[go: up one dir, main page]

WO2022254673A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2022254673A1
WO2022254673A1 PCT/JP2021/021256 JP2021021256W WO2022254673A1 WO 2022254673 A1 WO2022254673 A1 WO 2022254673A1 JP 2021021256 W JP2021021256 W JP 2021021256W WO 2022254673 A1 WO2022254673 A1 WO 2022254673A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
resource
resources
frequency
xdd
Prior art date
Application number
PCT/JP2021/021256
Other languages
French (fr)
Japanese (ja)
Inventor
浩樹 原田
慎也 熊谷
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2023525294A priority Critical patent/JPWO2022254673A1/ja
Priority to PCT/JP2021/021256 priority patent/WO2022254673A1/en
Publication of WO2022254673A1 publication Critical patent/WO2022254673A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • uplink (UL) resources will be insufficient compared to downlink (DL) resources.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that improve resource utilization efficiency.
  • a terminal includes a receiving unit that receives an indication of a link direction for a first time resource and availability of some frequency resources within the first time resource; and a control unit for controlling uplink transmission or downlink reception on the frequency resource within the first time resource based on.
  • resource utilization efficiency can be improved.
  • FIG. 1A and 1B are diagrams showing an example of slot configuration settings.
  • FIG. 2 is a diagram illustrating an example of the configuration of XDD.
  • 3A and 3B are diagrams illustrating an example of time domain and frequency domain resource configuration for XDD operation.
  • 4A and 4B are diagrams showing an example of DL/UL BWP switching.
  • FIG. 5 is a diagram showing an example of a scheduling method according to Embodiment 2-6-2.
  • 6A and 6B are diagrams showing examples of slot formats.
  • 7A-7D are diagrams illustrating an example of partial availability according to the third embodiment.
  • FIG. 8 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment.
  • FIG. 9 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 10 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • FIG. 11 is a diagram illustrating an example of hardware configurations of
  • TDD setting Rel.
  • the UE is configured for UL and DL (UL and DL resources) in Time Division Duplex (TDD).
  • the UE receives higher layer parameters for cell-specific UL/DL TDD configuration (TDD-UL-DL-ConfigCommon) or higher layer parameters for UE-specific UL/DL TDD configuration (TDD-UL-DL-ConfigDedicated). You may
  • the cell-specific UL/DL TDD configuration related upper layer parameters include a parameter for setting reference subcarrier spacing (referenceSubcarrierSpacing) and a parameter for TDD UL and DL patterns (TDD- UL-DL-Pattern) and
  • TDD-UL-DL-Pattern includes a parameter for setting the period of the DL-UL pattern (dl-UL-TransmissionPeriodicity), a parameter for setting the number of consecutive DL slots (nrofDownlinkSlots), and a parameter for setting the number of consecutive DL symbols. (nrofDownlinkSymbols), a parameter for setting the number of consecutive UL slots (nrofUplinkSlots) and a parameter for setting the number of consecutive UL symbols (nrofUplinkSymbols).
  • the slot setting and the slot index setting are performed with the higher layer parameter (TDD-UL-DL-ConfigDedicated) related to the UE-specific UL/DL TDD setting.
  • TDD-UL-DL-ConfigDedicated the higher layer parameter related to the UE-specific UL/DL TDD setting.
  • TDD-UL-DL-SlotConfig includes a parameter (TDD-UL-DL-SlotIndex) related to the slot index and a parameter (symbols) related to the symbols forming the slot.
  • the parameters (symbols) related to the symbols that make up the slot include a parameter (allDownlink) that indicates that all the symbols that make up the slot are used for DL, a parameter (allUplink) that indicates that all the symbols that make up the slot are used for UL, Alternatively, set one of the parameters (explicit) that explicitly indicate the number of symbols.
  • Parameters (explicit) that explicitly indicate the number of symbols include a parameter (nrofDownlinkSymbols) for setting the number of DL symbols and a parameter (nrofUplinkSymbols) for setting the number of UL symbols.
  • the UE determines the slots/symbols to use for transmission of UL signals/channels and/or reception of DL signals/channels based on the parameters described above.
  • XDD Time Division Duplex
  • TDD Time Division Duplex
  • the transmission opportunities of UL signals/channels are reduced to the reception of DL signals/channels. It is conceivable that there may be cases where the amount is less than the opportunity. In such a case, the UE may not be able to transmit UL signals/channels frequently, which may cause delays in transmission of critical UL signals/channels. Signal/channel congestion at UL transmission opportunities is also a concern, as there are fewer UL transmission opportunities compared to DL reception opportunities. Furthermore, in TDD, the time resource for transmitting UL signals/channels is limited, so the application of UL coverage extension technology by, for example, repetition transmission (Repetition) is also limited.
  • Repetition repetition transmission
  • the division duplex method may be called XDD (Cross Division Duplex).
  • XDD may refer to a duplexing method that frequency division multiplexes the DL and UL within one component carrier (CC) of the TDD band (DL and UL can be used simultaneously).
  • CC component carrier
  • FIG. 16 shows the Rel. 16 is a diagram showing an example of setting of TDD defined up to 16.
  • FIG. 1A a UE is configured with TDD slots/symbols in the bandwidth of one component carrier (CC) (cell, which may also be called a serving cell).
  • CC component carrier
  • the time ratio between DL slots and UL slots is 4:1.
  • FIG. 1B is a diagram showing an example of the configuration of XDD.
  • resources used for DL reception and resources used for UL transmission overlap in time within one component carrier (CC).
  • CC component carrier
  • both ends of the frequency domain in one CC are configured as DL, and by configuring the DL to sandwich the UL resource, cross-link interference with neighboring carriers (Cross It is possible to avoid and mitigate the occurrence of Link Interference (CLI). Also, a guard area may be set at the boundary between the DL resource and the UL resource.
  • FIG. 2 is a diagram showing an example of the configuration of XDD.
  • a part of the DL resource of the TDD band is used as the UL resource, and the DL and the UL are partially overlapped in terms of time.
  • each of the multiple UEs receives the DL channel/signal during the DL-only period.
  • a certain UE performs reception of the DL channel / signal, and another UE (UE # 2 in the example of FIG. 2 ) carries out the transmission of the UL channels/signals.
  • the base station performs simultaneous DL and UL transmission and reception.
  • each of the multiple UEs transmits UL channels/signals.
  • the DL frequency resource and UL frequency resource in the UE carrier are set as DL bandwidth part (BWP) and UL BWP, respectively. be.
  • BWP DL bandwidth part
  • UL BWP UL bandwidth part
  • the time resource in the TDD carrier for UE is configured as at least one of DL, UL and flexible (FL) in TDD configuration.
  • time domain and frequency domain resources for XDD operation are being considered. For example, for UE #1 in FIG. 2, by setting the XDD resource (the period in which DL and UL overlap) in the same way as the existing DL resource (for example, using frequency domain resource allocation (FDRA) (while avoiding using part of the UL resource for the UE), the impact on the specification/UE can be minimized (see Figure 3A).
  • FDRA frequency domain resource allocation
  • the DL resource part can be used (while avoiding
  • each UE needs to know whether resources are being used for XDD operations.
  • the portion where DL and UL overlap in the TDD band (may be called XDD portion) can be configured as DL.
  • XDD portion the portion where DL and UL overlap in the TDD band
  • the UL part of the frequency resource of the XDD part can be used for UL transmission by another UE (eg, UE #2 in FIG. 2), when DL reception is performed in this part (UL part of the XDD part), the CLI It is feared that it will occur. It is also being considered to disable the DL resource allocation to this part in order to allocate the remaining resources other than that part to a single UE.
  • the overlapping portion of DL and UL in the TDD band (which may be referred to as the XDD portion) may be configured as UL.
  • frequency resources for the XDD part are set separately from frequency resources for the UL only part (for example, the UL part other than the XDD part).
  • these resources are set as separate frequency resources (for example, UL BWP), and BWP adaptation for switching these resources Consideration is being given to introducing a mechanism.
  • the link direction (DL/UL/flexible) is set/indicated, it is not clear whether each UE can use part of the frequency resource. If the availability of frequency resources is not clear, proper transmission and reception cannot be performed, and communication quality/communication throughput may deteriorate.
  • DL signals/channels in the present disclosure may be transmitted using unicast or may be transmitted using multicast/broadcast to multiple UEs.
  • the multicast/broadcast/unicast configuration may be performed using higher layer signaling.
  • A/B may mean at least one of A and B.
  • A/B/C may mean "at least one of A, B and C.”
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • TRP Transmission Configuration Indication or Transmission Configuration Indicator
  • TCI state Transmission Configuration Indicator
  • reception of DL signals/channels and transmission of UL signals/channels may be transmitted and received using the same BWP/CC/band/operating band, or using different BWP/CC/band/operating bands. may be sent and received.
  • the configuration in one CC will be described below, but the number of resources in the frequency direction is not limited to this.
  • BWP, CC, cell, serving cell, band, carrier, operating band, PRG, PRB, RB, RE, and resource may be read interchangeably.
  • a overlaps with B, A overlaps with B, and at least part of A overlaps with at least part of B may be read interchangeably.
  • each embodiment of the present disclosure when the UE reports the UE capability corresponding to at least one function / capability in each embodiment to the NW, and for the UE, at least one function in each embodiment and/or when configured/activated/indicated by higher layer signaling for the UE capability corresponding to the capability.
  • Embodiments of the present disclosure may apply when certain higher layer parameters are configured/activated/indicated for the UE.
  • the time domain (period) in which DL resources and UL resources in 1 CC of the TDD band can be used simultaneously, the XDD part, and the XDD period may be read interchangeably.
  • DL/UL resources in the XDD part may be referred to as XDD DL/UL resources, XDD DL/UL.
  • DL/UL resources in which the DL and UL of the TDD band do not temporally overlap may be read as non-XDD DL/UL resources, pure DL/UL resources, non-XDD DL/UL resources, new DL/UL resources, etc.
  • the XDD operation may indicate the operation during the period in which the XDD DL/UL resource is set, or may indicate the operation of the entire TDD in which the XDD may be used.
  • DL/UL BWP in the TDD band Rel.
  • DL/UL BWP defined by 15/16 and normal DL/UL BWP may be read interchangeably.
  • drop, abort, cancel, puncture, rate match, etc. may be read interchangeably.
  • a DL BWP (new DL BWP, DL BWP for XDD) using continuous or non-continuous PRBs may be set.
  • the UE may be configured with DL BWP with contiguous or non-contiguous PRBs in XDD operation.
  • one UL resource is allocated between two DL resources in the frequency domain of one CC, as shown in FIG. 2, will be mainly described.
  • /UL resource placement/allocation is not limited to this example.
  • One DL resource may be allocated so as to be sandwiched between two UL resources. Allocation of two DL resources in the frequency domain of one CC may mean that DL BWP using non-contiguous PRBs is configured. Conversely, in the frequency domain of one CC, allocating one DL resource may mean that a DL BWP using continuous PRBs is configured.
  • the UE sets total frequency resources (continuous frequency resources including frequency resources that can be used for DL and frequency resources that cannot be used for DL) and frequency resources that cannot be used for DL resources.
  • the total frequency resource may be configured using existing BWP parameters, such as the starting PRB (position) and the number of PRBs (bandwidth).
  • Frequency resources that cannot be used for DL resources may be configured using, for example, (the location of) the starting PRB and the number of PRBs (bandwidth).
  • the UE may be configured with available frequency resources.
  • Frequency resources that cannot be used for DL resources may be configured, for example, using multiple (eg, two) sets of starting PRB (position) and number of PRBs (bandwidth).
  • the setting of the new DL BWP may be set as a DL BWP supplementary to the normal DL BWP.
  • Auxiliary DL BWP may be associated with normal DL BWP.
  • a supplemental DL BWP may be referred to as a supplemental DL BWP, an additional DL BWP, and so on.
  • a setting limit may be defined for the normal DL BWP and the supplemental DL BWP. For example, even if at least one of the center frequency, subcarrier spacing, subset of frequency resources (start position/bandwidth), and settings related to DL BWP settings are common between normal DL BWP and supplemental DL BWP good.
  • Settings related to DL BWP settings are, for example, at least one of PDCCH settings (PDCCH Config), PDSCH settings (PDSCH Config), SPS settings (SPS Config), radio link monitoring (RLM) settings (RLM Config). There may be. Also, for example, for normal DL BWP and supplemental DL BWP, at least one of center frequency, subcarrier spacing, subset of frequency resources (start position/bandwidth), and settings related to BWP settings are set separately. may
  • the association between the new DL BWP (auxiliary DL BWP) and the normal DL BWP may be configured in a specific number ratio.
  • the setting of the new DL BWP does not have to be associated with the normal DL BWP.
  • the configuration of the DL BWP may be done in conjunction with a UL BWP (new UL BWP, UL BWP for XDD, paired UL BWP) composed of PRBs not allocated for the DL BWP.
  • a UL BWP new UL BWP, UL BWP for XDD, paired UL BWP
  • the setting of the new DL BWP may be performed together with at least one of the setting of the UL BWP (new UL BWP) in XDD and the setting of the normal UL BWP.
  • the setting of the new DL BWP may not be associated with the setting of the new UL BWP. In other words, setting the new DL BWP and setting the new UL BWP may be performed separately.
  • the limitation may be that the center frequencies are different between the DL BWP setting for XDD and the associated UL BWP setting.
  • the restriction may also be that the PRBs in the DL BWP settings for XDD and the associated UL BWP settings do not overlap in the frequency domain.
  • the switching between pure DL resources (DL resources/DL BWP in which all frequencies in the DL resources are available for DL) and DL resources in XDD (new DL BWP) can be performed automatically. This can be done without the typical BWP switch indication and the delay time required for existing switching.
  • the switching pattern of the DL BWP may be done based on the TDD settings.
  • the UE may determine/judgment the DL BWP switching pattern based on the RRC information element regarding the TDD configuration (eg, TDD-UL-DL-Config).
  • the DL BWP switching pattern may be included in the RRC information element for TDD configuration (eg, TDD-UL-DL-Config).
  • information on DL/UL on XDD may be included in an RRC information element on TDD configuration (eg, TDD-UL-DL-Config).
  • DL/UL for XDD, unavailable DL/UL resource, available DL/UL resource, XDD DL/UL, partial DL/UL, partially available DL/UL resource, Partially unavailable DL/UL resource, invalid DL/UL resource, invalid resource block, invalid resource block pattern, partial pattern may be read interchangeably.
  • the UE may determine/judgment the DL BWP switching pattern based on the RRC information element (for example, BWP-Config) regarding the BWP configuration.
  • the DL BWP switching pattern may be included in an RRC information element (eg, BWP-Config) regarding BWP configuration.
  • an RRC information element related to BWP configuration may include the period and (time) offset of DL resources in XDD.
  • the period and offset may be expressed in a specific time unit (eg, slot, symbol), or may be expressed in arbitrary time.
  • the UE may determine/judgment the DL BWP switching pattern based on the RRC information element regarding the BWP configuration in XDD.
  • the RRC control element is Rel. 17 or later, or RRC information elements related to existing TDD settings (e.g., TDD-UL-DL-Config) and RRC information elements related to BWP settings (e.g., BWP-Config) may be a parameter of
  • DL resources in XDD may be restricted to be set temporally after normal DL resources and/or temporally before normal UL resources.
  • DL resources in XDD may be restricted so that they are set only to specific resources.
  • the specific resource may be, for example, a resource (eg, slot) to which the UL and DL are assigned.
  • the specific resource may be, for example, a resource (for example, a slot) in which the rest of the XDD other than the DL resource is a normal UL resource (symbol).
  • the specific resource may be, for example, a slot that does not include an SS/PBCH block.
  • DL resources in XDD may be restricted to be set temporally before normal DL resources and/or temporally after normal UL resources.
  • the existing (defined in Rel. 15/16) DL/UL BWP settings and BWP switching are performed based on settings/instructions from the network (eg, base station).
  • Existing DL/UL BWP configuration and BWP switching may be performed based on a predetermined timer and a specific DCI format (for example, DCI format 0_1, 0_2, 1_1, or 1_2).
  • FIG. 4A is a diagram showing an example of switching between existing DL/UL BWP (equivalent to pure DL BWP and pure UL BWP).
  • the UE performs DL/UL BWP switching in TDD (DL BWP#1 to DL BWP#2 and UL BWP#1 to UL (switching to BWP#2).
  • the resource in the BWP frequency direction increases due to switching.
  • the center frequency of the DL BWP in TDD and the center frequency of the UL BWP are the same, and are indicated by broken lines.
  • the center frequency of the DL BWP in TDD and the center frequency of the UL BWP are the same, and are indicated by dashed lines.
  • the DL BWP and the UL BWP may have different center frequencies.
  • the UE may be configured with DL/UL BWP (BWP pattern) in XDD using higher layer signaling (RRC signaling).
  • RRC signaling higher layer signaling
  • the UE based on at least one of the BWP switching pattern configuration included in the RRC configuration, a predetermined timer, and a specific DCI format (eg, BWP configuration/indication included in DCI), XDD DL/ UL BWP setting and BWP switching may be set/instructed.
  • FIG. 4B is a diagram showing an example of DL/UL BWP switching in XDD.
  • the UE is set with DL BWP#1 as the pure DL BWP and DL BWP#1a as the DL BWP in XDD.
  • the UE is set with UL BWP #1 as the pure UL BWP and UL BWP #1a as the UL BWP in XDD.
  • DL BWP#1 and DL BWP#1a may be associated with each other.
  • UL BWP#1 and UL BWP#1a may be associated with each other.
  • DL BWP#1 and UL BWP#1 may be associated with each other.
  • DL BWP#1a and UL BWP#1a may be associated with each other.
  • the UE is configured with a DL/UL BWP switching pattern.
  • the switching pattern may be information for setting switching between DL/UL BWP#1 and DL/UL BWP#1a.
  • the switching pattern includes at least one of the timing of switching between the normal DL/UL resource and the DL/UL resource in XDD, and the period of the configuration including the normal DL/UL resource and the DL/UL resource in XDD. may be information indicating The UE decides/judges DL and UL resources based on the switching pattern.
  • the UE determines/judges dynamic adaptation of DL BWP between pure DL resources and DL resources in XDD based on at least one of DCI, MAC CE, and specific conditions. good too.
  • Dynamic adaptation of DL BWP for XDD may mean switching between normal DL BWP and DL BWP in XDD.
  • Dynamic adaptation of DL BWP for XDD may mean activation/deactivation of DL BWP in XDD associated with normal DL BWP.
  • the UE may apply the DL BWP adaptation only for a specific period after receiving the DL BWP adaptation instruction (Embodiment 1-3-1).
  • the particular time period may be one or more slots/symbols.
  • the particular time period may be indicated by an offset from the slot/symbol in which the indication is transmitted/received.
  • the particular time period may be indicated by a particular number of slots/symbols.
  • the specific period/offset may be predefined in the specification, configured/notified in higher layer signaling, or dynamically indicated in DCI.
  • the UE may apply DL BWP adaptation after receiving a DL BWP adaptation instruction until receiving a next DL BWP adaptation instruction (Embodiment 1-3-2).
  • the UE may apply DL BWP adaptation until receiving an indication to cancel/override the indication.
  • the UE may apply DL BWP adaptation until a specific condition is met (Embodiment 1-3-3).
  • the particular condition may be, for example, expiration of a particular timer.
  • Embodiments 1-3-1 to 1-3-3 above may be applied in combination.
  • At least one of the switching delay and indication mechanisms/conditions for BWP adaptation shall be the same as the existing (specified in Rel. 15/16) switching delay and at least one of the indication mechanisms/conditions. may be different.
  • the delay required for switching the DL BWP adaptation in XDD may be set/defined shorter (or longer) than the existing delay time.
  • FIG. 5 is a diagram showing an example of BWP adaptation in XDD.
  • the UE has DL BWP#1 and DL BWP#2 set as pure DL BWP.
  • DL BWP#1a and DL BWP#2a are set as DL BWPs in XDD for the UE.
  • UL BWP#1 and UL BWP#2 are set for the UE as pure UL BWP.
  • UL BWP#1a and UL BWP#2a are set for the UE as UL BWPs in XDD.
  • broken lines indicate the center frequencies of the DL BWP and the UL BWP, and the center frequencies of the DL and UL match.
  • DL BWP#1 and DL BWP#1a may be associated with each other. Also, UL BWP#1 and UL BWP#1a may be associated with each other.
  • DL BWP#2 and DL BWP#2a may be associated with each other. Also, UL BWP#2 and UL BWP#2a may be associated with each other.
  • DL BWP#1 and UL BWP#1 may be associated with each other.
  • DL BWP#1a and UL BWP#1a may be associated with each other.
  • DL BWP#2 and UL BWP#2 may be associated with each other.
  • DL BWP#2a and UL BWP#2a may be associated with each other.
  • the UE receives an indication regarding DL/UL BWP adaptation.
  • the UE performs, for example, DL/UL BWP switching based on the instruction. For example, the UE performs switching between DL/UL BWP#1 and DL/UL BWP#1a and switching between DL/UL BWP#2 and DL/UL BWP#2a based on the instruction.
  • the UE receives information instructing switching between DL/UL BWP#1 and DL/UL BWP#2.
  • existing BWP switching and DL/UL BWP switching in normal DL/UL BWP and XDD may be combined.
  • the switching combination may be performed using a common RRC information element/MAC CE/DCI, or may be performed using different RRC information elements/MAC CE/DCI.
  • the UL BWP bandwidth is narrower (smaller) than the DL BWP bandwidth.
  • the bandwidth may be equal to that of the UL BWP, or the bandwidth of the DL BWP may be narrower than the bandwidth of the UL BWP.
  • a configuration in which the UL BWP bandwidth is narrower than the DL BWP bandwidth is suitable for application in terms of UL coverage and DL communication capacity.
  • UE capabilities may be specified to support DL BWP setup and/or adaptation in XDD operation.
  • the UE capability may be a UE capability common to or different from the UE capability for supporting at least one of UL BWP configuration and adaptation in XDD operation.
  • the UE capability may be different from the UE capability for operation on multiple BWPs.
  • the UE capability may also be a capability supported by a UE that supports UE capabilities for operation with respect to multiple BWPs.
  • the UE capability is per UE / per band / per band in multiple band units / per feature set (FS) (per band in multiple band combination units) / per cell in FS units (multiple band combination units may be reported to the network on a per CC per band basis.
  • FS feature set
  • the UE When a DL BWP in XDD is configured/activated for a specific period (e.g., slot/symbol), the UE assigns a frequency domain resource allocation (FDRA) in that specific period to the corresponding normal DL BWP and may be interpreted similarly. That is, the PRB indices (numbering/ordering) assigned to the normal DL BWP and the DL BWP in XDD may be the same. At this time, the UE may assume that DL channels/signals are not assigned by the FDRA for PRBs that are not available. Alternatively, even if a DL channel/signal is assigned by the FDRA for a PRB that is not available, the UE may not perform reception processing of the assigned portion of the DL channel/signal.
  • FDRA frequency domain resource allocation
  • the UE may interpret the FDRA in that specific period differently than the corresponding normal DL BWP. That is, the (numbering/ordering of) PRB indices assigned to normal DL BWPs and DL BWPs in XDD may differ. For PRBs in DL BWP in XDD that are not available compared to the corresponding normal DL BWP, the PRB indices may not be numbered/ordered. At this time, the DL BWP PRBs in XDD may be referred to as virtually continuous PRBs.
  • the UE does not expect to receive such DL channels/signals. good.
  • the UE is configured/scheduled outside the DL BWP. It may not be assumed (expected) to receive at least part of it.
  • the UE may then puncture/rate match the DL channel/signal. The puncturing/rate matching may be performed based on the specification, or may be configured/notified by higher layer signaling (RRC signaling).
  • transmission/reception for example, repeated transmission/ The UE may not assume (expect) that reception (repetition, semi-persistent scheduling (SPS)) is scheduled/configured/activated.
  • SPS semi-persistent scheduling
  • transmission and reception across at least one of the boundaries between the normal DL/UL BWP and the DL/UL BWP in XDD, the boundary where DL/UL BWP switching is performed, and the slot boundary are scheduled/configured/activated. If so, the UE may cancel the transmission/reception. The UE may decide to cancel based on the timing of the boundary (i.e. cancel part of the transmission/reception) or independently of the timing of the boundary (i.e. cancel the entire transmission/reception). You may
  • the first embodiment it is possible to appropriately set the DL BWP in the XDD operation.
  • UL BWP (new UL BWP, UL BWP for XDD) may be set using continuous or discontinuous PRBs.
  • the UE may be configured with UL BWP with contiguous or non-contiguous PRBs in XDD operation.
  • the placement/allocation of DL/UL resources is not limited to this example.
  • One DL resource may be allocated so as to be sandwiched between two UL resources. Allocating one UL resource in the frequency domain of one CC may mean that a UL BWP using continuous PRBs is configured. Conversely, the allocation of two UL resources in the frequency domain of one CC may mean that the UL BWP using non-contiguous PRBs is configured. For example, by allocating two UL resources in the frequency domain of one CC, frequency hopping of UL transmission can be preferably applied.
  • the UE may recognize that the UL BWP in XDD and the normal UL BWP have different configurations. Also, the UE may switch between UL BWPs normally without dynamic indication/switching delays for UL BWPs.
  • the UE uses total frequency resources (continuous frequency resources including frequency resources that can be used for UL and frequency resources that cannot be used for UL) and frequency resources that cannot be used for UL resources (start location/bandwidth) may be set.
  • the total frequency resource may be configured using existing BWP parameters, such as the starting PRB (position) and the number of PRBs (bandwidth).
  • Frequency resources that cannot be used for UL resources may be configured using, for example, the starting PRB (position) and the number of PRBs (bandwidth).
  • the UE may be set with available frequency resources (starting position/bandwidth).
  • Frequency resources that cannot be used for UL resources may be configured, for example, using multiple (eg, two) sets of starting PRBs (positions) and the number of PRBs (bandwidth).
  • the configuration of the new UL BWP may be configured as a UL BWP supplementary to the normal UL BWP.
  • Auxiliary UL BWP may be associated with the normal UL BWP.
  • a supplemental UL BWP may be called a supplemental UL BWP, an additional UL BWP, and so on.
  • Setting limits may be defined for the normal UL BWP and the supplemental UL BWP. For example, even if at least one of the center frequency, subcarrier spacing, subset of frequency resources (start position/bandwidth), and settings related to UL BWP settings are common between normal UL BWP and supplemental UL BWP good.
  • Settings related to UL BWP settings are, for example, PUCCH settings (PDCCH Config), PUSCH settings (PDSCH Config), configured grant settings (Configured grant config), SRS settings (SRS Config), radio link monitoring (RLM) settings ( RLM Config), may be at least one. Also, for example, for normal UL BWP and supplemental DL BWP, at least one of the center frequency, subcarrier spacing, subset of frequency resources (start position/bandwidth), and settings related to BWP settings are set separately. may
  • the association between new UL BWPs (auxiliary UL BWPs) and regular UL BWPs may be configured in a specific number ratio.
  • the setting of a new UL BWP may be performed by setting a UL BWP that is not normally associated with a UL BWP.
  • the UL BWP configuration may be done in conjunction with a DL BWP (new DL BWP, DL BWP for XDD, paired DL BWP) that consists of PRBs that are not allocated for the UL BWP.
  • a DL BWP new DL BWP, DL BWP for XDD, paired DL BWP
  • the setting of the new UL BWP may be performed together with at least one of the setting of the DL BWP in XDD and the setting of the normal DL BWP.
  • the setting of the new UL BWP may not be associated with the setting of the new DL BWP. In other words, setting the new UL BWP and setting the new DL BWP may be performed separately.
  • the UL BWP settings for XDD and the related DL BWP settings may be different restrictions between the UL BWP settings for XDD and the associated DL BWP settings than between the normal UL BWP settings and the normal DL BWP settings.
