[go: up one dir, main page]

WO2022255302A1 - Water absorbent sheet and absorbent article - Google Patents

Water absorbent sheet and absorbent article Download PDF

Info

Publication number
WO2022255302A1
WO2022255302A1 PCT/JP2022/021927 JP2022021927W WO2022255302A1 WO 2022255302 A1 WO2022255302 A1 WO 2022255302A1 JP 2022021927 W JP2022021927 W JP 2022021927W WO 2022255302 A1 WO2022255302 A1 WO 2022255302A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
absorbent
sheet
absorbent resin
water absorbent
Prior art date
Application number
PCT/JP2022/021927
Other languages
French (fr)
Japanese (ja)
Inventor
春香 津留
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to CN202280033438.2A priority Critical patent/CN117295477A/en
Priority to JP2023525819A priority patent/JPWO2022255302A1/ja
Publication of WO2022255302A1 publication Critical patent/WO2022255302A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium

Definitions

  • the present invention relates to water absorbent sheets and absorbent articles, and more particularly to water absorbent sheets suitable for sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads, and absorbent articles using water absorbent sheets.
  • water absorbent resins have been widely used in the field of sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads.
  • a crosslinked product of a polymer of a water-soluble ethylenically unsaturated monomer more specifically a crosslinked product of a partially neutralized polymer of polyacrylic acid
  • acrylic acid which is the raw material, is easily available industrially, it can be manufactured at a constant quality and at a low cost, and it has many advantages such as being less prone to putrefaction and deterioration. It is said that it is a flexible resin (see, for example, Patent Document 1).
  • Absorbent articles such as disposable diapers, sanitary napkins, and incontinence pads are composed of an absorbent body that absorbs and retains body fluids such as urine and menstrual blood excreted from the body, and a side that comes in contact with the body. It consists of a liquid-permeable surface sheet (top sheet) arranged on the front side and a liquid-impermeable back sheet (back sheet) arranged on the opposite side in contact with the body.
  • the absorber is usually composed of hydrophilic fibers such as pulp and water-absorbent resin.
  • the absorbent resin contained in the absorbent body is required to have a high water retention capacity.
  • the phenomenon that the liquid once absorbed by the absorber returns back that is, the liquid returns from the absorber, and when the absorber is touched by hand, it becomes uncomfortable wetness. feel
  • the absorbent article is used, if the absorbent surface of the absorbent article is inclined, the liquid that is repeatedly excreted is not sufficiently absorbed, and despite the high water retention capacity of the water absorbent resin, There may also be a problem that the liquid leaks out of the absorbent article.
  • the main object of the present invention is to provide a water absorbent sheet that suppresses the occurrence of leakage.
  • the inventors have diligently studied to solve the above problems.
  • the water-absorbent resin has a predetermined physiological saline water retention capacity, a water absorption capacity under a load of 4.14 kPa, and a non-pressurized It was found that the occurrence of leakage can be suppressed by using a material having a DW of 5 minutes.
  • the present invention is an invention that has been completed through extensive research based on such findings.
  • Section 1 A water absorbent sheet comprising an absorbent layer and a nonwoven fabric sandwiching the upper and lower sides of the absorbent layer, The absorbent layer contains a water absorbent resin, The water absorbent sheet, wherein the water absorbent resin has the following properties (A) to (C).
  • A) The physiological saline water retention capacity is 45 g/g or more and 70 g/g or less.
  • B The water absorption under a load of 4.14 kPa is 13 ml/g or more.
  • C The 5-minute DW value without pressure is 44 ml/g or more and 80 ml/g or less.
  • the water absorbent sheet according to Item 1 wherein the water absorbent resin has a basis weight of 100 g/m 2 or more and 450 g/m 2 or less.
  • Item 3. The water absorbent sheet according to Item 1 or 2, wherein the absorbent layer is adhered to the nonwoven fabric via an adhesive.
  • Section 4. An absorbent article comprising the water absorbent sheet according to Items 1 to 3.
  • the present invention it is possible to provide a water absorbent sheet that can suppress the occurrence of leakage. Furthermore, according to the present invention, it is also possible to provide an absorbent article using a water absorbent sheet.
  • FIG. 2 is a schematic diagram of a measuring device used for measuring the water absorption amount of physiological saline under a load of 4.14 kPa of a water absorbent resin. It is a schematic diagram of a measuring device used for measuring the non-pressure DW of the water absorbent resin.
  • FIG. 3 is a schematic diagram for explaining a method of a leak test (gradient absorption test) for absorbent articles.
  • a numerical value connected by "-" means a numerical range including the numerical values before and after "-" as lower and upper limits. If multiple lower limits and multiple upper limits are listed separately, any lower limit and upper limit can be selected and connected with "-".
  • the water- absorbing sheet of the present invention is a water-absorbing sheet comprising an absorbent layer and non-woven fabric sandwiching the upper and lower sides of the absorbent layer.
  • the absorbent layer contains a water absorbent resin, and the water absorbent resin has the following properties (A) to (C).
  • A) The physiological saline water retention capacity is 45 g/g or more and 70 g/g or less.
  • the water absorption under a load of 4.14 kPa is 13 ml/g or more.
  • C The 5-minute DW value without pressure is 44 ml/g or more and 80 ml/g or less.
  • the water absorbent sheet of the present invention can be used in absorbent articles to suppress the occurrence of leakage.
  • the water absorbent sheet of the present invention will be described in detail below.
  • the absorbent layer may contain hydrophilic fibers and the like in addition to the water-absorbent resin, but it is preferable that the absorbent layer is substantially composed only of the water-absorbent resin. That the absorbent layer is substantially composed only of the water absorbent resin means that the content of the water absorbent resin in the absorbent layer is 95% by mass or more, further 98% by mass or more, further 99% by mass or more, and further means 100% by mass.
  • the absorbent layer contained in the water absorbent sheet of the present invention may be one layer, or may be two or more layers.
  • the absorbent layer contained in the water absorbent sheet is preferably one or two layers.
  • a liquid-permeable substrate such as a nonwoven fabric between the absorbent layers.
  • this liquid-permeable substrate the same non-woven fabric as will be described later that sandwiches the upper and lower sides of the absorbent layer can be used.
  • the structure of the water-absorbent sheet may be any structure in which the absorbent layer containing the water-absorbent resin is sandwiched between nonwoven fabrics, for example, a sheet-like structure in which the absorbent layer is fixed between two nonwoven fabrics. It may be a structure wrapped in .
  • the planar shape of the water-absorbent sheet is appropriately determined according to the application or the shape of the absorbent article, and examples thereof include substantially rectangular, oval, hourglass, and battledore shapes, and cuts are provided to improve fit. etc. Moreover, it may have a block region in which a plurality of block structures partitioned by a plurality of vertical grooves extending in the vertical direction and a plurality of horizontal grooves extending in the horizontal direction orthogonal to the vertical direction are arranged in the vertical direction. In addition, the internal structure of the water absorbent sheet is also appropriately determined according to the purpose.
  • the component may have a quantitative distribution gradient (uniform distribution, quantitative distribution depending on the liquid input portion, etc.).
  • the water absorbent sheet may be embossed into the water absorbent sheet in order to provide liquid flow paths.
  • the absorbent layer is preferably adhered to the nonwoven fabric via an adhesive.
  • an adhesive for adhering (fixing) the absorbent layer to the nonwoven fabric, a hot melt adhesive or the like is preferable.
  • the basis weight of the water absorbent resin contained in the absorbent layer is not particularly limited, but from the viewpoint of exhibiting the effects of the present invention more preferably, it is preferably 100 to 450 g/m 2 , more preferably 120 g/m 2 . ⁇ 350 g/m 2 , more preferably 150-300 g/m 2 .
  • the content of the water absorbent resin in the water absorbent sheet is preferably 5 to 100% by mass, more preferably 10 to 95% by mass, further preferably 20 to 90% by mass, and 30 to 80% by mass. % by mass is even more preferred.
  • liquid-absorbing sheet By holding the water-absorbing sheet between a liquid-permeable front sheet (top sheet) through which liquid can pass and a liquid-impermeable back sheet (back sheet) through which liquid cannot pass, It can be an absorbent article.
  • the liquid permeable sheet is arranged on the side in contact with the body, and the liquid impermeable sheet is arranged on the opposite side in contact with the body.
  • liquid-permeable sheets examples include air-through type, spunbond type, chemical bond type, needle punch type nonwoven fabrics and porous synthetic resin sheets made of fibers such as polyethylene, polypropylene, and polyester.
  • liquid-impermeable sheets include synthetic resin films made of resins such as polyethylene, polypropylene, and polyvinyl chloride.
  • the liquid-permeable sheet is preferably at least one selected from the group consisting of thermal bonded nonwoven fabric, air-through nonwoven fabric, spunbond nonwoven fabric, and spunbond/meltblown/spunbond nonwoven fabric.
  • the basis weight of the liquid-permeable sheet is preferably 5 g/m 2 or more and 100 g/m 2 or less, more preferably 10 g/m 2 or more and 60 g/m 2 or less.
  • the surface of the liquid-permeable sheet may be embossed or perforated in order to improve the diffusibility of the liquid. The embossing and perforation can be carried out by known methods.
  • liquid-impermeable sheets include sheets made of synthetic resins such as polyethylene, polypropylene, and polyvinyl chloride, and spunbond/meltblown/spunbond (SMS) nonwoven fabrics in which a water-resistant meltblown nonwoven fabric is sandwiched between high-strength spunbond nonwoven fabrics. and sheets made of composite materials of these synthetic resins and nonwoven fabrics (for example, spunbond nonwoven fabrics and spunlaced nonwoven fabrics).
  • the liquid-impermeable sheet may have air permeability from the viewpoint of reducing stuffiness when worn and reducing discomfort given to the wearer.
  • a sheet made of synthetic resin mainly composed of low-density polyethylene (LDPE) resin can be used as the liquid-impermeable sheet.
  • the liquid-impermeable sheet may be, for example, a synthetic resin sheet having a weight per unit area of 10 to 50 g/m 2 .
  • a filler may be added to the resin sheet, or the liquid-impermeable sheet may be embossed. Calcium carbonate or the like is used as the filler.
  • the absorbent article preferably has a liquid-permeable sheet arranged on the upper surface of the water-absorbent sheet, and a liquid-impermeable sheet arranged on the side opposite to the liquid-permeable sheet.
  • an absorbent body composed of a water absorbent resin and hydrophilic fibers may be combined with the upper surface and/or the lower surface of the water absorbent sheet.
  • the absorbent article may also include members as appropriate according to the application and function. Examples include core wraps, liquid acquisition and diffusion sheets, outer cover nonwoven fabrics, leg gathers, and the like.
  • the core wrap is arranged so as to cover the outer periphery of the water absorbent sheet.
  • a water absorbent sheet is placed in the core wrap.
  • the core wrap includes tissue, nonwoven fabric, and the like.
  • the core wrap has, for example, a main surface of the same size as the water absorbent sheet.
  • the water absorbent sheet is shape-retained by enclosing it in a core wrap.
  • the method of retaining the shape of the water-absorbent sheet by the core wrap is not limited to this.
  • the water-absorbent sheet may be sandwiched between two separate upper and lower core wraps, or the core wraps may form a bag body in which the water-absorbent sheet may be arranged. .
  • the absorbent article may include a liquid acquisition diffusion sheet.
  • a liquid acquisition and diffusion sheet may be placed, for example, on the underside of the liquid permeable sheet.
  • a hot-melt adhesive, heat embossing, or ultrasonic welding may be used for bonding between the liquid acquisition diffusion sheet and the liquid permeable sheet.
  • a non-woven fabric or a resin film having a large number of through-holes can be used.
  • the non-woven fabric the same material as described in the liquid-permeable sheet section can be used. It is preferable because it has excellent movement characteristics.
  • the liquid acquisition/diffusion sheet is usually arranged in the central portion with a width shorter than that of the water absorbent sheet, but may be arranged over the entire width.
  • the length of the liquid acquisition/diffusion sheet in the front-rear direction may be substantially the same as the total length of the absorbent article, may be substantially the same as the total length of the water absorbent sheet, or may be within a range of lengths assuming the portion into which the liquid is introduced. good too.
  • the outer cover nonwoven fabric may be arranged on the side of the liquid impermeable sheet facing the water absorbent sheet.
  • the outer cover nonwoven can be adhered to the liquid impermeable sheet using, for example, an adhesive.
  • the outer cover nonwoven fabric may be formed of one or more layers and may be a soft material.
  • the outer cover nonwoven fabric may be imparted with a soft touch, may have a pattern printed on it, or may have a plurality of joints so as to appeal to consumers' willingness to purchase or for other reasons. , embossed, or formed into a three-dimensional form.
  • leg gathers The absorbent article of the present invention has leg gathers provided with stretchable elastic members that are arranged outside both widthwise end portions of the water absorbent sheet and installed substantially parallel to the longitudinal direction of the water absorbent sheet. may be The length of the leg gathers is set to be around the wearer's leg or longer. The elongation rate of the leg gathers is appropriately set from the viewpoint of preventing the leakage of discharged liquid and reducing the feeling of oppression when worn for a long time.
  • the absorbent article of the present invention may have front/back gathers provided near both ends in the longitudinal direction of the absorbent article and provided with elastic members that stretch in the width direction.
  • the absorbent article of the present invention has front/back gathers that can rise above the side edges in the width direction of the water absorbent sheet. That is, on both sides of the absorbent article in the longitudinal direction, a front/back gather sheet member having a gather elastic member is arranged to constitute a front/back gather.
  • the member for the front/back gathers is usually made of a liquid-impermeable or water-repellent material, preferably a moisture-permeable material.
  • a liquid-impermeable or water-repellent porous sheet preferably a liquid-impermeable or water-repellent nonwoven fabric, or a laminate of the porous sheet and the nonwoven fabric.
  • the nonwoven fabric include thermal bonded nonwoven fabric, spunbond nonwoven fabric, meltblown nonwoven fabric, spunlace nonwoven fabric, spunbond/meltblown/spunbond nonwoven fabric, and the like.
  • the basis weight of the member may be 5 to 100 g/m 2 , 8 to 70 g/m 2 , or 10 to 40 g/m 2 .
  • Each member constituting the absorbent article of the present invention may be adhered.
  • the liquid is more smoothly guided to the water absorbent sheet, making it easier to obtain an absorbent article with excellent leakage prevention.
  • Adhesion methods include known methods such as adhesives, heat sealing, and ultrasonic sealing.
  • a hot-melt adhesive is applied to a liquid-permeable sheet at predetermined intervals in the width direction in a shape such as vertical stripes or spirals, starch, carboxymethylcellulose, polyvinyl alcohol, polyvinylpyrrolidone and other water-soluble adhesives.
  • a method using a water-soluble adhesive selected from polymers include a method using heat-sealable synthetic fibers, a method using heat-sealing thereof may be employed.
  • the water absorbent resin used in the water absorbent sheet of the present invention is characterized by having the following properties (A) to (C).
  • the water absorbent sheet of the present invention using the water absorbent resin having such characteristics can suppress the occurrence of leakage.
  • the water absorbent resin will be described in detail below.
  • the physiological saline water retention capacity is 45 g/g or more and 70 g/g or less.
  • the water absorption under a load of 4.14 kPa is 13 ml/g or more.
  • the 5-minute value of non-pressurized DW is 44 ml/g or more and 80 ml/g or less.
  • the content of the water-absorbing resin having the properties (A) to (C) among the water-absorbing resins used in the water-absorbing sheet is preferably 30% by mass. Above, more preferably 50% by mass or more, still more preferably 70% by mass or more, and even more preferably 90% by mass or more.
  • the water absorbent sheet of the present invention contains two or more absorbent layers
  • at least one layer may contain a water absorbent resin having properties (A) to (C).
  • the water absorbent resins contained may be the same or different. Further, from the viewpoint of more preferably exhibiting the effects of the present invention, it is preferable that the water absorbent sheet contains a water absorbent resin having properties (A) to (C) in 50% or more of the total absorbent layer. More preferably, the layer contains a water absorbent resin having properties (A) to (C).
  • the water-absorbent resin preferably has a physiological saline water retention capacity of 46 g/g or more, more preferably 47 g/g or more, and still more preferably 48 g/g or more, Also, it is preferably 70 g/g or less, more preferably 68 g/g or less, and still more preferably 65 g/g or less.
  • the water absorption amount of the water absorbent resin under a load of 4.14 kPa is preferably 14 ml/g or more, more preferably 15 ml/g or more, and still more preferably 16 ml. /g or more, preferably 33 ml/g or less, more preferably 27 ml/g or less, still more preferably 23 ml/g or less.
  • the 5-minute value of the non-pressurized DW of the water absorbent resin is preferably 46 ml/g or more, more preferably 48 ml/g or more, and still more preferably 50 ml/g. g or more, preferably 70 ml/g or less, more preferably 60 ml/g or less, and even more preferably 54 ml/g or less.
  • the water-absorbent resin preferably has a liquid absorption amount of 185 g or more, more preferably 190 g or more, when the water-absorbent sheet contains a single absorbent layer, as measured by a gradient absorption test.
  • the amount of liquid absorbed until leakage occurs is, for example, 560 g or less, more preferably 555 g or less, or 550 g or less.
  • the weight is preferably 172 g or more, more preferably 176 g or more.
  • the amount of liquid absorbed until leakage occurs is, for example, 560 g or less, more preferably 555 g or less, or 550 g or less.
  • the method for measuring the physiological saline water retention capacity of the water-absorbing resin, the water absorption capacity under a load of 4.14 kPa, the non-pressurized DW 5-minute value, and the method for the gradient absorption test are as described in Examples.
  • the water absorbent resin is formed by cross-linking a polymer of water-soluble ethylenically unsaturated monomers, that is, a cross-linked polymer having structural units derived from water-soluble ethylenically unsaturated monomers.
  • the water absorbent resin used in the present invention may have various shapes.
  • Examples of the shape of the water-absorbent resin include granular, substantially spherical, irregularly crushed, plate-like, fibrous, flake-like, and aggregated shapes of these resins.
  • the water-absorbent resin is preferably in the form of granules, substantially spherical, crushed amorphous, fibrous, or aggregated forms of these resins.
  • the water absorbent resin may be in a form (secondary particles) in which fine particles (primary particles) are aggregated, in addition to the form in which each is composed of a single particle.
  • secondary particles fine particles
  • the shape of the primary particles include a substantially spherical shape, an irregular crushed shape, and a plate shape.
  • a substantially spherical single particle shape having a smooth surface shape such as a perfect sphere, an ellipsoidal shape, or the like can be mentioned. Because of its smooth surface, it has high fluidity as a powder, and because it is easy for aggregated particles to be densely packed, it is difficult to break even when subjected to impact, and has high particle strength. Become.
  • the median particle size of the water absorbent resin is preferably 200 ⁇ m or more, 250 ⁇ m or more, 280 ⁇ m or more, 300 ⁇ m or more, or 320 ⁇ m or more from the viewpoint of more preferably exhibiting the effects of the present invention. From the same viewpoint, the median particle size is preferably 700 ⁇ m or less, 600 ⁇ m or less, 550 ⁇ m or less, 500 ⁇ m or less, 450 ⁇ m or less, or 400 ⁇ m or less. That is, the median particle size is preferably 200 to 700 ⁇ m, preferably 200 to 600 ⁇ m, more preferably 250 to 500 ⁇ m, further preferably 300 to 450 ⁇ m, further preferably 320 to 400 ⁇ m. is even more preferable.
  • the median particle size of the water-absorbing resin can be measured using a JIS standard sieve, and is specifically the value measured by the method described in the Examples.
  • aqueous solution polymerization method polymerization is carried out by heating an aqueous solution of a water-soluble ethylenically unsaturated monomer while stirring it if necessary.
  • reversed-phase suspension polymerization method polymerization is carried out by heating a water-soluble ethylenically unsaturated monomer in a hydrocarbon dispersion medium with stirring.
  • a reversed-phase suspension polymerization method is preferably used from the viewpoint of enabling precise control of the polymerization reaction and control of a wide range of particle sizes.
  • the method for producing a water absorbent resin in the method for producing a water absorbent resin by reverse phase suspension polymerization of a water-soluble ethylenically unsaturated monomer in a hydrocarbon dispersion medium, the presence of a radical polymerization initiator and a step of post-crosslinking the water-containing gel obtained by the polymerization in the presence of a post-crosslinking agent.
  • an internal cross-linking agent may be added to the water-soluble ethylenically unsaturated monomer to form a hydrogel having an internal cross-linked structure.
  • Water-soluble ethylenically unsaturated monomers include, for example, (meth)acrylic acid and its salts; 2-(meth)acrylamido-2-methylpropanesulfonic acid and its salts; (meth)acrylamide, N,N-dimethyl Nonionic monomers such as (meth)acrylamide, 2-hydroxyethyl (meth)acrylate, N-methylol (meth)acrylamide, polyethylene glycol mono (meth)acrylate; N,N-diethylaminoethyl (meth)acrylate, N , N-diethylaminopropyl (meth)acrylate, diethylaminopropyl (meth)acrylamide and other amino group-containing unsaturated monomers and quaternized products thereof.
  • water-soluble ethylenically unsaturated monomers (meth)acrylic acid or a salt thereof, (meth)acrylamide, and N,N-dimethylacrylamide are preferable from the viewpoint of industrial availability. , (meth)acrylic acid and salts thereof are more preferred.
  • These water-soluble ethylenically unsaturated monomers may be used alone or in combination of two or more.
  • acrylic acid and its salts are widely used as raw materials for water-absorbent resins. Sometimes used.
  • acrylic acid and/or its salt is preferably used as a main water-soluble ethylenically unsaturated monomer in an amount of 70 to 100 mol % based on the total water-soluble ethylenically unsaturated monomers.
  • the water-soluble ethylenically unsaturated monomer is preferably dispersed in a hydrocarbon dispersion medium in the form of an aqueous solution and subjected to reversed-phase suspension polymerization.
  • the water-soluble ethylenically unsaturated monomer can increase the dispersion efficiency in the hydrocarbon dispersion medium by forming an aqueous solution.
  • the concentration of the water-soluble ethylenically unsaturated monomer in this aqueous solution is preferably in the range of 20 mass % to the saturated concentration.
  • the concentration of the water-soluble ethylenically unsaturated monomer is more than 38% by mass.
  • the concentration of the water-soluble ethylenically unsaturated monomer is more preferably 55% by mass or less, even more preferably 50% by mass or less, and even more preferably 46% by mass or less.
  • the acid group is optionally alkalinized in advance.
  • Those neutralized with a neutralizing agent may also be used.
  • alkaline neutralizers include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like.
  • these alkaline neutralizers may be used in the form of an aqueous solution in order to facilitate the neutralization operation.
  • the alkaline neutralizing agent mentioned above may be used independently and may be used in combination of 2 or more types.
  • the degree of neutralization of the water-soluble ethylenically unsaturated monomer with the alkaline neutralizing agent is 10 to 100 mol% as the degree of neutralization of all acid groups possessed by the water-soluble ethylenically unsaturated monomer. is preferred, 30 to 90 mol % is more preferred, 40 to 85 mol % is even more preferred, and 50 to 80 mol % is even more preferred.
  • radical polymerization initiators added to the polymerization step include persulfates such as potassium persulfate, ammonium persulfate and sodium persulfate, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, Peroxides such as t-butyl cumyl peroxide, t-butyl peroxyacetate, t-butyl peroxy isobutyrate, t-butyl peroxy pivalate, hydrogen peroxide, and 2,2'-azobis ( 2-amidinopropane) dihydrochloride, 2,2′-azobis[2-(N-phenylamidino)propane]dihydrochloride, 2,2′-azobis[2-(N-allylamidino)propane]dihydrochloride , 2,2′-azobis ⁇ 2-[1-(2-hydroxyethyl
  • radical polymerization initiators potassium persulfate, ammonium persulfate, sodium persulfate and 2,2′-azobis(2-amidinopropane) dihydrochloride are preferred from the viewpoint of easy availability and handling. be done.
  • These radical polymerization initiators may be used alone or in combination of two or more.
  • the radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • the radical polymerization initiator mixed in the polymerization step preferably contains an azo compound and a peroxide.
  • the molar ratio of the peroxide to the azo compound is preferably in the range of 0.1 to 1.0, more preferably in the range of 0.2 to 0.8, even more preferably is in the range of 0.3 to 0.6.
  • the amount of the radical polymerization initiator used is, for example, 0.00005 to 0.01 mol per 1 mol of the water-soluble ethylenically unsaturated monomer. By satisfying such a usage amount, rapid polymerization reaction can be avoided and the polymerization reaction can be completed in an appropriate time.
  • Examples of the internal cross-linking agent include those capable of cross-linking the polymer of water-soluble ethylenically unsaturated monomers used, such as (poly)ethylene glycol, (poly)propylene glycol, 1,4-butanediol, tri Unsaturated polyesters obtained by reacting polyols such as diols and triols such as methylolpropane and (poly)glycerin with unsaturated acids such as (meth)acrylic acid, maleic acid and fumaric acid; N,N-methylene Bisacrylamides such as bisacrylamide; Di(meth)acrylic acid esters or tri(meth)acrylic acid esters obtained by reacting polyepoxide and (meth)acrylic acid; Di(meth)acrylic acid carbamyl esters obtained by reacting isocyanate with hydroxyethyl (meth)acrylate; allylated starch, allylated cellulose, diallyl
  • unsaturated polyesters or polyglycidyl compounds are preferably used, and diglycidyl ether compounds are more preferably used.
  • Ether, (poly)glycerol diglycidyl ether is preferably used.
  • These internal cross-linking agents may be used alone or in combination of two or more.
  • the amount of the internal cross-linking agent used is preferably 0.02 mol or less, more preferably 0.000001 to 0.01 mol, per 1 mol of the water-soluble ethylenically unsaturated monomer. More preferably 0.00001 to 0.005 mol, even more preferably 0.00005 to 0.002 mol.
  • hydrocarbon dispersion media examples include those having 6 to 8 carbon atoms such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane and n-octane.
  • Aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane aromatic hydrocarbons such as benzene, toluene and xylene;
  • hydrocarbon dispersion media n-hexane, n-heptane, and cyclohexane are preferably used because they are industrially readily available, stable in quality, and inexpensive.
  • These hydrocarbon dispersion media may be used alone or in combination of two or more.
  • a commercially available product such as Exsolheptane (manufactured by Exxon Mobil Co., containing 75 to 85% by mass of heptane and its isomer hydrocarbons) can also be used to obtain suitable results. be able to.
  • the amount of the hydrocarbon dispersion medium used is the water-soluble ethylenically unsaturated monomer in the first stage. It is preferably 100 to 1,500 parts by mass, more preferably 200 to 1,400 parts by mass, based on 100 parts by mass.
  • the reversed-phase suspension polymerization is carried out in one stage (single stage) or in multiple stages of two or more stages, and the above-described first stage polymerization is the first stage in single stage polymerization or multistage polymerization. means the polymerization reaction of (the same applies below).
  • a dispersion stabilizer In the reversed-phase suspension polymerization, a dispersion stabilizer can be used to improve the dispersion stability of the water-soluble ethylenically unsaturated monomer in the hydrocarbon dispersion medium.
  • a surfactant can be used as the dispersion stabilizer.
  • surfactants include sucrose fatty acid esters, polyglycerin fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene glycerin fatty acid esters, sorbitol fatty acid esters, polyoxyethylene sorbitol fatty acid esters, and polyoxyethylene.
  • Alkyl ethers polyoxyethylene alkylphenyl ethers, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkyl allyl formaldehyde condensed polyoxyethylene ethers, polyoxyethylene polyoxypropylene block copolymers, polyoxyethylene polyoxypropyl alkyl ethers, Using polyethylene glycol fatty acid esters, alkyl glucosides, N-alkyl gluconamides, polyoxyethylene fatty acid amides, polyoxyethylene alkylamines, polyoxyethylene alkyl ether phosphates, polyoxyethylene alkyl allyl ether phosphates, etc. can be done.
  • sorbitan fatty acid esters sorbitan fatty acid esters, polyglycerin fatty acid esters, and sucrose fatty acid esters are particularly preferred from the standpoint of dispersion stability of the monomer.
  • These surfactants may be used alone or in combination of two or more.
  • the amount of the surfactant used is preferably 0.1 to 30 parts by mass, preferably 0.3 to 20 parts by mass, per 100 parts by mass of the water-soluble ethylenically unsaturated monomer in the first stage. Parts by mass are more preferred.
