[go: up one dir, main page]

WO2022260162A1 - Prophylactic and/or therapeutic agent for nash - Google Patents

Prophylactic and/or therapeutic agent for nash Download PDF

Info

Publication number
WO2022260162A1
WO2022260162A1 PCT/JP2022/023447 JP2022023447W WO2022260162A1 WO 2022260162 A1 WO2022260162 A1 WO 2022260162A1 JP 2022023447 W JP2022023447 W JP 2022023447W WO 2022260162 A1 WO2022260162 A1 WO 2022260162A1
Authority
WO
WIPO (PCT)
Prior art keywords
mir
nash
nucleic acid
therapeutic agent
fat diet
Prior art date
Application number
PCT/JP2022/023447
Other languages
French (fr)
Japanese (ja)
Inventor
亘 尾野
貴裕 堀江
共達 西野
紗和 宮川
聡 小比賀
勇矢 笠原
Original Assignee
国立大学法人京都大学
国立大学法人大阪大学
国立研究開発法人医薬基盤・健康・栄養研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 国立大学法人大阪大学, 国立研究開発法人医薬基盤・健康・栄養研究所 filed Critical 国立大学法人京都大学
Publication of WO2022260162A1 publication Critical patent/WO2022260162A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/50Feeding-stuffs specially adapted for particular animals for rodents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility

Definitions

  • the present invention relates to prophylactic and/or therapeutic agents for NASH and screening methods thereof.
  • the present invention relates to NASH model animals.
  • the present invention relates to NASH model rodents and methods for their production.
  • Non-alcoholic steatohepatitis is a type of hepatitis that can progress to cirrhosis and liver cancer, and the number of patients has been increasing in recent years, making countermeasures urgently needed.
  • NASH Non-alcoholic steatohepatitis
  • the following pathogenesis has been proposed. First, fat accumulates in the liver due to insulin resistance such as obesity, diabetes, and hyperlipidemia, leading to fatty liver, and then oxidative stress such as lipid peroxidation, cytokines, and iron progresses to NASH. .
  • miRNAs are involved in various pathological conditions and disease formation through post-transcriptional regulation.
  • miRNAs are endogenous small RNA molecules consisting of 21 to 25 nucleotides, and their existence is known from sponges in the course of evolution.
  • the number of miRNAs increases with the complexity of organisms, and more than 2,500 miRNAs are thought to exist on the human genome. diversified to.
  • SREBP sterol regulatory element-binding protein
  • SCAP SREBP cleavage activating protein
  • miR-33 is one of miRNAs, and phylogenetically, it exists from Drosophila (dme-miR-33) and exists in the intron of dSREBP. It is speculated that later, due to gene duplication, miR-33b and miR-33a remained in their respective introns when SREBP-1 and SREBP-2 were generated. Humans have SREBP-1 and SREBP-2 and therefore miR-33b and miR-33a, but only a portion of miR-33b in the intron of rodent SREBP-1. Since it remains, miR-33b is absent in rodents (Non-Patent Document 2).
  • the objective of the present invention is to provide useful means for research and development of NASH mechanisms and treatment methods.
  • Another object of the present invention is to provide a prophylactic and/or therapeutic agent for NASH.
  • nucleic acid having a specific base sequence reduces the expression level of miR-33a and/or miR-33b.
  • miR-33b knock-in rodents fed a high-fat diet developed NASH-like symptoms. It was also found that the nucleic acid ameliorated NASH-like symptoms in rodents.
  • the present invention has been completed based on such findings, and broadly includes the subjects shown in the following items.
  • a prophylactic and/or therapeutic agent for NASH containing a nucleic acid is DNA, RNA, or a nucleic acid analog that may have a crosslinked structure;
  • the prophylactic and/or therapeutic agent for NASH, wherein the nucleic acid comprises the base sequence shown in SEQ ID NO: 1 (aacnacaangca) or 2 (aacagcaangca), and the base may be modified.
  • the nucleic acid consists of a nucleotide sequence in which 1 to 4 bases are deleted, substituted, inserted or added in the nucleotide sequence shown in SEQ ID NO: 1 or 2, and is a nucleic acid that recognizes human miR33b. 2.
  • the prophylactic and/or therapeutic agent for NASH according to 1.
  • Item 3 The preventive and/or therapeutic agent for NASH according to Item 1 or 2, wherein the nucleic acid consists of the base sequence shown in SEQ ID NO: 3 or 4.
  • the nucleic acid consists of a nucleotide sequence in which 1 to 4 bases are deleted, substituted, inserted or added in the nucleotide sequence shown in SEQ ID NO: 3 or 4, and is a nucleic acid that recognizes human miR33b.
  • the prophylactic and/or therapeutic agent for NASH according to any one of 1 to 3.
  • Item 5 The preventive and/or therapeutic agent for NASH according to any one of Items 1 to 4, wherein the nucleic acid contains RNA and RNA having a crosslinked structure.
  • Item 6 The preventive and/or therapeutic agent for NASH according to any one of Items 1 to 5, wherein the nucleic acid is a compound represented by the chemical formula in FIG. 1 or 2.
  • Item 8 The rodent according to Item 7, wherein the high-fat diet contains 40% or more lipid on a calorie basis.
  • Item 9 The rodent according to Item 7 or 8, wherein the high-fat diet does not contain cholesterol.
  • Item 10 The rodent according to Item 7 or 8, wherein the high-fat diet contains cholesterol.
  • Item 11 The rodent according to any one of Items 7 to 10, wherein the high-fat diet contains sugars.
  • Item 12 The rodent according to any one of Items 7 to 11, wherein miR-33b is knocked into the 3'UTR, intron or 5'UTR of the Srebf-1 gene.
  • Item 13 The rodent according to any one of Items 7 to 10, which is a NASH model animal.
  • Item 14 A method for producing a NASH model rodent, comprising the step of feeding a miR-33b knock-in rodent with a high-fat diet.
  • Item 15 The method for producing a rodent according to Item 14, wherein the high-fat diet contains 40% or more lipid on a calorie basis.
  • Item 16 The method for producing a rodent according to Item 14 or 15, wherein the high-fat diet does not contain cholesterol.
  • Item 17 The method for producing a rodent according to Item 14 or 15, wherein the high-fat diet contains cholesterol.
  • Item 18 The method for producing a rodent according to any one of Items 14 to 17, wherein the high-fat diet contains sugars.
  • Item 19 The method for producing a rodent according to any one of Items 14 to 18, wherein miR-33b is knocked into the 3'UTR, intron or 5'UTR of the Srebf-1 gene.
  • Item 20 The method for producing the rodent animal according to any one of Items 14 to 19, which is a NASH model animal.
  • Item 21 A method of screening for prophylactic and/or therapeutic agents for NASH, comprising the step of ingesting a high-fat diet and a test substance to miR-33b-knock-in rodents.
  • Item 22 The screening method for a preventive and/or therapeutic agent for NASH according to Item 21, wherein the high-fat diet contains 40% or more lipid on a calorie basis.
  • Item 23 The method of screening for a prophylactic and/or therapeutic agent for NASH according to Item 22 or 23, wherein the high-fat diet does not contain cholesterol.
  • Item 24 The screening method for a prophylactic and/or therapeutic agent for NASH according to Item 22 or 23, wherein the high-fat diet contains cholesterol.
  • Item 25 The screening method for a preventive and/or therapeutic agent for NASH according to any one of Items 22 to 24, wherein the high-fat diet contains sugars.
  • Item 26 The method of screening for a prophylactic and/or therapeutic agent for NASH according to any one of Items 22 to 25, wherein miR-33b is knocked into the 3'UTR, intron or 5'UTR of the Srebf-1 gene.
  • a prophylactic and/or therapeutic agent for NASH can be provided.
  • the present invention can provide high-fat diet-fed miR-33b knock-in rodents useful as NASH model animals exhibiting NASH-like symptoms. By using the model animal, candidate NASH preventive and/or therapeutic agents can be easily screened.
  • FIG. 1 shows the chemical formula of anti-miR-33a.
  • FIG. 2 shows the chemical formula of anti-miR-33b.
  • FIG. 3 shows the chemical formula of NEG-AmNA.
  • FIG. 4 shows miR-33b knock-in mice (miR-33b +/+ /miR-33b +/+ ) and wild-type mice (miR-33a +/+ /miR-33b ⁇ / ⁇ ) prepared in Example 1. and these mice prepared in Example 2 were fed with Research Diets, Inc. as a high-fat diet.
  • FIG. 5 shows hematoxylin-eosin (HE)-stained images (A) and Masson's trichrome-stained images (B) of the livers of high-fat diet-fed wild-type mice and HFD mice prepared in Example 2.
  • FIG. 6 shows single-strand DNA-stained images of livers of high-fat diet-fed wild-type mice and HFD mice prepared in Example 2.
  • FIG. 7 shows the results of lipids in the livers of the high-fat diet-fed wild-type mice and HFD mice prepared in Example 2, extracted using the Folch method, and measured by an enzymatic colorimetric method.
  • T-CHO indicates total cholesterol content
  • TG indicates triglyceride content
  • FC indicates free cholesterol content
  • PL indicates phospholipid content. * indicates P ⁇ 0.05.
  • FIG. 8 shows each gene (IL-6 and Tnf ⁇ as inflammatory cytokines, Col1a1 and ⁇ Sma as fibrosis markers, and CD68 and F4/80 as markers of inflammatory cell infiltration) in the HFD mouse liver prepared in Example 2. The results of measuring expression levels by qRT-PCR are shown.
  • FIG. 9 shows the results of Western blot analysis of the expression levels of genes (Col1a1 as a fibrosis marker) in the livers of high-fat diet-fed wild-type mice and HFD mice prepared in Example 2.
  • FIG. Figure 10 shows a liver excised from a 30 week HFD mouse.
  • A is a photographic image of the liver
  • B is an HE-stained image thereof.
  • FIG. 11 shows miR-33b knock-in mice shown in Example 5 loaded with D09103110 as a high-fat diet (herein, the mice may be referred to as GAN mice), body weight, blood tests, etc. Show the results.
  • NEG represents miR-33b knock-in mice not fed a high-fat diet subcutaneously injected with NEG-AmNA shown in FIG. 3
  • anti-33a is a mouse subcutaneously injected with NEG-AmNA shown in FIG. 1
  • anti-33b is a mouse subcutaneously injected with antimiR-33a shown in FIG.
  • Mice subcutaneously injected with -33b and anti-33a+b refer to mice subcutaneously injected with anti-miR-33a and anti-miR-33b above in GAN mice.
  • (D) is the amount of albumin (Alb) (g/dL)
  • (E) is the amount of urea nitrogen (BUN) (mg/dL)
  • (F) is creatinine (Cre) amount (mg / dL)
  • (I) is the amount of alkaline phosphatase (ALP) (IU/dL)
  • (J) is the amount of cholinesterase (ChE) (IU/dL)
  • (K) is total bilirubin (T- Bil) (mg/dL) and (L)
  • FIG. 12 shows expression levels of various genes in GAN mice and the like prepared in Example 5.
  • FIG. (A) is the expression level of miR-33a
  • (B) is the expression level of miR-33b
  • (C) is the relative value of the expression level of SREBF1 to 18S mRNA
  • (D) is the expression level of SREBF2. Shows the relative value of expression level to 18S mRNA.
  • NEG(NC), NEG(GAN), anti-33a, anti-33b and anti-33a+b in each graph are the same as in FIG.
  • FIG. 13 shows the results of blood tests and expression levels of various genes in GAN mice and the like prepared in Example 5.
  • A is the amount (g/dL) of albumin (Alb)
  • B is the amount (IU/L) of aspartate aminotransferase (AST)
  • AST aspartate aminotransferase
  • C is the amount of alanine aminotransferase (ALT).
  • (D) is the amount of alkaline phosphatase (ALP) (IU/L)
  • (E) is the amount of cholinesterase (ChE) (IU/L)
  • (F) is , the amount of total bilirubin (T-Bil) (mg/dL)
  • (G) the amount of total bile acid (TBA) ( ⁇ mol/dL)
  • (H) the amount of iron (Fe) ( ⁇ g /dL)
  • (I) shows the relative value of the expression level of the Abca1 gene to 18S mRNA in the liver
  • (J) shows the relative value of the expression level of the Cpt1a gene to 18S mRNA in the liver.
  • NEG(NC), NEG(GAN), anti-33a, anti-33b and anti-33a+b in each graph are the same as in FIG. * in each graph indicates p ⁇ 0.05, ** indicates p ⁇ 0.005, *** indicates p ⁇ 0.0005 and *** indicates p ⁇ 0.0001.
  • FIG. 14 shows the results of blood tests in GAN mice produced in Example 5.
  • (A) is the amount of total cholesterol (T-CHO) in serum (mg/dL)
  • (B) is the amount of HDL cholesterol (HDL-C) in serum (mg/dL)
  • (C ) is the amount of LDL cholesterol (LDL-C) in the serum (mg / dL)
  • (D) is the amount of free cholesterol (F-CHO) in the serum (mg / dL)
  • (E) is , the amount of triglycerides (TG) in serum (mg/dL)
  • (F) the amount of free fatty acids (NEFA) in serum ( ⁇ Eq/L)
  • (G) the total liver
  • the amount of cholesterol (mg/g), (H) the amount of free cholesterol in the liver (mg/g), and (I) the amount of triglyceride (TG) in the liver (mg/g) indicates NEG(NC), NEG(GAN), anti-33a, anti-33b, and anti-33a+b
  • FIG. 15(A) shows an HE-stained image of the GAN mouse liver section prepared in Example 5.
  • FIG. NEG (NC) and NEG (GAN) are the same as in FIG. 11 respectively, anti-33a (GAN), anti-33b (GAN) and anti-33a+b (GAN) are anti-33a, anti-33b and and anti-33a+b.
  • FIG. 16(A) shows a Picrosirius-stained image of the GAN mouse liver section prepared in Example 5.
  • NEG (NC), NEG (GAN), anti-33a (GAN), anti-33b (GAN), and anti-33a+b (GAN) are the same as in FIG. 11, respectively.
  • (B) is a graph of fibrosis scores evaluated from the stained images shown in (A). * in the graph indicates p ⁇ 0.05.
  • the number of specimens in the graph is the number of marks described in the graph. 17 shows the expression levels of various genes in GAN mice and the like prepared in Example 5.
  • FIG. (A) shows the expression level of TNF ⁇
  • (B) shows the expression level of Col1a1
  • (C) shows the expression level of ⁇ SMA.
  • NEG(NC), NEG(GAN), anti-33a, anti-33b and anti-33a+b in each graph are the same as in FIG. * in each graph indicates p ⁇ 0.05, ** indicates p ⁇ 0.005, *** indicates p ⁇ 0.0005 and *** indicates p ⁇ 0.0001.
  • FIG. 18 shows the results of Example 6.
  • FIG. (A) shows a microscopic image.
  • (B) is a graph showing the ratio of cholesterol crystals calculated from the microscopic image of (A).
  • NNC, NEG, anti-miR-33a, anti-miR-33b, and anti-miR-33a+b are NEG (NC), NEG (GAN), anti-33a (GAN), anti-33b (GAN), respectively, in FIG. ), and anti-33a+b (GAN). ** indicates p ⁇ 0.01.
  • Each number of specimens corresponds to the number of marks described in each graph.
  • FIG. 19 shows a method for generating miR-33b knock-in mice prepared in Example 1, etc.
  • the preventive and/or therapeutic agent for NASH of the present invention contains a nucleic acid.
  • the nucleic acid referred to here is, for example, DNA, RNA, or a nucleic acid analogue, and may have a crosslinked structure.
  • the nucleic acid analogue is not particularly limited as long as it is a polymer that has a specific base sequence and exhibits the same function as DNA or RNA due to the sequence.
  • Specific nucleic acid analogs include GNA, LNA, BNA, PNA, AmNA, morpholinos, and the like.
  • AmNA is preferred.
  • crosslinked structure is not particularly limited as long as it stabilizes the chemical structure of DNA, RNA or nucleic acid analogues and is not decomposed by enzymes or the like.
  • cross-linking may be provided so as not to affect the conformation of base moieties in DNA, RNA or nucleic acid analogues.
  • cross-linking examples include a mode in which a cross-link is provided in the sugar moiety contained in the chemical structure of DNA, RNA or nucleic acid analogues.
  • a preferred embodiment of cross-linking includes, for example, an embodiment in which a cross-link is provided between the 2'-position and 4'-position of the sugar moiety. Specifically, a bridge between the 2'-position and the 4'-position of the ribose ring as shown in the following formula can be mentioned.
  • R 1 represents a base.
  • R 2 and R 3 are the same or different and represent a phosphate group optionally having one or more substituents.
  • Substituents in such phosphoric acid groups are not particularly limited as long as the effects of the present invention are exhibited, and examples thereof include sulfur groups.
  • the crosslinked structure does not need to be provided in all the monomers that constitute the nucleic acid, and can be provided in some of the monomers.
  • the base sequence in the above nucleic acid consists of the base sequence of SEQ ID NO: 1 as aacnacaangca or the base sequence of SEQ ID NO: 2 as aacagcaangca in order from the 3' end.
  • the base sequence shown in SEQ ID NO: 2 is preferable in view of exhibiting the effects of the present invention.
  • a is adenine
  • c is cytosine
  • g is guanine
  • n is thymine or uracil. It is preferable that n is thymine in view of exhibiting the effect of the present invention more.
  • the base sequence of the above nucleic acid can tolerate mutation to a base sequence having 80% or more homology with the base sequence shown in SEQ ID NO: 1 or 2 within the range that recognizes human miR33b, preferably 85% or more. more preferably 90% or more homology, most preferably 95% or more homology.
  • the above mutations can include deletion, substitution, insertion or addition.
  • the nucleotide sequence introduced with the above mutation is 4 nucleotides, more preferably 3 nucleotides, still more preferably 2 nucleotides, most preferably 1 It can be a nucleotide sequence of a nucleic acid that recognizes human miR33b, which consists of a nucleotide sequence in which 10 nucleotides are deleted, substituted, inserted or added.
  • recognizing human miR33b can be rephrased as binding to human miR33b, and is generally interpreted as binding of a nucleic acid consisting of the above base sequence to human miR33b. Specifically, it can be confirmed by a known method whether the two bind to each other, and the binding of the nucleic acid to human miR33b reduces the expression level of human miR33b. ) can be confirmed by the experiment shown in
  • the bases in the base sequence that constitutes the above nucleic acid can be modified. Such modifications are not particularly limited as long as the effect of the present invention is exhibited, and examples thereof include alkylation (methylation, ethylation, propylation, butylation, etc.), deamination, hydroxylation, halogenation, etc. can be mentioned. In view of exhibiting the effect of the present invention more, it is preferable that the above base is modified by methylation.
  • the type of base to be modified is not particularly limited as long as the effect of the present invention is exhibited. In view of exhibiting the effects of the present invention more effectively, it is preferable to modify cytosine, and it is more preferable to modify the 5-position of cytosine by methylation.
  • a more preferable base sequence of the above nucleic acid is the base sequence of SEQ ID NO: 3 as aactacaatgca or the base sequence of SEQ ID NO: 4 as aacagcaatgca in order from the 3' end.
  • the 5-position of cytosine in the above SEQ ID NOs: 3 and 4 is methylated.
  • the base sequence shown in SEQ ID NO: 4 is preferable in view of exhibiting the effect of the present invention.
  • the base sequence of the above nucleic acid can allow mutation to a base sequence having 80% or more homology with the base sequence shown in SEQ ID NO: 3 or 4 within the range of recognizing human miR33b.
  • the nucleotide sequence has a homology of 85% or more, more preferably a homology of 90% or more, and most preferably a homology of 95% or more.
  • the above mutations can include deletion, substitution, insertion or addition.
  • the nucleotide sequence into which the mutation is introduced is 4 bases, more preferably 3 bases, still more preferably 2 bases, most preferably 1 base in the base sequence shown in SEQ ID NO: 3 or 4. It can be a nucleotide sequence of a nucleic acid that recognizes human miR33b, consisting of a nucleotide sequence in which one base is deleted, substituted, inserted or added.
  • Preferred embodiments of the above-described nucleic acids include antisense oligonucleotides, siRNA, shRNA, and the like, more preferably antisense oligonucleotides, and still more preferably compounds represented by the chemical formulas of FIGS. can be mentioned. In view of the effect of the present invention being exhibited more effectively, the compound represented by the chemical formula in FIG. 2 is most preferable.
  • nucleic acids can be synthesized by conventional methods, and can be easily synthesized, for example, using a commercially available nucleic acid synthesizer.
  • AmNA in which nucleotides are sugar-modified which is a preferred embodiment of the above nucleic acid, can be synthesized by the method disclosed in WO11/052436.
  • siRNA and shRNA can be artificially chemically synthesized.
  • siRNA and shRNA can be used, for example, to synthesize antisense strand and sense strand RNA from template DNA in vitro using T7 RNA polymerase, T7 promoter, and the like.
  • the prophylactic and/or therapeutic agent for NASH may contain substantially only the nucleic acid, or may contain other components.
  • the above-mentioned other components are not particularly limited as long as the effects of the present invention can be exhibited.
  • examples include pharmaceutically acceptable bases, carriers, additives (eg, excipients, solvents, surfactants, preservatives, pH adjusters, thickening agents, etc.).
  • bases e.g, excipients, solvents, surfactants, preservatives, pH adjusters, thickening agents, etc.
  • additives eg, excipients, solvents, surfactants, preservatives, pH adjusters, thickening agents, etc.
  • Such base materials, carriers, additives and the like are described, for example, in Dictionary of Pharmaceutical Excipients, etc., and these can be employed as appropriate.
  • the dosage form of the prophylactic and/or therapeutic agent for NASH is not particularly limited as long as the effect of the present invention can be exhibited, and can be, for example, a solution, a suspension, or the like.
  • Such a dosage form can be appropriately prepared by mixing the nucleic acid as an active ingredient and other ingredients in a conventional manner.
  • the administration method of the preventive and/or therapeutic agent for NASH is not particularly limited as long as it is a known administration method optimized for the above various dosage forms within the range where the effects of the present invention can be exhibited.
  • oral administration intramuscular administration, intravenous administration, intraarterial administration, intrathecal administration, intradermal administration, intraperitoneal administration, intranasal administration, intrapulmonary administration, intraocular administration, intravaginal administration, intracervical administration Administration, rectal administration, subcutaneous administration, and the like can be mentioned.
  • intravenous administration is preferred.
  • the dose of the preventive and/or therapeutic agent for NASH described above is not particularly limited as long as the effects of the present invention can be exhibited.
  • administering 0.001 to 1000 mg/m 2 of a NASH prophylactic and/or therapeutic agent to an adult with a body weight of 60 kg can be mentioned.
  • the dose is 0.01 to 500 mg/m 2 , more preferably 0.1 to 100 mg/m 2 , and still more preferably 1 to 50 mg/m 2 .
  • a dose of ⁇ 40 mg/m 2 is most preferred.
  • Such doses can be administered once a day, or can be divided into several administrations per day.
  • High-fat diet-fed miR-33b knock-in rodents miR-33b ⁇ / ⁇ indicate wild-type mice and miR-33b +/+ miR-33b knock-in mice.
  • the knock-in rodent of the present invention is a rodent in which miR-33b is knocked in and fed with a high-fat diet (high-fat diet-loaded miR-33b knock-in rodent).
  • mice are not particularly limited, and examples include mice, rats, rats such as Chinese hamsters (), rabbits, and squirrels. Among them, mice, rats and the like are preferable.
  • the miR-33b knocked in in the above knock-in mouse is an RNA consisting of the base sequence of gugcauugcuguugcauugc (SEQ ID NO: 5). Knock-in of miR-33b is, for example, integration of DNA expressing the RNA into the genome.
  • Knock-in of miR-33b into rodents can be performed by known methods. For example, there is a method in which a gene modification (knock-in) vector is prepared, introduced into pluripotent stem cells (eg, ES cells, iPS cells, etc.), and miR-33b is knocked in by homologous recombination.
  • miR-33b can also be knocked in using genome editing technology (eg, CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated proteins) technology).
  • the miR-33b knock-in rodent of the present invention may have miR-33b heterozygous or homozygous, but is preferably homozygous.
  • the location on the genome to be knocked-in is preferably a location where knock-in miR-33b is expected to be expressed in rodents at the same time as miR-33b is expressed in humans. Since the location of miR-33b in humans is the intron (intron 16) of the sterol regulatory element-binding transcription factor 1 (srebf-1) gene that encodes SREBP-1, the expression of miR-33b in humans is It is thought to synchronize with the expression of the srebf-1 gene. Therefore, sites other than exons of the srebf-1 gene are preferred sites for miR-33b knock-in in rodents.
  • srebf-1 sterol regulatory element-binding transcription factor 1
  • Examples of such sites include 3'UTR (untranslated region), intron 5'UTR (untranslated region), and the like. Among them, intron is preferable.
  • the Srebf-1 gene has 19 exons. These exons (exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, exon 7, exon 8, exon 9, exon 10, exon 11, exon 12, exon 13, exon 14, exon 15, exon 16, exon 17, exon 18, exon 19), miR-33b may be knocked in in the intron between exons 16 and 17 of srebf-1. Since it is between exons 16 and 17, it is more preferable to knock in intron 16.
  • Gene ID 20787 for mouse srebf-1 gene, Gene ID 78968 for rat srebf-1 gene, and Gene ID 100689018 for Chinese hamster can be mentioned. is. Such genetic information can be retrieved, for example, from the NCBI web page.
  • the high-fat diet in the high-fat diet-loaded miR-33b knock-in rodent is not particularly limited. can.
  • the calorie base is preferably 45% or more, more preferably 50% or more, even more preferably 55% or more, and particularly preferably 60% or more.
  • a high-fat diet may or may not contain cholesterol.
  • Cholesterol-containing high-fat diets tend to result in rodents characterized by high accumulation of free cholesterol and triglycerides in the liver, whereas cholesterol-free high-fat diets result in accumulation of triglycerides in the liver.
  • Rodents tend to be obtained that are characterized by an abundance of
  • the content of cholesterol in the high-fat diet is not particularly limited as long as the effects of the present invention can be exhibited. preferably 0.01 to 5 parts by weight, more preferably 1 to 4 parts by weight, most preferably 1 to 3 parts by weight.
  • the high-fat diet may contain sugar.
  • Specific sugars are not particularly limited as long as the effects of the present invention can be exhibited. , fucose, fucrose, rhamnose, sucrose, lactose, maltose, trehalose, turanose, cellobiose and the like. It is preferable to contain fructose in view of exhibiting the effect of the present invention more.
  • it can be a high-fat diet containing palm oil.
  • Such a high-fat diet can be used by purchasing a commercially available product, for example Research Diets, Inc. , Japan SLC Co., Ltd., etc. Among them, product number: D12451 (45 kcal%) or product number D09103110 (40 kcal%) is preferable.
  • High-fat diet loading can be performed by having miR-33b knock-in rodents ingest the above-mentioned high-fat diet.
  • the period of ingestion is not particularly limited, and for example, it may be ingested until NASH-like symptoms are exhibited.
  • miR-33b knock-in rodents can be ingested for 8 weeks or longer, preferably 10 weeks or longer, and more preferably 12 weeks or longer.
  • the method of ingestion is not particularly limited, and for example, free ingestion can be mentioned.
  • High-fat diet-fed miR-33b knock-in rodents thus obtained exhibit NASH-like symptoms.
  • NASH-like symptoms for example, transaminase (AST, ALT) levels, alkaline phosphatase (ALP) levels, bilirubin levels, etc. in the liver become higher (preferably significantly higher) than wild-type.
  • findings such as an increase in lipid droplets in the liver and fibrosis of the liver tissue can be confirmed. Therefore, high-fat diet-fed miR-33b knock-in rodents are useful as NASH model animals.
  • miR-33b knock-in rodents can develop liver cancer by continuing to be fed a high-fat diet even after exhibiting NASH-like symptoms.
  • the ability to develop liver cancer is also a feature similar to NASH, so it can be understood that the high-fat diet-fed miR-33b knock-in rodent of the present invention is an excellent model animal for NASH.
  • a screening method for a prophylactic and/or therapeutic agent for NASH comprises: (1) a screening method for a NASH preventive or therapeutic agent, which comprises the step of ingesting a test substance to miR-33b knock-in rodents loaded with a high-fat diet; And a screening method for a NASH preventive or therapeutic agent, comprising the step of ingesting a test substance, encompasses
  • the test substance is not particularly limited, and examples include compounds and compositions.
  • examples of the above compounds include low-molecular-weight compounds, nucleic acids (eg, DNA, RNA, etc.), proteins (eg, antibodies or portions thereof, etc.), and macromolecular compounds such as polymers.
  • the composition can include extracts obtained from organisms (eg, animals, plants, microorganisms, etc.), and can also be a combination of two or more of the above compounds.
  • the method (route) of ingesting the test substance is not particularly limited, and can be selected as appropriate in consideration of the properties of the test substance to be studied.
  • the test substance can be administered to miR-33b knock-in rodents by oral administration, transvascular administration (intravenous administration, arterial administration), transdermal administration, and the like.
  • a device for administration such as a sonde or the like for oral administration and a syringe or the like for transvascular administration.
  • the test substance can be mixed with a pharmaceutically or food hygienically acceptable carrier, food, or the like, and administered as a composition suitable for each administration route.
  • the administered test substance can be selected as a NASH prophylactic or therapeutic agent candidate.
  • the administered test substance can be selected as a NASH prophylactic or therapeutic agent candidate.
  • the timing of ingestion of the high-fat meal and the test substance is not particularly limited. For example, both may be ingested at the same time, or the test substance may be ingested between meals.
  • the steps in the above screening method can be performed with one test animal and one control animal, it is preferable to examine groups of two or more animals (for example, 5 to 10 animals).
  • the expression “comprising” or “contains” a certain component means that the component is included and may further contain other components, and that only the component is included Also included is the concept of "consisting only of” in the sense of and “consisting essentially of” in the sense of comprising essentially the component.
  • Example 1 Preparation of miR-33b knock-in mice According to the method described in Non-Patent Document 1, human miR-33b (nucleotide sequence: GUGCAUUGCUGUUGCAUUGC; SEQ ID NO: 5) expressing human miR-33b (nucleotide sequence: GUGCAUUGCUGUUGCAUUGC; SEQ. was used to knock-in and generate male miR-33b knock-in mice (homologous: miR-33b +/+ ). As shown in FIG. 19, it was confirmed that the human miR-33b gene was integrated at the site of interest in the knock-in mouse (KI++), and that the human miR-33b gene was expressed.
  • the knock-in mouse is a C57BL/6J background that expresses miR-33a, and is a mouse that expresses miR-33b at the same time as humans express SREBF1, so miR-33a +/+ /miR-33b +/+ .
  • miR-33b knock-in mice miR-33a +/+ /miR-33b +/+
  • wild-type mice are referred to as miR-33b ⁇ / ⁇ .
  • Example 2 Preparation of HFD mice
  • the 8-week-old knock-in mice prepared in Example 1 were given 45% (45 kcal%) high-fat diet (D12451: Research Diets, Inc.) on a calorie basis ad lib (ad libitum). , food-challenged until 20 weeks of age.
  • FIG. 4 shows the body weight and high-fat diet intake of the mice at this time.
  • food-loaded knock-in mice (miR-33b +/+ ) were used as HDF mice
  • food-loaded wild-type mice (miR-33b ⁇ / ⁇ ) were used as comparative examples for various tests.
  • Example 3 Examination of HFD Mice (1) Serum Findings 20-week-old knock-in mice and wild-type mice loaded with food under the above conditions were fasted for 4 to 6 hours, blood was collected from the inferior vena cava under anesthesia, and serum fractions were collected. Serum biochemical findings were determined by standard methods on a Hitachi 7180 automated analyzer (Nagahama Life Science Laboratory, Nagahama, Japan). The results are shown in Table 1 below. In the table, AST, ALT, ALP and T-BIL in particular are known as hepatic dysfunction markers. *, **, and *** indicate P ⁇ 0.05, P ⁇ 0.01, and P ⁇ 0.001, respectively. These results suggested that HDF mice may have liver dysfunction.
  • FIG. 5 shows the results of hematoxylin and eosin staining.
  • FIG. 5(A) fatty deposits, inflammatory cell infiltration, hepatocyte balloon-like degeneration, etc. were observed in the liver of knock-in mice.
  • FIG. 5(B) many lipid droplets were observed in the liver of the knock-in mouse, and liver fibrosis was also observed.
  • Figure 6 shows the results of evaluating the degree of hepatocyte apoptosis using single-strand DNA staining. These results confirmed that HFD mice exhibited NASH-like symptoms.
  • FIG. 7 shows the results of measurement of these lipids (T-CHO, TG, FC and PL) by an enzymatic colorimetric method. Cholesterol and triglycerides were accumulated in the liver of HFD mice, demonstrating NASH-like symptoms.
  • qRT-PCR was performed using THUNDERBIRD SYBR qPCR Mix (Toyobo). The results are shown in FIG. 8 as a graph. Expression was normalized using the housekeeping gene ⁇ -actin. Table 2 shows the base sequences of the primers used.
  • the graph shown in FIG. 8 shows relative values of each gene expression level in the HFD mouse liver when each gene expression level by qRT-PCR in wild-type mouse (miR33b ⁇ / ⁇ ) is set to 1.
  • FIG. 9 shows the results of analyzing the expression of the fibrosis marker protein Col1a1 in the liver of HFD mice by Western blotting.
  • the primary antibodies used for Western blotting are anti-Col1a1 1/5000 (ab34710, Abcam, Cambridge, UK) and anti-Gapdh 1/3000 (14C10; no.2118S, Cell Signaling Technology, Beverly, MA, USA). .
  • liver cancer due to continued high-fat diet loading Livers were excised from 38-week-old HFD mice fed with the diet under the conditions described in Example 2 (ie, 30 weeks after the start of high-fat diet loading). A photograph of the liver (for 2 animals) is shown in FIG. 8(A). Along with the characteristics of fatty liver, liver cancer was observed at several sites (indicated by triangles in FIG. 10(A)). Further, the excised liver was subjected to HE staining in the same manner as described in "(2) Liver tissue findings" above, and the results are shown in FIG. 10(B). Since many lipid droplets were observed on the left side of (B), it was confirmed that the excised liver was fatty liver. In addition, on the right side of (B), it was also confirmed that the central reddish round area was liver cancer tissue, and that the excised liver had liver cancer.
  • NASH model mice by feeding them with a high-fat diet containing cholesterol or a methionine/choline-deficient (MCD) diet (References 3-6 below).
  • MCD methionine/choline-deficient
  • the diet fed to miR-33b knock-in mice is not MCD diet and cholesterol-free diet.
  • Such miR-33b knock-in mice are thought to be different from the NASH model mice described in references 3-6.
  • model animals produced on a methionine/choline deficient (MCD) diet may differ from model animals produced on a cholesterol-free, high-fat diet. Conceivable.
  • miR-33b knock-in mice of the present invention exhibiting phenotypes similar to clinical NAFLD pathology are very useful.
  • Example 4 Synthesis and Purification of Antisense Oligonucleotides AmNA amidites were obtained from Osaka Synthetic Organic Chemistry Laboratory Co., Ltd. Antisense oligonucleotides containing AmNA were synthesized and purified at Ajinomoto Bio-Pharma Services/Gene Design Co., Ltd.
  • the synthesized antisense oligonucleotides are shown in Figures 1 to 3.
  • 33a-2-AmNA (12) shown in FIG. 1 indicates an oligonucleotide against miR-33a
  • 33b-2-AmNA (12) shown in FIG. 2 shows an oligonucleotide against miR-33b
  • NEG-AmNA (12) represents a control antisense oligonucleotide.
  • the nucleosides having a bridge structure (notation of Y) are described as A(Y) for adenine, T(Y) for thymine, G(Y) for guanine, and 5 (Y) represents 5-methylcytosine.
  • a adenine
  • t thymine
  • g guanine
  • c cytosine, which are described as nucleosides having no cross-linking structure.
  • Phosphorothioate which indicates linkage between nucleosides, is represented by ⁇ .
  • Example 5 Preparation of GAN mice The 8-week-old knock-in mice prepared in Example 1 were fed a high-fat diet containing 40% (40kcal%) fructose, palm oil and 2% cholesterol on a calorie basis (D09103110: Research Diets, Inc.) was fed ad lib (ad libitum) until 20 weeks of age.
  • NEG-AmNA 10 mg/kg antimiR-33a, 10 mg/kg antimiR-33b, 10 mg/kg antimiR-33a+b (5 mg/kg antimiR-33a and 5 mg/kg of anti-miR-33b) and 10 mg/kg of NEG-AmNA were administered by subcutaneous injection every two weeks.
  • a miR-33b knock-in mouse not fed a high-fat diet was administered with 10 mg/kg NEG-AmNA (hereinafter referred to as "NEG (NC)").
  • NEG 10 mg/kg NEG-AmNA
  • anti-miR-33a may be referred to as anti-33a
  • anti-miR-33b may be referred to as anti-33b
  • anti-miR-33a+b may be referred to as anti-33a+b.
  • miR-33a tended to increase about 7.0-fold in the GAN feed-administered group compared to the normal feed group, and miR-33b tended to increase about 3.0-fold. A significant 9-fold increase was found.
  • miR-33a showed a significant decrease of about 0.19 times in the anti-33a administration group and about 0.14 times in the anti-33a+b administration group compared to the NEG-AmNA administration group.
  • the expression of miR-33b was significantly reduced by about 0.010 times in the anti-33b administration group and by about 0.12 times in the anti-33a+b administration group compared to the NEG-AmNA administration group.
  • the expression of miR-33b host gene Srebf1 was significantly increased by about 6.6 times in the GAN feed administration group compared to the normal feed administration group. It became clear that in the GAN feed administration group, the expression of Srebf1 showed a significant decrease of approximately 0.50 times in the anti-33b administration group. The expression of Srebf2, the host gene of miR-33a, did not change significantly between groups.
  • miR-33b is known to be expressed at a level 5 to 7 times higher than that of miR-33a. From the above results, miR-33a, like miR-33b, is thought to affect the expression of ABCA1 to some extent. , ALT and TBA tend to decrease.
  • GAN diet increases Srebf1 and miR-33b compared to normal diet due to the effects of insulin and hyperglycemia. From the above results, administration of anti-miR-33b is considered to significantly increase Abca1 and Cpt1a, which are target genes of miR-33b.
  • the anti-33b administration group Under the GAN diet, compared with the NEG administration group, the anti-33b administration group exhibited a significant increase of approximately 1.9 times, and the anti-33a+b administration group exhibited a significant increase of approximately 1.5 times.
  • the anti-33b administration group compared with the NEG administration group under the GAN diet, the anti-33b administration group showed a significant increase of about 1.6 times and the anti-33a+b administration group about 1.5 times.
  • the anti-33b administration group exhibited a significant increase of about 3 times compared to the NEG administration group under the GAN diet.
  • the neutral fat shown in FIG. 14(E) shows a significant decrease of about 0.5 times in the anti-33a+b administration group compared to the NEG administration group under the GAN diet. No significant difference in NEFA shown in FIG. 14(F) was observed between the groups.
  • Hepatic lipids were quantified using the Folch method described above. It was revealed that the total cholesterol shown in FIG. 14(G) was significantly increased by about 9.5 times in the GAN diet compared to the normal diet. Under the GAN diet, the anti-33b-administered group tended to decrease about 0.78-fold compared to the NEG-AmNA-administered group. It was revealed that the free cholesterol shown in FIG. 14(H) significantly increased by about 2.4 times in the GAN feed administration group compared to the normal feed administration group. Under the GAN diet, a significant decrease of approximately 0.84 times was observed in the anti-33b administration group compared to the NEG-AmNA administration group. It was revealed that neutral fat shown in FIG.
  • administration of anti-33b increases Abca1, a cholesterol transporter, and as a result, free cholesterol in the liver is excreted, resulting in a decrease in the liver and an increase in the blood. Conceivable. It is considered that the administration of anti-miR-33b improves liver function by improving inflammation and reducing free cholesterol, thereby promoting lipid decomposition and reducing accumulation of triglycerides in the liver.
  • liver evaluation of the livers of the GAN mice and the like was performed by hematoxylin-eosin (HE) staining. The results are shown in FIG. 15(A). Moreover, based on the stained image of FIG. 15(A), evaluation of severity was scored using NAFLD activity score (NAS). NAS scores the degree of steatosis (0 to 3 points), parenchymal inflammatory stage (0 to 3 points), and balloon-like hepatocyte enlargement (0 to 2 points). The results are shown in the graph of FIG. 15(B).
  • NAS NAFLD activity score
  • NAS was found to show a significant increase in the GAN feed administration group compared to the normal feed (normal feed: average 0.83 points, GAN feed: average 6.89 points).
  • the anti-33b-administered group under the GAN diet averaged 2.67 points, and the anti-33a+b-administered group averaged 4.29 points, showing a significant improvement in NAS compared to the NEG-AmNA-administered group.
  • Fibrosis of the liver of the above GAN mice, etc. was evaluated by Picrosirius staining. The results are shown in FIG. 16(A). Based on the stained image of FIG. 16(A), the fibrosis area of the liver was quantitatively evaluated using Image J (NIH). The results are shown in the graph of FIG. 16(B).
  • the fibrosis area was significantly increased by about 9.1 times in the GAN feed administration group compared to the normal feed administration group.
  • the anti-33b administration group significantly decreased by about 0.33 times compared to the NEG-AmNA administration group under the GAN diet.
  • the anti-33a+b administration group showed a decreasing tendency of about 0.46 times.
  • the NEG-AmNA administration group averaged 2.1 points
  • the anti-33b administration group had a mean of 0.25 points
  • the anti-33a+b administration group had an average of 0.75 points. admitted.
  • cDNA was prepared from the obtained total RNA using Verso cDNA synthesis kit (Thermo Fisher).
  • primers specific for TNF ⁇ , Col1a1, and ⁇ SMA in the liver shown in Table 2 above and TUNDERBIRD Syber q-PCR mix (Toyobo) were used in a StepOnePlus real-time PCR system (Thermo Fisher). detected.
  • Gene expression was corrected for expression of 18S ribosomal RNA (specific primer sequences are shown in Table 7). The results are shown in FIGS. 17(A) to 17(C).
  • FIG. 17(A) it was revealed that the expression level of TNF ⁇ (approximately 7.9 times) was significantly increased in the GAN feed administration group compared to the normal feed administration group.
  • FIG. 17(B) it was revealed that the expression level of Col1a1 was also significantly increased by about 28.3 times in the GAN feed administration group compared to the normal feed administration group.
  • FIG. 17(C) it was revealed that the expression level of ⁇ SMA also significantly increased to about 3.9 in the GAN feed administration group compared to the normal feed administration group.
  • TNF ⁇ (about 0.22 times), Col1a1 (about 0.074 times), and ⁇ SMA (about 0.087 times) were significant in the anti-33b administration group compared to the NEG-AmNA administration group under the GAN diet. showed a significant decline. Under the GAN diet, there was a significant reduction in TNF ⁇ (approximately 0.37-fold) and Col1a1 by approximately 0.16-fold and ⁇ SMA by approximately 0.29-fold in the anti-33a+b-treated group compared to the NEG-AmNA-treated group. showed a downward trend.
  • NLRs nucleotide-binding domains and leucine-rich repeats
  • NLRP3 NLR family pyrin domain-containing protein 3
  • NLRP3 in intrahepatic macrophages has been associated with many, including NASH. known to play a particularly important role in the development of chronic inflammatory diseases in humans. Therefore, cholesterol crystals were quantified in the above samples.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Animal Husbandry (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Birds (AREA)
  • Plant Pathology (AREA)

Abstract

The present invention addresses the problem of providing a means that is useful for research and development of the NASH mechanism and a therapeutic method. Also, the present invention addresses the problem of providing a prophylactic and/or therapeutic agent for NASH. To solve these problems, provided is a prophylactic and/or therapeutic agent for NASH that contains a nucleic acid having a specific base sequence. Also provided is a miR-33b knock-in rodent animal fed with a high-fat diet.