  • the limitation may be that the center frequencies are different between the UL BWP setting for XDD and the associated DL BWP setting.
  • the restriction may also be that the PRBs in the UL BWP settings for XDD and the associated DL BWP settings do not overlap in the frequency domain.
  • the switching between pure UL resources (UL resources in which all frequencies in the UL resources are available for UL/UL BWP) and UL resources in XDD (new UL BWP) is activated. This can be done without the typical BWP switch indication and the delay time required for existing switching.
  • the UL BWP switching pattern may be done based on the TDD setting.
  • the UE may determine/judgment the DL BWP switching pattern based on the RRC information element regarding the TDD configuration (eg, TDD-UL-DL-Config).
  • the UL BWP switching pattern may be included in the RRC information element for TDD configuration (eg, TDD-UL-DL-Config).
  • information on DL/UL on XDD may be included in an RRC information element on TDD configuration (eg, TDD-UL-DL-Config).
  • DL/UL for XDD, unavailable DL/UL resource, available DL/UL resource, XDD DL/UL, partial DL/UL, partially available DL/UL resource, Partially unavailable DL/UL resource, invalid DL/UL resource, invalid resource block, invalid resource block pattern, partial pattern may be read interchangeably.
  • the UE may determine/judgment the UL BWP switching pattern based on the RRC information element (for example, BWP-Config) regarding the BWP configuration.
  • the UL BWP switching pattern may be included in an RRC information element regarding BWP configuration (eg, BWP-Config).
  • the RRC information element for BWP configuration may include the period and (time) offset of the UL resource in XDD.
  • the period and offset may be expressed in a specific time unit (eg, slot, symbol), or may be expressed in arbitrary time.
  • the UE may determine/judgment the UL BWP switching pattern based on the RRC information element regarding the BWP configuration in XDD.
  • the RRC control element is Rel. 17 or later, or RRC information elements related to existing TDD settings (e.g., TDD-UL-DL-Config) and RRC information elements related to BWP settings (e.g., BWP-Config) may be a parameter of
  • UL resources in XDD may be restricted to be set temporally after normal UL resources and/or temporally before normal DL resources.
  • UL resources in XDD may be restricted so that they are set only to specific resources.
  • the specific resource may be, for example, a resource (eg, slot) to which the UL and DL are assigned.
  • the specific resource may be, for example, a resource (for example, a slot) in which the remainder other than the UL resource in XDD is a normal UL resource (symbol).
  • the specific resource may be, for example, a slot that does not include an SS/PBCH block.
  • UL resources in XDD may be restricted to be set temporally before normal UL resources and/or temporally after normal DL resources.
  • the UE determines/determines to perform dynamic adaptation of UL BWP between pure UL resources and UL resources in XDD based on at least one of DCI, MAC CE, and specific conditions. good too.
  • Dynamic adaptation of UL BWP for XDD may mean switching between normal UL BWP and UL BWP in XDD.
  • Dynamic adaptation of UL BWP for XDD may mean activation/deactivation of UL BWP in XDD associated with normal UL BWP.
  • the UE may apply the UL BWP adaptation only for a specific period after receiving the UL BWP adaptation instruction (Embodiment 2-3-1).
  • the particular time period may be one or more slots/symbols.
  • the particular time period may be indicated by an offset from the slot/symbol in which the indication is transmitted/received.
  • the particular time period may be indicated by a particular number of slots/symbols.
  • the specific period/offset may be predefined in the specification, configured/notified in higher layer signaling, or dynamically indicated in DCI.
  • the UE may apply UL BWP adaptation until receiving the next UL BWP adaptation instruction after receiving the UL BWP adaptation instruction (Embodiment 2-3-2).
  • the UE may apply UL BWP adaptation until receiving an indication to cancel/override the indication.
  • the UE may apply UL BWP adaptation until a specific condition is met (Embodiment 2-3-3).
  • the particular condition may be, for example, expiration of a particular timer.
  • At least one of the switching delay and indication mechanisms/conditions for BWP adaptation shall be the same as the existing (specified in Rel. 15/16) switching delay and at least one of the indication mechanisms/conditions. may be different.
  • the delay required for switching the DL BWP adaptation in XDD may be set/defined shorter (or longer) than the existing delay time.
  • UE capabilities may be specified to support UL BWP configuration and/or adaptation in XDD operation.
  • the UE capability may be a UE capability common to or different from the UE capability for supporting at least one of DL BWP configuration and adaptation in XDD operation.
  • the UE capability may be different from the UE capability for operation on multiple BWPs.
  • the UE capability may also be a capability supported by a UE that supports UE capabilities for operation with respect to multiple BWPs.
  • the UE capability is per UE / per band / per feature set (FS) (per band in multiple band units) / per cell in feature set (FS) units (CC per band in multiple band combination units per)/to the network.
  • FS feature set
  • the UE assigns the Frequency Domain Resource Allocation (FDRA) in that specific period to the corresponding normal UL BWP may be interpreted similarly. That is, the (numbering/ordering of) PRB indices assigned to the normal UL BWP and the UL BWP in XDD may be the same.
  • the UE may then assume that UL channels/signals are not scheduled by the FDRA for PRBs that are not available. Alternatively, the UE may not process the scheduled part of the UL channel/signal for transmission even if the UL channel/signal is scheduled by the FDRA for PRBs that are not available.
  • the UE may interpret the FDRA in that specific period differently than the corresponding normal UL BWP. That is, the (numbering/ordering of) PRB indices assigned to the normal UL BWP and the UL BWP in XDD may be different. For the PRBs in the UL BWP in XDD that are not available compared to the corresponding normal UL BWP, the PRB indices may not be numbered/ordered. At this time, the UL BWP PRB in XDD may be called a virtually continuous PRB.
  • the UE may decide not to transmit that UL channel/signal.
  • the UE may not assume (expect) that at least some of the UL channels/signals are configured/scheduled outside the UL BWP in the configured/activated XDD.
  • the UE is configured/scheduled outside the UL BWP. It may be determined not to transmit at least a portion. The UE may then puncture/rate match the UL channels/signals. The puncturing/rate matching may be performed based on the specification, or may be configured/notified by higher layer signaling (RRC signaling).
  • RRC signaling higher layer signaling
  • the link direction 'DDFFU' is set by RRC for slots #0 to #4 of UE #1 and #2, respectively.
  • the DCI for UE #1 indicates two 'F's in slots #2 and #3 as two 'D's. This allows UE#1 to receive DL in slots #2 and #3.
  • the base station may schedule UE #1 without PDSCH reception on some resource #1 in slots #2 and #3. Conceivable. If there is no explicit indication of unavailability of resource #1 and there can be periodic/semi-persistent SSB/CSI-RS on resource #1, there may be problems with SSB/CSI-RS measurement. There is
  • the DCI for UE #2 indicates two 'F's in slots #2 and #3 as two 'U's. This allows UE#2 to transmit UL in slots #2 and #3.
  • the base station may schedule UE #2 without PUSCH transmission on some resource #2 in slots #2 and #3. Conceivable. If there is no explicit indication of unavailability of resource #2 and normal PUCCH/SRS resource configuration on resource #2 is not limited to resource #1, there may be problems with PUSCH/SRS/PRACH transmission. There is
  • Different link directions of time resources may be indicated for different UEs.
  • Some periodic/semi-persistent RSs may be considered to enable XDD operation on time resources designated 'D' for some UEs.
  • Some UL channel/RS configurations may be considered to enable XDD operation on time resources designated 'U' for some UEs.
  • partial availability may be read interchangeably.
  • a new type of indication may be defined to indicate "partial availability" for a time unit.
  • a time unit may be a time resource with a certain length, eg, subframe/slot/minislot/symbol.
  • the partial availability indication may indicate whether some frequency resources (resource blocks/resource elements) within a component carrier/BWP are available for a particular link direction. Alternatively, the frequency resource may be indicated.
  • the new indication may be RRC IE/MAC CE/DCI.
  • the new indication may be signaling different from the signaling of the existing link direction indication.
  • the RRC IE/MAC CE/DCI elements of the new indication e.g. partial availability indication, partial frequency resource indication, etc.
  • the existing link direction indication e.g. D/F/U indication.
  • the new indication may be signaling combined with existing link direction indication signaling.
  • existing link direction indications and new indications e.g., partial availability and D/F/U indications, D/F/U/partially available D/partially available U indication
  • RRC IE/MAC CE/DCI e.g., RRC IE/MAC CE/DCI.
  • the UE provides a 'partial available indication' (partial frequency resources available) and an indication of 'D' (time unit for DL) (indication of partial frequency resources available for DL, partial available DL frequency resource) and 'partial non-available indication' (partial frequency resource unavailable) and 'D' (time unit for DL) indication (DL indication of partial unavailable frequency resources, indication of partial unavailable DL frequency resources).
  • the UE shall provide a 'partial availability indication' (partial frequency resource available) and an indication of 'U' (time unit for UL) (indication of partial frequency resource available for UL, partial available UL frequency resource) and a 'partial unavailability indication' (partial frequency resource unavailable) and an indication 'U' (time unit for UL) (an indication of partial frequency resource unavailable for UL, indication of partially unavailable UL frequency resources).
  • the UE sends a 'partial availability indication' (partial frequency resource available) and 'D' (time unit for DL) indication (partial available DL frequency resource indication) and a 'partial availability indication ' (partial frequency resource available) and an indication of 'U' (time unit for UL) (indication of partial available UL frequency resource).
  • the UE may select partial unavailable DL frequency resources in the time unit (partially available DL frequency resources in the time unit). (partial frequency resources other than ) may be identified.
  • the UE may select partial unavailable DL frequency resources in the time unit (partially available UL frequency resources in the time unit). (partial frequency resources other than ) may be identified.
  • the UE shall give a 'partially unavailable indication' (partially unavailable frequency resource) and 'D' (time unit for DL) indication (an indication of partially unavailable DL frequency resource) and a 'partially 'unavailable indication' (partial frequency resource unavailable) and 'U' (time unit for UL) indication (partially unavailable DL frequency resource indication). good.
  • the UE may select the partially available DL frequency resources in the time unit (partially unavailable DL frequency in the time unit). (partial frequency resources other than resources) may be identified.
  • the UE may select the partially available UL frequency resources in the time unit (partially unavailable UL frequency resources in the time unit). (partial frequency resources other than resources) may be identified.
  • a time unit is indicated with a 'partially available indication' and 'D' (indicated with a partially available DL frequency resource)
  • the UE shall It may be assumed to receive DL channels/RS on frequency resources, or it may not be assumed to receive DL channels/RS on partially unavailable DL frequency resources within that time unit.
  • the UE may use a partial utilization within that time unit. It may be assumed to receive DL channels/RS on available DL frequency resources, or it may not be assumed to receive DL channels/RS on partially unavailable DL frequency resources within that time unit. good.
  • the UE may use a partial utilization within that time unit. It may be assumed to receive DL channels/RS on impossible UL frequency resources, or it may not be assumed to receive DL channels/RS on partial available UL frequency resources within that time unit. good.
  • the partially available DL frequency resource can be set/indicated by the RRC IE/MAC CE. For example, setting/indicating that partially available DL frequency resources may disable some frequency resources (partially unavailable DL frequency resources (P_ND)) (FIG. 7A), The two sets may be combined (Fig. 7B).
  • a common partial available DL frequency resource may be configured/indicated for multiple time units (eg, time units #0 and #1) (FIG. 7A).
  • Different partial available DL frequency resources may be configured/indicated for multiple time units (eg, time units #0 and #1) (FIG. 7B).
  • a time unit is indicated with a 'partially available indication' and 'U' (indicated with a partially available UL frequency resource)
  • the UE shall It may be assumed that the UL channel/RS is transmitted on a frequency resource, or it may not be assumed that the UL channel/RS is transmitted on a partially unavailable UL frequency resource within that time unit. If a time unit is indicated with a 'partially unavailable indication' and 'U' (indicated a partially unavailable UL frequency resource), the UE may use a partial utilization within that time unit. It may be assumed that the UL channels/RS are transmitted on available UL frequency resources, or it is not assumed that the UL channels/RS are transmitted on partially unavailable UL frequency resources within the time unit. good.
  • the UE may use a partial utilization within that time unit. It may be assumed that UL channels/RS are transmitted on impossible DL frequency resources, or it is not assumed that UL channels/RS are transmitted on partial available DL frequency resources within that time unit. good.
  • the partially available UL frequency resource can be set/indicated by the RRC IE/MAC CE. For example, setting/indicating that partially available UL frequency resources may disable some frequency resources (partially unavailable UL frequency resources (P_NU)) (FIG. 7C), The two sets may be combined (Fig. 7D).
  • a common partial available UL frequency resource may be configured/indicated for multiple time units (eg, time units #0 and #1) (FIG. 7C).
  • Different partial available UL frequency resources may be configured/indicated for multiple time units (eg, time units #0 and #1) (FIG. 7D).
  • the link direction can be set/indicated for each time resource, and the partially available or unavailable frequency resource can be flexibly set/indicated.
  • Partially available DL time units are indicated by 'partially available indication' and 'D' (partially available DL frequency resource, P_AD), or by 'partially unavailable indication' and 'U' (partially available Impossible UL frequency resource, P_UL).
  • a UE may assume that PDSCH reception is scheduled only on partially available DL frequency resources (or partially unavailable UL frequency resources) within partially available DL time units.
  • the UE may perform rate matching around the partially unavailable DL frequency resource (or the partially available UL frequency resource) within the partially available DL time unit.
  • the UE may follow at least one of options 1 to 3.
  • Frequency resource configuration and frequency domain resource allocation (frequency domain resource assignment (FDMA) indication in DCI) for normal DL time units (time units not indicated with partial availability indication and indicated 'D') time units , and partially available DL time units are common (consistent).
  • the UE may not assume that the FDRA indication places PDSCH resources that overlap with partially unavailable DL frequency resources (or partially available UL frequency resources) within partially available DL time units. It may be an error case if the FDRA field places a PDSCH resource that overlaps with a partially unavailable DL frequency resource within a partially available DL time unit.
  • FDMA indication in DCI Frequency resource configuration and mapping to frequency domain resource allocation (FDMA indication in DCI) for normal DL time units (time units not indicated with partial available indication and indicated 'D') and partial utilization possible DL time units are common (consistent).
  • the UE may perform rate matching around the partially unavailable DL frequency resource (or the partially available UL frequency resource) within the partially available DL time unit. If the FDRA indication includes a partially unavailable DL frequency resource within the partially available DL time unit, the UE may rate match around the partially unavailable DL frequency resource.
  • the frequency resource configuration and mapping to frequency domain resource allocation (FDMA indication in DCI) for partial available DL time units is configured separately by RRC IE.
  • the UE may interpret the FDRA on the partially available DL frequency resource within the partially available DL time unit based on the new configuration.
  • the UE may handle it similarly to PDSCH.
  • DMRS and phase tracking reference signal PTRS
  • the UE does not monitor PDCCH (candidates) on partially unavailable DL frequency resources (or partially available UL frequency resources) within partially available DL time units.
  • the UE may follow either of Options 1 and 2 below.
  • the CORESET and SS settings may be set differently for partial available DL time units by the RRC IE.
  • the UE does not monitor SSB on partially available DL frequency resources (or partially available UL frequency resources) within partially available DL time units.
  • the UE may follow either of Options 1 and 2 below.
  • the UE may not expect SSB monitoring to be configured on time resources on which partially available DL time units are configured.
  • the UE performs SSB measurements on the partially unavailable DL frequency resource. Ignore (do not).
  • the UE does not monitor CSI-RS on partially unavailable DL frequency resources (or partially available UL frequency resources) within partially available DL time units.
  • the UE may follow either of Options 1 and 2 below.
  • CSI-RS is transmitted according to a periodic/semi-persistent CSI-RS periodicity in a partially unavailable DL frequency resource within a partially available DL time unit. If so, the UE ignores (does not make) CSI-RS measurements on that partially unavailable DL frequency resource.
  • a UE is sent aperiodic CSI-RS on a partially unavailable DL frequency resource within a partially available DL time unit (partially unavailable within a partially available DL time unit). It is not assumed that aperiodic CSI-RS transmitted on DL frequency resources are scheduled (triggered) by DCI.
  • the UE does not monitor DL-positioning reference signals (PRS) on partially unavailable DL frequency resources (or partially available UL frequency resources) within partially available DL time units.
  • PRS DL-positioning reference signals
  • the UE may follow either of Options 1 and 2 below.
  • the UE may transmit the DL-PRS on the partially unavailable DL frequency resource. Ignore (do not make) PRS measurements.
  • the UE does not assume that the time unit is indicated with a partially available DL frequency resource.
  • the UE can control reception appropriately in time resources indicated for DL and partial availability.
  • Partially available UL time units are defined as 'partially available indication' and 'U' (partially available UL frequency resource, P_AU) or 'partially unavailable indication' and 'D' (partially available Impossible DL frequency resource, P_ND).
  • the UE may follow at least one of options 1 and 2 below.
  • PUCCH configuration may be configured for the partially available UL time unit.
  • PUCCH configuration for partial availability UL time units may be configured separately from PUCCH configuration for normal UL time units (time units not indicated with partial availability indication and indicated with 'U').
  • a single PUCCH configuration is configured with some PUCCH resources for normal UL time units and some PUCCH resources for partially available UL time units.
  • the UE may select PUCCH resources corresponding to time resources.
  • the UE may follow either of options 1 and 2 below.
  • the settings for transmit power control (TPC) for partially available UL time units may differ from the settings for TPC for normal UL time units.
  • the UE may handle DMRS in the same way as PUCCH.
  • the UE may follow at least one of options 1 and 2 below.
  • a separate PUSCH configuration (different from the PUSCH configuration for normal UL time units) is configured for the partially available UL time units.
  • the scheduled PUSCH may be within the partial available UL frequency resources (may be limited to the partial available UL frequency resources).
  • a separate PUSCH configuration for the partially available UL time unit (a PUSCH configuration separate from the PUSCH configuration for the normal UL time unit) is not configured. In this case, the UE may not assume that PUSCH transmissions on partially unavailable UL frequency resources are scheduled.
  • the setting for TPC for partially available UL time units may differ from the setting for TPC for normal UL time units.
  • DMRS and PTRS may be handled by the UE in the same way as PUSCH.
  • the UE may follow at least one of options 1 and 2 below.
  • a separate PRACH configuration (a different PRACH configuration than for normal UL time units) is configured for the partially available UL time units.
  • PRACH resource selection and transmission may be within the partial available UL frequency resources (may be limited to the partial available UL frequency resources).
  • a separate PRACH configuration for the partially available UL time unit (PRACH configuration separate from the PRACH configuration for the normal UL time unit) is not configured.
  • the UE may follow either of options 1 and 2 below.
  • the UE may not select PRACH resources on the partially unavailable UL frequency resources, nor may the PRACH resources on the partially unavailable UL frequency resources be ordered by the PDCCH.
  • the UE may (or may not) ignore PRACH transmissions that overlap with partially unavailable UL frequency resources. For example, if a PRACH transmission commanded by the PDCCH overlaps with a partially unavailable UL frequency resource, the UE may (or may not) ignore the PRACH transmission.
  • the UE may follow at least one of options 1 and 2 below.
  • a separate SRS configuration (different from the SRS configuration for normal UL time units) is configured for the partially available UL time units.
  • resource selection and transmission of SRS may be within the partial available UL frequency resources (may be limited to the partial available UL frequency resources).
  • a separate SRS configuration for the partially available UL time unit (an SRS configuration separate from the SRS configuration for the normal UL time unit) is not configured.
  • the UE may follow either of options 1 and 2 below.
  • the UE may not select SRS resources on the partially unavailable UL frequency resources, nor may the SRS resources on the partially unavailable UL frequency resources be triggered by DCI.
  • the UE does not assume that partial available/unavailable UL frequency resources are configured for time resources with periodic/semi-persistent-SRS.
  • the UE can control the transmission appropriately in the UL and in the time resources indicated with partial availability.
  • a new type of "partial availability" indication is provided in system information (e.g., SIB) May be broadcast.
  • SIB system information
  • a separate RACH configuration for time units indicated for "partial availability" may be broadcast in system information (eg, SIB).
  • SIB system information
  • the UE may follow the broadcast configuration when performing RACH on time units indicated for "partial availability”.
  • the broadcast type/configuration may be used by UEs with new UE capabilities.
  • guard bands may be set/indicated between DL and UL frequency resources within the same time resource. Guardband may be unavailable for both DL and UL.
  • a higher layer parameter (RRC information element)/UE capability corresponding to at least one function (feature) in each embodiment may be defined.
  • UE capabilities may indicate whether to support this feature.
  • a UE for which a higher layer parameter corresponding to that function is set may perform that function. It may be defined that "UEs for which higher layer parameters corresponding to the function are not set shall not perform the function (eg, apply Rel. 15/16 operations)".
  • a UE reporting UE capabilities indicating that it supports that function may perform that function. It may be specified that "a UE that does not report UE capabilities indicating that it supports the feature shall not perform the feature (e.g. apply Rel. 15/16 behavior)".
  • a UE may perform a function if it reports a UE capability indicating that it supports the function, and the higher layer parameters corresponding to the function are configured. "If the UE does not report a UE capability indicating that it supports the function, or if the higher layer parameters corresponding to the function are not set, the UE does not perform the function (e.g., Rel. 15/16 'applying an action' may be defined.
  • the UE capability may indicate whether it supports the new type of "partial availability" setting/indication by the RRC IE.
  • the UE capability may indicate whether to support at least one of 'partial availability indication' and 'D' and 'partial availability indication' and 'U'.
  • the UE capability may indicate whether or not to support "partial availability" MAC CE/DCI updates.
  • the UE capability may also indicate whether or not to support DL/UL specific channel/RS configuration for time units with "partial availability" (a configuration separate from that for normal time units). good.
  • the settings for time units with "partial availability" may be common to multiple specific channels/RSs.
  • a particular channel/RS may be at least one of the following: ⁇ PDCCH ⁇ PDSCH ⁇ PUCCH ⁇ PUSCH ⁇ PRACH ⁇ SRS
  • UE capability may be defined as the number of channels/RSs that can simultaneously transmit/receive.
  • UE capability may be defined as the number of channels/RSs capable of transmitting/receiving simultaneously within one operating band.
  • the UE can implement the above functions while maintaining compatibility with existing specifications.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 8 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 9 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission line interface 140.
  • the transmitting/receiving unit 120 uses a bandwidth part (BWP ) may be transmitted in a Radio Resource Control (RRC) information element regarding the setting of The control unit 110 may use the RRC information element to control at least one of DL/UL BWP configuration, application, activation and switching.
  • BWP bandwidth part
  • RRC Radio Resource Control
  • Transmitter/receiver 120 determines the link direction (eg, D/U/F) for a first time resource (eg, time unit) and the availability of some frequency resources within the first time resource (eg, partially available, partially available, partially unavailable) may be sent.
  • the control unit 110 may control uplink reception or downlink transmission on the frequency resource within the first time resource based on the instruction.
  • FIG. 10 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
  • the transmitting/receiving unit 220 uses the bandwidth part (BWP ) may receive a Radio Resource Control (RRC) information element regarding the setting of
  • RRC Radio Resource Control
  • the control unit 210 may control at least one of DL/UL BWP configuration, application, activation and switching based on the RRC information element.
  • the DL/UL BWP may be allowed to be configured with non-contiguous physical resource blocks (PRBs).
  • PRBs physical resource blocks
  • the RRC information element may be an RRC information element for TDD configuration or an RRC information element for BWP configuration.
  • the transmitting/receiving unit 220 may further receive downlink control information (DCI) and medium access control (MAC) control elements.
  • the control unit 210 may control the timing and duration of application of the DL/UL BWP based on the RRC information element and at least one of the DCI and the MAC CE.
  • Transceiver 220 determines the link direction (eg, D/U/F) for a first time resource (eg, time unit) and the availability of some frequency resources within said first time resource (eg, partially available, partially available, partially unavailable) may be received.
  • the control unit 210 may control uplink transmission or downlink reception on the frequency resource within the first time resource based on the instruction.
  • the availability includes that the frequency resource is available for downlink, that the frequency resource is not available for downlink, that the frequency resource is available for uplink, and It may indicate either that the frequency resource is unavailable for the uplink.
  • the transmitting/receiving unit 220 performs a first configuration of a first type of channel or signal for the first time resource and a second configuration of the first type of channel or reference signal for the second time resource whose availability is not indicated. and may be received.
  • the control unit 210 controls transmission or reception of the first type of channel or reference signal in the first time resource based on the first setting, and controls the second time resource based on the second setting. may control the transmission or reception of the first type of channel or reference signal in.
  • the transmission or reception of the second type of channel or signal may occur on the time resources not indicated for availability and not on the first time resources.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • predetermined software program
  • the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state Transmission Configuration Indication state
  • spatialal patial relation
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell Cell
  • femtocell small cell
  • picocell a base station
  • serving cell a base station
