable.
 硬化性樹脂組成物の硬化物としては、熱硬化性樹脂組成物の硬化物及び電離放射線硬化性樹脂組成物の硬化物が挙げられる。これらの中でも、鉛筆硬度を高くしやすく、かつ、未硬化の組成物の状態において基材を溶解しやすい、電離放射線硬化性樹脂組成物の硬化物が好ましい。 The cured product of the curable resin composition includes a cured product of a thermosetting resin composition and a cured product of an ionizing radiation-curable resin composition. Among these, a cured product of an ionizing radiation-curable resin composition is preferable because it is easy to increase the pencil hardness and to easily dissolve the substrate in the uncured state of the composition.
 光学積層体の熱硬化性樹脂組成物の実施形態は、第1実施形態の防眩性積層体の熱硬化性樹脂組成物の実施形態と同様の実施形態とすることができる。 The embodiment of the thermosetting resin composition of the optical layered body can be the same as the embodiment of the thermosetting resin composition of the anti-glare layered body of the first embodiment.
 電離放射線硬化性樹脂組成物は、電離放射線硬化性官能基を有する化合物(以下、「電離放射線硬化性化合物」ともいう)を含む組成物である。電離放射線硬化性官能基としては、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合基、及びエポキシ基、オキセタニル基等が挙げられる。電離放射線硬化性化合物としては、エチレン性不飽和結合基を有する化合物が好ましい。
 電離放射線とは、電磁波又は荷電粒子線のうち、分子を重合あるいは架橋し得るエネルギー量子を有するものを意味し、通常、紫外線又は電子線が用いられるが、その他、X線、γ線などの電磁波、α線、イオン線などの荷電粒子線も使用可能である。
 本明細書において、(メタ)アクリロイル基とは、アクリロイル基又はメタクロイル基を示す。また、本明細書において、(メタ)アクリレートとは、アクリレート又はメタクリレートを示す。
An ionizing radiation-curable resin composition is a composition containing a compound having an ionizing radiation-curable functional group (hereinafter also referred to as an "ionizing radiation-curable compound"). Examples of ionizing radiation-curable functional groups include ethylenically unsaturated bond groups such as (meth)acryloyl groups, vinyl groups, and allyl groups, epoxy groups, and oxetanyl groups. As the ionizing radiation-curable compound, a compound having an ethylenically unsaturated bond group is preferred.
Ionizing radiation refers to electromagnetic waves or charged particle beams that have energy quanta capable of polymerizing or cross-linking molecules. Usually, ultraviolet rays or electron beams are used, but other electromagnetic waves such as X-rays and gamma rays are also used. , α-rays, ion beams, and other charged particle beams can also be used.
As used herein, a (meth)acryloyl group refers to an acryloyl group or a methacryloyl group. Moreover, in this specification, (meth)acrylate indicates acrylate or methacrylate.
 電離放射線硬化性化合物としては、電離放射線硬化性官能基を1つ有する単官能の電離放射線硬化性化合物、電離放射線硬化性官能基を2つ以上有する多官能の電離放射線硬化性化合物のいずれも用いることができる。また、電離放射線硬化性化合物としては、モノマー及びオリゴマーのいずれも用いることができる。なお、単官能の電離放射線硬化性モノマーは、他の樹脂成分との相溶性を良好しやすいため、第1の樹脂層及び第2の樹脂層に海島構造を形成しにくい傾向がある。単官能の電離放射線硬化性モノマーを用いる場合は、前述の特性に注意すべきである。
 基材の一部を溶解し、かつ、第1の樹脂層及び第2の樹脂層に海島構造を形成し、かつ、鉛筆硬度を高くし、かつ、硬化収縮を抑制しやすくするためには、電離放射線硬化性化合物として、下記(a)~(c)の混合物を用いることが好ましい。下記(a)~(c)は、電離放射線硬化性官能基としてエチレン性不飽和結合基を有する化合物であることが好ましく、(メタ)アクリレート系化合物であることがより好ましい。(メタ)アクリレート系化合物は、エチレンオキサイド、プロピレンオキサイド、カプロラクトン、イソシアヌル酸、アルキル、環状アルキル、芳香族、ビスフェノール等により分子骨格の一部を変性したものも使用することができる。
(a)2官能の電離放射線硬化性モノマー
(b)3官能以上の電離放射線硬化性モノマー
(c)多官能の電離放射線硬化性オリゴマー
As the ionizing radiation-curable compound, both a monofunctional ionizing radiation-curable compound having one ionizing radiation-curable functional group and a polyfunctional ionizing radiation-curable compound having two or more ionizing radiation-curable functional groups are used. be able to. Both monomers and oligomers can be used as the ionizing radiation-curable compound. Since the monofunctional ionizing radiation-curable monomer tends to have good compatibility with other resin components, it tends to be difficult to form a sea-island structure in the first resin layer and the second resin layer. When using monofunctional ionizing radiation-curable monomers, the aforementioned properties should be noted.
In order to partially dissolve the base material, form a sea-island structure in the first resin layer and the second resin layer, increase the pencil hardness, and facilitate suppression of cure shrinkage, It is preferable to use the following mixtures (a) to (c) as the ionizing radiation-curable compound. The following (a) to (c) are preferably compounds having an ethylenically unsaturated bond group as an ionizing radiation-curable functional group, more preferably (meth)acrylate compounds. As the (meth)acrylate compound, a part of the molecular skeleton modified with ethylene oxide, propylene oxide, caprolactone, isocyanuric acid, alkyl, cyclic alkyl, aromatic, bisphenol or the like can also be used.
(a) difunctional ionizing radiation-curable monomer (b) trifunctional or higher ionizing radiation-curable monomer (c) polyfunctional ionizing radiation-curable oligomer
 電離放射線硬化性化合物として、(a)の2官能の電離放射線硬化性モノマーを含むことにより、基材の一部を溶解しやすくすることができるため、θa1又はPa1を大きくしやすくできる。但し、(a)の2官能の電離放射線硬化性モノマーの量が多過ぎると、基材を過度に溶解することにより、基材の強度が低下したり、光学積層体の鉛筆硬度が低下する場合がある。
 電離放射線硬化性化合物として、(b)の3官能以上の電離放射線硬化性モノマーを含むことにより、光学積層体の鉛筆硬度を良好にしやすくできる。但し、(b)の3官能以上の電離放射線硬化性モノマーの量が多過ぎると、樹脂層の硬度が高くなり過ぎて、光学積層体の耐屈曲性が低下する場合がある。
 電離放射線硬化性化合物として、(c)の多官能の電離放射線硬化性オリゴマーを含むことにより、光学積層体の鉛筆硬度を維持しつつ、硬化収縮を抑制しやすくできる。但し、(c)の多官能の電離放射線硬化性オリゴマーの量が多過ぎると、光学積層体の鉛筆硬度が低下する場合がある。
By including the bifunctional ionizing radiation-curable monomer (a) as the ionizing radiation-curable compound, a part of the base material can be easily dissolved, so that θa1 or Pa1 can be easily increased. However, if the amount of the bifunctional ionizing radiation-curable monomer (a) is too large, the substrate may be excessively dissolved, resulting in a decrease in the strength of the substrate or a decrease in the pencil hardness of the optical laminate. There is
By containing the trifunctional or higher ionizing radiation-curable monomer (b) as the ionizing radiation-curable compound, the pencil hardness of the optical layered body can be easily improved. However, if the amount of the trifunctional or higher ionizing radiation-curable monomer (b) is too large, the hardness of the resin layer may become too high, and the flex resistance of the optical layered body may decrease.
By containing the polyfunctional ionizing radiation-curable oligomer (c) as the ionizing radiation-curable compound, curing shrinkage can be easily suppressed while maintaining the pencil hardness of the optical laminate. However, if the amount of the polyfunctional ionizing radiation-curable oligomer (c) is too large, the pencil hardness of the optical laminate may decrease.
 電離放射線硬化性化合物の総量に対する、(a)の2官能の電離放射線硬化性モノマーの量は、10質量%以上40質量%以下であることが好ましく、13質量%以上30質量%以下であることがより好ましく、15質量%以上25質量%以下であることがさらに好ましい。
 電離放射線硬化性化合物の総量に対する、(b)の3官能以上の電離放射線硬化性モノマーの量は、25質量%以上55質量%以下であることが好ましく、30質量%以上50質量%以下であることがより好ましく、35質量%以上45質量%以下であることがさらに好ましい。
 電離放射線硬化性化合物の総量に対する、(c)多官能の電離放射線硬化性オリゴマーの量は、25質量%以上55質量%以下であることが好ましく、30質量%以上50質量%以下であることがより好ましく、35質量%以上45質量%以下であることがさらに好ましい。
The amount of the bifunctional ionizing radiation-curable monomer (a) with respect to the total amount of the ionizing radiation-curable compound is preferably 10% by mass or more and 40% by mass or less, and is 13% by mass or more and 30% by mass or less. is more preferable, and more preferably 15% by mass or more and 25% by mass or less.
The amount of the trifunctional or higher ionizing radiation-curable monomer (b) with respect to the total amount of the ionizing radiation-curable compound is preferably 25% by mass or more and 55% by mass or less, and is 30% by mass or more and 50% by mass or less. is more preferable, and more preferably 35% by mass or more and 45% by mass or less.
The amount of (c) polyfunctional ionizing radiation-curable oligomer relative to the total amount of ionizing radiation-curable compounds is preferably 25% by mass or more and 55% by mass or less, and is preferably 30% by mass or more and 50% by mass or less. More preferably, it is 35% by mass or more and 45% by mass or less.
 光学積層体の(a)の単官能の電離放射線硬化性モノマー、(b)の多官能の電離放射線硬化性モノマー、及び(c)の多官能の電離放射線硬化性オリゴマーの実施形態は、第1実施形態の防眩性積層体の(a)の単官能の電離放射線硬化性モノマー、(b)の多官能の電離放射線硬化性モノマー、及び(c)の多官能の電離放射線硬化性オリゴマーの実施形態と同様の実施形態とすることができる。 Embodiments of (a) a monofunctional ionizing radiation-curable monomer, (b) a multifunctional ionizing radiation-curable monomer, and (c) a multifunctional ionizing radiation-curable oligomer of the optical laminate comprise a first Implementation of (a) monofunctional ionizing radiation-curable monomer, (b) polyfunctional ionizing radiation-curable monomer, and (c) polyfunctional ionizing radiation-curable oligomer of the antiglare laminate of the embodiment It can be an embodiment similar to the form.
 電離放射線硬化性化合物が紫外線硬化性化合物である場合には、第1実施形態と同様に、電離放射線硬化性組成物は、光重合開始剤や光重合促進剤等の添加剤を含むことが好ましい。 When the ionizing radiation-curable compound is an ultraviolet-curable compound, the ionizing radiation-curable composition preferably contains additives such as a photopolymerization initiator and a photopolymerization accelerator, as in the first embodiment. .
《第1の粒子》
 樹脂層は、防眩性を良好にしやすくするため、平均粒子径が0.5μm以上の第1の粒子を含むことが好ましい。防眩性をより良好にしやすくするためには、第2の樹脂層が前記第1の粒子を含むことがより好ましい。
《First particle》
The resin layer preferably contains first particles having an average particle size of 0.5 μm or more in order to easily improve the antiglare property. In order to facilitate better antiglare properties, it is more preferable that the second resin layer contains the first particles.
 第1の粒子は、防眩性をより良好にしやすくするため、第1の粒子の個数基準の70%以上が第2の樹脂層側に存在することが好ましい。前記割合は、80%以上であることが好ましく、90%以上であることがより好ましい。 For the first particles, it is preferable that 70% or more of the number of the first particles exist on the second resin layer side in order to easily improve the antiglare property. The ratio is preferably 80% or more, more preferably 90% or more.
 樹脂層の厚み方向における第1の粒子が存在する位置は、例えば、走査型透過電子顕微鏡(STEM)により撮像した光学積層体の断面写真から判別できる。また、上述した個数基準の割合は、前記断面写真から算出できる。なお、数値の信頼性を高めるために、複数の断面写真を取得し、第1の粒子の合計数を50以上とした上で、上述した個数基準の割合を算出することが好ましい。
 なお、第1の樹脂層及び第2の樹脂層を跨いで、第1の樹脂層及び第2の樹脂層の両方に存在している第1の粒子は、各層の面積割合に応じて、各層に個数を割り振る。例えば、第1の樹脂層に存在する面積割合が40%で、第2の樹脂層に存在する面積割合が60%である第1の粒子は、第1の樹脂層に0.4個を割り振り、第2の樹脂層に0.6個を割り振る。
 STEMの加速電圧は10kV以上30kV以下、STEMの倍率は1000倍以上7000倍以下とすることが好ましい。
The position of the first particles in the thickness direction of the resin layer can be determined, for example, from a cross-sectional photograph of the optical layered body taken with a scanning transmission electron microscope (STEM). Also, the ratio based on the number described above can be calculated from the cross-sectional photograph. In order to increase the reliability of the numerical value, it is preferable to obtain a plurality of cross-sectional photographs, set the total number of the first particles to 50 or more, and then calculate the above-mentioned number-based ratio.
In addition, the first particles present in both the first resin layer and the second resin layer straddling the first resin layer and the second resin layer are divided according to the area ratio of each layer. Allocate the number to For example, 0.4 of the first particles present in the first resin layer with an area ratio of 40% and in the second resin layer with an area ratio of 60% are allocated to the first resin layer. , and assign 0.6 to the second resin layer.
It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
 第1の粒子としては、ポリメチルメタクリレート、ポリアクリル-スチレン共重合体、メラミン樹脂、ポリカーボネート、ポリスチレン、ポリ塩化ビニル、ベンゾグアナミン-メラミン-ホルムアルデヒド縮合物、シリコーン、フッ素系樹脂及びポリエステル系樹脂等の樹脂の1種以上から形成される有機粒子;シリカ、アルミナ、ジルコニア及びチタニア等の無機物の1種以上から形成される無機粒子;が挙げられる。これらの中でも、有機粒子は、分散安定性に優れ、かつ、比重が比較的小さいため、第1の粒子を第2の樹脂層に位置させやすい点で好ましい。 As the first particles, resins such as polymethyl methacrylate, polyacrylic-styrene copolymer, melamine resin, polycarbonate, polystyrene, polyvinyl chloride, benzoguanamine-melamine-formaldehyde condensate, silicone, fluorine-based resin and polyester-based resin. inorganic particles formed from one or more inorganic substances such as silica, alumina, zirconia and titania; Among these, organic particles are preferable because they are excellent in dispersion stability and have a relatively small specific gravity, so that the first particles can be easily positioned in the second resin layer.
 第1の粒子の含有量は、樹脂層用塗布液の樹脂成分100質量部に対して、下限は、0.5質量部以上であることが好ましく、1.0質量部以上であることがより好ましく、1.3質量部以上であることがさらに好ましく、上限は、10.0質量部以下であることが好ましく、5.0質量部以下であることがより好ましく、3.0質量部以下であることがさらに好ましい。
 第1の粒子の含有量を0.5質量部以上とすることにより、防眩性を良好にしやすくできる。また、第1の粒子の含有量を10.0質量部以下とすることにより、耐屈曲性の低下を抑制しやすくできる。
 樹脂成分100質量部に対する、第1の粒子の含有量の好適な範囲の実施形態は、0.5質量部以上10.0質量部以下、0.5質量部以上5.0質量部以下、0.5質量部以上3.0質量部以下、1.0質量部以上10.0質量部以下、1.0質量部以上5.0質量部以下、1.0質量部以上3.0質量部以下、1.3質量部以上10.0質量部以下、1.3質量部以上5.0質量部以下、1.3質量部以上3.0質量部以下が挙げられる。
下を抑制しやすくできる。
The lower limit of the content of the first particles is preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, with respect to 100 parts by mass of the resin component of the resin layer coating liquid. It is preferably 1.3 parts by mass or more, and the upper limit is preferably 10.0 parts by mass or less, more preferably 5.0 parts by mass or less, and 3.0 parts by mass or less. It is even more preferable to have
By setting the content of the first particles to 0.5 parts by mass or more, the antiglare property can be easily improved. Further, by setting the content of the first particles to 10.0 parts by mass or less, it is possible to easily suppress deterioration in bending resistance.
An embodiment of a preferred range of the content of the first particles with respect to 100 parts by mass of the resin component is 0.5 parts by mass or more and 10.0 parts by mass or less, 0.5 parts by mass or more and 5.0 parts by mass or less, 0 .5 to 3.0 parts by mass, 1.0 to 10.0 parts by mass, 1.0 to 5.0 parts by mass, 1.0 to 3.0 parts by mass , 1.3 to 10.0 parts by mass, 1.3 to 5.0 parts by mass, and 1.3 to 3.0 parts by mass.
You can easily control the bottom.
 第1の粒子の平均粒子径は、防眩性を良好にしやすくするため、0.8μm以上であることが好ましく、1.0μm以上であることがより好ましい。
 第1の粒子の平均粒子径は、耐屈曲性の低下を抑制しやすくするため、3.0μm以下であることが好ましく、2.7μm以下であることがより好ましく、2.5μm以下であることがさらに好ましい。
 第1の粒子の平均粒子径の好適な範囲の実施形態は、0.8μm以上3.0μm以下、0.8μm以上2.7μm以下、0.8μm以上2.5μm以下、1.0μm以上3.0μm以下、1.0μm以上2.7μm以下、1.0μm以上2.5μm以下が挙げられる。
 第1の粒子の平均粒子径は、例えば、第1実施形態の防眩性積層体と同様の手法で算出することができる。
The average particle size of the first particles is preferably 0.8 μm or more, more preferably 1.0 μm or more, in order to facilitate good antiglare properties.
The average particle size of the first particles is preferably 3.0 μm or less, more preferably 2.7 μm or less, and 2.5 μm or less in order to easily suppress deterioration in bending resistance. is more preferred.
Preferred embodiments of the average particle size of the first particles are 0.8 μm or more and 3.0 μm or less, 0.8 μm or more and 2.7 μm or less, 0.8 μm or more and 2.5 μm or less, 1.0 μm or more and 3.0 μm or less. 0 μm or less, 1.0 μm or more and 2.7 μm or less, or 1.0 μm or more and 2.5 μm or less.
The average particle size of the first particles can be calculated, for example, by the same method as for the antiglare laminate of the first embodiment.
 第1の粒子の平均粒子径を示すD1と、第2の樹脂層の平均厚みを示すt2とは、t2-D1が、-0.5μm以上であることが好ましく、2.0μm以下であることが好ましい。
 t2-D1が-0.5μm以上であると、第1の粒子によって、光学積層体の表面に凹凸形状を付与しやすくできるため、防眩性を良好にしやすくできる。t2-D1は、0μm以上であることがより好ましく、0.1μm以上であることがさらに好ましい。
 t2-D1が2.0μm以下であると、第1の粒子が第2の樹脂層の表面から突出しにくくすることにより、耐擦傷性を良好にしやすくすることができる。t2-D1は、1.5μm以下であることがより好ましく、0.8μm以下であることがさらに好ましい。
 t2-D1の好適な範囲の実施形態は、-0.5μm以上2.0μm以下、-0.5μm以上1.5μm以下、-0.5μm以上0.8μm以下、0μm以上2.0μm以下、0μm以上1.5μm以下、0μm以上0.8μm以下、0.1μm以上2.0μm以下、0.1μm以上1.5μm以下、0.1μm以上0.8μm以下が挙げられる。
Regarding D1 indicating the average particle diameter of the first particles and t2 indicating the average thickness of the second resin layer, t2-D1 is preferably −0.5 μm or more and 2.0 μm or less. is preferred.
When t2−D1 is −0.5 μm or more, the first particles can easily provide the surface of the optical layered body with an uneven shape, so that the antiglare property can be easily improved. t2-D1 is more preferably 0 μm or more, further preferably 0.1 μm or more.