Description

NASHの予防及び/又は治療剤Preventive and/or therapeutic agent for NASH
 本発明は、NASHの予防及び/又は治療剤並びにそのスクリーニング方法に関する。本発明は、NASHモデル動物に関する。本発明は、NASHモデルげっ歯類動物及びその製造方法に関する。 The present invention relates to prophylactic and/or therapeutic agents for NASH and screening methods thereof. The present invention relates to NASH model animals. The present invention relates to NASH model rodents and methods for their production.
 非アルコール性脂肪肝炎(NASH)は、肝硬変や肝癌へと進行する可能性のある肝炎であって、近年患者数が増えてきており、その対策は急務となっている。NASHの発症メカニズムについて、例えば、以下のような発症経路が提唱されている。まず、肥満、糖尿病、高脂血症等のインスリン抵抗性によって肝臓に脂肪が蓄積して脂肪肝になり、次いで脂質過酸化、サイトカイン、鉄などの酸化ストレスによりNASHへ進行するという発症経路である。 Non-alcoholic steatohepatitis (NASH) is a type of hepatitis that can progress to cirrhosis and liver cancer, and the number of patients has been increasing in recent years, making countermeasures urgently needed. Regarding the onset mechanism of NASH, for example, the following pathogenesis has been proposed. First, fat accumulates in the liver due to insulin resistance such as obesity, diabetes, and hyperlipidemia, leading to fatty liver, and then oxidative stress such as lipid peroxidation, cytokines, and iron progresses to NASH. .
 しかし、当該発症経路は一説に過ぎず、その発症メカニズムにはまだまだ不明点が多いため、根本的な治療方法が見いだせていないのが現状である。このため、NASHのメカニズムや治療方法の研究開発に有用な手段が待ち望まれている。 However, the onset route is only one theory, and there are still many unclear points about the onset mechanism, so the current situation is that no fundamental treatment method has been found. For this reason, means useful for research and development of NASH mechanisms and therapeutic methods are eagerly awaited.
 近年、マイクロRNA(miRNA、miR)が転写後調節を介して、さまざまな病態や疾患形成に関与することが多くの研究によって示されつつある。miRNAは21から25塩基からなる内在性の小分子RNAであり、進化の過程を遡ると、カイメン(sponge)からその存在が知られている。miRNAの数は、生物の複雑さとともに増加し、ヒトゲノム上に2500個以上のmiRNAが存在するとみられ、これまでにmiRNAが関与することが明らかにされた現象は、発生・分化のみならず疾病まで多岐にわたる。 In recent years, many studies have shown that microRNAs (miRNAs, miRs) are involved in various pathological conditions and disease formation through post-transcriptional regulation. miRNAs are endogenous small RNA molecules consisting of 21 to 25 nucleotides, and their existence is known from sponges in the course of evolution. The number of miRNAs increases with the complexity of organisms, and more than 2,500 miRNAs are thought to exist on the human genome. diversified to.
 また、SREBP(sterol regulatory element-binding protein)は、basic-helix-loop-helix-leucine zipper(bHLH-Zip)ファミリーに属する転写因子である。脊椎動物のゲノム上にSREBP-1とSREBP-2という相同遺伝子があり、共に膜結合型の前駆体タンパク質として作られ、これがゴルジ体へSREBP cleavage activating protein(SCAP)によって輸送された後、膜結合部位周辺でタンパク質分解酵素[Site-1 protease(S1P)、Site-2 protease(S2P)]によって2か所の切断を受けることにより、そのN末端側が核に移行して転写因子として働くことが知られている(非特許文献2)。 In addition, SREBP (sterol regulatory element-binding protein) is a transcription factor belonging to the basic-helix-loop-helix-leucine zipper (bHLH-Zip) family. There are homologous genes called SREBP-1 and SREBP-2 on the genome of vertebrates, and both are made as membrane-bound precursor proteins, which are transported to the Golgi apparatus by SREBP cleavage activating protein (SCAP), and then membrane-bound. It is known that by being cleaved at two sites by protease [Site-1 protease (S1P), Site-2 protease (S2P)] around the site, the N-terminal side translocates to the nucleus and acts as a transcription factor. (Non-Patent Document 2).
 miR-33は、miRNAの一つであり、系統発生からみると、ショウジョウバエから存在し(dme-miR-33)、dSREBPのイントロンに存在する。その後、遺伝子重複により、SREBP-1とSREBP-2とが生じた際にmiR-33bとmiR-33aとして、それぞれのイントロンに残ったと推測される。ヒトは、SREBP-1とSREBP-2とを有しているので、miR-33bとmiR-33aとを有しているが、げっ歯類のSREBP-1のイントロンにおいてmiR-33bの一部しか残っていることから、げっ歯類にはmiR-33bが存在しない(非特許文献2)。  miR-33 is one of miRNAs, and phylogenetically, it exists from Drosophila (dme-miR-33) and exists in the intron of dSREBP. It is speculated that later, due to gene duplication, miR-33b and miR-33a remained in their respective introns when SREBP-1 and SREBP-2 were generated. Humans have SREBP-1 and SREBP-2 and therefore miR-33b and miR-33a, but only a portion of miR-33b in the intron of rodent SREBP-1. Since it remains, miR-33b is absent in rodents (Non-Patent Document 2).
 本発明は、NASHのメカニズムや治療方法の研究開発に有用な手段を提供することを課題とする。また、本発明は、NASHの予防及び/又は治療剤を提供することも課題とする。 The objective of the present invention is to provide useful means for research and development of NASH mechanisms and treatment methods. Another object of the present invention is to provide a prophylactic and/or therapeutic agent for NASH.
 本発明者らは、上記課題を解決すべく、鋭意検討した結果、特定の塩基配列を有する核酸が、miR-33a及び/又はmiR-33bの発現量を減少させることを見いだした。また、高脂肪食を摂取させたmiR-33bノックインげっ歯類動物がNASH様症状を発症することを見いだした。そして、上記核酸が上記げっ歯類動物のNASH様症状を改善することも見いだした。本発明は、このような知見を基に完成されたものであり、下記の各項に示す主題を広く包含する。 As a result of intensive studies aimed at solving the above problems, the present inventors found that a nucleic acid having a specific base sequence reduces the expression level of miR-33a and/or miR-33b. We also found that miR-33b knock-in rodents fed a high-fat diet developed NASH-like symptoms. It was also found that the nucleic acid ameliorated NASH-like symptoms in rodents. The present invention has been completed based on such findings, and broadly includes the subjects shown in the following items.
項1 核酸を含有するNASHの予防及び/又は治療剤であって、
該核酸は、架橋構造を有していてもよいDNA、RNA、又は核酸アナログであり、
該核酸は、配列番号1(aacnacaangca)又は2(aacagcaangca)に示される塩基配列からなり該塩基は、修飾されていてもよい、NASHの予防及び/又は治療剤。
Item 1 A prophylactic and/or therapeutic agent for NASH containing a nucleic acid,
The nucleic acid is DNA, RNA, or a nucleic acid analog that may have a crosslinked structure;
The prophylactic and/or therapeutic agent for NASH, wherein the nucleic acid comprises the base sequence shown in SEQ ID NO: 1 (aacnacaangca) or 2 (aacagcaangca), and the base may be modified.
項2 前記核酸が、配列番号1又は2に示される塩基配列において、1~4個の塩基が欠失、置換、挿入又は付加された塩基配列からなり、ヒトmiR33bを認識する核酸である、項1に記載する、NASHの予防及び/又は治療剤。 Item 2 The nucleic acid consists of a nucleotide sequence in which 1 to 4 bases are deleted, substituted, inserted or added in the nucleotide sequence shown in SEQ ID NO: 1 or 2, and is a nucleic acid that recognizes human miR33b. 2. The prophylactic and/or therapeutic agent for NASH according to 1.
項3 前記核酸が、配列番号3又は4に示される塩基配列からなる、項1又は2に記載のNASHの予防及び/又は治療剤。 Item 3 The preventive and/or therapeutic agent for NASH according to Item 1 or 2, wherein the nucleic acid consists of the base sequence shown in SEQ ID NO: 3 or 4.
項4 前記核酸が、配列番号3又は4に示される塩基配列において、1~4個の塩基が欠失、置換、挿入又は付加された塩基配列からなり、ヒトmiR33bを認識する核酸である、項1~3の何れか一項に記載のNASHの予防及び/又は治療剤。 Item 4 The nucleic acid consists of a nucleotide sequence in which 1 to 4 bases are deleted, substituted, inserted or added in the nucleotide sequence shown in SEQ ID NO: 3 or 4, and is a nucleic acid that recognizes human miR33b. The prophylactic and/or therapeutic agent for NASH according to any one of 1 to 3.
項5 前記核酸が、RNA及び架橋構造を有するRNAを含有するものである、項1~4の何れか一項に記載のNASHの予防及び/又は治療剤。 Item 5 The preventive and/or therapeutic agent for NASH according to any one of Items 1 to 4, wherein the nucleic acid contains RNA and RNA having a crosslinked structure.
項6 前記核酸が、図1又は2の化学式に示される化合物である、項1~5の何れか一項に記載のNASHの予防及び/又は治療剤。 Item 6 The preventive and/or therapeutic agent for NASH according to any one of Items 1 to 5, wherein the nucleic acid is a compound represented by the chemical formula in FIG. 1 or 2.
項7 高脂肪食負荷miR-33bノックインげっ歯類動物。 Item 7 High-fat diet-loaded miR-33b knock-in rodents.
項8 前記高脂肪食が、カロリーベースで40%以上の脂質が含有されるものである、項7に記載のげっ歯類動物。 Item 8 The rodent according to Item 7, wherein the high-fat diet contains 40% or more lipid on a calorie basis.
項9 前記高脂肪食が、コレステロールを含有しないものである、項7又は8に記載のげっ歯類動物。 Item 9 The rodent according to Item 7 or 8, wherein the high-fat diet does not contain cholesterol.
項10 前記高脂肪食が、コレステロールを含有するものである、項7又は8に記載すのげっ歯類動物。 Item 10 The rodent according to Item 7 or 8, wherein the high-fat diet contains cholesterol.
項11 前記高脂肪食が、糖類を含有するものである、項7~10の何れか一項に記載のげっ歯類動物。 Item 11 The rodent according to any one of Items 7 to 10, wherein the high-fat diet contains sugars.
項12 miR-33bがSrebf-1遺伝子の3’UTR、イントロン又は5’UTRにノックインされている、項7~11の何れか一項に記載のげっ歯類動物。 Item 12 The rodent according to any one of Items 7 to 11, wherein miR-33b is knocked into the 3'UTR, intron or 5'UTR of the Srebf-1 gene.
項13 NASHモデル動物である、項7~10の何れか一項に記載のげっ歯類動物。 Item 13 The rodent according to any one of Items 7 to 10, which is a NASH model animal.
項14 miR-33bノックインげっ歯類動物に高脂肪食を摂取させる工程を含む、NASHモデルげっ歯類動物の製造方法。 Item 14 A method for producing a NASH model rodent, comprising the step of feeding a miR-33b knock-in rodent with a high-fat diet.
項15 前記高脂肪食が、カロリーベースで40%以上の脂質が含有されるものである、項14に記載のげっ歯類動物の製造方法。 Item 15 The method for producing a rodent according to Item 14, wherein the high-fat diet contains 40% or more lipid on a calorie basis.
項16 前記高脂肪食が、コレステロールを含有しないものである、項14又は15に記載のげっ歯類動物の製造方法。 Item 16 The method for producing a rodent according to Item 14 or 15, wherein the high-fat diet does not contain cholesterol.
項17 前記高脂肪食が、コレステロールを含有するものである、項14又は15に記載のげっ歯類動物の製造方法。 Item 17 The method for producing a rodent according to Item 14 or 15, wherein the high-fat diet contains cholesterol.
項18 前記高脂肪食が、糖類を含有するものである、項14~17の何れか一項に記載のげっ歯類動物の製造方法。 Item 18 The method for producing a rodent according to any one of Items 14 to 17, wherein the high-fat diet contains sugars.
項19 miR-33bがSrebf-1遺伝子の3’UTR、イントロン又は5’UTRにノックインされている、項14~18の何れか一項に記載のげっ歯類動物の製造方法。 Item 19 The method for producing a rodent according to any one of Items 14 to 18, wherein miR-33b is knocked into the 3'UTR, intron or 5'UTR of the Srebf-1 gene.
項20 NASHモデル動物である、項14~19の何れか一項に記載のげっ歯類動物の製造方法。 Item 20: The method for producing the rodent animal according to any one of Items 14 to 19, which is a NASH model animal.
項21 miR-33bにノックインげっ歯類動物に高脂肪食及び被験物質を摂取させる工程を含む、NASHの予防及び/又は治療剤のスクリーニング方法。 Item 21 A method of screening for prophylactic and/or therapeutic agents for NASH, comprising the step of ingesting a high-fat diet and a test substance to miR-33b-knock-in rodents.
項22 前記高脂肪食が、カロリーベースで40%以上の脂質が含有されるものである、項21に記載のNASHの予防及び/又は治療剤のスクリーニング方法。 Item 22 The screening method for a preventive and/or therapeutic agent for NASH according to Item 21, wherein the high-fat diet contains 40% or more lipid on a calorie basis.
項23 前記高脂肪食が、コレステロールを含有しないものである、項22又は23に記載のNASHの予防及び/又は治療剤のスクリーニング方法。 Item 23 The method of screening for a prophylactic and/or therapeutic agent for NASH according to Item 22 or 23, wherein the high-fat diet does not contain cholesterol.
項24 前記高脂肪食が、コレステロールを含有するものである、項22又は23に記載のNASHの予防及び/又は治療剤のスクリーニング方法。 Item 24 The screening method for a prophylactic and/or therapeutic agent for NASH according to Item 22 or 23, wherein the high-fat diet contains cholesterol.
項25 前記高脂肪食が、糖類を含有するものである、項22~項24の何れか一項に記載のNASHの予防及び/又は治療剤のスクリーニング方法。 Item 25 The screening method for a preventive and/or therapeutic agent for NASH according to any one of Items 22 to 24, wherein the high-fat diet contains sugars.
項26 miR-33bがSrebf-1遺伝子の3’UTR、イントロン又は5’UTRにノックインされている、項22~25の何れか一項に記載のNASHの予防及び/又は治療剤のスクリーニング方法。 Item 26 The method of screening for a prophylactic and/or therapeutic agent for NASH according to any one of Items 22 to 25, wherein miR-33b is knocked into the 3'UTR, intron or 5'UTR of the Srebf-1 gene.
 本発明により、NASHの予防及び/又は治療剤を提供することができる。また、本発明により、NASH様症状を示すNASHモデル動物として有用な、高脂肪食負荷miR-33bノックインげっ歯類動物を提供することができる。そして、当該モデル動物を用いることにより、簡便にNASH予防及び/又は治療剤の候補をスクリーニングすることができる。 According to the present invention, a prophylactic and/or therapeutic agent for NASH can be provided. In addition, the present invention can provide high-fat diet-fed miR-33b knock-in rodents useful as NASH model animals exhibiting NASH-like symptoms. By using the model animal, candidate NASH preventive and/or therapeutic agents can be easily screened.
図1は、anti miR-33aの化学式を示す。FIG. 1 shows the chemical formula of anti-miR-33a. 図2は、anti miR-33bの化学式を示す。FIG. 2 shows the chemical formula of anti-miR-33b. 図3は、NEG-AmNAの化学式を示す。FIG. 3 shows the chemical formula of NEG-AmNA. 図4は、実施例1にて作製したmiR-33bノックインマウス(miR-33b+/+/miR-33b+/+)及び野生型マウス(miR-33a+/+/miR-33b-/-)及び実施例2にて作製したこれらのマウスに高脂肪食として、Research Diets, Inc.のD12451を負荷したマウス(本明細書にて、高脂肪食負荷したmiR-33a+/+/miR-33b+/+マウスをHFDマウスと呼ぶことがある)の体重及び高脂肪食摂取量を示す。FIG. 4 shows miR-33b knock-in mice (miR-33b +/+ /miR-33b +/+ ) and wild-type mice (miR-33a +/+ /miR-33b −/− ) prepared in Example 1. and these mice prepared in Example 2 were fed with Research Diets, Inc. as a high-fat diet. of D12451-loaded mice (herein, miR-33a +/+ /miR-33b +/+ mice loaded with a high-fat diet are sometimes referred to as HFD mice) and their high-fat diet intake was show. 図5は、実施例2にて作製した高脂肪食負荷野生型マウス及びHFDマウスの肝臓のヘマトキシリン・エオジン(HE)染色像(A)及びマッソン・トリクローム染色像(B)を示す。FIG. 5 shows hematoxylin-eosin (HE)-stained images (A) and Masson's trichrome-stained images (B) of the livers of high-fat diet-fed wild-type mice and HFD mice prepared in Example 2. 図6は、実施例2にて作製した高脂肪食負荷野生型マウス及びHFDマウスの肝臓のSingle strand DNA染色像を示す。FIG. 6 shows single-strand DNA-stained images of livers of high-fat diet-fed wild-type mice and HFD mice prepared in Example 2. 図7は、実施例2にて作製した高脂肪食負荷野生型マウス及びHFDマウスの肝臓内の脂質を、Folch法を用いて抽出し、酵素比色法にて計測した結果を示す。T-CHOは、総コレステロール量を、TGは、中性脂肪量を、FCは、遊離コレステロール量を、そして、PLは、リン脂質量を示す。*はP<0.05を示す。FIG. 7 shows the results of lipids in the livers of the high-fat diet-fed wild-type mice and HFD mice prepared in Example 2, extracted using the Folch method, and measured by an enzymatic colorimetric method. T-CHO indicates total cholesterol content, TG indicates triglyceride content, FC indicates free cholesterol content, and PL indicates phospholipid content. * indicates P<0.05. 図8は、実施例2にて作製したHFDマウスの肝臓における各遺伝子(炎症性サイトカインとしてIL-6及びTnfα、線維化マーカーとしてCol1a1及びαSma並びに炎症細胞浸潤のマーカーとしてCD68及びF4/80)の発現量をqRT-PCRにて測定した結果を示す。FIG. 8 shows each gene (IL-6 and Tnfα as inflammatory cytokines, Col1a1 and αSma as fibrosis markers, and CD68 and F4/80 as markers of inflammatory cell infiltration) in the HFD mouse liver prepared in Example 2. The results of measuring expression levels by qRT-PCR are shown. 図9は、実施例2にて作製した高脂肪食負荷野生型マウス及びHFDマウスの肝臓における遺伝子(線維化マーカーとしてCol1a1)の発現量をウエスタンブロットにより解析した結果を示す。FIG. 9 shows the results of Western blot analysis of the expression levels of genes (Col1a1 as a fibrosis marker) in the livers of high-fat diet-fed wild-type mice and HFD mice prepared in Example 2. FIG. 図10は、30週のHFDマウスから摘出した肝臓を示す。(A)は、当該肝臓の写真像であり、(B)は、そのHE染色像である。Figure 10 shows a liver excised from a 30 week HFD mouse. (A) is a photographic image of the liver, and (B) is an HE-stained image thereof. 図11は、実施例5に示すmiR-33bノックインマウスに高脂肪食として、D09103110を負荷したマウス(本明細書にて、当該マウスをGANマウスと呼ぶことがある)、体重及び血液検査等の結果を示す。各グラフにおいて、NEG(NC)は、高脂肪食付加をしないmiR-33bノックインマウスに図3に示すNEG-AmNAを皮下注射したマウスを、NEG(GAN)及びNEG-AmNAは、GANマウスに図3に示すNEG-AmNAを皮下注射したマウスを、anti-33aは、GANマウスに図1に示すanti miR-33aを皮下注射したマウスを、anti-33bは、GANマウスに図2に示すanti miR-33bを皮下注射したマウスを及びanti-33a+bは、GANマウスに上記anti miR-33a及びanti miR-33bを皮下注射したマウスを意味する。(A)は、各マウスの体重(g)を(検体数は、n=6-10)、(B)は、体重に対する肝臓の重量の相対値を、(C)は、体重に対する精巣周囲脂肪の重量の相対値を、(D)は、アルブミン(Alb)の量(g/dL)を、(E)は、尿素窒素(BUN)の量(mg/dL)を、(F)は、クレアチニン(Cre)の量(mg/dL)を、(G)は、アスパラギン酸アミノトランスフェラーゼ(AST)の量(IU/dL)を、(H)は、アラニンアミノトランスフェラーゼ(ALT)の量(IU/dL)を、(I)は、アルカリフォスファターゼ(ALP)の量(IU/dL)を、(J)は、コリンエステラーゼ(ChE)の量(IU/dL)を、(K)は、総ビリルビン(T-Bil)の量(mg/dL)を及び(L)は、総胆汁酸(TBA)の量(μmol/dL)を示す。(B)及び(C)における*は、p<0.05であり、(B)-(L)の検体数は、各グラフに記載のマーク数に対応する。FIG. 11 shows miR-33b knock-in mice shown in Example 5 loaded with D09103110 as a high-fat diet (herein, the mice may be referred to as GAN mice), body weight, blood tests, etc. Show the results. In each graph, NEG (NC) represents miR-33b knock-in mice not fed a high-fat diet subcutaneously injected with NEG-AmNA shown in FIG. 3, anti-33a is a mouse subcutaneously injected with NEG-AmNA shown in FIG. 1, anti-33b is a mouse subcutaneously injected with antimiR-33a shown in FIG. Mice subcutaneously injected with -33b and anti-33a+b refer to mice subcutaneously injected with anti-miR-33a and anti-miR-33b above in GAN mice. (A) is the body weight (g) of each mouse (the number of specimens is n = 6-10), (B) is the relative value of liver weight to body weight, and (C) is the peritesticular fat to body weight. (D) is the amount of albumin (Alb) (g/dL), (E) is the amount of urea nitrogen (BUN) (mg/dL), (F) is creatinine (Cre) amount (mg / dL), (G) aspartate aminotransferase (AST) amount (IU / dL), (H) alanine aminotransferase (ALT) amount (IU / dL) ), (I) is the amount of alkaline phosphatase (ALP) (IU/dL), (J) is the amount of cholinesterase (ChE) (IU/dL), (K) is total bilirubin (T- Bil) (mg/dL) and (L) indicate total bile acid (TBA) amount (μmol/dL). * in (B) and (C) is p<0.05, and the number of specimens in (B)-(L) corresponds to the number of marks shown in each graph. 図12は、実施例5にて作製したGANマウス等における、各種遺伝子の発現量を示す。(A)は、miR-33aの発現量を、(B)は、miR-33bの発現量を、(C)は、SREBF1の18S mRNAに対する発現量の相対値を及び(D)は、SREBF2の18S mRNAに対する発現量の相対値を示す。各グラフにおけるNEG(NC)、NEG(GAN)、anti-33a、anti-33b及びanti-33a+bは、それぞれ図11と同じである。各グラフ中の*は、p<0.05を、**は、p<0.005を、***は、p<0.0005を及び****は、p<0.0001を示す。各グラフ中の検体数について、NEG(NC)は、n=6であり、その他はn=8-10である(各グラフに記載のマーク数に対応する)。FIG. 12 shows expression levels of various genes in GAN mice and the like prepared in Example 5. FIG. (A) is the expression level of miR-33a, (B) is the expression level of miR-33b, (C) is the relative value of the expression level of SREBF1 to 18S mRNA, and (D) is the expression level of SREBF2. Shows the relative value of expression level to 18S mRNA. NEG(NC), NEG(GAN), anti-33a, anti-33b and anti-33a+b in each graph are the same as in FIG. * in each graph indicates p<0.05, ** indicates p<0.005, *** indicates p<0.0005 and *** indicates p<0.0001. . For the number of specimens in each graph, NEG(NC) is n=6 and others are n=8-10 (corresponding to the number of marks listed in each graph). 図13は、実施例5にて作製したGANマウス等における、血液検査の結果及び各種遺伝子の発現量を示す。(A)は、アルブミン(Alb)の量(g/dL)を、(B)は、アスパラギン酸アミノトランスフェラーゼ(AST)の量(IU/L)を、(C)は、アラニンアミノトランスフェラーゼ(ALT)の量(IU/L)を、(D)は、アルカリフォスファターゼ(ALP)の量(IU/L)を、(E)は、コリンエステラーゼ(ChE)の量(IU/L)を、(F)は、総ビリルビン(T-Bil)の量(mg/dL)を、(G)は、総胆汁酸(TBA)の量(μmol/dL)を及び(H)は、鉄(Fe)の量(μg/dL)を示し、(I)は、肝臓中におけるAbca1遺伝子の18S mRNAに対する発現量の相対値を及び(J)は、肝臓中におけるCpt1a遺伝子の18S mRNAに対する発現量の相対値を示す。各グラフにおけるNEG(NC)、NEG(GAN)、anti-33a、anti-33b及びanti-33a+bは、それぞれ図11と同じである。各グラフ中の*は、p<0.05を、**は、p<0.005を、***は、p<0.0005を及び****は、p<0.0001を示す。各グラフ中の検体数について、NEG(NC)は、n=6であり、その他はn=8-10である(各グラフに記載のマーク数に対応する)。FIG. 13 shows the results of blood tests and expression levels of various genes in GAN mice and the like prepared in Example 5. (A) is the amount (g/dL) of albumin (Alb), (B) is the amount (IU/L) of aspartate aminotransferase (AST), and (C) is the amount of alanine aminotransferase (ALT). (D) is the amount of alkaline phosphatase (ALP) (IU/L), (E) is the amount of cholinesterase (ChE) (IU/L), (F) is , the amount of total bilirubin (T-Bil) (mg/dL), (G) the amount of total bile acid (TBA) (μmol/dL), and (H) the amount of iron (Fe) (μg /dL), (I) shows the relative value of the expression level of the Abca1 gene to 18S mRNA in the liver, and (J) shows the relative value of the expression level of the Cpt1a gene to 18S mRNA in the liver. NEG(NC), NEG(GAN), anti-33a, anti-33b and anti-33a+b in each graph are the same as in FIG. * in each graph indicates p<0.05, ** indicates p<0.005, *** indicates p<0.0005 and *** indicates p<0.0001. . For the number of specimens in each graph, NEG(NC) is n=6 and others are n=8-10 (corresponding to the number of marks listed in each graph). 図14は、実施例5にて作製したGANマウスにおける、血液検査の結果を示す。(A)は、血清中の総コレステロール(T-CHO)の量(mg/dL)を、(B)は、血清中のHDLコレステロール(HDL-C)の量(mg/dL)を、(C)は、血清中のLDLコレステロール(LDL-C)の量(mg/dL)を、(D)は、血清中の遊離コレステロール(F-CHO)の量(mg/dL)を、(E)は、血清中の中性脂肪(TG)の量(mg/dL)を、(F)は、血清中の遊離脂肪酸(NEFA)の量(μEq/L)を、(G)は、肝臓中の総コレステロールの量(mg/g)を、(H)は、肝臓中の遊離コレステロールの量(mg/g)を及び(I)は、肝臓中の中性脂肪(TG)の量(mg/g)を示す。各グラフにおけるNEG(NC)、NEG(GAN)、anti-33a、anti-33b、及びanti-33a+bは、それぞれ図11と同じである。各グラフ中の*は、p<0.05を、**は、p<0.005を、***は、p<0.0005を、そして****は、p<0.0001を示す。各グラフ中の検体数について、NEG(NC)は、n=6であり、その他はn=8-10である(各グラフに記載のマーク数に対応する)。FIG. 14 shows the results of blood tests in GAN mice produced in Example 5. (A) is the amount of total cholesterol (T-CHO) in serum (mg/dL), (B) is the amount of HDL cholesterol (HDL-C) in serum (mg/dL), (C ) is the amount of LDL cholesterol (LDL-C) in the serum (mg / dL), (D) is the amount of free cholesterol (F-CHO) in the serum (mg / dL), (E) is , the amount of triglycerides (TG) in serum (mg/dL), (F) the amount of free fatty acids (NEFA) in serum (μEq/L), (G) the total liver The amount of cholesterol (mg/g), (H) the amount of free cholesterol in the liver (mg/g), and (I) the amount of triglyceride (TG) in the liver (mg/g) indicates NEG(NC), NEG(GAN), anti-33a, anti-33b, and anti-33a+b in each graph are the same as in FIG. * in each graph indicates p<0.05, ** indicates p<0.005, *** indicates p<0.0005, and *** indicates p<0.0001. show. For the number of specimens in each graph, NEG(NC) is n=6 and others are n=8-10 (corresponding to the number of marks listed in each graph). 図15の(A)は、実施例5にて作製したGANマウスの肝臓切片のHE染色像を示す。NEG(NC)及びNEG(GAN)は、それぞれ図11と同じであり、anti-33a(GAN)、anti-33b(GAN)及びanti-33a+b(GAN)は、それぞれanti-33a、anti-33b及びanti-33a+bとである。(B)は、(A)に示す染色像から評価されるNAFLDスコアのグラフである。グラフ中の*は、p<0.05を、**は、p<0.005を及び***は、p<0.0005を示す。グラフ中の検体数は、グラフに記載のマーク数である(NEG(GAN)はn=6である。)。FIG. 15(A) shows an HE-stained image of the GAN mouse liver section prepared in Example 5. FIG. NEG (NC) and NEG (GAN) are the same as in FIG. 11 respectively, anti-33a (GAN), anti-33b (GAN) and anti-33a+b (GAN) are anti-33a, anti-33b and and anti-33a+b. (B) is a graph of NAFLD scores evaluated from the stained images shown in (A). * in the graph indicates p<0.05, ** indicates p<0.005 and *** indicates p<0.0005. The number of specimens in the graph is the number of marks described in the graph (NEG(GAN) is n=6). 図16の(A)は、実施例5にて作製したGANマウスの肝臓切片のピクロシリウス染色像を示す。NEG(NC)、NEG(GAN)、anti-33a(GAN)、anti-33b(GAN)、及びanti-33a+b(GAN)は、それぞれ図11と同じである。(B)は、(A)に示す染色像から評価される繊維化スコアのグラフである。グラフ中の*は、p<0.05を示す。グラフ中の検体数は、グラフに記載のマーク数である。FIG. 16(A) shows a Picrosirius-stained image of the GAN mouse liver section prepared in Example 5. FIG. NEG (NC), NEG (GAN), anti-33a (GAN), anti-33b (GAN), and anti-33a+b (GAN) are the same as in FIG. 11, respectively. (B) is a graph of fibrosis scores evaluated from the stained images shown in (A). * in the graph indicates p<0.05. The number of specimens in the graph is the number of marks described in the graph. 図17は、実施例5にて作製したGANマウス等における、各種遺伝子の発現量を示す。(A)は、TNFαの発現量を、(B)は、Col1a1の発現量を及び(C)は、αSMA発現量を示す。各グラフにおけるNEG(NC)、NEG(GAN)、anti-33a、anti-33b及びanti-33a+bは、それぞれ図11と同じである。各グラフ中の*は、p<0.05を、**は、p<0.005を、***は、p<0.0005を及び****は、p<0.0001を示す。各グラフ中の検体数について、NEG(NC)は、n=6であり、その他はn=8-10である(各グラフに記載のマーク数に対応する)。17 shows the expression levels of various genes in GAN mice and the like prepared in Example 5. FIG. (A) shows the expression level of TNFα, (B) shows the expression level of Col1a1, and (C) shows the expression level of αSMA. NEG(NC), NEG(GAN), anti-33a, anti-33b and anti-33a+b in each graph are the same as in FIG. * in each graph indicates p<0.05, ** indicates p<0.005, *** indicates p<0.0005 and *** indicates p<0.0001. . For the number of specimens in each graph, NEG(NC) is n=6 and others are n=8-10 (corresponding to the number of marks listed in each graph). 図18は、実施例6の結果を示す。(A)は、顕微鏡観察像を示す。(B)は、(A)の顕微鏡観察像から算出したコレステロール結晶の割合を示すグラフである。NNC、NEG、anti-miR-33a、anti-miR-33b、及びanti-miR-33a+bは、それぞれ図16のNEG(NC)、NEG(GAN)、anti-33a(GAN)、anti-33b(GAN)、及びanti-33a+b(GAN)と同じである。**は、p<0.01を示す。各検体数は、各グラフに記載のマーク数に対応する。18 shows the results of Example 6. FIG. (A) shows a microscopic image. (B) is a graph showing the ratio of cholesterol crystals calculated from the microscopic image of (A). NNC, NEG, anti-miR-33a, anti-miR-33b, and anti-miR-33a+b are NEG (NC), NEG (GAN), anti-33a (GAN), anti-33b (GAN), respectively, in FIG. ), and anti-33a+b (GAN). ** indicates p<0.01. Each number of specimens corresponds to the number of marks described in each graph. 図19は、実施例1にて作成したmiR-33bノックインマウスの作成方法等を示す。FIG. 19 shows a method for generating miR-33b knock-in mice prepared in Example 1, etc. FIG.