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a decimal number)
  • Future Radio Access FAA
  • RAT New - Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or other suitable wireless It may be applied to systems using communication methods, next-generation systems extended based on these, and the like. Also, multiple systems may be applied to systems using communication methods, next-generation systems extended based on these, and the like
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to an aspect of the present disclosure comprises: a reception unit that receives an instruction on a linking direction for a first time resource and a usability of a frequency resource which is a part of the first time resource; and a control unit that controls uplink transmission or downlink reception for the frequency resource in the first time resource on the basis of the instruction. According to the aspect of the present disclosure, resource use efficiency can be improved.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 The present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high data rate, low delay, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 LTE successor systems (for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later) are also being considered. .
 将来の無線通信システム(例えば、NR)において、複数のユーザ端末(user terminal、User Equipment(UE))が、超高密度かつ高トラヒックな環境下で通信を行うことが想定される。 In future wireless communication systems (for example, NR), it is assumed that multiple user terminals (user terminals, user equipment (UE)) will communicate in an ultra-high-density and high-traffic environment.
 このような環境下において、下りリンク(DL)のリソースと比較し、上りリンク(UL)のリソースが不足することが想定される。 Under such an environment, it is assumed that uplink (UL) resources will be insufficient compared to downlink (DL) resources.
 しかしながら、これまでのNR仕様においては、上りリンクのリソースを増大させる方法について、十分検討がなされていない。当該方法を適切に制御できなければ、遅延の増大やカバレッジ性能の低下など、システム性能が低下するおそれがある。 However, in the NR specifications so far, sufficient consideration has not been given to methods for increasing uplink resources. Failure to properly control the method may result in degraded system performance, such as increased delay and reduced coverage performance.
 そこで、本開示は、リソースの利用効率を高める端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that improve resource utilization efficiency.
 本開示の一態様に係る端末は、第1時間リソースのためのリンク方向と、前記第1時間リソース内の一部の周波数リソースの利用可能性と、の指示を受信する受信部と、前記指示に基づいて、前記第1時間リソース内の前記周波数リソースにおいて、上りリンク送信又は下りリンク受信を制御する制御部と、を有する。 A terminal according to an aspect of the present disclosure includes a receiving unit that receives an indication of a link direction for a first time resource and availability of some frequency resources within the first time resource; and a control unit for controlling uplink transmission or downlink reception on the frequency resource within the first time resource based on.
 本開示の一態様によれば、リソースの利用効率を高めることができる。 According to one aspect of the present disclosure, resource utilization efficiency can be improved.
図1A及び図1Bは、スロット構成の設定の一例を示す図である。1A and 1B are diagrams showing an example of slot configuration settings. 図2は、XDDの構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of XDD. 図3A及び図3Bは、XDD動作に対する時間ドメイン及び周波数ドメインのリソースの設定の一例を示す図である。3A and 3B are diagrams illustrating an example of time domain and frequency domain resource configuration for XDD operation. 図4A及び図4Bは、DL/UL BWPの切り替えの一例を示す図である。4A and 4B are diagrams showing an example of DL/UL BWP switching. 図5は、実施形態2-6-2に係るスケジュール方法の一例を示す図である。FIG. 5 is a diagram showing an example of a scheduling method according to Embodiment 2-6-2. 図6A及び図6Bは、スロットフォーマットの一例を示す図である。6A and 6B are diagrams showing examples of slot formats. 図7Aから図7Dは、第3の実施形態に係る部分的利用可能性の一例を示す図である。7A-7D are diagrams illustrating an example of partial availability according to the third embodiment. 図8は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment. 図9は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of the configuration of a base station according to one embodiment. 図10は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment. 図11は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment.
(TDD設定)
 Rel.15において、UEに対し、時分割複信(Time Division Duplex(TDD))におけるUL及びDL(ULリソース及びDLリソース)の設定が行われる。UEは、セル固有のUL/DLのTDD設定に関する上位レイヤパラメータ(TDD-UL-DL-ConfigCommon)又はUE固有のUL/DLのTDD設定に関する上位レイヤパラメータ(TDD-UL-DL-ConfigDedicated)を受信してもよい。
(TDD setting)
Rel. At 15, the UE is configured for UL and DL (UL and DL resources) in Time Division Duplex (TDD). The UE receives higher layer parameters for cell-specific UL/DL TDD configuration (TDD-UL-DL-ConfigCommon) or higher layer parameters for UE-specific UL/DL TDD configuration (TDD-UL-DL-ConfigDedicated). You may
 セル固有のUL/DLのTDD設定に関する上位レイヤパラメータ(TDD-UL-DL-ConfigCommon)には、参照サブキャリア間隔を設定するパラメータ(referenceSubcarrierSpacing)と、TDDのUL及びDLのパターンに関するパラメータ(TDD-UL-DL-Pattern)とが含まれる。 The cell-specific UL/DL TDD configuration related upper layer parameters (TDD-UL-DL-ConfigCommon) include a parameter for setting reference subcarrier spacing (referenceSubcarrierSpacing) and a parameter for TDD UL and DL patterns (TDD- UL-DL-Pattern) and
 TDD-UL-DL-Patternには、DL-ULパターンの周期を設定するパラメータ(dl-UL-TransmissionPeriodicity)、連続するDLスロット数を設定するパラメータ(nrofDownlinkSlots)、連続するDLシンボル数を設定するパラメータ(nrofDownlinkSymbols)、連続するULスロット数を設定するパラメータ(nrofUplinkSlots)及び連続するULシンボル数を設定するパラメータ(nrofUplinkSymbols)が含まれる。 TDD-UL-DL-Pattern includes a parameter for setting the period of the DL-UL pattern (dl-UL-TransmissionPeriodicity), a parameter for setting the number of consecutive DL slots (nrofDownlinkSlots), and a parameter for setting the number of consecutive DL symbols. (nrofDownlinkSymbols), a parameter for setting the number of consecutive UL slots (nrofUplinkSlots) and a parameter for setting the number of consecutive UL symbols (nrofUplinkSymbols).
 UE固有のUL/DLのTDD設定に関する上位レイヤパラメータ(TDD-UL-DL-ConfigDedicated)で、スロットの設定及びスロットインデックスの設定が行われる。  The slot setting and the slot index setting are performed with the higher layer parameter (TDD-UL-DL-ConfigDedicated) related to the UE-specific UL/DL TDD setting.
 スロットの設定は、パラメータTDD-UL-DL-SlotConfigによって行われる。TDD-UL-DL-SlotConfigには、スロットインデックスに関するパラメータ(TDD-UL-DL-SlotIndex)と、スロットを構成するシンボルに関するパラメータ(symbols)が含まれる。スロットを構成するシンボルに関するパラメータ(symbols)は、スロットを構成するシンボルが全てDLに用いられることを示すパラメータ(allDownlink)、スロットを構成するシンボルが全てULに用いられることを示すパラメータ(allUplink)、又は、シンボル数を明示的に示すパラメータ(explicit)のいずれかを設定する。  Slot settings are performed by the parameter TDD-UL-DL-SlotConfig. TDD-UL-DL-SlotConfig includes a parameter (TDD-UL-DL-SlotIndex) related to the slot index and a parameter (symbols) related to the symbols forming the slot. The parameters (symbols) related to the symbols that make up the slot include a parameter (allDownlink) that indicates that all the symbols that make up the slot are used for DL, a parameter (allUplink) that indicates that all the symbols that make up the slot are used for UL, Alternatively, set one of the parameters (explicit) that explicitly indicate the number of symbols.
 シンボル数を明示的に示すパラメータ(explicit)は、DLシンボル数を設定するパラメータ(nrofDownlinkSymbols)及びULシンボル数を設定するパラメータ(nrofUplinkSymbols)が含まれる。 Parameters (explicit) that explicitly indicate the number of symbols include a parameter (nrofDownlinkSymbols) for setting the number of DL symbols and a parameter (nrofUplinkSymbols) for setting the number of UL symbols.
 UEは、上述したパラメータに基づいて、UL信号/チャネルの送信及びDL信号/チャネルの受信の少なくとも一方に用いるスロット/シンボルを判断する。 The UE determines the slots/symbols to use for transmission of UL signals/channels and/or reception of DL signals/channels based on the parameters described above.
(XDD)
 Rel.16までの時分割複信(Time Division Duplex(TDD))による送受信の時間比(例えば、DL:UL=4:1)を考慮すると、UL信号/チャネルの送信機会が、DL信号/チャネルの受信機会に対して少なくなるケースが考えられる。このようなケースだと、UEは頻繁なUL信号/チャネルの送信を行うことができず、重要なUL信号/チャネルの送信の遅延が発生することが懸念される。また、DL受信機会と比較してUL送信機会が少なくなるため、UL送信機会における信号/チャネルの混雑も懸念される。さらに、TDDではUL信号/チャネルの送信を行うことができる時間リソースが限定されるため、例えば繰り返し送信(Repetition)によるULカバレッジ拡張技術の適用も限定的となってしまう。
(XDD)
Rel. Considering a time ratio of transmission and reception with Time Division Duplex (TDD) up to 16 (e.g., DL:UL=4:1), the transmission opportunities of UL signals/channels are reduced to the reception of DL signals/channels. It is conceivable that there may be cases where the amount is less than the opportunity. In such a case, the UE may not be able to transmit UL signals/channels frequently, which may cause delays in transmission of critical UL signals/channels. Signal/channel congestion at UL transmission opportunities is also a concern, as there are fewer UL transmission opportunities compared to DL reception opportunities. Furthermore, in TDD, the time resource for transmitting UL signals/channels is limited, so the application of UL coverage extension technology by, for example, repetition transmission (Repetition) is also limited.
 将来の無線通信システム(例えば、Rel.17/18以降)において、UL及びDLに対してTDDと周波数分割複信(Frequency Division Duplex(FDD))とを組み合わせた分割複信方法が導入されることが検討されている。 In future wireless communication systems (eg, Rel.17/18 and later), a division duplex method that combines TDD and Frequency Division Duplex (FDD) for UL and DL will be introduced. is being considered.
 当該分割複信方法は、XDD(Cross Division Duplex)と呼ばれてもよい。XDDは、TDDバンドの1コンポーネントキャリア(CC)内における、DL及びULを周波数分割多重する(DL及びULを同時に利用可能な)複信方法を意味してもよい。 The division duplex method may be called XDD (Cross Division Duplex). XDD may refer to a duplexing method that frequency division multiplexes the DL and UL within one component carrier (CC) of the TDD band (DL and UL can be used simultaneously).
 図1Aは、Rel.16までに規定されるTDDの設定の一例を示す図である。図1Aに示す例において、UEに対し、1つのコンポーネントキャリア(CC)(セル、サービングセルと呼ばれてもよい)の帯域幅で、TDDのスロット/シンボルの設定が行われる。  Figure 1A shows the Rel. 16 is a diagram showing an example of setting of TDD defined up to 16. FIG. In the example shown in FIG. 1A, a UE is configured with TDD slots/symbols in the bandwidth of one component carrier (CC) (cell, which may also be called a serving cell).
 図1Aに示す例では、DLスロットとULスロットの時間比は、4:1である。このような従来のTDDにおけるスロット/シンボルの設定では、UL時間リソースを十分に確保できず、UL送信遅延の発生やカバレッジ性能低下の恐れがある。 In the example shown in FIG. 1A, the time ratio between DL slots and UL slots is 4:1. With such a conventional TDD slot/symbol setting, sufficient UL time resources cannot be secured, and there is a risk of occurrence of UL transmission delay and degradation of coverage performance.
 図1Bは、XDDの構成の一例を示す図である。図1Bの例では、1コンポーネントキャリア(CC)内で、DLの受信に用いられるリソースと、ULの送信に用いられるリソースと、が時間的に重複する。このようなリソースの構成によれば、ULリソースを確保することができ、リソースの利用効率の向上を図ることができる。 FIG. 1B is a diagram showing an example of the configuration of XDD. In the example of FIG. 1B, resources used for DL reception and resources used for UL transmission overlap in time within one component carrier (CC). According to such a resource configuration, it is possible to secure UL resources and improve the utilization efficiency of resources.
 例えば、図1Bに示す例のように、1CCにおける周波数領域のうち、両端をDLに構成し、そのDLでULリソースを挟むような構成とすることで、近隣のキャリアとのクロスリンク干渉(Cross Link Interference(CLI))の発生を回避及び緩和することができる。また、DLリソースとULリソースとの境界には、ガードのための領域が設定されてもよい。 For example, as in the example shown in FIG. 1B , both ends of the frequency domain in one CC are configured as DL, and by configuring the DL to sandwich the UL resource, cross-link interference with neighboring carriers (Cross It is possible to avoid and mitigate the occurrence of Link Interference (CLI). Also, a guard area may be set at the boundary between the DL resource and the UL resource.
 自己干渉の処理の複雑さを考慮すると、基地局のみがDLリソース及びULリソースを同時に使用することが考えられる。つまり、DL及びULが時間的に重複しているリソースでは、あるUEがDLリソースを使用し、別のUEがULリソースを使用する構成としてもよい。 Considering the complexity of self-interference processing, it is conceivable that only the base station uses DL resources and UL resources at the same time. That is, in resources where DL and UL temporally overlap, a configuration may be adopted in which one UE uses DL resources and another UE uses UL resources.
 図2は、XDDの構成の一例を示す図である。図2に示す例では、TDDバンドのDLリソースの一部をULリソースとし、DLとULとが一部時間的に重複する構成としている。 FIG. 2 is a diagram showing an example of the configuration of XDD. In the example shown in FIG. 2, a part of the DL resource of the TDD band is used as the UL resource, and the DL and the UL are partially overlapped in terms of time.
 図2に示す例において、DLのみの期間は、複数のUE(図2では、UE#1及びUE#2)のそれぞれがDLチャネル/信号を受信する。 In the example shown in FIG. 2, each of the multiple UEs (UE#1 and UE#2 in FIG. 2) receives the DL channel/signal during the DL-only period.
 また、DL及びULが時間的に重複する期間では、あるUE(図2の例では、UE#1)がDLチャネル/信号の受信を行い、別のUE(図2の例では、UE#2)がULチャネル/信号の送信を行う。この期間では、基地局は、DL及びULの同時送受信を行う。 Also, in the period when the DL and UL temporally overlap, a certain UE (UE # 1 in the example of FIG. 2) performs reception of the DL channel / signal, and another UE (UE # 2 in the example of FIG. 2 ) carries out the transmission of the UL channels/signals. During this period, the base station performs simultaneous DL and UL transmission and reception.
 さらに、ULのみの期間は、複数のUEのそれぞれがULチャネル/信号を送信する。 Furthermore, during UL-only periods, each of the multiple UEs transmits UL channels/signals.
 既存の(例えば、Rel.15/16までに規定される)NRでは、UE用キャリアにおけるDL周波数リソース及びUL周波数リソースは、それぞれDL帯域幅部分(Bandwidth Part(BWP))及びUL BWPとして設定される。DL/ULの周波数リソースを別のDL/ULの周波数リソースに切り替えるためには、複数のBWPの設定とBWPのアダプテーションのメカニズムとが必要である。 In the existing NR (for example, defined by Rel.15/16), the DL frequency resource and UL frequency resource in the UE carrier are set as DL bandwidth part (BWP) and UL BWP, respectively. be. In order to switch a DL/UL frequency resource to another DL/UL frequency resource, multiple BWP configurations and a BWP adaptation mechanism are required.
 また、既存のNRでは、UE用TDDキャリアにおける時間リソースは、TDD設定において、DL、UL及びフレキシブル(FL)の少なくとも1つとして設定される。 Also, in the existing NR, the time resource in the TDD carrier for UE is configured as at least one of DL, UL and flexible (FL) in TDD configuration.
 XDD動作に対する時間ドメイン及び周波数ドメインのリソースの設定方法が、検討されている。例えば、図2のUE#1に対しては、XDDのリソース(DL及びULが重複する期間)を、既存のDLリソースと同様に設定することで(例えば、周波数ドメインリソース割り当て(FDRA)を用いてULリソースの部分の使用を避けた上で)、仕様/UEへの影響を最小限に抑えることができる(図3A参照)。 How to configure time domain and frequency domain resources for XDD operation is being considered. For example, for UE #1 in FIG. 2, by setting the XDD resource (the period in which DL and UL overlap) in the same way as the existing DL resource (for example, using frequency domain resource allocation (FDRA) (while avoiding using part of the UL resource for the UE), the impact on the specification/UE can be minimized (see Figure 3A).
 また、例えば、図2のUE#2に対しては、XDDのリソースを、既存のULリソースと同様に設定することで(例えば、周波数ドメインリソース割り当て(FDRA)を用いてDLリソースの部分の使用を避けた上で)、仕様/UEへの影響を最小限に抑えることができる(図3B参照)。 Further, for example, for UE #2 in FIG. 2, by setting the XDD resource in the same manner as the existing UL resource (for example, using frequency domain resource allocation (FDRA), the DL resource part can be used (while avoiding
 しかしながら、各UEは、リソースがXDD動作に使用されているか否かを認識する必要がある。 However, each UE needs to know whether resources are being used for XDD operations.
 例えば、図2に示すようなUE#1に対して、TDDバンドにおけるDL及びULが重複する部分(XDD部分と呼ばれてもよい)は、DLとして設定されうる。しかし、DLのみの部分(例えば、XDD部分以外のDL部分)における周波数リソースから、別々にXDD部分の周波数リソースを設定するか否かについて明確でない。 For example, for UE #1 as shown in FIG. 2, the portion where DL and UL overlap in the TDD band (may be called XDD portion) can be configured as DL. However, it is not clear whether or not to configure frequency resources for the XDD part separately from frequency resources for the DL only part (for example, the DL part other than the XDD part).
 XDD部分の周波数リソースのUL部分は、他のUE(例えば、図2のUE#2)がUL送信に使用しうるため、当該部分(XDD部分のUL部分)においてDL受信を行うと、CLIが発生することが懸念される。また、当該部分以外の残りのリソースを単一のUEに割り当てるために、当該部分へのDLリソース割り当てを無効にすることも検討されている。 Since the UL part of the frequency resource of the XDD part can be used for UL transmission by another UE (eg, UE #2 in FIG. 2), when DL reception is performed in this part (UL part of the XDD part), the CLI It is feared that it will occur. It is also being considered to disable the DL resource allocation to this part in order to allocate the remaining resources other than that part to a single UE.
 つまり、TDDバンドにおけるDLから、XDDにおけるDLリソースを別々に設定する必要があると考えられる。 In other words, it is considered necessary to configure DL resources in XDD separately from DL in TDD band.
 また、XDDにおけるDLリソースと、XDDでないDLリソースとを別々に処理する必要がある場合、これらのリソースを別々の周波数リソース(例えば、DL BWP)として設定し、これらのリソースを切り替えるためのBWPアダプテーションメカニズムを導入することが検討されている。 Also, when it is necessary to process DL resources in XDD and DL resources not in XDD separately, set these resources as separate frequency resources (for example, DL BWP), and BWP adaptation for switching these resources Consideration is being given to introducing a mechanism.
 しかしながら、複数のBWPの設定及びBWPアダプテーションのためのUE能力を必要とすることは、XDD動作に必要な機能と、複数のBWPに関する動作に必要な機能とが異なるため好ましくないことも考えられる。 However, requiring UE capabilities for multiple BWP configuration and BWP adaptation may not be preferable due to the difference between the functionality required for XDD operation and the functionality required for operation with multiple BWPs.
 上記はULについても同様のことが考えられる。例えば、図2に示すようなUE#2に対して、TDDバンドにおけるDL及びULが重複する部分(XDD部分と呼ばれてもよい)は、ULとして設定されうる。しかし、ULのみの部分(例えば、XDD部分以外のUL部分)における周波数リソースから、別々にXDD部分の周波数リソースを設定するか否かが明確でない。 The above can be considered the same for UL. For example, for UE #2 as shown in FIG. 2, the overlapping portion of DL and UL in the TDD band (which may be referred to as the XDD portion) may be configured as UL. However, it is not clear whether frequency resources for the XDD part are set separately from frequency resources for the UL only part (for example, the UL part other than the XDD part).
 例えば、CLIによる悪影響を最小限に抑えるために、XDD部分におけるUL送信(例えば、フィルタリング)を、XDD部分でないULリソースとは異なる構成とすることが検討されている。 For example, in order to minimize adverse effects of CLI, it is being considered to configure UL transmission (eg, filtering) in the XDD part differently than UL resources that are not in the XDD part.
 つまり、TDDバンドにおけるULから、XDDにおけるULリソースを別々に設定する必要があると考えられる。 In other words, it is considered necessary to set UL resources in XDD separately from UL in the TDD band.
 また、XDDにおけるULリソースと、XDDでないULリソースとを別々に処理する必要がある場合、これらのリソースを別々の周波数リソース(例えば、UL BWP)として設定し、これらのリソースを切り替えるためのBWPアダプテーションメカニズムを導入することが検討されている。 Also, when it is necessary to process UL resources in XDD and UL resources not in XDD separately, these resources are set as separate frequency resources (for example, UL BWP), and BWP adaptation for switching these resources Consideration is being given to introducing a mechanism.
 しかしながら、XDD動作に必要な機能と、複数のBWPに関する動作に必要な機能とが異なるため、複数のBWPの設定及びBWPアダプテーションのための既存のUE能力をXDD動作に必要とすることは、好ましくないことも考えられる。 However, due to the difference between the functionality required for XDD operation and the functionality required for operation with multiple BWPs, it is preferable to require existing UE capabilities for multiple BWP configuration and BWP adaptation for XDD operation. It is possible that there is none.
 また、リンク方向(DL/UL/フレキシブル)が設定/指示される場合に、各UEが周波数リソースの一部を利用することが可能であるか否かが明らかでない。周波数リソースの利用可能性が明らかでなければ、適切な送受信を行うことができず、通信品質/通信スループットが低下するおそれがある。 Also, when the link direction (DL/UL/flexible) is set/indicated, it is not clear whether each UE can use part of the frequency resource. If the availability of frequency resources is not clear, proper transmission and reception cannot be performed, and communication quality/communication throughput may deteriorate.
 そこで、本発明者らは、UE能力をオーバーすること、及び、非効率性(例えば、BWPの切り替え遅延)の少なくとも一方を伴わないXDD動作の制御方法、リンク方向及び部分周波数リソースの利用可能性の制御方法、を着想した。 We therefore propose a method for controlling XDD operation, link direction and partial frequency resource availability without exceeding UE capacity and/or inefficiency (e.g. switching delay of BWP). I came up with the idea of a control method for
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied independently, or may be applied in combination.
(無線通信方法)
 本開示におけるDL信号/チャネルは、ユニキャストが利用されて送信されてもよいし、複数のUEに対するマルチキャスト/ブロードキャストが利用されて送信されてもよい。当該マルチキャスト/ブロードキャスト/ユニキャストの設定は、上位レイヤシグナリングを用いて行われてもよい。
(Wireless communication method)
DL signals/channels in the present disclosure may be transmitted using unicast or may be transmitted using multicast/broadcast to multiple UEs. The multicast/broadcast/unicast configuration may be performed using higher layer signaling.
 本開示において、A/Bは、A及びBの少なくとも一方を意味してもよい。本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In the present disclosure, A/B may mean at least one of A and B. In this disclosure, "A/B/C" may mean "at least one of A, B and C."
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 For MAC signaling, for example, MAC Control Element (MAC CE), MAC Protocol Data Unit (PDU), etc. may be used. Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
 物理レイヤシグナリングは、例えば、下り制御情報(DCI)であってもよい。 The physical layer signaling may be, for example, downlink control information (DCI).
 なお、本開示において、ポート、アンテナ、アンテナポート、パネル、ビーム、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、空間関係情報、空間関係、送信構成指示(TCI:Transmission Configuration Indication又はTransmission Configuration Indicator)の状態(TCI状態(TCI-state))、擬似コロケーション(Quasi-Co-Location(QCL))想定、制御リソースセット(COntrol REsource SET(CORESET))、PDSCH、コードワード、基地局、所定のアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、所定のアンテナポートグループ(例えば、DMRSポートグループ)、所定のグループ(例えば、符号分割多重(Code Division Multiplexing(CDM))グループ、所定の参照信号グループ、CORESETグループ、パネルグループ、ビームグループ、空間関係グループ、PUCCHグループ)、CORESETプール、は、互いに読み替えられてもよい。 In addition, in the present disclosure, ports, antennas, antenna ports, panels, beams, Uplink (UL) transmitting entities, transmission/reception points (TRP), spatial relationship information, spatial relationships, transmission configuration indications (TCI: Transmission Configuration Indication or Transmission Configuration Indicator) state (TCI state (TCI-state)), pseudo-colocation (Quasi-Co-Location (QCL)) assumption, control resource set (COntrol resource SET (CORESET)), PDSCH, codeword, Base station, predetermined antenna port (for example, demodulation reference signal (DeModulation Reference Signal (DMRS)) port), predetermined antenna port group (for example, DMRS port group), predetermined group (for example, code division multiplexing (Code Division Multiplexing (CDM)) group, predetermined reference signal group, CORESET group, panel group, beam group, spatial relationship group, PUCCH group), CORESET pool may be read interchangeably.
 本開示において、DL信号/チャネルの受信及びUL信号/チャネルの送信は、同一のBWP/CC/帯域/運用バンドを用いて送受信されてもよいし、異なるBWP/CC/帯域/運用バンドを用いて送受信されてもよい。以下本開示の各図面では、1CCにおける構成を説明するが、周波数方向のリソース数はこれに限られない。本開示において、BWP、CC、セル、サービングセル、帯域(band)、キャリア、運用バンド、PRG、PRB、RB、RE、リソース、は互いに読み替えられてもよい。 In the present disclosure, reception of DL signals/channels and transmission of UL signals/channels may be transmitted and received using the same BWP/CC/band/operating band, or using different BWP/CC/band/operating bands. may be sent and received. In each drawing of the present disclosure, the configuration in one CC will be described below, but the number of resources in the frequency direction is not limited to this. In the present disclosure, BWP, CC, cell, serving cell, band, carrier, operating band, PRG, PRB, RB, RE, and resource may be read interchangeably.
 本開示において、AがBとオーバーラップする、AがBと重複する、Aの少なくとも一部がBの少なくとも一部と重複する、は互いに読み替えられてもよい。 In the present disclosure, A overlaps with B, A overlaps with B, and at least part of A overlaps with at least part of B may be read interchangeably.
 なお、本開示の各実施形態は、UEが、各実施形態における少なくとも1つの機能/能力に対応するUE能力をNWに報告した場合、および、UEに対して、各実施形態における少なくとも1つの機能/能力に対応するUE能力について上位レイヤシグナリングによって設定/アクティベート/指示された場合、の少なくとも一方の条件下において適用されてもよい。本開示の各実施形態は、UEに対して、特定の上位レイヤパラメータが設定/アクティベート/指示された場合において適用されてもよい。 It should be noted that each embodiment of the present disclosure, when the UE reports the UE capability corresponding to at least one function / capability in each embodiment to the NW, and for the UE, at least one function in each embodiment and/or when configured/activated/indicated by higher layer signaling for the UE capability corresponding to the capability. Embodiments of the present disclosure may apply when certain higher layer parameters are configured/activated/indicated for the UE.
 本開示において、TDDバンドの1CC内におけるDLリソース及びULリソースを同時に利用可能である時間領域(期間)、XDD部分、XDD期間、は互いに読み替えられてもよい。XDD部分におけるDL/ULリソースは、XDD DL/ULリソース、XDD DL/UL、と呼ばれてもよい。TDDバンドのDL及びULが時間的に重複しないDL/ULリソースは、非XDD DL/ULリソース、pure DL/ULリソース、XDDでないDL/ULリソース、新規DL/ULリソースなどと読み替えられてもよい。XDD動作は、XDD DL/ULリソースが設定される期間における動作を示してもよいし、XDDが用いられ得るTDD全体の動作を示してもよい。 In the present disclosure, the time domain (period) in which DL resources and UL resources in 1 CC of the TDD band can be used simultaneously, the XDD part, and the XDD period may be read interchangeably. DL/UL resources in the XDD part may be referred to as XDD DL/UL resources, XDD DL/UL. DL/UL resources in which the DL and UL of the TDD band do not temporally overlap may be read as non-XDD DL/UL resources, pure DL/UL resources, non-XDD DL/UL resources, new DL/UL resources, etc. . The XDD operation may indicate the operation during the period in which the XDD DL/UL resource is set, or may indicate the operation of the entire TDD in which the XDD may be used.
 また、本開示において、TDDバンドにおけるDL/UL BWP、Rel.15/16までに規定されるDL/UL BWP、通常DL/UL BWPは互いに読み替えられてもよい。 Also, in the present disclosure, DL/UL BWP in the TDD band, Rel. DL/UL BWP defined by 15/16 and normal DL/UL BWP may be read interchangeably.
 本開示において、ドロップ、中止、キャンセル、パンクチャ、レートマッチ、などは互いに読み替えられてもよい。 In the present disclosure, drop, abort, cancel, puncture, rate match, etc. may be read interchangeably.
<第1の実施形態>
 第1の実施形態では、XDD DLの周波数リソースに関して説明する。
<First Embodiment>
In the first embodiment, XDD DL frequency resources will be described.
《実施形態1-1》
[実施形態1-1-1]
 実施形態1-1において、XDD動作において、連続又は不連続のPRBを用いるDL BWP(新規DL BWP、XDD用DL BWP)の設定が行われてもよい。UEは、XDD動作において、連続又は不連続のPRBを用いてDL BWPが設定されてもよい。
<<Embodiment 1-1>>
[Embodiment 1-1-1]
In the embodiment 1-1, in the XDD operation, a DL BWP (new DL BWP, DL BWP for XDD) using continuous or non-continuous PRBs may be set. The UE may be configured with DL BWP with contiguous or non-contiguous PRBs in XDD operation.
 本開示において、XDDを用いるBWPについて、図2に示すような、1つのCCの周波数ドメインにおいて、1つのULリソースが2つのDLリソースに挟まれるように割り当てられる例を主に説明するが、DL/ULリソースの配置/割り当てはこの例に限られない。1つのDLリソースが2つのULリソースに挟まれるように割り当てられてもよい。1つのCCの周波数ドメインにおいて、2つのDLリソースが割り当てられることは、不連続のPRBを用いるDL BWPの設定が行われることを意味してもよい。反対に、1つのCCの周波数ドメインにおいて、1つのDLリソースが割り当てられることは、連続のPRBを用いるDL BWPの設定が行われることを意味してもよい。 In the present disclosure, for BWP using XDD, an example in which one UL resource is allocated between two DL resources in the frequency domain of one CC, as shown in FIG. 2, will be mainly described. /UL resource placement/allocation is not limited to this example. One DL resource may be allocated so as to be sandwiched between two UL resources. Allocation of two DL resources in the frequency domain of one CC may mean that DL BWP using non-contiguous PRBs is configured. Conversely, in the frequency domain of one CC, allocating one DL resource may mean that a DL BWP using continuous PRBs is configured.
 DL BWPのPRBの設定について、UEは、トータルの周波数リソース(DLに使用できる周波数リソースと、DLに使用できない周波数リソースと、を含む連続の周波数リソース)と、DLリソースに使用できない周波数リソースを設定されてもよい。トータルの周波数リソースは、既存のBWPのパラメータ、例えば、開始PRB(の位置)及びPRB数(帯域幅)を用いて設定されてもよい。DLリソースに使用できない周波数リソースは、例えば、開始PRB(の位置)及びPRB数(帯域幅)を用いて設定されてもよい。 Regarding PRB settings for DL BWP, the UE sets total frequency resources (continuous frequency resources including frequency resources that can be used for DL and frequency resources that cannot be used for DL) and frequency resources that cannot be used for DL resources. may be The total frequency resource may be configured using existing BWP parameters, such as the starting PRB (position) and the number of PRBs (bandwidth). Frequency resources that cannot be used for DL resources may be configured using, for example, (the location of) the starting PRB and the number of PRBs (bandwidth).
 また、DL BWPのPRBの設定について、UEは、利用可能な周波数リソースを設定されてもよい。DLリソースに使用できない周波数リソースは、例えば、開始PRB(の位置)とPRB数(帯域幅)との、複数(例えば、2つ)のセットを用いて設定されてもよい。 Also, regarding the configuration of PRBs for DL BWP, the UE may be configured with available frequency resources. Frequency resources that cannot be used for DL resources may be configured, for example, using multiple (eg, two) sets of starting PRB (position) and number of PRBs (bandwidth).
[実施形態1-1-2]
 新規DL BWPの設定は、通常DL BWPの補助的な(Supplementary)DL BWPとして設定されてもよい。補助的なDL BWPは、通常DL BWPと関連付けられてもよい。補助的なDL BWPは、サプリメンタルDL BWP、追加DL BWP、などと呼ばれてもよい。
[Embodiment 1-1-2]
The setting of the new DL BWP may be set as a DL BWP supplementary to the normal DL BWP. Auxiliary DL BWP may be associated with normal DL BWP. A supplemental DL BWP may be referred to as a supplemental DL BWP, an additional DL BWP, and so on.
 通常DL BWPとサプリメンタルDL BWPとは、設定制限が規定されてもよい。例えば、通常DL BWPとサプリメンタルDL BWPとで、中心周波数、サブキャリア間隔、周波数リソース(開始位置/帯域幅)のサブセット、DL BWPの設定に関連する設定、の少なくとも1つが共通であってもよい。DL BWPの設定に関連する設定は、例えば、PDCCH設定(PDCCH Config)、PDSCH設定(PDSCH Config)、SPS設定(SPS Config)、無線リンクモニタリング(RLM)設定(RLM Config)、の少なくとも1つであってもよい。また、例えば、通常DL BWPとサプリメンタルDL BWPとで、中心周波数、サブキャリア間隔、周波数リソース(開始位置/帯域幅)のサブセット、BWPの設定に関連する設定、の少なくとも1つが別々に設定されてもよい。 A setting limit may be defined for the normal DL BWP and the supplemental DL BWP. For example, even if at least one of the center frequency, subcarrier spacing, subset of frequency resources (start position/bandwidth), and settings related to DL BWP settings are common between normal DL BWP and supplemental DL BWP good. Settings related to DL BWP settings are, for example, at least one of PDCCH settings (PDCCH Config), PDSCH settings (PDSCH Config), SPS settings (SPS Config), radio link monitoring (RLM) settings (RLM Config). There may be. Also, for example, for normal DL BWP and supplemental DL BWP, at least one of center frequency, subcarrier spacing, subset of frequency resources (start position/bandwidth), and settings related to BWP settings are set separately. may
 新規DL BWP(補助的なDL BWP)と通常DL BWPとの関連付けは、特定の数の比で構成されてもよい。新規DL BWP(補助的なDL BWP)と通常DL BWPとは、1:1で関連付けられてもよいし、1:N(Nは2以上の整数)で関連付けられてもよいし、N:1で関連付けられてもよいし、N:M(Mは2以上の整数、N=Mであってもよい)で関連付けられてもよい。 The association between the new DL BWP (auxiliary DL BWP) and the normal DL BWP may be configured in a specific number ratio. The new DL BWP (auxiliary DL BWP) and normal DL BWP may be associated 1:1, 1:N (N is an integer of 2 or more), or N:1. or N:M (M may be an integer equal to or greater than 2, and N=M).
 また、新規DL BWPの設定は、通常DL BWPと関連付けられていなくてもよい。 Also, the setting of the new DL BWP does not have to be associated with the normal DL BWP.
[実施形態1-1-3]
 DL BWPの設定は、DL BWPに対して割り当てられないPRBで構成されるUL BWP(新規UL BWP、XDD用UL BWP、ペア(paired)UL BWP)と合わせて行われてもよい。
[Embodiment 1-1-3]
The configuration of the DL BWP may be done in conjunction with a UL BWP (new UL BWP, UL BWP for XDD, paired UL BWP) composed of PRBs not allocated for the DL BWP.
 また、新規DL BWPの設定は、XDDにおけるUL BWP(新規UL BWP)の設定又は通常UL BWPの設定の少なくとも一方と合わせて行われてもよい。 Also, the setting of the new DL BWP may be performed together with at least one of the setting of the UL BWP (new UL BWP) in XDD and the setting of the normal UL BWP.
 また、新規DL BWPの設定は、新規UL BWPの設定とは関連付けられなくてもよい。言い換えれば、新規DL BWPの設定と新規UL BWPの設定とは、別々に行われてもよい。 Also, the setting of the new DL BWP may not be associated with the setting of the new UL BWP. In other words, setting the new DL BWP and setting the new UL BWP may be performed separately.
 なお、XDDについてのDL BWPの設定と関連するUL BWPの設定との間には、通常のDL BWPの設定と通常のUL BWPの設定との間と同じ制限があってもよい。また、XDDについてのDL BWPの設定と関連するUL BWPの設定との間には、通常のDL BWPの設定と通常のUL BWPの設定との間とは異なる制限があってもよい。例えば、当該制限は、XDDについてのDL BWPの設定と関連するUL BWPの設定とにおいて、中心周波数が異なることであってもよい。また、当該制限は、XDDについてのDL BWPの設定と関連するUL BWPの設定とにおいて、PRBが周波数領域でオーバーラップしないことであってもよい。 Note that there may be the same restrictions between the DL BWP settings for XDD and the related UL BWP settings as between the normal DL BWP settings and the normal UL BWP settings. Also, there may be different restrictions between the DL BWP settings for XDD and the associated UL BWP settings than between the normal DL BWP settings and the normal UL BWP settings. For example, the limitation may be that the center frequencies are different between the DL BWP setting for XDD and the associated UL BWP setting. The restriction may also be that the PRBs in the DL BWP settings for XDD and the associated UL BWP settings do not overlap in the frequency domain.