When t2−D1 is 2.0 μm or less, the first particles are less likely to protrude from the surface of the second resin layer, thereby making it easier to improve the scratch resistance. t2-D1 is more preferably 1.5 μm or less, and even more preferably 0.8 μm or less.
Embodiments of preferred ranges for t2-D1 are −0.5 μm to 2.0 μm, −0.5 μm to 1.5 μm, −0.5 μm to 0.8 μm, 0 μm to 2.0 μm, 0 μm 0 μm or more and 0.8 μm or less, 0.1 μm or more and 2.0 μm or less, 0.1 μm or more and 1.5 μm or less, and 0.1 μm or more and 0.8 μm or less.
《無機微粒子》
 樹脂層は、無機微粒子を含んでいてもよい。樹脂層が比較的比重の大きい無機微粒子を含むことにより、第1の粒子が樹脂層の下方に沈みにくくなるため、第1の粒子を第2の樹脂層に位置させやすくできる。また、無機微粒子は、第1の粒子の分散性を高め、耐屈曲性の低下を抑制しやすくできる。
《Inorganic fine particles》
The resin layer may contain inorganic fine particles. Since the resin layer contains inorganic fine particles having a relatively large specific gravity, the first particles are less likely to sink below the resin layer, and the first particles can be easily positioned in the second resin layer. In addition, the inorganic fine particles can enhance the dispersibility of the first particles and easily suppress the deterioration of the bending resistance.
 光学積層体の無機微粒子の平均粒子径及び種類の実施形態は、第1実施形態の防眩性積層体の無機微粒子の平均粒子径及び種類の実施形態と同様の実施形態とすることができる。 The embodiment of the average particle size and type of the inorganic fine particles in the optical layered body can be the same as the embodiment of the average particle size and type of the inorganic fine particles in the anti-glare layered body of the first embodiment.
 無機微粒子の含有量は、樹脂層用塗布液の樹脂成分100質量部に対して、下限は、0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、0.7質量部以上であることがさらに好ましく、上限は、5.0質量部以下であることが好ましく、3.0質量部以下であることがより好ましく、2.0質量部以下であることがさらに好ましい。
 無機微粒子の含有量を0.1質量部以上とすることにより、第1の粒子を第2の樹脂層に位置させやすくできる。また、無機微粒子の含有量を5.0質量部以下とすることにより、第1の粒子が樹脂層の上方に過度に浮かぶことを抑制できるため、耐屈曲性の低下を抑制しやすくできる。
 樹脂成分100質量部に対する、無機微粒子の含有量の好適な範囲の実施形態は、0.1質量部以上5.0質量部以下、0.1質量部以上3.0質量部以下、0.1質量部以上2.0質量部以下、0.5質量部以上5.0質量部以下、0.5質量部以上3.0質量部以下、0.5質量部以上2.0質量部以下、0.7質量部以上5.0質量部以下、0.7質量部以上3.0質量部以下、0.7質量部以上2.0質量部以下が挙げられる。
The lower limit of the content of the inorganic fine particles is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, with respect to 100 parts by mass of the resin component of the resin layer coating liquid. It is more preferably 0.7 parts by mass or more, and the upper limit is preferably 5.0 parts by mass or less, more preferably 3.0 parts by mass or less, and 2.0 parts by mass or less. is more preferred.
By setting the content of the inorganic fine particles to 0.1 part by mass or more, the first particles can be easily positioned in the second resin layer. Further, by setting the content of the inorganic fine particles to 5.0 parts by mass or less, it is possible to prevent the first particles from excessively floating above the resin layer, and thus it is possible to easily prevent deterioration of the bending resistance.
Preferred range of content of the inorganic fine particles with respect to 100 parts by mass of the resin component is 0.1 parts by mass or more and 5.0 parts by mass or less, 0.1 parts by mass or more and 3.0 parts by mass or less, 0.1 parts by mass to 2.0 parts by mass, 0.5 parts by mass to 5.0 parts by mass, 0.5 parts by mass to 3.0 parts by mass, 0.5 parts by mass to 2.0 parts by mass, 0 .7 parts by mass to 5.0 parts by mass, 0.7 parts by mass to 3.0 parts by mass, and 0.7 parts by mass to 2.0 parts by mass.
 樹脂層用塗布液は、第1実施形態と同様に、必要に応じて、添加剤を含んでいてもよい。 As in the first embodiment, the resin layer coating liquid may contain additives as necessary.
《溶媒》
 樹脂層用塗布液は、溶媒を含むことが好ましい。
 溶媒としては、基材を溶解し得る溶媒を選択することが好ましい。溶媒として、基材を溶解しやすい溶媒を用いるほど、θa1及びPa1の値が大きくなりやすくなる。但し、基材を過度に溶解すると、基材の強度が低下するため、基材の種類に応じて、適切な溶媒を選択することが好ましい。
 また、溶媒は、基材の溶解性だけではなく、溶媒に固有の蒸発速度を考慮して選択することが好ましい。溶媒が蒸発する速度は、乾燥条件によっても制御できる。例えば、乾燥温度を高くすれば溶媒が蒸発する速度は速くなる。また、乾燥風速を速くすれば溶媒が蒸発する速度は速くなる。
 溶媒の乾燥が遅いと、基材の溶解が進み、θa1及びPa1が大きくなりやすい。また、溶媒の乾燥が遅く、乾燥時の温度が高いと、第1の樹脂層と第2の樹脂層との層間において、樹脂成分の移動が激しくなり、θa2及びPa2が大きくなりやすい。
 以上のことから、基材の溶解性、蒸発速度、乾燥条件を考慮して、溶媒を選択することが好ましい。
"solvent"
The resin layer coating liquid preferably contains a solvent.
As the solvent, it is preferable to select a solvent that can dissolve the substrate. The values of θa1 and Pa1 tend to increase as the solvent that dissolves the base material is used more easily. However, if the base material is dissolved excessively, the strength of the base material is lowered, so it is preferable to select an appropriate solvent according to the type of base material.
In addition, it is preferable to select the solvent in consideration of not only the solubility of the base material but also the evaporation rate inherent to the solvent. The rate at which the solvent evaporates can also be controlled by the drying conditions. For example, the higher the drying temperature, the faster the solvent will evaporate. Also, the faster the drying air speed, the faster the solvent evaporates.
If the drying of the solvent is slow, the dissolution of the substrate proceeds, and θa1 and Pa1 tend to increase. Further, if the drying of the solvent is slow and the temperature during drying is high, the resin component moves rapidly between the first resin layer and the second resin layer, and θa2 and Pa2 tend to increase.
From the above, it is preferable to select the solvent in consideration of the solubility of the substrate, the evaporation rate, and the drying conditions.
 光学積層体の溶媒の種類の実施形態は、第1実施形態の防眩性積層体の溶媒の種類の実施形態と同様の実施形態とすることができる。 The embodiment of the type of solvent for the optical layered body can be the same as the embodiment of the type of solvent for the anti-glare layered body of the first embodiment.
 アクリル樹脂基材は溶媒に溶解しやすい。このため、基材としてアクリル樹脂基材を用いる場合、溶媒に固有の蒸発速度が速い溶媒を含むことが好ましい。
 本明細書において、蒸発速度が速い溶媒は、酢酸ブチルの蒸発速度を100とした際に、蒸発速度が100以上の溶媒を意味する。また、本明細書において、蒸発速度が遅い溶媒は、酢酸ブチルの蒸発速度を100とした際に、蒸発速度が100未満の溶媒を意味する。
An acrylic resin base material is easily dissolved in a solvent. Therefore, when an acrylic resin base material is used as the base material, it is preferable that the solvent contains a solvent having a high evaporation rate.
In the present specification, a solvent with a high evaporation rate means a solvent with an evaporation rate of 100 or more when the evaporation rate of butyl acetate is set to 100. Further, in this specification, a solvent with a slow evaporation rate means a solvent with an evaporation rate of less than 100 when the evaporation rate of butyl acetate is 100.
 蒸発速度が速い溶媒の蒸発速度は、120以上450以下であることがより好ましく、140以上400以下であることがさらに好ましい。
 蒸発速度が速い溶媒としては、例えば、イソプロピルアルコール(蒸発速度150)、メチルイソブチルケトン(蒸発速度160)、トルエン(蒸発速度200)、メチルエチルケトン(蒸発速度370)が挙げられる。
 蒸発速度が速い溶媒は、溶媒の全量の75質量%以上85質量%以下であることが好ましい。
The evaporation rate of the solvent having a high evaporation rate is more preferably 120 or more and 450 or less, and even more preferably 140 or more and 400 or less.
Solvents with high evaporation rates include, for example, isopropyl alcohol (evaporation rate of 150), methyl isobutyl ketone (evaporation rate of 160), toluene (evaporation rate of 200), and methyl ethyl ketone (evaporation rate of 370).
The solvent having a fast evaporation rate is preferably 75% by mass or more and 85% by mass or less of the total amount of the solvent.
 また、第1の樹脂層及び第2の樹脂層に海島構造を形成しやすくするためには、溶媒として、溶媒に固有の蒸発速度が遅く、かつ、極性が高く、分子量が大きい溶媒を含むことが好ましい。前述した特性を備える溶媒は、塗布液の粘性が大きくなるため塗布液がゲル状になりやすくなる。このため、前述した特性を備える溶媒は、塗布液の相溶性を低下させやすくすることができるため、海島構造を形成しやすくできる。前述した特性を備える溶媒としては、シクロヘキサノン及びジアセトンアルコール等が挙げられる。
 蒸発速度が遅く、かつ、極性が高く、分子量が大きい溶媒は、溶媒の全量の15質量%以上25質量%以下であることが好ましい。
In order to facilitate the formation of the sea-island structure in the first resin layer and the second resin layer, the solvent should contain a solvent that has a slow evaporation rate, high polarity, and a large molecular weight. is preferred. A solvent having the properties described above increases the viscosity of the coating liquid, so that the coating liquid tends to gel. Therefore, the solvent having the properties described above can easily reduce the compatibility of the coating liquid, so that the sea-island structure can be easily formed. Solvents with the properties described above include cyclohexanone and diacetone alcohol.
The solvent that evaporates slowly, has high polarity, and has a large molecular weight preferably accounts for 15% by mass or more and 25% by mass or less of the total amount of the solvent.
《乾燥条件》
 樹脂層用塗布液から樹脂層を形成する際には、乾燥条件を制御することが好ましい。
 また、本開示の光学積層体は、樹脂層用塗布液を2段階で乾燥することが好ましい。具体的には、1段階目の乾燥は乾燥風速を小さくし、2段階目の乾燥は乾燥風速を大きくすることが好ましい。1段階目の乾燥時に、基材から溶出した樹脂成分を主成分として含み、樹脂層用塗布液の樹脂成分を少量含む領域により第1の樹脂層を形成し、さらに、基材から溶出した樹脂成分を少量含み、樹脂層用塗布液の樹脂成分を主成分として含む領域により第2の樹脂層を形成することができる。さらに、1段階目の乾燥温度を高くすることで、樹脂成分の移動しやすくすることにより、海島構造を形成しやすくすることができる。
 そして、2段階目の乾燥を実施することにより、基材が過度に溶解することを抑制できるため、θa1及びPa1が大きくなり過ぎることを抑制しやすくできる。
《Drying conditions》
When forming the resin layer from the resin layer coating liquid, it is preferable to control the drying conditions.
Further, in the optical layered body of the present disclosure, it is preferable to dry the resin layer coating liquid in two stages. Specifically, it is preferable to reduce the drying air velocity in the first stage of drying and increase the drying air velocity in the second stage of drying. At the time of drying in the first stage, a first resin layer is formed by a region containing a resin component eluted from the base material as a main component and containing a small amount of the resin component of the resin layer coating liquid, and the resin eluted from the base material. A second resin layer can be formed by a region containing a small amount of the component and containing the resin component of the resin layer coating liquid as a main component. Furthermore, by increasing the drying temperature in the first step, the resin component can be easily moved, thereby facilitating the formation of the islands-in-the-sea structure.
By performing the second stage of drying, excessive dissolution of the base material can be suppressed, so that θa1 and Pa1 can be easily suppressed from becoming too large.
 さらに、1段階目の乾燥及び2段階目の乾燥では、乾燥時間を制御することが好ましい。樹脂層用塗布液の乾燥の乾燥時間が長くなることは、樹脂層用塗布液の樹脂成分に電離放射線を照射するまでの時間が長くなることを意味する。言い換えると、樹脂層用塗布液の乾燥の乾燥時間が長くなることは、樹脂層用塗布液の樹脂成分が、未硬化で流動性を有する状態を長く保つことを意味する。このため、樹脂層用塗布液の乾燥の乾燥時間が長くなると、第1の樹脂層と第2の樹脂層との層間において、樹脂成分の移動が激しくなり、θa2及びPa2が大きくなりやすくなるため、条件1B及び条件2Bを満たしにくくなる。 Furthermore, it is preferable to control the drying time in the first stage drying and the second stage drying. A longer drying time for drying the coating liquid for the resin layer means that it takes longer to irradiate the resin component of the coating liquid for the resin layer with the ionizing radiation. In other words, lengthening the drying time of the resin layer coating liquid means that the resin component of the resin layer coating liquid maintains an uncured and fluid state for a long time. Therefore, if the drying time for drying the coating solution for the resin layer becomes long, the resin component moves rapidly between the first resin layer and the second resin layer, and θa2 and Pa2 tend to increase. , conditions 1B and 2B are less likely to be satisfied.
 乾燥条件は、乾燥温度及び乾燥機内の風速により制御することができる。乾燥温度及び風速の好ましい範囲は、樹脂層用塗布液の組成により異なるため一概にはいえないが、下記の条件とすることが好ましい。
<1段階目の乾燥>
 乾燥温度は75℃以上95℃以下が好ましく、乾燥風速は1m/s以上10m/s以下が好ましい。乾燥時間は20秒以上40秒以下が好ましい。
<2段階目の乾燥>
 乾燥温度は75℃以上95℃以下が好ましく、乾燥風速は15m/s以上30m/s以下が好ましい。乾燥時間は20秒以上40秒以下が好ましい。
Drying conditions can be controlled by drying temperature and air speed in the dryer. The preferred ranges for the drying temperature and air velocity vary depending on the composition of the resin layer coating liquid, so it cannot be generalized, but the following conditions are preferred.
<Drying in the first stage>
The drying temperature is preferably 75° C. or higher and 95° C. or lower, and the drying wind speed is preferably 1 m/s or higher and 10 m/s or lower. The drying time is preferably 20 seconds or more and 40 seconds or less.
<Drying in the second step>
The drying temperature is preferably 75° C. or higher and 95° C. or lower, and the drying wind speed is preferably 15 m/s or higher and 30 m/s or lower. The drying time is preferably 20 seconds or more and 40 seconds or less.
 樹脂層用塗布液により基材の一部を溶解させ、かつ、基材から溶出した成分と樹脂層用塗布液とを十分に混合させやすくするため、電離放射線の照射は塗布液の乾燥後に行うことが好適である。 Ionizing radiation is applied after drying the coating liquid in order to dissolve a part of the base material with the coating liquid for the resin layer and to facilitate sufficient mixing of the components eluted from the base material and the coating liquid for the resin layer. is preferred.
<条件1B、条件2B>
 本開示の光学積層体は、下記の条件1B又は条件2Bを満たすことを要する。本開示の光学積層体は、条件1B及び条件2Bの少なくとも一方を満たせば良いが、両方を満たすことが好ましい。
<条件1B>
 前記基材の前記樹脂層側の表面の平均傾斜角を示すθa1と、前記第1の樹脂層の前記第2の樹脂層側の表面の平均傾斜角を示すθa2とが、θa2<θa1の関係である。
<条件2B>
 前記基材の前記樹脂層側の表面の算術平均高さを示すPa1と、前記第1の樹脂層の前記第2の樹脂層側の表面の算術平均高さを示すPa2とが、Pa2<Pa1の関係である。
<Condition 1B, Condition 2B>
The optical layered body of the present disclosure needs to satisfy Condition 1B or Condition 2B below. Although the optical layered body of the present disclosure should satisfy at least one of Condition 1B and Condition 2B, it preferably satisfies both.
<Condition 1B>
θa1 indicating the average inclination angle of the surface of the base material facing the resin layer and θa2 indicating the average inclination angle of the surface of the first resin layer facing the second resin layer have a relationship of θa2<θa1. is.
<Condition 2B>
Pa1 indicating the arithmetic mean height of the surface of the base material on the resin layer side and Pa2 indicating the arithmetic mean height of the surface of the first resin layer on the second resin layer side satisfy Pa2<Pa1 is the relationship.
-条件1B-
 θa2<θa1の関係を満たさない場合、θa1が小さいことによって、初期の密着性を良好にしにくかったり、θa2が大きいことによって、耐光性試験後における透過像鮮明度の変化を抑制しにくい。
 耐光性試験前後で透過像鮮明度が変化する原因は、耐光性試験の前後で、第1の樹脂層と第2の樹脂層との界面の屈折率差が変化するためと考えられる。本開示の光学積層体には、第1の樹脂層と第2の樹脂層との界面だけではなく、基材と第1の樹脂層との界面も存在する。基材(特にアクリル樹脂基材)は、耐光性試験により比較的変成しにくい。一方、樹脂層用塗布液の樹脂成分は、耐光性試験により比較的変成しやすい。このため、基材の樹脂成分の含有量が少ない第2の樹脂層は、耐光性試験前後で屈折率が変化しやすくなる。一方、基材、及び、基材の樹脂成分を多く含む第1の樹脂層は、耐光性試験前後で屈折率が変化しにくくなる。このため、θa2が大きいことにより、θa2<θa1の関係を満たさない場合には、耐光性試験後における透過像鮮明度の変化を抑制しにくいと考えられる。
-Condition 1B-
If the relationship θa2<θa1 is not satisfied, the small θa1 makes it difficult to achieve good initial adhesion, and the large θa2 makes it difficult to suppress the change in transmission image definition after the lightfastness test.
The reason why the transmission image definition changes before and after the light resistance test is considered to be that the refractive index difference at the interface between the first resin layer and the second resin layer changes between before and after the light resistance test. In the optical laminate of the present disclosure, there is not only the interface between the first resin layer and the second resin layer, but also the interface between the substrate and the first resin layer. Substrates (especially acrylic resin substrates) are relatively resistant to denaturation in lightfastness tests. On the other hand, the resin component of the resin layer coating liquid is relatively easily denatured by the light resistance test. For this reason, the refractive index of the second resin layer, which contains a small amount of the resin component of the substrate, tends to change before and after the light resistance test. On the other hand, the substrate and the first resin layer containing a large amount of the resin component of the substrate are less likely to change in refractive index before and after the light resistance test. Therefore, if the relationship θa2<θa1 is not satisfied due to the large θa2, it is considered difficult to suppress the change in the clarity of the transmitted image after the lightfastness test.