 以下、本発明の各実施形態について、さらに詳細に説明する。 Each embodiment of the present invention will be described in further detail below.
NASHの予防及び/又は治療剤
 本発明のNASHの予防及び/又は治療剤は、核酸を含有する。ここで言う核酸とは、例えば、DNA、RNA又は核酸アナログであり、架橋構造を有していてもよい。
Preventive and/or therapeutic agent for NASH The preventive and/or therapeutic agent for NASH of the present invention contains a nucleic acid. The nucleic acid referred to here is, for example, DNA, RNA, or a nucleic acid analogue, and may have a crosslinked structure.
 上記核酸アナログとは、特定の塩基配列を有し、当該配列による機能をDNA又はRNA等と同様に発揮するポリマーであれば、特に限定されない。具体的な核酸アナログとして、GNA、LNA、BNA、PNA、AmNA、モルホリノ等を挙げることができる。このような核酸アナログの中でも、AmNAが好ましい。 The nucleic acid analogue is not particularly limited as long as it is a polymer that has a specific base sequence and exhibits the same function as DNA or RNA due to the sequence. Specific nucleic acid analogs include GNA, LNA, BNA, PNA, AmNA, morpholinos, and the like. Among such nucleic acid analogues, AmNA is preferred.
 上記架橋構造は、DNA、RNA又は核酸アナログの化学構造を安定にすること、酵素等にて分解されなければ、特に限定されない。例えば、DNA、RNA又は核酸アナログにおける塩基部分の立体配置に影響を及ぼさないように架橋を設けることを挙げることができる。 The above crosslinked structure is not particularly limited as long as it stabilizes the chemical structure of DNA, RNA or nucleic acid analogues and is not decomposed by enzymes or the like. For example, cross-linking may be provided so as not to affect the conformation of base moieties in DNA, RNA or nucleic acid analogues.
 上記架橋として、DNA、RNA又は核酸アナログの化学構造に含有される、糖部分に架橋を設ける態様を挙げることができる。好ましい態様の架橋として、例えば、糖部分の2’位と4’位との間に架橋を設ける態様を挙げることができる。具体的には、下記式にて示すようなリボース環の2’位と4’位との間での架橋を挙げることができる。 Examples of the above-mentioned cross-linking include a mode in which a cross-link is provided in the sugar moiety contained in the chemical structure of DNA, RNA or nucleic acid analogues. A preferred embodiment of cross-linking includes, for example, an embodiment in which a cross-link is provided between the 2'-position and 4'-position of the sugar moiety. Specifically, a bridge between the 2'-position and the 4'-position of the ribose ring as shown in the following formula can be mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式中、Rは塩基を示す。R及びRは、同一又は異なって、1以上の置換基を有していてもよいリン酸基を示す。このようなリン酸基における置換基は、本発明の効果を発揮される範囲において、特に限定されず、例えば、硫黄基を挙げることができる。 In the above formula, R 1 represents a base. R 2 and R 3 are the same or different and represent a phosphate group optionally having one or more substituents. Substituents in such phosphoric acid groups are not particularly limited as long as the effects of the present invention are exhibited, and examples thereof include sulfur groups.
 上記架橋構造は、核酸を構成するモノマーの全てにおいて設ける必要なく、一部のモノマーに設けることもできる。 The crosslinked structure does not need to be provided in all the monomers that constitute the nucleic acid, and can be provided in some of the monomers.
 上記核酸における塩基配列は、その3’末端から順に、aacnacaangcaとする配列番号1の塩基配列又はaacagcaangcaとする配列番号2の塩基配列からなる。本発明の効果をより発揮することに鑑みて、配列番号2に示す塩基配列が好ましい。 The base sequence in the above nucleic acid consists of the base sequence of SEQ ID NO: 1 as aacnacaangca or the base sequence of SEQ ID NO: 2 as aacagcaangca in order from the 3' end. The base sequence shown in SEQ ID NO: 2 is preferable in view of exhibiting the effects of the present invention.
 上記塩基配列におけるaは、アデニン、cは、シトシン、gは、グアニン、nは、チミン又はウラシルである。本発明の効果をより発揮することに鑑みて、nをチミンとすることが好ましい。 In the base sequence above, a is adenine, c is cytosine, g is guanine, and n is thymine or uracil. It is preferable that n is thymine in view of exhibiting the effect of the present invention more.
 上記核酸の塩基配列は、ヒトmiR33bを認識する範囲において配列番号1又は2に示す塩基配列と80%以上の相同性を有する塩基配列とする変異を許容することができ、好ましくは、85%以上の相同性、より好ましくは、90%以上の相同性であり、95%以上の相同性を有することが最も好ましい。 The base sequence of the above nucleic acid can tolerate mutation to a base sequence having 80% or more homology with the base sequence shown in SEQ ID NO: 1 or 2 within the range that recognizes human miR33b, preferably 85% or more. more preferably 90% or more homology, most preferably 95% or more homology.
 上記変異として、欠失、置換、挿入又は付加を挙げることができる。上記変異が導入された塩基配列は、配列番号1又は2に示される塩基配列において、4個の塩基が、より好ましくは3個の塩基が、更に好ましくは2個の塩基が、最も好ましくは1個の塩基が欠失、置換、挿入又は付加された塩基配列からなり、ヒトmiR33bを認識する核酸の塩基配列とすることができる。 The above mutations can include deletion, substitution, insertion or addition. In the nucleotide sequence shown in SEQ ID NO: 1 or 2, the nucleotide sequence introduced with the above mutation is 4 nucleotides, more preferably 3 nucleotides, still more preferably 2 nucleotides, most preferably 1 It can be a nucleotide sequence of a nucleic acid that recognizes human miR33b, which consists of a nucleotide sequence in which 10 nucleotides are deleted, substituted, inserted or added.
 ここで、ヒトmiR33bを認識するとは、ヒトmiR33bに結合すると言い換えることができ、一般的には、上記塩基配列からなる核酸とヒトmiR33bとが結合することであると解釈される。具体的に、両者が結合するかどうかについて公知の方法により確認することができ、核酸がヒトmiR33bに結合することによりヒトmiR33bの発現量を低下させるので、例えば、後記する実施例5の(3)に示す実験により確認する事ができる。 Here, recognizing human miR33b can be rephrased as binding to human miR33b, and is generally interpreted as binding of a nucleic acid consisting of the above base sequence to human miR33b. Specifically, it can be confirmed by a known method whether the two bind to each other, and the binding of the nucleic acid to human miR33b reduces the expression level of human miR33b. ) can be confirmed by the experiment shown in
 上記核酸を構成する塩基配列における塩基は、修飾されたものとすることができる。このような修飾は、本発明の効果を奏する範囲において、特に限定さず、例えば、アルキル化(メチル化、エチル化、プロピル化、ブチル化等)、脱アミノ化、ヒドロキシル化、ハロゲン化等を挙げることができる。本発明の効果をより発揮することに鑑みて、上記塩基がメチル化修飾されることが好ましい。 The bases in the base sequence that constitutes the above nucleic acid can be modified. Such modifications are not particularly limited as long as the effect of the present invention is exhibited, and examples thereof include alkylation (methylation, ethylation, propylation, butylation, etc.), deamination, hydroxylation, halogenation, etc. can be mentioned. In view of exhibiting the effect of the present invention more, it is preferable that the above base is modified by methylation.
 上記修飾を施す塩基の種類は、本発明の効果を奏する範囲において、特に限定されない。本発明の効果をより発揮することに鑑みて、シトシンに修飾を施すことが好ましく、シトシンの5位にメチル化修飾を施すことが更に好ましい。 The type of base to be modified is not particularly limited as long as the effect of the present invention is exhibited. In view of exhibiting the effects of the present invention more effectively, it is preferable to modify cytosine, and it is more preferable to modify the 5-position of cytosine by methylation.
 上記核酸のより好ましい塩基配列として、3’末端から順に、aactacaatgcaとする配列番号3の塩基配列又はaacagcaatgcaとする配列番号4の塩基配列を挙げることができる。なお、上記配列番号3及び4におけるシトシンの5位はメチル化修飾が施されている。本発明の効果をより発揮することに鑑みて、配列番号4に示す塩基配列が好ましい。 A more preferable base sequence of the above nucleic acid is the base sequence of SEQ ID NO: 3 as aactacaatgca or the base sequence of SEQ ID NO: 4 as aacagcaatgca in order from the 3' end. In addition, the 5-position of cytosine in the above SEQ ID NOs: 3 and 4 is methylated. The base sequence shown in SEQ ID NO: 4 is preferable in view of exhibiting the effect of the present invention.
 上記核酸の塩基配列は、ヒトmiR33bを認識する範囲において、配列番号3又は4に示す塩基配列と80%以上の相同性を有する塩基配列とする変異を許容することができる。好ましくは、85%以上の相同性、より好ましくは、90%以上の相同性であり、95%以上の相同性を有する塩基配列とすることが最も好ましい。 The base sequence of the above nucleic acid can allow mutation to a base sequence having 80% or more homology with the base sequence shown in SEQ ID NO: 3 or 4 within the range of recognizing human miR33b. Preferably, the nucleotide sequence has a homology of 85% or more, more preferably a homology of 90% or more, and most preferably a homology of 95% or more.
 上記変異として、欠失、置換、挿入又は付加を挙げることができる。上記変異が導入された塩基配列は、配列番号3又は4に示される塩基配列において、4個の塩基が、より好ましくは3個の塩基が、更に好ましくは2個の塩基が、最も好ましくは1個の塩基が、欠失、置換、挿入又は付加された塩基配列からなり、ヒトmiR33bを認識する核酸の塩基配列とすることができる。 The above mutations can include deletion, substitution, insertion or addition. The nucleotide sequence into which the mutation is introduced is 4 bases, more preferably 3 bases, still more preferably 2 bases, most preferably 1 base in the base sequence shown in SEQ ID NO: 3 or 4. It can be a nucleotide sequence of a nucleic acid that recognizes human miR33b, consisting of a nucleotide sequence in which one base is deleted, substituted, inserted or added.
 上記する核酸の好ましい態様として、アンチセンスオリゴヌクレオチド、siRNA、又はshRNA等を挙げることができ、より好ましくは、アンチセンスオリゴヌクレオチドであり、更に好ましくは図1又は2の化学式にて示される化合物を挙げることができる。本発明の効果をより発揮することに鑑みて、図2の化学式にて示される化合物とすることが最も好ましい。 Preferred embodiments of the above-described nucleic acids include antisense oligonucleotides, siRNA, shRNA, and the like, more preferably antisense oligonucleotides, and still more preferably compounds represented by the chemical formulas of FIGS. can be mentioned. In view of the effect of the present invention being exhibited more effectively, the compound represented by the chemical formula in FIG. 2 is most preferable.
 上記の核酸は、常法によって合成することができ、例えば、市販の核酸合成装置によって容易に合成することができる。また、上記核酸の好ましい態様として挙げるヌクレオチドに糖修飾を設けたAmNAは、WO11/052436に開示されている方法で合成することができる。 The above nucleic acids can be synthesized by conventional methods, and can be easily synthesized, for example, using a commercially available nucleic acid synthesizer. In addition, AmNA in which nucleotides are sugar-modified, which is a preferred embodiment of the above nucleic acid, can be synthesized by the method disclosed in WO11/052436.
 上記siRNA及びshRNAは、人工的に化学合成することができる。また、siRNA及びshRNAは、例えば、T7RNAポリメラーゼ及びT7プロモーター等を用いて、鋳型DNAからアンチセンス鎖及びセンス鎖のRNAをインビトロで合成することができる。 The above siRNA and shRNA can be artificially chemically synthesized. In addition, siRNA and shRNA can be used, for example, to synthesize antisense strand and sense strand RNA from template DNA in vitro using T7 RNA polymerase, T7 promoter, and the like.
 このようなmiR-33bを阻害する活性を有する化合物は、例えば、Proc.Natl.Acad.Sci.USA.113(21):5898-903(2016)、Mol.Pharm.16(2):914-920(2019)、J.Am.Chem.Soc.139(9):3446-3455(2017)等に開示されている方法で合成することができる。 Compounds having such miR-33b inhibitory activity are disclosed, for example, in Proc. Natl. Acad. Sci. USA. 113(21):5898-903 (2016), Mol. Pharm. 16(2):914-920 (2019); Am. Chem. Soc. 139(9):3446-3455 (2017) and the like.
 上記NASHの予防及び/又は治療剤には、実質的に上記核酸のみが含有されていてもよいし、その他の成分が含有されることもできる。 The prophylactic and/or therapeutic agent for NASH may contain substantially only the nucleic acid, or may contain other components.
 上記その他成分とは、本発明の効果を発揮できる範囲において、特に限定されない。例えば、薬学的に許容される基剤、担体、添加剤(例えば、賦形剤、溶剤、界面活性剤、保存剤、pH調整剤、粘桐化剤等)等を挙げることができる。このような基材、担体、添加剤等は、例えば、医薬品添加物辞典等に記載されており、これらを適宜採用することができる。 The above-mentioned other components are not particularly limited as long as the effects of the present invention can be exhibited. Examples include pharmaceutically acceptable bases, carriers, additives (eg, excipients, solvents, surfactants, preservatives, pH adjusters, thickening agents, etc.). Such base materials, carriers, additives and the like are described, for example, in Dictionary of Pharmaceutical Excipients, etc., and these can be employed as appropriate.
 上記NASHの予防及び/又は治療剤の剤形は、本発明の効果を発揮できる範囲において、特に限定されず、例えば、液剤、懸濁剤等とすることができる。このような剤型は、常法により有効成分である上記核酸及びその他の成分を混合して、適宜調製することができる。 The dosage form of the prophylactic and/or therapeutic agent for NASH is not particularly limited as long as the effect of the present invention can be exhibited, and can be, for example, a solution, a suspension, or the like. Such a dosage form can be appropriately prepared by mixing the nucleic acid as an active ingredient and other ingredients in a conventional manner.
 上記NASHの予防及び/又は治療剤の投与方法は、本発明の効果を発揮できる範囲において、上記各種剤形に最適化される公知の投与方法である限り、特に限定されない。例えば、経口投与、筋肉内投与、静脈内投与、動脈内投与、くも膜下腔内投与、皮内投与、腹腔内投与、鼻腔内投与、肺内投与、眼内投与、腟内投与、頸部内投与、直腸内投与、皮下投与等を挙げることができる。これらの中でも、静脈投与が好ましい。 The administration method of the preventive and/or therapeutic agent for NASH is not particularly limited as long as it is a known administration method optimized for the above various dosage forms within the range where the effects of the present invention can be exhibited. For example, oral administration, intramuscular administration, intravenous administration, intraarterial administration, intrathecal administration, intradermal administration, intraperitoneal administration, intranasal administration, intrapulmonary administration, intraocular administration, intravaginal administration, intracervical administration Administration, rectal administration, subcutaneous administration, and the like can be mentioned. Among these, intravenous administration is preferred.
 上記するNASHの予防及び/又は治療剤の投与量は、本発明の効果を発揮できる範囲において、特に限定されない。一例として、体重60kgの成人に対して、0.001~1000mg/mのNASHの予防及び/又は治療剤を投与することを挙げることができる。好ましくは0.01~500mg/mの投与量、より好ましくは、0.1~100mg/mの投与量、さらに好ましくは、1~50mg/mの投与量とすることができ、20~40mg/mの投与量とすることが最も好ましい。このような投与量は、一日に一回とすることもできるし、一日に数回に分けて投与することもできる。 The dose of the preventive and/or therapeutic agent for NASH described above is not particularly limited as long as the effects of the present invention can be exhibited. As an example, administering 0.001 to 1000 mg/m 2 of a NASH prophylactic and/or therapeutic agent to an adult with a body weight of 60 kg can be mentioned. Preferably, the dose is 0.01 to 500 mg/m 2 , more preferably 0.1 to 100 mg/m 2 , and still more preferably 1 to 50 mg/m 2 . A dose of ~40 mg/m 2 is most preferred. Such doses can be administered once a day, or can be divided into several administrations per day.
高脂肪食負荷miR-33bノックインげっ歯類動物
 miR-33b-/-は、野生型マウスを、miR-33b+/+は、miR-33bノックインマウスを、示す。
High-fat diet-fed miR-33b knock-in rodents miR-33b −/− indicate wild-type mice and miR-33b +/+ miR-33b knock-in mice.
 本発明のノックインげっ歯類動物は、miR-33bがノックインされ、且つ高脂肪食を摂取させたげっ歯類動物(高脂肪食負荷miR-33bノックインげっ歯類動物)である。 The knock-in rodent of the present invention is a rodent in which miR-33b is knocked in and fed with a high-fat diet (high-fat diet-loaded miR-33b knock-in rodent).
 上記げっ歯類動物は、特に限定はされず、例えば、マウス、ラット、チャイニーズハムスター等のネズミ()、ウサギ、リス等が挙げられる。中でも、マウス、ラット等が好ましい。 The above rodents are not particularly limited, and examples include mice, rats, rats such as Chinese hamsters (), rabbits, and squirrels. Among them, mice, rats and the like are preferable.
 上記ノックインマウスにおいてノックインされるmiR-33bは、gugcauugcuguugcauugc(配列番号5)の塩基配列からなるRNAである。miR-33bのノックインは、例えば、当該RNAを発現するDNAをゲノムに組み込むことである。 The miR-33b knocked in in the above knock-in mouse is an RNA consisting of the base sequence of gugcauugcuguugcauugc (SEQ ID NO: 5). Knock-in of miR-33b is, for example, integration of DNA expressing the RNA into the genome.
 miR-33bのげっ歯類動物へのノックインは、公知の手法により行うことができる。例えば、遺伝子改変(ノックイン)用ベクターを作製し、これを多能性幹細胞(例えば、ES細胞、iPS細胞等)に導入して、相同組換えによりmiR-33bをノックインする方法が挙げられる。また、ゲノム編集技術(例えば、CRISPR-Cas9(clustered regularly interspaced short palindromic repeats/CRISPR associated proteins)技術)を用いても、miR-33bをノックインすることもできる。本発明のmiR-33bノックインげっ歯類動物は、miR-33bがヘテロ又はホモでノックインされていてよいが、ホモでノックインされていることが好ましい。 Knock-in of miR-33b into rodents can be performed by known methods. For example, there is a method in which a gene modification (knock-in) vector is prepared, introduced into pluripotent stem cells (eg, ES cells, iPS cells, etc.), and miR-33b is knocked in by homologous recombination. In addition, miR-33b can also be knocked in using genome editing technology (eg, CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated proteins) technology). The miR-33b knock-in rodent of the present invention may have miR-33b heterozygous or homozygous, but is preferably homozygous.
 また、ノックインするゲノム上の場所は、ヒトにおいてmiR-33bが発現するのと同じ時期にげっ歯類動物においてノックインmiR-33bが発現することが期待される場所が好ましい。ヒトにおいてmiR-33bが存在する場所は、SREBP-1をコードするSterol regulatory element-binding transcription factor 1(srebf-1)遺伝子のイントロン(イントロン16)であるため、ヒトにおけるmiR-33bの発現は、srebf-1遺伝子の発現とシンクロすると考えられる。従って、げっ歯類動物にmiR-33bをノックインする場所として、srebf-1遺伝子のエクソン以外の部位が好ましい。このような部位としては、例えば3’UTR(非翻訳領域)、イントロン5’UTR(非翻訳領域)等が例示される。中でもイントロンが好ましい。Srebf-1遺伝子は、19個のエクソンを有する。これらのエクソン(エクソン1、エクソン2、エクソン3、エクソン4、エクソン5、エクソン6、エクソン7、エクソン8、エクソン9、エクソン10、エクソン11、エクソン12、エクソン13、エクソン14、エクソン15、エクソン16、エクソン17、エクソン18、エクソン19)のいずれの間のイントロンにmiR-33bをノックインしてもよいが、ヒトにおいてmiR-33bが存在するのがsrebf-1のエクソン16とエクソン17との間であるため、エクソン16とエクソン17との間のイントロン16にノックインすることがより好ましい。 In addition, the location on the genome to be knocked-in is preferably a location where knock-in miR-33b is expected to be expressed in rodents at the same time as miR-33b is expressed in humans. Since the location of miR-33b in humans is the intron (intron 16) of the sterol regulatory element-binding transcription factor 1 (srebf-1) gene that encodes SREBP-1, the expression of miR-33b in humans is It is thought to synchronize with the expression of the srebf-1 gene. Therefore, sites other than exons of the srebf-1 gene are preferred sites for miR-33b knock-in in rodents. Examples of such sites include 3'UTR (untranslated region), intron 5'UTR (untranslated region), and the like. Among them, intron is preferable. The Srebf-1 gene has 19 exons. These exons (exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, exon 7, exon 8, exon 9, exon 10, exon 11, exon 12, exon 13, exon 14, exon 15, exon 16, exon 17, exon 18, exon 19), miR-33b may be knocked in in the intron between exons 16 and 17 of srebf-1. Since it is between exons 16 and 17, it is more preferable to knock in intron 16.
 なお、マウスのsrebf-1遺伝子のGene IDとして20787、ラットのsrebf-1遺伝子のGene IDとして78968、チャイニーズハムスターのGene IDとして100689018を挙げることができる。である。これらの遺伝子情報は、例えばNCBIのウェブページから検索することができる。 In addition, Gene ID 20787 for mouse srebf-1 gene, Gene ID 78968 for rat srebf-1 gene, and Gene ID 100689018 for Chinese hamster can be mentioned. is. Such genetic information can be retrieved, for example, from the NCBI web page.
 例えば、上記非特許文献1(Horie,et al.,Scientific Reports 4,Article number:5312(2014))に記載の手法又は当該手法に準じる手法に従って、miR-33bノックインげっ歯類動物を作製することができる。 For example, producing miR-33b knock-in rodents according to the method described in Non-Patent Document 1 (Horie, et al., Scientific Reports 4, Article number: 5312 (2014)) or a method according to the method. can be done.
 上記高脂肪食負荷miR-33bノックインげっ歯類動物における高脂肪食は、特に限定されず、例えば、カロリーベース(すなわち、カロリーの割合)で、40%以上が脂肪由来であることを挙げることができる。当該カロリーベースとして、45%以上が好ましく、50%以上がさらに好ましく、55%以上がよりさらに好ましく、60%以上とすることが特に好ましい。 The high-fat diet in the high-fat diet-loaded miR-33b knock-in rodent is not particularly limited. can. The calorie base is preferably 45% or more, more preferably 50% or more, even more preferably 55% or more, and particularly preferably 60% or more.
 高脂肪食は、コレステロールを含有するものであっても、含有しないものであってもよい。コレステロール含有する高脂肪食では、肝臓において遊離コレステロール及び中性脂肪の蓄積が多いことを特徴とするげっ歯類動物が得られる傾向となり、コレステロール含有しない高脂肪食では、肝臓において中性脂肪の蓄積が多いことを特徴とするげっ歯類動物が得られる傾向となる。 A high-fat diet may or may not contain cholesterol. Cholesterol-containing high-fat diets tend to result in rodents characterized by high accumulation of free cholesterol and triglycerides in the liver, whereas cholesterol-free high-fat diets result in accumulation of triglycerides in the liver. Rodents tend to be obtained that are characterized by an abundance of
 上記高脂肪食がコレステロールの含有量は、本発明の効果を発揮できる範囲において、特に限定されず、例えば、100質量部の高脂肪食に対して、0.0001~10質量部とすることができ、好ましくは0.01~5質量部、より好ましくは1~4質量部であり、1~3質量部のコレステロール含有量とすることが最も好ましい。 The content of cholesterol in the high-fat diet is not particularly limited as long as the effects of the present invention can be exhibited. preferably 0.01 to 5 parts by weight, more preferably 1 to 4 parts by weight, most preferably 1 to 3 parts by weight.
 また、上記高脂肪食は、糖を含有するものとすることができる。具体的な糖は、本発明の効果を発揮できる範囲において、特に限定されず、例えば、アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、リボース、アラビノース、キシロース、リキソース、デオキシリボース、フコース、フクロース、ラムノース、スクロース、ラクトース、マルトース、トレハロース、ツラノース、セロビオース等を挙げることができる。本発明の効果をより発揮することに鑑みて、フルクトースを含有するすることが好ましい。 In addition, the high-fat diet may contain sugar. Specific sugars are not particularly limited as long as the effects of the present invention can be exhibited. , fucose, fucrose, rhamnose, sucrose, lactose, maltose, trehalose, turanose, cellobiose and the like. It is preferable to contain fructose in view of exhibiting the effect of the present invention more.
 上記成分の他に、パーム油を含有する高脂肪食とすることができる。 In addition to the above ingredients, it can be a high-fat diet containing palm oil.
 このような高脂肪食(餌)は、市販品を購入して用いることができ、例えばResearch Diets,Inc.、日本エスエルシー株式会社等から購入することができる。中でも、品番:D12451(45kcal%)又は品番D09103110(40kcal%)の製品が好ましい。 Such a high-fat diet (bait) can be used by purchasing a commercially available product, for example Research Diets, Inc. , Japan SLC Co., Ltd., etc. Among them, product number: D12451 (45 kcal%) or product number D09103110 (40 kcal%) is preferable.
 高脂肪食負荷は、上記高脂肪食をmiR-33bノックインげっ歯類動物に摂取させることで行うことが出来る。摂取させる期間は、特に限定されず、例えば、NASH様症状を呈するまで摂取させればよい。具体的には8週間以上、好ましくは10週以上、より好ましくは12週以上、miR-33bノックインげっ歯類動物に摂取させることができる。また、摂取方法も特に制限はされず、例えば、自由摂取を挙げることができる。 High-fat diet loading can be performed by having miR-33b knock-in rodents ingest the above-mentioned high-fat diet. The period of ingestion is not particularly limited, and for example, it may be ingested until NASH-like symptoms are exhibited. Specifically, miR-33b knock-in rodents can be ingested for 8 weeks or longer, preferably 10 weeks or longer, and more preferably 12 weeks or longer. Also, the method of ingestion is not particularly limited, and for example, free ingestion can be mentioned.