《実施形態1-2》
 実施形態1-2において、時間ドメインにおけるDL BWPのスイッチングパターンのセミスタティックな設定がサポートされてもよい。
<<Embodiment 1-2>>
In embodiments 1-2, semi-static configuration of DL BWP switching patterns in the time domain may be supported.
 当該スイッチングパターンによれば、pure DLリソース(そのDLリソース内の全ての周波数がDLに利用可能であるDLリソース/DL BWP)と、XDDにおけるDLリソース(新規DL BWP)と、の切り替えを、動的なBWPのスイッチ指示及び既存のスイッチングに必要な遅延時間を要することなく行うことができる。 According to this switching pattern, the switching between pure DL resources (DL resources/DL BWP in which all frequencies in the DL resources are available for DL) and DL resources in XDD (new DL BWP) can be performed automatically. This can be done without the typical BWP switch indication and the delay time required for existing switching.
[実施形態1-2-1]
 DL BWPのスイッチングパターンは、TDD設定に基づいて行われてもよい。
[Embodiment 1-2-1]
The switching pattern of the DL BWP may be done based on the TDD settings.
 UEは、TDDの設定に関するRRC情報要素(例えば、TDD-UL-DL-Config)に基づいて、DL BWPのスイッチングパターンを決定/判断してもよい。例えば、DL BWPのスイッチングパターンは、TDDの設定に関するRRC情報要素(例えば、TDD-UL-DL-Config)に含まれてもよい。 The UE may determine/judgment the DL BWP switching pattern based on the RRC information element regarding the TDD configuration (eg, TDD-UL-DL-Config). For example, the DL BWP switching pattern may be included in the RRC information element for TDD configuration (eg, TDD-UL-DL-Config).
 例えば、通常のDL/UL/FLに加えて、XDDに関するDL/ULに関する情報が、TDDの設定に関するRRC情報要素(例えば、TDD-UL-DL-Config)に含まれてもよい。 For example, in addition to normal DL/UL/FL, information on DL/UL on XDD may be included in an RRC information element on TDD configuration (eg, TDD-UL-DL-Config).
 本開示において、XDDに関するDL/UL、利用できないDL/ULリソース、利用可能なDL/ULリソース、XDD DL/UL、部分的(partial)DL/UL、部分的に利用可能なDL/ULリソース、部分的に利用できないDL/ULリソース、無効な(invalid)DL/ULリソース、無効なリソースブロック、無効なリソースブロックパターン、部分的パターン、は互いに読み替えられてもよい。 In this disclosure, DL/UL for XDD, unavailable DL/UL resource, available DL/UL resource, XDD DL/UL, partial DL/UL, partially available DL/UL resource, Partially unavailable DL/UL resource, invalid DL/UL resource, invalid resource block, invalid resource block pattern, partial pattern may be read interchangeably.
 また、UEは、BWPの設定に関するRRC情報要素(例えば、BWP-Config)に基づいて、DL BWPのスイッチングパターンを決定/判断してもよい。例えば、DL BWPのスイッチングパターンは、BWPの設定に関するRRC情報要素(例えば、BWP-Config)に含まれてもよい。 Also, the UE may determine/judgment the DL BWP switching pattern based on the RRC information element (for example, BWP-Config) regarding the BWP configuration. For example, the DL BWP switching pattern may be included in an RRC information element (eg, BWP-Config) regarding BWP configuration.
 例えば、BWPの設定に関するRRC情報要素(例えば、BWP-Config)に、XDDにおけるDLリソースの周期及び(時間)オフセットが含まれてもよい。当該周期及びオフセットは、特定の時間単位(例えば、スロット、シンボル)で表されてもよいし、任意の時間で示されてもよい。 For example, an RRC information element related to BWP configuration (eg, BWP-Config) may include the period and (time) offset of DL resources in XDD. The period and offset may be expressed in a specific time unit (eg, slot, symbol), or may be expressed in arbitrary time.
 また、UEは、XDDにおけるBWPの設定に関するRRC情報要素に基づいて、DL BWPのスイッチングパターンを決定/判断してもよい。当該RRC制御要素は、Rel.17以降に規定されるパラメータであってもよいし、既存のTDDの設定に関するRRC情報要素(例えば、TDD-UL-DL-Config)及びBWPの設定に関するRRC情報要素(例えば、BWP-Config)以外のパラメータであってもよい。 Also, the UE may determine/judgment the DL BWP switching pattern based on the RRC information element regarding the BWP configuration in XDD. The RRC control element is Rel. 17 or later, or RRC information elements related to existing TDD settings (e.g., TDD-UL-DL-Config) and RRC information elements related to BWP settings (e.g., BWP-Config) may be a parameter of
[実施形態1-2-2]
 DL BWPのスイッチングパターンの設定に関する制限が規定されてもよい。
[Embodiment 1-2-2]
Restrictions on setting the switching pattern of the DL BWP may be specified.
 XDD DLリソースの時間ドメインの位置に関する制限が規定されてもよい。例えば、XDDにおけるDLリソースは、通常DLリソースの時間的に後、及び、通常ULリソースの時間的に前、の少なくとも一方に設定されるよう制限されてもよい。 Restrictions on the time domain location of XDD DL resources may be defined. For example, DL resources in XDD may be restricted to be set temporally after normal DL resources and/or temporally before normal UL resources.
 また、例えば、XDDにおけるDLリソースは、特定のリソースにのみ設定されるよう制限されてもよい。当該特定のリソースは、例えば、UL及びDLが割り当てられるリソース(例えば、スロット)であってもよい。また、当該特定のリソースは、例えば、XDDおけるDLリソース以外の残りの部分が、通常ULのリソース(シンボル)となるリソース(例えば、スロット)であってもよい。また、当該特定のリソースは、例えば、SS/PBCHブロックを含まないスロットであってもよい。 Also, for example, DL resources in XDD may be restricted so that they are set only to specific resources. The specific resource may be, for example, a resource (eg, slot) to which the UL and DL are assigned. Also, the specific resource may be, for example, a resource (for example, a slot) in which the rest of the XDD other than the DL resource is a normal UL resource (symbol). Also, the specific resource may be, for example, a slot that does not include an SS/PBCH block.
 例えば、XDDにおけるDLリソースは、通常DLリソースの時間的に前、及び、通常ULリソースの時間的に後、の少なくとも一方に設定されるよう制限されてもよい。 For example, DL resources in XDD may be restricted to be set temporally before normal DL resources and/or temporally after normal UL resources.
 既存の(Rel.15/16で規定される)DL/UL BWPの設定及びBWPの切り替えは、ネットワーク(例えば、基地局)からの設定/指示に基づいて行われる。既存のDL/UL BWPの設定及びBWPの切り替えは、所定のタイマ、及び、特定のDCIフォーマット(例えば、DCIフォーマット0_1、0_2、1_1、1_2のいずれか)に基づいて行われてもよい。  The existing (defined in Rel. 15/16) DL/UL BWP settings and BWP switching are performed based on settings/instructions from the network (eg, base station). Existing DL/UL BWP configuration and BWP switching may be performed based on a predetermined timer and a specific DCI format (for example, DCI format 0_1, 0_2, 1_1, or 1_2).
 図4Aは、既存のDL/UL BWP(pure DL BWP及びpure UL BWPに相当)の切り替えの一例を示す図である。図4Aに示す例において、UEは、所定のタイマー/特定のDCIに基づいて、TDDにおけるDL/UL BWPの切り替え(DL BWP#1からDL BWP#2への切り替えと、UL BWP#1からUL BWP#2への切り替え)を行う。図4Aの図では、切り替えによってBWPの周波数方向のリソースが増加している。 FIG. 4A is a diagram showing an example of switching between existing DL/UL BWP (equivalent to pure DL BWP and pure UL BWP). In the example shown in FIG. 4A, the UE performs DL/UL BWP switching in TDD (DL BWP#1 to DL BWP#2 and UL BWP#1 to UL (switching to BWP#2). In the diagram of FIG. 4A, the resource in the BWP frequency direction increases due to switching.
 なお、図4Aに示す図では、TDDにおけるDL BWPの中心周波数と、UL BWPの中心周波数は等しく、破線で示している。図4Bに示す図でも、TDDにおけるDL BWPの中心周波数と、UL BWPの中心周波数は等しく、破線で示している。本開示において、DL BWPとUL BWPとの中心周波数が等しいケースを説明するが、DL BWPとUL BWPとで中心周波数が異なっていてもよい。 Note that in the diagram shown in FIG. 4A, the center frequency of the DL BWP in TDD and the center frequency of the UL BWP are the same, and are indicated by broken lines. In the diagram shown in FIG. 4B as well, the center frequency of the DL BWP in TDD and the center frequency of the UL BWP are the same, and are indicated by dashed lines. In this disclosure, a case where the DL BWP and the UL BWP have the same center frequency will be described, but the DL BWP and the UL BWP may have different center frequencies.
 以下では、XDDにおけるDL/UL BWPの設定及びBWPの切り替えについて説明する。  The following describes DL/UL BWP settings and BWP switching in XDD.
 UEは、上位レイヤシグナリング(RRCシグナリング)を用いて、XDDにおけるDL/UL BWP(BWPパターン)が設定されてもよい。UEは、RRC設定に含まれるBWPスイッチングパターンの設定、及び、所定のタイマ、及び、特定のDCIフォーマット(例えば、DCIに含まれるBWPの設定/指示)の少なくとも1つに基づいて、XDD DL/UL BWPの設定及びBWPの切り替えを設定/指示されてもよい。 The UE may be configured with DL/UL BWP (BWP pattern) in XDD using higher layer signaling (RRC signaling). The UE, based on at least one of the BWP switching pattern configuration included in the RRC configuration, a predetermined timer, and a specific DCI format (eg, BWP configuration/indication included in DCI), XDD DL/ UL BWP setting and BWP switching may be set/instructed.
 図4Bは、XDDにおけるDL/UL BWPの切り替えの一例を示す図である。図4Bに示す例において、UEは、pure DL BWPとして、DL BWP#1と、XDDにおけるDL BWPとして、DL BWP#1aが設定されている。また、図4Bに示す例において、UEは、pure UL BWPとして、UL BWP#1と、XDDにおけるUL BWPとして、UL BWP#1aが設定されている。 FIG. 4B is a diagram showing an example of DL/UL BWP switching in XDD. In the example shown in FIG. 4B, the UE is set with DL BWP#1 as the pure DL BWP and DL BWP#1a as the DL BWP in XDD. Also, in the example shown in FIG. 4B, the UE is set with UL BWP #1 as the pure UL BWP and UL BWP #1a as the UL BWP in XDD.
 DL BWP#1とDL BWP#1aとは、互いに関連付いてもよい。また、UL BWP#1とUL BWP#1aとは、互いに関連付いてもよい。また、DL BWP#1とUL BWP#1とは、互いに関連付いてもよい。DL BWP#1aとUL BWP#1aとは、互いに関連付いてもよい。 DL BWP#1 and DL BWP#1a may be associated with each other. Also, UL BWP#1 and UL BWP#1a may be associated with each other. Also, DL BWP#1 and UL BWP#1 may be associated with each other. DL BWP#1a and UL BWP#1a may be associated with each other.
 図4Bに示す例において、UEは、DL/UL BWPのスイッチングパターンを設定される。当該スイッチングパターンは、DL/UL BWP#1とDL/UL BWP#1aとのスイッチングを設定する情報であってもよい。当該スイッチングパターンには、通常DL/ULリソースと、XDDにおけるDL/ULリソースとの切り替えのタイミング、通常DL/ULリソースと、XDDにおけるDL/ULリソースと、を含む構成の周期、の少なくとも1つを示す情報であってもよい。UEは、当該スイッチングパターンに基づいて、DL及びULリソースについて決定/判断する。 In the example shown in FIG. 4B, the UE is configured with a DL/UL BWP switching pattern. The switching pattern may be information for setting switching between DL/UL BWP#1 and DL/UL BWP#1a. The switching pattern includes at least one of the timing of switching between the normal DL/UL resource and the DL/UL resource in XDD, and the period of the configuration including the normal DL/UL resource and the DL/UL resource in XDD. may be information indicating The UE decides/judges DL and UL resources based on the switching pattern.
《実施形態1-3》
 実施形態1-3において、pure DLリソースとXDDにおけるDLリソースとの間のDL BWPの動的なアダプテーションがサポートされてもよい。
<<Embodiment 1-3>>
In embodiments 1-3, dynamic adaptation of DL BWP between pure DL resources and DL resources in XDD may be supported.
 UEは、DCI、MAC CE、及び、特定の条件、の少なくとも1つに基づいて、pure DLリソースとXDDにおけるDLリソースとの間のDL BWPの動的なアダプテーションを行うことを決定/判断してもよい。 The UE determines/judges dynamic adaptation of DL BWP between pure DL resources and DL resources in XDD based on at least one of DCI, MAC CE, and specific conditions. good too.
 XDD用のDL BWPの動的なアダプテーションは、通常のDL BWPとXDDにおけるDL BWPとの切り替えを意味してもよい。 Dynamic adaptation of DL BWP for XDD may mean switching between normal DL BWP and DL BWP in XDD.
 XDD用のDL BWPの動的なアダプテーションは、通常のDL BWPと関連するXDDにおけるDL BWPのアクティベーション/ディアクティベーションを意味してもよい。 Dynamic adaptation of DL BWP for XDD may mean activation/deactivation of DL BWP in XDD associated with normal DL BWP.
 UEは、DL BWPのアダプテーションに関する指示を受信したのち、特定の期間のみにDL BWPのアダプテーションを適用してもよい(実施形態1-3-1)。当該特定の期間は、1つ以上のスロット/シンボルであってもよい。当該特定の期間は、指示が送信/受信されるスロット/シンボルからのオフセットで示されてもよい。当該特定の期間は、特定数のスロット/シンボルで示されてもよい。当該特定の期間/オフセットは、仕様で予め規定されてもよいし、上位レイヤシグナリングで設定/通知されてもよいし、DCIで動的に指示されてもよい。 The UE may apply the DL BWP adaptation only for a specific period after receiving the DL BWP adaptation instruction (Embodiment 1-3-1). The particular time period may be one or more slots/symbols. The particular time period may be indicated by an offset from the slot/symbol in which the indication is transmitted/received. The particular time period may be indicated by a particular number of slots/symbols. The specific period/offset may be predefined in the specification, configured/notified in higher layer signaling, or dynamically indicated in DCI.
 また、UEは、DL BWPのアダプテーションに関する指示を受信したのち、次のDL BWPのアダプテーションに関する指示を受信するまで、DL BWPのアダプテーションを適用してもよい(実施形態1-3-2)。言い換えれば、UEは、DL BWPのアダプテーションに関する指示を受信したのち、当該指示のキャンセル/オーバーライドを示す指示を受信するまで、DL BWPのアダプテーションを適用してもよい。 Also, the UE may apply DL BWP adaptation after receiving a DL BWP adaptation instruction until receiving a next DL BWP adaptation instruction (Embodiment 1-3-2). In other words, after receiving an indication for DL BWP adaptation, the UE may apply DL BWP adaptation until receiving an indication to cancel/override the indication.
 また、UEは、DL BWPのアダプテーションに関する指示を受信したのち、特定の条件が満たされるまで、DL BWPのアダプテーションを適用してもよい(実施形態1-3-3)。当該特定の条件は、例えば、特定のタイマが満了することであってもよい。 Also, after receiving an instruction regarding DL BWP adaptation, the UE may apply DL BWP adaptation until a specific condition is met (Embodiment 1-3-3). The particular condition may be, for example, expiration of a particular timer.
 上記実施形態1-3-1から1-3-3に記載する方法の少なくとも2つが組み合わせて適用されてもよい。 At least two of the methods described in Embodiments 1-3-1 to 1-3-3 above may be applied in combination.
 BWPのアダプテーションに関する切り替え遅延、及び、指示のメカニズム/条件の少なくとも1つは、既存の(Rel.15/16で規定される)切り替え遅延、及び、指示のメカニズム/条件の少なくとも1つと同じであってもよいし、異なっていてもよい。例えば、XDDにおけるDL BWPのアダプテーションのスイッチングに要する遅延は、既存の遅延時間より短く(又は、長く)設定/規定されてもよい。 At least one of the switching delay and indication mechanisms/conditions for BWP adaptation shall be the same as the existing (specified in Rel. 15/16) switching delay and at least one of the indication mechanisms/conditions. may be different. For example, the delay required for switching the DL BWP adaptation in XDD may be set/defined shorter (or longer) than the existing delay time.
 図5は、XDDにおけるBWPアダプテーションの一例を示す図である。図5に示す例において、UEは、pure DL BWPとして、DL BWP#1と、DL BWP#2とが設定されている。また、UEは、XDDにおけるDL BWPとして、DL BWP#1aとDL BWP#2aとが設定されている。また、UEは、pure UL BWPとして、UL BWP#1と、UL BWP#2とが設定されている。また、UEは、XDDにおけるUL BWPとして、UL BWP#1aとUL BWP#2aとが設定されている。 FIG. 5 is a diagram showing an example of BWP adaptation in XDD. In the example shown in FIG. 5, the UE has DL BWP#1 and DL BWP#2 set as pure DL BWP. In addition, DL BWP#1a and DL BWP#2a are set as DL BWPs in XDD for the UE. In addition, UL BWP#1 and UL BWP#2 are set for the UE as pure UL BWP. In addition, UL BWP#1a and UL BWP#2a are set for the UE as UL BWPs in XDD.
 なお、図5に示す例は、図4A及び図4Bと同様に、破線でDL BWP及びUL BWPの中心周波数を示しており、この中心周波数は、DLとULとで一致している。 In the example shown in FIG. 5, as in FIGS. 4A and 4B, broken lines indicate the center frequencies of the DL BWP and the UL BWP, and the center frequencies of the DL and UL match.
 DL BWP#1とDL BWP#1aとは、互いに関連付いてもよい。また、UL BWP#1とUL BWP#1aとは、互いに関連付いてもよい。 DL BWP#1 and DL BWP#1a may be associated with each other. Also, UL BWP#1 and UL BWP#1a may be associated with each other.
 DL BWP#2とDL BWP#2aとは、互いに関連付いてもよい。また、UL BWP#2とUL BWP#2aとは、互いに関連付いてもよい。 DL BWP#2 and DL BWP#2a may be associated with each other. Also, UL BWP#2 and UL BWP#2a may be associated with each other.
 DL BWP#1とUL BWP#1とは、互いに関連付いてもよい。DL BWP#1aとUL BWP#1aとは、互いに関連付いてもよい。 DL BWP#1 and UL BWP#1 may be associated with each other. DL BWP#1a and UL BWP#1a may be associated with each other.
 DL BWP#2とUL BWP#2とは、互いに関連付いてもよい。DL BWP#2aとUL BWP#2aとは、互いに関連付いてもよい。 DL BWP#2 and UL BWP#2 may be associated with each other. DL BWP#2a and UL BWP#2a may be associated with each other.
 図5に示す例において、UEは、DL/UL BWPのアダプテーションに関する指示を受信する。UEは、当該指示に基づいて、例えば、DL/UL BWPのスイッチングを行う。例えば、UEは、当該指示に基づいて、DL/UL BWP#1とDL/UL BWP#1aとのスイッチング、及び、DL/UL BWP#2とDL/UL BWP#2aとのスイッチングを行う。 In the example shown in FIG. 5, the UE receives an indication regarding DL/UL BWP adaptation. The UE performs, for example, DL/UL BWP switching based on the instruction. For example, the UE performs switching between DL/UL BWP#1 and DL/UL BWP#1a and switching between DL/UL BWP#2 and DL/UL BWP#2a based on the instruction.
 また、図5に示す例では、UEは、DL/UL BWP#1とDL/UL BWP#2との間のスイッチングを指示する情報を受信する。本開示において、既存のBWPのスイッチングと、通常DL/UL BWP及びXDDにおけるDL/UL BWPのスイッチングと、が組み合わされて行われてもよい。当該スイッチングの組み合わせは、共通のRRC情報要素/MAC CE/DCIを用いて行われてもよいし、異なるRRC情報要素/MAC CE/DCIを用いて行われてもよい。 Also, in the example shown in FIG. 5, the UE receives information instructing switching between DL/UL BWP#1 and DL/UL BWP#2. In the present disclosure, existing BWP switching and DL/UL BWP switching in normal DL/UL BWP and XDD may be combined. The switching combination may be performed using a common RRC information element/MAC CE/DCI, or may be performed using different RRC information elements/MAC CE/DCI.
 なお、上述の図4A、図4B及び図5に示す例では、DL BWPの帯域幅よりUL BWPの帯域幅が狭い(小さい)例を記載しているが、DL BWPの帯域幅とUL BWPの帯域幅とは等しくもよいし、UL BWPの帯域幅よりDL BWPの帯域幅が狭い構成としてもよい。例えば、DL BWPの帯域幅よりUL BWPの帯域幅が狭い構成とすることで、ULカバレッジ及びDL通信容量の観点で好適に適用可能である。 In addition, in the examples shown in FIGS. 4A, 4B, and 5 above, an example in which the UL BWP bandwidth is narrower (smaller) than the DL BWP bandwidth is described. The bandwidth may be equal to that of the UL BWP, or the bandwidth of the DL BWP may be narrower than the bandwidth of the UL BWP. For example, a configuration in which the UL BWP bandwidth is narrower than the DL BWP bandwidth is suitable for application in terms of UL coverage and DL communication capacity.
《実施形態1-4》
 XDD動作におけるDL BWPの設定及びアダプテーションの少なくとも一方をサポートするためのUE能力が規定されてもよい。当該UE能力は、XDD動作におけるUL BWPの設定及びアダプテーションの少なくとも一方をサポートするためのUE能力と共通のUE能力であってもよいし、異なるUE能力であってもよい。
<<Embodiment 1-4>>
UE capabilities may be specified to support DL BWP setup and/or adaptation in XDD operation. The UE capability may be a UE capability common to or different from the UE capability for supporting at least one of UL BWP configuration and adaptation in XDD operation.
 当該UE能力は、複数のBWPに関する動作に関するUE能力とは異なってもよい。また、当該UE能力は、複数のBWPに関する動作に関するUE能力をサポートするUEがサポートする能力であってもよい。 The UE capability may be different from the UE capability for operation on multiple BWPs. The UE capability may also be a capability supported by a UE that supports UE capabilities for operation with respect to multiple BWPs.
 また当該UE能力は、UEごと/バンドごと/複数のバンド単位におけるバンドごと/feature set(FS)ごと(複数のバンドの組み合わせ単位におけるバンドごと)/FS単位におけるセルごと(複数のバンドの組み合わせ単位におけるバンドごとのCCごと)/でネットワークに報告されてもよい。 In addition, the UE capability is per UE / per band / per band in multiple band units / per feature set (FS) (per band in multiple band combination units) / per cell in FS units (multiple band combination units may be reported to the network on a per CC per band basis.
 XDDにおけるDL BWPが特定の期間(例えば、スロット/シンボル)に対して、設定/アクティベーションされるとき、UEは、当該特定の期間における周波数ドメインリソース割り当て(FDRA)を、対応する通常DL BWPと同様に解釈してもよい。つまり、通常DL BWPとXDDにおけるDL BWPとに割り当てられるPRBインデックス(のナンバリング/オーダリング)が同じであってもよい。このとき、UEは、利用可能でないPRBに対して、FDRAによってDLチャネル/信号が割り当てられないと想定してもよい。あるいは、UEは、利用可能でないPRBに対して、FDRAによってDLチャネル/信号が割り当てられたとしても、割り当てられた部分のDLチャネル/信号の受信処理を行わなくてもよい。 When a DL BWP in XDD is configured/activated for a specific period (e.g., slot/symbol), the UE assigns a frequency domain resource allocation (FDRA) in that specific period to the corresponding normal DL BWP and may be interpreted similarly. That is, the PRB indices (numbering/ordering) assigned to the normal DL BWP and the DL BWP in XDD may be the same. At this time, the UE may assume that DL channels/signals are not assigned by the FDRA for PRBs that are not available. Alternatively, even if a DL channel/signal is assigned by the FDRA for a PRB that is not available, the UE may not perform reception processing of the assigned portion of the DL channel/signal.
 また、XDDにおけるDL BWPが特定の期間に対して、設定/アクティベーションされるとき、UEは、当該特定の期間におけるFDRAを、対応する通常DL BWPと異なって解釈してもよい。つまり、通常DL BWPとXDDにおけるDL BWPとに割り当てられるPRBインデックス(のナンバリング/オーダリング)が異なってもよい。XDDにおけるDL BWPにおけるPRBについて、対応する通常DL BWPと比較して利用可能でないPRBについては、PRBインデックスのナンバリング/オーダリングがされなくてもよい。このとき、XDDにおけるDL BWPのPRBは、仮想的に連続なPRBと呼ばれてもよい。 Also, when the DL BWP in XDD is configured/activated for a specific period, the UE may interpret the FDRA in that specific period differently than the corresponding normal DL BWP. That is, the (numbering/ordering of) PRB indices assigned to normal DL BWPs and DL BWPs in XDD may differ. For PRBs in DL BWP in XDD that are not available compared to the corresponding normal DL BWP, the PRB indices may not be numbered/ordered. At this time, the DL BWP PRBs in XDD may be referred to as virtually continuous PRBs.
 なお、上記ではPRBに限定して説明したが、リソースはこれに限られない。 Although the explanation above is limited to PRB, resources are not limited to this.
 設定/アクティベーションされるXDDにおけるDL BWP外に、DLチャネル/信号の少なくとも一部が設定/スケジューリングされる場合、UEは、当該DLチャネル/信号を受信することを想定(期待)しなくてもよい。 If at least some of the DL channels/signals are configured/scheduled outside the DL BWP in the configured/activated XDD, the UE does not expect to receive such DL channels/signals. good.
 また、設定/アクティベーションされるXDDにおけるDL BWP外に、DLチャネル/信号の少なくとも一部が設定/スケジューリングされる場合、UEは、当該DL BWP外に設定/スケジューリングされる、DLチャネル/信号の少なくとも一部を受信することを想定(期待)しなくてもよい。このとき、UEは、DLチャネル/信号に対し、パンクチャ/レートマッチを行ってもよい。当該パンクチャ/レートマッチは、仕様に基づいて行われてもよいし、上位レイヤシグナリング(RRCシグナリング)で設定/通知されてもよい。 Also, if at least some of the DL channels/signals are configured/scheduled outside the DL BWP in the XDD that is configured/activated, the UE is configured/scheduled outside the DL BWP. It may not be assumed (expected) to receive at least part of it. The UE may then puncture/rate match the DL channel/signal. The puncturing/rate matching may be performed based on the specification, or may be configured/notified by higher layer signaling (RRC signaling).
 なお、本開示において、通常DL/UL BWPとXDDにおけるDL/UL BWPとの境界、DL/UL BWPのスイッチングが行われる境界、スロット境界、の少なくとも1つの境界を跨ぐ送受信(例えば、繰り返し送信/受信(repetition)、セミパーシステントスケジューリング(SPS))がスケジュール/設定/アクティベーションされることを、UEは想定(期待)しなくてもよい。 In the present disclosure, transmission/reception (for example, repeated transmission/ The UE may not assume (expect) that reception (repetition, semi-persistent scheduling (SPS)) is scheduled/configured/activated.
 また、本開示において、通常DL/UL BWPとXDDにおけるDL/UL BWPとの境界、DL/UL BWPのスイッチングが行われる境界、スロット境界、の少なくとも1つの境界を跨ぐ送受信がスケジュール/設定/アクティベーションされる場合、UEは、当該送受信をキャンセルしてもよい。UEは、当該キャンセルを、当該境界のタイミングに基づいて(つまり、送受信の一部のキャンセルを)判断してもよいし、当該境界のタイミングとは無関係に(つまり、送受信全体のキャンセルを)判断してもよい。 In addition, in the present disclosure, transmission and reception across at least one of the boundaries between the normal DL/UL BWP and the DL/UL BWP in XDD, the boundary where DL/UL BWP switching is performed, and the slot boundary are scheduled/configured/activated. If so, the UE may cancel the transmission/reception. The UE may decide to cancel based on the timing of the boundary (i.e. cancel part of the transmission/reception) or independently of the timing of the boundary (i.e. cancel the entire transmission/reception). You may
 以上第1の実施形態によれば、XDD動作におけるDL BWPの設定を適切に行うことができる。 According to the first embodiment, it is possible to appropriately set the DL BWP in the XDD operation.
<第2の実施形態>
 第2の実施形態では、XDD ULの周波数リソースに関して説明する。
<Second embodiment>
In the second embodiment, XDD UL frequency resources will be described.
《実施形態2-1》
[実施形態2-1-1]
 実施形態2-1において、XDD動作において、連続又は不連続のPRBを用いてUL BWP(新規UL BWP、XDD用UL BWP)の設定が行われてもよい。UEは、XDD動作において、連続又は不連続のPRBを用いてUL BWPが設定されてもよい。
<<Embodiment 2-1>>
[Embodiment 2-1-1]
In embodiment 2-1, in XDD operation, UL BWP (new UL BWP, UL BWP for XDD) may be set using continuous or discontinuous PRBs. The UE may be configured with UL BWP with contiguous or non-contiguous PRBs in XDD operation.
 上述の実施形態1-1-1で説明したように、図2に示すような、1つのCCの周波数ドメインにおいて、1つのULリソースが2つのDLリソースに挟まれるように割り当てられる例を主に説明するが、DL/ULリソースの配置/割り当てはこの例に限られない。1つのDLリソースが2つのULリソースに挟まれるように割り当てられてもよい。1つのCCの周波数ドメインにおいて、1つのULリソースが割り当てられることは、連続のPRBを用いるUL BWPの設定が行われることを意味してもよい。反対に、1つのCCの周波数ドメインにおいて、2つのULリソースが割り当てられることは、不連続のPRBを用いるUL BWPの設定が行われることを意味してもよい。例えば、1つのCCの周波数ドメインにおいて、2つのULリソースを割り当てることで、UL送信の周波数ホッピングを好適に適用することができる。 As described in Embodiment 1-1-1 above, in the frequency domain of one CC as shown in FIG. As explained, the placement/allocation of DL/UL resources is not limited to this example. One DL resource may be allocated so as to be sandwiched between two UL resources. Allocating one UL resource in the frequency domain of one CC may mean that a UL BWP using continuous PRBs is configured. Conversely, the allocation of two UL resources in the frequency domain of one CC may mean that the UL BWP using non-contiguous PRBs is configured. For example, by allocating two UL resources in the frequency domain of one CC, frequency hopping of UL transmission can be preferably applied.
 このとき、UEは、XDDにおけるUL BWPと通常UL BWPとが異なる構成であると認識してもよい。また、UEは、通常UL BWPに関する動的な指示/切り替え遅延なしに、UL BWPの切り替えを行ってもよい。 At this time, the UE may recognize that the UL BWP in XDD and the normal UL BWP have different configurations. Also, the UE may switch between UL BWPs normally without dynamic indication/switching delays for UL BWPs.
 UL BWPのPRBの設定について、UEは、トータルの周波数リソース(ULに使用できる周波数リソースと、ULに使用できない周波数リソースと、を含む連続の周波数リソース)と、ULリソースに使用できない周波数リソース(開始位置/帯域幅)を設定されてもよい。トータルの周波数リソースは、既存のBWPのパラメータ、例えば、開始PRB(の位置)及びPRB数(帯域幅)を用いて設定されてもよい。ULリソースに使用できない周波数リソースは、例えば、開始PRB(の位置)及びPRB数(帯域幅)を用いて設定されてもよい。 Regarding UL BWP PRB settings, the UE uses total frequency resources (continuous frequency resources including frequency resources that can be used for UL and frequency resources that cannot be used for UL) and frequency resources that cannot be used for UL resources (start location/bandwidth) may be set. The total frequency resource may be configured using existing BWP parameters, such as the starting PRB (position) and the number of PRBs (bandwidth). Frequency resources that cannot be used for UL resources may be configured using, for example, the starting PRB (position) and the number of PRBs (bandwidth).
 また、UL BWPのPRBの設定について、UEは、利用可能な周波数リソース(開始位置/帯域幅)を設定されてもよい。ULリソースに使用できない周波数リソースは、例えば、開始PRB(の位置)とPRB数(帯域幅)との、複数(例えば、2つ)のセットを用いて設定されてもよい。 Also, regarding the setting of the UL BWP PRB, the UE may be set with available frequency resources (starting position/bandwidth). Frequency resources that cannot be used for UL resources may be configured, for example, using multiple (eg, two) sets of starting PRBs (positions) and the number of PRBs (bandwidth).
[実施形態2-1-2]
 新規UL BWPの設定は、通常UL BWPの補助的な(Supplementary)UL BWPとして設定されてもよい。補助的なUL BWPは、通常UL BWPと関連付けられてもよい。補助的なUL BWPは、サプリメンタルUL BWP、追加UL BWP、などと呼ばれてもよい。
[Embodiment 2-1-2]
The configuration of the new UL BWP may be configured as a UL BWP supplementary to the normal UL BWP. Auxiliary UL BWP may be associated with the normal UL BWP. A supplemental UL BWP may be called a supplemental UL BWP, an additional UL BWP, and so on.
 通常UL BWPとサプリメンタルUL BWPとは、設定制限が規定されてもよい。例えば、通常UL BWPとサプリメンタルUL BWPとで、中心周波数、サブキャリア間隔、周波数リソース(開始位置/帯域幅)のサブセット、UL BWPの設定に関連する設定、の少なくとも1つが共通であってもよい。UL BWPの設定に関連する設定は、例えば、PUCCH設定(PDCCH Config)、PUSCH設定(PDSCH Config)、設定グラント設定(Configured grant config)、SRS設定(SRS Config)、無線リンクモニタリング(RLM)設定(RLM Config)、の少なくとも1つであってもよい。また、例えば、通常UL BWPとサプリメンタルDL BWPとで、中心周波数、サブキャリア間隔、周波数リソース(開始位置/帯域幅)のサブセット、BWPの設定に関連する設定、の少なくとも1つが別々に設定されてもよい。 Setting limits may be defined for the normal UL BWP and the supplemental UL BWP. For example, even if at least one of the center frequency, subcarrier spacing, subset of frequency resources (start position/bandwidth), and settings related to UL BWP settings are common between normal UL BWP and supplemental UL BWP good. Settings related to UL BWP settings are, for example, PUCCH settings (PDCCH Config), PUSCH settings (PDSCH Config), configured grant settings (Configured grant config), SRS settings (SRS Config), radio link monitoring (RLM) settings ( RLM Config), may be at least one. Also, for example, for normal UL BWP and supplemental DL BWP, at least one of the center frequency, subcarrier spacing, subset of frequency resources (start position/bandwidth), and settings related to BWP settings are set separately. may
 新規UL BWP(補助的なUL BWP)と通常UL BWPとの関連付けは、特定の数の比で構成されてもよい。新規UL BWP(補助的なUL BWP)と通常UL BWPとは、1:1で関連付けられてもよいし、1:N(Nは2以上の整数)で関連付けられてもよいし、N:1で関連付けられてもよいし、N:M(Mは2以上の整数、N=Mであってもよい)で関連付けられてもよい。 The association between new UL BWPs (auxiliary UL BWPs) and regular UL BWPs may be configured in a specific number ratio. The new UL BWP (auxiliary UL BWP) and the normal UL BWP may be associated 1:1, 1:N (N is an integer of 2 or more), or N:1 or N:M (M may be an integer equal to or greater than 2, and N=M).
 また、新規UL BWPの設定は、通常UL BWPと関連付けられていないUL BWPの設定によって行われてもよい。 Also, the setting of a new UL BWP may be performed by setting a UL BWP that is not normally associated with a UL BWP.
[実施形態2-1-3]
 UL BWPの設定は、UL BWPに対して割り当てられないPRBで構成されるDL BWP(新規DL BWP、XDD用DL BWP、ペア(paired)DL BWP)と合わせて行われてもよい。
[Embodiment 2-1-3]
The UL BWP configuration may be done in conjunction with a DL BWP (new DL BWP, DL BWP for XDD, paired DL BWP) that consists of PRBs that are not allocated for the UL BWP.
 また、新規UL BWPの設定は、XDDにおけるDL BWPの設定又は通常DL BWPの設定の少なくとも一方と合わせて行われてもよい。 Also, the setting of the new UL BWP may be performed together with at least one of the setting of the DL BWP in XDD and the setting of the normal DL BWP.
 また、新規UL BWPの設定は、新規DL BWPの設定とは関連付けられなくてもよい。言い換えれば、新規UL BWPの設定と新規DL BWPの設定とは、別々に行われてもよい。 Also, the setting of the new UL BWP may not be associated with the setting of the new DL BWP. In other words, setting the new UL BWP and setting the new DL BWP may be performed separately.
 なお、XDDについてのUL BWPの設定と関連するDL BWPの設定との間には、通常のUL BWPの設定と通常のDL BWPの設定との間と同じ制限があってもよい。また、XDDについてのUL BWPの設定と関連するDL BWPの設定との間には、通常のUL BWPの設定と通常のDL BWPの設定との間とは異なる制限があってもよい。例えば、当該制限は、XDDについてのUL BWPの設定と関連するDL BWPの設定とにおいて、中心周波数が異なることであってもよい。また、当該制限は、XDDについてのUL BWPの設定と関連するDL BWPの設定とにおいて、PRBが周波数領域でオーバーラップしないことであってもよい。 Note that there may be the same restrictions between the UL BWP settings for XDD and the related DL BWP settings as between the normal UL BWP settings and the normal DL BWP settings. Also, there may be different restrictions between the UL BWP settings for XDD and the associated DL BWP settings than between the normal UL BWP settings and the normal DL BWP settings. For example, the limitation may be that the center frequencies are different between the UL BWP setting for XDD and the associated DL BWP setting. The restriction may also be that the PRBs in the UL BWP settings for XDD and the associated DL BWP settings do not overlap in the frequency domain.
《実施形態2-2》
 実施形態2-2において、時間ドメインにおけるUL BWPのスイッチングパターンのセミスタティックな設定がサポートされてもよい。
<<Embodiment 2-2>>
In embodiment 2-2, semi-static configuration of UL BWP switching patterns in the time domain may be supported.
 当該スイッチングパターンによれば、pure ULリソース(そのULリソース内の全ての周波数がULに利用可能であるULリソース/UL BWP)と、XDDにおけるULリソース(新規UL BWP)と、の切り替えを、動的なBWPのスイッチ指示及び既存のスイッチングに必要な遅延時間を要することなく行うことができる。 According to the switching pattern, the switching between pure UL resources (UL resources in which all frequencies in the UL resources are available for UL/UL BWP) and UL resources in XDD (new UL BWP) is activated. This can be done without the typical BWP switch indication and the delay time required for existing switching.
[実施形態2-2-1]
 UL BWPのスイッチングパターンは、TDD設定に基づいて行われてもよい。
[Embodiment 2-2-1]
The UL BWP switching pattern may be done based on the TDD setting.
 UEは、TDDの設定に関するRRC情報要素(例えば、TDD-UL-DL-Config)に基づいて、DL BWPのスイッチングパターンを決定/判断してもよい。例えば、UL BWPのスイッチングパターンは、TDDの設定に関するRRC情報要素(例えば、TDD-UL-DL-Config)に含まれてもよい。 The UE may determine/judgment the DL BWP switching pattern based on the RRC information element regarding the TDD configuration (eg, TDD-UL-DL-Config). For example, the UL BWP switching pattern may be included in the RRC information element for TDD configuration (eg, TDD-UL-DL-Config).
 例えば、通常のDL/UL/FLに加えて、XDDに関するDL/ULに関する情報が、TDDの設定に関するRRC情報要素(例えば、TDD-UL-DL-Config)に含まれてもよい。 For example, in addition to normal DL/UL/FL, information on DL/UL on XDD may be included in an RRC information element on TDD configuration (eg, TDD-UL-DL-Config).
 本開示において、XDDに関するDL/UL、利用できないDL/ULリソース、利用可能なDL/ULリソース、XDD DL/UL、部分的(partial)DL/UL、部分的に利用可能なDL/ULリソース、部分的に利用できないDL/ULリソース、無効な(invalid)DL/ULリソース、無効なリソースブロック、無効なリソースブロックパターン、部分的パターン、は互いに読み替えられてもよい。 In this disclosure, DL/UL for XDD, unavailable DL/UL resource, available DL/UL resource, XDD DL/UL, partial DL/UL, partially available DL/UL resource, Partially unavailable DL/UL resource, invalid DL/UL resource, invalid resource block, invalid resource block pattern, partial pattern may be read interchangeably.
 また、UEは、BWPの設定に関するRRC情報要素(例えば、BWP-Config)に基づいて、UL BWPのスイッチングパターンを決定/判断してもよい。例えば、UL BWPのスイッチングパターンは、BWPの設定に関するRRC情報要素(例えば、BWP-Config)に含まれてもよい。 Also, the UE may determine/judgment the UL BWP switching pattern based on the RRC information element (for example, BWP-Config) regarding the BWP configuration. For example, the UL BWP switching pattern may be included in an RRC information element regarding BWP configuration (eg, BWP-Config).
 例えば、BWPの設定に関するRRC情報要素(例えば、BWP-Config)に、XDDにおけるULリソースの周期及び(時間)オフセットが含まれてもよい。当該周期及びオフセットは、特定の時間単位(例えば、スロット、シンボル)で表されてもよいし、任意の時間で示されてもよい。 For example, the RRC information element for BWP configuration (eg, BWP-Config) may include the period and (time) offset of the UL resource in XDD. The period and offset may be expressed in a specific time unit (eg, slot, symbol), or may be expressed in arbitrary time.