-条件2B-
 Pa2<Pa1の関係を満たさない場合、Pa1が小さいことによって、初期の密着性を良好にしにくかったり、Pa2が大きいことによって、耐光性試験後における透過像鮮明度の変化を抑制しにくい。
 Pa2が大きいことにより、Pa2<Pa1の関係を満たさない場合に、耐光性試験後における透過像鮮明度の変化を抑制しにくい理由は、条件1Bと同様の理由が考えられる。
-Condition 2B-
If the relationship Pa2<Pa1 is not satisfied, a small Pa1 makes it difficult to achieve good initial adhesion, and a large Pa2 makes it difficult to suppress changes in transmission image definition after the lightfastness test.
The reason why it is difficult to suppress the change in transmission image definition after the lightfastness test when the relationship of Pa2<Pa1 is not satisfied due to the large Pa2 is considered to be the same as the reason for the condition 1B.
 θa1は、初期の密着性を良好にしやすくするため、5.0度以上が好ましく、8.0度以上がより好ましく、10.0度以上がさらに好ましい。θa1は、鉛筆硬度を良好にしやすくするため、20.0度以下が好ましく、18.0度以下がより好ましく、17.0度以下がさらに好ましい。
 θa1の好適な範囲の実施形態は、5.0度以上20.0度以下、5.0度以上18.0度以下、5.0度以上17.0度以下、8.0度以上20.0度以下、8.0度以上18.0度以下、8.0度以上17.0度以下、10.0度以上20.0度以下、10.0度以上18.0度以下、10.0度以上17.0度以下が挙げられる。
θa1 is preferably 5.0 degrees or more, more preferably 8.0 degrees or more, and still more preferably 10.0 degrees or more, in order to facilitate good initial adhesion. θa1 is preferably 20.0 degrees or less, more preferably 18.0 degrees or less, and even more preferably 17.0 degrees or less, in order to easily improve the pencil hardness.
Preferred ranges of θa1 are 5.0 degrees to 20.0 degrees, 5.0 degrees to 18.0 degrees, 5.0 degrees to 17.0 degrees, and 8.0 degrees to 20.0 degrees. 0 degrees or less, 8.0 degrees or more and 18.0 degrees or less, 8.0 degrees or more and 17.0 degrees or less, 10.0 degrees or more and 20.0 degrees or less, 10.0 degrees or more and 18.0 degrees or less, 10. 0 degrees or more and 17.0 degrees or less.
 θa2は、耐光性試験後における透過像鮮明度の変化を抑制しやすくするため、10.0度以下が好ましく、8.0度以下がより好ましく、6.0度以下がさらに好ましく、4.0度以下がよりさらに好ましい。
 θa2は、密着性を良好にしやすくするため、0度超が好ましく、1.0度以上がより好ましく、2.0度以上がさらに好ましい。
 θa2の好適な範囲の実施形態は、0度超10.0度以下、0度超8.0度以下、0度超6.0度以下、0度超4.0度以下、1.0度以上10.0度以下、1.0度以上8.0度以下、1.0度以上6.0度以下、1.0度以上4.0度以下、2.0度以上10.0度以下、2.0度以上8.0度以下、2.0度以上6.0度以下、2.0度以上4.0度以下が挙げられる。
θa2 is preferably 10.0 degrees or less, more preferably 8.0 degrees or less, still more preferably 6.0 degrees or less, in order to easily suppress changes in transmission image definition after the light resistance test, and 4.0 degrees. degree or less is even more preferable.
θa2 is preferably greater than 0 degrees, more preferably 1.0 degrees or more, and even more preferably 2.0 degrees or more, in order to facilitate good adhesion.
Embodiments of preferred ranges for θa2 are: 0 degrees to 10.0 degrees, 0 degrees to 8.0 degrees, 0 degrees to 6.0 degrees, 0 degrees to 4.0 degrees, 1.0 degrees 1.0 degrees or more and 8.0 degrees or less, 1.0 degrees or more and 6.0 degrees or less, 1.0 degrees or more and 4.0 degrees or less, 2.0 degrees or more and 10.0 degrees or less , 2.0 degrees or more and 8.0 degrees or less, 2.0 degrees or more and 6.0 degrees or less, and 2.0 degrees or more and 4.0 degrees or less.
 Pa1は、初期の密着性を良好にしやすくするため、0.05μm以上が好ましく、0.07μm以上がより好ましく、0.10μm以上がさらに好ましい。Pa1は、鉛筆硬度を良好にしやすくするため、0.25μm以下が好ましく、0.23μm以下がより好ましく、0.20μm以下がさらに好ましい。
 Pa1の好適な範囲の実施形態は、0.05μm以上0.25μm以下、0.05μm以上0.23μm以下、0.05μm以上0.20μm以下、0.07μm以上0.25μm以下、0.07μm以上0.23μm以下、0.07μm以上0.20μm以下、0.10μm以上0.25μm以下、0.10μm以上0.23μm以下、0.10μm以上0.20μm以下が挙げられる。
Pa1 is preferably 0.05 μm or more, more preferably 0.07 μm or more, and even more preferably 0.10 μm or more, in order to facilitate good initial adhesion. Pa1 is preferably 0.25 μm or less, more preferably 0.23 μm or less, and even more preferably 0.20 μm or less, in order to easily improve the pencil hardness.
Embodiments of suitable ranges for Pa1 are 0.05 μm to 0.25 μm, 0.05 μm to 0.23 μm, 0.05 μm to 0.20 μm, 0.07 μm to 0.25 μm, 0.07 μm or more 0.23 μm or less, 0.07 μm or more and 0.20 μm or less, 0.10 μm or more and 0.25 μm or less, 0.10 μm or more and 0.23 μm or less, and 0.10 μm or more and 0.20 μm or less.
 Pa2は、耐光性試験後における透過像鮮明度の変化を抑制しやすくするため、0.15μm以下が好ましく、0.13μm以下がより好ましく、0.10μm以下がさらに好ましく、0.06μm以下がよりさらに好ましい。
 Pa2は、密着性を良好にしやすくするため、0.02μm以上が好ましく、0.04μm以上がより好ましく、0.05μm以上がさらに好ましい。
 Pa2の好適な範囲の実施形態は、0.02μm以上0.15μm以下、0.02μm以上0.13μm以下、0.02μm以上0.10μm以下、0.04μm以上0.15μm以下、0.04μm以上0.13μm以下、0.04μm以上0.10μm以下、0.05μm以上0.15μm以下、0.05μm以上0.13μm以下、0.05μm以上0.10μm以下が挙げられる。
Pa2 is preferably 0.15 μm or less, more preferably 0.13 μm or less, still more preferably 0.10 μm or less, and more preferably 0.06 μm or less, in order to easily suppress a change in transmission image definition after the light resistance test. More preferred.
Pa2 is preferably 0.02 μm or more, more preferably 0.04 μm or more, and still more preferably 0.05 μm or more, in order to facilitate good adhesion.
Embodiments of suitable ranges for Pa2 are 0.02 μm to 0.15 μm, 0.02 μm to 0.13 μm, 0.02 μm to 0.10 μm, 0.04 μm to 0.15 μm, 0.04 μm or more 0.13 μm or less, 0.04 μm or more and 0.10 μm or less, 0.05 μm or more and 0.15 μm or less, 0.05 μm or more and 0.13 μm or less, and 0.05 μm or more and 0.10 μm or less.
 θa1及びθa2、並びに、Pa1及びPa2は、例えば、以下のように測定することができる。
(1)光学積層体の断面写真を、走査型透過電子顕微鏡(STEM)で撮像する。STEMの加速電圧は10kV以上30kV以下、STEMの倍率は5000倍以上10000倍以下とすることが好ましい。
(2)断面写真の画像から、基材と樹脂層との界面の稜線、及び、第1の樹脂層と第2の樹脂層との界面の稜線を取得し、高さデータを取得する。具体的には、第1実施形態の手順(a)~(l)のようにする。基材と樹脂層との界面は、基材の樹脂層側の表面に相当する。第1の樹脂層と第2の樹脂層との界面は、第1の樹脂層の第2の樹脂層側の表面に相当する。
(3)高さデータ点列から、第1実施形態の手順(m)~(q)の手順で、平均傾斜角、算術平均高さを算出する。
θa1 and θa2, and Pa1 and Pa2 can be measured, for example, as follows.
(1) A cross-sectional photograph of the optical laminate is taken with a scanning transmission electron microscope (STEM). It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 5000 times or more and 10000 times or less.
(2) From the image of the cross-sectional photograph, the ridgeline of the interface between the base material and the resin layer and the ridgeline of the interface between the first resin layer and the second resin layer are obtained, and height data is obtained. Specifically, procedures (a) to (l) of the first embodiment are performed. The interface between the substrate and the resin layer corresponds to the surface of the substrate on the resin layer side. The interface between the first resin layer and the second resin layer corresponds to the surface of the first resin layer on the second resin layer side.
(3) Calculate the average tilt angle and the arithmetic average height from the height data point sequence according to the procedures (m) to (q) of the first embodiment.
 本明細書において、θa1及びθa2、並びに、Pa1及びPa2は、20個のサンプルの測定値の平均値を意味する。
 θa1及びθa2、並びに、Pa1及びPa2を上記範囲とするためには、上述したように、基材の一部を樹脂層用塗布液で溶解させること、樹脂層用塗布液の組成を適切に調製すること、樹脂層用塗布液の乾燥条件を適切な範囲とすること、が重要である。
In this specification, θa1 and θa2, and Pa1 and Pa2 mean average values of measured values of 20 samples.
In order to set θa1 and θa2 and Pa1 and Pa2 within the above ranges, as described above, a part of the base material should be dissolved in the resin layer coating liquid, and the composition of the resin layer coating liquid should be appropriately prepared. It is important to set the drying conditions of the resin layer coating liquid within an appropriate range.
[偏光板]
 本開示の偏光板は、偏光子と、前記偏光子の一方の側に配置された第1の透明保護板と、前記偏光子の他方の側に配置された第2の透明保護板とを有する偏光板であって、前記第1の透明保護板及び前記第2の透明保護板の少なくとも一方が、上述した本開示の第1実施形態の防眩性積層体、上述した本開示の第2実施形態の防眩性積層体、及び上述した本開示の光学積層体から選ばれる何れかの防眩性積層体又は光学積層体である、ものである。
[Polarizer]
A polarizing plate of the present disclosure has a polarizer, a first transparent protective plate arranged on one side of the polarizer, and a second transparent protective plate arranged on the other side of the polarizer. A polarizing plate, wherein at least one of the first transparent protective plate and the second transparent protective plate is the antiglare laminate according to the first embodiment of the present disclosure described above, or the second embodiment of the present disclosure described above. and any antiglare laminate or optical laminate selected from the optical laminate of the present disclosure described above.
 偏光板は、例えば、偏光板とλ/4位相差板とを組み合わせることにより反射防止性を付与するために使用される。この場合、画像表示装置の表示素子上にλ/4位相差板を配置し、λ/4位相差板よりも視認者側に偏光板が配置される。
 偏光板を液晶表示装置用に用いる場合、偏光板は液晶シャッターの機能を付与するために使用される。この場合、液晶表示装置は、下側偏光板、液晶表示素子、上側偏光板の順に配置され、下側偏光板の偏光子の吸収軸と上側偏光板の偏光子の吸収軸とが直交して配置される。前記構成では、上側偏光板として本開示の偏光板を用いることが好ましい。
A polarizing plate is used, for example, to impart antireflection properties by combining a polarizing plate and a λ/4 retardation plate. In this case, the λ/4 retardation plate is arranged on the display element of the image display device, and the polarizing plate is arranged on the viewer side of the λ/4 retardation plate.
When a polarizing plate is used for a liquid crystal display device, the polarizing plate is used to provide the function of a liquid crystal shutter. In this case, the liquid crystal display device is arranged in the order of the lower polarizing plate, the liquid crystal display element, and the upper polarizing plate, and the absorption axis of the polarizer of the lower polarizing plate and the absorption axis of the polarizer of the upper polarizing plate are perpendicular to each other. placed. In the above configuration, the polarizing plate of the present disclosure is preferably used as the upper polarizing plate.
<透明保護板>
 本開示の偏光板は、第一の透明保護板及び第二の透明保護板の少なくとも一方が、上述した本開示の第1実施形態の防眩性積層体、上述した本開示の第2実施形態の防眩性積層体、及び上述した本開示の光学積層体から選ばれる何れかの防眩性積層体又は光学積層体である。好ましい実施形態は、第一の透明保護板及び第二の透明保護板のうち、光出射側の透明保護板が、上述した本開示の第1実施形態の防眩性積層体、上述した本開示の第2実施形態の防眩性積層体、及び上述した本開示の光学積層体から選ばれる何れかの防眩性積層体又は光学積層体である実施形態である。防眩性積層体及び光学積層体は、基材側の面が偏光子側となるように配置することが好ましい。
<Transparent protective plate>
In the polarizing plate of the present disclosure, at least one of the first transparent protective plate and the second transparent protective plate is the antiglare laminate of the first embodiment of the present disclosure described above and the second embodiment of the present disclosure described above. and any antiglare laminate or optical laminate selected from the optical laminate of the present disclosure described above. In a preferred embodiment, of the first transparent protective plate and the second transparent protective plate, the transparent protective plate on the light emitting side is the antiglare laminate of the first embodiment of the present disclosure described above, or the antiglare laminate of the first embodiment of the present disclosure described above. and any antiglare laminate or optical laminate selected from the antiglare laminate of the second embodiment and the optical laminate of the present disclosure described above. The antiglare layered body and the optical layered body are preferably arranged so that the substrate-side surface faces the polarizer.
 第一の透明保護板及び第二の透明保護板の一方が、上述した本開示の第1実施形態の防眩性積層体、上述した本開示の第2実施形態の防眩性積層体、及び上述した本開示の光学積層体から選ばれる何れかの防眩性積層体又は光学積層体である場合、他方の透明保護板は特に限定されないが、光学的等方性の透明保護板が好ましい。
 本明細書において、光学的等方性とは、面内位相差が20nm以下のものを指し、好ましくは10nm以下、より好ましくは5nm以下である。アクリルフィルム、トリアセチルセルロース(TAC)フィルムは、光学的等方性を付与しやすい。
One of the first transparent protective plate and the second transparent protective plate is the antiglare laminate of the first embodiment of the present disclosure described above, the antiglare laminate of the second embodiment of the present disclosure described above, and In the case of any antiglare laminate or optical laminate selected from the optical laminates of the present disclosure described above, the other transparent protective plate is not particularly limited, but an optically isotropic transparent protective plate is preferable.
As used herein, optically isotropic refers to an in-plane retardation of 20 nm or less, preferably 10 nm or less, more preferably 5 nm or less. Acrylic films and triacetyl cellulose (TAC) films are easy to impart optical isotropy.
<偏光子>
 偏光子としては、例えば、ヨウ素等により染色し、延伸したポリビニルアルコールフィルム、ポリビニルホルマールフィルム、ポリビニルアセタールフィルム、エチレン-酢酸ビニル共重合体系ケン化フィルム等のシート型偏光子、平行に並べられた多数の金属ワイヤからなるワイヤーグリッド型偏光子、リオトロピック液晶や二色性ゲスト-ホスト材料を塗布した塗布型偏光子、多層薄膜型偏光子等が挙げられる。これらの偏光子は、透過しない偏光成分を反射する機能を備えた反射型偏光子であってもよい。
<Polarizer>
As a polarizer, for example, sheet-type polarizers such as polyvinyl alcohol film, polyvinyl formal film, polyvinyl acetal film, ethylene-vinyl acetate copolymer system saponified film dyed with iodine or the like and stretched; wire grid type polarizers made of metal wires, coating type polarizers coated with lyotropic liquid crystals or dichroic guest-host materials, multilayer thin film type polarizers, and the like. These polarizers may be reflective polarizers having the function of reflecting non-transmissive polarized light components.
<大きさ、形状等>
 本開示の偏光板の大きさ及び形状の実施形態は、上述した本開示の防眩性積層体又は本開示の光学積層体の大きさ及び形状の実施形態と同様の実施形態とすることができる。
<Size, shape, etc.>
Embodiments of the size and shape of the polarizing plate of the present disclosure can be the same as the above-described embodiments of the size and shape of the antiglare laminate of the present disclosure or the optical laminate of the present disclosure. .
[画像表示装置]
 本開示の画像表示装置は、表示素子上に上述した本開示の第1実施形態の防眩性積層体、上述した本開示の第2実施形態の防眩性積層体、及び上述した本開示の光学積層体から選ばれる何れかの防眩性積層体又は光学積層体を有するものである。
[Image display device]
The image display device of the present disclosure includes the above-described antiglare laminate of the first embodiment of the present disclosure, the above-described antiglare laminate of the second embodiment of the present disclosure, and the above-described antiglare laminate of the present disclosure on the display element. It has any antiglare laminate or optical laminate selected from optical laminates.
 図4、図7、図10は、本開示の画像表示装置500の実施形態を示す断面図である。図4の画像表示装置500は、表示素子200上に、本開示の第1実施形態の防眩性積層体100Aを有している。図7の画像表示装置500は、表示素子200上に、本開示の第2実施形態の防眩性積層体100Bを有している。図10の画像表示装置500は、表示素子200上に、本開示の光学積層体100Cを有している。画像表示装置内において、防眩性積層体又は光学積層体は、基材側が表示素子側を向くように配置することが好ましい。 4, 7, and 10 are cross-sectional views showing embodiments of the image display device 500 of the present disclosure. The image display device 500 of FIG. 4 has the antiglare laminate 100A of the first embodiment of the present disclosure on the display element 200. As shown in FIG. An image display device 500 of FIG. 7 has an antiglare laminate 100B of the second embodiment of the present disclosure on a display element 200. As shown in FIG. An image display device 500 in FIG. 10 has an optical layered body 100C of the present disclosure on a display element 200. As shown in FIG. In the image display device, the antiglare layered body or the optical layered body is preferably arranged so that the substrate side faces the display element side.
 表示素子としては、液晶表示素子;EL表示素子(有機EL表示素子、無機EL表示素子);プラズマ表示素子;QD(Quantum dot)を用いた表示素子;ミニLED、マイクロLED表示素子等のLED表示素子;等が挙げられる。これら表示素子は、表示素子の内部にタッチパネル機能を有していてもよい。
 液晶表示素子の液晶の表示方式としては、IPS方式、VA方式、マルチドメイン方式、OCB方式、STN方式、TSTN方式等が挙げられる。表示素子が液晶表示素子である場合、バックライトが必要である。バックライトは、液晶表示素子の防眩性積層体又は光学積層体が配置されている側とは反対側に配置される。
Display elements include liquid crystal display elements; EL display elements (organic EL display elements, inorganic EL display elements); plasma display elements; display elements using QD (Quantum dot); LED displays such as mini LED and micro LED display elements element; and the like. These display elements may have a touch panel function inside the display element.
The liquid crystal display method of the liquid crystal display element includes an IPS method, a VA method, a multi-domain method, an OCB method, an STN method, a TSTN method, and the like. If the display element is a liquid crystal display element, a backlight is required. The backlight is arranged on the side of the liquid crystal display element opposite to the side where the antiglare laminate or the optical laminate is arranged.