 このようにして得られる高脂肪食負荷miR-33bノックインげっ歯類動物は、NASH様症状を示す。このようなNASH様症状として、例えば、肝臓におけるトランスアミナーゼ(AST、ALT)値、アルカリホスファターゼ(ALP)値、ビリルビン値等が野生型と比較して高く(好ましくは有意に高く)なる。また、肝臓において脂肪滴が増加する、肝臓組織が線維化する等の所見を確認することができる。従って、高脂肪食負荷miR-33bノックインげっ歯類動物はNASHモデル動物として有用である。なお、miR-33bノックインげっ歯類動物は、NASH様症状を示した後も高脂肪食負荷を与え続けられることにより、肝癌を発症し得る。このように、肝癌を発症し得る点もNASHと同様の特徴であるため、本発明の高脂肪食負荷miR-33bノックインげっ歯類動物が、優れたNASHモデル動物であることが理解できる。 High-fat diet-fed miR-33b knock-in rodents thus obtained exhibit NASH-like symptoms. As such NASH-like symptoms, for example, transaminase (AST, ALT) levels, alkaline phosphatase (ALP) levels, bilirubin levels, etc. in the liver become higher (preferably significantly higher) than wild-type. In addition, findings such as an increase in lipid droplets in the liver and fibrosis of the liver tissue can be confirmed. Therefore, high-fat diet-fed miR-33b knock-in rodents are useful as NASH model animals. It should be noted that miR-33b knock-in rodents can develop liver cancer by continuing to be fed a high-fat diet even after exhibiting NASH-like symptoms. As described above, the ability to develop liver cancer is also a feature similar to NASH, so it can be understood that the high-fat diet-fed miR-33b knock-in rodent of the present invention is an excellent model animal for NASH.
NASHの予防及び/又は治療剤のスクリーニング方法
 本発明は、
(1)高脂肪食負荷miR-33bノックインげっ歯類動物に被験物質を摂取させる工程を含む、NASH予防又は治療剤のスクリーニング方法、並びに
(2)miR-33bノックインげっ歯類動物に高脂肪食及び被験物質を摂取させる工程を含む、NASH予防又は治療剤のスクリーニング方法、
を包含する。
A screening method for a prophylactic and/or therapeutic agent for NASH The present invention comprises:
(1) a screening method for a NASH preventive or therapeutic agent, which comprises the step of ingesting a test substance to miR-33b knock-in rodents loaded with a high-fat diet; And a screening method for a NASH preventive or therapeutic agent, comprising the step of ingesting a test substance,
encompasses
 上記被験物質は、特に限定はされず、例えば、化合物及び組成物をあげることができる。上記化合物として、例えば、低分子化合物、核酸(例えばDNA、RNA等)、タンパク質(例えば、抗体又はその一部等)、ポリマー等の高分子化合物を挙げることができる。上記組成物は、生物(例えば、動物、植物、微生物等)から得た抽出物等をあげることができ、上記化合物の2種以上を組み合わせたものとすることもできる。 The test substance is not particularly limited, and examples include compounds and compositions. Examples of the above compounds include low-molecular-weight compounds, nucleic acids (eg, DNA, RNA, etc.), proteins (eg, antibodies or portions thereof, etc.), and macromolecular compounds such as polymers. The composition can include extracts obtained from organisms (eg, animals, plants, microorganisms, etc.), and can also be a combination of two or more of the above compounds.
 被験物質を摂取させる手法(経路)は、特に制限はされず、検討する被験物質の性質等を考慮して適宜選択することができる。例えば、経口投与、経血管投与(静脈投与、動脈投与)、経皮投与等により、被験物質をmiR-33bノックインげっ歯類動物に摂取させることができる。また、経口投与時において、ゾンデ等を、経血管投与において、注射器等といった、投与のための器具を適宜選択して用いることもできる。また、被験物質に、薬学的又は食品衛生学的に許容される担体や食餌等を混合して、各投与経路に適した組成物として投与することもできる。 The method (route) of ingesting the test substance is not particularly limited, and can be selected as appropriate in consideration of the properties of the test substance to be studied. For example, the test substance can be administered to miR-33b knock-in rodents by oral administration, transvascular administration (intravenous administration, arterial administration), transdermal administration, and the like. In addition, it is also possible to appropriately select and use a device for administration such as a sonde or the like for oral administration and a syringe or the like for transvascular administration. Alternatively, the test substance can be mixed with a pharmaceutically or food hygienically acceptable carrier, food, or the like, and administered as a composition suitable for each administration route.
 (1)のスクリーニング方法では、被験物質を投与しない高脂肪食負荷miR-33bノックインげっ歯類動物(コントロール群)も併せて検討し、コンロトール群に比べてNASH様症状が軽減された場合に、投与した被験物質をNASH予防又は治療剤候補として選択することができる。 In the screening method of (1), high-fat diet-loaded miR-33b knock-in rodents (control group) not administered the test substance were also examined, and NASH-like symptoms were reduced compared to the control group. , the administered test substance can be selected as a NASH prophylactic or therapeutic agent candidate.
 また、(2)のスクリーニング方法では、高脂肪食は摂取させるが被験物質は摂取させないmiR-33bノックインげっ歯類動物(コントロール)も併せて検討し、コンロトール群に比べて発現するNASH様症状が軽減された場合に、投与した被験物質をNASH予防又は治療剤候補として選択することができる。なお、高脂肪食と被験物質とを摂取させる時期は、特に制限されず、例えば、両者を同時に摂取させてもよいし、被験物質を食間に摂取させる等とすることもできる。 In addition, in the screening method (2), miR-33b knock-in rodents (controls) that were given a high-fat diet but not the test substance were also examined. is reduced, the administered test substance can be selected as a NASH prophylactic or therapeutic agent candidate. The timing of ingestion of the high-fat meal and the test substance is not particularly limited. For example, both may be ingested at the same time, or the test substance may be ingested between meals.
 なお、上記スクリーニング方法における工程は、被験動物1匹とコントロール1匹とで行うこともできるが、いずれも2匹以上(例えば5~10匹)からなる群で検討することが好ましい。 Although the steps in the above screening method can be performed with one test animal and one control animal, it is preferable to examine groups of two or more animals (for example, 5 to 10 animals).
 本明細書において、ある成分を「を含む」又は「を含有する」との表現には、当該成分を含み、さらに他の成分を含んでいてもよいとの意味のほか、当該成分のみを含むとの意味の「のみからなる」、及び当該成分を必須として含むとの意味の「から必須としてなる」の概念も包含される。 As used herein, the expression "comprising" or "contains" a certain component means that the component is included and may further contain other components, and that only the component is included Also included is the concept of "consisting only of" in the sense of and "consisting essentially of" in the sense of comprising essentially the component.
 本明細書において挙げた文献及びウェブページに記載の内容は、参照により本明細書に組み込むができる。 The contents of the documents and web pages cited in this specification can be incorporated into this specification by reference.
 また、上述した本発明の各実施形態について説明した性質、構造、機能等の各種の特性は、本発明に包含される主題を特定するにあたり、どのように組み合わせることができる。すなわち、本発明には、本明細書で開示する、組み合わせることができる各特性からなる主題の全てを包含することができる。 In addition, various characteristics such as properties, structures, and functions described for each of the embodiments of the present invention described above can be combined in any way to specify the subject matter included in the present invention. That is, the present invention can encompass all of the subject matter of each combinable feature disclosed herein.
 以下の実施例により、本発明をより具体的に説明する。但し、本発明が下記の実施例に限定されるものではない。 The following examples explain the present invention more specifically. However, the present invention is not limited to the following examples.
(実施例1)
miR-33bノックインマウスの作製
 非特許文献1に記載の手法に従って、srebf-1遺伝子のイントロン16にヒトmiR-33b(塩基配列:GUGCAUUGCUGUUGCAUUGC;配列番号5)を発現する塩基配列をCre-loxPシステムを使用してノックインし、雄のmiR-33bノックインマウス(ホモ:miR-33b+/+)を作製した。図19に示すように、ノックインしたマウス(KI++)は、目的の部位にヒトmiR-33b遺伝子が組み込まれ、ヒトmiR-33b遺伝子が発現していることを確認した。
(Example 1)
Preparation of miR-33b knock-in mice According to the method described in Non-Patent Document 1, human miR-33b (nucleotide sequence: GUGCAUUGCUGUUGCAUUGC; SEQ ID NO: 5) expressing human miR-33b (nucleotide sequence: GUGCAUUGCUGUUGCAUUGC; SEQ. was used to knock-in and generate male miR-33b knock-in mice (homologous: miR-33b +/+ ). As shown in FIG. 19, it was confirmed that the human miR-33b gene was integrated at the site of interest in the knock-in mouse (KI++), and that the human miR-33b gene was expressed.
 当該ノックインマウスは、miR-33aを発現するC57BL/6Jバックグラウンドであり、ヒトと同様にSREBF1の発現と同時に、miR-33bを発現するマウスであるため、miR-33a+/+/miR-33b+/+である。なお、以下では、miR-33bノックインマウス(miR-33a+/+/miR-33b+/+)をmiR-33b+/+と称し、野生型マウスをmiR-33b-/-と称する。 The knock-in mouse is a C57BL/6J background that expresses miR-33a, and is a mouse that expresses miR-33b at the same time as humans express SREBF1, so miR-33a +/+ /miR-33b +/+ . In the following, miR-33b knock-in mice (miR-33a +/+ /miR-33b +/+ ) are referred to as miR-33b +/+ , and wild-type mice are referred to as miR-33b −/− .
(実施例2)
HFDマウスの作製
 実施例1にて作製した8週齢のノックインマウスに、カロリーベースで45%(45kcal%)の高脂肪食(D12451:Research Diets,Inc.)をad lib(自由摂取)にて、20週齢まで食餌負荷した。このときのマウスの体重及び高脂肪食摂取量を図4に示す。以下、食餌負荷したノックインマウス(miR-33b+/+)をHDFマウスとし、食餌負荷した野生型マウス(miR-33b-/-)を比較例として、各種の検査に用いた。
(Example 2)
Preparation of HFD mice The 8-week-old knock-in mice prepared in Example 1 were given 45% (45 kcal%) high-fat diet (D12451: Research Diets, Inc.) on a calorie basis ad lib (ad libitum). , food-challenged until 20 weeks of age. FIG. 4 shows the body weight and high-fat diet intake of the mice at this time. Hereinafter, food-loaded knock-in mice (miR-33b +/+ ) were used as HDF mice, and food-loaded wild-type mice (miR-33b −/− ) were used as comparative examples for various tests.
(実施例3)
HFDマウスの検査
(1)血清所見
 上記条件にて食餌負荷した20週齢ノックインマウス及び野生型マウスを4-6時間絶食後に麻酔下に下大静脈より採血し、血清分画を分取した。血清生化学所見は日立7180自動分析装置(長浜ライフサイエンスラボラトリー、長浜、日本)にて標準的な方法で測定した。結果を以下の表1に示す。表中、特にAST、ALT、ALP、及びT-BILは、肝機能障害マーカーとして知られている。また、*、**、****は、それぞれP<0.05、P<0.01、P<0.001を示す。当該結果から、HDFマウスは肝機能障害を生じている可能性が示唆された。
(Example 3)
Examination of HFD Mice (1) Serum Findings 20-week-old knock-in mice and wild-type mice loaded with food under the above conditions were fasted for 4 to 6 hours, blood was collected from the inferior vena cava under anesthesia, and serum fractions were collected. Serum biochemical findings were determined by standard methods on a Hitachi 7180 automated analyzer (Nagahama Life Science Laboratory, Nagahama, Japan). The results are shown in Table 1 below. In the table, AST, ALT, ALP and T-BIL in particular are known as hepatic dysfunction markers. *, **, and *** indicate P<0.05, P<0.01, and P<0.001, respectively. These results suggested that HDF mice may have liver dysfunction.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(2)肝臓組織所見
 各マウスから肝臓切片に対してヘマトキシリン・エオジン染色、マッソン・トリクローム染色を施行し、脂肪肝炎の程度及び線維化の程度を評価した。ヘマトキシリン・エオジン染色の結果を図5に示す。図5(A)において、ノックインマウスの肝臓では脂肪沈着、炎症細胞浸潤、肝細胞風船様変性などが観察された。また図5(B)において、ノックインマウスの肝臓では脂肪滴が多く観察され、肝線維化も観察された。
(2) Hepatic histological findings Liver sections from each mouse were stained with hematoxylin and eosin and Masson's trichrome to evaluate the degree of steatohepatitis and fibrosis. FIG. 5 shows the results of hematoxylin and eosin staining. In FIG. 5(A), fatty deposits, inflammatory cell infiltration, hepatocyte balloon-like degeneration, etc. were observed in the liver of knock-in mice. Moreover, in FIG. 5(B), many lipid droplets were observed in the liver of the knock-in mouse, and liver fibrosis was also observed.
 また、Single strand DNA染色を用いて、肝細胞のアポトーシスの程度を評価した結果を図6に示す。これらの結果から、HFDマウスは、NASH様症状を示していることが確認できた。 Figure 6 shows the results of evaluating the degree of hepatocyte apoptosis using single-strand DNA staining. These results confirmed that HFD mice exhibited NASH-like symptoms.
(3)肝臓内脂質分画
 HFDマウスの肝臓内の脂質をFolch法により抽出した。この脂質(T-CHO、TG、FC及びPL)を酵素比色法にて計測した結果を図7に示す。HFDマウスではコレステロール及び中性脂肪が肝臓に蓄積しており、NASH様症状を示していることが裏付けられた。
(3) Intrahepatic lipid fractionation Lipids in the liver of HFD mice were extracted by the Folch method. FIG. 7 shows the results of measurement of these lipids (T-CHO, TG, FC and PL) by an enzymatic colorimetric method. Cholesterol and triglycerides were accumulated in the liver of HFD mice, demonstrating NASH-like symptoms.
(4)肝臓内遺伝子発現
 炎症性サイトカインとしてIl-6、Tnfαを、線維化マーカーとしてCol1a1及びαSmaを、炎症細胞浸潤のマーカーとしてCD68及び4/80をqRT-PCRにて測定した。RNAは、TriPure Isolation Reagent(Roche)を用いて、HFDマウスの肝臓から分取し、1μgの全RNAよりVerso cDNA Synthesis Kit(Thermo Fisher scientific)を用いて逆転写してcDNAを作成した。qRT-PCRは、THUNDERBIRD SYBR qPCR Mix(東洋紡)を用いて行った。この結果をグラフとして図8に示す。発現は、ハウスキーピング遺伝子であるβ-actinを用いて標準化した。用いたプライマーの塩基配列を表2に示す。
(4) Intrahepatic gene expression Il-6 and Tnfα as inflammatory cytokines, Col1a1 and αSma as fibrosis markers, and CD68 and 4/80 as inflammatory cell infiltration markers were measured by qRT-PCR. RNA was isolated from HFD mouse liver using TriPure Isolation Reagent (Roche), and 1 μg of total RNA was reverse transcribed using Verso cDNA Synthesis Kit (Thermo Fisher Scientific) to create cDNA. qRT-PCR was performed using THUNDERBIRD SYBR qPCR Mix (Toyobo). The results are shown in FIG. 8 as a graph. Expression was normalized using the housekeeping gene β-actin. Table 2 shows the base sequences of the primers used.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図8に示すグラフに野生型マウス(miR33b-/-)におけるqRT-PCRによる各遺伝子発現量を1とした場合の、HFDマウス肝臓における各遺伝子発現量相対値を示している。この結果から、ノックインマウス肝臓では、炎症、線維化及び炎症細胞浸潤が生じていることが裏付けられた。 The graph shown in FIG. 8 shows relative values of each gene expression level in the HFD mouse liver when each gene expression level by qRT-PCR in wild-type mouse (miR33b −/− ) is set to 1. These results confirmed that inflammation, fibrosis, and inflammatory cell infiltration occurred in knock-in mouse livers.
(5)肝臓蛋白のウエスタンブロット
 ウエスタンブロット法により、HFDマウスの肝臓における線維化マーカータンパク質Col1a1の発現を解析した結果を図9に示す。ウエスタンブロットに使用した一次抗体は、anti-Col1a1 1/5000(ab34710,Abcam,Cambridge,UK)及びanti-Gapdh 1/3000(14C10;no.2118S,Cell Signaling Technology,Beverly,MA,USA)である。
(5) Western Blotting of Liver Protein FIG. 9 shows the results of analyzing the expression of the fibrosis marker protein Col1a1 in the liver of HFD mice by Western blotting. The primary antibodies used for Western blotting are anti-Col1a1 1/5000 (ab34710, Abcam, Cambridge, UK) and anti-Gapdh 1/3000 (14C10; no.2118S, Cell Signaling Technology, Beverly, MA, USA). .
 図9に示す結果から、線維化マーカータンパク質であるCol1a1の発現がHFDマウスで亢進していることが分かった。これによっても、HFDマウスの肝臓では、線維化が生じていることが裏付けられた。 From the results shown in FIG. 9, it was found that the expression of Col1a1, a fibrosis marker protein, is enhanced in HFD mice. This also confirmed that fibrosis occurred in the liver of HFD mice.
(6)高脂肪食負荷の継続による肝癌の発症
 上記実施例2に記載の条件にて食餌負荷した38週齢(すなわち、高脂肪食負荷開始から30週)のHFDマウスから肝臓を摘出した。当該肝臓の写真(2匹分)を図8(A)に示す。脂肪肝の特徴を示すとともに、数カ所に肝癌が観察された(図10(A)において三角で示す。)。さらに、摘出した肝臓について、上記「(2)肝臓組織所見」の記載と同様にして、HE染色を行った結果を図10(B)に示す。(B)の左側では、多くの脂肪滴が観察されることから、摘出した肝臓が脂肪肝であることが確認できた。また、(B)の右側では、中心の赤い丸味を帯びた領域が肝癌組織であり、摘出した肝臓が肝癌を生じていることも確認できた。
(6) Onset of liver cancer due to continued high-fat diet loading Livers were excised from 38-week-old HFD mice fed with the diet under the conditions described in Example 2 (ie, 30 weeks after the start of high-fat diet loading). A photograph of the liver (for 2 animals) is shown in FIG. 8(A). Along with the characteristics of fatty liver, liver cancer was observed at several sites (indicated by triangles in FIG. 10(A)). Further, the excised liver was subjected to HE staining in the same manner as described in "(2) Liver tissue findings" above, and the results are shown in FIG. 10(B). Since many lipid droplets were observed on the left side of (B), it was confirmed that the excised liver was fatty liver. In addition, on the right side of (B), it was also confirmed that the central reddish round area was liver cancer tissue, and that the excised liver had liver cancer.
 コレステロールを含有する高脂肪食又はメチオニン/コリン欠乏(MCD)飼料を給餌させることでNASHモデルマウスを作成することが開示されている(以下の文献3~6)。本発明において、miR-33bノックインマウスに給餌させる飼料は、MCD飼料ではなく、かつ、コレステロール非含有の飼料である。このようなmiR-33bノックインマウスは、文献3~6に記載されたNASHモデルマウスと、異なると考えられる。 It has been disclosed to create NASH model mice by feeding them with a high-fat diet containing cholesterol or a methionine/choline-deficient (MCD) diet (References 3-6 below). In the present invention, the diet fed to miR-33b knock-in mice is not MCD diet and cholesterol-free diet. Such miR-33b knock-in mice are thought to be different from the NASH model mice described in references 3-6.
 また、「MCDモデルは、重篤な体重減少、糖尿病の背景を持たないといった臨床のNAFLD病態とは乖離した表現型を示す」ことが従来より知られている(https://www.smccro-lab.com/jp/service/service_disease_area/mcd.html)ので、メチオニン/コリン欠乏(MCD)飼料により製造されるモデル動物と、コレステロール非含有の高脂肪食により製造されるモデル動物とは異なることが考えられる。この点でも臨床のNAFLD病態と同様の表現型を呈する本発明のmiR-33bノックインマウスは、非常に有用である。 In addition, it has been conventionally known that "the MCD model exhibits a phenotype that deviates from the clinical NAFLD pathology, such as severe weight loss and no diabetes background" (https://www.smccro- lab.com/jp/service/service_disease_area/mcd.html), model animals produced on a methionine/choline deficient (MCD) diet may differ from model animals produced on a cholesterol-free, high-fat diet. Conceivable. In this respect as well, miR-33b knock-in mice of the present invention exhibiting phenotypes similar to clinical NAFLD pathology are very useful.
・文献3 BIEGHS V.et al.,LDL Receptor Knock-Out Mice Are a Physiological Model Particularly Vulnerable to Study the Onset of Inflammation in Non-Alcoholic Fatty Liver Disease,PLoS ONE,2012,Vol.7,No.1 e30668
・文献4 SVERDLOV RS.et al.,Early diet-induced non-alcoholic steatohepatitis in APOE2 knock-in mice and its prevention by fibrates,J.Hepatol.,2006,Vol.44,p.732-741
・文献5 TAKAHASHIY.et al.,Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis,World J Gastroenterol.,2012.05.21,Vol.18,No.19,p.2300-2308,
・文献6 FAN JG.et al.,Commonly used animal models of non-alcoholic steatohepatitis, Hepatobiliary Pancreat Dis Int.,2009.06,Vol.8,No.3,p.233-240,
Document 3 BIEGHS V. et al. , LDL Receptor Knock-Out Mice Area Physical Model Partially Vulnerable to Study the Onset of Inflammation in Non-Alcoholic Fatty Liver Disease, Vol 2 ONE, PLoS 2. 7, No. 1 e30668
Document 4 SVERDLOV RS. et al. , Early diet-induced non-alcoholic steatohepatitis in APOE2 knock-in mice and its prevention by fibrates, J. Am. Hepatol. , 2006, Vol. 44, p. 732-741
Document 5 TAKAHASHIY. et al. , Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis, World J Gastroenterol. , 2012.05.21, Vol. 18, No. 19, p. 2300-2308,
Document 6 FAN JG. et al. , Commonly used animal models of non-alcoholic steatohepatitis, Hepatobiliary Pancreat Dis Int. , 2009.06, Vol. 8, No. 3, p. 233-240,
(実施例4)
アンチセンスオリゴヌクレオチドの合成および精製
 AmNAアミダイトは、株式会社大阪合成有機化学研究所より入手し、AmNAを含有するアンチセンスオリゴヌクレオチドは、味の素バイオファーマサービス・株式会社ジーンデザインにおいて合成し精製された。
(Example 4)
Synthesis and Purification of Antisense Oligonucleotides AmNA amidites were obtained from Osaka Synthetic Organic Chemistry Laboratory Co., Ltd. Antisense oligonucleotides containing AmNA were synthesized and purified at Ajinomoto Bio-Pharma Services/Gene Design Co., Ltd.
 合成したアンチセンスオリゴヌクレオチドを図1~図3に示す。図1に示す33a-2-AmNA(12)は、miR-33aに対するオリゴヌクレオチドを示し、図2に示す33b-2-AmNA(12)は、miR-33bに対するオリゴヌクレオチドを示し、図3に示すNEG-AmNA(12)はコントロールアンチセンスオリゴヌクレオチドを示す。各アンチセンスオリゴヌクレオチドにおいて、架橋構造を有するヌクレオシド(Yの表記)として記載する、A(Y)は、アデニンを、T(Y)は、チミンを、G(Y)は、グアニンを、そして5(Y)は、5-メチルシトシンを表す。また、架橋構造を有さないヌクレオシドとして記載する、aは、アデニンを、tは、チミンを、gは、グアニンを、そして、cは、シトシンを表す。また、ヌクレオシド間の結合を示すホスホロチオエートを、^で表す。 The synthesized antisense oligonucleotides are shown in Figures 1 to 3. 33a-2-AmNA (12) shown in FIG. 1 indicates an oligonucleotide against miR-33a and 33b-2-AmNA (12) shown in FIG. 2 shows an oligonucleotide against miR-33b, shown in FIG. NEG-AmNA (12) represents a control antisense oligonucleotide. In each antisense oligonucleotide, the nucleosides having a bridge structure (notation of Y) are described as A(Y) for adenine, T(Y) for thymine, G(Y) for guanine, and 5 (Y) represents 5-methylcytosine. In addition, a represents adenine, t represents thymine, g represents guanine, and c represents cytosine, which are described as nucleosides having no cross-linking structure. Phosphorothioate, which indicates linkage between nucleosides, is represented by ^.
(実施例5)
GANマウスの作製
 実施例1にて作製した8週齢のノックインマウスに、カロリーベースで40%(40kcal%)のフルクトース、パーム油及び2%のコレステロールを含有する高脂肪食(D09103110:Research Diets,Inc.)をad lib(自由摂取)にて、20週齢まで食餌負荷した。
(Example 5)
Preparation of GAN mice The 8-week-old knock-in mice prepared in Example 1 were fed a high-fat diet containing 40% (40kcal%) fructose, palm oil and 2% cholesterol on a calorie basis (D09103110: Research Diets, Inc.) was fed ad lib (ad libitum) until 20 weeks of age.
 なお、上記8週齢のマウスに、各種核酸として、10mg/kgのanti miR-33a、10mg/kgのanti miR-33b、10mg/kgのanti miR-33a+b(5mg/kgのanti miR-33a及び5mg/kgのanti miR-33b)、及び10mg/kgのNEG-AmNAをそれぞれ2週間おきに皮下注射により投与した。また、コントロールとして、高脂肪食付加をしないmiR-33bノックインマウスに10mg/kgのNEG-AmNAを投与したものを採用した(以下、適宜「NEG(NC)と記す。」)。このようにして得られたGANマウスの体重を図11に示す。これらの処理を行ったマウスを最終投与から1週間後(21週齢)に動物を三種混合麻酔で麻酔をかけ、採血を行なった後に安楽死をさせ、各臓器を採取した。採血した血清及び肝臓内の脂質量、酵素量等の検査、miR-33a、miR-33a miR-33のターゲット遺伝子、炎症・繊維化マーカー等の発現量及び肝臓組織の評価を行った。これらの結果を図11~18に示す。なお、以下では、anti miR-33aをanti-33aと称し、anti miR-33bをanti-33bと称し、anti miR-33a+bをanti-33a+bと称することがある。 In addition, 10 mg/kg antimiR-33a, 10 mg/kg antimiR-33b, 10 mg/kg antimiR-33a+b (5 mg/kg antimiR-33a and 5 mg/kg of anti-miR-33b) and 10 mg/kg of NEG-AmNA were administered by subcutaneous injection every two weeks. As a control, a miR-33b knock-in mouse not fed a high-fat diet was administered with 10 mg/kg NEG-AmNA (hereinafter referred to as "NEG (NC)"). The body weights of GAN mice thus obtained are shown in FIG. One week after the final administration (21 weeks old), the treated mice were anesthetized with mixed anesthesia of three types of anesthesia, blood was collected and euthanized, and each organ was collected. Blood serum and lipid levels in the liver, enzyme levels, etc., were tested, and expression levels of miR-33a, miR-33a miR-33 target genes, inflammation/fibrosis markers, etc., and liver tissue were evaluated. These results are shown in Figures 11-18. Hereinafter, anti-miR-33a may be referred to as anti-33a, anti-miR-33b may be referred to as anti-33b, and anti-miR-33a+b may be referred to as anti-33a+b.
(1)体重等の所見
 図11の(A)に示すように、通常飼料及びGAN飼料下において、体重は、いずれの投与群でも経時的な増加を示したが、anti-33b投与群で増加が少ない傾向であった。通常飼料と比較してGAN飼料で約1.3倍の有意な増加を示し、GAN飼料投与下では、anti-33b投与群で約0.8倍の減少傾向であった。図11の(B)に示すように、肝臓重量は通常飼料と比較してGAN飼料投与で約1.5倍の有意な増加を示したが、GAN飼料投与の各群での大きな差はなかった。図11の(C)に示すように、WAT白色脂肪組織(精巣周囲脂肪重量)について通常飼料投与群と比較してGAN飼料投与群では約1.3倍の有意に増加することが明らかとなり、GAN飼料投与下では、anti-33b投与群で約0.8倍の減少する傾向であることが明らかとなった。
(1) Observations such as body weight As shown in FIG. 11 (A), body weight increased over time in both administration groups under the normal diet and GAN diet, but increased in the anti-33b administration group. tended to be low. Compared to the normal diet, the GAN diet showed a significant increase of about 1.3 times, and the anti-33b administration group tended to decrease about 0.8 times under the GAN diet administration. As shown in FIG. 11(B), the liver weight showed a significant increase of about 1.5 times with GAN feed administration compared to the normal diet, but there was no significant difference between the GAN feed administration groups. rice field. As shown in (C) of FIG. 11, it became clear that the WAT white adipose tissue (peri-testicular fat weight) significantly increased by about 1.3 times in the GAN feed administration group compared to the normal feed administration group. It was revealed that the anti-33b administration group tended to decrease by about 0.8 times under GAN feed administration.