  • a polymeric dispersant may be used together with the surfactant described above.
  • polymeric dispersants include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene-propylene copolymer, maleic anhydride-modified EPDM (ethylene-propylene-diene-terpolymer), anhydrous Maleic acid-modified polybutadiene, maleic anhydride/ethylene copolymer, maleic anhydride/propylene copolymer, maleic anhydride/ethylene/propylene copolymer, maleic anhydride/butadiene copolymer, polyethylene, polypropylene, ethylene/propylene Copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene/propylene copolymer, ethylene/acrylic acid copolymer, ethyl cellulose, ethylhydroxyethyl cellulose and the like.
  • maleic anhydride-modified polyethylene maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene/propylene copolymer, maleic anhydride/ Ethylene copolymer, maleic anhydride/propylene copolymer, maleic anhydride/ethylene/propylene copolymer, polyethylene, polypropylene, ethylene/propylene copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene/propylene copolymer It is preferred to use polymers. These polymeric dispersants may be used alone or in combination of two or more.
  • the amount of the polymeric dispersant used is preferably 0.1 to 30 parts by mass, preferably 0.3 to 20 parts by mass, relative to 100 parts by mass of the water-soluble ethylenically unsaturated monomer in the first stage. Parts by mass are more preferred.
  • reverse phase suspension polymerization can be performed by adding a thickener to an aqueous solution containing a water-soluble ethylenically unsaturated monomer.
  • a thickener By adjusting the viscosity of the aqueous solution by adding a thickener in this way, it is possible to control the median particle size obtained in the reversed-phase suspension polymerization.
  • thickeners examples include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyacrylic acid, (partially) neutralized polyacrylic acid, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, and polyvinyl alcohol. , polyvinylpyrrolidone, polyethylene oxide and the like can be used. If the stirring speed during polymerization is the same, the higher the viscosity of the aqueous solution of the water-soluble ethylenically unsaturated monomer, the larger the primary particles and/or secondary particles of the obtained particles tend to be.
  • reverse phase suspension polymerization for reversed-phase suspension polymerization, for example, an aqueous monomer solution containing a water-soluble ethylenically unsaturated monomer is dispersed in a hydrocarbon dispersion medium in the presence of a dispersion stabilizer.
  • the dispersion stabilizer surfactant or polymer dispersant
  • the dispersion stabilizer may be added before or after the addition of the aqueous monomer solution as long as it is before the polymerization reaction is started.
  • Polymerization is preferably carried out after dispersing the surfactant.
  • Such reversed-phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. In addition, from the viewpoint of increasing productivity, it is preferable to carry out in 2 to 3 stages.
  • water-soluble ethylenically unsaturated monomers are added to the reaction mixture obtained in the first-stage polymerization reaction.
  • the monomers are added and mixed, and reversed-phase suspension polymerization in the second and subsequent stages may be carried out in the same manner as in the first stage.
  • a radical polymerization initiator and, if necessary, an internal cross-linking agent are added to the second and subsequent stages.
  • Reversed-phase suspension polymerization Based on the amount of the water-soluble ethylenically unsaturated monomer added during the reverse phase suspension polymerization in each stage, added within the range of the molar ratio of each component to the water-soluble ethylenically unsaturated monomer described above Reversed-phase suspension polymerization can be carried out. If the amount of the water-soluble ethylenically unsaturated monomer and the ratio of the polymerization initiator, internal cross-linking agent, etc. to the water-soluble ethylenically unsaturated monomer are within the above ranges, Each step after the first step may be the same or different.
  • the reaction temperature for the polymerization reaction is 20 to 110° C. from the viewpoints of speeding up the polymerization, shortening the polymerization time, thereby improving economic efficiency, and facilitating the removal of the heat of polymerization to allow the reaction to proceed smoothly. and more preferably 40 to 90°C.
  • the water-absorbing resin is crosslinked by adding a post-crosslinking agent to a hydrous gel-like material having an internal crosslinked structure obtained by polymerizing a water-soluble ethylenically unsaturated monomer (post-crosslinking reaction).
  • This post-crosslinking reaction is carried out in the presence of a post-crosslinking agent after the polymerization of the water-soluble ethylenically unsaturated monomer.
  • post-crosslinking agents include compounds having two or more reactive functional groups.
  • polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin; (poly)ethylene glycol diglycidyl ether, (poly) Polyglycidyl compounds such as glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, (poly)propylene glycol polyglycidyl ether, (poly)glycerol polyglycidyl ether; epichlorohydrin, epibromohydrin, ⁇ -halo epoxy compounds such as methyl epichlorohydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyan
  • post-crosslinking agents (poly)ethylene glycol diglycidyl ether, (poly)glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, (poly)propylene glycol polyglycidyl ether, ( Polyglycidyl compounds such as poly)glycerol polyglycidyl ether are preferred.
  • These post-crosslinking agents may be used alone or in combination of two or more.
  • the amount of the post-crosslinking agent used is preferably 0.00001 to 0.01 mol, preferably 0.00005 to 0.01 mol, per 1 mol of the total amount of the water-soluble ethylenically unsaturated monomers used in the polymerization. 005 mol, more preferably 0.00001 to 0.001 mol.
  • the post-crosslinking agent may be added as it is or as an aqueous solution, but if necessary, it may be added as a solution using a hydrophilic organic solvent as a solvent.
  • Hydrophilic organic solvents include, for example, lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol and isopropyl alcohol; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether, dioxane and tetrahydrofuran; - amides such as dimethylformamide; sulfoxides such as dimethylsulfoxide; These hydrophilic organic solvents may be used alone, in combination of two or more, or as a mixed solvent with water.
  • the timing of addition of the post-crosslinking agent may be after the polymerization of the water-soluble ethylenically unsaturated monomer, and it is added in the range of 5 to 140 parts by mass with respect to 100 parts by mass of the water-soluble ethylenically unsaturated monomer. It is preferably added in the presence of water, more preferably in the presence of water in the range of 15 to 100 parts by mass, more preferably in the presence of water in the range of 20 to 50 parts by mass. Adding in the presence of water in the range of 28 parts by mass is even more preferable.
  • the amount of water means the total amount of water contained in the reaction system and water used as necessary when adding the post-crosslinking agent.
  • the post-crosslinking agent is added while the water content is higher than 140 parts by mass, the water retention tends to be low. Also, if the post-crosslinking agent is added in a state where the amount of water is less than 5 parts by mass, the reaction of the post-crosslinking agent tends to be insufficient.
  • the reaction temperature in the post-crosslinking reaction is preferably 50 to 250°C, more preferably 60 to 180°C, even more preferably 60 to 140°C, and more preferably 70 to 120°C. More preferred.
  • the reaction time for the post-crosslinking reaction is preferably 1 to 300 minutes, more preferably 5 to 200 minutes.
  • a drying step may be included in which water, a hydrocarbon dispersion medium, and the like are removed by distillation by applying energy such as heat from the outside.
  • dehydrating the water-containing gel after reverse-phase suspension polymerization by heating the system in which the water-containing gel is dispersed in the hydrocarbon dispersion medium, the water and the hydrocarbon dispersion medium are temporarily removed from the system by azeotropic distillation. Distill off. At this time, if only the hydrocarbon dispersion medium that has been distilled off is returned into the system, continuous azeotropic distillation becomes possible.
  • the temperature in the system during drying is maintained at or below the azeotropic temperature with the hydrocarbon dispersion medium, which is preferable from the viewpoint of the resin being less likely to deteriorate.
  • water and a hydrocarbon dispersion medium are distilled off to obtain a water absorbent resin.
  • the drying treatment by distillation may be performed under normal pressure or under reduced pressure. Moreover, from the viewpoint of increasing the drying efficiency, the drying may be carried out under an air stream of nitrogen or the like.
  • the drying temperature is preferably 70 to 250° C., more preferably 80 to 180° C., further preferably 80 to 140° C., further preferably 90 to 130° C. is even more preferred.
  • the drying temperature is preferably 40 to 160°C, more preferably 50 to 110°C.
  • the above-described drying step by distillation is performed after the completion of the subsequent cross-linking step.
  • the post-crosslinking step and the drying step may be performed simultaneously.
  • the water absorbent resin may contain additives depending on the purpose.
  • additives include inorganic powders, surfactants, oxidizing agents, reducing agents, metal chelating agents, radical chain inhibitors, antioxidants, antibacterial agents, and the like.
  • inorganic powders surfactants, oxidizing agents, reducing agents, metal chelating agents, radical chain inhibitors, antioxidants, antibacterial agents, and the like.
  • amorphous silica as an inorganic powder to 100 parts by mass of the water absorbent resin, the fluidity of the water absorbent resin can be further improved.
  • the water absorbent resins obtained in Examples and Comparative Examples were evaluated by the following various tests. Unless otherwise specified, measurements were carried out in an environment of temperature 25 ⁇ 2° C. and humidity 50 ⁇ 10%. Each evaluation test method will be described below.
  • a cotton bag (Membrane No. 60, width 100 mm ⁇ length 200 mm) in which 2.0 g of the water absorbent resin particles was weighed was placed in a 500 mL beaker. Pour 500 g of 0.9% by mass aqueous sodium chloride solution (physiological saline) into a cotton bag containing water-absorbent resin particles at once to prevent lumps, tie the top of the cotton bag with a rubber band, and let stand for 30 minutes. to swell the water absorbent resin particles.
  • aqueous sodium chloride solution physiological saline
  • the cotton bag is dehydrated for 1 minute using a dehydrator (manufactured by Kokusan Co., Ltd., product number: H-122) set to a centrifugal force of 167 G, and the cotton bag containing the swollen gel after dehydration.
  • the mass Wa (g) of was measured.
  • the same operation was performed without adding the water-absorbent resin particles, and the empty weight Wb (g) of the wet cotton bag was measured, and the physiological saline water retention capacity was calculated from the following formula.
  • Physiological saline water retention amount (g / g) [Wa - Wb] / 2.0
  • the measuring device Y is composed of a burette section 61 , a conduit 62 , a measuring table 63 , and a measuring section 64 placed on the measuring table 63 .
  • the burette portion 61 includes a burette 61a extending in the vertical direction, a rubber stopper 61b arranged at the upper end of the burette 61a, a cock 61c arranged at the lower end of the burette 61a, and one end extending into the burette 61a near the cock 61c. It has an air introduction pipe 61d and a cock 61e arranged on the other end side of the air introduction pipe 61d.
  • a conduit 62 is attached between the burette portion 61 and the measuring table 63 .
  • the inner diameter of conduit 62 is 6 mm.
  • a hole with a diameter of 2 mm is drilled in the central part of the measuring table 63 and the conduit 62 is connected.
  • the measuring part 64 has a cylinder 64a (made of acrylic resin (Plexiglas)), a nylon mesh 64b adhered to the bottom of the cylinder 64a, and a weight 64c.
  • the inner diameter of the cylinder 64a is 20 mm.
  • the opening of the nylon mesh 64b is 75 ⁇ m (200 mesh).
  • the water absorbent resin particles 65 to be measured are evenly spread over the nylon mesh 64b.
  • the weight 64c has a diameter of 19 mm and a mass of 120 g. The weight 64 c is placed on the water absorbent resin particles 65 and can apply a load of 4.14 kPa to the water absorbent resin particles 65 .
  • the weight 64c was put thereon and the measurement was started. Since the same volume of air as the physiological saline absorbed by the water-absorbing resin particles 65 is rapidly and smoothly supplied to the inside of the burette 61a through the air introduction pipe, the water level of the physiological saline in the burette 61a decreases. is the amount of physiological saline absorbed by the water absorbent resin particles 65 .
  • the non-pressurized DW of the water absorbent resin particles was measured using the measuring device shown in FIG. The measurement was performed 5 times for one type of water absorbent resin particles, and the average value of the measured values at 3 points excluding the lowest and highest values was obtained.
  • the measuring device has a burette part 1 , a conduit 5 , a measuring table 13 , a nylon mesh sheet 15 , a pedestal 11 and a clamp 3 .
  • the burette part 1 includes a burette tube 21 with a scale, a rubber stopper 23 sealing an upper opening of the burette tube 21, a cock 22 connected to the tip of the lower part of the burette tube 21, and a lower part of the burette tube 21. It has an air introduction pipe 25 and a cock 24 connected to the .
  • the burette part 1 is fixed with a clamp 3 .
  • a flat plate-shaped measuring stand 13 has a through hole 13a with a diameter of 2 mm formed in its central portion, and is supported by a pedestal 11 whose height is variable. Through hole 13 a of measuring table 13 and cock 22 of burette portion 1 are connected by conduit 5 .
  • the inner diameter of conduit 5 is 6 mm.
  • the measurement was performed in an environment with a temperature of 25°C and a humidity of 60 ⁇ 10%.
  • the cocks 22 and 24 of the burette part 1 were closed, and the 0.9 mass % saline solution 50 adjusted to 25° C. was introduced into the burette tube 21 through the upper opening of the burette tube 21 .
  • the salt solution concentration of 0.9% by mass is the concentration based on the mass of the salt solution.
  • the cocks 22 and 24 were opened.
  • the interior of the conduit 5 was filled with a 0.9 mass % saline solution 50 so as not to introduce air bubbles.
  • the height of the measuring table 13 was adjusted so that the height of the water surface of the 0.9 mass % saline solution reaching the inside of the through-hole 13 a was the same as the height of the upper surface of the measuring table 13 . After the adjustment, the height of the water surface of the 0.9% by mass saline solution 50 in the burette tube 21 was read from the scale of the burette tube 21, and the position was taken as the zero point (read value at 0 seconds).
  • a nylon mesh sheet 15 (100 mm ⁇ 100 mm, 250 mesh, thickness of about 50 ⁇ m) was laid near the through-hole 13a on the measurement table 13, and a cylinder with an inner diameter of 30 mm and a height of 20 mm was placed in the center. 1.00 g of water-absorbent resin particles 10a were evenly dispersed in this cylinder. After that, the cylinder was carefully removed to obtain a sample in which the water absorbent resin particles 10a were circularly dispersed in the center of the nylon mesh sheet 15 .
  • the nylon mesh sheet 15 on which the water absorbent resin particles 10a were placed was moved so quickly that the center of the nylon mesh sheet 15 was located at the position of the through hole 13a so that the water absorbent resin particles 10a did not dissipate, and the measurement was started. .
  • the time when air bubbles were first introduced into the burette tube 21 from the air introduction tube 25 was defined as the start of water absorption (0 second).
  • the amount of decrease in the 0.9% by mass saline solution 50 in the burette tube 21 (that is, the amount of the 0.9% by mass saline solution absorbed by the water absorbent resin particles 10a) is read sequentially, and the water absorption of the water absorbent resin particles 10a is started.
  • the weight loss Wc (g) of the 0.9% by mass saline solution 50 after 5 minutes was read. From Wc, the 5-minute value of no-pressure DW was determined by the following formula.
  • the non-pressurized DW is the water absorption amount per 1.00 g of the water absorbent resin particles 10a.
  • Unpressurized DW (mL/g) Wc/1.00
  • Robot Shifter RPS-205 manufactured by Seishin Enterprise Co., Ltd.
  • the mass percentage of particles remaining on each sieve was integrated in descending order of particle size, and the relationship between the sieve opening and the integrated value of the mass percentage of particles remaining on the sieve was plotted on logarithmic probability paper. . By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was obtained, and this was taken as the median particle size.
  • test solution composition Deionized water 5919.6g ⁇ NaCl 60.0 g - CaCl2.H2O 1.8g ⁇ 3.6 g of MgCl2.6H2O ⁇ Edible blue No. 1 (for coloring) ⁇ 1% - Triton X-100 15.0g
  • FIG. 3 is a schematic diagram showing a method for evaluating the leakiness of absorbent articles.
  • a 45 cm long support plate 40 (here, an acrylic resin plate, hereinafter also referred to as an inclined surface S1) having a flat main surface was fixed by a mount 41 in a state inclined at 45 ⁇ 2 degrees with respect to the horizontal plane S0.
  • the test absorbent article 100 was attached onto the inclined surface S1 of the fixed support plate 40 with its longitudinal direction along the longitudinal direction of the support plate 40 .
  • a test liquid 50 adjusted to 25 ⁇ 1° C.
  • test liquid was dropped from a dropping funnel 42 placed vertically above the absorbent article 100 toward a position 8 cm above the center of the water absorbent sheet in the absorbent article 100.
  • the distance between the tip of the dropping funnel 42 and the absorbent article was 10 ⁇ 1 mm. At intervals of 10 minutes from the start of the first injection of the test liquid, the test liquid was injected a total of 7 times under the same conditions.
  • n-heptane as a hydrocarbon dispersion medium
  • 0.736 g of a maleic anhydride-modified ethylene/propylene copolymer manufactured by Mitsui Chemicals, Inc., Hi-Wax 1105A
  • the dispersant was dissolved in n-heptane by raising the temperature to 80° C. while stirring the mixture in the flask with a stirrer rotating at 300 rpm. The formed solution was cooled to 50°C.
  • hydroxyl ethyl cellulose (Sumitomo Seika Co., Ltd., HEC AW-15F) as a thickener and 0.0460 g of 2,2'-azobis(2-amidinopropane) dihydrochloride as an azo compound (0.0460 g) were added. 170 mmol), 0.0276 g (0.102 mmol) of potassium persulfate as a peroxide, 0.00184 g (0.0106 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent, and deionized water9. By adding and dissolving 47 g, a first-stage monomer aqueous solution was prepared.
  • the prepared first-stage monomer aqueous solution was added to the reaction solution in the separable flask and stirred for 10 minutes. Then, a surfactant solution prepared by heating and dissolving 0.736 g of sucrose stearate (HLB: 3, Mitsubishi Kagaku Foods Co., Ltd., Ryoto Sugar Ester S-370) as a surfactant in 6.62 g of n-heptane, It was further added to the reaction solution, and the inside of the system was sufficiently replaced with nitrogen while stirring at a rotation speed of 600 rpm. Thereafter, the flask was immersed in a water bath at 70° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry.
  • HLB sucrose stearate
  • the inside of the separable flask system was cooled to 25°C while stirring at a stirrer rotation speed of 1000 rpm.
  • the entire amount of the second-stage monomer aqueous solution was added to the first-stage polymerization slurry liquid in the separable flask, and the inside of the system was replaced with nitrogen for 30 minutes.
  • the flask was again immersed in a water bath at 70° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes.
  • the separable flask was immersed in an oil bath set at 125°C to remove n-heptane to obtain polymer particles (dry product).
  • the polymer particles are passed through a sieve with an opening of 850 ⁇ m, and 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Tokusil NP-S, hydrophilic) relative to the mass of the polymer particles is added to the polymer particles. to obtain 216.4 g of water absorbent resin particles A containing amorphous silica.
  • Table 1 shows the performance of the water absorbent resin particles.
  • Example 1 Prepare air-laid nonwoven fabric cut to 42 cm ⁇ 14 cm as the first and second sheets, hot melt coating machine (Harry's Co., Ltd., pump: Marshal 150, table: XA-DT, tank setting temperature: 150 ° C., inside the hose Set temperature: 165 ° C., gun head set temperature: 170 ° C.), 0.15 g of hot melt adhesive (Henkel Japan Co., Ltd., ME-765E) is applied to the air-laid nonwoven fabric of the second sheet along the longitudinal direction, 13 strips were applied at intervals of 10 mm.
  • the adhesive application pattern was a spiral stripe.
  • water-absorbing resin particles A were evenly dispersed on the adhesive-applied surface of the second sheet on both ends of the widthwise direction and the lengthwise direction except for a range of 1 cm around the periphery.
  • the weight per unit area of the water absorbent resin particles was 300 g/m 2 .
  • a hot-melt adhesive was also applied to the first sheet in the same manner as described above.
  • the surface of the first sheet coated with hot melt adhesive and the surface of the second sheet coated with water-absorbent resin particles are aligned, then sandwiched from above and below with release paper, and laminated by a laminating machine (Hashima Co., Ltd.). , Straight Linear Fussing Press, model HP-600LFS), and pressed under conditions of 110° C. and 0.1 MPa, and the release paper was removed to obtain a water absorbent sheet.
  • the resulting absorbent article comprises a hydrophilic air-through nonwoven fabric, a first sheet, a hot-melt adhesive, an absorbent layer composed of water-absorbent resin particles A, a hot-melt adhesive, a second sheet, and a liquid-impermeable sheet in this order. are placed.
  • Comparative example 1 An absorbent article of Comparative Example 1 was produced in the same manner as in Example 1 except that the water absorbent resin particles were changed to water absorbent resin particles B.
  • Comparative example 2 An absorbent article of Comparative Example 2 was produced in the same manner as in Example 1 except that the water absorbent resin particles were changed to water absorbent resin particles C.
  • Comparative Example 3 An absorbent article of Comparative Example 3 was produced in the same manner as in Example 1 except that the water absorbent resin particles were changed to water absorbent resin particles D.
  • Comparative Example 4 An absorbent article of Comparative Example 4 was produced in the same manner as in Example 1 except that the water absorbent resin particles were changed to water absorbent resin particles E.
  • Example 2 Example 1 in the same manner as in Example 1 except that the absorbent article was 32 cm ⁇ 12 cm, the amount and number of hot melt adhesives were changed to 0.1 g and 11, and the amount of water absorbent resin particles A was changed to 4.5 g. 2 absorbent articles were made. In the absorbent article, the weight per unit area of the water absorbent resin particles was 150 g/m 2 .
  • Comparative Example 5 An absorbent article of Comparative Example 5 was produced in the same manner as in Example 2 except that the water absorbent resin particles were changed to water absorbent resin particles B.
  • Comparative Example 6 An absorbent article of Comparative Example 6 was produced in the same manner as in Example 2 except that the water absorbent resin particles were changed to water absorbent resin particles C.
  • Comparative Example 7 An absorbent article of Comparative Example 7 was produced in the same manner as in Example 2 except that the water absorbent resin particles were changed to water absorbent resin particles D.
  • Comparative Example 8 An absorbent article of Comparative Example 8 was produced in the same manner as in Example 2 except that the water absorbent resin particles were changed to water absorbent resin particles E.
  • Example 3 After the hot melt was applied to the first sheet by the same operation as in Example 1, 7.2 g of the water absorbent resin particles A were applied to the portions of the first sheet excluding the range of 1 cm on both ends in the width direction and the length direction. distributed evenly. After placing an air-through nonwoven fabric cut to 40 cm ⁇ 12 cm on the surface on which the water absorbent resin particles A are dispersed, it is sandwiched from above and below with release paper, and pressed and laminated using a laminating machine in the same manner as in Example 1. , the release paper was removed to obtain a laminate in which the air-through nonwoven fabric, the absorbent body (upper layer absorbent layer) composed of the water absorbent resin particles A, the hot melt adhesive and the first sheet were arranged in this order.
  • the release paper was removed to obtain a laminate in which the air-through nonwoven fabric, the absorbent body (upper layer absorbent layer) composed of the water absorbent resin particles A, the hot melt adhesive and the first sheet were arranged in this order.
  • a second sheet was coated with a hot-melt adhesive by the same operation as in Example 1, and 7.2 g of water absorbent resin particles A were evenly dispersed on the second sheet.
  • the air-through non-woven fabric surface of the laminate and the surface of the second sheet on which the water-absorbing resin particles are dispersed are aligned, and the laminate is sandwiched from above and below with release paper, and the same operation as above is performed using a laminator. They were laminated together by pressing, and the release paper was removed to produce a water absorbent sheet.
  • the resulting absorbent article includes a hydrophilic air-through nonwoven fabric, a first sheet, a hot melt adhesive, an absorbent body (upper absorbent layer) composed of water-absorbent resin particles a, an air-through nonwoven fabric, and an absorbent body composed of water-absorbent resin particles a ( lower absorbent layer), hot-melt adhesive, second sheet, and liquid-impermeable sheet are arranged in this order.
  • the basis weight of the water absorbent resin particles was 150 g/m 2 for the upper absorbent layer and 150 g/m 2 for the lower absorbent layer.
  • Example 4 An absorbent article of Example 4 was produced in the same manner as in Example 3 except that the water absorbent resin particles used in the lower absorbent layer were changed to the water absorbent resin particles D.
  • Example 5 An absorbent article of Example 5 was produced in the same manner as in Example 3, except that the water absorbent resin particles used in the upper absorbent layer were changed to water absorbent resin particles D.
  • Comparative Example 9 An absorbent article of Comparative Example 9 was produced in the same manner as in Example 3 except that the water absorbent resin particles used in the upper absorbent layer and the lower absorbent layer were changed to the water absorbent resin particles B.
  • Comparative Example 10 An absorbent article of Comparative Example 10 was produced in the same manner as in Example 3 except that the water absorbent resin particles used in the upper absorbent layer and the lower absorbent layer were changed to water absorbent resin particles C.
  • Comparative Example 11 An absorbent article of Comparative Example 11 was produced in the same manner as in Example 3, except that the water absorbent resin particles used in the upper absorbent layer and the lower absorbent layer were changed to the water absorbent resin particles D.
  • Comparative Example 12 An absorbent article of Comparative Example 12 was produced in the same manner as in Example 3, except that the water-absorbent resin particles E used in the upper absorbent layer and the lower absorbent layer were changed.
  • Example 6 The first sheet and the second sheet are 32 cm ⁇ 12 cm, the amount and number of hot melt adhesives are 0.1 g and 11, the air through nonwoven fabric is 30 cm ⁇ 10 cm, the amount of water absorbent resin particles A is 2.3 g for the upper absorbent layer, An absorbent article was produced in the same manner as in Example 3, except that the lower absorbent layer was changed to 2.3 g. In the absorbent article, the basis weight of the water absorbent resin particles was 75 g/m 2 for the upper absorbent layer and 75 g/m 2 for the lower absorbent layer.
  • Example 7 An absorbent article of Example 7 was produced in the same manner as in Example 6 except that the water absorbent resin particles used in the lower absorbent layer were changed to the water absorbent resin particles D.
  • Example 8 An absorbent article of Example 8 was produced in the same manner as in Example 6, except that the water absorbent resin particles used in the upper absorbent layer were changed to the water absorbent resin particles D.
  • Comparative Example 13 An absorbent article of Comparative Example 13 was produced in the same manner as in Example 6 except that the water absorbent resin particles used in the upper absorbent layer and the lower absorbent layer were changed to the water absorbent resin particles B.
  • Comparative Example 14 An absorbent article of Comparative Example 14 was produced in the same manner as in Example 6, except that the water absorbent resin particles used in the upper absorbent layer and the lower absorbent layer were changed to the water absorbent resin particles D.
  • Example 9 An absorbent article of Example 9 was produced in the same manner as in Example 1, except that the nonwoven fabrics of the first and second sheets were changed to spunbond nonwoven fabrics.
  • Comparative Example 15 An absorbent article of Comparative Example 15 was produced in the same manner as in Example 9 except that the water absorbent resin particles were changed to water absorbent resin particles B.
  • Comparative Example 16 An absorbent article of Comparative Example 16 was produced in the same manner as in Example 9 except that the water absorbent resin particles were changed to water absorbent resin particles D.
  • Example 10 An absorbent article of Example 10 was produced in the same manner as in Example 1, except that the nonwoven fabrics of the first and second sheets were changed to spunlaced nonwoven fabrics.
  • Comparative Example 17 An absorbent article of Comparative Example 17 was produced in the same manner as in Example 10 except that the water absorbent resin particles were changed to water absorbent resin particles B.
  • Comparative Example 18 An absorbent article of Comparative Example 18 was produced in the same manner as in Example 10, except that the water absorbent resin particles were changed to water absorbent resin particles D.
  • the present invention can provide a water absorbent sheet that can suppress the occurrence of leakage, and an absorbent article using the water absorbent sheet.
  • it can be expected to provide an absorbent body and an absorbent article that have the same various performances even if the amount of water absorbent resin used is reduced. Manufacturing costs may be reduced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