 また、本開示の画像表示装置は、表示素子と防眩性積層体との間にタッチパネルを有するタッチパネル付きの画像表示装置であってもよい。この場合、タッチパネル付きの画像表示装置の最表面に防眩性積層体又は光学積層体を配置し、かつ、防眩性積層体又は光学積層体の基材側が表示素子側を向くように配置することが好ましい。 Further, the image display device of the present disclosure may be an image display device with a touch panel having a touch panel between the display element and the antiglare laminate. In this case, the antiglare laminate or optical laminate is arranged on the outermost surface of the image display device with a touch panel, and the substrate side of the antiglare laminate or optical laminate is arranged so as to face the display element side. is preferred.
 画像表示装置の大きさ特に限定されないが、有効表示領域の最大径が2インチ以上500インチ以下であることが好ましい。
 画像表示装置の有効表示領域とは、画像を表示し得る領域である。例えば、画像表示装置が表示素子を囲う筐体を有する場合、筐体の内側の領域が有効画像領域となる。
 有効画像領域の最大径とは、有効画像領域内の任意の2点を結んだ際の最大長さをいうものとする。例えば、有効画像領域が長方形の場合は、長方形の対角線が最大径となる。また、有効画像領域が円形の場合は、円の直径が最大径となる。
The size of the image display device is not particularly limited, but the maximum diameter of the effective display area is preferably 2 inches or more and 500 inches or less.
The effective display area of an image display device is an area in which an image can be displayed. For example, when the image display device has a housing that surrounds the display element, the area inside the housing becomes the effective image area.
The maximum diameter of the effective image area is defined as the maximum length obtained by connecting any two points within the effective image area. For example, if the effective image area is rectangular, the diagonal of the rectangle is the maximum diameter. Also, when the effective image area is circular, the diameter of the circle is the maximum diameter.
 本開示の第1実施形態の防眩性積層体及び本開示の第2実施形態の防眩性積層体は、耐屈曲性に優れる。このため、表示素子上に、本開示の第1実施形態の防眩性積層体又は本開示の第2実施形態の防眩性積層体を有する画像表示装置は、フォルダブルタイプの画像表示装置又はローラブルタイプの画像表示装置であることが好ましい。 The antiglare laminate of the first embodiment of the present disclosure and the antiglare laminate of the second embodiment of the present disclosure are excellent in bending resistance. Therefore, the image display device having the antiglare laminate of the first embodiment of the present disclosure or the antiglare laminate of the second embodiment of the present disclosure on the display element is a foldable type image display device or A rollable type image display device is preferable.
 次に、本開示を実施例により更に詳細に説明するが、本開示はこれらの例によってなんら限定されるものではない。なお、「部」及び「%」は特に断りのない限り質量基準とする。 Next, the present disclosure will be described in more detail with examples, but the present disclosure is not limited by these examples. "Parts" and "%" are based on mass unless otherwise specified.
<第1実施形態の防眩性積層体の実施例>
1.測定及び評価
 以下のように、実施例及び比較例の防眩性積層体の測定及び評価を行った。なお、各測定及び評価時の雰囲気は、温度23±5℃、相対湿度40%以上65%以下とした。また、各測定及び評価の開始前に、対象サンプルを前記雰囲気に30分以上晒してから測定及び評価を行った。結果を表2に示す。比較例1-7の防眩性積層体は、樹脂層は単層構造であったため、表2において、第2の樹脂層に関する数値は「-」と表記した。
<Example of Antiglare Laminate of First Embodiment>
1. Measurement and Evaluation Measurement and evaluation of the antiglare laminates of Examples and Comparative Examples were performed as follows. The atmosphere during each measurement and evaluation was set at a temperature of 23±5° C. and a relative humidity of 40% or more and 65% or less. Moreover, before starting each measurement and evaluation, the target sample was exposed to the atmosphere for 30 minutes or more, and then the measurement and evaluation were performed. Table 2 shows the results. Since the resin layer of the antiglare laminate of Comparative Example 1-7 had a single-layer structure, in Table 2, the numerical value of the second resin layer is indicated as "-".
1-1.第1の樹脂層及び第2の樹脂層の平均厚み
 明細書本文の記載に準じて、実施例及び比較例の防眩性積層体の断面が露出したサンプルを作製した。走査型透過電子顕微鏡により撮像した前記サンプルの断面写真の任意の箇所を20点選び、その平均値により、第1の樹脂層の平均厚みであるt1、及び、第2の樹脂層の平均厚みであるt2を算出した。
1-1. Average Thickness of First Resin Layer and Second Resin Layer According to the description in the specification, samples of the antiglare laminates of Examples and Comparative Examples were prepared with exposed cross sections. Select 20 arbitrary points from the cross-sectional photograph of the sample taken with a scanning transmission electron microscope, and from the average value, t1, which is the average thickness of the first resin layer, and the average thickness of the second resin layer. A certain t2 was calculated.
1-2.第1の粒子の位置
 明細書本文の記載に準じて、実施例及び比較例の防眩性積層体の断面が露出したサンプルを作製した。走査型透過電子顕微鏡により撮像した前記サンプルの断面写真から、第1の樹脂層及び第2の樹脂層に跨って存在する第1の粒子の個数基準の割合を算出した。前記割合を算出するにあたり、第1の粒子の合計数が50を超えるまで複数の断面写真を取得した。併せて、第1の樹脂層のみに存在する第1の粒子の個数基準の割合、及び、第2の樹脂層のみに存在する第1の粒子の個数基準の割合を算出した。
1-2. Position of First Particles According to the description in the text of the specification, samples with exposed cross sections of the antiglare laminates of Examples and Comparative Examples were produced. From a cross-sectional photograph of the sample taken with a scanning transmission electron microscope, the number-based ratio of the first particles existing across the first resin layer and the second resin layer was calculated. In calculating the ratio, multiple cross-sectional photographs were taken until the total number of first particles exceeded 50. In addition, the number-based ratio of the first particles present only in the first resin layer and the number-based ratio of the first particles present only in the second resin layer were calculated.
1-3.基材の樹脂層側の表面の平均傾斜角、基材の樹脂層側の表面の算術平均高さ
 明細書本文の記載に準じて、実施例及び比較例の防眩性積層体の断面が露出したサンプルを作製した。走査型透過電子顕微鏡により撮像した前記サンプルの断面写真から、明細書本文の記載に準じて、基材の樹脂層側の表面の平均傾斜角、及び、基材の樹脂層側の表面の算術平均高さを算出した。
1-3. Average inclination angle of the resin layer side surface of the base material, arithmetic mean height of the resin layer side surface of the base material According to the description in the text of the specification, the cross sections of the antiglare laminates of Examples and Comparative Examples are exposed. A sample was prepared. From the cross-sectional photograph of the sample taken with a scanning transmission electron microscope, the average inclination angle of the resin layer side surface of the base material and the arithmetic mean of the resin layer side surface of the base material according to the description in the specification text Calculated height.
1-4.インデンテーション硬さ
 明細書本文の記載に準じて、実施例及び比較例の防眩性積層体の断面が露出したサンプルを作製した。次いで、測定装置(ブルカー社、品番:TI950)を用いて、明細書本文の記載に準じて、サンプルの第1の樹脂層の厚み方向の真ん中のインデンテーション硬さ、及び、サンプルの第2の樹脂層の厚み方向の真ん中のインデンテーション硬さを測定した。20個のサンプルの測定値の平均値を、各実施例及び比較例のH1及びH2とした。
1-4. Indentation Hardness According to the description in the text of the specification, samples of the antiglare laminates of Examples and Comparative Examples with exposed cross sections were produced. Next, using a measuring device (Bruker, product number: TI950), according to the description in the specification, the indentation hardness in the middle of the thickness direction of the first resin layer of the sample, and the second hardness of the sample The indentation hardness in the middle of the thickness direction of the resin layer was measured. The average values of the measured values of 20 samples were used as H1 and H2 for each example and comparative example.
1-5.全光線透過率(Tt)及びヘイズ(Hz)
 実施例及び比較例の防眩性積層体を10cm四方に切断した。切断箇所は、目視でゴミや傷などの異常点がない事を確認の上、ランダムな部位から選択した。ヘイズメーター(HM-150、村上色彩技術研究所製)を用いて、各サンプルのJIS K7361-1:1997の全光線透過率、及びJIS K7136:2000のヘイズを測定した。
 なお、光源が安定するよう事前に装置の電源スイッチをONにしてから15分以上待ち、入口開口(測定サンプルを設置する箇所)に何もセットせずに校正を行い、その後に入口開口に測定サンプルをセットして測定した。光入射面は基材側とした。
1-5. Total light transmittance (Tt) and haze (Hz)
The antiglare laminates of Examples and Comparative Examples were cut into 10 cm squares. After visually confirming that there were no abnormalities such as dust or scratches, the cutting sites were selected at random. Using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory), the total light transmittance of each sample according to JIS K7361-1:1997 and the haze according to JIS K7136:2000 were measured.
In order to stabilize the light source, turn on the power switch of the device and wait at least 15 minutes before performing calibration without setting anything at the entrance opening (the place where the measurement sample is installed). A sample was set and measured. The light incident surface was on the substrate side.
1-6.耐屈曲性
 実施例及び比較例の防眩性積層体に対して、JIS K5600-5-1:1999に規定の円筒形マンドレル法による耐屈曲性試験を行った。マンドレルの直径を徐々に小さくし、防眩性積層体に最初に割れが生じたマンドレルの直径を表2に示す。直径5mm以下が合格レベルである。マンドレルに防眩性積層体を巻き付ける際は、基材側がマンドレル側となるようにした。
1-6. Flex Resistance The antiglare laminates of Examples and Comparative Examples were subjected to a flex resistance test by the cylindrical mandrel method specified in JIS K5600-5-1:1999. The diameter of the mandrel was gradually reduced, and Table 2 shows the diameter of the mandrel at which the antiglare laminate first cracked. A diameter of 5 mm or less is an acceptable level. When the antiglare laminate was wound around the mandrel, the base material side was on the mandrel side.
1-7.鉛筆硬度
 実施例及び比較例の防眩性積層体を50mm×100mmの大きさにカットしたサンプルを作製した。JIS K5600-5-4:1999に準拠して、荷重500g、速度1.4mm/秒の条件で、前記サンプルの樹脂層上面の鉛筆硬度を測定した。
 測定には、東洋精機製作所の鉛筆硬度試験機(品番:NP型鉛筆引掻塗膜硬度試験機)を用いた。メンディングテープ(スリーエム社、品番「810-3-18」)を用いて、カットしたサンプルの両端部を鉛筆硬度試験機の土台に貼り合わせた。5回の鉛筆硬度試験を行い、3回以上の傷等の外観異常が認められなかった際の硬度を、各サンプルの鉛筆硬度の値とした。例えば、2Hの鉛筆を用いて、5回の試験を行い、3回外観異常が生じなければ、その防眩性積層体の鉛筆硬度は2Hである。外観異常については、変色は含まず、傷及び凹みについて確認を行った。鉛筆硬度2H以上が合格レベルである。
1-7. Pencil Hardness Samples were prepared by cutting the antiglare laminates of Examples and Comparative Examples into a size of 50 mm×100 mm. In accordance with JIS K5600-5-4:1999, the pencil hardness of the upper surface of the resin layer of the sample was measured under conditions of a load of 500 g and a speed of 1.4 mm/sec.
For the measurement, a pencil hardness tester manufactured by Toyo Seiki Seisakusho (product number: NP type pencil scratch coating film hardness tester) was used. Using a mending tape (manufactured by 3M, product number "810-3-18"), both ends of the cut sample were attached to the base of a pencil hardness tester. The pencil hardness test was performed 5 times, and the hardness when no appearance abnormality such as scratches was observed 3 times or more was taken as the value of the pencil hardness of each sample. For example, the pencil hardness of the antiglare laminate is 2H if the test is performed five times using a 2H pencil and no abnormality in appearance occurs three times. Regarding appearance abnormality, scratches and dents were checked, but discoloration was not included. A pencil hardness of 2H or more is an acceptable level.
1-8.防眩性
 実施例及び比較例の防眩性積層体の基材側に、厚み25μmの透明粘着剤層(パナック社)、商品名「パナクリーンPD-S1」、屈折率1.49)を介して、黒色板(クラレ社、商品名「コモグラス DFA2CG 502K(黒)系」、全光線透過率0%、厚み2mm、屈折率1.49)を貼り合わせたサンプルを作製した(サンプルの大きさ:縦10cm×横10cm)。前記サンプルを明室環境下(該サンプルの第一主面上の照度が500lux以上1000lux以下。照明:Hf32形の直管三波長形昼白色蛍光灯)で該サンプルの第1主面の中心より直線距離50cm上方から目視にて、被験者20人により、観測者自身の映り込みが気にならない程度の防眩性が得られているか否かを下記の基準により評価した。評価時の照明の位置は水平台から鉛直方向2m上方の高さである。被験者は30歳代の視力0.7以上の健康なものとした。
A:良好と答えた人が14人以上
B:良好と答えた人が7人以上13人以下
C:良好と答えた人が6人以下
1-8. Antiglare property A 25 μm thick transparent pressure-sensitive adhesive layer (Panac), trade name “Panaclean PD-S1”, refractive index 1.49) was placed on the substrate side of the antiglare laminates of Examples and Comparative Examples. A black plate (Kuraray Co., Ltd., trade name “Comoglass DFA2CG 502K (black)”, total light transmittance 0%, thickness 2 mm, refractive index 1.49) was laminated to prepare a sample (sample size: 10 cm long x 10 cm wide). From the center of the first main surface of the sample under a bright room environment (illuminance on the first main surface of the sample is 500 lux or more and 1000 lux or less; illumination: Hf32 type straight tube three-wavelength neutral white fluorescent lamp) 20 test subjects evaluated whether or not the anti-glare property was obtained to such an extent that the reflection of the observers themselves was not disturbing, based on the following criteria. The lighting position at the time of evaluation was 2 m above the horizontal table in the vertical direction. The subjects were in their thirties and healthy with a visual acuity of 0.7 or more.
A: More than 14 people answered that they were good B: More than 7 people and less than 13 people answered that they were good C: Less than 6 people answered that they were good
2.防眩性積層体の作製
[実施例1-1]
(基材の製造)
 メタクリル酸メチルおよびアクリル酸メチルの共重合体を2軸押出機を用いて260℃で混錬してペレット状組成物(ガラス転移点:134℃)を得た。得られたペレット状組成物を、Tダイ(Tダイ温度:260℃)にて溶融押し出し成型し、130℃の冷却ロール上に吐出した。次に、延伸温度145℃にて、縦方向および横方向に延伸倍率1.5倍で逐次二軸延伸を行った。その後冷却して、厚み40μmのアクリル樹脂基材を得た。
(樹脂層の形成)
 前記のアクリル樹脂基材上に、表1の実施例1-1の樹脂層用塗布液をマイヤーバーコーティング法により、6.0g/mの塗布量で塗布した後、風速15m/s、温度100℃の温風で60秒乾燥した。次いで、酸素濃度200ppm以下の窒素雰囲気下にて、積算光量が100mJ/cmになるように紫外線を照射することにより、樹脂層塗布液の電離放射線硬化性樹脂組成物を硬化し、第1の樹脂層及び第2の樹脂層を形成し、実施例1-1の防眩性積層体を得た。本明細書において、塗布量は、乾燥後の塗布量を意味する。
2. Preparation of antiglare laminate [Example 1-1]
(Manufacture of base material)
A copolymer of methyl methacrylate and methyl acrylate was kneaded at 260° C. using a twin-screw extruder to obtain a pellet-like composition (glass transition point: 134° C.). The resulting pellet-like composition was melt-extruded with a T-die (T-die temperature: 260°C) and discharged onto a cooling roll at 130°C. Next, the film was successively biaxially stretched at a stretching temperature of 145° C. in the machine direction and the transverse direction at a draw ratio of 1.5 times. After cooling, an acrylic resin substrate having a thickness of 40 μm was obtained.
(Formation of resin layer)
The resin layer coating liquid of Example 1-1 in Table 1 was applied onto the acrylic resin base material by a Meyer bar coating method in a coating amount of 6.0 g/m 2 , and then the wind speed was 15 m/s and the temperature was It was dried with warm air at 100°C for 60 seconds. Next, in a nitrogen atmosphere with an oxygen concentration of 200 ppm or less, the ionizing radiation-curable resin composition of the resin layer coating liquid is cured by irradiating with ultraviolet rays so that the integrated light amount is 100 mJ/cm 2 , and the first A resin layer and a second resin layer were formed to obtain an antiglare laminate of Example 1-1. In the present specification, the coating amount means the coating amount after drying.
[実施例1-2~1-4]、[比較例1-1~1-2、1-5~1-7]
 樹脂層用塗布液の組成、樹脂層用塗布液の塗布量、樹脂層用塗布液の乾燥条件を、表1に記載の組成等に変更した以外は、実施例1-1と同様にして、実施例1-2~1-4、及び、比較例1-1~1-2、1-5~1-7の防眩性積層体を得た。なお、比較例1-7の防眩性積層体は、樹脂層は第1の樹脂層の単層構造であった。
[Examples 1-2 to 1-4], [Comparative Examples 1-1 to 1-2, 1-5 to 1-7]
In the same manner as in Example 1-1, except that the composition of the resin layer coating liquid, the coating amount of the resin layer coating liquid, and the drying conditions of the resin layer coating liquid were changed to the compositions shown in Table 1, Antiglare laminates of Examples 1-2 to 1-4 and Comparative Examples 1-1 to 1-2 and 1-5 to 1-7 were obtained. The antiglare laminate of Comparative Example 1-7 had a single-layer structure in which the resin layer was the first resin layer.
[比較例1-3]
 前記のアクリル樹脂基材上に、表1の比較例1-3の1層目の樹脂層用塗布液をマイヤーバーコーティング法により、6.0g/mの塗布量で塗布した後、風速15m/s、温度100℃の温風で60秒乾燥した。次いで、酸素濃度200ppm以下の窒素雰囲気下にて、積算光量が50mJ/cmになるように紫外線を照射することにより、1層目の樹脂層塗布液の電離放射線硬化性樹脂組成物を硬化し、第1の樹脂層を形成した。
 次いで、第1の樹脂層上に、表1の比較例1-3の2層目の樹脂層用塗布液をマイヤーバーコーティング法により、2.0g/mの塗布量で塗布した後、風速15m/s、温度70℃の温風で60秒乾燥した。次いで、酸素濃度200ppm以下の窒素雰囲気下にて、積算光量が100mJ/cmになるように紫外線を照射することにより、2層目の樹脂層塗布液の電離放射線硬化性樹脂組成物を硬化し、第2の樹脂層を形成し、比較例1-3の防眩性積層体を得た。
[Comparative Example 1-3]