 上記の結果から、anti-miR-33b投与により、異所性の脂質の蓄積が減少していることが明らかとなり、肝機能が改善していると考えられる。 From the above results, it was clarified that anti-miR-33b administration reduced the accumulation of ectopic lipids, and is thought to improve liver function.
(2)血液検査結果
 図11の(D)~(L)に示すように、PBS投与群とNEG-AmNA投与群とでの血清中の肝機能(Alb、AST、ALT、ALP、ChE、T-bil、TBA)及び腎機能(Cre、BUN)に大きな差が認められなかったので、投与した各核酸の毒性は、ほぼないと考えられた。そこで、通常飼料とGAN飼料の影響の比較は、NEG-AmNA投与を行なった通常飼料群とNEG-AmNA投与を行なったGAN飼料群とで行なうこととした。
(2) Blood test results As shown in (D) to (L) of FIG. 11, serum liver functions (Alb, AST, ALT, ALP, ChE, T -bil, TBA) and renal function (Cre, BUN), it was considered that each nucleic acid administered had almost no toxicity. Therefore, it was decided to compare the effects of the normal feed and the GAN feed between the normal feed group to which NEG-AmNA was administered and the GAN feed group to which NEG-AmNA was administered.
(3)miR-33a及びmiR-33bの定量
 上記コントロールマウス及び各核酸を投与したGANマウスの肝臓から、TriPure Isolation Reagent(Roche)により、全RNAの抽出を行なった。これらの全RNA中のmiR-33a、miR-33bを、Taqman miRNA assay kit(Thermo Fisher)と特異的なプライマー(miR-33a; assay ID 465396_mat、miR-33b;assay ID 2085、U6 snRNA;assay ID 1973;Thermo Fisherを用いて、TaqMan MicroRNA assay protocolsにより測定した。これらのmiR-33a、miR-33bの発現量は、U6 snRNA発現量にて補正を行なった。この結果を、図12に示す。
(3) Quantification of miR-33a and miR-33b Total RNA was extracted from the livers of the above-described control mice and GAN mice to which each nucleic acid was administered using TriPure Isolation Reagent (Roche). miR-33a, miR-33b in these total RNA, Taqman miRNA assay kit (Thermo Fisher) and specific primers (miR-33a; assay ID 465396_mat, miR-33b; assay ID 2085, U6 snRNA; assay ID 1973;The expression levels of miR-33a and miR-33b were corrected with the expression level of U6 snRNA, and the results are shown in FIG.
 図12(A)及び(B)に示すように、通常飼料群と比較してGAN飼料投与群では、miR-33aは、約7.0倍の増加する傾向、miR-33bは、約3.9倍の有意に増加することが明らかとなった。 As shown in FIGS. 12(A) and (B), miR-33a tended to increase about 7.0-fold in the GAN feed-administered group compared to the normal feed group, and miR-33b tended to increase about 3.0-fold. A significant 9-fold increase was found.
 また、miR-33aの発現について、NEG-AmNA投与群と比較して、anti-33a投与群では、約0.19倍、anti-33a+b投与群では、約0.14倍の有意な低下を示した。miR-33bの発現について、NEG-AmNA投与群と比較して、anti-33b投与群では、約0.010倍、anti-33a+b投与群では、約0.12倍の有意な低下を示した。 In addition, the expression of miR-33a showed a significant decrease of about 0.19 times in the anti-33a administration group and about 0.14 times in the anti-33a+b administration group compared to the NEG-AmNA administration group. rice field. The expression of miR-33b was significantly reduced by about 0.010 times in the anti-33b administration group and by about 0.12 times in the anti-33a+b administration group compared to the NEG-AmNA administration group.
 上記の結果から、各種核酸の投与により、GANマウスの肝臓におけるmiR-33a、miR-33bの特異的な抑制が可能であると考えられる。 From the above results, it is considered possible to specifically suppress miR-33a and miR-33b in the liver of GAN mice by administering various nucleic acids.
 図12(C)及び(D)に示すように、miR-33bのホスト遺伝子であるSrebf1の発現は、通常飼料投与群と比較して、GAN飼料投与群で約6.6倍の有意に増加することが明らかとなった。また、GAN飼料投与群では、Srebf1の発現は、anti-33b投与群において約0.50倍の有意な減少を示した。なお、miR-33aのホスト遺伝子であるSrebf2の発現は、各群で大きな変化はなかった。 As shown in FIGS. 12(C) and (D), the expression of miR-33b host gene Srebf1 was significantly increased by about 6.6 times in the GAN feed administration group compared to the normal feed administration group. It became clear that In addition, in the GAN feed administration group, the expression of Srebf1 showed a significant decrease of approximately 0.50 times in the anti-33b administration group. The expression of Srebf2, the host gene of miR-33a, did not change significantly between groups.
 インスリン、高血糖によりSrebf1の発現が上昇することが知られているので、GAN飼料投与によりSrebf1の発現は増加し、それに伴いイントロンのmiR-33bも上昇する。上記の結果から、anti-33bによるSrebf1の低下は、anti-33bによるABCA1の上昇によって、炎症の改善及び肝障害性の遊離コレステロール蓄積が減少することにより、肝機能の改善とともに、インスリン、高血糖も改善して低下していると考えられる。なお、GAN飼料がコレステロールを含むことから、全般的にSrebf2の発現量は、抑制されると考えられる。 Since it is known that insulin and hyperglycemia increase the expression of Srebf1, administration of GAN feed increases the expression of Srebf1, which in turn increases miR-33b in the intron. From the above results, the reduction of Srebf1 by anti-33b, the increase of ABCA1 by anti-33b, the improvement of inflammation and the reduction of liver-damaging free cholesterol accumulation, along with the improvement of liver function, insulin, hyperglycemia is also expected to improve and decline. In addition, since the GAN feed contains cholesterol, the expression level of Srebf2 is generally considered to be suppressed.
(4)肝胆道臓系酵素の評価
 上記血清検査において、肝胆道臓系酵素の検査結果を、図13の(A)~(H)に示す。また、これらの具体的な数値を、下記の表3~6に示す。
(4) Evaluation of hepatobiliary enzymes In the above serum test, the test results of hepatobiliary enzymes are shown in Figures 13(A) to 13(H). Further, these specific numerical values are shown in Tables 3 to 6 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図13の(A)~(H)及び表3~6に示す結果から、GAN飼料投与群では、有意に血清中のAST、ALT、ALP、ChE、T-bil、TBA及びFeが増加することが明らかとなった。GAN飼料下でのanti-33b投与群は、NEG-AmNA投与群と比較して、血清中のAST、ALT、ALP、ChE、T-bil及びTBAの有意な低下することも明らかとなった。また、GAN飼料下でanti-33a+b投与群はNEG-AmNA投与群と比較して、血清中のALP、ChE、T-bil及びTBAの有意な低下することが明らかとなった。GAN飼料下でanti-33a投与群は、NEG-AmNA投与群と比較して、血清中のAST、ALT及びTBAの低下傾向を示すことが明らかとなった。 From the results shown in (A) to (H) of FIG. 13 and Tables 3 to 6, in the GAN feed administration group, serum AST, ALT, ALP, ChE, T-bil, TBA and Fe significantly increased. became clear. It was also revealed that serum AST, ALT, ALP, ChE, T-bil and TBA significantly decreased in the anti-33b administration group under the GAN diet compared to the NEG-AmNA administration group. In addition, it was revealed that serum levels of ALP, ChE, T-bil and TBA were significantly reduced in the anti-33a+b administration group under the GAN diet compared to the NEG-AmNA administration group. It was revealed that the anti-33a-administered group under the GAN diet showed a decreasing trend of serum AST, ALT and TBA compared to the NEG-AmNA-administered group.
 肝臓では、miR-33bの方がmiR-33aより5~7倍程度、その発現量が多いことが知られる。上記の結果から、miR-33bと同様に、ある程度miR-33aもABCA1の発現に影響していると考えられるので、anti-33a投与群でも、NEG-AmNA投与群と比較すると、血清中のAST、ALT及びTBAの低下傾向が認められると考えられる。 In the liver, miR-33b is known to be expressed at a level 5 to 7 times higher than that of miR-33a. From the above results, miR-33a, like miR-33b, is thought to affect the expression of ABCA1 to some extent. , ALT and TBA tend to decrease.
(5)miR-33のターゲット遺伝子の測定
 各種核酸を投与したGANマウスの肝臓から、TriPure Isolation Reagent(Roche)を用いて、全RNAを抽出を行なった。得られた全RNAよりVerso cDNA synthesis kit(Thermo Fisher)を用いて、cDNAを作成した。このcDNAを用いて、肝臓中Abca1とCpt1aの発現を、下記表7に示す特異的なプライマー及びTUNDERBIRD Syber q-PCR mix(Toyobo)を用いて、StepOnePlus リアルタイムPCRシステム(Thermo Fisher)にて検出を行なった。遺伝子発現は18sリボソームRNAの発現量で補正した。その結果を、図13の(I)及び(J)に示す。
(5) Measurement of target gene of miR-33 Total RNA was extracted from the liver of GAN mice to which various nucleic acids were administered using TriPure Isolation Reagent (Roche). cDNA was prepared from the obtained total RNA using Verso cDNA synthesis kit (Thermo Fisher). Using this cDNA, the expression of Abca1 and Cpt1a in the liver was detected using the StepOnePlus real-time PCR system (Thermo Fisher) using the specific primers shown in Table 7 below and the TUNDERBIRD Syber q-PCR mix (Toyobo). did. Gene expression was corrected with the expression level of 18s ribosomal RNA. The results are shown in (I) and (J) of FIG.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 図13の(I)及び(J)に示す結果から、GAN飼料投与群は、通常飼料投与群に比較して、Abca1で約2.3倍及びCpt1aで約2.3倍と、有意に発現が増加することが明らかとなった。GAN飼料下でNEG-AmNA投与群と比較してanti-33b投与群でAbca1(約1.6倍)、Cpt1a(約1.9倍)、anti-33a+b投与群においてAbca1(約1.5倍)及びCpt1a(約1.6倍)の有意に発現量が増加することが明らかとなった。 From the results shown in (I) and (J) of FIG. 13, in the GAN feed administration group, approximately 2.3 times Abca1 and approximately 2.3 times Cpt1a were expressed significantly compared to the normal feed administration group. increased. Abca1 in anti-33b administration group (about 1.6 times), Cpt1a (about 1.9 times), anti-33a + b administration group compared to NEG-AmNA administration group under GAN diet Abca1 (about 1.5 times ) and Cpt1a (about 1.6-fold) were significantly increased.
 通常飼料と比較して、GAN飼料では、インスリン、高血糖の影響もありSrebf1及びmiR-33bが増加することが知れられている。上記の結果から、anti-miR-33bを投与すると、miR-33bの標的遺伝子であるAbca1及びCpt1aが、顕著に上昇すると考えられる。 It is known that GAN diet increases Srebf1 and miR-33b compared to normal diet due to the effects of insulin and hyperglycemia. From the above results, administration of anti-miR-33b is considered to significantly increase Abca1 and Cpt1a, which are target genes of miR-33b.
(6)血清中及び肝臓内脂質について
 血清中の脂質に関して、図14(A)に示す総コレステロール量は、通常飼料群に比較してGAN飼料群において約1.8倍と有意な増加することが明らかとなった。GAN飼料下では、NEG投与群に比較して、anti-33b投与群で約1.6倍、anti-33a+b投与群で約1.5倍と有意な増加を示す。図14(D)に示す遊離コレステロールは、通常飼料投与群と比較して、GAN飼料投与群において約2.6倍と有意な増加を示すことが明らかとなった。GAN飼料下では、NEG投与群に比較して、anti-33b投与群で約1.9倍、anti-33a+b投与群で約1.5倍と有意な増加を示している。図14(B)に示すHDLコレステロールに関しては、GAN飼料下でNEG投与群に比較してanti-33b投与群で約1.6倍、anti-33a+b投与群で約1.5倍と有意な増加を示することが明らかとなった。図14(C)に示すLDLコレステロールに関しては、GAN飼料下でNEG投与群に比較してanti-33b投与群で約3倍と有意な増加を示することが明らかとなった。図14(E)に示す中性脂肪は、GAN飼料下でNEG投与群と比較してanti-33a+b投与群で約0.5倍と有意な低下を示すことが明らかとなった。図14(F)に示すNEFAは各群で有意な差は認められなかった。
(6) Serum and intrahepatic lipids Regarding serum lipids, the total cholesterol level shown in FIG. 14(A) was significantly increased by approximately 1.8 times in the GAN-fed group compared to the normal-fed group. became clear. Under the GAN diet, the anti-33b-administered group showed a significant increase of about 1.6-fold and the anti-33a+b-administered group about 1.5-fold compared to the NEG-administered group. It was revealed that the free cholesterol shown in FIG. 14(D) showed a significant increase of approximately 2.6 times in the GAN feed administration group compared to the normal feed administration group. Under the GAN diet, compared with the NEG administration group, the anti-33b administration group exhibited a significant increase of approximately 1.9 times, and the anti-33a+b administration group exhibited a significant increase of approximately 1.5 times. Regarding HDL cholesterol shown in FIG. 14(B), compared with the NEG administration group under the GAN diet, the anti-33b administration group showed a significant increase of about 1.6 times and the anti-33a+b administration group about 1.5 times. It became clear that the Regarding the LDL cholesterol shown in FIG. 14(C), it was revealed that the anti-33b administration group exhibited a significant increase of about 3 times compared to the NEG administration group under the GAN diet. It was revealed that the neutral fat shown in FIG. 14(E) shows a significant decrease of about 0.5 times in the anti-33a+b administration group compared to the NEG administration group under the GAN diet. No significant difference in NEFA shown in FIG. 14(F) was observed between the groups.
 肝臓中脂質を、上記Folch法を用いて定量を行なった。図14(G)に示す総コレステロールは、通常飼料に比較してGAN飼料にて約9.5倍に有意に増加することが明らかとなった。GAN飼料下では、NEG-AmNA投与群と比較して、anti-33b投与群で約0.78倍の低下傾向を認めた。図14(H)に示す遊離コレステロールは、通常飼料投与群に比較して、GAN飼料投与群にて約2.4倍に有意に増加することが明らかとなった。GAN飼料下では、NEG-AmNA投与群と比較してanti-33b投与群で約0.84倍の有意な低下がみとめられた。図14(I)に示す中性脂肪は、通常飼料投与群に比較して、GAN飼料投与群にて約3.1倍に有意に増加することが明らかとなった。GAN飼料下では、NEG-AmNA投与群と比較してanti-33b投与群で約0.84倍の低下傾向であることが明らかとなった。 Hepatic lipids were quantified using the Folch method described above. It was revealed that the total cholesterol shown in FIG. 14(G) was significantly increased by about 9.5 times in the GAN diet compared to the normal diet. Under the GAN diet, the anti-33b-administered group tended to decrease about 0.78-fold compared to the NEG-AmNA-administered group. It was revealed that the free cholesterol shown in FIG. 14(H) significantly increased by about 2.4 times in the GAN feed administration group compared to the normal feed administration group. Under the GAN diet, a significant decrease of approximately 0.84 times was observed in the anti-33b administration group compared to the NEG-AmNA administration group. It was revealed that neutral fat shown in FIG. 14(I) significantly increased by about 3.1 times in the GAN feed administration group compared to the normal feed administration group. Under the GAN diet, it was found that the anti-33b administration group tended to decrease by about 0.84 times compared to the NEG-AmNA administration group.
 上記の結果から、anti-33bの投与により、コレステロールのトランスポーターであるAbca1が上昇し、その結果、肝臓内の遊離コレステロールが排泄されることにより、肝臓中では減り、血中で上昇することが考えられる。肝臓の中性脂肪について、anti-miR-33bの投与により炎症の改善及び遊離コレステロールの減少によって肝機能が改善し、脂質の分解が亢進して蓄積量が減っていると考えられる。 From the above results, administration of anti-33b increases Abca1, a cholesterol transporter, and as a result, free cholesterol in the liver is excreted, resulting in a decrease in the liver and an increase in the blood. Conceivable. It is considered that the administration of anti-miR-33b improves liver function by improving inflammation and reducing free cholesterol, thereby promoting lipid decomposition and reducing accumulation of triglycerides in the liver.
(7)肝臓組織評価
 上記GANマウス等の肝臓の組織評価をヘマトキシリン・エオジン(HE)染色にて行なった。この結果を図15(A)に示す。また図15(A)の染色像を基に、重症度の評価を、NAFLD activity score(NAS)を用いて点数化した。NASは脂肪化程度(0~3点)、実質の炎症病期(0~3点)、風船様肝細胞腫大(0~2点)をスコア化するものである。この結果を、図15(B)のグラフにて示す。
(7) Liver Tissue Evaluation Tissue evaluation of the livers of the GAN mice and the like was performed by hematoxylin-eosin (HE) staining. The results are shown in FIG. 15(A). Moreover, based on the stained image of FIG. 15(A), evaluation of severity was scored using NAFLD activity score (NAS). NAS scores the degree of steatosis (0 to 3 points), parenchymal inflammatory stage (0 to 3 points), and balloon-like hepatocyte enlargement (0 to 2 points). The results are shown in the graph of FIG. 15(B).
 図15(B)に示す結果から、合計8点満点で、5点以上でNASHが疑われる。NASは、通常飼料に比較してGAN飼料投与群で有意な増加を示すことが明らかとなった(通常飼料;平均0.83点、GAN飼料;平均6.89点)。GAN飼料下のanti-33b投与群では、平均2.67点、そしてanti-33a+b投与群では平均4.29点で、NEG-AmNA投与群と比較して有意なNASの改善を認めた。 From the results shown in Fig. 15(B), NASH is suspected with a total of 8 points and 5 points or more. NAS was found to show a significant increase in the GAN feed administration group compared to the normal feed (normal feed: average 0.83 points, GAN feed: average 6.89 points). The anti-33b-administered group under the GAN diet averaged 2.67 points, and the anti-33a+b-administered group averaged 4.29 points, showing a significant improvement in NAS compared to the NEG-AmNA-administered group.
 上記GANマウス等の肝臓の線維化評価をピクロシリウス染色で行なった。この結果を図16(A)に示す。また図16(A)の染色像を基に、肝臓の線維化面積をImage J(NIH)を用いて定量評価を行なった。この結果を、図16(B)のグラフにて示す。  Fibrosis of the liver of the above GAN mice, etc. was evaluated by Picrosirius staining. The results are shown in FIG. 16(A). Based on the stained image of FIG. 16(A), the fibrosis area of the liver was quantitatively evaluated using Image J (NIH). The results are shown in the graph of FIG. 16(B).
 図16(B)に示す結果から、線維化面積は、通常飼料投与群に比較してGAN飼料投与群において約9.1倍に、有意な増加することが明らかとなった。また、GAN飼料下でNEG-AmNA投与群と比較して、anti-33b投与群で約0.33倍の有意な低下することが明らかとなった。またanti-33a+b投与群で約0.46倍の低下傾向を示した。NASH fibrosis stageを0-4段階で評価するとNEG-AmNA投与群で平均2.1点であり、anti-33b投与群でmean0.25点、anti-33a+b投与群で平均0.75点と、改善を認めた。 From the results shown in FIG. 16(B), it was revealed that the fibrosis area was significantly increased by about 9.1 times in the GAN feed administration group compared to the normal feed administration group. In addition, it was revealed that the anti-33b administration group significantly decreased by about 0.33 times compared to the NEG-AmNA administration group under the GAN diet. In addition, the anti-33a+b administration group showed a decreasing tendency of about 0.46 times. When the NASH fibrosis stage was evaluated on a 0-4 scale, the NEG-AmNA administration group averaged 2.1 points, the anti-33b administration group had a mean of 0.25 points, and the anti-33a+b administration group had an average of 0.75 points. admitted.
 上記の結果から、anti-miR-33bの投与により炎症が改善し、肝臓を障害する遊離コレステロールの減少することによって、ROSや酸化ストレスも減少し、線維化が改善すると考えられる。 From the above results, it is thought that administration of anti-miR-33b improves inflammation, reduces free cholesterol that damages the liver, reduces ROS and oxidative stress, and improves fibrosis.
(8)炎症・繊維化マーカーの発現
 実施例5にて作製したGANマウス等の肝臓から、TriPure Isolation Reagent(Roche)を用いて全RNAの抽出を行なった。得られた全RNAから、Verso cDNA synthesis kit(Thermo Fisher)を用いて、cDNAを作成した。このcDNAを用いて、肝臓中のTNFα、Col1a1、及びαSMAに特異的な、上記表2に示すプライマー及びTUNDERBIRD Syber q-PCR mix(Toyobo)を用いて、StepOnePlus リアルタイムPCRシステム(Thermo Fisher)にて検出を行なった。遺伝子発現は18SリボソームRNA(表7に具体的なプライマー配列を示す)の発現で補正した。その結果を、図17(A)~(C)に示す。
(8) Expression of Inflammation/ Fibrosis Markers Total RNA was extracted from livers of GAN mice prepared in Example 5 using TriPure Isolation Reagent (Roche). cDNA was prepared from the obtained total RNA using Verso cDNA synthesis kit (Thermo Fisher). Using this cDNA, primers specific for TNFα, Col1a1, and αSMA in the liver shown in Table 2 above and TUNDERBIRD Syber q-PCR mix (Toyobo) were used in a StepOnePlus real-time PCR system (Thermo Fisher). detected. Gene expression was corrected for expression of 18S ribosomal RNA (specific primer sequences are shown in Table 7). The results are shown in FIGS. 17(A) to 17(C).
 図17(A)に示すように、通常飼料投与群に比較してGAN飼料投与群が、TNFα(約7.9倍)の有意に発現量が増加することが明らかとなった。また、図17(B)に示すように、Col1a1も、通常飼料投与群に比較してGAN飼料投与群が、約28.3倍と有意に発現量が増加することが明らかとなった。そして、図17(C)に示すように、αSMAも、通常飼料投与群に比較してGAN飼料投与群が、約3.9と有意に発現量が増加することが明らかとなった。 As shown in FIG. 17(A), it was revealed that the expression level of TNFα (approximately 7.9 times) was significantly increased in the GAN feed administration group compared to the normal feed administration group. In addition, as shown in FIG. 17(B), it was revealed that the expression level of Col1a1 was also significantly increased by about 28.3 times in the GAN feed administration group compared to the normal feed administration group. Then, as shown in FIG. 17(C), it was revealed that the expression level of αSMA also significantly increased to about 3.9 in the GAN feed administration group compared to the normal feed administration group.
 また、GAN飼料下でNEG-AmNA投与群と比較して、anti-33b投与群においてTNFα(約0.22倍)、Col1a1(約0.074倍)、αSMA(約0.087倍)の有意な低下を示した。GAN飼料下では、NEG-AmNA投与群と比較して、anti-33a+b投与群において、TNFαの有意な低下(約0.37倍)、そしてCol1a1が約0.16倍、αSMAが約0.29倍の低下傾向を示した。 In addition, TNFα (about 0.22 times), Col1a1 (about 0.074 times), and αSMA (about 0.087 times) were significant in the anti-33b administration group compared to the NEG-AmNA administration group under the GAN diet. showed a significant decline. Under the GAN diet, there was a significant reduction in TNFα (approximately 0.37-fold) and Col1a1 by approximately 0.16-fold and αSMA by approximately 0.29-fold in the anti-33a+b-treated group compared to the NEG-AmNA-treated group. showed a downward trend.
 上記の結果から、anti-miR-33bの投与により炎症が改善し、TNFが減少し、線維化マーカーのCol1a1,αSMAも共に減少していることが明らかとなった。miR-33bによる炎症惹起のメカニズムとして、ABCA1により炎症を低下シグナル惹起することが知られているので、miR-33bによるABCA1の低下によって直接的に炎症が生じることが考えられる。さらに、肝臓に肝障害性の遊離コレステロールが蓄積し、それによるROSや小胞体ストレスから、間接的に炎症が生じることも考えられる。 From the above results, it was clarified that administration of anti-miR-33b improved inflammation, decreased TNF, and decreased both Col1a1 and αSMA, fibrotic markers. As a mechanism of inflammation induction by miR-33b, it is known that ABCA1 induces a signal to lower inflammation. Therefore, it is conceivable that reduction of ABCA1 by miR-33b directly induces inflammation. Furthermore, it is conceivable that liver-damaging free cholesterol accumulates in the liver, resulting in ROS and endoplasmic reticulum stress that indirectly cause inflammation.
(実施例6)
 ヌクレオチド結合ドメインとロイシンリッチリピートを含む(NLR)インフラマソームは、感染症や組織傷害に対応する自然免疫において重要な役割を担っている。特に、NLRファミリーピリンドメイン含有タンパク質3(NLRP3)インフラマソームは、コレステロールクリスタルを含む多くの内因性代謝物リガンドによって容易に活性化されるため、肝臓内マクロファージのNLRP3は、NASHをはじめとする多くの慢性炎症性疾患の発症に特に重要な役割を担っていることが知られている。そこで、上記サンプルにおいてコレステロールクリスタルの定量を行った。
(Example 6)
Inflammasomes containing nucleotide-binding domains and leucine-rich repeats (NLRs) play an important role in innate immunity in response to infections and tissue injury. In particular, the NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome is readily activated by a number of endogenous metabolite ligands, including cholesterol crystals, and thus NLRP3 in intrahepatic macrophages has been associated with many, including NASH. known to play a particularly important role in the development of chronic inflammatory diseases in humans. Therefore, cholesterol crystals were quantified in the above samples.
 上記する各種GANマウス等の肝臓を採種後、直ちに包埋し、液体窒で凍結した。その後、厚さ10μMの凍結切片を作成して、これらを偏光フィルター付きのNikon Eclipse顕微鏡で観察し、複屈折コレステロール結晶の存在を評価した。その結果を図18に示す。 After harvesting the livers of the various GAN mice described above, they were immediately embedded and frozen in liquid nitrogen. Thereafter, 10 μM thick cryosections were prepared and observed with a Nikon Eclipse microscope with a polarizing filter to assess the presence of birefringent cholesterol crystals. The results are shown in FIG.
 図18(A)及び(B)に示すように、フィルター(+)で白く光るコレステロールクリスタルは正常食(NC)では、全くその蓄積が認められなかったが、GAN diet負荷でコントロールオリゴを注射した群(NEG)では著量のコレステロールクリスタルが蓄積した。その一方で、GAN diet負荷マウスにanti-miR-33b注射した群(anti-miR-33b)と、anti-miR-33a及びanti-miR-33b注射した群(anti-miR-33a+b)とでは、共にコレステロールクリスタルの蓄積が有意に低下することが明らかとなった。 As shown in FIGS. 18(A) and (B), no accumulation of cholesterol crystals that glow white with the filter (+) was observed in normal diet (NC), but control oligo was injected with GAN diet loading. A significant amount of cholesterol crystals accumulated in the group (NEG). On the other hand, in the group injected with anti-miR-33b into GAN diet-loaded mice (anti-miR-33b) and the group injected with anti-miR-33a and anti-miR-33b (anti-miR-33a+b), Both of them were found to significantly reduce the accumulation of cholesterol crystals.