 また、UEは、XDDにおけるBWPの設定に関するRRC情報要素に基づいて、UL BWPのスイッチングパターンを決定/判断してもよい。当該RRC制御要素は、Rel.17以降に規定されるパラメータであってもよいし、既存のTDDの設定に関するRRC情報要素(例えば、TDD-UL-DL-Config)及びBWPの設定に関するRRC情報要素(例えば、BWP-Config)以外のパラメータであってもよい。 Also, the UE may determine/judgment the UL BWP switching pattern based on the RRC information element regarding the BWP configuration in XDD. The RRC control element is Rel. 17 or later, or RRC information elements related to existing TDD settings (e.g., TDD-UL-DL-Config) and RRC information elements related to BWP settings (e.g., BWP-Config) may be a parameter of
[実施形態2-2-2]
 UL BWPのスイッチングパターンの設定に関する制限が規定されてもよい。
[Embodiment 2-2-2]
Restrictions on the configuration of UL BWP switching patterns may be specified.
 XDD ULリソースの時間ドメインの位置に関する制限が規定されてもよい。例えば、XDDにおけるULリソースは、通常ULリソースの時間的に後、及び、通常DLリソースの時間的に前、の少なくとも一方に設定されるよう制限されてもよい。 Restrictions on the time domain location of XDD UL resources may be defined. For example, UL resources in XDD may be restricted to be set temporally after normal UL resources and/or temporally before normal DL resources.
 また、例えば、XDDにおけるULリソースは、特定のリソースにのみ設定されるよう制限されてもよい。当該特定のリソースは、例えば、UL及びDLが割り当てられるリソース(例えば、スロット)であってもよい。また、当該特定のリソースは、例えば、XDDおけるULリソース以外の残りの部分が、通常ULのリソース(シンボル)となるリソース(例えば、スロット)であってもよい。また、当該特定のリソースは、例えば、SS/PBCHブロックを含まないスロットであってもよい。 Also, for example, UL resources in XDD may be restricted so that they are set only to specific resources. The specific resource may be, for example, a resource (eg, slot) to which the UL and DL are assigned. Also, the specific resource may be, for example, a resource (for example, a slot) in which the remainder other than the UL resource in XDD is a normal UL resource (symbol). Also, the specific resource may be, for example, a slot that does not include an SS/PBCH block.
 例えば、XDDにおけるULリソースは、通常ULリソースの時間的に前、及び、通常DLリソースの時間的に後、の少なくとも一方に設定されるよう制限されてもよい。 For example, UL resources in XDD may be restricted to be set temporally before normal UL resources and/or temporally after normal DL resources.
 XDDにおけるDL/UL BWPの設定及びBWPの切り替えについては、実施形態1-2-2に記載した態様と同様である。 DL/UL BWP setting and BWP switching in XDD are the same as those described in Embodiment 1-2-2.
《実施形態2-3》
 実施形態2-3において、pure ULリソースとXDDにおけるULリソースとの間のUL BWPの動的なアダプテーションがサポートされてもよい。
<<Embodiment 2-3>>
In embodiments 2-3, dynamic adaptation of UL BWP between pure UL resources and UL resources in XDD may be supported.
 UEは、DCI、MAC CE、及び、特定の条件、の少なくとも1つに基づいて、pure ULリソースとXDDにおけるULリソースとの間のUL BWPの動的なアダプテーションを行うことを決定/判断してもよい。 The UE determines/determines to perform dynamic adaptation of UL BWP between pure UL resources and UL resources in XDD based on at least one of DCI, MAC CE, and specific conditions. good too.
 XDD用のUL BWPの動的なアダプテーションは、通常のUL BWPとXDDにおけるUL BWPとの切り替えを意味してもよい。 Dynamic adaptation of UL BWP for XDD may mean switching between normal UL BWP and UL BWP in XDD.
 XDD用のUL BWPの動的なアダプテーションは、通常のUL BWPと関連するXDDにおけるUL BWPのアクティベーション/ディアクティベーションを意味してもよい。 Dynamic adaptation of UL BWP for XDD may mean activation/deactivation of UL BWP in XDD associated with normal UL BWP.
 UEは、UL BWPのアダプテーションに関する指示を受信したのち、特定の期間のみにUL BWPのアダプテーションを適用してもよい(実施形態2-3-1)。当該特定の期間は、1つ以上のスロット/シンボルであってもよい。当該特定の期間は、指示が送信/受信されるスロット/シンボルからのオフセットで示されてもよい。当該特定の期間は、特定数のスロット/シンボルで示されてもよい。当該特定の期間/オフセットは、仕様で予め規定されてもよいし、上位レイヤシグナリングで設定/通知されてもよいし、DCIで動的に指示されてもよい。 The UE may apply the UL BWP adaptation only for a specific period after receiving the UL BWP adaptation instruction (Embodiment 2-3-1). The particular time period may be one or more slots/symbols. The particular time period may be indicated by an offset from the slot/symbol in which the indication is transmitted/received. The particular time period may be indicated by a particular number of slots/symbols. The specific period/offset may be predefined in the specification, configured/notified in higher layer signaling, or dynamically indicated in DCI.
 また、UEは、UL BWPのアダプテーションに関する指示を受信したのち、次のUL BWPのアダプテーションに関する指示を受信するまで、UL BWPのアダプテーションを適用してもよい(実施形態2-3-2)。言い換えれば、UEは、UL BWPのアダプテーションに関する指示を受信したのち、当該指示のキャンセル/オーバーライドを示す指示を受信するまで、UL BWPのアダプテーションを適用してもよい。 In addition, the UE may apply UL BWP adaptation until receiving the next UL BWP adaptation instruction after receiving the UL BWP adaptation instruction (Embodiment 2-3-2). In other words, after receiving an indication for UL BWP adaptation, the UE may apply UL BWP adaptation until receiving an indication to cancel/override the indication.
 また、UEは、UL BWPのアダプテーションに関する指示を受信したのち、特定の条件が満たされるまで、UL BWPのアダプテーションを適用してもよい(実施形態2-3-3)。当該特定の条件は、例えば、特定のタイマが満了することであってもよい。 Also, after receiving an instruction regarding UL BWP adaptation, the UE may apply UL BWP adaptation until a specific condition is met (Embodiment 2-3-3). The particular condition may be, for example, expiration of a particular timer.
 上記実施形態2-3-1から2-3-3に記載する方法の少なくとも2つが組み合わせて適用されてもよい。 At least two of the methods described in Embodiments 2-3-1 to 2-3-3 above may be applied in combination.
 BWPのアダプテーションに関する切り替え遅延、及び、指示のメカニズム/条件の少なくとも1つは、既存の(Rel.15/16で規定される)切り替え遅延、及び、指示のメカニズム/条件の少なくとも1つと同じであってもよいし、異なっていてもよい。例えば、XDDにおけるDL BWPのアダプテーションのスイッチングに要する遅延は、既存の遅延時間より短く(又は、長く)設定/規定されてもよい。 At least one of the switching delay and indication mechanisms/conditions for BWP adaptation shall be the same as the existing (specified in Rel. 15/16) switching delay and at least one of the indication mechanisms/conditions. may be different. For example, the delay required for switching the DL BWP adaptation in XDD may be set/defined shorter (or longer) than the existing delay time.
《実施形態2-4》
 XDD動作におけるUL BWPの設定及びアダプテーションの少なくとも一方をサポートするためのUE能力が規定されてもよい。当該UE能力は、XDD動作におけるDL BWPの設定及びアダプテーションの少なくとも一方をサポートするためのUE能力と共通のUE能力であってもよいし、異なるUE能力であってもよい。
<<Embodiment 2-4>>
UE capabilities may be specified to support UL BWP configuration and/or adaptation in XDD operation. The UE capability may be a UE capability common to or different from the UE capability for supporting at least one of DL BWP configuration and adaptation in XDD operation.
 当該UE能力は、複数のBWPに関する動作に関するUE能力とは異なってもよい。また、当該UE能力は、複数のBWPに関する動作に関するUE能力をサポートするUEがサポートする能力であってもよい。 The UE capability may be different from the UE capability for operation on multiple BWPs. The UE capability may also be a capability supported by a UE that supports UE capabilities for operation with respect to multiple BWPs.
 また、当該UE能力は、UEごと/バンドごと/feature set(FS)ごと(複数のバンド単位におけるバンドごと)/feature set(FS)単位におけるセルごと(複数のバンドの組み合わせ単位におけるバンドごとのCCごと)/でネットワークに報告されてもよい。 In addition, the UE capability is per UE / per band / per feature set (FS) (per band in multiple band units) / per cell in feature set (FS) units (CC per band in multiple band combination units per)/to the network.
 XDDにおけるUL BWPが特定の期間(例えば、スロット/シンボル)に対して、設定/アクティベーションされるとき、UEは、当該特定の期間における周波数ドメインリソース割り当て(FDRA)を、対応する通常UL BWPと同様に解釈してもよい。つまり、通常UL BWPとXDDにおけるUL BWPとに割り当てられるPRBインデックス(のナンバリング/オーダリング)が同じであってもよい。このとき、UEは、利用可能でないPRBに対して、FDRAによってULチャネル/信号がスケジュールされないと想定してもよい。あるいは、UEは、利用可能でないPRBに対して、FDRAによってULチャネル/信号がスケジュールされたとしても、スケジュールされた部分のULチャネル/信号の送信処理を行わなくてもよい。 When the UL BWP in XDD is configured/activated for a specific period (e.g. slot/symbol), the UE assigns the Frequency Domain Resource Allocation (FDRA) in that specific period to the corresponding normal UL BWP may be interpreted similarly. That is, the (numbering/ordering of) PRB indices assigned to the normal UL BWP and the UL BWP in XDD may be the same. The UE may then assume that UL channels/signals are not scheduled by the FDRA for PRBs that are not available. Alternatively, the UE may not process the scheduled part of the UL channel/signal for transmission even if the UL channel/signal is scheduled by the FDRA for PRBs that are not available.
 また、XDDにおけるUL BWPが特定の期間に対して、設定/アクティベーションされるとき、UEは、当該特定の期間におけるFDRAを、対応する通常UL BWPと異なって解釈してもよい。つまり、通常UL BWPとXDDにおけるUL BWPとに割り当てられるPRBインデックス(のナンバリング/オーダリング)が異なってもよい。XDDにおけるUL BWPにおけるPRBについて、対応する通常UL BWPと比較して利用可能でないPRBについては、PRBインデックスのナンバリング/オーダリングがされなくてもよい。このとき、XDDにおけるUL BWPのPRBは、仮想的に連続なPRBと呼ばれてもよい。 Also, when the UL BWP in XDD is configured/activated for a specific period, the UE may interpret the FDRA in that specific period differently than the corresponding normal UL BWP. That is, the (numbering/ordering of) PRB indices assigned to the normal UL BWP and the UL BWP in XDD may be different. For the PRBs in the UL BWP in XDD that are not available compared to the corresponding normal UL BWP, the PRB indices may not be numbered/ordered. At this time, the UL BWP PRB in XDD may be called a virtually continuous PRB.
 なお、上記ではPRBに限定して説明したが、リソースはこれに限られない。 Although the explanation above is limited to PRB, resources are not limited to this.
 設定/アクティベーションされるXDDにおけるUL BWP外に、ULチャネル/信号の少なくとも一部が設定/スケジューリングされる場合、UEは、当該ULチャネル/信号を送信しないと判断してもよい。UEは、設定/アクティベーションされるXDDにおけるUL BWP外に、ULチャネル/信号の少なくとも一部が設定/スケジューリングされることを想定(期待)しなくてもよい。 If at least part of a UL channel/signal is configured/scheduled outside the UL BWP in the configured/activated XDD, the UE may decide not to transmit that UL channel/signal. The UE may not assume (expect) that at least some of the UL channels/signals are configured/scheduled outside the UL BWP in the configured/activated XDD.
 また、設定/アクティベーションされるXDDにおけるUL BWP外に、ULチャネル/信号の少なくとも一部が設定/スケジューリングされる場合、UEは、当該UL BWP外に設定/スケジューリングされる、ULチャネル/信号の少なくとも一部を送信しないと判断してもよい。このとき、UEは、ULチャネル/信号に対し、パンクチャ/レートマッチを行ってもよい。当該パンクチャ/レートマッチは、仕様に基づいて行われてもよいし、上位レイヤシグナリング(RRCシグナリング)で設定/通知されてもよい。 Also, if at least some of the UL channels/signals are configured/scheduled outside the UL BWP in the XDD that is configured/activated, the UE is configured/scheduled outside the UL BWP. It may be determined not to transmit at least a portion. The UE may then puncture/rate match the UL channels/signals. The puncturing/rate matching may be performed based on the specification, or may be configured/notified by higher layer signaling (RRC signaling).
 以上第2の実施形態によれば、XDD動作におけるUL BWPの設定を適切に行うことができる。 According to the second embodiment described above, it is possible to appropriately set the UL BWP in the XDD operation.
<第3の実施形態>
《分析》
 XDD運用を実現するために、スロットフォーマットに関する既存の設定/指示が、異なるUEに対して異なるリンク方向(link direction、DL(‘D’)/UL(‘U’)/フレキシブル(‘F’))のスロットの指示に用いられてもよい。
<Third Embodiment>
"analysis"
In order to realize XDD operation, the existing configuration/instruction on the slot format has different link directions (DL ('D')/UL ('U')/flexible ('F')) for different UEs. ) may be used to indicate the slot of
 図6A及び6Bの例において、まず、UE#1及び#2のスロット#0から#4に対し、RRCによってリンク方向‘DDFFU’がそれぞれ設定される。 In the examples of FIGS. 6A and 6B, first, the link direction 'DDFFU' is set by RRC for slots #0 to #4 of UE #1 and #2, respectively.
 その後、図6Aの例において、UE#1に対するDCIは、スロット#2及び#3における2つの‘F’を2つの‘D’と指示する。これによって、UE#1は、スロット#2及び#3においてDLを受信できる。 Then, in the example of FIG. 6A, the DCI for UE #1 indicates two 'F's in slots #2 and #3 as two 'D's. This allows UE#1 to receive DL in slots #2 and #3.
 スロット#2及び#3においてXDD運用を実現するために、基地局は、スロット#2及び#3内の一部のリソース#1上においてPDSCH受信を伴わずに、UE#1をスケジュールすることが考えられる。もしリソース#1の利用不可能の明示的指示がなく、リソース#1上において周期的/セミパーシステントのSSB/CSI-RSがあり得る場合、SSB/CSI-RSの測定に問題が発生するおそれがある。 To achieve XDD operation in slots #2 and #3, the base station may schedule UE #1 without PDSCH reception on some resource #1 in slots #2 and #3. Conceivable. If there is no explicit indication of unavailability of resource #1 and there can be periodic/semi-persistent SSB/CSI-RS on resource #1, there may be problems with SSB/CSI-RS measurement. There is
 図6Bの例において、UE#2に対するDCIは、スロット#2及び#3における2つの‘F’を2つの‘U’と指示する。これによって、UE#2は、スロット#2及び#3においてULを送信できる。 In the example of FIG. 6B, the DCI for UE #2 indicates two 'F's in slots #2 and #3 as two 'U's. This allows UE#2 to transmit UL in slots #2 and #3.
 スロット#2及び#3においてXDD運用を実現するために、基地局は、スロット#2及び#3内の一部のリソース#2上においてPUSCH送信を伴わずに、UE#2をスケジュールすることが考えられる。もしリソース#2の利用不可能の明示的指示がなく、リソース#2上において通常のPUCCH/SRSのリソース設定がリソース#1に限定されない場合、PUSCH/SRS/PRACHの送信に関する問題が発生するおそれがある。 In order to achieve XDD operation in slots #2 and #3, the base station may schedule UE #2 without PUSCH transmission on some resource #2 in slots #2 and #3. Conceivable. If there is no explicit indication of unavailability of resource #2 and normal PUCCH/SRS resource configuration on resource #2 is not limited to resource #1, there may be problems with PUSCH/SRS/PRACH transmission. There is
 異なるUEに対し、時間リソース(サブフレーム/スロット/ミニスロット/シンボル)の異なるリンク方向が指示されてもよい。 Different link directions of time resources (subframes/slots/minislots/symbols) may be indicated for different UEs.
 幾つかのUEに対して‘D’と指示された時間リソース上のXDD運用を有効にするために、幾つかの周期的/セミパーシステントのRSが検討されてもよい。 Some periodic/semi-persistent RSs may be considered to enable XDD operation on time resources designated 'D' for some UEs.
 幾つかのUEに対して‘U’と指示された時間リソース上のXDD運用を有効にするために、幾つかのULのチャネル/RSの設定が検討されてもよい。 Some UL channel/RS configurations may be considered to enable XDD operation on time resources designated 'U' for some UEs.
 本開示において、部分的利用可能性(partial availability)、部分的利用可能指示(partial available indication)、部分的利用不可能指示(partial non-available indication)、部分的利用可能DL周波数リソース、部分的利用可能UL周波数リソース、部分的利用不可能DL周波数リソース、部分的利用不可能UL周波数リソース、リンク方向(D/F/U)及び部分的利用可能性の組み合わせ、は互いに読み替えられてもよい。 In the present disclosure, partial availability, partially available indication, partial non-available indication, partially available DL frequency resource, partial utilization A combination of available UL frequency resources, partially unavailable DL frequency resources, partially unavailable UL frequency resources, link direction (D/F/U) and partial availability may be read interchangeably.
《実施形態3-1》
 既存のリンク方向(D/F/U)指示に基づき、時間ユニット対する「部分的利用可能性(partial availability)」を指示するための新規タイプの指示(新規指示)が規定されてもよい。本開示において、時間ユニットは、ある長さを有する時間リソース、例えば、サブフレーム/スロット/ミニスロット/シンボルであってもよい。本開示において、部分的利用可能性の指示は、コンポーネントキャリア/BWPの内の一部の周波数リソース(リソースブロック/リソースエレメント)が、特定のリンク方向に利用可能であるか否かを示してもよいし、その周波数リソースを示してもよい。
<<Embodiment 3-1>>
Based on the existing link direction (D/F/U) indication, a new type of indication (new indication) may be defined to indicate "partial availability" for a time unit. In this disclosure, a time unit may be a time resource with a certain length, eg, subframe/slot/minislot/symbol. In this disclosure, the partial availability indication may indicate whether some frequency resources (resource blocks/resource elements) within a component carrier/BWP are available for a particular link direction. Alternatively, the frequency resource may be indicated.
 新規指示は、RRC IE/MAC CE/DCIであってもよい。 The new indication may be RRC IE/MAC CE/DCI.
 新規指示は、既存のリンク方向指示のシグナリングとは別のシグナリングであってもよい。言い換えれば、新規指示(例えば、部分的利用可能性の指示、部分周波数リソースの指示など)のRRC IE/MAC CE/DCIの要素は、既存のリンク方向指示(例えば、D/F/Uの指示)のRRC IE/MAC CE/DCIの要素と分けられてもよい。 The new indication may be signaling different from the signaling of the existing link direction indication. In other words, the RRC IE/MAC CE/DCI elements of the new indication (e.g. partial availability indication, partial frequency resource indication, etc.) are replaced with the existing link direction indication (e.g. D/F/U indication). ) may be separated from the RRC IE/MAC CE/DCI elements.
 新規指示は、既存のリンク方向指示のシグナリングと組み合わせられたシグナリングであってもよい。言い換えれば、既存のリンク方向指示と、新規指示と、の組み合わせ(例えば、部分的利用可能性及びD/F/Uの指示、D/F/U/部分的利用可能D/部分的利用可能Uの指示)を示すRRC IE/MAC CE/DCIが通知されてもよい。 The new indication may be signaling combined with existing link direction indication signaling. In other words, a combination of existing link direction indications and new indications (e.g., partial availability and D/F/U indications, D/F/U/partially available D/partially available U indication) may be notified of RRC IE/MAC CE/DCI.
 UEは、「部分的利用可能指示(partial available indication)」(利用可能な部分的周波数リソース)及び‘D’(DL用時間ユニット)の指示(DLに利用可能な部分的周波数リソースの指示、部分的利用可能DL周波数リソースの指示)と、「部分的利用不可能指示(partial non-available indication)」(利用不可能な部分的周波数リソース)及び‘D’(DL用時間ユニット)の指示(DLに利用不可能な部分的周波数リソースの指示、部分的利用不可能DL周波数リソースの指示)と、のいずれかを指示されてもよい。 The UE provides a 'partial available indication' (partial frequency resources available) and an indication of 'D' (time unit for DL) (indication of partial frequency resources available for DL, partial available DL frequency resource) and 'partial non-available indication' (partial frequency resource unavailable) and 'D' (time unit for DL) indication (DL indication of partial unavailable frequency resources, indication of partial unavailable DL frequency resources).
 UEは、「部分的利用可能指示」(利用可能な部分的周波数リソース)及び‘U’(UL用時間ユニット)の指示(ULに利用可能な部分的周波数リソースの指示、部分的利用可能UL周波数リソースの指示)と、「部分的利用不可能指示」(利用不可能な部分的周波数リソース)及び‘U’(UL用時間ユニット)の指示(ULに利用不可能な部分的周波数リソースの指示、部分的利用不可能UL周波数リソースの指示)と、のいずれかを指示されてもよい。 The UE shall provide a 'partial availability indication' (partial frequency resource available) and an indication of 'U' (time unit for UL) (indication of partial frequency resource available for UL, partial available UL frequency resource) and a 'partial unavailability indication' (partial frequency resource unavailable) and an indication 'U' (time unit for UL) (an indication of partial frequency resource unavailable for UL, indication of partially unavailable UL frequency resources).
 UEは、「部分的利用可能指示」(利用可能な部分的周波数リソース)及び‘D’(DL用時間ユニット)の指示(部分的利用可能DL周波数リソースの指示)と、「部分的利用可能指示」(利用可能な部分的周波数リソース)及び‘U’(UL用時間ユニット)の指示(部分的利用可能UL周波数リソースの指示)と、の少なくとも1つを指示されてもよい。UEは、ある時間ユニットの内の部分的利用可能DL周波数リソースの指示に基づいて、その時間ユニットの内の部分的利用不可能DL周波数リソース(その時間ユニットの内の部分的利用可能DL周波数リソース以外の部分的周波数リソース)を識別してもよい。UEは、ある時間ユニットの内の部分的利用可能UL周波数リソースの指示に基づいて、その時間ユニットの内の部分的利用不可能DL周波数リソース(その時間ユニットの内の部分的利用可能UL周波数リソース以外の部分的周波数リソース)を識別してもよい。 The UE sends a 'partial availability indication' (partial frequency resource available) and 'D' (time unit for DL) indication (partial available DL frequency resource indication) and a 'partial availability indication ' (partial frequency resource available) and an indication of 'U' (time unit for UL) (indication of partial available UL frequency resource). Based on the indication of the partial available DL frequency resources in a time unit, the UE may select partial unavailable DL frequency resources in the time unit (partially available DL frequency resources in the time unit). (partial frequency resources other than ) may be identified. Based on the indication of the partial available UL frequency resources in a time unit, the UE may select partial unavailable DL frequency resources in the time unit (partially available UL frequency resources in the time unit). (partial frequency resources other than ) may be identified.
 UEは、「部分的利用不可能指示」(利用不可能な部分的周波数リソース)及び‘D’(DL用時間ユニット)の指示(部分的利用不可能DL周波数リソースの指示)と、「部分的利用不可能指示」(利用不可能な部分的周波数リソース)及び‘U’(UL用時間ユニット)の指示(部分的利用不可能DL周波数リソースの指示)と、の少なくとも1つを指示されてもよい。UEは、ある時間ユニットの内の部分的利用不可能DL周波数リソースの指示に基づいて、その時間ユニットの内の部分的利用可能DL周波数リソース(その時間ユニットの内の部分的利用不可能DL周波数リソース以外の部分的周波数リソース)を識別してもよい。UEは、ある時間ユニットの内の部分的利用不可能UL周波数リソースの指示に基づいて、その時間ユニットの内の部分的利用可能UL周波数リソース(その時間ユニットの内の部分的利用不可能UL周波数リソース以外の部分的周波数リソース)を識別してもよい。 The UE shall give a 'partially unavailable indication' (partially unavailable frequency resource) and 'D' (time unit for DL) indication (an indication of partially unavailable DL frequency resource) and a 'partially 'unavailable indication' (partial frequency resource unavailable) and 'U' (time unit for UL) indication (partially unavailable DL frequency resource indication). good. Based on the indication of the partially unavailable DL frequency resources in a time unit, the UE may select the partially available DL frequency resources in the time unit (partially unavailable DL frequency in the time unit). (partial frequency resources other than resources) may be identified. Based on the indication of the partially unavailable UL frequency resources in a time unit, the UE may select the partially available UL frequency resources in the time unit (partially unavailable UL frequency resources in the time unit). (partial frequency resources other than resources) may be identified.
 もし時間ユニットが、「部分的利用可能指示」及び‘D’を指示された場合(部分的利用可能DL周波数リソースを指示された場合)、UEは、その時間ユニットの内の部分的利用可能DL周波数リソース上においてDLのチャネル/RSを受信すると想定してもよいし、その時間ユニットの内の部分的利用不可能DL周波数リソース上においてDLのチャネル/RSを受信すると想定しなくてもよい。もし時間ユニットが、「部分的利用不可能指示」及び‘D’を指示された場合(部分的利用不可能DL周波数リソースを指示された場合)、UEは、その時間ユニットの内の部分的利用可能DL周波数リソース上においてDLのチャネル/RSを受信すると想定してもよいし、その時間ユニットの内の部分的利用不可能DL周波数リソース上においてDLのチャネル/RSを受信すると想定しなくてもよい。 If a time unit is indicated with a 'partially available indication' and 'D' (indicated with a partially available DL frequency resource), the UE shall It may be assumed to receive DL channels/RS on frequency resources, or it may not be assumed to receive DL channels/RS on partially unavailable DL frequency resources within that time unit. If a time unit is indicated with 'partially unavailable indication' and 'D' (indicated with a partially unavailable DL frequency resource), the UE may use a partial utilization within that time unit. It may be assumed to receive DL channels/RS on available DL frequency resources, or it may not be assumed to receive DL channels/RS on partially unavailable DL frequency resources within that time unit. good.
 もし時間ユニットが、「部分的利用不可能指示」及び‘U’を指示された場合(部分的利用不可能UL周波数リソースを指示された場合)、UEは、その時間ユニットの内の部分的利用不可能UL周波数リソース上においてDLのチャネル/RSを受信すると想定してもよいし、その時間ユニットの内の部分的利用可能UL周波数リソース上においてDLのチャネル/RSを受信すると想定しなくてもよい。 If a time unit is indicated with a 'partially unavailable indication' and 'U' (indicated a partially unavailable UL frequency resource), the UE may use a partial utilization within that time unit. It may be assumed to receive DL channels/RS on impossible UL frequency resources, or it may not be assumed to receive DL channels/RS on partial available UL frequency resources within that time unit. good.
 部分的利用可能DL周波数リソース(P_AD)は、RRC IE/MAC CEによって設定/指示されることができる。例えば、その部分的利用可能DL周波数リソースの設定/指示は、幾つかの周波数リソース(部分的利用不可能DL周波数リソース(P_ND))を無効化してもよいし(図7A)、周波数リソースの2つのセットを組み合わせてもよい(図7B)。 The partially available DL frequency resource (P_AD) can be set/indicated by the RRC IE/MAC CE. For example, setting/indicating that partially available DL frequency resources may disable some frequency resources (partially unavailable DL frequency resources (P_ND)) (FIG. 7A), The two sets may be combined (Fig. 7B).
 複数の時間ユニット(例えば、時間ユニット#0及び#1)に対して共通の部分的利用可能DL周波数リソースが設定/指示されてもよい(図7A)。複数の時間ユニット(例えば、時間ユニット#0及び#1)に対して異なる部分的利用可能DL周波数リソースが設定/指示されてもよい(図7B)。 A common partial available DL frequency resource may be configured/indicated for multiple time units (eg, time units #0 and #1) (FIG. 7A). Different partial available DL frequency resources may be configured/indicated for multiple time units (eg, time units #0 and #1) (FIG. 7B).
 もし時間ユニットが、「部分的利用可能指示」及び‘U’を指示された場合(部分的利用可能UL周波数リソースを指示された場合)、UEは、その時間ユニットの内の部分的利用可能UL周波数リソース上においてULのチャネル/RSを送信すると想定してもよいし、その時間ユニットの内の部分的利用不可能UL周波数リソース上においてULのチャネル/RSを送信すると想定しなくてもよい。もし時間ユニットが、「部分的利用不可能指示」及び‘U’を指示された場合(部分的利用不可能UL周波数リソースを指示された場合)、UEは、その時間ユニットの内の部分的利用可能UL周波数リソース上においてULのチャネル/RSを送信すると想定してもよいし、その時間ユニットの内の部分的利用不可能UL周波数リソース上においてULのチャネル/RSを送信すると想定しなくてもよい。 If a time unit is indicated with a 'partially available indication' and 'U' (indicated with a partially available UL frequency resource), the UE shall It may be assumed that the UL channel/RS is transmitted on a frequency resource, or it may not be assumed that the UL channel/RS is transmitted on a partially unavailable UL frequency resource within that time unit. If a time unit is indicated with a 'partially unavailable indication' and 'U' (indicated a partially unavailable UL frequency resource), the UE may use a partial utilization within that time unit. It may be assumed that the UL channels/RS are transmitted on available UL frequency resources, or it is not assumed that the UL channels/RS are transmitted on partially unavailable UL frequency resources within the time unit. good.
 もし時間ユニットが、「部分的利用不可能指示」及び‘D’を指示された場合(部分的利用不可能DL周波数リソースを指示された場合)、UEは、その時間ユニットの内の部分的利用不可能DL周波数リソース上においてULのチャネル/RSを送信すると想定してもよいし、その時間ユニットの内の部分的利用可能DL周波数リソース上においてULのチャネル/RSを送信すると想定しなくてもよい。 If a time unit is indicated with 'partially unavailable indication' and 'D' (indicated with a partially unavailable DL frequency resource), the UE may use a partial utilization within that time unit. It may be assumed that UL channels/RS are transmitted on impossible DL frequency resources, or it is not assumed that UL channels/RS are transmitted on partial available DL frequency resources within that time unit. good.
 部分的利用可能UL周波数リソース(P_AU)は、RRC IE/MAC CEによって設定/指示されることができる。例えば、その部分的利用可能UL周波数リソースの設定/指示は、幾つかの周波数リソース(部分的利用不可能UL周波数リソース(P_NU))を無効化してもよいし(図7C)、周波数リソースの2つのセットを組み合わせてもよい(図7D)。 The partially available UL frequency resource (P_AU) can be set/indicated by the RRC IE/MAC CE. For example, setting/indicating that partially available UL frequency resources may disable some frequency resources (partially unavailable UL frequency resources (P_NU)) (FIG. 7C), The two sets may be combined (Fig. 7D).
 複数の時間ユニット(例えば、時間ユニット#0及び#1)に対して共通の部分的利用可能UL周波数リソースが設定/指示されてもよい(図7C)。複数の時間ユニット(例えば、時間ユニット#0及び#1)に対して異なる部分的利用可能UL周波数リソースが設定/指示されてもよい(図7D)。 A common partial available UL frequency resource may be configured/indicated for multiple time units (eg, time units #0 and #1) (FIG. 7C). Different partial available UL frequency resources may be configured/indicated for multiple time units (eg, time units #0 and #1) (FIG. 7D).
 この実施形態によれば、各時間リソースに対して、リンク方向を設定/指示できると共に、部分的に利用可能又は利用不可能な周波数リソースを柔軟に設定/指示できる。 According to this embodiment, the link direction can be set/indicated for each time resource, and the partially available or unavailable frequency resource can be flexibly set/indicated.
《実施形態3-2》
 ここでは、部分的利用可能DL時間ユニットにおけるUE動作について説明する。部分的利用可能DL時間ユニットは、「部分的利用可能指示」及び‘D’(部分的利用可能DL周波数リソース、P_AD)、又は、「部分的利用不可能指示」及び‘U’(部分的利用不可能UL周波数リソース、P_UL)であってもよい。
<<Embodiment 3-2>>
Here, UE operation in partially available DL time units is described. Partially available DL time units are indicated by 'partially available indication' and 'D' (partially available DL frequency resource, P_AD), or by 'partially unavailable indication' and 'U' (partially available Impossible UL frequency resource, P_UL).
-PDSCH受信
 UEは、部分的利用可能DL時間ユニット内の部分的利用可能DL周波数リソース(又は部分的利用不可能UL周波数リソース)のみにおいてPDSCH受信をスケジュールされると想定してもよい。UEは、部分的利用可能DL時間ユニット内の部分的利用不可能DL周波数リソース(又は部分的利用可能UL周波数リソース)の周りにおいてレートマッチングを行ってもよい。
- PDSCH reception A UE may assume that PDSCH reception is scheduled only on partially available DL frequency resources (or partially unavailable UL frequency resources) within partially available DL time units. The UE may perform rate matching around the partially unavailable DL frequency resource (or the partially available UL frequency resource) within the partially available DL time unit.
 部分的利用可能DL時間ユニット内のPDSCH受信に対し、UEは、選択肢1から3の少なくとも1つに従ってもよい。 For PDSCH reception within the partially available DL time unit, the UE may follow at least one of options 1 to 3.
[選択肢1]
 周波数リソース設定と、通常DL時間ユニット(部分的利用可能指示を指示されず且つ‘D’を指示された時間ユニット)時間ユニットに対する周波数ドメインリソース割り当て(DCI内のfrequency domain resource assignment(FDMA)指示)へのマッピングと、部分的利用可能DL時間ユニットと、は共通である(整合する)。UEは、FDRA指示が、部分的利用可能DL時間ユニット内の部分的利用不可能DL周波数リソース(又は部分的利用可能UL周波数リソース)とオーバーラップするPDSCHリソースを配置すると想定しなくてもよい。FDRAフィールドが、部分的利用可能DL時間ユニット内の部分的利用不可能DL周波数リソースとオーバーラップするPDSCHリソースを配置する場合が、エラーケースであってもよい。
[Option 1]
Frequency resource configuration and frequency domain resource allocation (frequency domain resource assignment (FDMA) indication in DCI) for normal DL time units (time units not indicated with partial availability indication and indicated 'D') time units , and partially available DL time units are common (consistent). The UE may not assume that the FDRA indication places PDSCH resources that overlap with partially unavailable DL frequency resources (or partially available UL frequency resources) within partially available DL time units. It may be an error case if the FDRA field places a PDSCH resource that overlaps with a partially unavailable DL frequency resource within a partially available DL time unit.
[選択肢2]
 周波数リソース設定と、通常DL時間ユニット(部分的利用可能指示を指示されず且つ‘D’を指示された時間ユニット)に対する周波数ドメインリソース割り当て(DCI内のFDMA指示)へのマッピングと、部分的利用可能DL時間ユニットと、は共通である(整合する)。UEは、部分的利用可能DL時間ユニット内の部分的利用不可能DL周波数リソース(又は部分的利用可能UL周波数リソース)の周りにおいてレートマッチングを行ってもよい。FDRA指示が、部分的利用可能DL時間ユニット内の部分的利用不可能DL周波数リソースを含む場合、UEは、その部分的利用不可能DL周波数リソースの周りにおいてレートマッチングを行ってもよい。
[Option 2]
Frequency resource configuration and mapping to frequency domain resource allocation (FDMA indication in DCI) for normal DL time units (time units not indicated with partial available indication and indicated 'D') and partial utilization possible DL time units are common (consistent). The UE may perform rate matching around the partially unavailable DL frequency resource (or the partially available UL frequency resource) within the partially available DL time unit. If the FDRA indication includes a partially unavailable DL frequency resource within the partially available DL time unit, the UE may rate match around the partially unavailable DL frequency resource.
[選択肢3]
 周波数リソース設定と、部分的利用可能DL時間ユニットに対する周波数ドメインリソース割り当て(DCI内のFDMA指示)へのマッピングと、がRRC IEによって別々に設定される。UEは、新規設定に基づいて、部分的利用可能DL時間ユニット内の部分的利用可能DL周波数リソースにおけるFDRAを解釈してもよい。
[Option 3]
The frequency resource configuration and mapping to frequency domain resource allocation (FDMA indication in DCI) for partial available DL time units is configured separately by RRC IE. The UE may interpret the FDRA on the partially available DL frequency resource within the partially available DL time unit based on the new configuration.
 DMRS及びphase tracking reference signal(PTRS)に対し、UEは、PDSCHと同様にハンドリングしてもよい。 For DMRS and phase tracking reference signal (PTRS), the UE may handle it similarly to PDSCH.
-PDCCH受信
 UEは、部分的利用可能DL時間ユニット内の部分的利用不可能DL周波数リソース(又は部分的利用可能UL周波数リソース)上においてPDCCH(候補)をモニタしない。UEは、以下のオプション1および2のいずれかに従ってもよい。
- PDCCH reception The UE does not monitor PDCCH (candidates) on partially unavailable DL frequency resources (or partially available UL frequency resources) within partially available DL time units. The UE may follow either of Options 1 and 2 below.
[オプション1]
 CORESET及びサーチスペース(SS)設定は、全てのDL時間ユニットに共通である。
[Option 1]
The CORESET and search space (SS) settings are common to all DL time units.
[オプション2]
 CORESET及びSS設定は、RRC IEによって、部分的利用可能DL時間ユニットに対して別に設定されてもよい。
[Option 2]
The CORESET and SS settings may be set differently for partial available DL time units by the RRC IE.
-SSB測定
 UEは、部分的利用可能DL時間ユニット内の部分的利用不可能DL周波数リソース(又は部分的利用可能UL周波数リソース)上においてSSBをモニタしない。UEは、以下のオプション1および2のいずれかに従ってもよい。あるいは、UEは、部分的利用可能DL時間ユニットが設定される時間リソース上にはSSBのモニタが設定されることを想定しなくてもよい。
- SSB measurement The UE does not monitor SSB on partially available DL frequency resources (or partially available UL frequency resources) within partially available DL time units. The UE may follow either of Options 1 and 2 below. Alternatively, the UE may not expect SSB monitoring to be configured on time resources on which partially available DL time units are configured.
[オプション1]
 もし部分的利用可能DL時間ユニット内の部分的利用不可能DL周波数リソースにおいて、SSBがSSB周期(periodicity)に従って送信され得る場合、UEは、その部分的利用不可能DL周波数リソース上のSSB測定を無視する(行わない)。
[Option 1]
If the SSB can be transmitted according to the SSB periodicity on the partially unavailable DL frequency resource within the partially available DL time unit, the UE performs SSB measurements on the partially unavailable DL frequency resource. Ignore (do not).
[オプション2]
 もしSSBが、SSB周期に従って、ある時間ユニットにおいて送信され得る場合、UEは、その時間ユニットが部分的利用可能DL周波数リソースを指示されると想定しない。
[Option 2]
If SSB can be transmitted in a certain time unit according to the SSB period, the UE does not assume that the time unit is indicated with a partially available DL frequency resource.
-CSI-RS測定
 UEは、部分的利用可能DL時間ユニット内の部分的利用不可能DL周波数リソース(又は部分的利用可能UL周波数リソース)上においてCSI-RSをモニタしない。UEは、以下のオプション1および2のいずれかに従ってもよい。
- CSI-RS measurement The UE does not monitor CSI-RS on partially unavailable DL frequency resources (or partially available UL frequency resources) within partially available DL time units. The UE may follow either of Options 1 and 2 below.
[オプション1]
 もし部分的利用可能DL時間ユニット内の部分的利用不可能DL周波数リソースにおいて、CSI-RSが周期的(periodic)/セミパーシステント(semi-persistent)のCSI-RSの周期(periodicity)に従って送信され得る場合、UEは、その部分的利用不可能DL周波数リソース上のCSI-RS測定を無視する(行わない)。
[Option 1]
If CSI-RS is transmitted according to a periodic/semi-persistent CSI-RS periodicity in a partially unavailable DL frequency resource within a partially available DL time unit. If so, the UE ignores (does not make) CSI-RS measurements on that partially unavailable DL frequency resource.