A water absorbent sheet which comprises an absorbent layer and nonwoven fabrics that are arranged so that the absorbent layer is sandwiched therebetween in the vertical direction, wherein: the absorbent layer contains a water absorbent resin; and the water absorbent resin has the characteristics (A) to (C) described below. (A) The saline holding capacity is from 45 g/g to 70g/g. (B) The water absorption under a load of 4.14 kPa is 13 ml/g or more. (C) The five-minute value of DW under no pressure is from 44 ml/g to 80 ml/g.

Description

吸水シート及び吸収性物品Absorbent sheet and absorbent article
 本発明は、吸水シート及び吸収性物品に関し、より詳しくは、紙オムツ、生理用ナプキン、失禁用パッド等の衛生材料に好適に用いられる吸水シート、及び吸水シートを用いた吸収性物品に関する。 The present invention relates to water absorbent sheets and absorbent articles, and more particularly to water absorbent sheets suitable for sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads, and absorbent articles using water absorbent sheets.
 吸水性樹脂は、近年、紙オムツ、生理用ナプキン、失禁用パッド等の衛生材料の分野に広く使用されている。 In recent years, water absorbent resins have been widely used in the field of sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads.
 このような吸水性樹脂としては、水溶性エチレン性不飽和単量体の重合体の架橋物、より具体的には、ポリアクリル酸部分中和物の重合体の架橋物が、優れた吸水能を有するとともに、その原料であるアクリル酸の工業的な入手が容易であるため、品質が一定で且つ安価に製造でき、しかも腐敗や劣化がおこりにくい等の数々の利点を有することから、好ましい吸水性樹脂であるとされている(例えば特許文献1参照)。 As such a water absorbent resin, a crosslinked product of a polymer of a water-soluble ethylenically unsaturated monomer, more specifically a crosslinked product of a partially neutralized polymer of polyacrylic acid, has excellent water absorption capacity. In addition, since acrylic acid, which is the raw material, is easily available industrially, it can be manufactured at a constant quality and at a low cost, and it has many advantages such as being less prone to putrefaction and deterioration. It is said that it is a flexible resin (see, for example, Patent Document 1).
 紙オムツ、生理用ナプキン、失禁用パッド等の吸収性物品は、主として中心部に配された、身体から排泄される尿、経血等の体液を吸収、保持する吸収体と、身体に接する側に配された液体透過性の表面シート(トップシート)と、身体と接する反対側に配された液体不透過性の裏面シート(バックシート)から構成されている。また、吸収体は、通常、パルプ等の親水性繊維と吸水性樹脂とから構成されている。 Absorbent articles such as disposable diapers, sanitary napkins, and incontinence pads are composed of an absorbent body that absorbs and retains body fluids such as urine and menstrual blood excreted from the body, and a side that comes in contact with the body. It consists of a liquid-permeable surface sheet (top sheet) arranged on the front side and a liquid-impermeable back sheet (back sheet) arranged on the opposite side in contact with the body. In addition, the absorber is usually composed of hydrophilic fibers such as pulp and water-absorbent resin.
特開平3-227301号公報JP-A-3-227301
 このような吸収性物品において、吸収体に含まれる吸水性樹脂には高い保水量が求められている。吸水性樹脂の保水量を高めることで、吸収体に一度吸収された液体が逆戻りする現象(すなわち、吸収体からの液の戻り現象であり、吸収体を手で触ったときに不快な濡れとして感じる)を改善できる。しかしながら、吸収性物品の使用時において、吸収性物品の吸収面が傾斜している場合に、繰り返し排泄される液体が十分に吸収されずに、吸水性樹脂の保水量が高いにもかかわらず、液が吸収性物品の外に漏れ出すという不具合が生じることもある。 In such absorbent articles, the absorbent resin contained in the absorbent body is required to have a high water retention capacity. By increasing the water retention capacity of the water-absorbing resin, the phenomenon that the liquid once absorbed by the absorber returns back (that is, the liquid returns from the absorber, and when the absorber is touched by hand, it becomes uncomfortable wetness. feel) can be improved. However, when the absorbent article is used, if the absorbent surface of the absorbent article is inclined, the liquid that is repeatedly excreted is not sufficiently absorbed, and despite the high water retention capacity of the water absorbent resin, There may also be a problem that the liquid leaks out of the absorbent article.
 このような状況下、本発明は、漏れの発生が抑制された吸水シートを提供することを主な目的とする。 Under such circumstances, the main object of the present invention is to provide a water absorbent sheet that suppresses the occurrence of leakage.
 本発明者は、上記課題を解決するために鋭意検討した。その結果、吸収層と、前記吸収層の上下を挟持する不織布とを備える吸水シートにおいて、吸水性樹脂として、所定の生理食塩水保水量、4.14kPa荷重下での吸水量、及び無加圧DWの5分値を有するものを用いることにより、漏れの発生を抑制できることを見出した。本発明は、このような知見に基づき、さらに鋭意検討を重ねて完成した発明である。 The inventors have diligently studied to solve the above problems. As a result, in a water-absorbent sheet comprising an absorbent layer and non-woven fabric sandwiching the upper and lower sides of the absorbent layer, the water-absorbent resin has a predetermined physiological saline water retention capacity, a water absorption capacity under a load of 4.14 kPa, and a non-pressurized It was found that the occurrence of leakage can be suppressed by using a material having a DW of 5 minutes. The present invention is an invention that has been completed through extensive research based on such findings.
 すなわち、本発明は、下記の構成を備える発明を提供する。
項1. 吸収層と、前記吸収層の上下を挟持する不織布と、を備える吸水シートであって、
 前記吸収層は、吸水性樹脂を含み、
 前記吸水性樹脂は、以下の(A)~(C)の特性を有する、吸水シート。
(A)生理食塩水保水量が、45g/g以上70g/g以下である。
(B)4.14kPa荷重下での吸水量が、13ml/g以上である。
(C)無加圧DW5分値が、44ml/g以上80ml/g以下である。
項2. 前記吸水性樹脂の目付が、100g/m2以上450g/m2以下である、項1に記載の吸水シート。
項3. 前記吸収層は、接着剤を介して前記不織布に接着されている、項1又は2に記載の吸水シート。
項4. 項1~3に記載の吸水シートを含んでなる、吸収性物品。
That is, the present invention provides an invention having the following configurations.
Section 1. A water absorbent sheet comprising an absorbent layer and a nonwoven fabric sandwiching the upper and lower sides of the absorbent layer,
The absorbent layer contains a water absorbent resin,
The water absorbent sheet, wherein the water absorbent resin has the following properties (A) to (C).
(A) The physiological saline water retention capacity is 45 g/g or more and 70 g/g or less.
(B) The water absorption under a load of 4.14 kPa is 13 ml/g or more.
(C) The 5-minute DW value without pressure is 44 ml/g or more and 80 ml/g or less.
Section 2. Item 2. The water absorbent sheet according to Item 1, wherein the water absorbent resin has a basis weight of 100 g/m 2 or more and 450 g/m 2 or less.
Item 3. Item 3. The water absorbent sheet according to Item 1 or 2, wherein the absorbent layer is adhered to the nonwoven fabric via an adhesive.
Section 4. An absorbent article comprising the water absorbent sheet according to Items 1 to 3.
 本発明によれば、漏れの発生を抑制できる吸水シートを提供することができる。さらに、本発明によれば、吸水シートを用いた吸収性物品を提供することもできる。 According to the present invention, it is possible to provide a water absorbent sheet that can suppress the occurrence of leakage. Furthermore, according to the present invention, it is also possible to provide an absorbent article using a water absorbent sheet.
吸水性樹脂の4.14kPa荷重下での生理食塩水吸水量の測定に用いる測定装置の模式図である。FIG. 2 is a schematic diagram of a measuring device used for measuring the water absorption amount of physiological saline under a load of 4.14 kPa of a water absorbent resin. 吸水性樹脂の無加圧DWの測定に用いる測定装置の模式図である。It is a schematic diagram of a measuring device used for measuring the non-pressure DW of the water absorbent resin. 吸収性物品の漏れ試験(勾配吸収試験)の方法を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a method of a leak test (gradient absorption test) for absorbent articles.
 本明細書において、「含む」とは、「本質的にからなる」と、「からなる」をも包含する(The term "comprising" includes "consisting essentially of" and "consisting of".)。また、本明細書において、「(メタ)アクリル」とは「アクリル又はメタクリル」を意味し、「(メタ)アクリレート」とは「アクリレート又はメタクリレート」を意味し、「(ポリ)」とは「ポリ」の接頭語がある場合とない場合を意味する。また、本明細書において、「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことを意味する。 In this specification, the term "comprising" includes "consisting essentially of" and "consisting of". In the present specification, "(meth)acrylic" means "acrylic or methacrylic", "(meth)acrylate" means "acrylate or methacrylate", and "(poly)" means "poly " means with and without the prefix. Moreover, in this specification, "water-soluble" means exhibiting a solubility of 5% by mass or more in water at 25°C.
 本明細書において、「~」で結ばれた数値は、「~」の前後の数値を下限値及び上限値として含む数値範囲を意味する。複数の下限値と複数の上限値が別個に記載されている場合、任意の下限値と上限値を選択し、「~」で結ぶことができるものとする。 In this specification, a numerical value connected by "-" means a numerical range including the numerical values before and after "-" as lower and upper limits. If multiple lower limits and multiple upper limits are listed separately, any lower limit and upper limit can be selected and connected with "-".
1.吸水シート
 本発明の吸水シートは、吸収層と、吸収層の上下を挟持する不織布とを備える吸水シートである。本発明の吸水シートにおいて、吸収層は、吸水性樹脂を含み、吸水性樹脂は、以下の(A)~(C)の特性を有することを特徴とする。
(A)生理食塩水保水量が、45g/g以上70g/g以下である。
(B)4.14kPa荷重下での吸水量が、13ml/g以上である。
(C)無加圧DW5分値が、44ml/g以上80ml/g以下である。
1. Water-absorbing sheet The water- absorbing sheet of the present invention is a water-absorbing sheet comprising an absorbent layer and non-woven fabric sandwiching the upper and lower sides of the absorbent layer. In the water absorbent sheet of the present invention, the absorbent layer contains a water absorbent resin, and the water absorbent resin has the following properties (A) to (C).
(A) The physiological saline water retention capacity is 45 g/g or more and 70 g/g or less.
(B) The water absorption under a load of 4.14 kPa is 13 ml/g or more.
(C) The 5-minute DW value without pressure is 44 ml/g or more and 80 ml/g or less.
 本発明の吸水シートは、このような特徴を備えることにより、吸収性物品に使用され、漏れの発生を抑制することができる。以下、本発明の吸水シートについて詳述する。 By providing such features, the water absorbent sheet of the present invention can be used in absorbent articles to suppress the occurrence of leakage. The water absorbent sheet of the present invention will be described in detail below.
 本発明の吸水シートにおいて、吸収層は、吸水性樹脂に加えて、親水性繊維などを含んでいてもよいが、実質的に吸水性樹脂のみにより構成されていることが好ましい。吸収層が実質的に吸水性樹脂のみにより構成されているとは、吸収層中の吸水性樹脂の含有率が、95質量%以上、さらには98質量%以上、さらには99質量%以上、さらには100質量%であることを意味する。 In the water-absorbent sheet of the present invention, the absorbent layer may contain hydrophilic fibers and the like in addition to the water-absorbent resin, but it is preferable that the absorbent layer is substantially composed only of the water-absorbent resin. That the absorbent layer is substantially composed only of the water absorbent resin means that the content of the water absorbent resin in the absorbent layer is 95% by mass or more, further 98% by mass or more, further 99% by mass or more, and further means 100% by mass.
 本発明の吸水シートに含まれる吸収層は、1層であってもよいし、2層以上であってもよい。吸水シートに含まれる吸収層は、1層または2層であることが好ましい。なお、吸水シートに2層以上の吸収層が含まれる場合、各吸収層の間には、不織布等の液体透過性基材を配置することが好ましい。この液体透過性基材については、吸収層の上下を挟持する後述の不織布と同様のものを使用することができる。 The absorbent layer contained in the water absorbent sheet of the present invention may be one layer, or may be two or more layers. The absorbent layer contained in the water absorbent sheet is preferably one or two layers. In addition, when the absorbent sheet includes two or more absorbent layers, it is preferable to arrange a liquid-permeable substrate such as a nonwoven fabric between the absorbent layers. As for this liquid-permeable substrate, the same non-woven fabric as will be described later that sandwiches the upper and lower sides of the absorbent layer can be used.
 吸水シートの構成は、吸水性樹脂を含む吸収層の上下を不織布で挟持した構造であればよく、例えば2枚の不織布の間に吸収層を固定した形態のシート状構造体、吸収層を不織布で包んだ構造体などであってもよい。 The structure of the water-absorbent sheet may be any structure in which the absorbent layer containing the water-absorbent resin is sandwiched between nonwoven fabrics, for example, a sheet-like structure in which the absorbent layer is fixed between two nonwoven fabrics. It may be a structure wrapped in .
 吸水シートの平面形状は、用途に応じて、あるいは吸収性物品の形状に応じて適宜定められ、例えば、略長方形、楕円形、砂時計形、羽子板形等が挙げられ、フィット性向上のために切れ込み等があってもよい。また、縦方向に延びる複数の縦溝及び縦方向に直交する横方向に延びる複数の横溝で区画されたブロック構造が縦方向に複数配されたブロック領域を有していてもよい。また、吸水シートの内部構造もまた、目的に応じて適宜定められる。例えば、単一の吸水シートからなること以外にも、複数の吸水シート(平面上で分割、垂直方向に分割など)が組み合わせられていること、あるいは、吸水シート内部において、吸水性樹脂およびその他の成分の量的分布勾配(均一分布、液体投入部に応じての量的分布など)を持たせること等が挙げられる。また、吸水シートは、液体の流路を設けるために、吸水シートの中にエンボス加工が施されていてもよい。 The planar shape of the water-absorbent sheet is appropriately determined according to the application or the shape of the absorbent article, and examples thereof include substantially rectangular, oval, hourglass, and battledore shapes, and cuts are provided to improve fit. etc. Moreover, it may have a block region in which a plurality of block structures partitioned by a plurality of vertical grooves extending in the vertical direction and a plurality of horizontal grooves extending in the horizontal direction orthogonal to the vertical direction are arranged in the vertical direction. In addition, the internal structure of the water absorbent sheet is also appropriately determined according to the purpose. For example, in addition to consisting of a single water-absorbing sheet, multiple water-absorbing sheets (split on the plane, split in the vertical direction, etc.) are combined, or inside the water-absorbing sheet, water-absorbing resin and other For example, the component may have a quantitative distribution gradient (uniform distribution, quantitative distribution depending on the liquid input portion, etc.). In addition, the water absorbent sheet may be embossed into the water absorbent sheet in order to provide liquid flow paths.
 吸収層は、接着剤を介して不織布に接着されていることが好ましい。吸収層を不織布に接着する(固定する)接着剤としては、ホットメルト接着剤などが好ましい。 The absorbent layer is preferably adhered to the nonwoven fabric via an adhesive. As the adhesive for adhering (fixing) the absorbent layer to the nonwoven fabric, a hot melt adhesive or the like is preferable.
 本発明の吸水シートにおいて、吸収層に含まれる吸水性樹脂の目付は特に制限されないが、本発明の効果をより一層好適に発揮する観点から、好ましくは100~450g/m2、より好ましくは120~350g/m2、さらに好ましくは150~300g/m2である。 In the water absorbent sheet of the present invention, the basis weight of the water absorbent resin contained in the absorbent layer is not particularly limited, but from the viewpoint of exhibiting the effects of the present invention more preferably, it is preferably 100 to 450 g/m 2 , more preferably 120 g/m 2 . ~350 g/m 2 , more preferably 150-300 g/m 2 .
 吸水シートにおける吸水性樹脂の含有量としては、5~100質量%であることが好ましく、10~95質量%であることがより好ましく、20~90質量%であることがさらに好ましく、30~80質量%であることがよりさらに好ましい。 The content of the water absorbent resin in the water absorbent sheet is preferably 5 to 100% by mass, more preferably 10 to 95% by mass, further preferably 20 to 90% by mass, and 30 to 80% by mass. % by mass is even more preferred.
 吸水シートを、液体が通過し得る液体透過性の表面シート(トップシート)と、液体が通過し得ない液体不透過性の裏面シート(バックシート)との間に保持することによって、本発明の吸収性物品とすることができる。液体透過性シートは、身体と接触する側に配され、液体不透過性シートは、身体と接する反対側に配される。 By holding the water-absorbing sheet between a liquid-permeable front sheet (top sheet) through which liquid can pass and a liquid-impermeable back sheet (back sheet) through which liquid cannot pass, It can be an absorbent article. The liquid permeable sheet is arranged on the side in contact with the body, and the liquid impermeable sheet is arranged on the opposite side in contact with the body.
 液体透過性シートとしては、ポリエチレン、ポリプロピレン、ポリエステル等の繊維からなる、エアスルー型、スパンボンド型、ケミカルボンド型、ニードルパンチ型等の不織布及び多孔質の合成樹脂シート等が挙げられる。また、液体不透過性シートとしては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の樹脂からなる合成樹脂フィルム等が挙げられる。液体透過性シートは、サーマルボンド不織布、エアスルー不織布、スパンボンド不織布、及びスパンボンド/メルトブロー/スパンボンド不織布からなる群から選ばれる少なくとも1種であることが好ましい。 Examples of liquid-permeable sheets include air-through type, spunbond type, chemical bond type, needle punch type nonwoven fabrics and porous synthetic resin sheets made of fibers such as polyethylene, polypropylene, and polyester. Examples of liquid-impermeable sheets include synthetic resin films made of resins such as polyethylene, polypropylene, and polyvinyl chloride. The liquid-permeable sheet is preferably at least one selected from the group consisting of thermal bonded nonwoven fabric, air-through nonwoven fabric, spunbond nonwoven fabric, and spunbond/meltblown/spunbond nonwoven fabric.
 液体透過性シートの目付は、5g/m2以上100g/m2以下であることが好ましく、10g/m2以上60g/m2以下であることがより好ましい。また、液体透過性シートには、液体の拡散性を向上させるために、表面にエンボス加工や穿孔加工が施されていてもよい。前記エンボス加工や穿孔加工を施すにあたっては、公知の方法にて実施することができる。 The basis weight of the liquid-permeable sheet is preferably 5 g/m 2 or more and 100 g/m 2 or less, more preferably 10 g/m 2 or more and 60 g/m 2 or less. In addition, the surface of the liquid-permeable sheet may be embossed or perforated in order to improve the diffusibility of the liquid. The embossing and perforation can be carried out by known methods.
 液体不透過性シートとしては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の合成樹脂からなるシート、耐水性のメルトブローン不織布を高強度のスパンボンド不織布で挟んだスパンボンド/メルトブロー/スパンボンド(SMS)不織布等の不織布からなるシート、これらの合成樹脂と不織布(例えば、スパンボンド不織布、スパンレース不織布)との複合材料からなるシートなどが挙げられる。液体不透過性シートは、装着時のムレが低減されて、着用者に与える不快感を軽減することができる等の観点から、通気性を有していてよい。液体不透過性シートとして、低密度ポリエチレン(LDPE)樹脂を主体とする合成樹脂からなるシートを用いることもできる。液体不透過性シートは、例えば、目付が10~50g/m2の合成樹脂からなるシートであってよい。また、液体不透過性シートに通気性を付与するため、例えば、樹脂シートにフィラーを配合したり、液体不透過性シートにエンボス加工を施したりすることもできる。なお、フィラーとしては炭酸カルシウム等が用いられる。 Examples of liquid-impermeable sheets include sheets made of synthetic resins such as polyethylene, polypropylene, and polyvinyl chloride, and spunbond/meltblown/spunbond (SMS) nonwoven fabrics in which a water-resistant meltblown nonwoven fabric is sandwiched between high-strength spunbond nonwoven fabrics. and sheets made of composite materials of these synthetic resins and nonwoven fabrics (for example, spunbond nonwoven fabrics and spunlaced nonwoven fabrics). The liquid-impermeable sheet may have air permeability from the viewpoint of reducing stuffiness when worn and reducing discomfort given to the wearer. As the liquid-impermeable sheet, a sheet made of synthetic resin mainly composed of low-density polyethylene (LDPE) resin can be used. The liquid-impermeable sheet may be, for example, a synthetic resin sheet having a weight per unit area of 10 to 50 g/m 2 . Moreover, in order to impart air permeability to the liquid-impermeable sheet, for example, a filler may be added to the resin sheet, or the liquid-impermeable sheet may be embossed. Calcium carbonate or the like is used as the filler.
 吸収性物品は、吸水シートの上表面に配置された液体透過性シート、及び前記液体透過性シート側とは反対側の面に配置された液体不透過性シートを有することが好ましい。また、吸収性物品において、吸水シートの上表面および/または下表面に、吸水性樹脂と親水性繊維とで構成された吸収体が組み合わせられていてもよい。 The absorbent article preferably has a liquid-permeable sheet arranged on the upper surface of the water-absorbent sheet, and a liquid-impermeable sheet arranged on the side opposite to the liquid-permeable sheet. Moreover, in the absorbent article, an absorbent body composed of a water absorbent resin and hydrophilic fibers may be combined with the upper surface and/or the lower surface of the water absorbent sheet.
 吸収性物品には、前述した液体透過性シート、吸水シート、液体不透過性シートの他にも、用途や機能に合わせて適宜、部材が存在してもよい。例えば、コアラップ、液体獲得拡散シート、アウターカバー不織布、レッグギャザー等が挙げられる。 In addition to the above-described liquid-permeable sheet, water-absorbent sheet, and liquid-impermeable sheet, the absorbent article may also include members as appropriate according to the application and function. Examples include core wraps, liquid acquisition and diffusion sheets, outer cover nonwoven fabrics, leg gathers, and the like.
 コアラップは、例えば、吸水シートの外周を覆うように配置されている。吸水シートは、コアラップの中に配置されている。コアラップとしては、ティッシュ、不織布等が挙げられる。コアラップは、例えば、吸水シートと同等の大きさの主面を有している。吸水シートは、コアラップの中に封入することにより、保形されている。コアラップによって吸水シートを保形する方法はこれに限られず、例えば、上下個別2枚のコアラップで吸水シートを挟んでもよいし、コアラップが袋体を形成し、その内部に吸水シート配置されてもよい。 For example, the core wrap is arranged so as to cover the outer periphery of the water absorbent sheet. A water absorbent sheet is placed in the core wrap. The core wrap includes tissue, nonwoven fabric, and the like. The core wrap has, for example, a main surface of the same size as the water absorbent sheet. The water absorbent sheet is shape-retained by enclosing it in a core wrap. The method of retaining the shape of the water-absorbent sheet by the core wrap is not limited to this. For example, the water-absorbent sheet may be sandwiched between two separate upper and lower core wraps, or the core wraps may form a bag body in which the water-absorbent sheet may be arranged. .
(液体獲得拡散シート)
 吸収性物品は、液体獲得拡散シートを含んでいてもよい。液体獲得拡散シートが、例えば、液体透過性シートの下面に配置されていてもよい。これにより、液体透過性シートを透過した液を吸水シート側へ速やかに移動させること、あるいは逆戻りをさらに低減することができる。液体獲得拡散シート及び液体透過性シート間の接着は、ホットメルト接着剤を用いてもよいし、ヒートエンボスや超音波溶着を用いることもできる。液体獲得拡散シートとしては、不織布を用いる他、多数の透過孔を有する樹脂フィルムを用いることもできる。不織布としては、液体透過性シートの項に記載したものと同様の素材を用いることができるが、液体透過性シートより親水性が高いものや、繊維密度が高いほうが、吸水シート方向への液の移動特性に優れるため好ましい。
(liquid acquisition diffusion sheet)
The absorbent article may include a liquid acquisition diffusion sheet. A liquid acquisition and diffusion sheet may be placed, for example, on the underside of the liquid permeable sheet. As a result, the liquid that permeates the liquid-permeable sheet can be quickly moved to the water-absorbing sheet side, or the backflow can be further reduced. A hot-melt adhesive, heat embossing, or ultrasonic welding may be used for bonding between the liquid acquisition diffusion sheet and the liquid permeable sheet. As the liquid acquisition/diffusion sheet, a non-woven fabric or a resin film having a large number of through-holes can be used. As the non-woven fabric, the same material as described in the liquid-permeable sheet section can be used. It is preferable because it has excellent movement characteristics.
 液体獲得拡散シートは、通常、吸水シートより短い幅にて中央部に配置されるが、全幅にわたって配置されてもよい。液体獲得拡散シートの前後方向長さは、吸収性物品の全長と略同一でもよいし、吸水シートの全長と略同一でもよいし、液が投入される部分を想定した範囲の長さであってもよい。 The liquid acquisition/diffusion sheet is usually arranged in the central portion with a width shorter than that of the water absorbent sheet, but may be arranged over the entire width. The length of the liquid acquisition/diffusion sheet in the front-rear direction may be substantially the same as the total length of the absorbent article, may be substantially the same as the total length of the water absorbent sheet, or may be within a range of lengths assuming the portion into which the liquid is introduced. good too.
(アウターカバー不織布)
 また、アウターカバー不織布が、液体不透過性シートの吸水シート対向側に配置されていてもよい。アウターカバー不織布は、例えば、接着剤を用いて液体不透過性シートに接着されることができる。アウターカバー不織布は、1層以上で形成されてもよく、軟質材であってもよい。アウターカバー不織布は、消費者の購入意欲に訴求できるように、あるいはその他の理由に応じて、柔軟な触感を付与されていてもよいし、絵柄がプリントされていてもよいし、複数の結合部、エンボス加工、あるいは三次元の形態を形成されていてもよい。
(Outer cover non-woven fabric)
Further, the outer cover nonwoven fabric may be arranged on the side of the liquid impermeable sheet facing the water absorbent sheet. The outer cover nonwoven can be adhered to the liquid impermeable sheet using, for example, an adhesive. The outer cover nonwoven fabric may be formed of one or more layers and may be a soft material. The outer cover nonwoven fabric may be imparted with a soft touch, may have a pattern printed on it, or may have a plurality of joints so as to appeal to consumers' willingness to purchase or for other reasons. , embossed, or formed into a three-dimensional form.
(レッグギャザー)
 本発明の吸収性物品は、吸水シートにおける幅方向の両端部よりも外側に配置され、吸水シートの長手方向と略平行に設置される、伸縮性を有する弾性部材を備えたレッグギャザーを有していてもよい。レッグギャザーの長さは、装着者の足回りかそれを上回る程度に設定される。レッグギャザーの伸長率は、排出される液体の漏れを防止しつつ、長時間装着時の圧迫感が少ないなどの観点から適宜設定される。
(leg gathers)
The absorbent article of the present invention has leg gathers provided with stretchable elastic members that are arranged outside both widthwise end portions of the water absorbent sheet and installed substantially parallel to the longitudinal direction of the water absorbent sheet. may be The length of the leg gathers is set to be around the wearer's leg or longer. The elongation rate of the leg gathers is appropriately set from the viewpoint of preventing the leakage of discharged liquid and reducing the feeling of oppression when worn for a long time.
(前面/背面ギャザー)
 本発明の吸収性物品は、吸収性物品における長手方向の両端部近傍に配置され、幅方向に伸縮する弾性部材を備える前面/背面ギャザーを有していてもよい。
(front/back gather)
The absorbent article of the present invention may have front/back gathers provided near both ends in the longitudinal direction of the absorbent article and provided with elastic members that stretch in the width direction.
 本発明の吸収性物品は、吸水シートの幅方向の側縁部上方に立ち上がることができる前面/背面ギャザーを備えている。すなわち、吸収性物品における長手方向の両側のそれぞれには、ギャザー弾性部材を有する前面/背面ギャザーのシート用部材が配されて、前面/背面ギャザーが構成されている。 The absorbent article of the present invention has front/back gathers that can rise above the side edges in the width direction of the water absorbent sheet. That is, on both sides of the absorbent article in the longitudinal direction, a front/back gather sheet member having a gather elastic member is arranged to constitute a front/back gather.
 前面/背面ギャザー用の部材は、通常、液不透過性または撥水性の素材であって、好ましくは透湿性の素材が用いられる。例えば、液不透過性または撥水性の多孔質シート、液不透過性または撥水性の不織布、もしくは前記多孔質シートと該不織布との積層体等が挙げられる。前記不織布としては、例えば、サーマルボンド不織布、スパンボンド不織布、メルトブロー不織布、スパンレース不織布、スパンボンド/メルトブロー/スパンボンド不織布等が挙げられる。前記部材の目付は、5~100g/m2であってよく、8~70g/m2であってよく、10~40g/m2であってよい。 The member for the front/back gathers is usually made of a liquid-impermeable or water-repellent material, preferably a moisture-permeable material. Examples thereof include a liquid-impermeable or water-repellent porous sheet, a liquid-impermeable or water-repellent nonwoven fabric, or a laminate of the porous sheet and the nonwoven fabric. Examples of the nonwoven fabric include thermal bonded nonwoven fabric, spunbond nonwoven fabric, meltblown nonwoven fabric, spunlace nonwoven fabric, spunbond/meltblown/spunbond nonwoven fabric, and the like. The basis weight of the member may be 5 to 100 g/m 2 , 8 to 70 g/m 2 , or 10 to 40 g/m 2 .
 本発明の吸収性物品を構成する各部材は、接着されていてもよい。例えば、吸水シートと液体透過性シートとを接着することで、液体がより円滑に吸水シートに導かれ、漏れ防止に優れた吸収性物品が得られやすい。吸水シートがコアラップ20により被覆又は挟持されている場合、少なくともコアラップ20と液体透過性シート30とが接着されていることが好ましく、さらにコアラップ20と吸水シートとが接着されていることがより好ましい。接着方法としては、接着剤、ヒートシール、超音波シール等の公知の方法が挙げられる。 例えば、ホットメルト接着剤を液体透過性シートに対してその幅方向へ所定間隔で縦方向ストライプ状、スパイラル状等の形状に塗布する方法、デンプン、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン及びその他水溶性高分子から選ばれる水溶性接着剤を用いる方法等が挙げられる。また、吸水シートが熱融着性合成繊維を含む場合は、その熱融着による方法を採用してもよい。 Each member constituting the absorbent article of the present invention may be adhered. For example, by adhering the water absorbent sheet and the liquid permeable sheet, the liquid is more smoothly guided to the water absorbent sheet, making it easier to obtain an absorbent article with excellent leakage prevention. When the water absorbent sheet is covered or sandwiched by the core wrap 20, it is preferable that at least the core wrap 20 and the liquid permeable sheet 30 are adhered, and more preferably that the core wrap 20 and the water absorbent sheet are adhered. Adhesion methods include known methods such as adhesives, heat sealing, and ultrasonic sealing. For example, a hot-melt adhesive is applied to a liquid-permeable sheet at predetermined intervals in the width direction in a shape such as vertical stripes or spirals, starch, carboxymethylcellulose, polyvinyl alcohol, polyvinylpyrrolidone and other water-soluble adhesives. Examples include a method using a water-soluble adhesive selected from polymers. In addition, when the water absorbent sheet contains heat-sealable synthetic fibers, a method using heat-sealing thereof may be employed.
 本発明の吸水シートに使用される吸水性樹脂は、以下の(A)~(C)の特性を有することを特徴とする。このような特徴を備える吸水性樹脂を用いた本発明の吸水シートは、漏れの発生を抑制することができる。以下、吸水性樹脂について詳述する。 The water absorbent resin used in the water absorbent sheet of the present invention is characterized by having the following properties (A) to (C). The water absorbent sheet of the present invention using the water absorbent resin having such characteristics can suppress the occurrence of leakage. The water absorbent resin will be described in detail below.
(A)生理食塩水保水量が、45g/g以上70g/g以下である。
(B)4.14kPa荷重下での吸水量が、13ml/g以上である。
(C)無加圧DWの5分値が、44ml/g以上80ml/g以下である。
(A) The physiological saline water retention capacity is 45 g/g or more and 70 g/g or less.
(B) The water absorption under a load of 4.14 kPa is 13 ml/g or more.
(C) The 5-minute value of non-pressurized DW is 44 ml/g or more and 80 ml/g or less.
 本発明の効果をより一層好適に発揮する観点から、吸水シートに使用される吸水性樹脂のうち、(A)~(C)の特性を有する吸水性樹脂の含有率は、好ましくは30質量%以上、より好ましくは50質量%以上、さらに好ましくは70質量%以上であり、よりさらに好ましくは90質量%以上である。 From the viewpoint of exhibiting the effect of the present invention more preferably, the content of the water-absorbing resin having the properties (A) to (C) among the water-absorbing resins used in the water-absorbing sheet is preferably 30% by mass. Above, more preferably 50% by mass or more, still more preferably 70% by mass or more, and even more preferably 90% by mass or more.
 本発明の吸水シートに含まれる吸収層が2層以上である場合、少なくとも1層には(A)~(C)の特性を有する吸水性樹脂が含まれていればよく、各々の吸収層に含まれる吸水性樹脂は同一であっても異なっていてもよい。また、本発明の効果をより一層好適に発揮する観点から、吸水シートに全吸収層の50%以上に(A)~(C)の特性を有する吸水性樹脂が含まれることが好ましく、すべての層に(A)~(C)の特性を有する吸水性樹脂が含まれることがより好ましい。 When the water absorbent sheet of the present invention contains two or more absorbent layers, at least one layer may contain a water absorbent resin having properties (A) to (C). The water absorbent resins contained may be the same or different. Further, from the viewpoint of more preferably exhibiting the effects of the present invention, it is preferable that the water absorbent sheet contains a water absorbent resin having properties (A) to (C) in 50% or more of the total absorbent layer. More preferably, the layer contains a water absorbent resin having properties (A) to (C).
 本発明の効果をより一層好適に発揮する観点から、吸水性樹脂の生理食塩水保水量は、好ましくは46g/g以上、より好ましくは47g/g以上、さらに好ましくは48g/g以上であり、また、好ましくは70g/g以下、より好ましくは68g/g以下、さらに好ましくは65g/g以下である。 From the viewpoint of more preferably exhibiting the effects of the present invention, the water-absorbent resin preferably has a physiological saline water retention capacity of 46 g/g or more, more preferably 47 g/g or more, and still more preferably 48 g/g or more, Also, it is preferably 70 g/g or less, more preferably 68 g/g or less, and still more preferably 65 g/g or less.
 また、本発明の効果をより一層好適に発揮する観点から、吸水性樹脂の4.14kPa荷重下での吸水量は、好ましくは14ml/g以上、より好ましくは15ml/g以上、さらに好ましくは16ml/g以上であり、また、好ましくは33ml/g以下、より好ましくは27ml/g以下、さらに好ましくは23ml/g以下である。 Further, from the viewpoint of exhibiting the effects of the present invention more preferably, the water absorption amount of the water absorbent resin under a load of 4.14 kPa is preferably 14 ml/g or more, more preferably 15 ml/g or more, and still more preferably 16 ml. /g or more, preferably 33 ml/g or less, more preferably 27 ml/g or less, still more preferably 23 ml/g or less.
 また、本発明の効果をより一層好適に発揮する観点から、吸水性樹脂の無加圧DWの5分値は、好ましくは46ml/g以上、より好ましくは48ml/g以上、さらに好ましくは50ml/g以上であり、また、好ましくは70ml/g以下、より好ましくは60ml/g以下、さらに好ましくは54ml/g以下である。 In addition, from the viewpoint of exhibiting the effect of the present invention more preferably, the 5-minute value of the non-pressurized DW of the water absorbent resin is preferably 46 ml/g or more, more preferably 48 ml/g or more, and still more preferably 50 ml/g. g or more, preferably 70 ml/g or less, more preferably 60 ml/g or less, and even more preferably 54 ml/g or less.
 また、吸水性樹脂は、勾配吸収試験によって測定される漏れ発生までの液の吸収量は、吸水シートに含まれる吸収層が1層の場合、好ましくは185g以上、より好ましくは190g以上である。また、漏れ発生までの液の吸収量は、例えば、560g以下、より好ましくは555g以下、550g以下である。吸水シートに含まれる吸収層が2層の場合、好ましくは172g以上、より好ましくは176g以上である。また、漏れ発生までの液の吸収量は、例えば、560g以下、より好ましくは555g以下、550g以下である。 In addition, the water-absorbent resin preferably has a liquid absorption amount of 185 g or more, more preferably 190 g or more, when the water-absorbent sheet contains a single absorbent layer, as measured by a gradient absorption test. Also, the amount of liquid absorbed until leakage occurs is, for example, 560 g or less, more preferably 555 g or less, or 550 g or less. When the absorbent sheet contains two absorbent layers, the weight is preferably 172 g or more, more preferably 176 g or more. Also, the amount of liquid absorbed until leakage occurs is, for example, 560 g or less, more preferably 555 g or less, or 550 g or less.
 吸水性樹脂の生理食塩水保水量、4.14kPa荷重下での吸水量、及び無加圧DW5分値の測定方法、勾配吸収試験の方法は、それぞれ、実施例に記載の通りである。 The method for measuring the physiological saline water retention capacity of the water-absorbing resin, the water absorption capacity under a load of 4.14 kPa, the non-pressurized DW 5-minute value, and the method for the gradient absorption test are as described in Examples.
 吸水性樹脂は、水溶性エチレン性不飽和単量体の重合物を架橋したもの、すなわち水溶性エチレン性不飽和単量体に由来する構造単位を有する架橋重合体により構成されている。 The water absorbent resin is formed by cross-linking a polymer of water-soluble ethylenically unsaturated monomers, that is, a cross-linked polymer having structural units derived from water-soluble ethylenically unsaturated monomers.
 本発明に用いられる吸水性樹脂は、様々な形状を有していてもよい。吸水性樹脂の形状としては、例えば、顆粒状、略球状、不定形破砕状、板状、繊維状、フレーク状、またはそれらの樹脂が凝集した形状等が挙げられる。吸水性樹脂は、顆粒状、略球状、不定形破砕状、繊維状、またはそれらの樹脂が凝集した形状等であることが好ましい。 The water absorbent resin used in the present invention may have various shapes. Examples of the shape of the water-absorbent resin include granular, substantially spherical, irregularly crushed, plate-like, fibrous, flake-like, and aggregated shapes of these resins. The water-absorbent resin is preferably in the form of granules, substantially spherical, crushed amorphous, fibrous, or aggregated forms of these resins.
 なお、吸水性樹脂は、各々が単一の粒子からなる形態のほかに、微細な粒子(一次粒子)が凝集した形態(二次粒子)であってもよい。一次粒子の形状としては、略球状、不定形破砕状、板状等が挙げられる。逆相懸濁重合によって製造される一次粒子である場合には、真球状、楕円球状等のような円滑な表面形状を有する略球状の単粒子形状が挙げられるが、このような形状の一次粒子は、表面形状が円滑であることにより、粉体としての流動性が高くなるうえ、凝集した粒子が密に充填されやすいために衝撃を受けても破壊されにくく、粒子強度が高い吸水性樹脂となる。 The water absorbent resin may be in a form (secondary particles) in which fine particles (primary particles) are aggregated, in addition to the form in which each is composed of a single particle. Examples of the shape of the primary particles include a substantially spherical shape, an irregular crushed shape, and a plate shape. In the case of primary particles produced by reversed-phase suspension polymerization, a substantially spherical single particle shape having a smooth surface shape such as a perfect sphere, an ellipsoidal shape, or the like can be mentioned. Because of its smooth surface, it has high fluidity as a powder, and because it is easy for aggregated particles to be densely packed, it is difficult to break even when subjected to impact, and has high particle strength. Become.
 吸水性樹脂の中位粒子径は、本発明の効果をより好適に発揮する観点から、200μm以上、250μm以上、280μm以上、300μm以上、又は320μm以上が好ましい。また、中位粒子径は、同様の観点から、700μm以下、600μm以下、550μm以下、500μm以下、450μm以下、又は400μm以下が好ましい。すなわち、中位粒子径が200~700μmであることが好ましく、200~600μmであることが好ましく、250~500μmであることがより好ましく、300~450μmであることがさらに好ましく、320~400μmであることがよりさらに好ましい。 The median particle size of the water absorbent resin is preferably 200 µm or more, 250 µm or more, 280 µm or more, 300 µm or more, or 320 µm or more from the viewpoint of more preferably exhibiting the effects of the present invention. From the same viewpoint, the median particle size is preferably 700 μm or less, 600 μm or less, 550 μm or less, 500 μm or less, 450 μm or less, or 400 μm or less. That is, the median particle size is preferably 200 to 700 μm, preferably 200 to 600 μm, more preferably 250 to 500 μm, further preferably 300 to 450 μm, further preferably 320 to 400 μm. is even more preferable.
 吸水性樹脂の中位粒子径は、JIS標準篩を用いて測定することができ、具体的には、実施例に記載の方法により測定した値である。 The median particle size of the water-absorbing resin can be measured using a JIS standard sieve, and is specifically the value measured by the method described in the Examples.
 水溶性エチレン性不飽和単量体の重合方法は、代表的な重合法である水溶液重合法、乳化重合法、逆相懸濁重合法等が用いられる。水溶液重合法では、水溶性エチレン性不飽和単量体水溶液を、必要に応じて攪拌しながら、加熱することにより重合が行われる。また、逆相懸濁重合法では、水溶性エチレン性不飽和単量体を、炭化水素分散媒中、攪拌下で加熱することにより重合が行われる。精密な重合反応制御と広範な粒子径の制御が可能な観点から逆相懸濁重合法が好ましく用いられる。 As the method for polymerizing the water-soluble ethylenically unsaturated monomer, typical polymerization methods such as aqueous solution polymerization method, emulsion polymerization method, and reversed-phase suspension polymerization method are used. In the aqueous solution polymerization method, polymerization is carried out by heating an aqueous solution of a water-soluble ethylenically unsaturated monomer while stirring it if necessary. In the reversed-phase suspension polymerization method, polymerization is carried out by heating a water-soluble ethylenically unsaturated monomer in a hydrocarbon dispersion medium with stirring. A reversed-phase suspension polymerization method is preferably used from the viewpoint of enabling precise control of the polymerization reaction and control of a wide range of particle sizes.
 吸水性樹脂の製造方法の具体的な実施形態を、逆相懸濁重合法を例に、以下に説明する。 A specific embodiment of the method for producing a water-absorbing resin will be described below, taking the reverse phase suspension polymerization method as an example.
 吸水性樹脂の製造方法の具体例としては、水溶性エチレン性不飽和単量体を炭化水素分散媒中で逆相懸濁重合させて吸水性樹脂を製造する方法において、ラジカル重合開始剤の存在下において重合を行う工程と、重合で得られた含水ゲル状物に後架橋剤の存在下に後架橋する工程とを有する製造方法が挙げられる。なお、吸水性樹脂の製造方法においては、必要に応じて水溶性エチレン性不飽和単量体に内部架橋剤を添加して内部架橋構造を有する含水ゲル状物としてもよい。 As a specific example of the method for producing a water absorbent resin, in the method for producing a water absorbent resin by reverse phase suspension polymerization of a water-soluble ethylenically unsaturated monomer in a hydrocarbon dispersion medium, the presence of a radical polymerization initiator and a step of post-crosslinking the water-containing gel obtained by the polymerization in the presence of a post-crosslinking agent. In the method for producing a water-absorbent resin, if necessary, an internal cross-linking agent may be added to the water-soluble ethylenically unsaturated monomer to form a hydrogel having an internal cross-linked structure.
  <重合工程>
 [水溶性エチレン性不飽和単量体]
 水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸及びその塩;2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体及びその4級化物等が挙げられる。これらの水溶性エチレン性不飽和単量体の中でも、工業的に入手が容易であること等の観点から、(メタ)アクリル酸又はその塩、(メタ)アクリルアミド、N,N-ジメチルアクリルアミドが好ましく、(メタ)アクリル酸及びその塩がより好ましい。なお、これらの水溶性エチレン性不飽和単量体は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
<Polymerization process>
[Water-soluble ethylenically unsaturated monomer]
Water-soluble ethylenically unsaturated monomers include, for example, (meth)acrylic acid and its salts; 2-(meth)acrylamido-2-methylpropanesulfonic acid and its salts; (meth)acrylamide, N,N-dimethyl Nonionic monomers such as (meth)acrylamide, 2-hydroxyethyl (meth)acrylate, N-methylol (meth)acrylamide, polyethylene glycol mono (meth)acrylate; N,N-diethylaminoethyl (meth)acrylate, N , N-diethylaminopropyl (meth)acrylate, diethylaminopropyl (meth)acrylamide and other amino group-containing unsaturated monomers and quaternized products thereof. Among these water-soluble ethylenically unsaturated monomers, (meth)acrylic acid or a salt thereof, (meth)acrylamide, and N,N-dimethylacrylamide are preferable from the viewpoint of industrial availability. , (meth)acrylic acid and salts thereof are more preferred. These water-soluble ethylenically unsaturated monomers may be used alone or in combination of two or more.
 これらの中でも、アクリル酸及びその塩が吸水性樹脂の原材料として広く用いられており、これらアクリル酸及び/又はその塩に、上述の他の水溶性エチレン性不飽和単量体を共重合させて用いる場合もある。この場合、アクリル酸及び/又はその塩は、主となる水溶性エチレン性不飽和単量体として、総水溶性エチレン性不飽和単量体に対して70~100モル%用いられることが好ましい。 Among these, acrylic acid and its salts are widely used as raw materials for water-absorbent resins. Sometimes used. In this case, acrylic acid and/or its salt is preferably used as a main water-soluble ethylenically unsaturated monomer in an amount of 70 to 100 mol % based on the total water-soluble ethylenically unsaturated monomers.
 水溶性エチレン性不飽和単量体は、水溶液の状態で炭化水素分散媒中に分散されて、逆相懸濁重合に供されるのが好ましい。水溶性エチレン性不飽和単量体は、水溶液とすることにより、炭化水素分散媒中での分散効率を上昇させることができる。この水溶液における水溶性エチレン性不飽和単量体の濃度としては、20質量%~飽和濃度以下の範囲であることが好ましい。また、本件発明の吸水特性が得られやすい加点から、水溶性エチレン性不飽和単量体の濃度としては、水溶性エチレン性不飽和単量体の濃度としては38質量%以上であることがより好ましく、40質量%以上であることがさらに好ましく、42質量%以上であることがよりさらに好ましい。一方、水溶性エチレン性不飽和単量体の濃度としては55質量%以下であることがより好ましく、50質量%以下であることがさらに好ましく、46質量%以下であることがよりさらに好ましい。 The water-soluble ethylenically unsaturated monomer is preferably dispersed in a hydrocarbon dispersion medium in the form of an aqueous solution and subjected to reversed-phase suspension polymerization. The water-soluble ethylenically unsaturated monomer can increase the dispersion efficiency in the hydrocarbon dispersion medium by forming an aqueous solution. The concentration of the water-soluble ethylenically unsaturated monomer in this aqueous solution is preferably in the range of 20 mass % to the saturated concentration. In addition, from the point that the water absorption property of the present invention is easily obtained, the concentration of the water-soluble ethylenically unsaturated monomer is more than 38% by mass. Preferably, it is 40% by mass or more, and even more preferably 42% by mass or more. On the other hand, the concentration of the water-soluble ethylenically unsaturated monomer is more preferably 55% by mass or less, even more preferably 50% by mass or less, and even more preferably 46% by mass or less.
 水溶性エチレン性不飽和単量体が、(メタ)アクリル酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等のように酸基を有する場合、必要に応じてその酸基が予めアルカリ性中和剤により中和されたものを用いてもよい。このようなアルカリ性中和剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニア等が挙げられる。また、これらのアルカリ性中和剤は、中和操作を簡便にするために水溶液の状態にして用いてもよい。なお、上述したアルカリ性中和剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 When the water-soluble ethylenically unsaturated monomer has an acid group such as (meth)acrylic acid, 2-(meth)acrylamido-2-methylpropanesulfonic acid, etc., the acid group is optionally alkalinized in advance. Those neutralized with a neutralizing agent may also be used. Examples of such alkaline neutralizers include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like. Moreover, these alkaline neutralizers may be used in the form of an aqueous solution in order to facilitate the neutralization operation. In addition, the alkaline neutralizing agent mentioned above may be used independently and may be used in combination of 2 or more types.
 アルカリ性中和剤による水溶性エチレン性不飽和単量体の中和度としては、水溶性エチレン性不飽和単量体が有する全ての酸基に対する中和度として、10~100モル%であることが好ましく、30~90モル%であることがより好ましく、40~85モル%であることがさらに好ましく、50~80モル%であることがよりさらに好ましい。 The degree of neutralization of the water-soluble ethylenically unsaturated monomer with the alkaline neutralizing agent is 10 to 100 mol% as the degree of neutralization of all acid groups possessed by the water-soluble ethylenically unsaturated monomer. is preferred, 30 to 90 mol % is more preferred, 40 to 85 mol % is even more preferred, and 50 to 80 mol % is even more preferred.
[ラジカル重合開始剤]
 当該重合工程に添加されるラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類、メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、過酸化水素等の過酸化物類、並びに、2,2’-アゾビス(2-アミジノプロパン)2塩酸塩、2,2’-アゾビス〔2-(N-フェニルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス〔2-(N-アリルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス{2-〔1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル〕プロパン}2塩酸塩、2,2’-アゾビス{2-メチル-N-〔1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル〕プロピオンアミド}、2,2’-アゾビス〔2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド〕、4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物等を挙げることができる。これらのラジカル重合開始剤の中でも、入手が容易で取り扱いやすいという観点から、好ましくは、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム及び2,2’-アゾビス(2-アミジノプロパン)2塩酸塩が挙げられる。これらラジカル重合開始剤は、単独で用いても、2種以上を組み合わせて用いてもよい。また、前記ラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、及びL-アスコルビン酸等の還元剤と併用して、レドックス重合開始剤として用いることもできる。
[Radical polymerization initiator]
Examples of radical polymerization initiators added to the polymerization step include persulfates such as potassium persulfate, ammonium persulfate and sodium persulfate, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, Peroxides such as t-butyl cumyl peroxide, t-butyl peroxyacetate, t-butyl peroxy isobutyrate, t-butyl peroxy pivalate, hydrogen peroxide, and 2,2'-azobis ( 2-amidinopropane) dihydrochloride, 2,2′-azobis[2-(N-phenylamidino)propane]dihydrochloride, 2,2′-azobis[2-(N-allylamidino)propane]dihydrochloride , 2,2′-azobis{2-[1-(2-hydroxyethyl)-2-imidazolin-2-yl]propane}dihydrochloride, 2,2′-azobis{2-methyl-N-[1, 1-bis(hydroxymethyl)-2-hydroxyethyl]propionamide}, 2,2′-azobis[2-methyl-N-(2-hydroxyethyl)-propionamide], 4,4′-azobis(4- cyanovaleric acid), and the like. Among these radical polymerization initiators, potassium persulfate, ammonium persulfate, sodium persulfate and 2,2′-azobis(2-amidinopropane) dihydrochloride are preferred from the viewpoint of easy availability and handling. be done. These radical polymerization initiators may be used alone or in combination of two or more. The radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
 本発明の効果をより一層好適に発揮する吸水性樹脂を得る観点から、重合工程で混合されるラジカル重合開始剤は、アゾ系化合物及び過酸化物を含むことが好ましい。なお、アゾ系化合物に対する過酸化物のモル比(過酸化物/アゾ系化合物)は、好ましくは0.1~1.0の範囲、より好ましくは0.2~0.8の範囲、さらに好ましくは0.3~0.6の範囲である。 From the viewpoint of obtaining a water absorbent resin that more preferably exhibits the effects of the present invention, the radical polymerization initiator mixed in the polymerization step preferably contains an azo compound and a peroxide. The molar ratio of the peroxide to the azo compound (peroxide/azo compound) is preferably in the range of 0.1 to 1.0, more preferably in the range of 0.2 to 0.8, even more preferably is in the range of 0.3 to 0.6.
 ラジカル重合開始剤の使用量としては、例えば、水溶性エチレン性不飽和単量体1モルに対して0.00005~0.01モルが挙げられる。このような使用量を充足することにより、急激な重合反応が起こるのを回避し、且つ重合反応を適切な時間で完了させることができる。 The amount of the radical polymerization initiator used is, for example, 0.00005 to 0.01 mol per 1 mol of the water-soluble ethylenically unsaturated monomer. By satisfying such a usage amount, rapid polymerization reaction can be avoided and the polymerization reaction can be completed in an appropriate time.