After applying the coating solution for the first resin layer of Comparative Examples 1-3 in Table 1 to the acrylic resin base material with a coating amount of 6.0 g/m 2 by Meyer bar coating method, the wind speed was 15 m. /s and dried with warm air at a temperature of 100° C. for 60 seconds. Next, in a nitrogen atmosphere with an oxygen concentration of 200 ppm or less, the ionizing radiation curable resin composition of the resin layer coating liquid for the first layer is cured by irradiating with ultraviolet rays so that the integrated light amount becomes 50 mJ/cm 2 . , to form a first resin layer.
Next, on the first resin layer, the coating liquid for the second resin layer of Comparative Examples 1-3 in Table 1 was applied by a Meyer bar coating method at a coating amount of 2.0 g/m 2 , and then the wind speed It was dried with hot air of 15 m/s and a temperature of 70° C. for 60 seconds. Next, in a nitrogen atmosphere with an oxygen concentration of 200 ppm or less, the ionizing radiation curable resin composition of the second resin layer coating liquid is cured by irradiating with ultraviolet rays so that the integrated light amount becomes 100 mJ/cm 2 . , a second resin layer was formed to obtain an antiglare laminate of Comparative Example 1-3.
[比較例1-4]
 1層目及び2層目の樹脂層用塗布液の組成、1層目及び2層目の樹脂層用塗布液の塗布量、1層目及び2層目の樹脂層用塗布液の乾燥条件を、表1に記載の組成等に変更した以外は、比較例1-3と同様にして、比較例1-4の防眩性積層体を得た。
[Comparative Example 1-4]
The composition of the coating solution for the first and second resin layers, the coating amount of the coating solution for the first and second resin layers, and the drying conditions for the coating solution for the first and second resin layers An antiglare laminate of Comparative Example 1-4 was obtained in the same manner as in Comparative Example 1-3, except that the composition was changed to that shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、6官能ウレタンアクリレートオリゴマーは、三菱ケミカル社のウレタンアクリレートオリゴマー(商品名:紫光 UV-7600B、重量平均分子量:1400)を示し、2官能アクリレートモノマーは、テトラエチレングリコールジアクリレートを示し、3官能アクリレートモノマーは、ペンタエリスリトールトリアクリレートを示し、単官能アクリレートモノマーは、4-ヒドロキシブチルアクリレートを示し、光重合開始剤は、IGM Resins B.V.社の商品名“Omnirad 184”を示す。 In Table 1, the hexafunctional urethane acrylate oligomer is Mitsubishi Chemical Corp.'s urethane acrylate oligomer (trade name: Shikou UV-7600B, weight average molecular weight: 1400), and the bifunctional acrylate monomer is tetraethylene glycol diacrylate. The trifunctional acrylate monomer is pentaerythritol triacrylate, the monofunctional acrylate monomer is 4-hydroxybutyl acrylate, and the photopolymerization initiator is IGM Resins B.V.'s product name "Omnirad 184".
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、第1実施形態の実施例の防眩性積層体は、鉛筆硬度、耐屈曲性及び防眩性が良好であることが確認できる。 From the results in Table 2, it can be confirmed that the antiglare laminates of Examples of the first embodiment have good pencil hardness, bending resistance, and antiglare properties.
<第2実施形態の防眩性積層体の実施例>
3.測定及び評価
 以下のように、実施例及び比較例の防眩性積層体の測定及び評価を行った。なお、各測定及び評価時の雰囲気は、温度23±5℃、相対湿度40%以上65%以下とした。また、各測定及び評価の開始前に、対象サンプルを前記雰囲気に30分以上晒してから測定及び評価を行った。結果を表4に示す。
<Example of Antiglare Laminate of Second Embodiment>
3. Measurement and Evaluation Measurement and evaluation of the antiglare laminates of Examples and Comparative Examples were performed as follows. The atmosphere during each measurement and evaluation was set at a temperature of 23±5° C. and a relative humidity of 40% or more and 65% or less. Moreover, before starting each measurement and evaluation, the target sample was exposed to the atmosphere for 30 minutes or more, and then the measurement and evaluation were performed. Table 4 shows the results.
3-1.基材の樹脂層側の表面の平均傾斜角、基材の樹脂層側の表面の算術平均高さ
 明細書本文の記載に準じて、実施例及び比較例の防眩性積層体の断面が露出したサンプルを作製した。走査型透過電子顕微鏡により撮像した前記サンプルの断面写真から、明細書本文の記載に準じて、基材の樹脂層側の表面の平均傾斜角、及び、基材の樹脂層側の表面の算術平均高さを算出した。
3-1. Average inclination angle of the resin layer side surface of the base material, arithmetic mean height of the resin layer side surface of the base material According to the description in the text of the specification, the cross sections of the antiglare laminates of Examples and Comparative Examples are exposed. A sample was prepared. From the cross-sectional photograph of the sample taken with a scanning transmission electron microscope, the average inclination angle of the resin layer side surface of the base material and the arithmetic mean of the resin layer side surface of the base material according to the description in the specification text Calculated height.
3-2.第1の粒子の位置
 明細書本文の記載に準じて、実施例及び比較例の防眩性積層体の断面が露出したサンプルを作製した。走査型透過電子顕微鏡により撮像した前記サンプルの断面写真から、第2領域に存在する第1の粒子の個数基準の割合を算出した。前記割合を算出するにあたり、第1の粒子の合計数が50を超えるまで複数の断面写真を取得した。
3-2. Position of First Particles According to the description in the text of the specification, samples with exposed cross sections of the antiglare laminates of Examples and Comparative Examples were produced. A number-based ratio of the first particles present in the second region was calculated from a cross-sectional photograph of the sample taken with a scanning transmission electron microscope. In calculating the ratio, multiple cross-sectional photographs were taken until the total number of first particles exceeded 50.
3-3.樹脂層の平均厚み
 明細書本文の記載に準じて、実施例及び比較例の防眩性積層体の断面が露出したサンプルを作製した。走査型透過電子顕微鏡により撮像した前記サンプルの断面写真の任意の箇所を20点選び、その平均値により、樹脂層の平均厚みであるtを算出した。
3-3. Average Thickness of Resin Layer According to the description in the text of the specification, samples were prepared in which cross sections of the antiglare laminates of Examples and Comparative Examples were exposed. Twenty arbitrary points were selected from the cross-sectional photograph of the sample taken with a scanning transmission electron microscope, and the average thickness t of the resin layer was calculated from the average value thereof.
3-4.全光線透過率(Tt)及びヘイズ(Hz)
 上記1-5と同様の手法により、実施例及び比較例の防眩性積層体の全光線透過率及びヘイズを測定した。
3-4. Total light transmittance (Tt) and haze (Hz)
The total light transmittance and haze of the antiglare laminates of Examples and Comparative Examples were measured in the same manner as in 1-5 above.
3-5.耐屈曲性
 上記1-6と同様の手法により、実施例及び比較例の防眩性積層体に対して、円筒形マンドレル法による耐屈曲性試験を行った。
3-5. Bending Resistance A bending resistance test by a cylindrical mandrel method was performed on the antiglare laminates of Examples and Comparative Examples in the same manner as in 1-6 above.
3-6.鉛筆硬度
 上記1-7と同様の手法により、実施例及び比較例の防眩性積層体の樹脂層上面の鉛筆硬度を測定した。
3-6. Pencil Hardness The pencil hardness of the upper surface of the resin layer of the antiglare laminates of Examples and Comparative Examples was measured in the same manner as in 1-7 above.
3-7.防眩性
 上記1-8と同様の手法により、実施例及び比較例の防眩性積層体の防眩性を評価した。
3-7. Antiglare Properties The antiglare properties of the antiglare laminates of Examples and Comparative Examples were evaluated in the same manner as in 1-8 above.
4.防眩性積層体の作製
[実施例2-1]
(基材の製造)
 メタクリル酸メチルおよびアクリル酸メチルの共重合体を2軸押出機を用いて260℃で混錬してペレット状組成物(ガラス転移点:134℃)を得た。得られたペレット状組成物を、Tダイ(Tダイ温度:260℃)にて溶融押し出し成型し、130℃の冷却ロール上に吐出した。次に、延伸温度145℃にて、縦方向および横方向に延伸倍率1.5倍で逐次二軸延伸を行った。その後冷却して、厚み40μmのアクリル樹脂基材を得た。
(樹脂層の形成)
 前記のアクリル樹脂基材上に、表3の実施例2-1の樹脂層用塗布液をマイヤーバーコーティング法により、6.0g/mの塗布量で塗布した後、風速1m/s、温度70℃の温風で30秒乾燥し、1段階目の乾燥を実施した。さらに、前記塗布液を、風速20m/s、温度70℃の温風で30秒乾燥し、2段階目の乾燥を実施した。次いで、酸素濃度200ppm以下の窒素雰囲気下にて、積算光量が100mJ/cmになるように紫外線を照射することにより、樹脂層塗布液の電離放射線硬化性樹脂組成物を硬化し、樹脂層を形成し、実施例2-1の防眩性積層体を得た。本明細書において、塗布量は、乾燥後の塗布量を意味する。
4. Preparation of antiglare laminate [Example 2-1]
(Manufacture of base material)
A copolymer of methyl methacrylate and methyl acrylate was kneaded at 260° C. using a twin-screw extruder to obtain a pellet-like composition (glass transition point: 134° C.). The resulting pellet-like composition was melt-extruded with a T-die (T-die temperature: 260°C) and discharged onto a cooling roll at 130°C. Next, the film was successively biaxially stretched at a stretching temperature of 145° C. in the machine direction and the transverse direction at a draw ratio of 1.5 times. After cooling, an acrylic resin substrate having a thickness of 40 μm was obtained.
(Formation of resin layer)
The resin layer coating liquid of Example 2-1 in Table 3 was applied onto the acrylic resin base material by the Meyer bar coating method at a coating amount of 6.0 g/m 2 , and then the wind speed was 1 m/s and the temperature was Drying was performed with hot air at 70° C. for 30 seconds to perform the first stage of drying. Further, the coating liquid was dried for 30 seconds with hot air at a wind speed of 20 m/s and a temperature of 70° C., thereby carrying out the second stage of drying. Next, in a nitrogen atmosphere with an oxygen concentration of 200 ppm or less, the ionizing radiation-curable resin composition of the resin layer coating liquid is cured by irradiating with ultraviolet rays so that the integrated light amount becomes 100 mJ/cm 2 , and the resin layer is formed. to obtain an antiglare laminate of Example 2-1. In the present specification, the coating amount means the coating amount after drying.
[実施例2-2~2-4]、[比較例2-1~2-4]
 樹脂層用塗布液の組成、樹脂層用塗布液の塗布量、樹脂層用塗布液の乾燥条件を、表3に記載の組成等に変更した以外は、実施例2-1と同様にして、実施例2-2~2-4、及び、比較例2-1~2-4の防眩性積層体を得た。
[Examples 2-2 to 2-4], [Comparative Examples 2-1 to 2-4]
In the same manner as in Example 2-1, except that the composition of the resin layer coating liquid, the coating amount of the resin layer coating liquid, and the drying conditions of the resin layer coating liquid were changed to the compositions shown in Table 3, Antiglare laminates of Examples 2-2 to 2-4 and Comparative Examples 2-1 to 2-4 were obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3中、6官能ウレタンアクリレートオリゴマーは、三菱ケミカル社のウレタンアクリレートオリゴマー(商品名:紫光 UV-7600B、重量平均分子量:1400)を示し、2官能アクリレートモノマーは、テトラエチレングリコールジアクリレートを示し、3官能アクリレートモノマーは、ペンタエリスリトールトリアクリレートを示し、4官能アクリレートモノマーは、ペンタエリスリトールテトラアクリレートを示し、単官能アクリレートモノマーは、4-ヒドロキシブチルアクリレートを示し、光重合開始剤は、IGM Resins B.V.社の商品名“Omnirad 184”を示す。 In Table 3, the hexafunctional urethane acrylate oligomer is Mitsubishi Chemical Corp.'s urethane acrylate oligomer (trade name: Shikou UV-7600B, weight average molecular weight: 1400), and the bifunctional acrylate monomer is tetraethylene glycol diacrylate. The trifunctional acrylate monomer is pentaerythritol triacrylate, the tetrafunctional acrylate monomer is pentaerythritol tetraacrylate, the monofunctional acrylate monomer is 4-hydroxybutyl acrylate, and the photopolymerization initiator is IGM Resins B.V. product name "Omnirad 184".
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、実施例の防眩性積層体は、鉛筆硬度、耐屈曲性及び防眩性が良好であることが確認できる。
 一方、比較例2-1及び2-2の防眩性積層体は、第1の粒子の個数基準の70%以上が第2領域に存在しないものである。比較例2-1の防眩性積層体は、第1の粒子の個数基準の70%以上が第2領域に存在しないが、第1の粒子の含有量が多いため、防眩性は合格レベルである。しかし、比較例2-1の防眩性積層体は、第1の粒子の含有量が多いため、耐屈曲性の低下の原因となる、第1の粒子と樹脂層との界面が増加することにより、防眩性積層体の耐屈曲性の低下を抑制できないものであった。比較例2-2の防眩性積層体は、第1の粒子の個数基準の70%以上が第2領域に存在せず、第1の粒子の含有量が多くないため、防眩性を良好にできないものであった。比較例2-1及び2-2の防眩性積層体は、第1の粒子の個数基準の70%以上が第2領域に存在しない理由は、初期の乾燥の強度が強いことにより、塗布液の対流が十分に生じる前に溶媒が揮発してしまうため、対流により第1の粒子が樹脂層の上方に浮かび上がり難かったと考えられる。
 比較例2-3の光学積層体は、基材の平均傾斜角及び基材の算術平均高さが大きい。すなわち、比較例2-3の光学積層体は、樹脂層内に基材の成分が多く溶出することにより、樹脂層の硬度が低下し、鉛筆硬度を良好にできないものであった。比較例2-3の光学積層体は、単官能モノマーの割合が多いため、基材の溶出が過度に進むことにより、基材の平均傾斜角及び基材の算術平均高さが大きくなったと考えられる。
 比較例2-4の光学積層体は、基材の平均傾斜角及び基材の算術平均高さが小さいため、基材と樹脂層との密着性が悪くなることにより、耐屈曲性の低下を抑制できないものであった。比較例2-4の光学積層体は、単官能モノマーを含まず、かつ、極性の高いメチルエチルケトンを含まないため、基材の溶出が進まず、基材の平均傾斜角及び基材の算術平均高さが小さくなったと考えられる。なお、比較例2-2の光学積層体も、単官能モノマーを含まず、かつ、極性の高いメチルエチルケトンを含まないが、比較例2-2の光学積層体は、官能基数の少ない2官能モノマーを多量に含むため、基材を溶解していると考えられる。
From the results in Table 4, it can be confirmed that the antiglare laminates of Examples have good pencil hardness, bending resistance, and antiglare properties.
On the other hand, in the antiglare laminates of Comparative Examples 2-1 and 2-2, 70% or more of the first particles based on the number do not exist in the second region. In the antiglare laminate of Comparative Example 2-1, 70% or more of the first particles based on the number are not present in the second region, but the content of the first particles is large, so the antiglare property is at an acceptable level. is. However, since the antiglare laminate of Comparative Example 2-1 contains a large amount of the first particles, the interface between the first particles and the resin layer increases, which causes a decrease in bending resistance. Therefore, the deterioration of the bending resistance of the antiglare laminate could not be suppressed. In the antiglare laminate of Comparative Example 2-2, 70% or more of the first particles based on the number are not present in the second region, and the content of the first particles is not large, so the antiglare property is good. It was something that could not be done. In the antiglare laminates of Comparative Examples 2-1 and 2-2, 70% or more of the first particles based on the number do not exist in the second region. Since the solvent volatilizes before sufficient convection occurs, the first particles are less likely to float above the resin layer due to convection.
The optical laminate of Comparative Example 2-3 has a large average tilt angle of the substrate and a large arithmetic average height of the substrate. That is, in the optical layered body of Comparative Example 2-3, a large amount of the component of the base material eluted into the resin layer, so that the hardness of the resin layer decreased and the pencil hardness could not be improved. In the optical layered body of Comparative Example 2-3, since the ratio of the monofunctional monomer was high, the elution of the base material was excessively progressed, so that the average tilt angle of the base material and the arithmetic mean height of the base material were increased. be done.
In the optical layered body of Comparative Example 2-4, since the average inclination angle of the substrate and the arithmetic average height of the substrate are small, the adhesion between the substrate and the resin layer is deteriorated, resulting in a decrease in bending resistance. It was uncontrollable. Since the optical layered body of Comparative Example 2-4 does not contain a monofunctional monomer and does not contain highly polar methyl ethyl ketone, the elution of the substrate does not proceed, and the average tilt angle of the substrate and the arithmetic average height of the substrate It is thought that the size became smaller. The optical layered body of Comparative Example 2-2 also does not contain a monofunctional monomer and does not contain highly polar methyl ethyl ketone, but the optical layered body of Comparative Example 2-2 contains a bifunctional monomer with a small number of functional groups. Since it contains a large amount, it is considered that the base material is dissolved.
<光学積層体の実施例>
5.測定及び評価
 以下のように、実施例及び比較例の光学積層体の測定及び評価を行った。なお、各測定及び評価時の雰囲気は、温度23±5℃、相対湿度40%以上65%以下とした。また、各測定及び評価の開始前に、対象サンプルを前記雰囲気に30分以上晒してから測定及び評価を行った。結果を表6に示す。
<Example of Optical Laminate>
5. Measurement and Evaluation Measurements and evaluations of the optical layered bodies of Examples and Comparative Examples were performed as follows. The atmosphere during each measurement and evaluation was set at a temperature of 23±5° C. and a relative humidity of 40% or more and 65% or less. Moreover, before starting each measurement and evaluation, the target sample was exposed to the atmosphere for 30 minutes or more, and then the measurement and evaluation were performed. Table 6 shows the results.
5-1.領域α1及び領域β1の有無、領域α1が第2領域に存在する割合
 明細書本文の記載に準じて、実施例及び比較例の光学積層体の断面が露出したサンプルを作製した。走査型透過電子顕微鏡により撮像した前記サンプルの断面写真から、領域α1及び領域β1の有無を確認した。さらに、領域α1と領域α2との面積比、及び、領域β1と領域β2との面積比を算出した。第1の樹脂層21内に独立した領域α1が存在すること、領域α1に含まれる樹脂と領域α2に含まれる樹脂とが異なること、第2の樹脂層22内に独立した領域β1が存在すること、領域β1に含まれる樹脂と領域β2に含まれる樹脂とが異なることは、写真の明度差により判別できる。
 さらに、第2領域に存在する領域αの個数基準の割合を算出した。前記割合を算出するにあたり、領域αの合計数が50を超えるまで複数の断面写真を取得した。