[オプション2]
 UEは、部分的利用可能DL時間ユニット内の部分的利用不可能DL周波数リソースにおいて、非周期的(aperiodic)CSI-RSが送信される(部分的利用可能DL時間ユニット内の部分的利用不可能DL周波数リソースにおいて送信される非周期的CSI-RSが、DCIによってスケジュール(トリガ)される)と想定しない。
[Option 2]
A UE is sent aperiodic CSI-RS on a partially unavailable DL frequency resource within a partially available DL time unit (partially unavailable within a partially available DL time unit). It is not assumed that aperiodic CSI-RS transmitted on DL frequency resources are scheduled (triggered) by DCI.
-DL-PRS測定
 UEは、部分的利用可能DL時間ユニット内の部分的利用不可能DL周波数リソース(又は部分的利用可能UL周波数リソース)上においてDL-positioning reference signal(PRS)をモニタしない。UEは、以下のオプション1および2のいずれかに従ってもよい。
- DL-PRS measurement The UE does not monitor DL-positioning reference signals (PRS) on partially unavailable DL frequency resources (or partially available UL frequency resources) within partially available DL time units. The UE may follow either of Options 1 and 2 below.
[オプション1]
 もし部分的利用可能DL時間ユニット内の部分的利用不可能DL周波数リソースにおいて、DL-PRSが周期(periodicity)に従って送信され得る場合、UEは、その部分的利用不可能DL周波数リソース上のDL-PRS測定を無視する(行わない)。
[Option 1]
If the DL-PRS can be transmitted according to the periodicity on the partially unavailable DL frequency resource within the partially available DL time unit, the UE may transmit the DL-PRS on the partially unavailable DL frequency resource. Ignore (do not make) PRS measurements.
[オプション2]
 もしDL-PRSが、周期に従って、ある時間ユニットにおいて送信され得る場合、UEは、その時間ユニットが部分的利用可能DL周波数リソースを指示されると想定しない。
[Option 2]
If the DL-PRS can be transmitted periodically in a certain time unit, the UE does not assume that the time unit is indicated with a partially available DL frequency resource.
 この実施形態によれば、各時間リソースに対して、DL及び部分的利用可能性を指示された時間リソースにおいて、UEは適切に受信を制御できる。 According to this embodiment, for each time resource, the UE can control reception appropriately in time resources indicated for DL and partial availability.
《実施形態3-3》
 ここでは、部分的利用可能UL時間ユニットにおけるUE動作について説明する。部分的利用可能UL時間ユニットは、「部分的利用可能指示」及び‘U’(部分的利用可能UL周波数リソース、P_AU)、又は、「部分的利用不可能指示」及び‘D’(部分的利用不可能DL周波数リソース、P_ND)であってもよい。
<<Embodiment 3-3>>
UE operation in partially available UL time units is described herein. Partially available UL time units are defined as 'partially available indication' and 'U' (partially available UL frequency resource, P_AU) or 'partially unavailable indication' and 'D' (partially available Impossible DL frequency resource, P_ND).
-PUCCH設定
 部分的利用可能UL時間ユニットに対するPUCCH設定に関し、UEは、以下のオプション1及び2の少なくとも1つに従ってもよい。
- PUCCH configuration For PUCCH configuration for partially available UL time units, the UE may follow at least one of options 1 and 2 below.
[オプション1]
 部分的利用可能UL時間ユニットに対し、別のPUCCH設定が設定されることができる。部分的利用可能UL時間ユニットに対するPUCCH設定は、通常UL時間ユニット(部分的利用可能指示を指示されず且つ‘U’を指示された時間ユニット)に対するPUCCH設定とは別に設定されてもよい。
[Option 1]
Another PUCCH configuration may be configured for the partially available UL time unit. PUCCH configuration for partial availability UL time units may be configured separately from PUCCH configuration for normal UL time units (time units not indicated with partial availability indication and indicated with 'U').
[オプション2]
 通常UL時間ユニット用の幾つかのPUCCHリソースと、部分的利用可能UL時間ユニット用の幾つかのPUCCHリソースと、を有する単一のPUCCH設定が設定される。UEは、時間リソースに対応するPUCCHリソースを選択してもよい。
[Option 2]
A single PUCCH configuration is configured with some PUCCH resources for normal UL time units and some PUCCH resources for partially available UL time units. The UE may select PUCCH resources corresponding to time resources.
 PUCCH用途に対し、UEは、以下の選択肢1及び2のいずれかに従ってもよい。 For PUCCH applications, the UE may follow either of options 1 and 2 below.
[選択肢1]
 部分的利用可能UL時間ユニットに対し、PUCCHの用途(UCIの種類、HARQ-ACK/CSI/SRなど)に制限はない。
[Option 1]
There are no restrictions on PUCCH usage (UCI type, HARQ-ACK/CSI/SR, etc.) for partial available UL time units.
[選択肢2]
 部分的利用可能UL時間ユニットに対し、PUCCHの用途が、HARQ-ACKフィードバック(SRを伴うHARQ-ACK、又はSRを伴わないHARQ-ACK)のみに制限される。
[Option 2]
For partial available UL time units, PUCCH usage is restricted to HARQ-ACK feedback only (HARQ-ACK with SR or HARQ-ACK without SR).
 部分的利用可能UL時間ユニットに対する送信電力制御(TPC)に関する設定は、通常UL時間ユニットに対するTPCに関する設定と異なってもよい。 The settings for transmit power control (TPC) for partially available UL time units may differ from the settings for TPC for normal UL time units.
 DMRSに対し、UEは、PUCCHと同様にハンドリングしてもよい。 The UE may handle DMRS in the same way as PUCCH.
-PUSCH設定
 部分的利用可能UL時間ユニットに対するPUSCH設定に関し、UEは、以下のオプション1及び2の少なくとも1つに従ってもよい。
- PUSCH configuration For PUSCH configuration for partially available UL time units, the UE may follow at least one of options 1 and 2 below.
[オプション1]
 部分的利用可能UL時間ユニットに対し、別のPUSCH設定(通常UL時間ユニットに対するPUSCH設定とは別のPUSCH設定)が設定される。この場合、スケジュールされたPUSCHは、部分的利用可能UL周波数リソース内にあってもよい(部分的利用可能UL周波数リソースに限定されてもよい)。
[Option 1]
A separate PUSCH configuration (different from the PUSCH configuration for normal UL time units) is configured for the partially available UL time units. In this case, the scheduled PUSCH may be within the partial available UL frequency resources (may be limited to the partial available UL frequency resources).
[オプション2]
 部分的利用可能UL時間ユニットに対する別のPUSCH設定(通常UL時間ユニットに対するPUSCH設定とは別のPUSCH設定)が設定されない。この場合、UEは、部分的利用不可能UL周波数リソース上のPUSCH送信をスケジュールされると想定しなくてもよい。
[Option 2]
A separate PUSCH configuration for the partially available UL time unit (a PUSCH configuration separate from the PUSCH configuration for the normal UL time unit) is not configured. In this case, the UE may not assume that PUSCH transmissions on partially unavailable UL frequency resources are scheduled.
 部分的利用可能UL時間ユニットに対するTPCに関する設定は、通常UL時間ユニットに対するTPCに関する設定と異なってもよい。DMRS及びPTRSに対し、UEは、PUSCHと同様にハンドリングしてもよい。 The setting for TPC for partially available UL time units may differ from the setting for TPC for normal UL time units. DMRS and PTRS may be handled by the UE in the same way as PUSCH.
-PRACH設定
 部分的利用可能UL時間ユニットに対するPRACH設定に関し、UEは、以下のオプション1及び2の少なくとも1つに従ってもよい。
- PRACH configuration For PRACH configuration for partially available UL time units, the UE may follow at least one of options 1 and 2 below.
[オプション1]
 部分的利用可能UL時間ユニットに対し、別のPRACH設定(通常UL時間ユニットに対するPRACH設定とは別のPRACH設定)が設定される。この場合、PRACHのリソース選択及び送信は、部分的利用可能UL周波数リソース内にあってもよい(部分的利用可能UL周波数リソースに限定されてもよい)。
[Option 1]
A separate PRACH configuration (a different PRACH configuration than for normal UL time units) is configured for the partially available UL time units. In this case, PRACH resource selection and transmission may be within the partial available UL frequency resources (may be limited to the partial available UL frequency resources).
[オプション2]
 部分的利用可能UL時間ユニットに対する別のPRACH設定(通常UL時間ユニットに対するPRACH設定とは別のPRACH設定)が設定されない。この場合、UEは、以下の選択肢1及び2のいずれかに従ってもよい。
[[選択肢1]]
 UEは、部分的利用不可能UL周波数リソース上のPRACHリソースを選択しなくてもよいし、部分的利用不可能UL周波数リソース上のPRACHリソースをPDCCHによって命令(order)されなくてもよい。
[[選択肢2]]
 UEは、部分的利用不可能UL周波数リソースとオーバーラップするPRACH送信を無視してもよい(行わなくてもよい)。例えば、PDCCHによって命令されたPRACH送信が、部分的利用不可能UL周波数リソースとオーバーラップする場合、UEは、そのPRACH送信を無視してもよい(行わなくてもよい)。
[Option 2]
A separate PRACH configuration for the partially available UL time unit (PRACH configuration separate from the PRACH configuration for the normal UL time unit) is not configured. In this case, the UE may follow either of options 1 and 2 below.
[[Option 1]]
The UE may not select PRACH resources on the partially unavailable UL frequency resources, nor may the PRACH resources on the partially unavailable UL frequency resources be ordered by the PDCCH.
[[Option 2]]
The UE may (or may not) ignore PRACH transmissions that overlap with partially unavailable UL frequency resources. For example, if a PRACH transmission commanded by the PDCCH overlaps with a partially unavailable UL frequency resource, the UE may (or may not) ignore the PRACH transmission.
-SRS設定
 部分的利用可能UL時間ユニットに対するSRS設定に関し、UEは、以下のオプション1及び2の少なくとも1つに従ってもよい。
- SRS configuration For SRS configuration for partially available UL time units, the UE may follow at least one of options 1 and 2 below.
[オプション1]
 部分的利用可能UL時間ユニットに対し、別のSRS設定(通常UL時間ユニットに対するSRS設定とは別のSRS設定)が設定される。この場合、SRSのリソース選択及び送信は、部分的利用可能UL周波数リソース内にあってもよい(部分的利用可能UL周波数リソースに限定されてもよい)。
[Option 1]
A separate SRS configuration (different from the SRS configuration for normal UL time units) is configured for the partially available UL time units. In this case, resource selection and transmission of SRS may be within the partial available UL frequency resources (may be limited to the partial available UL frequency resources).
[オプション2]
 部分的利用可能UL時間ユニットに対する別のSRS設定(通常UL時間ユニットに対するSRS設定とは別のSRS設定)が設定されない。この場合、UEは、以下の選択肢1及び2のいずれかに従ってもよい。
[[選択肢1]]
 UEは、部分的利用不可能UL周波数リソース上のSRSリソースを選択しなくてもよいし、部分的利用不可能UL周波数リソース上のSRSリソースをDCIによってトリガされなくてもよい。
[[選択肢2]]
 UEは、周期的/セミパーシステント-SRSを伴う時間リソースに対して、部分的利用可能UL周波数リソース/部分的利用不可能UL周波数リソースが設定されると想定しない。
[Option 2]
A separate SRS configuration for the partially available UL time unit (an SRS configuration separate from the SRS configuration for the normal UL time unit) is not configured. In this case, the UE may follow either of options 1 and 2 below.
[[Option 1]]
The UE may not select SRS resources on the partially unavailable UL frequency resources, nor may the SRS resources on the partially unavailable UL frequency resources be triggered by DCI.
[[Option 2]]
The UE does not assume that partial available/unavailable UL frequency resources are configured for time resources with periodic/semi-persistent-SRS.
 この実施形態によれば、各時間リソースに対して、UL及び部分的利用可能性を指示された時間リソースにおいて、UEは適切に送信を制御できる。 According to this embodiment, for each time resource, the UE can control the transmission appropriately in the UL and in the time resources indicated with partial availability.
<他の実施形態>
 以上の各実施形態においては、RRCコネクテッド(RRC_CONNECTED)UEに対する設定/指示/動作を主に説明したが、各実施形態における幾つかの設定/指示/動作がRRCアイドル(RRC_IDLE)UE/RRCインアクティブ(RRC_INACTIVE)UEに適用されてもよい。
<Other embodiments>
In each of the above embodiments, settings/instructions/operations for RRC connected (RRC_CONNECTED) UE were mainly described, but some settings/instructions/operations in each embodiment are RRC idle (RRC_IDLE) UE/RRC inactive (RRC_INACTIVE) May be applied to UEs.
 例えば、UEは、SSBのモニタリング、RACHの実行、などにおいて「部分的利用可能性」を扱うために、「部分的利用可能性」の指示の新規タイプが、システム情報(例えば、SIB)内においてブロードキャストされてもよい。 For example, in order for the UE to handle "partial availability" in monitoring SSB, performing RACH, etc., a new type of "partial availability" indication is provided in system information (e.g., SIB) May be broadcast.
 例えば、「部分的利用可能性」を指示された時間ユニットに対する別のRACH設定(通常時間ユニットに対するRACH設定とは別のRACH設定)がシステム情報(例えば、SIB)内においてブロードキャストされてもよい。UEは、「部分的利用可能性」を指示された時間ユニット上においてRACHを行う場合に、そのブロードキャストされた設定に従うことができる。 For example, a separate RACH configuration for time units indicated for "partial availability" (a RACH configuration separate from the RACH configuration for normal time units) may be broadcast in system information (eg, SIB). The UE may follow the broadcast configuration when performing RACH on time units indicated for "partial availability".
 ブロードキャストされるタイプ/設定は、新規UE能力を有するUEによって用いられてもよい。 The broadcast type/configuration may be used by UEs with new UE capabilities.
 本開示において、同じ時間リソース内の、DL周波数リソースとUL周波数リソースの間にガードバンドが設定/指示されてもよい。ガードバンドは、DL及びULの両方に利用不可能であってもよい。 In the present disclosure, guard bands may be set/indicated between DL and UL frequency resources within the same time resource. Guardband may be unavailable for both DL and UL.
《UE能力/上位レイヤパラメータ》
 各実施形態における少なくとも1つの機能(特徴、feature)に対応する上位レイヤパラメータ(RRC情報要素)/UE能力(capability)が規定されてもよい。UE能力は、この機能をサポートするか否かを示してもよい。
<<UE capabilities/upper layer parameters>>
A higher layer parameter (RRC information element)/UE capability corresponding to at least one function (feature) in each embodiment may be defined. UE capabilities may indicate whether to support this feature.
 その機能に対応する上位レイヤパラメータが設定されたUEは、その機能を行ってもよい。「その機能に対応する上位レイヤパラメータが設定されないUEは、その機能を行わない(例えば、Rel.15/16の動作を適用する)こと」が規定されてもよい。 A UE for which a higher layer parameter corresponding to that function is set may perform that function. It may be defined that "UEs for which higher layer parameters corresponding to the function are not set shall not perform the function (eg, apply Rel. 15/16 operations)".
 その機能をサポートすることを示すUE能力を報告したUEは、その機能を行ってもよい。「その機能をサポートすることを示すUE能力を報告していないUEは、その機能を行わない(例えば、Rel.15/16の動作を適用する)こと」が規定されてもよい。 A UE reporting UE capabilities indicating that it supports that function may perform that function. It may be specified that "a UE that does not report UE capabilities indicating that it supports the feature shall not perform the feature (e.g. apply Rel. 15/16 behavior)".
 UEがその機能をサポートすることを示すUE能力を報告し、且つその機能に対応する上位レイヤパラメータが設定された場合、UEは、その機能を行ってもよい。「UEがその機能をサポートすることを示すUE能力を報告しない場合、又はその機能に対応する上位レイヤパラメータが設定されない場合に、UEは、その機能を行わない(例えば、Rel.15/16の動作を適用する)こと」が規定されてもよい。 A UE may perform a function if it reports a UE capability indicating that it supports the function, and the higher layer parameters corresponding to the function are configured. "If the UE does not report a UE capability indicating that it supports the function, or if the higher layer parameters corresponding to the function are not set, the UE does not perform the function (e.g., Rel. 15/16 'applying an action' may be defined.
 UE能力は、RRC IEによる「部分的利用可能性」の設定/指示の新規タイプをサポートするか否かを示してもよい。 The UE capability may indicate whether it supports the new type of "partial availability" setting/indication by the RRC IE.
 UE能力は、「部分的利用可能指示」及び‘D’と、「部分的利用可能指示」及び‘U’と、の少なくとも1つをサポートするか否かを示してもよい。 The UE capability may indicate whether to support at least one of 'partial availability indication' and 'D' and 'partial availability indication' and 'U'.
 UE能力は、「部分的利用可能性」のMAC CE/DCIによる更新をサポートするか否かを示してもよい。 The UE capability may indicate whether or not to support "partial availability" MAC CE/DCI updates.
 UE能力は、「部分的利用可能性」を有する時間ユニットに対するDL/ULの特定のチャネル/RSの設定(通常の時間ユニットに対する設定とは別の設定)をサポートするか否かを示してもよい。「部分的利用可能性」を有する時間ユニットに対する設定は、複数の特定のチャネル/RSに共通であってもよい。特定のチャネル/RSは、以下の少なくとも1つであってもよい。
・PDCCH
・PDSCH
・PUCCH
・PUSCH
・PRACH
・SRS
The UE capability may also indicate whether or not to support DL/UL specific channel/RS configuration for time units with "partial availability" (a configuration separate from that for normal time units). good. The settings for time units with "partial availability" may be common to multiple specific channels/RSs. A particular channel/RS may be at least one of the following:
・PDCCH
・PDSCH
・PUCCH
・PUSCH
・PRACH
・SRS
 UE能力は、同時に送信/受信可能なチャネル/RSの数として定義されてもよい。UE能力は、1つの運用バンド内において同時に送信/受信が可能なチャネル/RSの数として定義されてもよい。 UE capability may be defined as the number of channels/RSs that can simultaneously transmit/receive. UE capability may be defined as the number of channels/RSs capable of transmitting/receiving simultaneously within one operating band.
 以上のUE能力/上位レイヤパラメータによれば、UEは、既存の仕様との互換性を保ちつつ、上記の機能を実現できる。 According to the above UE capabilities/upper layer parameters, the UE can implement the above functions while maintaining compatibility with existing specifications.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(wireless communication system)
A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this radio communication system, communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
 図8は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 8 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 The wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc. may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 A wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare. A user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure. Hereinafter, the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may connect to at least one of the multiple base stations 10 . The user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)). Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Also, the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 A plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 directly or via another base station 10 . The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the radio communication system 1, a radio access scheme based on orthogonal frequency division multiplexing (OFDM) may be used. For example, in at least one of Downlink (DL) and Uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A radio access method may be called a waveform. Note that in the radio communication system 1, other radio access schemes (for example, other single-carrier transmission schemes and other multi-carrier transmission schemes) may be used as the UL and DL radio access schemes.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the radio communication system 1, as downlink channels, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)) or the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In the radio communication system 1, as uplink channels, an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH. User data, higher layer control information, and the like may be transmitted by PUSCH. Also, a Master Information Block (MIB) may be transmitted by the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection. CORESET corresponds to a resource searching for DCI. The search space corresponds to the search area and search method of PDCCH candidates. A CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 By PUCCH, channel state information (CSI), acknowledgment information (for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.) and scheduling request (Scheduling Request ( SR)) may be transmitted. A random access preamble for connection establishment with a cell may be transmitted by the PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In addition, in the present disclosure, downlink, uplink, etc. may be expressed without adding "link". Also, various channels may be expressed without adding "Physical" to the head.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, synchronization signals (SS), downlink reference signals (DL-RS), etc. may be transmitted. In the radio communication system 1, the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on. Note that SS, SSB, etc. may also be referred to as reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Also, in the radio communication system 1, even if measurement reference signals (SRS), demodulation reference signals (DMRS), etc. are transmitted as uplink reference signals (UL-RS), good. Note that DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
(基地局)
 図9は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 9 is a diagram illustrating an example of the configuration of a base station according to one embodiment. The base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 . One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 It should be noted that this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the base station 10 as a whole. The control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like. The control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 . The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 . The control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 . The baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 . The transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit. The transmission section may be composed of the transmission processing section 1211 and the RF section 122 . The receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmitting/receiving unit 120 (measuring unit 123) may measure the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured. The measurement result may be output to control section 110 .
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 Note that the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission line interface 140.
 送受信部120は、時分割複信(TDD)のバンドにおける1つのコンポーネントキャリア内で、上りリンク(UL)リソース及び下りリンク(DL)リソースの周波数分割多重を行う複信方法における帯域幅部分(BWP)の設定に関するRadio Resource Control(RRC)情報要素を送信してもよい。制御部110は、前記RRC情報要素を用いて、DL/UL BWPの設定、適用、アクティベーション及び切り替えの少なくとも1つを制御してもよい。 The transmitting/receiving unit 120 uses a bandwidth part (BWP ) may be transmitted in a Radio Resource Control (RRC) information element regarding the setting of The control unit 110 may use the RRC information element to control at least one of DL/UL BWP configuration, application, activation and switching.
 送受信部120は、第1時間リソース(例えば、時間ユニット)のためのリンク方向(例えば、D/U/F)と、前記第1時間リソース内の一部の周波数リソースの利用可能性(例えば、部分的利用可能性、部分的利用可能、部分的利用不可能)と、の指示を送信してもよい。制御部110は、前記指示に基づいて、前記第1時間リソース内の前記周波数リソースにおいて、上りリンク受信又は下りリンク送信を制御してもよい。 Transmitter/receiver 120 determines the link direction (eg, D/U/F) for a first time resource (eg, time unit) and the availability of some frequency resources within the first time resource (eg, partially available, partially available, partially unavailable) may be sent. The control unit 110 may control uplink reception or downlink transmission on the frequency resource within the first time resource based on the instruction.
(ユーザ端末)
 図10は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(user terminal)
FIG. 10 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment. The user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 . One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 It should be noted that this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the user terminal 20 as a whole. The control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 . The control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 . The baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 . The transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit. The transmission section may be composed of a transmission processing section 2211 and an RF section 222 . The receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform The DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmitting/receiving unit 220 (RF unit 222) may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 220 (RF section 222) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmitting/receiving section 220 (measuring section 223) may measure the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal. The measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like. The measurement result may be output to control section 210 .
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 Note that the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
 送受信部220は、時分割複信(TDD)のバンドにおける1つのコンポーネントキャリア内で、上りリンク(UL)リソース及び下りリンク(DL)リソースの周波数分割多重を行う複信方法における帯域幅部分(BWP)の設定に関するRadio Resource Control(RRC)情報要素を受信してもよい。制御部210は、前記RRC情報要素に基づいて、DL/UL BWPの設定、適用、アクティベーション及び切り替えの少なくとも1つを制御してもよい。 The transmitting/receiving unit 220 uses the bandwidth part (BWP ) may receive a Radio Resource Control (RRC) information element regarding the setting of The control unit 210 may control at least one of DL/UL BWP configuration, application, activation and switching based on the RRC information element.
 前記DL/UL BWPは、不連続の物理リソースブロック(PRB)で設定されることが許容されてもよい。 The DL/UL BWP may be allowed to be configured with non-contiguous physical resource blocks (PRBs).
 前記RRC情報要素は、TDDの設定のためのRRC情報要素、又は、BWPの設定のためのRRC情報要素であってもよい。 The RRC information element may be an RRC information element for TDD configuration or an RRC information element for BWP configuration.
 送受信部220は、下りリンク制御情報(DCI)及びMedium Access Control(MAC)制御要素をさらに受信してもよい。制御部210は、前記RRC情報要素と、前記DCI及び前記MAC CEの少なくとも1つに基づいて、前記DL/UL BWPの適用のタイミング及び期間を制御してもよい。 The transmitting/receiving unit 220 may further receive downlink control information (DCI) and medium access control (MAC) control elements. The control unit 210 may control the timing and duration of application of the DL/UL BWP based on the RRC information element and at least one of the DCI and the MAC CE.
 送受信部220は、第1時間リソース(例えば、時間ユニット)のためのリンク方向(例えば、D/U/F)と、前記第1時間リソース内の一部の周波数リソースの利用可能性(例えば、部分的利用可能性、部分的利用可能、部分的利用不可能)と、の指示を受信してもよい。制御部210は、前記指示に基づいて、前記第1時間リソース内の前記周波数リソースにおいて、上りリンク送信又は下りリンク受信を制御してもよい。 Transceiver 220 determines the link direction (eg, D/U/F) for a first time resource (eg, time unit) and the availability of some frequency resources within said first time resource (eg, partially available, partially available, partially unavailable) may be received. The control unit 210 may control uplink transmission or downlink reception on the frequency resource within the first time resource based on the instruction.
 前記利用可能性は、前記周波数リソースが下りリンクに利用可能であることと、前記周波数リソースが下りリンクに利用不可能であることと、前記周波数リソースが上りリンクに利用可能であることと、前記周波数リソースが上りリンクに利用不可能であることと、のいずれかを示してもよい。 The availability includes that the frequency resource is available for downlink, that the frequency resource is not available for downlink, that the frequency resource is available for uplink, and It may indicate either that the frequency resource is unavailable for the uplink.
 前記送受信部220は、前記第1時間リソースに対する第1種類のチャネル又は信号の第1設定と、前記利用可能性を指示されない第2時間リソースに対する前記第1種類のチャネル又は参照信号の第2設定と、を受信してもよい。前記制御部210は、前記第1設定に基づいて、前記第1時間リソースにおける前記第1種類のチャネル又は参照信号の送信又は受信を制御し、前記第2設定に基づいて、前記第2時間リソースにおける前記第1種類のチャネル又は参照信号の送信又は受信を制御してもよい。 The transmitting/receiving unit 220 performs a first configuration of a first type of channel or signal for the first time resource and a second configuration of the first type of channel or reference signal for the second time resource whose availability is not indicated. and may be received. The control unit 210 controls transmission or reception of the first type of channel or reference signal in the first time resource based on the first setting, and controls the second time resource based on the second setting. may control the transmission or reception of the first type of channel or reference signal in.
 第2種類のチャネル又は信号の送信又は受信は、前記利用可能性を指示されない時間リソースにおいて行われ、前記第1時間リソースにおいて行われなくてもよい。 The transmission or reception of the second type of channel or signal may occur on the time resources not indicated for availability and not on the first time resources.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagrams used in the description of the above embodiments show blocks in units of functions. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 where function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 11 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the present disclosure, terms such as apparatus, circuit, device, section, and unit can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Also, processing may be performed by one processor, or processing may be performed by two or more processors concurrently, serially, or otherwise. Note that processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as a processor 1001 and a memory 1002, the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, at least part of the above-described control unit 110 (210), transmission/reception unit 120 (220), etc. may be realized by the processor 1001. FIG.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one. The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include For example, the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004. FIG. The transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
The terms explained in this disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal (signal or signaling) may be interchanged. A signal may also be a message. A reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard. A component carrier (CC) may also be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may consist of one or more periods (frames) in the time domain. Each of the one or more periods (frames) that make up a radio frame may be called a subframe. Furthermore, a subframe may consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. A slot may also be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 A TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like. A TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms, and the short TTI (e.g., shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms A TTI having the above TTI length may be read instead.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Also, an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long. One TTI, one subframe, etc. may each be configured with one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (Resource Element (RE)). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier. good too. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or multiple BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 It should be noted that the structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not restrictive names in any respect. Further, the formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable names, the various names assigned to these various channels and information elements are not limiting names in any way. .
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Also, information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer. Information, signals, etc. may be input and output through multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information in the present disclosure includes physical layer signaling (e.g., Downlink Control Information (DCI)), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or combinations thereof may be performed by
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 The physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like. RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like. Also, MAC signaling may be notified using, for example, a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of “being X”) is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. A “network” may refer to devices (eg, base stations) included in a network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "Quasi-Co-Location (QCL)", "Transmission Configuration Indication state (TCI state)", "spatial "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are interchangeable. can be used as intended.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」、「サービングセル」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , “cell,” “sector,” “cell group,” “carrier,” “component carrier,” “serving cell,” etc. may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services. The terms "cell" or "sector" refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", and "terminal" are used interchangeably. can be
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions of the base station 10 described above. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, user terminals in the present disclosure may be read as base stations. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, operations that are assumed to be performed by the base station may be performed by its upper node in some cases. In a network that includes one or more network nodes with a base station, various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is, for example, an integer or a decimal number)), Future Radio Access (FRA), New - Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi®), IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, or other suitable wireless It may be applied to systems using communication methods, next-generation systems extended based on these, and the like. Also, multiple systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first," "second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "determination" includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be "determining."
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 Also, "determining (deciding)" includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, "determining" is considered to be "determining" resolving, selecting, choosing, establishing, comparing, etc. good too. That is, "determining (determining)" may be regarded as "determining (determining)" some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Also, "judgment (decision)" may be read as "assuming", "expecting", or "considering".
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms “connected”, “coupled”, or any variation thereof, as used in this disclosure, refer to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for illustrative purposes and does not impose any limitation on the invention according to the present disclosure.