 [内部架橋剤]
 内部架橋剤としては、使用する水溶性エチレン性不飽和単量体の重合体を架橋できるものが挙げられ、例えば、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、(ポリ)グリセリン等のジオール、トリオール等のポリオール類と(メタ)アクリル酸、マレイン酸、フマル酸等の不飽和酸とを反応させて得られる不飽和ポリエステル類;N,N-メチレンビスアクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ(メタ)アクリル酸エステル類又はトリ(メタ)アクリル酸エステル類;トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のポリイソシアネートと(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N’’-トリアリルイソシアヌレート、ジビニルベンゼン等の重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のジグリシジル化合物、トリグリシジル化合物等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のエピハロヒドリン化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物等が挙げられる。これらの内部架橋剤の中でも、不飽和ポリエステル類、又はポリグリシジル化合物を用いることが好ましく、ジグリシジルエーテル化合物を用いることがより好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテルを用いることが好ましい。これらの内部架橋剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
[Internal cross-linking agent]
Examples of the internal cross-linking agent include those capable of cross-linking the polymer of water-soluble ethylenically unsaturated monomers used, such as (poly)ethylene glycol, (poly)propylene glycol, 1,4-butanediol, tri Unsaturated polyesters obtained by reacting polyols such as diols and triols such as methylolpropane and (poly)glycerin with unsaturated acids such as (meth)acrylic acid, maleic acid and fumaric acid; N,N-methylene Bisacrylamides such as bisacrylamide; Di(meth)acrylic acid esters or tri(meth)acrylic acid esters obtained by reacting polyepoxide and (meth)acrylic acid; Di(meth)acrylic acid carbamyl esters obtained by reacting isocyanate with hydroxyethyl (meth)acrylate; allylated starch, allylated cellulose, diallyl phthalate, N,N',N''-triallyl isocyanate Compounds having two or more polymerizable unsaturated groups such as nurate and divinylbenzene; diglycidyl compounds such as (poly)ethylene glycol diglycidyl ether, (poly)propylene glycol diglycidyl ether, and (poly)glycerin diglycidyl ether, triglycidyl polyglycidyl compounds such as compounds; epihalohydrin compounds such as epichlorohydrin, epibromhydrin and α-methylepichlorohydrin; compounds having two or more reactive functional groups such as isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate 3-methyl-3-oxetanemethanol, 3-ethyl-3-oxetanemethanol, 3-butyl-3-oxetanemethanol, 3-methyl-3-oxetaneethanol, 3-ethyl-3-oxetaneethanol, 3-butyl- Examples thereof include oxetane compounds such as 3-oxetaneethanol. Among these internal cross-linking agents, unsaturated polyesters or polyglycidyl compounds are preferably used, and diglycidyl ether compounds are more preferably used. Ether, (poly)glycerol diglycidyl ether is preferably used. These internal cross-linking agents may be used alone or in combination of two or more.
 内部架橋剤の使用量としては、水溶性エチレン性不飽和単量体1モルに対して、0.02モル以下であることが好ましく、0.000001~0.01モルであることがより好ましく、0.00001~0.005モルであることがさらに好ましく、0.00005~0.002モルであることがよりさらに好ましい。 The amount of the internal cross-linking agent used is preferably 0.02 mol or less, more preferably 0.000001 to 0.01 mol, per 1 mol of the water-soluble ethylenically unsaturated monomer. More preferably 0.00001 to 0.005 mol, even more preferably 0.00005 to 0.002 mol.
 [炭化水素分散媒]
 炭化水素分散媒としては、例えば、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の炭素数6~8の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。これらの炭化水素分散媒の中でも、特に、工業的に入手が容易であり、品質が安定しており且つ安価である点で、n-ヘキサン、n-ヘプタン、シクロヘキサンが好適に用いられる。これらの炭化水素分散媒は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。なお、炭化水素分散媒の混合物の例としては、エクソールヘプタン(エクソンモービル社製:ヘプタン及びその異性体の炭化水素75~85質量%含有)等の市販品を用いても好適な結果を得ることができる。
[Hydrocarbon dispersion medium]
Examples of hydrocarbon dispersion media include those having 6 to 8 carbon atoms such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane and n-octane. Aliphatic hydrocarbons; alicyclic rings such as cyclohexane, methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane aromatic hydrocarbons such as benzene, toluene and xylene; Among these hydrocarbon dispersion media, n-hexane, n-heptane, and cyclohexane are preferably used because they are industrially readily available, stable in quality, and inexpensive. These hydrocarbon dispersion media may be used alone or in combination of two or more. As an example of the mixture of the hydrocarbon dispersion medium, a commercially available product such as Exsolheptane (manufactured by Exxon Mobil Co., containing 75 to 85% by mass of heptane and its isomer hydrocarbons) can also be used to obtain suitable results. be able to.
 炭化水素分散媒の使用量としては、水溶性エチレン性不飽和単量体を均一に分散し、重合温度の制御を容易にする観点から、第1段目の水溶性エチレン性不飽和単量体100質量部に対して、100~1500質量部であることが好ましく、200~1400質量部であることがより好ましい。なお、後述するが、逆相懸濁重合は、1段(単段)もしくは2段以上の多段で行われ、上述した第1段目の重合とは、単段重合もしくは多段重合における1段目の重合反応を意味する(以下も同様)。 From the viewpoint of uniformly dispersing the water-soluble ethylenically unsaturated monomer and facilitating the control of the polymerization temperature, the amount of the hydrocarbon dispersion medium used is the water-soluble ethylenically unsaturated monomer in the first stage. It is preferably 100 to 1,500 parts by mass, more preferably 200 to 1,400 parts by mass, based on 100 parts by mass. As will be described later, the reversed-phase suspension polymerization is carried out in one stage (single stage) or in multiple stages of two or more stages, and the above-described first stage polymerization is the first stage in single stage polymerization or multistage polymerization. means the polymerization reaction of (the same applies below).
 [分散安定剤]
  (界面活性剤)
 逆相懸濁重合では、水溶性エチレン性不飽和単量体の炭化水素分散媒中での分散安定性を向上させるために、分散安定剤を用いることもできる。その分散安定剤としては、界面活性剤を用いることができる。
[Dispersion stabilizer]
(Surfactant)
In the reversed-phase suspension polymerization, a dispersion stabilizer can be used to improve the dispersion stability of the water-soluble ethylenically unsaturated monomer in the hydrocarbon dispersion medium. A surfactant can be used as the dispersion stabilizer.
 界面活性剤としては、例えば、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル、アルキルグルコシド、N-アルキルグルコンアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルエーテルのリン酸エステル、ポリオキシエチレンアルキルアリルエーテルのリン酸エステル等を用いることができる。これらの界面活性剤の中でも、特に、単量体の分散安定性の面から、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステルを用いることが好ましい。これらの界面活性剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of surfactants include sucrose fatty acid esters, polyglycerin fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene glycerin fatty acid esters, sorbitol fatty acid esters, polyoxyethylene sorbitol fatty acid esters, and polyoxyethylene. Alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkyl allyl formaldehyde condensed polyoxyethylene ethers, polyoxyethylene polyoxypropylene block copolymers, polyoxyethylene polyoxypropyl alkyl ethers, Using polyethylene glycol fatty acid esters, alkyl glucosides, N-alkyl gluconamides, polyoxyethylene fatty acid amides, polyoxyethylene alkylamines, polyoxyethylene alkyl ether phosphates, polyoxyethylene alkyl allyl ether phosphates, etc. can be done. Among these surfactants, sorbitan fatty acid esters, polyglycerin fatty acid esters, and sucrose fatty acid esters are particularly preferred from the standpoint of dispersion stability of the monomer. These surfactants may be used alone or in combination of two or more.
 界面活性剤の使用量としては、第1段目の水溶性エチレン性不飽和単量体100質量部に対して、好ましくは0.1~30質量部であることが好ましく、0.3~20質量部であることがより好ましい。 The amount of the surfactant used is preferably 0.1 to 30 parts by mass, preferably 0.3 to 20 parts by mass, per 100 parts by mass of the water-soluble ethylenically unsaturated monomer in the first stage. Parts by mass are more preferred.
  (高分子系分散剤)
 また、逆相懸濁重合で用いられる分散安定剤としては、上述した界面活性剤と共に、高分子系分散剤を併せて用いてもよい。
(Polymer dispersant)
Further, as the dispersion stabilizer used in the reversed-phase suspension polymerization, a polymeric dispersant may be used together with the surfactant described above.
 高分子系分散剤としては、例えば、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。これらの高分子系分散剤の中でも、特に、単量体の分散安定性の面から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体を用いることが好ましい。これらの高分子系分散剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of polymeric dispersants include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene-propylene copolymer, maleic anhydride-modified EPDM (ethylene-propylene-diene-terpolymer), anhydrous Maleic acid-modified polybutadiene, maleic anhydride/ethylene copolymer, maleic anhydride/propylene copolymer, maleic anhydride/ethylene/propylene copolymer, maleic anhydride/butadiene copolymer, polyethylene, polypropylene, ethylene/propylene Copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene/propylene copolymer, ethylene/acrylic acid copolymer, ethyl cellulose, ethylhydroxyethyl cellulose and the like. Among these polymeric dispersants, maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene/propylene copolymer, maleic anhydride/ Ethylene copolymer, maleic anhydride/propylene copolymer, maleic anhydride/ethylene/propylene copolymer, polyethylene, polypropylene, ethylene/propylene copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene/propylene copolymer It is preferred to use polymers. These polymeric dispersants may be used alone or in combination of two or more.
 高分子系分散剤の使用量としては、第1段目の水溶性エチレン性不飽和単量体100質量部に対して、0.1~30質量部であることが好ましく、0.3~20質量部であることがより好ましい。 The amount of the polymeric dispersant used is preferably 0.1 to 30 parts by mass, preferably 0.3 to 20 parts by mass, relative to 100 parts by mass of the water-soluble ethylenically unsaturated monomer in the first stage. Parts by mass are more preferred.
 [その他の成分]
 吸水性樹脂の製造方法において、所望によりその他の成分を、水溶性エチレン性不飽和単量体を含む水溶液に添加して逆相懸濁重合を行うようにしてもよい。その他の成分としては、増粘剤、連鎖移動剤等の各種の添加剤を添加することができる。
[Other ingredients]
In the method for producing a water absorbent resin, if desired, other components may be added to the aqueous solution containing the water-soluble ethylenically unsaturated monomer to carry out reverse phase suspension polymerization. As other components, various additives such as thickeners and chain transfer agents can be added.
 一例として、水溶性エチレン性不飽和単量体を含む水溶液に対して増粘剤を添加して逆相懸濁重合を行うことができる。このように増粘剤を添加して水溶液粘度を調整することによって、逆相懸濁重合において得られる中位粒子径を制御することが可能である。 As an example, reverse phase suspension polymerization can be performed by adding a thickener to an aqueous solution containing a water-soluble ethylenically unsaturated monomer. By adjusting the viscosity of the aqueous solution by adding a thickener in this way, it is possible to control the median particle size obtained in the reversed-phase suspension polymerization.
 増粘剤としては、例えば、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、カルボキシメチルセルロース、ポリアクリル酸、ポリアクリル酸(部分)中和物、ポリエチレングリコール、ポリアクリルアミド、ポリエチレンイミン、デキストリン、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等を用いることができる。なお、重合時の攪拌速度が同じであれば、水溶性エチレン性不飽和単量体水溶液の粘度が高いほど得られる粒子の一次粒子及び/又は二次粒子は大きくなる傾向にある。 Examples of thickeners include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyacrylic acid, (partially) neutralized polyacrylic acid, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, and polyvinyl alcohol. , polyvinylpyrrolidone, polyethylene oxide and the like can be used. If the stirring speed during polymerization is the same, the higher the viscosity of the aqueous solution of the water-soluble ethylenically unsaturated monomer, the larger the primary particles and/or secondary particles of the obtained particles tend to be.
 [逆相懸濁重合]
 逆相懸濁重合を行うにあたっては、例えば、分散安定剤の存在下に、水溶性エチレン性不飽和単量体を含む単量体水溶液を、炭化水素分散媒に分散させる。このとき、重合反応を開始する前であれば、分散安定剤(界面活性剤や高分子系分散剤)の添加時期は、単量体水溶液添加の前後どちらであってもよい。
[Reverse phase suspension polymerization]
For reversed-phase suspension polymerization, for example, an aqueous monomer solution containing a water-soluble ethylenically unsaturated monomer is dispersed in a hydrocarbon dispersion medium in the presence of a dispersion stabilizer. At this time, the dispersion stabilizer (surfactant or polymer dispersant) may be added before or after the addition of the aqueous monomer solution as long as it is before the polymerization reaction is started.
 その中でも、得られる吸水性樹脂に残存する炭化水素分散媒量を低減しやすいという観点から、高分子系分散剤を分散させた炭化水素分散媒に、単量体水溶液を分散させた後に、さらに界面活性剤を分散させてから重合を行うことが好ましい。 Among them, from the viewpoint that it is easy to reduce the amount of hydrocarbon dispersion medium remaining in the resulting water absorbent resin, after dispersing the aqueous monomer solution in a hydrocarbon dispersion medium in which a polymeric dispersant is dispersed, Polymerization is preferably carried out after dispersing the surfactant.
 このような逆相懸濁重合を、1段もしくは2段以上の多段で行うことが可能である。また、生産性を高める観点から2~3段で行うことが好ましい。 Such reversed-phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. In addition, from the viewpoint of increasing productivity, it is preferable to carry out in 2 to 3 stages.
 2段以上の多段で逆相懸濁重合を行う場合には、1段目の逆相懸濁重合を行った後、1段目の重合反応で得られた反応混合物に水溶性エチレン性不飽和単量体を添加して混合し、1段目と同様の方法で2段目以降の逆相懸濁重合を行えばよい。2段目以降の各段における逆相懸濁重合では、水溶性エチレン性不飽和単量体の他に、ラジカル重合開始剤と、必要に応じて、内部架橋剤とを、2段目以降の各段における逆相懸濁重合の際に添加する水溶性エチレン性不飽和単量体の量を基準として、上述した水溶性エチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行うことができる。なお、水溶性エチレン性不飽和単量体の量と、水溶性エチレン性不飽和単量体に対する重合開始剤、内部架橋剤等の比率は、前記範囲内であれば、1段目と2段目以降の各段とが、同じであっても、異なっていてもよい。 In the case of performing reversed-phase suspension polymerization in multiple stages of two or more stages, after performing the first-stage reversed-phase suspension polymerization, water-soluble ethylenically unsaturated monomers are added to the reaction mixture obtained in the first-stage polymerization reaction. The monomers are added and mixed, and reversed-phase suspension polymerization in the second and subsequent stages may be carried out in the same manner as in the first stage. In the reversed phase suspension polymerization in each stage after the second stage, in addition to the water-soluble ethylenically unsaturated monomer, a radical polymerization initiator and, if necessary, an internal cross-linking agent are added to the second and subsequent stages. Based on the amount of the water-soluble ethylenically unsaturated monomer added during the reverse phase suspension polymerization in each stage, added within the range of the molar ratio of each component to the water-soluble ethylenically unsaturated monomer described above Reversed-phase suspension polymerization can be carried out. If the amount of the water-soluble ethylenically unsaturated monomer and the ratio of the polymerization initiator, internal cross-linking agent, etc. to the water-soluble ethylenically unsaturated monomer are within the above ranges, Each step after the first step may be the same or different.
 重合反応の反応温度としては、重合を迅速に進行させ、重合時間を短くすることにより、経済性を高めるとともに、容易に重合熱を除去して円滑に反応を行わせる観点から、20~110℃であることが好ましく、40~90℃であることがより好ましい。 The reaction temperature for the polymerization reaction is 20 to 110° C. from the viewpoints of speeding up the polymerization, shortening the polymerization time, thereby improving economic efficiency, and facilitating the removal of the heat of polymerization to allow the reaction to proceed smoothly. and more preferably 40 to 90°C.
  <後架橋工程>
 次に、吸水性樹脂は、水溶性エチレン性不飽和単量体を重合して得られた内部架橋構造を有する含水ゲル状物に対して、後架橋剤を添加して架橋すること(後架橋反応)で得られる。この後架橋反応は、水溶性エチレン性不飽和単量体の重合後以降に後架橋剤の存在下に行う。このような後架橋反応を施すことによって、吸水性樹脂の表面近傍の架橋密度を適切に高めて、荷重下での吸水量や無加圧DW等の諸性能を高めた吸水性樹脂を得ることができる。
<Post-crosslinking step>
Next, the water-absorbing resin is crosslinked by adding a post-crosslinking agent to a hydrous gel-like material having an internal crosslinked structure obtained by polymerizing a water-soluble ethylenically unsaturated monomer (post-crosslinking reaction). This post-crosslinking reaction is carried out in the presence of a post-crosslinking agent after the polymerization of the water-soluble ethylenically unsaturated monomer. By applying such a post-crosslinking reaction, the cross-linking density in the vicinity of the surface of the water-absorbing resin is appropriately increased to obtain a water-absorbing resin with improved various performances such as water absorption under load and non-pressure DW. can be done.
 後架橋剤としては、反応性官能基を2個以上有する化合物を挙げることができる。例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物が挙げられる。これらの後架橋剤の中でも、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物が好ましい。これらの後架橋剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of post-crosslinking agents include compounds having two or more reactive functional groups. For example, polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin; (poly)ethylene glycol diglycidyl ether, (poly) Polyglycidyl compounds such as glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, (poly)propylene glycol polyglycidyl ether, (poly)glycerol polyglycidyl ether; epichlorohydrin, epibromohydrin, α -halo epoxy compounds such as methyl epichlorohydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetanemethanol, 3-ethyl-3-oxetanemethanol, 3-butyl-3-oxetanemethanol , 3-methyl-3-oxetaneethanol, 3-ethyl-3-oxetaneethanol, 3-butyl-3-oxetaneethanol and other oxetane compounds; 1,2-ethylenebisoxazoline and other oxazoline compounds; ethylene carbonate and other carbonate compounds and hydroxyalkylamide compounds such as bis[N,N-di(β-hydroxyethyl)]adipamide. Among these post-crosslinking agents, (poly)ethylene glycol diglycidyl ether, (poly)glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, (poly)propylene glycol polyglycidyl ether, ( Polyglycidyl compounds such as poly)glycerol polyglycidyl ether are preferred. These post-crosslinking agents may be used alone or in combination of two or more.
 後架橋剤の使用量としては、重合に使用した水溶性エチレン性不飽和単量体の総量1モルに対して、0.00001~0.01モルであることが好ましく、0.00005~0.005モルであることがより好ましく、0.00001~0.001モルであることがさらに好ましい。 The amount of the post-crosslinking agent used is preferably 0.00001 to 0.01 mol, preferably 0.00005 to 0.01 mol, per 1 mol of the total amount of the water-soluble ethylenically unsaturated monomers used in the polymerization. 005 mol, more preferably 0.00001 to 0.001 mol.
 後架橋剤の添加方法としては、後架橋剤をそのまま添加しても、水溶液として添加してもよいが、必要に応じて、溶媒として親水性有機溶媒を用いた溶液として添加してもよい。親水性有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール等の低級アルコール類;アセトン、メチルエチルケトン等のケトン類;ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類;N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類等が挙げられる。これら親水性有機溶媒は、単独で用いてもよく、2種類以上を組み合わせて、又は水との混合溶媒として用いてもよい。 As for the method of adding the post-crosslinking agent, the post-crosslinking agent may be added as it is or as an aqueous solution, but if necessary, it may be added as a solution using a hydrophilic organic solvent as a solvent. Hydrophilic organic solvents include, for example, lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol and isopropyl alcohol; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether, dioxane and tetrahydrofuran; - amides such as dimethylformamide; sulfoxides such as dimethylsulfoxide; These hydrophilic organic solvents may be used alone, in combination of two or more, or as a mixed solvent with water.
 後架橋剤の添加時期としては、水溶性エチレン性不飽和単量体の重合後であればよく、水溶性エチレン性不飽和単量体100質量部に対して、5~140質量部の範囲の水分存在下に添加することが好ましく、15~100質量部の範囲の水分存在下に添加することがより好ましく、20~50質量部の範囲の水分存在下に添加することがさらに好ましく、22~28質量部の範囲の水分存在下に添加することがよりさらに好ましい。なお、水分の量は、反応系に含まれる水分と後架橋剤を添加する際に必要に応じて用いられる水分との合計量を意味する。水分の量が140質量部より高い状態で後架橋剤を添加すると、保水量が低くなる傾向にある。また、水分の量が5質量部よりも低い状態で後架橋剤を添加すると、後架橋剤の反応が十分でなくなる傾向にある。 The timing of addition of the post-crosslinking agent may be after the polymerization of the water-soluble ethylenically unsaturated monomer, and it is added in the range of 5 to 140 parts by mass with respect to 100 parts by mass of the water-soluble ethylenically unsaturated monomer. It is preferably added in the presence of water, more preferably in the presence of water in the range of 15 to 100 parts by mass, more preferably in the presence of water in the range of 20 to 50 parts by mass. Adding in the presence of water in the range of 28 parts by mass is even more preferable. The amount of water means the total amount of water contained in the reaction system and water used as necessary when adding the post-crosslinking agent. If the post-crosslinking agent is added while the water content is higher than 140 parts by mass, the water retention tends to be low. Also, if the post-crosslinking agent is added in a state where the amount of water is less than 5 parts by mass, the reaction of the post-crosslinking agent tends to be insufficient.
 後架橋反応における反応温度としては、50~250℃であることが好ましく、60~180℃であることがより好ましく、60~140℃であることがさらに好ましく、70~120℃であることがよりさらに好ましい。また、後架橋反応の反応時間としては、1~300分間であることが好ましく、5~200分間であることがより好ましい。 The reaction temperature in the post-crosslinking reaction is preferably 50 to 250°C, more preferably 60 to 180°C, even more preferably 60 to 140°C, and more preferably 70 to 120°C. More preferred. The reaction time for the post-crosslinking reaction is preferably 1 to 300 minutes, more preferably 5 to 200 minutes.
  <乾燥工程>
 上述した逆相懸濁重合を行った後、熱等のエネルギーを外部から加えることで、水、炭化水素分散媒等を蒸留により除去する乾燥工程を含んでいてもよい。逆相懸濁重合後の含水ゲルから脱水を行う場合、炭化水素分散媒中に含水ゲルが分散している系を加熱することで、水と炭化水素分散媒を共沸蒸留により系外に一旦留去する。このとき、留去した炭化水素分散媒のみを系内へ返送すると、連続的な共沸蒸留が可能となる。その場合、乾燥中の系内の温度が、炭化水素分散媒との共沸温度以下に維持されるため、樹脂が劣化しにくい等の観点から好ましい。引き続き、水及び炭化水素分散媒を留去することにより、吸水性樹脂が得られる。この重合後における乾燥工程の処理条件を制御して脱水量を調整することにより、得られる吸水性樹脂の諸性能を制御することが可能である。
<Drying process>
After the reversed-phase suspension polymerization described above, a drying step may be included in which water, a hydrocarbon dispersion medium, and the like are removed by distillation by applying energy such as heat from the outside. When dehydrating the water-containing gel after reverse-phase suspension polymerization, by heating the system in which the water-containing gel is dispersed in the hydrocarbon dispersion medium, the water and the hydrocarbon dispersion medium are temporarily removed from the system by azeotropic distillation. Distill off. At this time, if only the hydrocarbon dispersion medium that has been distilled off is returned into the system, continuous azeotropic distillation becomes possible. In this case, the temperature in the system during drying is maintained at or below the azeotropic temperature with the hydrocarbon dispersion medium, which is preferable from the viewpoint of the resin being less likely to deteriorate. Subsequently, water and a hydrocarbon dispersion medium are distilled off to obtain a water absorbent resin. By controlling the treatment conditions of the drying step after polymerization to adjust the amount of dehydration, it is possible to control various performances of the resulting water absorbent resin.
 乾燥工程では、蒸留による乾燥処理を常圧下で行ってもよく、減圧下で行ってもよい。また、乾燥効率を高める観点から、窒素等の気流下で行ってもよい。乾燥処理を常圧下で行う場合においては、乾燥温度としては、70~250℃であることが好ましく、80~180℃であることがより好ましく、80~140℃であることがさらに好ましく、90~130℃であることがよりさらに好ましい。また、乾燥処理を減圧下で行う場合においては、乾燥温度としては、40~160℃であることが好ましく、50~110℃であることがより好ましい。 In the drying process, the drying treatment by distillation may be performed under normal pressure or under reduced pressure. Moreover, from the viewpoint of increasing the drying efficiency, the drying may be carried out under an air stream of nitrogen or the like. When the drying treatment is performed under normal pressure, the drying temperature is preferably 70 to 250° C., more preferably 80 to 180° C., further preferably 80 to 140° C., further preferably 90 to 130° C. is even more preferred. When the drying treatment is performed under reduced pressure, the drying temperature is preferably 40 to 160°C, more preferably 50 to 110°C.
 なお、上述した後架橋剤による後架橋工程を行う場合には、その後架橋工程の終了後に、上述した蒸留による乾燥工程を行うようにする。または、後架橋工程と乾燥工程とを同時に行うようにしてもよい。 In addition, when performing the above-described post-crosslinking step using a post-crosslinking agent, the above-described drying step by distillation is performed after the completion of the subsequent cross-linking step. Alternatively, the post-crosslinking step and the drying step may be performed simultaneously.
 吸水性樹脂は、目的に応じた添加剤を含んでいてもよい。このような添加剤としては、無機粉末、界面活性剤、酸化剤、還元剤、金属キレート剤、ラジカル連鎖禁止剤、酸化防止剤、抗菌剤等が挙げられる。例えば、吸水性樹脂100質量部に対し、無機粉末として0.05~5質量部の非晶質シリカを添加することで、吸水性樹脂の流動性をさらに向上させることができる。 The water absorbent resin may contain additives depending on the purpose. Examples of such additives include inorganic powders, surfactants, oxidizing agents, reducing agents, metal chelating agents, radical chain inhibitors, antioxidants, antibacterial agents, and the like. For example, by adding 0.05 to 5 parts by mass of amorphous silica as an inorganic powder to 100 parts by mass of the water absorbent resin, the fluidity of the water absorbent resin can be further improved.
 以下に実施例及び比較例を示して本発明を詳細に説明する。但し本発明は実施例に限定されるものではない。 The present invention will be described in detail below with examples and comparative examples. However, the present invention is not limited to the examples.
 実施例及び比較例で得られた吸水性樹脂は、以下の各種試験で評価した。特に断りのない場合、測定は温度25±2℃、湿度50±10%の環境下で実施した。以下、各評価試験方法について説明する。 The water absorbent resins obtained in Examples and Comparative Examples were evaluated by the following various tests. Unless otherwise specified, measurements were carried out in an environment of temperature 25±2° C. and humidity 50±10%. Each evaluation test method will be described below.
<生理食塩水保水量>
 吸水性樹脂粒子2.0gを量り取った綿袋(メンブロード60番、横100mm×縦200mm)を500mL容のビーカー内に設置した。吸水性樹脂粒子の入った綿袋中に0.9質量%塩化ナトリウム水溶液(生理食塩水)500gをママコができないように一度に注ぎ込み、綿袋の上部を輪ゴムで縛り、30分静置させることで吸水性樹脂粒子を膨潤させた。30分経過後の綿袋を、遠心力が167Gとなるよう設定した脱水機(株式会社コクサン製、品番:H-122)を用いて1分間脱水し、脱水後の膨潤ゲルを含んだ綿袋の質量Wa(g)を測定した。吸水性樹脂粒子を添加せずに同様の操作を行い、綿袋の湿潤時の空質量Wb(g)を測定し、以下の式から生理食塩水保水量を算出した。
 生理食塩水保水量(g/g)=[Wa-Wb]/2.0
<Physiological saline water retention>
A cotton bag (Membrane No. 60, width 100 mm×length 200 mm) in which 2.0 g of the water absorbent resin particles was weighed was placed in a 500 mL beaker. Pour 500 g of 0.9% by mass aqueous sodium chloride solution (physiological saline) into a cotton bag containing water-absorbent resin particles at once to prevent lumps, tie the top of the cotton bag with a rubber band, and let stand for 30 minutes. to swell the water absorbent resin particles. After 30 minutes, the cotton bag is dehydrated for 1 minute using a dehydrator (manufactured by Kokusan Co., Ltd., product number: H-122) set to a centrifugal force of 167 G, and the cotton bag containing the swollen gel after dehydration. The mass Wa (g) of was measured. The same operation was performed without adding the water-absorbent resin particles, and the empty weight Wb (g) of the wet cotton bag was measured, and the physiological saline water retention capacity was calculated from the following formula.
Physiological saline water retention amount (g / g) = [Wa - Wb] / 2.0
<4.14kPa荷重下での生理食塩水吸水量>
 吸水性樹脂粒子の荷重下での生理食塩水の吸水量(室温、25℃±2℃)を、図1に示す測定装置Yを用いて測定した。測定装置Yは、ビュレット部61、導管62、測定台63、及び、測定台63上に置かれた測定部64から構成される。ビュレット部61は、鉛直方向に伸びるビュレット61aと、ビュレット61aの上端に配置されたゴム栓61bと、ビュレット61aの下端に配置されたコック61cと、コック61cの近傍において一端がビュレット61a内に伸びる空気導入管61dと、空気導入管61dの他端側に配置されたコック61eとを有している。導管62は、ビュレット部61と測定台63との間に取り付けられている。導管62の内径は6mmである。測定台63の中央部には、直径2mmの穴があいており、導管62が連結されている。測定部64は、円筒64a(アクリル樹脂(プレキシグラス)製)と、円筒64aの底部に接着されたナイロンメッシュ64bと、重り64cとを有している。円筒64aの内径は20mmである。ナイロンメッシュ64bの目開きは75μm(200メッシュ)である。そして、測定時にはナイロンメッシュ64b上に測定対象の吸水性樹脂粒子65が均一に撒布される。重り64cの直径は19mmであり、重り64cの質量は120gである。重り64cは、吸水性樹脂粒子65上に置かれ、吸水性樹脂粒子65に対して4.14kPaの荷重を加えることができる。
<Physiological saline water absorption under 4.14 kPa load>
The amount of water absorbed by the physiological saline under the load of the water-absorbing resin particles (room temperature, 25° C.±2° C.) was measured using the measuring device Y shown in FIG. The measuring device Y is composed of a burette section 61 , a conduit 62 , a measuring table 63 , and a measuring section 64 placed on the measuring table 63 . The burette portion 61 includes a burette 61a extending in the vertical direction, a rubber stopper 61b arranged at the upper end of the burette 61a, a cock 61c arranged at the lower end of the burette 61a, and one end extending into the burette 61a near the cock 61c. It has an air introduction pipe 61d and a cock 61e arranged on the other end side of the air introduction pipe 61d. A conduit 62 is attached between the burette portion 61 and the measuring table 63 . The inner diameter of conduit 62 is 6 mm. A hole with a diameter of 2 mm is drilled in the central part of the measuring table 63 and the conduit 62 is connected. The measuring part 64 has a cylinder 64a (made of acrylic resin (Plexiglas)), a nylon mesh 64b adhered to the bottom of the cylinder 64a, and a weight 64c. The inner diameter of the cylinder 64a is 20 mm. The opening of the nylon mesh 64b is 75 μm (200 mesh). At the time of measurement, the water absorbent resin particles 65 to be measured are evenly spread over the nylon mesh 64b. The weight 64c has a diameter of 19 mm and a mass of 120 g. The weight 64 c is placed on the water absorbent resin particles 65 and can apply a load of 4.14 kPa to the water absorbent resin particles 65 .
 測定装置Yの円筒64aの中に0.100gの吸水性樹脂粒子65を入れた後、重り64cを載せて測定を開始した。吸水性樹脂粒子65が吸水した生理食塩水と同容積の空気が、空気導入管より、速やかにかつスムーズにビュレット61aの内部に供給されるため、ビュレット61aの内部の生理食塩水の水位の減量が、吸水性樹脂粒子65が吸水した生理食塩水量となる。ビュレット61aの目盛は、上から下方向に0mLから0.5mL刻みで刻印されており、生理食塩水の水位として、吸水開始前のビュレット61aの目盛りVaと、吸水開始から60分後のビュレット61aの目盛りVbとを読み取り、下記式より4.14kPa荷重下での生理食塩水吸水量を算出した。
 4.14kPa荷重下での生理食塩水吸水量[mL/g]=(Vb-Va)/0.100
After putting 0.100 g of the water-absorbing resin particles 65 into the cylinder 64a of the measuring device Y, the weight 64c was put thereon and the measurement was started. Since the same volume of air as the physiological saline absorbed by the water-absorbing resin particles 65 is rapidly and smoothly supplied to the inside of the burette 61a through the air introduction pipe, the water level of the physiological saline in the burette 61a decreases. is the amount of physiological saline absorbed by the water absorbent resin particles 65 . The scale of the burette 61a is marked from top to bottom in increments of 0 mL to 0.5 mL. , and the physiological saline water absorption amount under a load of 4.14 kPa was calculated from the following formula.
Physiological saline water absorption under 4.14 kPa load [mL / g] = (Vb - Va) / 0.100
<無加圧DW(DemandWettability)の5分値>
 吸水性樹脂粒子の無加圧DWは、図2に示す測定装置を用いて測定した。測定は1種類の吸水性樹脂粒子に関して5回実施し、最低値と最高値とを除いた3点の測定値の平均値を求めた。当該測定装置は、ビュレット部1、導管5、測定台13、ナイロンメッシュシート15、架台11、及びクランプ3を有する。ビュレット部1は、目盛が記載されたビュレット管21と、ビュレット管21の上部の開口を密栓するゴム栓23と、ビュレット管21の下部の先端に連結されたコック22と、ビュレット管21の下部に連結された空気導入管25及びコック24とを有する。ビュレット部1はクランプ3で固定されている。平板状の測定台13は、その中央部に形成された直径2mmの貫通孔13aを有しており、高さが可変の架台11によって支持されている。測定台13の貫通孔13aとビュレット部1のコック22とが導管5によって連結されている。導管5の内径は6mmである。
<5-minute value of non-pressurized DW (Demand Wetability)>
The non-pressurized DW of the water absorbent resin particles was measured using the measuring device shown in FIG. The measurement was performed 5 times for one type of water absorbent resin particles, and the average value of the measured values at 3 points excluding the lowest and highest values was obtained. The measuring device has a burette part 1 , a conduit 5 , a measuring table 13 , a nylon mesh sheet 15 , a pedestal 11 and a clamp 3 . The burette part 1 includes a burette tube 21 with a scale, a rubber stopper 23 sealing an upper opening of the burette tube 21, a cock 22 connected to the tip of the lower part of the burette tube 21, and a lower part of the burette tube 21. It has an air introduction pipe 25 and a cock 24 connected to the . The burette part 1 is fixed with a clamp 3 . A flat plate-shaped measuring stand 13 has a through hole 13a with a diameter of 2 mm formed in its central portion, and is supported by a pedestal 11 whose height is variable. Through hole 13 a of measuring table 13 and cock 22 of burette portion 1 are connected by conduit 5 . The inner diameter of conduit 5 is 6 mm.
 測定は温度25℃、湿度60±10%の環境下で行なわれた。まずビュレット部1のコック22とコック24を閉め、25℃に調節された0.9質量%食塩水50をビュレット管21上部の開口からビュレット管21に入れた。食塩水の濃度0.9質量%は、食塩水の質量を基準とする濃度である。ゴム栓23でビュレット管21の開口の密栓した後、コック22及びコック24を開けた。気泡が入らないよう導管5内部を0.9質量%食塩水50で満たした。貫通孔13a内に到達した0.9質量%食塩水の水面の高さが、測定台13の上面の高さと同じになるように、測定台13の高さを調整した。調整後、ビュレット管21内の0.9質量%食塩水50の水面の高さをビュレット管21の目盛で読み取り、その位置をゼロ点(0秒時点の読み値)とした。 The measurement was performed in an environment with a temperature of 25°C and a humidity of 60±10%. First, the cocks 22 and 24 of the burette part 1 were closed, and the 0.9 mass % saline solution 50 adjusted to 25° C. was introduced into the burette tube 21 through the upper opening of the burette tube 21 . The salt solution concentration of 0.9% by mass is the concentration based on the mass of the salt solution. After sealing the opening of the burette tube 21 with a rubber stopper 23, the cocks 22 and 24 were opened. The interior of the conduit 5 was filled with a 0.9 mass % saline solution 50 so as not to introduce air bubbles. The height of the measuring table 13 was adjusted so that the height of the water surface of the 0.9 mass % saline solution reaching the inside of the through-hole 13 a was the same as the height of the upper surface of the measuring table 13 . After the adjustment, the height of the water surface of the 0.9% by mass saline solution 50 in the burette tube 21 was read from the scale of the burette tube 21, and the position was taken as the zero point (read value at 0 seconds).
 測定台13上の貫通孔13aの近傍にてナイロンメッシュシート15(100mm×100mm、250メッシュ、厚さ約50μm)を敷き、その中央部に、内径30mm、高さ20mmのシリンダーを置いた。このシリンダーに、1.00gの吸水性樹脂粒子10aを均一に散布した。その後、シリンダーを注意深く取り除き、ナイロンメッシュシート15の中央部に吸水性樹脂粒子10aが円状に分散されたサンプルを得た。次いで、吸水性樹脂粒子10aが載置されたナイロンメッシュシート15を、その中心が貫通孔13aの位置になるように、吸水性樹脂粒子10aが散逸しない程度にすばやく移動させて、測定を開始した。空気導入管25からビュレット管21内に気泡が最初に導入された時点を吸水開始(0秒)とした。 A nylon mesh sheet 15 (100 mm×100 mm, 250 mesh, thickness of about 50 μm) was laid near the through-hole 13a on the measurement table 13, and a cylinder with an inner diameter of 30 mm and a height of 20 mm was placed in the center. 1.00 g of water-absorbent resin particles 10a were evenly dispersed in this cylinder. After that, the cylinder was carefully removed to obtain a sample in which the water absorbent resin particles 10a were circularly dispersed in the center of the nylon mesh sheet 15 . Next, the nylon mesh sheet 15 on which the water absorbent resin particles 10a were placed was moved so quickly that the center of the nylon mesh sheet 15 was located at the position of the through hole 13a so that the water absorbent resin particles 10a did not dissipate, and the measurement was started. . The time when air bubbles were first introduced into the burette tube 21 from the air introduction tube 25 was defined as the start of water absorption (0 second).
 ビュレット管21内の0.9質量%食塩水50の減少量(すなわち、吸水性樹脂粒子10aが吸水した0.9質量%食塩水の量)を順次読み取り、吸水性樹脂粒子10aの吸水開始から起算して5分後の0.9質量%食塩水50の減量分Wc(g)を読み取った。Wcから、下記式により無加圧DWの5分値を求めた。無加圧DWは、吸水性樹脂粒子10aの1.00g当たりの吸水量である。
 無加圧DW(mL/g)=Wc/1.00
The amount of decrease in the 0.9% by mass saline solution 50 in the burette tube 21 (that is, the amount of the 0.9% by mass saline solution absorbed by the water absorbent resin particles 10a) is read sequentially, and the water absorption of the water absorbent resin particles 10a is started. The weight loss Wc (g) of the 0.9% by mass saline solution 50 after 5 minutes was read. From Wc, the 5-minute value of no-pressure DW was determined by the following formula. The non-pressurized DW is the water absorption amount per 1.00 g of the water absorbent resin particles 10a.
Unpressurized DW (mL/g) = Wc/1.00
<中位粒子径>
 吸水性樹脂粒子10gを、連続全自動音波振動式ふるい分け測定器(ロボットシフター RPS-205、株式会社セイシン企業製)と、JIS規格の目開き850μm、710μm、600μm、500μm、425μm、300μm、250μm及び150μmの篩と、受け皿とを用いて篩分けした。各篩上に残った粒子の質量を全量に対する質量百分率として算出した。各篩上に残存した粒子の質量百分率を、粒子径の大きいものから順に積算し、篩の目開きと、篩上に残った粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を求め、これを中位粒子径とした。
<Median particle size>
10 g of the water-absorbent resin particles were subjected to a continuous fully automatic sonic vibration sieving measuring instrument (Robot Shifter RPS-205, manufactured by Seishin Enterprise Co., Ltd.), and JIS standard openings of 850 μm, 710 μm, 600 μm, 500 μm, 425 μm, 300 μm, 250 μm and It was sieved using a 150 μm sieve and a tray. The mass of particles remaining on each sieve was calculated as a mass percentage of the total mass. The mass percentage of particles remaining on each sieve was integrated in descending order of particle size, and the relationship between the sieve opening and the integrated value of the mass percentage of particles remaining on the sieve was plotted on logarithmic probability paper. . By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was obtained, and this was taken as the median particle size.
<試験液の調製>
 試験液は、イオン交換水に、下記の通りに無機塩が存在するように配合して溶解させたものに、さらに少量の青色1号を配合して調製した。
 試験液組成
・脱イオン水 5919.6g
・NaCl 60.0g
・CaCl2・H2O 1.8g
・MgCl2・6H2O 3.6g
・食用青色1号(着色用)
・1%-トリトンX-100 15.0g
<Preparation of test solution>
The test solution was prepared by adding a small amount of Blue No. 1 to ion-exchanged water and adding and dissolving the following inorganic salt so that it was present.
Test solution composition Deionized water 5919.6g
・ NaCl 60.0 g
- CaCl2.H2O 1.8g
・3.6 g of MgCl2.6H2O
・Edible blue No. 1 (for coloring)
・ 1% - Triton X-100 15.0g
<漏れ試験(勾配吸収試験)>
 図3は、吸収性物品の漏れ性を評価する方法を示す模式図である。平坦な主面を有する長さ45cmの支持板40(ここではアクリル樹脂板、以下傾斜面S1ともいう)を、水平面S0に対して45±2度に傾斜した状態で架台41によって固定した。温度25±2℃の室内において、固定された支持板40の傾斜面S1上に、試験用の吸収性物品100を、その長手方向が支持板40の長手方向に沿う向きで貼り付けた。次いで、吸収性物品100中の吸水シートの中央から8cm上方の位置に向けて、吸収性物品の鉛直上方に配置された滴下ロート42から、25±1℃に調整した試験液50を滴下した。吸収性物品のサイズが42cm×14cmのものは1回あたり80mL、32cm×12cmのものは1回あたり30mLの試験液を8mL/秒の速度で滴下した。滴下ロート42の先端と吸収性物品との距離は10±1mmであった。1回目の試験液投入開始から10分間隔で、同様の条件で試験液を計7回投入した。
<Leakage test (gradient absorption test)>
FIG. 3 is a schematic diagram showing a method for evaluating the leakiness of absorbent articles. A 45 cm long support plate 40 (here, an acrylic resin plate, hereinafter also referred to as an inclined surface S1) having a flat main surface was fixed by a mount 41 in a state inclined at 45±2 degrees with respect to the horizontal plane S0. In a room at a temperature of 25±2° C., the test absorbent article 100 was attached onto the inclined surface S1 of the fixed support plate 40 with its longitudinal direction along the longitudinal direction of the support plate 40 . Next, a test liquid 50 adjusted to 25±1° C. was dropped from a dropping funnel 42 placed vertically above the absorbent article 100 toward a position 8 cm above the center of the water absorbent sheet in the absorbent article 100. For the absorbent article with a size of 42 cm x 14 cm, 80 mL was dropped at a time, and for the absorbent article with a size of 32 cm x 12 cm, 30 mL of the test liquid was dropped at a rate of 8 mL/sec. The distance between the tip of the dropping funnel 42 and the absorbent article was 10±1 mm. At intervals of 10 minutes from the start of the first injection of the test liquid, the test liquid was injected a total of 7 times under the same conditions.
 吸収性物品100に吸収されなかった試験液が支持板40の下部から漏れ出た場合、漏れ出た試験液を支持板40の下方に配置された金属製トレイ44内に回収した。回収された試験液の質量(g)を天秤43によって測定し、その値を漏れ量として記録した。試験液の全投入量から漏れ量を差し引くことにより、吸収量を算出した。また、吸収率に関しては下記式にて算出した。これらの数値が大きいほど、着用時における液体の漏れが発生し難いと判断される。なお、試験液の密度は1.0g/mLとした。
 吸収率(%)=吸収量(g)/試験液の投入量(g)×100
When the test liquid that was not absorbed by the absorbent article 100 leaked from the lower part of the support plate 40 , the leaked test liquid was collected in the metal tray 44 arranged below the support plate 40 . The mass (g) of the collected test liquid was measured by the balance 43, and the value was recorded as the amount of leakage. The absorbed amount was calculated by subtracting the leakage amount from the total input amount of the test liquid. Also, the absorbance was calculated by the following formula. It is judged that the larger these numerical values are, the more difficult it is for liquid to leak when worn. In addition, the density of the test liquid was set to 1.0 g/mL.
Absorption rate (%) = absorption amount (g) / input amount of test solution (g) x 100
<吸水性樹脂の製造>
(製造例1)
 還流冷却器、滴下ロート、窒素ガス導入管、及び撹拌機を備えた、内径11cm、内容積2Lの丸底円筒型セパラブルフラスコを準備した。撹拌機としては、翼径5cmの4枚傾斜パドル翼を2段で有する撹拌翼を有するものを用いた。上記フラスコに、炭化水素分散媒としてn-ヘプタン252g、及び分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社製、ハイワックス1105A)0.736gを投入して混合した。フラスコ内の混合物を撹拌機の回転数を300rpmとして撹拌しつつ、80℃まで昇温することにより、分散剤をn-ヘプタンに溶解させた。形成された溶液を50℃まで冷却した。
<Production of water absorbent resin>
(Production example 1)
A round-bottom cylindrical separable flask with an inner diameter of 11 cm and an internal volume of 2 L was prepared, equipped with a reflux condenser, a dropping funnel, a nitrogen gas inlet tube, and a stirrer. As a stirrer, a stirring blade having two stages of four inclined paddle blades with a blade diameter of 5 cm was used. 252 g of n-heptane as a hydrocarbon dispersion medium and 0.736 g of a maleic anhydride-modified ethylene/propylene copolymer (manufactured by Mitsui Chemicals, Inc., Hi-Wax 1105A) as a dispersant were added to the flask and mixed. The dispersant was dissolved in n-heptane by raising the temperature to 80° C. while stirring the mixture in the flask with a stirrer rotating at 300 rpm. The formed solution was cooled to 50°C.
 内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)を入れ、外部より冷却しつつ、30質量%の水酸化ナトリウム水溶液102.8gをビーカー内に滴下することにより、75モル%の中和を行った。その後、増粘剤としてヒドロキシルエチルセルロースを0.092g(住友精化株式会社、HEC AW-15F)、アゾ系化合物として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.0460g(0.170ミリモル)、過酸化物として過硫酸カリウムの添加量を0.0276g(0.102ミリモル)、及び内部架橋剤としてエチレングリコールジグリシジルエーテル0.00184g(0.0106ミリモル)、イオン交換水9.47gを加えて溶解することにより、第1段目の単量体水溶液を調製した。 In a beaker with an internal volume of 300 mL, 92.0 g (1.03 mol) of an aqueous acrylic acid solution of 80.5% by mass as a water-soluble ethylenically unsaturated monomer is added, and while cooling from the outside, 30% by mass of hydroxylation Neutralization of 75 mol % was carried out by dropping 102.8 g of sodium aqueous solution into the beaker. After that, 0.092 g of hydroxyl ethyl cellulose (Sumitomo Seika Co., Ltd., HEC AW-15F) as a thickener and 0.0460 g of 2,2'-azobis(2-amidinopropane) dihydrochloride as an azo compound (0.0460 g) were added. 170 mmol), 0.0276 g (0.102 mmol) of potassium persulfate as a peroxide, 0.00184 g (0.0106 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent, and deionized water9. By adding and dissolving 47 g, a first-stage monomer aqueous solution was prepared.
 調製した第1段目の単量体水溶液を上記セパラブルフラスコ内の反応液に添加して10分間撹拌した。次いで、n-ヘプタン6.62gに界面活性剤としてショ糖ステアリン酸エステル(HLB:3、三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.736gを加熱溶解した界面活性剤溶液を、反応液に更に添加して、撹拌機の回転数を600rpmとして撹拌しながら系内を窒素で十分に置換した。その後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。 The prepared first-stage monomer aqueous solution was added to the reaction solution in the separable flask and stirred for 10 minutes. Then, a surfactant solution prepared by heating and dissolving 0.736 g of sucrose stearate (HLB: 3, Mitsubishi Kagaku Foods Co., Ltd., Ryoto Sugar Ester S-370) as a surfactant in 6.62 g of n-heptane, It was further added to the reaction solution, and the inside of the system was sufficiently replaced with nitrogen while stirring at a rotation speed of 600 rpm. Thereafter, the flask was immersed in a water bath at 70° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry.
 次に、別の内容積500mlのビーカーにエチレン性不飽和単量体として80.5質量%のアクリル酸水溶液128.8g(1.44モル)をとり、外部より冷却しつつ、30質量%の水酸化ナトリウム水溶液143.89gを滴下して75モル%の中和を行った。その後、アゾ系化合物として2,2'-アゾビス(2-アミジノプロパン)二塩酸塩0.129g(0.475ミリモル)、過酸化物として過硫酸カリウム0.0386g(0.143ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.0665ミリモル)、イオン交換水11.2gを加えて溶解し、第2段目の単量体水溶液を調製した。 Next, 128.8 g (1.44 mol) of an 80.5% by mass acrylic acid aqueous solution is taken as an ethylenically unsaturated monomer in another beaker with an internal volume of 500 ml, and cooled from the outside while adding 30% by mass. 143.89 g of an aqueous sodium hydroxide solution was added dropwise to effect 75 mol % neutralization. After that, 0.129 g (0.475 mmol) of 2,2′-azobis(2-amidinopropane) dihydrochloride as an azo compound, 0.0386 g (0.143 mmol) of potassium persulfate as a peroxide, internal crosslinking 0.0116 g (0.0665 millimoles) of ethylene glycol diglycidyl ether and 11.2 g of ion-exchanged water were added and dissolved as agents to prepare a second monomer aqueous solution.
 撹拌機の回転数を1000rpmとして撹拌しながら、上記のセパラブルフラスコ系内を25℃に冷却した。次いで、上記第2段目の単量体水溶液の全量を、上記セパラブルフラスコ内の第1段目の重合スラリー液に添加して、系内を窒素で30分間置換した。その後、再度、フラスコを70℃の水浴に浸漬して昇温し、重合反応を60分間行った。 The inside of the separable flask system was cooled to 25°C while stirring at a stirrer rotation speed of 1000 rpm. Next, the entire amount of the second-stage monomer aqueous solution was added to the first-stage polymerization slurry liquid in the separable flask, and the inside of the system was replaced with nitrogen for 30 minutes. After that, the flask was again immersed in a water bath at 70° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes.
 第2段目の重合後の含水ゲル状重合体を含む反応液に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.393gを撹拌下で添加した。その後、125℃に設定した油浴にフラスコを浸漬しn-ヘプタンと水との共沸蒸留により、221.82gの水を系外へ抜き出した。その後、フラスコに2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、セパラブルフラスコ内温を83℃で2時間保持した。 0.393 g of a 45% by mass pentasodium diethylenetriamine pentaacetate aqueous solution was added to the reaction liquid containing the water-containing gel-like polymer after the second-stage polymerization with stirring. After that, the flask was immersed in an oil bath set at 125° C., and 221.82 g of water was extracted from the system by azeotropic distillation of n-heptane and water. After that, 4.42 g (0.507 mmol) of 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask, and the internal temperature of the separable flask was kept at 83° C. for 2 hours.
 その後、セパラブルフラスコを125℃に設定したオイルバスに浸漬させてn-ヘプタンを除去することによって、重合体粒子(乾燥品)を得た。この重合体粒子を目開き850μmの篩に通過させ、重合体粒子の質量に対して0.2質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S、親水性)を重合体粒子と混合し、非晶質シリカを含む吸水性樹脂粒子Aを216.4g得た。該吸水性樹脂粒子の性能は表1に示す。 After that, the separable flask was immersed in an oil bath set at 125°C to remove n-heptane to obtain polymer particles (dry product). The polymer particles are passed through a sieve with an opening of 850 μm, and 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Tokusil NP-S, hydrophilic) relative to the mass of the polymer particles is added to the polymer particles. to obtain 216.4 g of water absorbent resin particles A containing amorphous silica. Table 1 shows the performance of the water absorbent resin particles.
(製造例2)
 炭化水素分散媒として用いるn-ヘプタンを293gとし、1段目単量体水溶液に溶解させるアゾ系化合物2,2'-アゾビス(2-アミジノプロパン)二塩酸塩は添加せず、過硫酸カリウムを0.0736g(0.272ミリモル)、内部架橋剤エチレングリコールジグリシジルエーテルの添加量を0.0101g(0.0579ミリモル)、イオン交換水を39.9gとし、1段目重合時の回転数を550rpmとし、2段目単量体水溶液に溶解させるアゾ系化合物2,2'-アゾビス(2-アミジノプロパン)二塩酸塩は添加せず、過硫酸カリウムを0.103g(0.381ミリモル)、イオン交換水を10.6g添加し、共沸蒸留により系外へ水を抜き出す量を247.9gに変更したこと、及び、重合体粒子(乾燥品)に対する非晶質シリカの混合量を0.5質量%に変更したこと以外は、製造例1と同様にして、吸水性樹脂粒子Bを228.0g得た。該吸水性樹脂粒子の性能は表1に示す。
(Production example 2)
293 g of n-heptane used as a hydrocarbon dispersion medium was used, and potassium persulfate was added without adding the azo compound 2,2′-azobis(2-amidinopropane) dihydrochloride to be dissolved in the first-stage monomer aqueous solution. 0.0736 g (0.272 mmol), 0.0101 g (0.0579 mmol) of the internal cross-linking agent ethylene glycol diglycidyl ether, 39.9 g of ion-exchanged water, and the number of revolutions during the first stage polymerization was 550 rpm, without adding the azo compound 2,2'-azobis(2-amidinopropane) dihydrochloride to be dissolved in the second monomer aqueous solution, 0.103 g (0.381 mmol) of potassium persulfate, 10.6 g of ion-exchanged water was added, and the amount of water extracted outside the system by azeotropic distillation was changed to 247.9 g. 228.0 g of water absorbent resin particles B were obtained in the same manner as in Production Example 1, except that the content was changed to 5% by mass. Table 1 shows the performance of the water absorbent resin particles.
(製造例3)
 1段目単量体水溶液に溶解させる内部架橋剤エチレングリコールジグリシジルエーテルの添加量を0.00276g(0.0158ミリモル)、イオン交換水を40.7gとし、共沸蒸留により系外へ水を抜き出すときの量を266.4gに変更したこと以外は、製造例2と同様にして、吸水性樹脂粒子Cを229.0g得た。該吸水性樹脂粒子の性能は表1に示す。
(Production example 3)
0.00276 g (0.0158 mmol) of the internal cross-linking agent ethylene glycol diglycidyl ether dissolved in the first-stage monomer aqueous solution and 40.7 g of ion-exchanged water were added, and the water was removed from the system by azeotropic distillation. 229.0 g of water absorbent resin particles C were obtained in the same manner as in Production Example 2, except that the amount of water-absorbing resin particles C was changed to 266.4 g. Table 1 shows the performance of the water absorbent resin particles.
(製造例4)
 炭化水素分散媒として用いるn-ヘプタンを293gとし、1段目単量体水溶液に溶解させるアゾ系化合物2,2'-アゾビス(2-アミジノプロパン)二塩酸塩の添加量を0.0920g(0.339ミリモル)とし、内部架橋剤エチレングリコールジグリシジルエーテルの添加量を0.00460g(0.0264ミリモル)とし、イオン交換水を40.9gとし、1段目重合時の回転数を550rpmとし、共沸蒸留により系外へ水を抜き出すときの量を234.2gに変更したこと以外は、製造例1と同様にして、吸水性樹脂粒子Dを229.0g得た。該吸水性樹脂粒子の性能は表1に示す。
(Production example 4)
293 g of n-heptane used as a hydrocarbon dispersion medium, and 0.0920 g (0 .339 mmol), the amount of the internal cross-linking agent ethylene glycol diglycidyl ether added is 0.00460 g (0.0264 mmol), the amount of ion-exchanged water is 40.9 g, the number of revolutions during the first stage polymerization is 550 rpm, 229.0 g of water-absorbent resin particles D were obtained in the same manner as in Production Example 1, except that the amount of water extracted outside the system by azeotropic distillation was changed to 234.2 g. Table 1 shows the performance of the water absorbent resin particles.
(製造例5)
 共沸蒸留により系外へ水を抜き出すときの量を294.3gに変更したこと、後架橋剤としてのエチレングリコールジグリシジルエーテル水溶液の量を13.25g(1.52ミリモル)に変更したこと以外は、製造例3と同様にして、吸水性樹脂粒子Eを228.8g得た。該吸水性樹脂粒子の性能は表1に示す。
(Production example 5)
Except for changing the amount of water to be drawn out of the system by azeotropic distillation to 294.3 g, and changing the amount of the ethylene glycol diglycidyl ether aqueous solution as a post-crosslinking agent to 13.25 g (1.52 mmol). obtained 228.8 g of water absorbent resin particles E in the same manner as in Production Example 3. Table 1 shows the performance of the water absorbent resin particles.
(吸水シートおよび吸収性物品の作製)
 以下の不織布を用意した。
・エアレイド不織布(KNH Enterprise Co.,Ltd.、目付40g/m2
・親水性エアスルー不織布(レンゴー・ノンウーブン・プロダクツ、目付21g/m2
・エアスルー不織布(広州市錦漢不織布有限公司、目付40g/m2
・スパンボンド不織布(TORAY POLYTECH NANTONG、目付17g/m2
・スパンレース不織布(株式会社クラレ、目付35g/m2
・液体不透過性シート(ポリエチレン製、目付40g/m2
(Preparation of water absorbent sheet and absorbent article)
The following nonwoven fabrics were prepared.
- Air-laid nonwoven fabric (KNH Enterprise Co., Ltd., basis weight 40 g/m 2 )
・Hydrophilic air-through nonwoven fabric (Rengo Non-Woven Products, basis weight 21 g/m 2 )
・Air-through nonwoven fabric (Guangzhou Jinhan Nonwoven Co., Ltd., basis weight 40 g/m 2 )
・Spunbond nonwoven fabric (TORAY POLYTECH NANTONG, basis weight 17 g/m 2 )
・Spunlace nonwoven fabric (Kuraray Co., Ltd., basis weight 35 g/m 2 )
・Liquid impermeable sheet (made of polyethylene, basis weight 40 g/m 2 )
(実施例1)
 第1シート及び第2シートとして、42cm×14cmに裁断したエアレイド不織布を準備し、ホットメルト塗工機(株式会社ハリーズ、ポンプ:Marshal150、テーブル:XA-DT、タンク設定温度:150℃、ホース内設定温度:165℃、ガンヘッド設定温度:170℃)を用いて、0.15gのホットメルト接着剤(ヘンケルジャパン株式会社、ME-765E)を第2シートのエアレイド不織布に対し長手方向に沿って、10mm間隔で13本塗布した。接着剤の塗布パターンはスパイラルストライプであった。その後、第2シートの接着剤を塗布した面の短手方向及び長手方向両端の外周1cmの範囲を除く部分に14.4gの吸水性樹脂粒子Aを均一に散布した。吸収性物品において、吸水性樹脂粒子の目付は300g/m2であった。
(Example 1)
Prepare air-laid nonwoven fabric cut to 42 cm × 14 cm as the first and second sheets, hot melt coating machine (Harry's Co., Ltd., pump: Marshal 150, table: XA-DT, tank setting temperature: 150 ° C., inside the hose Set temperature: 165 ° C., gun head set temperature: 170 ° C.), 0.15 g of hot melt adhesive (Henkel Japan Co., Ltd., ME-765E) is applied to the air-laid nonwoven fabric of the second sheet along the longitudinal direction, 13 strips were applied at intervals of 10 mm. The adhesive application pattern was a spiral stripe. After that, 14.4 g of water-absorbing resin particles A were evenly dispersed on the adhesive-applied surface of the second sheet on both ends of the widthwise direction and the lengthwise direction except for a range of 1 cm around the periphery. In the absorbent article, the weight per unit area of the water absorbent resin particles was 300 g/m 2 .
 第1シートにも上記と同様の操作にてホットメルト接着剤を塗布した。第1シートのホットメルト接着剤が塗布された面と第2シートの吸水性樹脂粒子が散布された面を、両端を揃えて合わせた後、剥離紙で上下から挟み、ラミネート機(株式会社ハシマ、Straight Linear Fussing Press、型式HP-600LFS)を用いて、110℃、0.1MPaの条件にてプレスして張り合わせ、剥離紙を取り除いて吸水シートを得た。さらに、吸水シートの上面に吸水シートと同サイズの親水性エアスルー不織布を配置し、吸水シートの下面に目付40g/m2のポリエチレン製液体不透過性シートを配置することにより、試験用の吸収性物品を作製した。得られた吸収性物品は、親水性エアスルー不織布、第1シート、ホットメルト接着剤、吸水性樹脂粒子Aからなる吸収層、ホットメルト接着剤、及び第2シート、液体不透過性シートがこの順に配置されている。 A hot-melt adhesive was also applied to the first sheet in the same manner as described above. The surface of the first sheet coated with hot melt adhesive and the surface of the second sheet coated with water-absorbent resin particles are aligned, then sandwiched from above and below with release paper, and laminated by a laminating machine (Hashima Co., Ltd.). , Straight Linear Fussing Press, model HP-600LFS), and pressed under conditions of 110° C. and 0.1 MPa, and the release paper was removed to obtain a water absorbent sheet. Furthermore, by placing a hydrophilic air-through non-woven fabric of the same size as the water-absorbent sheet on the upper surface of the water-absorbent sheet and placing a polyethylene liquid-impermeable sheet with a basis weight of 40 g/m 2 on the lower surface of the water-absorbent sheet, An article was made. The resulting absorbent article comprises a hydrophilic air-through nonwoven fabric, a first sheet, a hot-melt adhesive, an absorbent layer composed of water-absorbent resin particles A, a hot-melt adhesive, a second sheet, and a liquid-impermeable sheet in this order. are placed.
(比較例1)
 吸水性樹脂粒子を吸水性樹脂粒子Bに変更したこと以外は実施例1と同様にして比較例1の吸収性物品を作製した。
(Comparative example 1)
An absorbent article of Comparative Example 1 was produced in the same manner as in Example 1 except that the water absorbent resin particles were changed to water absorbent resin particles B.
(比較例2)
 吸水性樹脂粒子を吸水性樹脂粒子Cに変更したこと以外は実施例1と同様にして比較例2の吸収性物品を作製した。
(Comparative example 2)
An absorbent article of Comparative Example 2 was produced in the same manner as in Example 1 except that the water absorbent resin particles were changed to water absorbent resin particles C.
(比較例3)
 吸水性樹脂粒子を吸水性樹脂粒子Dに変更したこと以外は実施例1と同様にして比較例3の吸収性物品を作製した。
(Comparative Example 3)
An absorbent article of Comparative Example 3 was produced in the same manner as in Example 1 except that the water absorbent resin particles were changed to water absorbent resin particles D.
(比較例4)
 吸水性樹脂粒子を吸水性樹脂粒子Eに変更したこと以外は実施例1と同様にして比較例4の吸収性物品を作製した。
(Comparative Example 4)
An absorbent article of Comparative Example 4 was produced in the same manner as in Example 1 except that the water absorbent resin particles were changed to water absorbent resin particles E.
(実施例2)
 吸収性物品を32cm×12cm、ホットメルト接着剤の量及び本数を0.1g及び11本、吸水性樹脂粒子Aの量を4.5gに変更したこと以外は実施例1と同様にして実施例2の吸収性物品を作製した。吸収性物品において、吸水性樹脂粒子の目付は150g/m2であった。
(Example 2)
Example 1 in the same manner as in Example 1 except that the absorbent article was 32 cm × 12 cm, the amount and number of hot melt adhesives were changed to 0.1 g and 11, and the amount of water absorbent resin particles A was changed to 4.5 g. 2 absorbent articles were made. In the absorbent article, the weight per unit area of the water absorbent resin particles was 150 g/m 2 .
(比較例5)
 吸水性樹脂粒子を吸水性樹脂粒子Bに変更したこと以外は実施例2と同様にして比較例5の吸収性物品を作製した。
(Comparative Example 5)
An absorbent article of Comparative Example 5 was produced in the same manner as in Example 2 except that the water absorbent resin particles were changed to water absorbent resin particles B.
(比較例6)
 吸水性樹脂粒子を吸水性樹脂粒子Cに変更したこと以外は実施例2と同様にして比較例6の吸収性物品を作製した。
(Comparative Example 6)
An absorbent article of Comparative Example 6 was produced in the same manner as in Example 2 except that the water absorbent resin particles were changed to water absorbent resin particles C.
(比較例7)
 吸水性樹脂粒子を吸水性樹脂粒子Dに変更したこと以外は実施例2と同様にして比較例7の吸収性物品を作製した。
(Comparative Example 7)
An absorbent article of Comparative Example 7 was produced in the same manner as in Example 2 except that the water absorbent resin particles were changed to water absorbent resin particles D.
(比較例8)
 吸水性樹脂粒子を吸水性樹脂粒子Eに変更したこと以外は実施例2と同様にして比較例8の吸収性物品を作製した。
(Comparative Example 8)
An absorbent article of Comparative Example 8 was produced in the same manner as in Example 2 except that the water absorbent resin particles were changed to water absorbent resin particles E.
(実施例3)
 実施例1と同様の操作にて第1シートにホットメルトを塗布した後、第1シートの短手方向及び長手方向両端の外周1cmの範囲を除く部分に7.2gの吸水性樹脂粒子Aを均一に散布した。吸水性樹脂粒子Aが散布された面に、40cm×12cmに裁断したエアスルー不織布を載せた後、剥離紙で上下から挟み、実施例1と同様の操作にてラミネート機を用いてプレスして張り合わせ、剥離紙を取り除き、エアスルー不織布、吸水性樹脂粒子Aからなる吸収体(上層吸収層)、ホットメルト接着剤及び第1シートがこの順に配置された積層体を得た。
(Example 3)
After the hot melt was applied to the first sheet by the same operation as in Example 1, 7.2 g of the water absorbent resin particles A were applied to the portions of the first sheet excluding the range of 1 cm on both ends in the width direction and the length direction. distributed evenly. After placing an air-through nonwoven fabric cut to 40 cm × 12 cm on the surface on which the water absorbent resin particles A are dispersed, it is sandwiched from above and below with release paper, and pressed and laminated using a laminating machine in the same manner as in Example 1. , the release paper was removed to obtain a laminate in which the air-through nonwoven fabric, the absorbent body (upper layer absorbent layer) composed of the water absorbent resin particles A, the hot melt adhesive and the first sheet were arranged in this order.
 次に、実施例1と同様の操作にて第2シートにホットメルト接着剤を塗布し、7.2gの吸水性樹脂粒子Aを第2シート上に均一に散布した。積層体のエアスルー不織布面と第2シートの吸水性樹脂粒子が散布された面を、両端を揃えて合わせた積層体を剥離紙で上下から挟み、上記と同様の操作にてラミネート機を用いてプレスして張り合わせ、剥離紙を取り除き、吸水シートを作製した。さらに、吸水シートの上面に吸水シートと同サイズの親水性エアスルー不織布を配置し、吸水シートの下面に目付40g/m2のポリエチレン製液体不透過性シートを配置することにより、試験用の吸収性物品を作製した。得られた吸収性物品は、親水性エアスルー不織布、第1シート、ホットメルト接着剤、吸水性樹脂粒子aからなる吸収体(上層吸収層)、エアスルー不織布、吸水性樹脂粒子aからなる吸収体(下層吸収層)、ホットメルト接着剤、第2シート、液体不透過性シートがこの順に配置されている。吸収性物品において、吸水性樹脂粒子の目付は、上層吸収層が150g/m2、下層吸収層が150g/m2であった。 Next, a second sheet was coated with a hot-melt adhesive by the same operation as in Example 1, and 7.2 g of water absorbent resin particles A were evenly dispersed on the second sheet. The air-through non-woven fabric surface of the laminate and the surface of the second sheet on which the water-absorbing resin particles are dispersed are aligned, and the laminate is sandwiched from above and below with release paper, and the same operation as above is performed using a laminator. They were laminated together by pressing, and the release paper was removed to produce a water absorbent sheet. Furthermore, by placing a hydrophilic air-through non-woven fabric of the same size as the water-absorbent sheet on the upper surface of the water-absorbent sheet and placing a polyethylene liquid-impermeable sheet with a basis weight of 40 g/m 2 on the lower surface of the water-absorbent sheet, An article was made. The resulting absorbent article includes a hydrophilic air-through nonwoven fabric, a first sheet, a hot melt adhesive, an absorbent body (upper absorbent layer) composed of water-absorbent resin particles a, an air-through nonwoven fabric, and an absorbent body composed of water-absorbent resin particles a ( lower absorbent layer), hot-melt adhesive, second sheet, and liquid-impermeable sheet are arranged in this order. In the absorbent article, the basis weight of the water absorbent resin particles was 150 g/m 2 for the upper absorbent layer and 150 g/m 2 for the lower absorbent layer.
(実施例4)
 下層吸収層に用いる吸水性樹脂粒子を吸水性樹脂粒子Dに変更したこと以外は実施例3と同様にして、実施例4の吸収性物品を作製した。
(Example 4)
An absorbent article of Example 4 was produced in the same manner as in Example 3 except that the water absorbent resin particles used in the lower absorbent layer were changed to the water absorbent resin particles D.
(実施例5)
 上層吸収層に用いる吸水性樹脂粒子を吸水性樹脂粒子Dに変更したこと以外は実施例3と同様にして、実施例5の吸収性物品を作製した。
(Example 5)
An absorbent article of Example 5 was produced in the same manner as in Example 3, except that the water absorbent resin particles used in the upper absorbent layer were changed to water absorbent resin particles D.
(比較例9)
 上層吸収層及び下層吸収層に用いる吸水性樹脂粒子を吸水性樹脂粒子Bに変更したこと以外は実施例3と同様にして、比較例9の吸収性物品を作製した。
(Comparative Example 9)
An absorbent article of Comparative Example 9 was produced in the same manner as in Example 3 except that the water absorbent resin particles used in the upper absorbent layer and the lower absorbent layer were changed to the water absorbent resin particles B.
(比較例10)
 上層吸収層及び下層吸収層に用いる吸水性樹脂粒子を吸水性樹脂粒子Cに変更したこと以外は実施例3と同様にして、比較例10の吸収性物品を作製した。
(Comparative Example 10)
An absorbent article of Comparative Example 10 was produced in the same manner as in Example 3 except that the water absorbent resin particles used in the upper absorbent layer and the lower absorbent layer were changed to water absorbent resin particles C.
(比較例11)
 上層吸収層及び下層吸収層に用いる吸水性樹脂粒子を吸水性樹脂粒子Dに変更したこと以外は実施例3と同様にして、比較例11の吸収性物品を作製した。
(Comparative Example 11)
An absorbent article of Comparative Example 11 was produced in the same manner as in Example 3, except that the water absorbent resin particles used in the upper absorbent layer and the lower absorbent layer were changed to the water absorbent resin particles D.
(比較例12)
 上層吸収層及び下層吸収層に用いる吸水性樹脂粒子を吸水性樹脂粒子Eに変更したこと以外は実施例3と同様にして、比較例12の吸収性物品を作製した。
(Comparative Example 12)
An absorbent article of Comparative Example 12 was produced in the same manner as in Example 3, except that the water-absorbent resin particles E used in the upper absorbent layer and the lower absorbent layer were changed.
(実施例6)
 第1シート及び第2シートを32cm×12cm、ホットメルト接着剤の量及び本数を0.1g及び11本、エアスルー不織布を30cm×10cm、吸水性樹脂粒子Aの量を上層吸収層2.3g、下層吸収層2.3gに変更したこと以外は実施例3と同様にして、吸収性物品を作製した。吸収性物品において、吸水性樹脂粒子の目付は上層吸収層75g/m2、下層吸収層75g/m2であった。
(Example 6)
The first sheet and the second sheet are 32 cm × 12 cm, the amount and number of hot melt adhesives are 0.1 g and 11, the air through nonwoven fabric is 30 cm × 10 cm, the amount of water absorbent resin particles A is 2.3 g for the upper absorbent layer, An absorbent article was produced in the same manner as in Example 3, except that the lower absorbent layer was changed to 2.3 g. In the absorbent article, the basis weight of the water absorbent resin particles was 75 g/m 2 for the upper absorbent layer and 75 g/m 2 for the lower absorbent layer.
(実施例7)
 下層吸収層に用いる吸水性樹脂粒子を吸水性樹脂粒子Dに変更したこと以外は実施例6と同様にして、実施例7の吸収性物品を作製した。
(Example 7)
An absorbent article of Example 7 was produced in the same manner as in Example 6 except that the water absorbent resin particles used in the lower absorbent layer were changed to the water absorbent resin particles D.
(実施例8)
 上層吸収層に用いる吸水性樹脂粒子を吸水性樹脂粒子Dに変更したこと以外は実施例6と同様にして、実施例8の吸収性物品を作製した。
(Example 8)
An absorbent article of Example 8 was produced in the same manner as in Example 6, except that the water absorbent resin particles used in the upper absorbent layer were changed to the water absorbent resin particles D.
(比較例13)
 上層吸収層及び下層吸収層に用いる吸水性樹脂粒子を吸水性樹脂粒子Bに変更したこと以外は実施例6と同様にして、比較例13の吸収性物品を作製した。
(Comparative Example 13)
An absorbent article of Comparative Example 13 was produced in the same manner as in Example 6 except that the water absorbent resin particles used in the upper absorbent layer and the lower absorbent layer were changed to the water absorbent resin particles B.
(比較例14)
 上層吸収層及び下層吸収層に用いる吸水性樹脂粒子を吸水性樹脂粒子Dに変更したこと以外は実施例6と同様にして、比較例14の吸収性物品を作製した。
(Comparative Example 14)
An absorbent article of Comparative Example 14 was produced in the same manner as in Example 6, except that the water absorbent resin particles used in the upper absorbent layer and the lower absorbent layer were changed to the water absorbent resin particles D.
(実施例9)
 第1シート及び第2シートの不織布をスパンボンド不織布に変更したこと以外は実施例1と同様にして、実施例9の吸収性物品を作製した。
(Example 9)
An absorbent article of Example 9 was produced in the same manner as in Example 1, except that the nonwoven fabrics of the first and second sheets were changed to spunbond nonwoven fabrics.
(比較例15)
 吸水性樹脂粒子を吸水性樹脂粒子Bに変更したこと以外は実施例9と同様にして比較例15の吸収性物品を作製した。
(Comparative Example 15)
An absorbent article of Comparative Example 15 was produced in the same manner as in Example 9 except that the water absorbent resin particles were changed to water absorbent resin particles B.
(比較例16)
 吸水性樹脂粒子を吸水性樹脂粒子Dに変更したこと以外は実施例9と同様にして比較例16の吸収性物品を作製した。
(Comparative Example 16)
An absorbent article of Comparative Example 16 was produced in the same manner as in Example 9 except that the water absorbent resin particles were changed to water absorbent resin particles D.
(実施例10)
 第1シート及び第2シートの不織布をスパンレース不織布に変更したこと以外は実施例1と同様にして、実施例10の吸収性物品を作製した。
(Example 10)
An absorbent article of Example 10 was produced in the same manner as in Example 1, except that the nonwoven fabrics of the first and second sheets were changed to spunlaced nonwoven fabrics.
(比較例17)
 吸水性樹脂粒子を吸水性樹脂粒子Bに変更したこと以外は実施例10と同様にして比較例17の吸収性物品を作製した。
(Comparative Example 17)
An absorbent article of Comparative Example 17 was produced in the same manner as in Example 10 except that the water absorbent resin particles were changed to water absorbent resin particles B.
(比較例18)
 吸水性樹脂粒子を吸水性樹脂粒子Dに変更したこと以外は実施例10と同様にして比較例18の吸収性物品を作製した。
(Comparative Example 18)
An absorbent article of Comparative Example 18 was produced in the same manner as in Example 10, except that the water absorbent resin particles were changed to water absorbent resin particles D.
 吸水シートが用いられた吸収性物品について、以下の評価を行った。結果を表2~6に示す。 The following evaluations were performed on absorbent articles using water absorbent sheets. The results are shown in Tables 2-6.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1から表6の結果からわかるように、本発明によれば、漏れの発生を抑制できる吸水シート、及び吸水シートを用いた吸収性物品を提供することができる。なお、本発明の構成を備える吸収体及び吸収性物品を製造する場合、吸水性樹脂の使用量を低減したとしても各種性能が同等である吸収体及び吸収性物品を提供することも期待でき、製造面でのコスト削減ができる可能性がある。
Figure JPOXMLDOC01-appb-T000006
As can be seen from the results in Tables 1 to 6, the present invention can provide a water absorbent sheet that can suppress the occurrence of leakage, and an absorbent article using the water absorbent sheet. In addition, when manufacturing an absorbent body and an absorbent article having the structure of the present invention, it can be expected to provide an absorbent body and an absorbent article that have the same various performances even if the amount of water absorbent resin used is reduced. Manufacturing costs may be reduced.
1 ビュレット部
3 クランプ
5 導管
10 吸収体
10a 吸水性樹脂粒子
10b 親水性繊維
11 架台
13 測定台
13a 貫通孔
15 ナイロンメッシュシート
20 コアラップ
21 ビュレット管
22 コック
23 ゴム栓
24 コック
25 空気導入管
30 表面シート
31 裏面シート
40 支持板
41 架台
42 滴下ロート
43 天秤
44 金属製トレイ
50 食塩水
51 試験液
61 ビュレット部
61a ビュレット
61b ゴム栓
61c コック
61d 空気導入管
61e コック
62 導管
63 測定台
64 測定部
64a 円筒
64b ナイロンメッシュ
64c 重り
100 吸収性物品
0 水平面
1 傾斜面
1 Burette Part 3 Clamp 5 Conduit 10 Absorber 10a Water Absorbent Resin Particles 10b Hydrophilic Fiber 11 Base 13 Measurement Stand 13a Through Hole 15 Nylon Mesh Sheet 20 Core Wrap 21 Burette Tube 22 Cock 23 Rubber Stopper 24 Cock 25 Air Inlet Tube 30 Surface Sheet 31 Back sheet 40 Support plate 41 Base 42 Dropping funnel 43 Balance 44 Metal tray 50 Salt solution 51 Test liquid 61 Burette 61a Burette 61b Rubber plug 61c Cock 61d Air introduction tube 61e Cock 62 Conduit 63 Measuring table 64 Measuring part 64a Cylinder 64b Nylon mesh 64c Weight 100 Absorbent article S 0 horizontal surface S 1 inclined surface

Claims (4)

  1.  吸収層と、前記吸収層の上下を挟持する不織布と、を備える吸水シートであって、
     前記吸収層は、吸水性樹脂を含み、
     前記吸水性樹脂は、以下の(A)~(C)の特性を有する、吸水シート。
    (A)生理食塩水保水量が、45g/g以上70g/g以下である。
    (B)4.14kPa荷重下での吸水量が、13ml/g以上である。
    (C)無加圧DW5分値が、44ml/g以上80ml/g以下である。
    A water absorbent sheet comprising an absorbent layer and a nonwoven fabric sandwiching the upper and lower sides of the absorbent layer,
    The absorbent layer contains a water absorbent resin,
    The water absorbent sheet, wherein the water absorbent resin has the following properties (A) to (C).
    (A) The physiological saline water retention capacity is 45 g/g or more and 70 g/g or less.
    (B) The water absorption under a load of 4.14 kPa is 13 ml/g or more.
    (C) The 5-minute DW value without pressure is 44 ml/g or more and 80 ml/g or less.
  2.  前記吸水性樹脂の目付が、100g/m2以上450g/m2以下である、請求項1に記載の吸水シート。 The water absorbent sheet according to claim 1, wherein the water absorbent resin has a basis weight of 100 g/m 2 or more and 450 g/m 2 or less.
  3.  前記吸収層は、接着剤を介して前記不織布に接着されている、請求項1又は2に記載の吸水シート。 The water absorbent sheet according to claim 1 or 2, wherein the absorbent layer is adhered to the nonwoven fabric via an adhesive.
  4.  請求項1又は2に記載の吸水シートを含んでなる、吸収性物品。 An absorbent article comprising the water absorbent sheet according to claim 1 or 2.
PCT/JP2022/021927 2021-05-31 2022-05-30 Water absorbent sheet and absorbent article WO2022255302A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280033438.2A CN117295477A (en) 2021-05-31 2022-05-30 Absorbent sheet and absorbent article
JP2023525819A JPWO2022255302A1 (en) 2021-05-31 2022-05-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-091475 2021-05-31
JP2021091475 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022255302A1 true WO2022255302A1 (en) 2022-12-08

Family

ID=84323290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021927 WO2022255302A1 (en) 2021-05-31 2022-05-30 Water absorbent sheet and absorbent article

Country Status (3)

Country Link
JP (1) JPWO2022255302A1 (en)
CN (1) CN117295477A (en)
WO (1) WO2022255302A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116548A (en) * 2008-10-14 2010-05-27 San-Dia Polymer Ltd Absorptive resin particle, method for producing the same, absorbent containing the same and absorptive article
JP2014014666A (en) * 2012-06-11 2014-01-30 Kao Corp Absorber, and absorbent article using the same
WO2020184388A1 (en) * 2019-03-08 2020-09-17 住友精化株式会社 Water-absorbing resin particles, water-absorbing article, method for producing water-absorbing resin particles, and method for increasing absorbed amount of absorber under pressure
WO2020218158A1 (en) * 2019-04-23 2020-10-29 住友精化株式会社 Water absorbent resin particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116548A (en) * 2008-10-14 2010-05-27 San-Dia Polymer Ltd Absorptive resin particle, method for producing the same, absorbent containing the same and absorptive article
JP2014014666A (en) * 2012-06-11 2014-01-30 Kao Corp Absorber, and absorbent article using the same
WO2020184388A1 (en) * 2019-03-08 2020-09-17 住友精化株式会社 Water-absorbing resin particles, water-absorbing article, method for producing water-absorbing resin particles, and method for increasing absorbed amount of absorber under pressure
WO2020218158A1 (en) * 2019-04-23 2020-10-29 住友精化株式会社 Water absorbent resin particles

Also Published As

Publication number Publication date
CN117295477A (en) 2023-12-26
JPWO2022255302A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
US10265226B2 (en) Water-absorbent resin, water-absorbent material, and water-absorbent article
CA2954036C (en) Water-absorbent resin and absorbent article
WO2016006130A1 (en) Water-absorbing resin and absorbent article
WO2018159800A1 (en) Water-absorbent resin and absorbent article
JPWO2018159802A1 (en) Water absorbent resin and absorbent articles
KR20210137068A (en) absorbent resin particles
JP7129490B2 (en) Water Absorbent Resin Particles, Absorbent, Absorbent Article, and Method for Measuring Liquid Suction Force
JP6828222B1 (en) A method for producing water-absorbent resin particles, an absorbent article, a method for producing water-absorbent resin particles, and a method for increasing the amount of absorption of the absorber under pressure.
WO2021075508A1 (en) Absorbent article and auxiliary sheet
WO2022255302A1 (en) Water absorbent sheet and absorbent article
WO2023100845A1 (en) Absorbent article
JP7194197B2 (en) Absorbent bodies and absorbent articles
WO2021075507A1 (en) Absorber
JP7117456B2 (en) Water-absorbent resin particles, method for producing the same, absorbent body, and absorbent article
WO2022255301A1 (en) Absorbent article
WO2022255300A1 (en) Method for producing water-absorbing resin, water-absorbing resin, absorber, and absorbent article
WO2022210115A1 (en) Absorbent, and absorbent article
WO2022210678A1 (en) Water-absorbent resin, absorbent body and absorbent article
JP7457718B2 (en) Absorbent articles and auxiliary sheets
JP7143513B2 (en) Water-absorbent resin particles, method for producing the same, absorbent body, and absorbent article
JP7629850B2 (en) Water-absorbent resin particles, absorbent body and absorbent article
JP7091556B2 (en) Water-absorbent resin particles and water-absorbent sheet
JP6752320B2 (en) Absorbent article and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816049

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280033438.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023525819

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816049

Country of ref document: EP

Kind code of ref document: A1