Claims (15)

  1.  核酸を含有するNASHの予防及び/又は治療剤であって、
    該核酸は、架橋構造を有していてもよいDNA、RNA、又は核酸アナログであり、
    該核酸は、配列番号1(aacnacaangca)又は2(aacagcaangca)に示される塩基配列からなり、
    該塩基は、修飾されていてもよい、NASHの予防及び/又は治療剤。
    A prophylactic and/or therapeutic agent for NASH containing a nucleic acid,
    The nucleic acid is DNA, RNA, or a nucleic acid analog that may have a crosslinked structure;
    The nucleic acid consists of the base sequence shown in SEQ ID NO: 1 (aacnacaangca) or 2 (aacagcaangca),
    The prophylactic and/or therapeutic agent for NASH, wherein the base may be modified.
  2.  前記核酸が、配列番号1又は2に示される塩基配列において、1~4個の塩基が欠失、置換、挿入、又は付加された塩基配列からなり、miR-33bを認識する核酸である、請求項1に記載する、NASHの予防及び/又は治療剤。 The nucleic acid is a nucleic acid that recognizes miR-33b, consisting of a base sequence in which 1 to 4 bases are deleted, substituted, inserted, or added in the base sequence shown in SEQ ID NO: 1 or 2. Item 1. The prophylactic and/or therapeutic agent for NASH according to Item 1.
  3.  前記核酸が、配列番号3又は4に示される塩基配列からなる、請求項1又は2に記載する、NASHの予防及び/又は治療剤。 The preventive and/or therapeutic agent for NASH according to claim 1 or 2, wherein the nucleic acid consists of the base sequence shown in SEQ ID NO: 3 or 4.
  4.  前記核酸が、配列番号3又は4に示される塩基配列において、1~4個の塩基が欠失、置換、挿入、又は付加された塩基配列からなり、ヒトmiR-33bを認識する核酸である、請求項1~3の何れか一項に記載する、NASHの予防及び/又は治療剤。 The nucleic acid consists of a nucleotide sequence in which 1 to 4 bases are deleted, substituted, inserted, or added in the nucleotide sequence shown in SEQ ID NO: 3 or 4, and is a nucleic acid that recognizes human miR-33b. The prophylactic and/or therapeutic agent for NASH according to any one of claims 1 to 3.
  5.  前記核酸が、RNA及び架橋構造を有するRNAを含有するものである、請求項1~4の何れか一項に記載する、NASHの予防及び/又は治療剤。 The preventive and/or therapeutic agent for NASH according to any one of claims 1 to 4, wherein the nucleic acid contains RNA and RNA having a crosslinked structure.
  6.  前記核酸が、図1又は2の化学式にて示される化合物である、請求項1~5の何れか一項に記載する、NASHの予防及び/又は治療剤。 The preventive and/or therapeutic agent for NASH according to any one of claims 1 to 5, wherein the nucleic acid is a compound represented by the chemical formula of FIG. 1 or 2.
  7.  高脂肪食負荷miR-33bノックインげっ歯類動物。 high-fat diet-loaded miR-33b knock-in rodents.
  8.  前記高脂肪食が、カロリーベースで40%以上の脂質が含有されるものである、請求項7に記載する、げっ歯類動物。 The rodent according to claim 7, wherein the high-fat diet contains 40% or more lipid on a calorie basis.
  9.  前記高脂肪食が、コレステロールを含有しないものである、請求項7又は8に記載する、げっ歯類動物。 The rodent according to claim 7 or 8, wherein the high-fat diet does not contain cholesterol.
  10.  前記高脂肪食が、コレステロールを含有するものである、項7又は項8に記載する、げっ歯類動物。 The rodent according to item 7 or 8, wherein the high-fat diet contains cholesterol.
  11.  前記高脂肪食が、糖類を含有するものである、請求項7~10の何れか一項に記載する、げっ歯類動物。 The rodent according to any one of claims 7 to 10, wherein the high-fat diet contains sugars.
  12.  miR-33bがSrebf-1遺伝子の3’UTR、イントロン、又は5’UTRにノックインされている、請求項7~11の何れか一項に記載する、げっ歯類動物。 The rodent according to any one of claims 7 to 11, wherein miR-33b is knocked into the 3'UTR, intron or 5'UTR of the Srebf-1 gene.
  13.  NASHモデル動物である、請求項7~12の何れか一項に記載する、げっ歯類動物。 The rodent animal according to any one of claims 7 to 12, which is a NASH model animal.
  14.  miR-33bノックインげっ歯類動物に高脂肪食を摂取させる工程を含む、NASHモデルげっ歯類動物の製造方法。 A method for producing a NASH model rodent, comprising the step of feeding a miR-33b knock-in rodent with a high-fat diet.
  15.  miR-33bノックインげっ歯類動物に高脂肪食及び被験物質を摂取させる工程を含む、NASHの予防及び/又は治療剤のスクリーニング方法。  A screening method for a prophylactic and/or therapeutic agent for NASH, comprising the step of ingesting a high-fat diet and a test substance to a miR-33b knock-in rodent. 
PCT/JP2022/023447 2021-06-11 2022-06-10 Prophylactic and/or therapeutic agent for nash WO2022260162A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021097796 2021-06-11
JP2021-097796 2021-06-11