Claims (6)

  1.  第1時間リソースのためのリンク方向と、前記第1時間リソース内の一部の周波数リソースの利用可能性と、の指示を受信する受信部と、
     前記指示に基づいて、前記第1時間リソース内の前記周波数リソースにおいて、上りリンク送信又は下りリンク受信を制御する制御部と、を有する端末。
    a receiving unit for receiving an indication of a link direction for a first time resource and the availability of some frequency resources within the first time resource;
    and a control unit that controls uplink transmission or downlink reception on the frequency resource within the first time resource based on the instruction.
  2.  前記利用可能性は、前記周波数リソースが下りリンクに利用可能であることと、前記周波数リソースが下りリンクに利用不可能であることと、前記周波数リソースが上りリンクに利用可能であることと、前記周波数リソースが上りリンクに利用不可能であることと、のいずれかを示す、請求項1に記載の端末。 The availability includes that the frequency resource is available for downlink, that the frequency resource is not available for downlink, that the frequency resource is available for uplink, and 3. The terminal of claim 1, indicating either that the frequency resource is unavailable for uplink.
  3.  前記受信部は、前記第1時間リソースに対する第1種類のチャネル又は信号の第1設定と、前記利用可能性を指示されない第2時間リソースに対する前記第1種類のチャネル又は参照信号の第2設定と、を受信し、
     前記制御部は、前記第1設定に基づいて、前記第1時間リソースにおける前記第1種類のチャネル又は参照信号の送信又は受信を制御し、前記第2設定に基づいて、前記第2時間リソースにおける前記第1種類のチャネル又は参照信号の送信又は受信を制御する、請求項1又は請求項2に記載の端末。
    The receiving unit performs a first configuration of a first type of channel or signal for the first time resource and a second configuration of the first type of channel or reference signal for the second time resource whose availability is not indicated. , receives
    The control unit controls transmission or reception of the first type of channel or reference signal in the first time resource based on the first setting, and controls the transmission or reception of the reference signal in the second time resource based on the second setting The terminal according to claim 1 or 2, controlling transmission or reception of said first type of channel or reference signal.
  4.  第2種類のチャネル又は信号の送信又は受信は、前記利用可能性を指示されない時間リソースにおいて行われ、前記第1時間リソースにおいて行われない、請求項1から請求項3のいずれかに記載の端末。 A terminal according to any of claims 1 to 3, wherein transmission or reception of a second type of channel or signal takes place on said non-availability indicated time resources and not on said first time resources. .
  5.  第1時間リソースのためのリンク方向と、前記第1時間リソース内の一部の周波数リソースの利用可能性と、の指示を受信するステップと、
     前記指示に基づいて、前記第1時間リソース内の前記周波数リソースにおいて、上りリンク送信又は下りリンク受信を制御するステップと、を有する、端末の無線通信方法。
    receiving an indication of a link direction for a first time resource and the availability of some frequency resources within said first time resource;
    and controlling uplink transmission or downlink reception on the frequency resource within the first time resource based on the indication.
  6.  第1時間リソースのためのリンク方向と、前記第1時間リソース内の一部の周波数リソースの利用可能性と、の指示を送信する送信部と、
     前記指示に基づいて、前記第1時間リソース内の前記周波数リソースにおいて、上りリンク受信又は下りリンク送信を制御する制御部と、を有する基地局。
    a transmitter for transmitting an indication of a link direction for a first time resource and the availability of some frequency resources within the first time resource;
    a controller that controls uplink reception or downlink transmission on the frequency resource within the first time resource based on the indication.
PCT/JP2021/021256 2021-06-03 2021-06-03 Terminal, wireless communication method, and base station WO2022254673A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023525294A JPWO2022254673A1 (en) 2021-06-03 2021-06-03
PCT/JP2021/021256 WO2022254673A1 (en) 2021-06-03 2021-06-03 Terminal, wireless communication method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/021256 WO2022254673A1 (en) 2021-06-03 2021-06-03 Terminal, wireless communication method, and base station

Publications (1)

Publication Number Publication Date
WO2022254673A1 true WO2022254673A1 (en) 2022-12-08

Family

ID=84324044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021256 WO2022254673A1 (en) 2021-06-03 2021-06-03 Terminal, wireless communication method, and base station

Country Status (2)

Country Link
JP (1) JPWO2022254673A1 (en)
WO (1) WO2022254673A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150109932A1 (en) * 2012-10-21 2015-04-23 Mariana Goldhamer Utilization of the uplink fdd channel
WO2019130524A1 (en) * 2017-12-27 2019-07-04 株式会社Nttドコモ User terminal and radio communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150109932A1 (en) * 2012-10-21 2015-04-23 Mariana Goldhamer Utilization of the uplink fdd channel
WO2019130524A1 (en) * 2017-12-27 2019-07-04 株式会社Nttドコモ User terminal and radio communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Initial Views on Release 18 NR", 3GPP DRAFT; RP-210293, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210316 - 20210326, 15 March 2021 (2021-03-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051985648 *

Also Published As

Publication number Publication date
JPWO2022254673A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
JP7293253B2 (en) Terminal, wireless communication method and system
JP7480176B2 (en) Terminal, wireless communication method and system
WO2020095419A1 (en) User terminal and wireless communication method
JP7375017B2 (en) Terminals, wireless communication methods, base stations and systems
JP7499787B2 (en) Terminal, wireless communication method and system
JP7216221B2 (en) Terminal, wireless communication method, base station and system
JP7372723B2 (en) Terminals, wireless communication methods and systems
JP7305763B2 (en) Terminal, wireless communication method, base station and system
WO2022215142A1 (en) Terminal, radio communication method, and base station
WO2022024357A1 (en) Terminal, wireless communication method, and base station
WO2020095457A1 (en) User terminal
JP7230059B2 (en) Terminal, wireless communication method, base station and system
WO2022220109A1 (en) Terminal, wireless communication method, and base station
WO2020144782A1 (en) User equipment and wireless communication method
JP7413414B2 (en) Terminals, wireless communication methods, base stations and systems
WO2022254674A1 (en) Terminal, wireless communication method, and base station
JP7651581B2 (en) Terminal, wireless communication method, base station and system
JP7519433B2 (en) Terminal, wireless communication method, base station and system
JP7508542B2 (en) Terminal, wireless communication method, base station and system
JP2024120084A (en) Terminal, wireless communication method, base station and system
JP7371123B2 (en) Terminal and wireless communication method
WO2022024358A1 (en) Terminal, radio communication method, and base station
WO2020153211A1 (en) Terminal
WO2020148839A1 (en) User terminal and wireless communications method
WO2022249742A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944169

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525294

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944169

Country of ref document: EP

Kind code of ref document: A1