5-1. Presence or Absence of Region α1 and Region β1 and Percentage of Region α1 Present in Second Region According to the description in the text of the specification, samples with exposed cross sections of the optical laminates of Examples and Comparative Examples were produced. The presence or absence of the region α1 and the region β1 was confirmed from a cross-sectional photograph of the sample taken with a scanning transmission electron microscope. Furthermore, the area ratio between the area α1 and the area α2 and the area ratio between the area β1 and the area β2 were calculated. An independent region α1 exists in the first resin layer 21, a resin contained in the region α1 is different from a resin contained in the region α2, and an independent region β1 exists in the second resin layer 22. That is, the difference between the resin contained in the region β1 and the resin contained in the region β2 can be determined from the difference in brightness in the photograph.
Furthermore, the number-based ratio of the regions α existing in the second region was calculated. In calculating the ratio, a plurality of cross-sectional photographs were taken until the total number of regions α exceeded 50.
5-2.θa1及びθa2、並びに、Pa1及びPa2
 明細書本文の記載に準じて、実施例及び比較例の光学積層体の断面が露出したサンプルを作製した。走査型透過電子顕微鏡により撮像した前記サンプルの断面写真から、明細書本文の記載に準じて、θa1及びθa2、並びに、Pa1及びPa2を算出した。
5-2. θa1 and θa2, and Pa1 and Pa2
According to the description in the text of the specification, samples of the optical layered bodies of Examples and Comparative Examples with exposed cross sections were produced. θa1 and θa2, and Pa1 and Pa2 were calculated from a cross-sectional photograph of the sample taken with a scanning transmission electron microscope according to the description in the specification.
5-3.第1の樹脂層及び第2の樹脂層の平均厚み
 明細書本文の記載に準じて、実施例及び比較例の光学積層体の断面が露出したサンプルを作製した。走査型透過電子顕微鏡により撮像した前記サンプルの断面写真の任意の箇所を20点選び、その平均値により、第1の樹脂層の平均厚みt1、第2の樹脂層の平均厚みであるt2を算出した。
5-3. Average Thickness of First Resin Layer and Second Resin Layer According to the description in the specification, samples of the optical layered bodies of Examples and Comparative Examples were prepared in which cross sections were exposed. Select 20 arbitrary points from the cross-sectional photograph of the sample taken with a scanning transmission electron microscope, and calculate the average thickness t1 of the first resin layer and the average thickness t2 of the second resin layer from the average value. did.
5-4.全光線透過率(Tt)及びヘイズ(Hz)
 実施例及び比較例の光学積層体を10cm四方に切断した。切断箇所は、目視でゴミや傷などの異常点がない事を確認の上、ランダムな部位から選択した。ヘイズメーター(HM-150、村上色彩技術研究所製)を用いて、各サンプルのJIS K7361-1:1997の全光線透過率、及びJIS K7136:2000のヘイズを測定した。
 なお、光源が安定するよう事前に装置の電源スイッチをONにしてから15分以上待ち、入口開口(測定サンプルを設置する箇所)に何もセットせずに校正を行い、その後に入口開口に測定サンプルをセットして測定した。光入射面は基材側とした。
5-4. Total light transmittance (Tt) and haze (Hz)
The optical laminates of Examples and Comparative Examples were cut into 10 cm squares. After visually confirming that there were no abnormalities such as dust or scratches, the cutting sites were selected at random. Using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory), the total light transmittance of each sample according to JIS K7361-1:1997 and the haze according to JIS K7136:2000 were measured.
In order to stabilize the light source, turn on the power switch of the device and wait at least 15 minutes before performing calibration without setting anything at the entrance opening (the place where the measurement sample is installed). A sample was set and measured. The light incident surface was on the substrate side.
5-5.密着性
 下記の手法により、実施例及び比較例の光学積層体の密着性を評価した。
 さらに、下記の耐光性試験を実施した後の実施例及び比較例の光学積層体の密着性を評価した。
 評価用のサンプルは、縦10マス、横10マスの合計100マスの碁盤目状にクロスカットした。カット間隔は1mmとした。カットの際は、第2の樹脂層側からカッターの刃を入れ、基材の上部にまでカッターの刃が到達するようにクロスカットした。
 クロスカットを施したサンプルの表面に、粘着テープ(ニチバン株式会社製、製品名「セロテープ(登録商標)」)を貼り付け、JIS K 5600-5-6:1999に規定されるクロスカット法に準拠し剥離試験を行った。剥離試験の結果より、下記評価基準により密着性を評価した。
<評価基準>
A:格子パターンで剥がれの確認できるクロスカット部分が5%未満。
B:格子パターンで剥がれの確認できるクロスカット部分が5%以上15%未満。
C:格子パターンで剥がれの確認できるクロスカット部分が15%以上。
5-5. Adhesion Adhesion of the optical laminates of Examples and Comparative Examples was evaluated by the following method.
Furthermore, the adhesion of the optical laminates of Examples and Comparative Examples was evaluated after the following light resistance test was carried out.
A sample for evaluation was cross-cut into a grid of 10 squares in total, ie, 10 squares vertically and 10 squares horizontally. The cut interval was 1 mm. When cutting, the blade of the cutter was inserted from the second resin layer side, and cross-cut was performed so that the blade of the cutter reached the top of the substrate.
Adhesive tape (manufactured by Nichiban Co., Ltd., product name "Cellotape (registered trademark)") is attached to the surface of the cross-cut sample, and the cross-cut method specified in JIS K 5600-5-6: 1999 is compliant. A peel test was performed. Based on the results of the peel test, adhesion was evaluated according to the following evaluation criteria.
<Evaluation Criteria>
A: Less than 5% of the cross-cut portions where peeling can be confirmed in the lattice pattern.
B: 5% or more and less than 15% of cross-cut portions where peeling can be confirmed in the grid pattern.
C: 15% or more cross-cut portions where peeling can be confirmed in the lattice pattern.
<耐光性試験>
 JIS B7751に準拠した紫外線カーボンアーク灯式耐光性及び耐候性試験機(スガ試験機社製の商品名「FAL-AU・B」、光源:紫外線カーボンアーク灯、放射照度:500W/m、ブラックパネル温度:63℃)内に実施例及び比較例の光学積層体を樹脂層側が光源に向くように設置して200時間の試験を実施した。
<Light resistance test>
Ultraviolet carbon arc lamp type light resistance and weather resistance tester conforming to JIS B7751 (trade name “FAL-AU B” manufactured by Suga Test Instruments Co., Ltd., light source: ultraviolet carbon arc lamp, irradiance: 500 W/m 2 , black Panel temperature: 63° C.), the optical laminates of Examples and Comparative Examples were placed in such a way that the resin layer side faced the light source, and the test was carried out for 200 hours.
5-6.透過像鮮明度(JIS K7374:2007の透過像鮮明度)
 実施例及び比較例の光学積層体の透過像鮮明度を測定した。光入射面は基材側とした。測定装置は、スガ試験機社製の写像性測定器(商品名:ICM-1T)を用いた。4つの光学櫛の幅の透過像鮮明度の合計を表6に示す(単位は「%」)。4つの櫛幅は、0.125mm、0.5mm、1.0mm及び2.0mmを用いた。
 さらに、上記の耐光性試験後の実施例及び比較例の光学積層体について、上記と同様に透過像鮮明度を測定した。4つの光学櫛の幅の透過像鮮明度の合計を表6に示す(単位は「%」)。
 耐光性試験前後の透過像鮮明度の差を表6に示す(単位は「%」)。前記差が10.0%以下が合格レベルであり、合格レベルの中でも、前記差が5.0%以下のものがより好ましい。
5-6. Transmission image clarity (JIS K7374:2007 transmission image clarity)
The transmission image clarity of the optical laminates of Examples and Comparative Examples was measured. The light incident surface was on the substrate side. As a measuring device, an image clarity measuring instrument (trade name: ICM-1T) manufactured by Suga Test Instruments Co., Ltd. was used. The sum of the transmitted image sharpness for the four optical comb widths is shown in Table 6 (unit is "%"). Four comb widths of 0.125 mm, 0.5 mm, 1.0 mm and 2.0 mm were used.
Further, the transmission image definition was measured in the same manner as described above for the optical layered bodies of Examples and Comparative Examples after the light resistance test. The sum of the transmitted image sharpness for the four optical comb widths is shown in Table 6 (unit is "%").
Table 6 shows the difference in transmission image clarity before and after the lightfastness test (unit: %). A pass level of the difference is 10.0% or less, and among the pass levels, a difference of 5.0% or less is more preferable.
5-7.防眩性
 実施例及び比較例の光学積層体の基材側に、厚み25μmの透明粘着剤層(パナック社)、商品名「パナクリーンPD-S1」、屈折率1.49)を介して、黒色板(クラレ社、商品名「コモグラス DFA2CG 502K(黒)系」、全光線透過率0%、厚み2mm、屈折率1.49)を貼り合わせたサンプルを作製した(サンプルの大きさ:縦20cm×横30cm)。前記サンプルを明室環境下(該サンプルの第一主面上の照度が500lux以上1000lux以下。照明:Hf32形の直管三波長形昼白色蛍光灯)で該サンプルの第1主面の中心より直線距離50cm上方から目視にて、被験者20人により、観測者自身の映り込みが気にならない程度の防眩性が得られているか否かを下記の基準により評価した。評価時の照明の位置は水平台から鉛直方向2m上方の高さである。被験者は30歳代の視力0.7以上の健康なものとした。
A:良好と答えた人が14人以上
B:良好と答えた人が7人以上13人以下
C:良好と答えた人が6人以下
5-7. Antiglare property On the substrate side of the optical laminates of Examples and Comparative Examples, a transparent adhesive layer (Panac) with a thickness of 25 µm (trade name: "Panaclean PD-S1", refractive index: 1.49) was interposed therebetween. A sample was prepared by bonding a black plate (Kuraray Co., Ltd., trade name “Comoglass DFA2CG 502K (black) system”, total light transmittance 0%, thickness 2 mm, refractive index 1.49) (sample size: length 20 cm x width 30 cm). From the center of the first main surface of the sample under a bright room environment (illuminance on the first main surface of the sample is 500 lux or more and 1000 lux or less; illumination: Hf32 type straight tube three-wavelength neutral white fluorescent lamp) 20 test subjects evaluated whether or not the anti-glare property was obtained to such an extent that the reflection of the observers themselves was not disturbing, based on the following criteria. The lighting position at the time of evaluation was 2 m above the horizontal table in the vertical direction. The subjects were in their thirties and healthy with a visual acuity of 0.7 or more.
A: More than 14 people answered that they were good B: More than 7 people and less than 13 people answered that they were good C: Less than 6 people answered that they were good
6.光学積層体の作製
[実施例3-1]
(基材の製造)
 メタクリル酸メチルおよびアクリル酸メチルの共重合体を2軸押出機を用いて260℃で混錬してペレット状組成物(ガラス転移点:134℃)を得た。得られたペレット状組成物を、Tダイ(Tダイ温度:260℃)にて溶融押し出し成型し、130℃の冷却ロール上に吐出した。次に、延伸温度145℃にて、縦方向および横方向に延伸倍率1.5倍で逐次二軸延伸を行った。その後冷却して、厚み40μmのアクリル樹脂基材を得た。
(樹脂層の形成)
 前記のアクリル樹脂基材上に、表5の実施例3-1の樹脂層用塗布液をマイヤーバーコーティング法により、6.0g/mの塗布量で塗布した後、風速5m/s、温度90℃の温風で30秒乾燥し、1段階目の乾燥を実施した。さらに、前記塗布液を、風速20m/s、温度90℃の温風で30秒乾燥し、2段階目の乾燥を実施した。次いで、酸素濃度200ppm以下の窒素雰囲気下にて、積算光量が100mJ/cmになるように紫外線を照射することにより、樹脂層塗布液の電離放射線硬化性樹脂組成物を硬化し、第1の樹脂層及び第2の樹脂層を形成し、実施例3-1の光学積層体を得た。本明細書において、塗布量は、乾燥後の塗布量を意味する。
6. Preparation of optical laminate [Example 3-1]
(Manufacture of base material)
A copolymer of methyl methacrylate and methyl acrylate was kneaded at 260° C. using a twin-screw extruder to obtain a pellet-like composition (glass transition point: 134° C.). The resulting pellet-like composition was melt-extruded with a T-die (T-die temperature: 260°C) and discharged onto a cooling roll at 130°C. Next, the film was successively biaxially stretched at a stretching temperature of 145° C. in the machine direction and the transverse direction at a draw ratio of 1.5 times. After cooling, an acrylic resin substrate having a thickness of 40 μm was obtained.
(Formation of resin layer)
The resin layer coating liquid of Example 3-1 in Table 5 was applied onto the acrylic resin base material by a Meyer bar coating method at a coating amount of 6.0 g/m 2 , followed by a wind speed of 5 m/s and a temperature Drying was performed with hot air at 90° C. for 30 seconds to perform the first stage of drying. Further, the coating liquid was dried for 30 seconds with hot air at a wind speed of 20 m/s and a temperature of 90° C. to carry out a second stage of drying. Next, in a nitrogen atmosphere with an oxygen concentration of 200 ppm or less, the ionizing radiation-curable resin composition of the resin layer coating liquid is cured by irradiating with ultraviolet rays so that the integrated light amount is 100 mJ/cm 2 , and the first A resin layer and a second resin layer were formed to obtain an optical laminate of Example 3-1. In the present specification, the coating amount means the coating amount after drying.
[実施例3-2~3-4]、[比較例3-1~3-3]
 樹脂層用塗布液の組成、樹脂層用塗布液の塗布量、樹脂層用塗布液の乾燥条件を、表5に記載の組成等に変更した以外は、実施例3-1と同様にして、実施例3-2~3-4、及び、比較例3-1~3-3の光学積層体を得た。
[Examples 3-2 to 3-4], [Comparative Examples 3-1 to 3-3]
In the same manner as in Example 3-1, except that the composition of the resin layer coating liquid, the coating amount of the resin layer coating liquid, and the drying conditions of the resin layer coating liquid were changed to the compositions shown in Table 5, Optical laminates of Examples 3-2 to 3-4 and Comparative Examples 3-1 to 3-3 were obtained.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5中、6官能ウレタンアクリレートオリゴマーは、三菱ケミカル社のウレタンアクリレートオリゴマー(商品名:紫光 UV-7600B、重量平均分子量:1400)を示し、2官能アクリレートモノマーは、テトラエチレングリコールジアクリレートを示し、3官能アクリレートモノマーは、ペンタエリスリトールトリアクリレートを示し、単官能アクリレートモノマーは、4-ヒドロキシブチルアクリレートを示し、光重合開始剤は、IGM Resins B.V.社の商品名“Omnirad 184”を示す。 In Table 5, the hexafunctional urethane acrylate oligomer is Mitsubishi Chemical Corp.'s urethane acrylate oligomer (trade name: Shikou UV-7600B, weight average molecular weight: 1400), and the bifunctional acrylate monomer is tetraethylene glycol diacrylate. The trifunctional acrylate monomer is pentaerythritol triacrylate, the monofunctional acrylate monomer is 4-hydroxybutyl acrylate, and the photopolymerization initiator is IGM Resins B.V.'s product name "Omnirad 184".
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6の結果から、実施例の光学積層体は、耐光性試験後における、密着性の低下及び透過像鮮明度の変化を抑制し得ることが確認できる。
 一方、比較例3-1の光学積層体は、第1の樹脂層が領域α1を有さないものである。このため、比較例3-1の光学積層体は、第1の樹脂層と第2の樹脂層との親和性を良好にすることができず、耐光性試験後の密着性が低下してしまうものであった。比較例3-1は、樹脂層用塗布液が単官能モノマーを含むことにより相溶性が良好であるため、海島構造が形成されにくくなり、領域α1が形成されなかったと考えられる。
 比較例3-2の光学積層体は、θa1及びPa1が大きく、条件1B及び条件2Bの何れも満たさないものである。このため、比較例3-2の光学積層体は、耐光性試験後に透過像鮮明度が激しく変動してしまうものであった。比較例3-2が条件1B及び条件2Bを満たさない原因は、乾燥時間が長いことにより、第1の樹脂層と第2の樹脂層との層間において、樹脂成分の移動が激しくなり、θa2及びPa2が大きくなったためと考えられる。
 比較例3-3の光学積層体は、θa1及びPa1が小さく、条件1B及び条件2Bの何れも満たさないものである。このため、比較例3-3の光学積層体は、耐光性試験後の密着性を良好にできないものであった。なお、比較例3-3の光学積層体は、耐光性試験前の密着性も十分ではないものであった。比較例3-3が条件1B及び条件2Bを満たさない原因は、樹脂層用塗布液が2官能モノマーを含んでいないためと考えられる。
From the results in Table 6, it can be confirmed that the optical layered bodies of Examples can suppress a decrease in adhesion and a change in transmission image definition after the light resistance test.
On the other hand, in the optical laminate of Comparative Example 3-1, the first resin layer does not have the region α1. Therefore, in the optical layered body of Comparative Example 3-1, the affinity between the first resin layer and the second resin layer cannot be improved, and the adhesion after the light resistance test is lowered. It was something. In Comparative Example 3-1, since the resin layer coating liquid contains a monofunctional monomer, the compatibility is good, so the sea-island structure is difficult to form, and the region α1 was not formed.
The optical layered body of Comparative Example 3-2 has large θa1 and Pa1, and satisfies neither Condition 1B nor Condition 2B. For this reason, the optical layered body of Comparative Example 3-2 had a sharp change in transmission image clarity after the light resistance test. The reason why Comparative Example 3-2 does not satisfy the conditions 1B and 2B is that the long drying time causes the resin component to move rapidly between the first resin layer and the second resin layer, resulting in θa2 and This is probably because Pa2 increased.
The optical layered body of Comparative Example 3-3 has small θa1 and Pa1, and satisfies neither Condition 1B nor Condition 2B. For this reason, the optical layered body of Comparative Example 3-3 could not have good adhesion after the light resistance test. The optical layered body of Comparative Example 3-3 also had insufficient adhesion before the light resistance test. The reason why Comparative Example 3-3 does not satisfy Conditions 1B and 2B is considered to be that the resin layer coating liquid does not contain a bifunctional monomer.
10:基材
20A:樹脂層
21A:第1の樹脂層
22A:第2の樹脂層
23A:第1の粒子
20B:樹脂層
21B:第1領域
22B:第2領域
23B:第1の粒子
20C:樹脂層
21C:第1の樹脂層
22C:第2の樹脂層
100A:防眩性積層体
100B:防眩性積層体
100C:光学積層体
200:表示素子
500:画像表示装置
10: Base Material 20A: Resin Layer 21A: First Resin Layer 22A: Second Resin Layer 23A: First Particle 20B: Resin Layer 21B: First Region 22B: Second Region 23B: First Particle 20C: Resin layer 21C: First resin layer 22C: Second resin layer 100A: Antiglare laminate 100B: Antiglare laminate 100C: Optical laminate 200: Display element 500: Image display device

Claims (31)

  1.  基材上に樹脂層を有する防眩性積層体であって、
     前記樹脂層は、前記基材側から、第1の樹脂層と、第2の樹脂層とを有し、
     前記樹脂層は、平均粒子径0.5μm以上の第1の粒子を含み、
     前記第1の粒子の個数基準の70%以上が、前記第1の樹脂層及び前記第2の樹脂層に跨って存在し、
     下記式1を満たす、防眩性積層体。
     5.0<t1/t2<15.0 (式1)
     [式1中、t1は前記第1の樹脂層の平均厚みを示し、t2は前記第2の樹脂層の平均厚みを示す。]
    An antiglare laminate having a resin layer on a substrate,
    The resin layer has a first resin layer and a second resin layer from the substrate side,
    The resin layer contains first particles having an average particle size of 0.5 μm or more,
    70% or more of the first particles based on the number exist across the first resin layer and the second resin layer,
    An antiglare laminate that satisfies Formula 1 below.
    5.0<t1/t2<15.0 (Formula 1)
    [In Formula 1, t1 represents the average thickness of the first resin layer, and t2 represents the average thickness of the second resin layer. ]
  2.  前記第1の粒子の平均粒子径を示すD1と、前記第2の樹脂層の平均厚みを示すt2とが、t2<D1の関係である、請求項1に記載の防眩性積層体。 The anti-glare laminate according to claim 1, wherein D1 indicating the average particle diameter of the first particles and t2 indicating the average thickness of the second resin layer have a relationship of t2<D1.
  3.  前記第1の粒子の平均粒子径を示すD1と、前記第1の樹脂層の平均厚みを示すt1とが、D1<t1の関係である、請求項1に記載の防眩性積層体。 The antiglare laminate according to claim 1, wherein D1 indicating the average particle diameter of the first particles and t1 indicating the average thickness of the first resin layer satisfy D1<t1.
  4.  前記第1の粒子が有機粒子である、請求項1に記載の防眩性積層体。 The antiglare laminate according to claim 1, wherein the first particles are organic particles.
  5.  前記基材の前記樹脂層側の表面の平均傾斜角が5.0度以上15.0度以下である、請求項1に記載の防眩性積層体。 The antiglare laminate according to claim 1, wherein the resin layer-side surface of the base material has an average inclination angle of 5.0 degrees or more and 15.0 degrees or less.
  6.  前記基材の前記樹脂層側の表面の算術平均高さが0.05μm以上0.25μm以下である、請求項1に記載の防眩性積層体。 The antiglare laminate according to claim 1, wherein the arithmetic mean height of the resin layer-side surface of the substrate is 0.05 µm or more and 0.25 µm or less.
  7.  前記第1の樹脂層の厚み方向の真ん中のインデンテーション硬さを示すH1と、前記第2の樹脂層の厚み方向の真ん中のインデンテーション硬さを示すH2とが、H1<H2の関係である、請求項1に記載の防眩性積層体。 H1 indicating the indentation hardness in the middle in the thickness direction of the first resin layer and H2 indicating the indentation hardness in the middle in the thickness direction of the second resin layer have a relationship of H1<H2. , The antiglare laminate according to claim 1.
  8.  40MPa<H2-H1である、請求項7に記載の防眩性積層体。 The antiglare laminate according to claim 7, wherein 40 MPa<H2-H1.
  9.  40MPa<H2-H1≦100MPaである、請求項7に記載の防眩性積層体。 The antiglare laminate according to claim 7, wherein 40 MPa<H2−H1≦100 MPa.
  10.  前記樹脂層が、硬化性樹脂組成物の硬化物を含む、請求項1に記載の防眩性積層体。 The antiglare laminate according to claim 1, wherein the resin layer contains a cured product of a curable resin composition.
  11.  前記基材がアクリル樹脂基材である、請求項1に記載の防眩性積層体。 The antiglare laminate according to claim 1, wherein the substrate is an acrylic resin substrate.
  12.  基材上に樹脂層を有する防眩性積層体であって、
     前記樹脂層は、平均粒子径0.5μm以上の第1の粒子を含み、
     前記樹脂層の厚み方向の中心より前記基材側を第1領域、前記樹脂層の厚み方向の中心より前記基材とは反対側を第2領域と定義した際に、前記第1の粒子の個数基準の70%以上が前記第2領域に存在し、
     下記条件1A又は条件2Aを満たす、防眩性積層体。
    <条件1A>
     前記基材の前記樹脂層側の表面の平均傾斜角が5.0度以上20.0度以下。
    <条件2A>
     前記基材の前記樹脂層側の表面の算術平均高さが0.10μm以上0.40μm以下。
    An antiglare laminate having a resin layer on a substrate,
    The resin layer contains first particles having an average particle size of 0.5 μm or more,
    When the substrate side of the center of the resin layer in the thickness direction is defined as a first region, and the side opposite to the substrate from the center of the resin layer in the thickness direction is defined as a second region, the first particles 70% or more of the number standard exists in the second region,
    An antiglare laminate that satisfies Condition 1A or Condition 2A below.
    <Condition 1A>
    The average inclination angle of the resin layer-side surface of the base material is 5.0 degrees or more and 20.0 degrees or less.
    <Condition 2A>
    The arithmetic mean height of the resin layer side surface of the base material is 0.10 μm or more and 0.40 μm or less.
  13.  前記第1の粒子の平均粒子径を示すD1と、前記樹脂層の平均厚みを示すtとが、2.0<t/D1<6.0の関係である、請求項12に記載の防眩性積層体。 The antiglare according to claim 12, wherein D1 indicating the average particle diameter of the first particles and t indicating the average thickness of the resin layer have a relationship of 2.0<t/D1<6.0. sexual laminate.
  14.  前記第1の粒子が有機粒子である、請求項12に記載の防眩性積層体。 The antiglare laminate according to claim 12, wherein the first particles are organic particles.
  15.  前記樹脂層が、硬化性樹脂組成物の硬化物を含む、請求項12に記載の防眩性積層体。 The antiglare laminate according to claim 12, wherein the resin layer contains a cured product of a curable resin composition.
  16.  前記基材がアクリル樹脂基材である、請求項12に記載の防眩性積層体。 The antiglare laminate according to claim 12, wherein the base material is an acrylic resin base material.
  17.  基材上に樹脂層を有する光学積層体であって、
     前記樹脂層は、前記基材側から、第1の樹脂層と、第2の樹脂層とを有し、
     前記第1の樹脂層は、互いに独立した領域α1と、前記領域α1を取り囲む領域α2とを有し、前記領域α1に含まれる樹脂と前記領域α2に含まれる樹脂とが異なり、
     前記第2の樹脂層は、互いに独立した領域β1と、前記領域β1を取り囲む領域β2とを有し、前記領域β1に含まれる樹脂と前記領域β2に含まれる樹脂とが異なり、
     下記条件1B又は条件2Bを満たす、光学積層体。
    <条件1B>
     前記基材の前記樹脂層側の表面の平均傾斜角を示すθa1と、前記第1の樹脂層の前記第2の樹脂層側の表面の平均傾斜角を示すθa2とが、θa2<θa1の関係である。
    <条件2B>
     前記基材の前記樹脂層側の表面の算術平均高さを示すPa1と、前記第1の樹脂層の前記第2の樹脂層側の表面の算術平均高さを示すPa2とが、Pa2<Pa1の関係である。
    An optical laminate having a resin layer on a substrate,
    The resin layer has a first resin layer and a second resin layer from the substrate side,
    The first resin layer has a region α1 independent of each other and a region α2 surrounding the region α1, and the resin contained in the region α1 and the resin contained in the region α2 are different,
    The second resin layer has a region β1 independent of each other and a region β2 surrounding the region β1, and the resin contained in the region β1 and the resin contained in the region β2 are different,
    An optical laminate that satisfies Condition 1B or Condition 2B below.
    <Condition 1B>
    θa1 indicating the average inclination angle of the surface of the base material facing the resin layer and θa2 indicating the average inclination angle of the surface of the first resin layer facing the second resin layer have a relationship of θa2<θa1. is.
    <Condition 2B>
    Pa1 indicating the arithmetic mean height of the surface of the base material on the resin layer side and Pa2 indicating the arithmetic mean height of the surface of the first resin layer on the second resin layer side satisfy Pa2<Pa1 is the relationship.
  18.  前記θa1が5.0度以上20.0度以下である、請求項17に記載の光学積層体。 The optical laminate according to claim 17, wherein the θa1 is 5.0 degrees or more and 20.0 degrees or less.
  19.  前記θa2が10.0度以下である、請求項17に記載の光学積層体。 The optical laminate according to claim 17, wherein the θa2 is 10.0 degrees or less.
  20.  前記Pa1が0.05μm以上0.25μm以下である、請求項17に記載の光学積層体。 The optical laminate according to claim 17, wherein the Pa1 is 0.05 µm or more and 0.25 µm or less.
  21.  前記Pa2が0.15μm以下である、請求項17に記載の光学積層体。 The optical laminate according to claim 17, wherein the Pa2 is 0.15 µm or less.
  22.  前記第1の樹脂層の厚み方向の中心より前記基材側を第1領域、前記第1の樹脂層の厚み方向の中心より前記第2の樹脂層側を第2領域と定義した際に、前記領域α1の70%以上が前記第2領域に存在する、請求項17に記載の光学積層体。 When defining the base material side from the center of the thickness direction of the first resin layer as a first region and the second resin layer side from the center of the thickness direction of the first resin layer as a second region, 18. The optical layered product according to claim 17, wherein 70% or more of said region α1 exists in said second region.
  23.  前記領域α1に含まれる樹脂と前記領域β2に含まれる樹脂とが実質的に同一であり、前記領域α2に含まれる樹脂と前記領域β1に含まれる樹脂とが実質的に同一である、請求項17に記載の光学積層体。 The resin contained in the region α1 and the resin contained in the region β2 are substantially the same, and the resin contained in the region α2 and the resin contained in the region β1 are substantially the same. 18. The optical layered product according to 17 above.
  24.  前記樹脂層が平均粒子径0.5μm以上の第1の粒子を含む、請求項17に記載の光学積層体。 The optical laminate according to claim 17, wherein the resin layer contains first particles having an average particle size of 0.5 µm or more.
  25.  前記第2の樹脂層が前記第1の粒子を含む、請求項24に記載の光学積層体。 The optical laminate according to claim 24, wherein the second resin layer contains the first particles.
  26.  前記第1の粒子が有機粒子である、請求項24に記載の光学積層体。 The optical laminate according to claim 24, wherein the first particles are organic particles.
  27.  前記基材がアクリル樹脂基材である、請求項17に記載の光学積層体。 The optical laminate according to claim 17, wherein the substrate is an acrylic resin substrate.
  28.  前記樹脂層が、硬化性樹脂組成物の硬化物を含む、請求項17に記載の光学積層体。 The optical laminate according to claim 17, wherein the resin layer contains a cured product of a curable resin composition.
  29.  偏光子と、前記偏光子の一方の側に配置された第1の透明保護板と、前記偏光子の他方の側に配置された第2の透明保護板とを有する偏光板であって、前記第1の透明保護板及び前記第2の透明保護板の少なくとも一方が、請求項1に記載の防眩性積層体、請求項12に記載の防眩性積層体及び請求項17に記載の光学積層体から選ばれる何れかである、偏光板。 A polarizing plate having a polarizer, a first transparent protective plate arranged on one side of the polarizer, and a second transparent protective plate arranged on the other side of the polarizer, At least one of the first transparent protective plate and the second transparent protective plate is the antiglare laminate according to claim 1, the antiglare laminate according to claim 12, and the optics according to claim 17. A polarizing plate, which is any one selected from laminates.
  30.  表示素子上に、請求項1に記載の防眩性積層体、請求項12に記載の防眩性積層体及び請求項17に記載の光学積層体から選ばれる何れかを有する、画像表示装置。 An image display device having, on a display element, any one selected from the antiglare laminate according to claim 1, the antiglare laminate according to claim 12, and the optical laminate according to claim 17.
  31.  前記画像表示装置が、フォルダブルタイプの画像表示装置又はローラブルタイプの画像表示装置であり、前記表示素子上に、請求項1に記載の防眩性積層体又は請求項12に記載の防眩性積層体を有する、請求項30に記載の画像表示装置。 The image display device is a foldable type image display device or a rollable type image display device. 31. The image display device of claim 30, comprising a flexible laminate.
PCT/JP2022/023709 2021-06-14 2022-06-14 Antiglare laminate, optical laminate, polarizing plate, and image display device WO2022264986A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237042734A KR20240019772A (en) 2021-06-14 2022-06-14 Anti-glare laminates, optical laminates, polarizers, and image display devices
CN202280041558.7A CN117480413A (en) 2021-06-14 2022-06-14 Antiglare layered body, optical layered body, polarizing plate, and image display device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021098699A JP2022190395A (en) 2021-06-14 2021-06-14 Anti-glare laminate, polarizing plate, and image display device
JP2021-098699 2021-06-14
JP2021-098702 2021-06-14
JP2021098702A JP2022190398A (en) 2021-06-14 2021-06-14 Anti-glare laminate, polarizing plate, and image display device
JP2021098704A JP2022190399A (en) 2021-06-14 2021-06-14 Optical laminate, polarizing plate, and image display device
JP2021-098704 2021-06-14

Publications (1)

Publication Number Publication Date
WO2022264986A1 true WO2022264986A1 (en) 2022-12-22

Family

ID=84526471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023709 WO2022264986A1 (en) 2021-06-14 2022-06-14 Antiglare laminate, optical laminate, polarizing plate, and image display device

Country Status (3)

Country Link
KR (1) KR20240019772A (en)
TW (1) TW202307470A (en)
WO (1) WO2022264986A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150998A (en) * 2007-12-19 2009-07-09 Sumitomo Chemical Co Ltd Anti-glare film, anti-glare polarizing plate and image display device
JP2015188772A (en) * 2014-03-27 2015-11-02 大日本印刷株式会社 Optical laminate and manufacturing method thereof
WO2017061493A1 (en) * 2015-10-09 2017-04-13 大日本印刷株式会社 Optical sheet, polarizing plate, optical sheet sorting method, optical sheet production method, and display device
JP2019101298A (en) * 2017-12-05 2019-06-24 大日本印刷株式会社 Optical member, display device and method for selecting optical member
JP2020095092A (en) * 2018-12-10 2020-06-18 大日本印刷株式会社 Optical laminate, manufacturing method of optical laminate, lamination member and display device
WO2020246314A1 (en) * 2019-06-07 2020-12-10 大日本印刷株式会社 Anti-glare film; anti-glare article, touchscreen, and display device using same; and method for selecting anti-glare film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6128576B2 (en) 2011-04-22 2017-05-17 日東電工株式会社 Optical laminate
KR102507695B1 (en) 2016-10-12 2023-03-10 닛산 가가쿠 가부시키가이샤 Anti-glare hard coat laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150998A (en) * 2007-12-19 2009-07-09 Sumitomo Chemical Co Ltd Anti-glare film, anti-glare polarizing plate and image display device
JP2015188772A (en) * 2014-03-27 2015-11-02 大日本印刷株式会社 Optical laminate and manufacturing method thereof
WO2017061493A1 (en) * 2015-10-09 2017-04-13 大日本印刷株式会社 Optical sheet, polarizing plate, optical sheet sorting method, optical sheet production method, and display device
JP2019101298A (en) * 2017-12-05 2019-06-24 大日本印刷株式会社 Optical member, display device and method for selecting optical member
JP2020095092A (en) * 2018-12-10 2020-06-18 大日本印刷株式会社 Optical laminate, manufacturing method of optical laminate, lamination member and display device
WO2020246314A1 (en) * 2019-06-07 2020-12-10 大日本印刷株式会社 Anti-glare film; anti-glare article, touchscreen, and display device using same; and method for selecting anti-glare film

Also Published As

Publication number Publication date
TW202307470A (en) 2023-02-16
KR20240019772A (en) 2024-02-14

Similar Documents

Publication Publication Date Title
WO2017061493A1 (en) Optical sheet, polarizing plate, optical sheet sorting method, optical sheet production method, and display device
JPWO2017138611A1 (en) OPTICAL LAMINATE, ITS MANUFACTURING METHOD, FRONT PLATE, AND IMAGE DISPLAY DEVICE
JPWO2008136346A1 (en) Protective film for display screen and polarizing plate
WO2012046790A1 (en) Light diffusion film and process for production thereof, light-diffusing polarizing plate, and liquid crystal display device
TW201643652A (en) Touch panel, display device, optical sheet, optical sheet selection method, and optical sheet manufacturing method
KR102824295B1 (en) Anti-glare film, and polarizing plate, surface plate and image display device using it
WO2023074779A1 (en) Anti-glare film, and polarizing plate, surface plate, image display panel, and image display device that use same
JP2016170779A (en) Touch panel, display device and optical sheet
JP7380960B1 (en) Optical films, image display panels and image display devices
WO2022264986A1 (en) Antiglare laminate, optical laminate, polarizing plate, and image display device
JP7326734B2 (en) OPTICAL LAMINATED BODY, METHOD FOR MANUFACTURING OPTICAL LAMINATED BODY, LAMINATED MEMBER, AND DISPLAY DEVICE
KR20120038701A (en) Anti-glare film, polarizing plate and display device using the same
JP2022190399A (en) Optical laminate, polarizing plate, and image display device
JP2022190395A (en) Anti-glare laminate, polarizing plate, and image display device
JP2022190398A (en) Anti-glare laminate, polarizing plate, and image display device
WO2012074123A1 (en) Optical film and liquid crystal display device
WO2015156333A1 (en) Antiglare film
JP7409574B1 (en) Optical films, image display panels and image display devices
JP7409575B1 (en) Optical films, image display panels and image display devices
CN111601710A (en) Anti-glare film, polarizing plate, and display device
KR101788358B1 (en) Anti-glare film, method for manufacturing anti-glare film, polarizing plate, and image display device
WO2023074774A1 (en) Anti-glare film, and polarizing plate, surface plate, image display panel, and image display device that use same
TW202443198A (en) Optical laminate, polarizing plate, surface plate, image display panel and image display device using the optical laminate
CN114265139A (en) flexible laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824975

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280041558.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824975

Country of ref document: EP

Kind code of ref document: A1