Publications (1)

Publication Number Publication Date
WO2022260162A1 true WO2022260162A1 (en) 2022-12-15

Family

ID=84425260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023447 WO2022260162A1 (en) 2021-06-11 2022-06-10 Prophylactic and/or therapeutic agent for nash

Country Status (1)

Country Link
WO (1) WO2022260162A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532392A (en) * 2006-04-03 2009-09-10 サンタリス ファーマ アー/エス Pharmaceutical composition comprising antimiRNA antisense oligonucleotide
WO2019245060A1 (en) * 2018-06-22 2019-12-26 国立大学法人京都大学 Composition for preventing or treating neurodegenerative disease
CN110665010A (en) * 2019-09-25 2020-01-10 浙江大学 Nucleic acid medicine for treating fatty liver and lipid metabolism disorder and preparation method thereof
WO2021177267A1 (en) * 2020-03-02 2021-09-10 田辺三菱製薬株式会社 Prevention or treatment of aneurysms using mir-33b inhibitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532392A (en) * 2006-04-03 2009-09-10 サンタリス ファーマ アー/エス Pharmaceutical composition comprising antimiRNA antisense oligonucleotide
WO2019245060A1 (en) * 2018-06-22 2019-12-26 国立大学法人京都大学 Composition for preventing or treating neurodegenerative disease
CN110665010A (en) * 2019-09-25 2020-01-10 浙江大学 Nucleic acid medicine for treating fatty liver and lipid metabolism disorder and preparation method thereof
WO2021177267A1 (en) * 2020-03-02 2021-09-10 田辺三菱製薬株式会社 Prevention or treatment of aneurysms using mir-33b inhibitor

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AUGUET TERESA, ARAGONÈS GEMMA, BERLANGA ALBA, GUIU-JURADO ESTHER, MARTÍ ANDREU, MARTÍNEZ SALOMÉ, SABENCH FÀTIMA, HERNÁNDEZ MERCÉ, : "miR33a/miR33b* and miR122 as Possible Contributors to Hepatic Lipid Metabolism in Obese Women with Nonalcoholic Fatty Liver Disease", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL (MDPI), BASEL, CH, vol. 17, no. 10, 1 October 2016 (2016-10-01), Basel, CH , pages 1620, XP009541851, ISSN: 1422-0067, DOI: 10.3390/ijms17101620 *
HORIE TAKAHIRO, NISHINO TOMOHIRO, BABA OSAMU, KUWABARA YASUHIDE, NAKAO TETSUSHI, NISHIGA MASATAKA, USAMI SHUNSUKE, IZUHARA MASAYAS: "MicroRNA-33b knock-in mice for an intron of sterol regulatory element-binding factor 1 (Srebf1) exhibit reduced HDL-C in vivo.", SCIENTIFIC REPORTS, NATURE PUBLISHING GROUP, US, vol. 4, no. 5312, 1 January 2014 (2014-01-01), US , pages 5312 - 5312, XP009541849, ISSN: 2045-2322, DOI: 10.1038/srep05312 *
MUSSO GIOVANNI, GAMBINO ROBERTO, CASSADER MAURIZIO: "Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis", PROGRESS IN LIPID RESEARCH., PERGAMON PRESS, PARIS., FR, vol. 52, no. 1, 1 January 2013 (2013-01-01), FR , pages 175 - 191, XP009541850, ISSN: 0163-7827, DOI: 10.1016/j.plipres.2012.11.002 *
SATOSHI KOYAMA, TAKAHIRO HORIE, TOMOHIRO NISHINO, OSAMU BABA, NAOYA SOWA, YUI MIYASAKA, YASUHIDE KUWABARA, TETSUSHI NAKAO, MASATAK: "Iddentification of Differential Roles of MicroRNA-33a and -33b During Atherosclerosis Progression With Genetically Modified Mice", JOURNAL OF THE AMERICAN HEART ASSOCIATION, JOHN WILEY & SONS, vol. 8, no. 13, 27 June 2019 (2019-06-27), pages e012609 - 0012609-26, XP009541848, ISSN: 2047-9980, DOI: 10.1161/JAHA.119.012609 *
WATARU ONO AND OTHERS: "S5-1: Discovery of a novel drug for non-alcoholic fatty liver disease (NASH)", PROGRAM OF THE 53RD ANNUAL MEETING OF THE JAPAN ATHEROSCLEROSIS SOCIETY, JAPAN ATHEROSCLEROSIS SOCIETY, JP, vol. 53, 1 January 2021 (2021-01-01) - 24 October 2021 (2021-10-24), JP, pages 105, XP009541852 *
WATARU ONO: "Development of NAFLD and NASH therapy by regulation of microRNA-33a/b involved in cholesterol metabolism", AMED RESEARCH PROJECT INFORMATION "RESEARCH ABSTRACT (2017)", JP, no. 19fk0210028h0003, JP, pages 1 - 2, XP009542853, Retrieved from the Internet <URL:https://amedfind.amed.go.jp/amed/search/task_search_details.html> *

Similar Documents

Publication Publication Date Title
KR101965868B1 (en) Composition and methods for modulating of smn2 splicing in a subject
EP2260101B1 (en) Microrna (mirna) mir-21 for diagnostic and therapeutic purposes
JP6683978B2 (en) Antisense nucleic acid for the treatment of Fukuyama muscular dystrophy
EP3210611A2 (en) Methods of treating vascular inflammatory disorders
US20230340487A1 (en) Compositions and methods for the treatment of metabolic syndrome
JP4688680B2 (en) TGF-β signal transduction pathway inhibitor
TW201821618A (en) Composition for treating polycystic kidney disease
JP2024009169A (en) Antisense oligonucleotide and composition for preventing or treating glycogen storage disease type Ia
WO2016192669A1 (en) Method and medicine for losing weight and reducing blood glucose and blood lipid via mir-96, and use thereof
WO2022260162A1 (en) Prophylactic and/or therapeutic agent for nash
US20230287427A1 (en) Inhibition of lncExACT1 to Treat Heart Disease
JP7654204B2 (en) RNA interference-inducing nucleic acids containing 8-oxoguanine, modified nucleic acids that bind to microRNAs containing 8-oxoguanine, and uses thereof
JP2021534799A (en) How to Target Kits Using Splice Switching Oligonucleotides to Induce Mast Cell Apoptosis
US20230416739A1 (en) B-spectrin (sptbn1) deficiency protects mice from high-fat diet-induced liver disease and cancer development
US10017765B2 (en) Inhibitors of CACNA1A/ALPHA1A subunit internal ribosomal entry site (IRES) and methods of treating spinocerebellar ataxia type 6
JP2008131918A (en) USE OF PROTEIN PHOSPHATASE 2Cepsilon (PP2Cepsilon) HAVING AMPK DEPHOSPHORIZATION ENZYME ACTION
US20230304007A1 (en) Compositions and methods of treatment of muscle disorders by targeting h19x-encoded non-coding rnas
Arif Elucidating the role of SRSF1, a prototypical splicing factor, in liver physiology
US11207426B2 (en) Compositions and methods for selective inhibition of grainyhead-like protein expression
EP3981431A1 (en) Nucleic acid complex for modulating ihh expression
KR20220061880A (en) Immunosuppressant comprising TSAHC or a pharmaceutically acceptable salts thereof as an active ingredient
JP2023141905A (en) Preventive or therapeutic agent of inflammatory enteric disease
WO2021146327A1 (en) Inhibition of dennd5b expression for treating hepatic steatosis
KR101414383B1 (en) Composition for inhibiting expression of Dlk-1 gene
WO2017000058A1 (en) Modulation of cyp8b1 for the prevention and treatment of liver fibrosis and metabolic disorders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22820340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP