WO2022247330A1 - 离心机转子识别系统及用于离心机转子识别的方法、装置 - Google Patents
离心机转子识别系统及用于离心机转子识别的方法、装置 Download PDFInfo
- Publication number
- WO2022247330A1 WO2022247330A1 PCT/CN2022/073395 CN2022073395W WO2022247330A1 WO 2022247330 A1 WO2022247330 A1 WO 2022247330A1 CN 2022073395 W CN2022073395 W CN 2022073395W WO 2022247330 A1 WO2022247330 A1 WO 2022247330A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- code
- level signal
- rotor
- duration
- coding
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000012795 verification Methods 0.000 claims description 44
- 238000007689 inspection Methods 0.000 claims description 2
- 239000011148 porous material Substances 0.000 abstract 6
- 238000010586 diagram Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 238000009434 installation Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000004590 computer program Methods 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000013500 data storage Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- TWXHOCQWENATIA-UHFFFAOYSA-N SNNS Chemical compound SNNS TWXHOCQWENATIA-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B13/00—Control arrangements specially designed for centrifuges; Programme control of centrifuges
- B04B13/003—Rotor identification systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B13/00—Control arrangements specially designed for centrifuges; Programme control of centrifuges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B15/00—Other accessories for centrifuges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B7/00—Elements of centrifuges
- B04B7/02—Casings; Lids
- B04B7/06—Safety devices ; Regulating
Definitions
- the present application relates to the technical field of rotor identification, for example, to a centrifuge rotor identification system and a method and device for centrifuge rotor identification.
- centrifuge rotor identification is mainly divided into three categories: rotor identification based on photoelectric encoding, rotor identification based on magnetoelectric encoding, and rotor identification based on RFID (Radio Frequency Identification, radio frequency identification).
- rotor identification based on magnetoelectric encoding The recognition technology has good stability and low cost, and is widely cited.
- the embodiment of the present disclosure provides a centrifuge rotor identification system and a method and device for centrifuge rotor identification to solve the problem that the electromagnetic encoding has a large number of coding holes, the distance between the coding holes is too small, and the recognition accuracy of adjacent coding holes Reduced technical issues.
- the system includes: a code disc, including a first code track and a second code track; a first magnetic pole, installed in the coding hole of the first code track, and the first magnetic pole includes a plurality of pairs Magnetic poles; the multiple pairs of magnetic poles are used to generate multiple level signals for rotor encoding; the second magnetic poles are installed in the encoding holes of the second code track, and the second magnetic poles include one magnetic pole or a pair of magnetic poles ; The second magnetic pole is used to generate a preset level signal to identify the terminal of the rotor code; wherein, the initial coding hole corresponding to the preset level signal of the second code track is the same as that of the first code track
- the coding holes are arranged in a staggered manner; the initial coding hole corresponding to the preset level signal in the second code track is adjacent to the initial coding hole corresponding to the level signal of the rotor coding terminal in the first code track, and the second code track
- the preset level signal of is earlier than the level
- the method includes: detecting the level signal of the second code channel; when the preset level signal of the second code channel appears and the level signal in the first code channel changes for the first time , sequentially acquiring the duration of each level signal in the first code track; determining the target rotor code according to the duration of each level signal in the first code track and the number of coding holes in the first code track.
- the device includes: a processor and a memory storing program instructions, wherein the processor is configured to perform the above-mentioned centrifuge rotor identification method when executing the program instructions. Methods.
- the rotor of the centrifuge is identified based on the dual code track encoding disc, and the preset level signal of the second code track is used to provide the first code track wharf position information; based on the wharf position, each level in the first code track is obtained.
- the duration of the signal and then according to the duration of each level signal in the first code channel and the number of coding holes in the first code channel, calculate and obtain the target rotor code; in this way, through physical measures to identify the coding dock, the single code channel identification technology can be The codes discarded due to the recognition of the position of the wharf are identified. In this way, the number of rotor identifications is greatly increased, which is conducive to reducing the density of the coding holes and improving the identification accuracy.
- FIG. 1 is a schematic diagram of a centrifuge rotor identification system provided by an embodiment of the present disclosure
- Fig. 2 is a schematic structural diagram of a code disc of a centrifuge rotor identification system provided by an embodiment of the present disclosure
- Fig. 3 is a schematic diagram of a method for centrifuge rotor identification provided by an embodiment of the present disclosure
- Fig. 4 is a schematic diagram of another method for centrifuge rotor identification provided by an embodiment of the present disclosure
- Fig. 5 is a schematic diagram of a device for identifying a centrifuge rotor provided by an embodiment of the present disclosure.
- A/B means: A or B.
- a and/or B means: A or B, or, A and B, these three relationships.
- the centrifuge rotor identification system includes an encoding disc 11, a first magnetic pole 113 and a second magnetic pole 114; the encoding disc 11 includes a first code track 111 and a second code track 112; the first magnetic pole 113 is arranged on On the coding hole of the first code track 111, the first magnetic pole 113 includes multiple pairs of magnetic poles; the multiple pairs of magnetic poles are used to generate multiple level signals for rotor encoding; the second magnetic pole 114 is arranged on the second code track 112. On the hole, the second magnetic pole 114 includes a pair of magnetic poles or one magnetic pole; the second magnetic pole 114 is used to generate a preset level signal to identify the dock of the rotor code.
- the initial coding hole corresponding to the preset level signal of the second code track 112 is arranged alternately with the coding hole of the first code track 111;
- the initial coding hole of the level signal of the rotor encoding terminal in a code track 111 is adjacent, and the preset level signal of the second code track 112 is earlier than the level signal of the rotor encoding terminal in the first code track 111;
- the initial coding hole corresponding to the level signal of the rotor coding terminal is any coding hole in the first code track.
- different filling patterns of the coding holes represent magnetic poles of different polarities.
- the centrifuge rotor identification system also includes a first Hall sensor 12, a second Hall sensor 13 and a control device 14; the first and second Hall sensors 12, 13 are respectively used to detect the first code track 111 Different from the polarity of the magnetic pole on the second code track 112, different polarities output different level signals; the control device 14 processes the output signal of the Hall sensor to obtain the rotor code.
- the Hall sensor is a bipolar Hall sensor with a latch function; when an N pole is detected, the Hall sensor outputs a high level signal, and when an S pole is detected, the Hall sensor outputs a low signal Level signal; the output signal of the Hall sensor above is equivalent to: when the N pole is detected, the Hall sensor output signal generates a rising edge, and when the S pole is detected, the Hall sensor output signal generates a falling edge.
- the second magnetic pole includes a pair of magnetic poles, the pair of magnetic poles are used to generate level signals of different polarities, and the level signals of different polarities can be selected as the preset level signal for identifying the terminal, wherein the preset The level signal may be a high level signal, or may be a low level signal.
- the second magnetic pole includes one magnetic pole. For example, when the magnetic pole is N pole, if the N pole is set to generate a high level signal, that is, a rising edge, then the preset level signal used to identify the dock is high. level signal.
- the initial coding hole corresponding to the preset level signal in the second code track is located on the center line between the adjacent coding holes of the first code track, so that, in the given rotation direction of the code disc, set The coding hole at any position in the first code track is the initial coding hole position of the terminal level signal encoded by the rotor.
- the preset level signal of the second code track is ahead of the first code track in the rotor encoding wharf level signal by half the duration of the coding hole, so that after the wharf information is detected, the encoding information of the first code track is obtained to obtain the rotor code.
- the initial coding hole corresponding to the preset level signal in the second code track can also be ahead of the initial coding hole of the level signal of the rotor coding terminal in the first code track by three-quarters or two-fifths of the coding hole spacing, realizing It is sufficient that the preset level signal of the second code track is ahead of the level signal of the rotor coding terminal in the first code track within one coding hole interval, and this embodiment is not listed here.
- a code disc with a double code track structure is used, wherein one code track is used for rotor coding, and the other code track is used for rotor coding.
- the track is used to identify the wharf; in this way, the identification of the coding wharf through physical measures can not only identify the repeated codes in the single-code track coding, and increase the number of rotor identification; but also help reduce the density of the coding holes and improve the recognition accuracy.
- the pitch of the magnetic pole coding holes in the second code track 112 has a multiple relationship with the pitch of adjacent coding holes in the first code track 111 .
- the distance between the coded holes refers to the central angle of the two coded holes on the coded disk 11.
- the coded holes are evenly distributed in the first code track.
- the rotor code is verified by using the verification unit time length.
- the second code track can not only be used to identify the terminal of the rotor code, but also can be used to provide the verification unit duration.
- the pitch of the magnetic pole coding holes in the second code track is equal to the pitch of adjacent coding holes in the first code track, so that the verification unit duration can be obtained directly from the second code track.
- the installation position of the second magnetic pole is not limited to the adjacent coding holes.
- the pitch of the second magnetic pole coding holes is N times the pitch of the adjacent coding holes in the first code track, wherein, N It can be an integer, or it can be a decimal, for example, N can be 1, 4, 1.5 or 1.7, etc.; in this way, it is necessary to calculate and obtain the verification according to the duration of the level signal generated by the pair of magnetic poles and the distance between the coding holes where the pair of magnetic poles are located. unit duration.
- the second Hall sensor 13 is a unipolar or omnipolar Hall sensor; when the second magnetic pole 114 includes a pair of magnetic poles, the second Hall sensor 13 The Hall sensor 13 is a bipolar Hall sensor with a latch.
- the second magnetic pole when the second magnetic pole includes one magnetic pole, the second code track is only used to identify the terminal of the rotor code, and does not provide a verification unit duration.
- the second Hall sensor can be unipolar Polar or omnipolar Hall sensors are used to detect level signals of a single magnetic pole.
- the second code track is not only used to identify the terminal of the rotor code, but also provides the verification unit duration.
- the second Hall sensor is a bipolar Hall sensor with a latch function. sensor.
- each pair of magnetic poles in the first magnetic poles 113 is installed in a magnetic order of SN or NS.
- multiple pairs of magnetic poles are used to generate multiple level signals to realize rotor encoding. Therefore, based on the Hall sensor, when the N pole is detected, the output signal generates a rising edge, and when the S pole is detected, the output signal generates a rising edge.
- each N pair of magnetic poles in the first code track is installed according to the magnetic properties of SN or NS
- each N pair of magnetic poles can generate 2N level signals; for example, in the case of two pairs of magnetic poles, According to the magnetic installation of SNSN, two pairs of magnetic poles can generate 4 level signals; while according to the magnetic installation of SNNS, the two pairs of magnetic poles can only generate 2 level signals.
- the rotor encoding in this case is not Be explained.
- the installation sequence of the magnetic poles in the second code track may be different from that in the first code track.
- the magnetic poles in the first code track are installed in the magnetic order of SN
- the magnetic poles in the second code track can be installed in the magnetic order of SN or in the magnetic order of NS.
- the installation sequence of the magnetic poles is SNSN;
- the installation sequence is SN, set the low-level signal generated by the first S pole in the first code channel as the terminal position, and the low-level signal generated by the S pole in the second code channel is the terminal identification signal, that is, the preset level signal;
- the initial coding hole corresponding to the preset level signal in the second code track is half the coding hole spacing ahead of the initial coding hole corresponding to the level signal of the rotor coding dock in the first code track; thus, After the terminal position is determined based on the preset level signal in the second code track, 2 pairs of magnetic poles in the first code track generate 4 level signals, which are the first low level signal, the first high level signal, and the second low level signal.
- the level signal and the second high level signal; the rotor encoding is performed according to the duration of the four level signals, and
- an embodiment of the present disclosure provides a method for centrifuge rotor identification, including:
- the second Hall sensor detects the level signal of the second code track.
- the level signal of the second code channel is used to represent the pier information, therefore, the level signal of the second code channel is detected to determine the pier information.
- the second Hall sensor detects a high-level signal, that is, when a rising edge signal is detected, it means that the dock is coming; as another example, when the second Hall sensor detects a low-level signal, that is, it detects When the signal falls, it means that the dock is coming.
- control device sequentially obtains the duration of each level signal in the first code channel.
- the input capture and interrupt functions of the MCU (Microcontroller Unit, micro control unit) in the control device are used to sequentially obtain each electric current in the first code track of the encoding disc.
- the duration of the flat signal in order to obtain the rotor code through the duration of each level signal; in order to ensure that the duration of each level signal in the first code channel can be fully obtained, the preset level signal in the second code channel arrives, and the first When the level signal in a code channel changes for the first time, the duration of each level signal in the first code channel is sequentially obtained.
- the first Hall sensor can always be in the detection state.
- the first Hall sensors detect and record detection information.
- the first Hall sensor starts to detect the first code track, and when it detects that the level signal of the first code track changes for the first time, it continues to detect and record Detect information until the end of the detection cycle.
- the control device determines the target rotor code according to the duration of each level signal in the first code track and the number of code holes in the first code track.
- the number of coding holes of the first code track on the coding disc is predetermined and can be set in the control device in advance; the control device processes the level signal detected by one rotation of the coding disc to obtain the target rotor coding. Specifically, it is possible to first use the sum of the duration of each level signal in the first code channel and the number of coded holes in the first code channel to obtain the unit time length, that is, the interval time between adjacent coded holes; and then use each level The duration of the signal and the unit duration determine the number of hole intervals for each level signal; the target rotor code can be obtained after sorting the number of hole intervals.
- the second code channel can be used to obtain the unit time length; the number of hole intervals for each level signal is determined by using the time length and unit time length of each level signal, and the target rotor code can be obtained after sorting the number of hole intervals .
- the wharf information can be identified through physical measures, and the codes that are discarded due to the identification of the wharf position in the single code track identification technology can be identified, thus greatly improving the rotor speed.
- Recognition quantity is beneficial to reduce the density of coding holes and improve recognition accuracy.
- a pair of magnetic poles is used for rotor coding, and 11 types of rotors can be identified on the basis of 12 coding holes; however, in the embodiment of the present disclosure, two pairs of magnetic poles and 12 Based on the coding hole, 165 types of rotors can be identified, see Table 1 below for details.
- S 1 and S 2 are codes corresponding to high-level signals and low-level signals generated by a pair of magnetic poles
- S 3 and S 4 are codes corresponding to high-level signals and low-level signals generated by another pair of magnetic poles
- the acquisition order of each level signal in the first code channel is S 1 , S 2 , S 3 , S 4 , and S 1 is the terminal of the rotor code.
- an embodiment of the present disclosure provides another method for identifying a centrifuge rotor, including:
- the second Hall sensor detects the level signal of the second code track.
- control device sequentially acquires the duration of each level signal in the first code channel.
- the control device determines the target rotor code according to the duration of each level signal in the first code track and the number of code holes in the first code track.
- the control device After determining the target rotor code, the control device verifies the target rotor code according to the verification unit time length; the verification unit time length is obtained from the second code track.
- a verification link is set up to ensure that the speed is stable, and then to ensure that the target rotor code is correctly identified.
- the verification unit duration is based on the fact that the second magnetic pole includes a pair of magnetic poles. When the second magnetic pole is installed in the adjacent coding hole, the duration of the preset level signal in the second code track is the interval between adjacent coding holes. That is, the unit duration; in this way, the unit duration can be used as the verification unit duration for verifying whether the first code channel code is accurate.
- the duration of the preset level signal in the second code track is obtained, and combined with the installation position of the second magnetic pole, that is, the distance between the coding hole where a pair of magnetic poles are installed and the corresponding
- the multiple relationship of the spacing between adjacent coding holes is calculated to obtain the unit time length, so as to obtain the verification unit time length.
- step S204 after the control device determines the target rotor code, it verifies the target rotor code according to the verification unit duration, including:
- the control device determines the verification rotor code according to the verification unit duration and the duration of each level signal in the first code track.
- the control device acquires the duration of each level signal in the first code track again.
- the verification rotor code is obtained by using the verification unit duration and the duration of each level signal in the first code track, and further, it is judged whether the verification rotor code is the same as the target rotor code, if they are the same, It indicates that the rotor speed of the centrifuge in the detection stage is stable; if the two are not the same, it indicates that the rotor speed of the centrifuge in the detection stage is unstable, and the accuracy of the target rotor encoding is poor, and the level signal needs to be acquired again to improve the accuracy of rotor identification. Correct rate.
- the verification unit duration within two mechanical cycles of the rotor can be obtained, and the similarities and differences between the verification rotor code and the target rotor code obtained according to the two verification unit time lengths can be judged; if the three are the same, the target rotor code is accurate ; If the three are not the same, it is necessary to obtain the level signal again to determine the target rotor code.
- the two mechanical cycles of the above-mentioned rotor are associated with the cycle of the first code channel detection level signal, which can be two consecutive cycles or discontinuous cycles, but should try to avoid a longer interval; the longer the interval , which means that the centrifuge rotor is more likely to fluctuate, which will cause the calibration to fail.
- step S2041 the control device determines the verification rotor code according to the verification unit duration and the duration of each level signal in the first code track, including:
- control device sequentially arranges the interval numbers of the verification holes according to the acquisition sequence of each level signal in the first code track, and obtains the verification rotor code.
- the number of check hole intervals corresponding to each level signal is determined according to the length of the check unit; then, according to the acquisition order of each level signal in the first code channel, the number of check hole intervals can be sorted Obtain the verification rotor code. In this way, based on the verified rotor code, the similarities and differences between the verified rotor code and the target rotor code are judged, thereby improving the accuracy of the rotor code.
- the control device determines the number of check hole intervals, according to the rounding principle, the number of check hole intervals Sc i is rounded; the sum of the number of check hole intervals after rounding and the number of coded holes in the first code track Under different circumstances, the first Hall sensor detects the level signal of the first code track again.
- the control device due to communication delay, there is a certain error in the duration of the level signal obtained by the control device; thus, when calculating the number of check hole intervals, there is a situation that the number of check hole intervals is not an integer; for this According to the principle of rounding, round the number of check hole intervals to obtain the check rotor code. In this way, avoiding the error rate caused by rounding up or down will help to improve the accuracy of the rotor code.
- step S201 it is necessary to check the rounded number of check hole intervals to ensure that the sum of the rounded check hole intervals is equal to the number of coded holes in the first code track, thereby improving the accuracy of rotor coding. If the verification fails, it means that the rounded number of verification hole intervals is illegal, indicating that the detected level signal duration is wrong, and the duration of each level signal in the first code track needs to be detected again, that is, step S201 is re-executed.
- step S204 obtaining the verification unit duration from the second code track includes: when the level signal of the second code track is a preset level signal, the control device controls the second Hall sensor to detect the second The duration of the preset level signal in the code channel; the control device obtains the inspection unit duration according to the duration of the preset level signal in the second code channel and the distance between the coding holes corresponding to the preset level signal.
- the verification unit time length is obtained from the second code track based on the fact that the second magnetic pole includes a pair of magnetic poles.
- the spacing between the coding holes of a pair of magnetic poles in the second code track is equal to the spacing between adjacent coding holes in the first code track, and the preset level signal in the second code track can be detected while detecting the preset level signal
- the duration of the preset level signal can be used as the verification unit duration.
- the distance between the coding holes of a pair of magnetic poles in the second code track is N times the distance between adjacent coding holes in the first code track, it can be obtained by dividing the duration of the preset level signal in the second code track by N Check unit duration.
- control device determines the target rotor code according to the duration of each level signal in the first code track and the number of coded holes in the first code track; including:
- control device determines the target unit duration according to the duration of each level signal in the first code channel and the total number of holes in the first code channel;
- the control device determines the number of target hole intervals for each level signal in the first code channel based on the target unit duration
- control device sequentially arranges the number of target hole intervals according to the acquisition sequence of each level signal in the first code track, and obtains the target rotor code.
- the control device acquires the target rotor code through three steps.
- the first step is to determine the target unit duration, that is, the interval duration between adjacent coding holes.
- the target unit time duration can be obtained by obtaining the time duration of one rotation of the code disc.
- the second step the number of target hole intervals for each level signal in the first code track is determined.
- the quotient of the duration of each level signal in the first code channel and the target unit duration is each level signal The number of target hole intervals for .
- the third step is to determine the target rotor code.
- the target hole interval number of each level signal is sorted, so as to obtain the target rotor code. In this way, by capturing the level signals generated by multiple pairs of magnetic poles on the first code track of the code disc, the target rotor code is obtained to help identify different types of rotors.
- control device determines the target unit duration according to the duration of each level signal in the first code channel and the number of coding holes in the first code channel; including:
- S represents the number of coding holes in the first code track
- T i represents the duration of the i-th level signal
- T u represents the target unit duration
- n represents the number of magnetic pole pairs in the first code track
- i represents the number of magnetic pole pairs in the first code track.
- the target unit duration is calculated.
- the number of level signals in the first code track is equal to twice the number of magnetic pole pairs.
- control device determines the target hole interval number of each level signal in the first code channel based on the target unit duration; including:
- T i represents the duration of the i-th level signal in the first code channel
- Tu represents the target unit duration
- S i represents the target hole interval number of the i-th level signal in the first code channel.
- the target hole interval number S i can be rounded according to the rounding principle; the sum of all target hole interval numbers after rounding is different from the number of coded holes in the first code track Next, detect the level signal of the first code track again.
- the principle is the same as the rounding principle of the calibration hole interval number, and will not be repeated here.
- the centrifuge After determining the code of the target rotor, query the rotor type table to obtain the operating parameters of the target rotor, and then judge whether the parameters set by the user are reasonable. If it is reasonable, the centrifuge receives a signal that the rotor has been identified successfully, and the centrifuge can accelerate normally; Warn if unreasonable.
- an embodiment of the present disclosure provides a device for identifying a rotor of a centrifuge, including a processor (processor) 500 and a memory (memory) 501 .
- the device may further include a communication interface (Communication Interface) 502 and a bus 503.
- Communication interface 502 may be used for information transfer.
- the processor 500 may call the logic instructions in the memory 501 to execute the method for centrifuge rotor identification in the above embodiment.
- logic instructions in the above-mentioned memory 501 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
- the memory 501 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
- the processor 500 executes the program instructions/modules stored in the memory 501 to execute functional applications and data processing, that is, to realize the method for centrifuge rotor identification in the above-mentioned embodiments.
- the memory 501 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, and the like.
- the memory 501 may include a high-speed random access memory, and may also include a non-volatile memory.
- An embodiment of the present disclosure provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are configured to execute the above method for centrifuge rotor identification.
- An embodiment of the present disclosure provides a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the The computer executes the above method for centrifuge rotor identification.
- the above-mentioned computer-readable storage medium may be a transitory computer-readable storage medium, or a non-transitory computer-readable storage medium.
- the technical solutions of the embodiments of the present disclosure can be embodied in the form of software products, which are stored in a storage medium and include one or more instructions to make a computer device (which can be a personal computer, a server, or a network equipment, etc.) to perform all or part of the steps of the method described in the embodiments of the present disclosure.
- the aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc.
- the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listed ones.
- the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
- an element defined by the phrase “comprising a " does not exclude the presence of additional identical elements in the process, method or apparatus comprising said element.
- each embodiment may focus on the differences from other embodiments, and reference may be made to each other for the same and similar parts of the various embodiments.
- the relevant part can refer to the description of the method part.
- the disclosed methods and products can be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units may only be a logical function division.
- multiple units or components may be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
- the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
- each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
- each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
- the functions noted in the block may occur out of the order noted in the figures.
- two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
- the operations or steps corresponding to different blocks may also occur in a different order than that disclosed in the description, and sometimes there is no specific agreement between different operations or steps.
- each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.
Landscapes
- Centrifugal Separators (AREA)
Abstract
一种离心机转子识别系统,包括:编码盘(11),包括第一码道(111)和第二码道(112);第一磁极(113),安装于第一码道(111)的编码孔中,第一磁极(113)包括多对磁极;多对磁极用于产生多个电平信号,以进行转子编码;第二磁极(114),安装于第二码道(112)的编码孔中,第二磁极(114)包括一个磁极或一对磁极;第二磁极(114)用于产生预设电平信号,以识别转子编码的码头;其中,第二码道(112)的预设电平信号对应的起始编码孔与第一码道(111)的编码孔交错布置;第二码道(112)中预设电平信号对应的起始编码孔与第一码道(111)中转子编码码头的电平信号对应的起始编码孔相邻,且第二码道(112)的预设电平信号早于第一码道(111)中转子编码码头的电平信号。该系统可以大幅度提高转子识别数量和识别精度。还公开了一种用于离心机转子识别的方法及装置。
Description
本申请基于申请号为202110595274.X、申请日为2021年5月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本申请涉及转子识别技术领域,例如涉及一种离心机转子识别系统及用于离心机转子识别的方法、装置。
目前,离心机转子识别主要分为三类:基于光电编码的转子识别、基于磁电编码的转子识别、基于RFID(Radio Frequency Identification,无线射频识别)的转子识别,其中,基于磁电编码的转子识别技术稳定性好,成本低,被广泛引用。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
电磁编码中,为了提高转子识别数量,需在编码器上打较多数量的编码孔;然而,编码孔之间间距过小,影响计时器计时的准确度,进而导致相邻编码孔识别准确率降低。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种于离心机转子识别系统及用于离心机转子识别的方法、装置,以解决电磁编码的编码孔数较多,编码孔间距过小时,相邻编码孔识别准确率降低的技术问题。
在一些实施例中,所述系统包括:编码盘,包括第一码道和第二码道;第一磁极,安装于所述第一码道的编码孔中,所述第一磁极包括多对磁极;所述多对磁极用于产生多个电平信号,以进行转子编码;第二磁极,安装于所述第二码道的编码孔中,所述第二磁极包括一个磁极或一对磁极;所述第二磁极用于产生预设电平信号,以识别转子编码的码头;其中,所述第二码道的预设电平信号对应的起始编码孔与所述第一码道的编 码孔交错布置;所述第二码道中预设电平信号对应的起始编码孔与所述第一码道中转子编码码头的电平信号对应的起始编码孔相邻,且所述第二码道的预设电平信号早于所述第一码道中转子编码码头的电平信号;所述转子编码码头的电平信号对应的起始编码孔是所述第一码道中任一编码孔。
在一些实施例中,所述方法包括:检测第二码道的电平信号;在所述第二码道预设电平信号出现,且第一码道中电平信号初次发生变化的情况下,依次获取所述第一码道中每个电平信号的时长;根据所述第一码道中每个电平信号的时长和所述第一码道的编码孔数,确定目标转子编码。
在一些实施例中,所述装置包括:包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在运行所述程序指令时,执行上述的用于离心机转子识别的方法。
本公开实施例提供的离心机转子识别系统及用于离心机转子识别的方法、装置,可以实现以下技术效果:
本实施例中,基于双码道编码盘识别离心机转子,利用第二码道的预设电平信号,提供第一码道码头位置信息;基于码头位置,获取第一码道中每个电平信号的时长,再根据第一码道中每个电平信号的时长和第一码道的编码孔数,计算获得目标转子编码;如此,通过物理措施识别编码码头,可以将单码道识别技术中因识别码头位置而舍弃的编码识别出来,这样,大幅度地提高转子识别数量,有利于降低编码孔的密度,提高识别精度。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个离心机转子识别系统的示意图;
图2是本公开实施例提供的一个离心机转子识别系统的编码盘的结构示意图;
图3是本公开实施例提供的一个用于离心机转子识别的方法的示意图;
图4是本公开实施例提供的另一个用于离心机转子识别的方法的示意图;
图5是本公开实施例提供的一个用于离心机转子识别的装置的示意图。
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
结合图1、2,离心机转子识别系统包括编码盘11、第一磁极113和第二磁极114;编码盘11,包括第一码道111和第二码道112;第一磁极113,设置于第一码道111的编码孔上,第一磁极113包括多对磁极;多对磁极用于产生多个电平信号,以进行转子编码;第二磁极114,设置于第二码道112的编码孔上,第二磁极114包括一对磁极或一个磁极;第二磁极114用于产生预设电平信号,以识别转子编码的码头。
其中,第二码道112的预设电平信号对应的起始编码孔与第一码道111的编码孔交错布置;第二码道112中预设电平信号对应的起始编码孔与第一码道111中转子编码码头的电平信号的起始编码孔相邻,且第二码道112的预设电平信号早于第一码道111中转子编码码头的电平信号;第一码道中转子编码码头的电平信号对应的起始编码孔是第一码道中任一编码孔。图2中,编码孔不同的填充图形表示不同极性的磁极。
此外,离心机转子识别系统还包括第一霍尔传感器12、第二霍尔传感器13及控制装置14;第一、第二霍尔传感器12、13分别用于检测编码盘11第一码道111和第二码道112上磁极的极性,不同的极性输出不同的电平信号;控制装置14对霍尔传感器的输出信号处理,以获得转子编码。
在一些实施例中,霍尔传感器为带锁存功能的双极性霍尔传感器;在检测到N极时, 霍尔传感器输出高电平信号,在检测到S极时,霍尔传感器输出低电平信号;上述霍尔传感器输出信号等效于:在检测到N极时,霍尔传感器输出信号产生上升沿,在检测到S极时,霍尔传感器输出信号产生下降沿。
在一些实施例中,第二磁极包括一对磁极,该对磁极用于产生不同极性的电平信号,可以选取不同极性的电平信号作为识别码头的预设电平信号,其中,预设电平信号可以是高电平信号,或者可以是低电平信号。在另一些实施例中,第二磁极包括一个磁极,例如,该磁极为N极时,若设定N极产生高电平信号即上升沿,则用于识别码头的预设电平信号为高电平信号。
在一些实施例中,第二码道中预设电平信号对应的起始编码孔位于第一码道相邻编码孔之间的中心线上,这样,在编码盘既定的转动方向上,设定第一码道中任意位置编码孔为转子编码的码头电平信号的起始编码孔位置,在第二磁极的安装起始位置早于该转子编码的码头电平信号对应的磁极起始位置时,第二码道的预设电平信号超前第一码道中转子编码码头电平信号半个编码孔的时长,以便检测到码头信息后,获取第一码道的编码信息,以获得转子编码。此外,第二码道中预设电平信号对应的初始编码孔还可以超前第一码道中转子编码码头的电平信号的起始编码孔四分之三或五分之二个编码孔间距,实现第二码道预设电平信号比第一码道中转子编码码头的电平信号超前一个编码孔间距之内的时长即可,本实施例不在此一一列举。
本实施例中,为了解决编码孔间距太小,导致控制装置中的定时器计时准确度降低的问题,采用具有双码道结构的编码盘,其中,一个码道用于转子编码,另一码道用于识别码头;如此,通过物理措施识别编码码头,不仅可以将单码道编码中重复的编码识别出来,提高转子识别数量;而且有利于降低编码孔的密度,提高识别精度。
可选地,在第二磁极包括一对磁极的情况下,第二码道112磁极编码孔的间距与第一码道111中相邻编码孔的间距呈倍数关系。
本实施例中,编码孔的间距是指两个编码孔在编码盘11上的圆心角,第一码道中编码孔均匀分布,相邻编码孔的间距即间隔时长为校验单位时长,在转子编码识别中利用校验单位时长校验转子编码。在第二码道上安装一对磁极时,第二码道不仅可以用于识别转子编码的码头,还可以用于提供校验单位时长。作为一种实施例,第二码道中磁极编码孔的间距等于第一码道中相邻编码孔的间距,这样,可以直接从第二码道中获取校验单位时长。作为另一种实施例,第二磁极的安装位置不局限于相邻的编码孔中,此时,第二磁极编码孔的间距是第一码道中相邻编码孔间距的N倍,其中,N可以为整数, 或者,可以为小数,例如N可以为1、4、1.5或1.7等;如此,需要根据该对磁极产生的电平信号时长和该对磁极所在编码孔的间距,计算获得校验单位时长。
可选地,在第二磁极114包括一个磁极的情况下,第二霍尔传感器13为单极性或全极性霍尔传感器;在第二磁极114包括一对磁极的情况下,第二霍尔传感器13为双极性带锁存霍尔传感器。
本实施例中,在第二磁极包括一个磁极的情况下,第二码道仅用于识别转子编码的码头,不提供校验单位时长,这种情况下,第二霍尔传感器可以为单极性或全极性霍尔传感器,用于检测单磁极的电平信号。在第二磁极包括一对磁极的情况下,第二码道不仅用于识别转子编码的码头,还提供校验单位时长,此时,第二霍尔传感器为双极性带锁存功能的霍尔传感器。
可选地,第一磁极113中每对磁极均按照SN或NS的磁性顺序进行安装。
本实施例中,为了提高转子识别数量,采用多对磁极产生多个电平信号以实现转子编码,因此,基于霍尔传感器在检测到N极时输出信号产生上升沿,在检测到S极时输出信号产生下降沿的信号的情况下,当第一码道中每对磁极均按照SN或NS的磁性安装时,每N对磁极可产生2N个电平信号;例如,两对磁极的情况下,按照SNSN的磁性安装时,两对磁极可产生4个电平信号;而按照SNNS的磁性安装时,两对磁极仅产生2个电平信号,本公开实施例中,不对此种情况的转子编码进行说明。
此外,需要说明地是,在第二码道中安装一对磁极时,第二码道中磁极的安装顺序可以与第一码道中磁极的安装顺序不同。例如,第一码道中磁极安装SN的磁性顺序安装时,第二码道中磁极可以按照SN的磁性顺序安装,也可以按照NS的磁性顺序安装。
作为一种示例,编码盘的第一码道上打有12个编码孔,安装有2对磁极,磁极的安装顺序为SNSN;第二码道上打有两个编码孔,安装有1对磁极,磁极的安装顺序为SN,设定第一码道中第一个S极产生的低电平信号为码头位置,第二码道中S极产生的低电平信号为码头识别信号即预设电平信号;在转动盘转动方向上,第二码道中预设电平信号对应的起始编码孔相比第一码道中转子编码码头的电平信号对应的起始编码孔超前半个编码孔间距;如此,基于第二码道中的预设电平信号确定码头位置后,第一码道中2对磁极产生4个电平信号,依次为第一低电平信号、第一高电平信号、第二低电平信号和第二高电平信号;根据4个电平信号的时长进行转子编码,相邻磁极的不同间距,产生不同时长的电平信号,以实现不同类型转子的编码。
结合图3所示,本公开实施例提供一种用于离心机转子识别的方法,包括:
S101,第二霍尔传感器检测第二码道的电平信号。
本实施例中,第二码道电平信号用于表示码头信息,因此,检测第二码道的电平信号,以确定码头信息。作为一个示例,当第二霍尔传感器检测到高电平信号,即检测到上升沿信号时,表示码头到来;作为另一个示例,当第二霍尔传感器检测到低电平信号,即检测到下降沿信号时,表示码头到来。
S102,在第二码道的预设电平信号出现,且第一码道电平信号初次发生变化的情况下,控制装置依次获取第一码道中每个电平信号的时长。
在一些实施例中,预设电平信号到来即检测到码头信息后,利用控制装置中MCU(Microcontroller Unit,微控制单元)的输入捕获和中断功能,依次获取编码盘第一码道中每个电平信号的时长;以便通过每个电平信号的时长获得转子编码;为了保证能够完整获取第一码道中每个电平信号的时长,在第二码道的预设电平信号到来,且第一码道中电平信号初次发生变化时,依次获取第一码道中每个电平信号的时长。作为一种示例,第一霍尔传感器可以一直处于检测状态,在满足预设条件时,即第二霍尔传感器检测到码头信息,且第一码道的电平信号初次发生变化时,第一霍尔传感器检测并记录检测信息。作为另一种示例,在第二霍尔传感器检测到码头信号后,第一霍尔传感器开始检测第一码道,在检测到第一码道的电平信号初次发生变化时,继续检测并记录检测信息,直至检测一圈结束。
S103,控制装置根据第一码道中每个电平信号的时长和第一码道的编码孔数,确定目标转子编码。
在一些实施例中,编码盘上第一码道的编码孔数是既定的,可以提前设定于控制装置中;控制装置对编码盘转动一圈检测到的电平信号进行处理,获得目标转子编码。具体地,可以是先利用第一码道中每个电平信号的时长之和,和第一码道的编码孔数,获得单位时长,即相邻编码孔的间距时长;再利用每个电平信号的时长和单位时长,确定每个电平信号的孔间隔数;对孔间隔数排序后即可获得目标转子编码。或者,可以是利用第二码道,获取单位时长;在利用每个电平信号的时长和单位时长,确定每个电平信号的孔间隔数,对孔间隔数排序后即可获得目标转子编码。
采用本公开实施例提供的用于离心机转子识别的方法,能通过物理措施识别码头信息,可以将单码道识别技术中因识别码头位置而舍弃的编码识别出来,这样,大幅度提高了转子识别数量,有利于降低编码孔的密度,提高识别精度。现有技术中,采用一对磁极进行转子编码,在12个编码孔的基础上,能识别11种转子类型;而本公开实施例 中,在编码盘第一码道采用两对磁极和12个编码孔的基础上,能识别165种转子类型,详见下表1。其中,S
1、S
2为一对磁极产生的高电平信号、低电平信号对应的编码,S
3、S
4为另一对磁极产生的高电平信号、低电平信号对应的编码;第一码道中每个电平信号的获取顺序为S
1、S
2、S
3、S
4,且S
1为转子编码的码头。
表1不同类型的目标转子编码
需要说明地是,因转子识别数量较多,表1中未逐一列举每种类型,在有规律变化时,采用了省略方式,可参照序号1-9的编码方式获取未列举出的转子编码。
结合图4所示,本公开实施例提供另一种用于离心机转子识别的方法,包括:
S201,第二霍尔传感器检测第二码道的电平信号。
S202,在第二码道的预设电平信号出现,且第一码道中电平信号初次变化的情况下,控制装置依次获取第一码道中每个电平信号的时长。
S203,控制装置根据第一码道中每个电平信号的时长和第一码道的编码孔数,确定目标转子编码。
S204,控制装置确定目标转子编码后,根据校验单位时长校验目标转子编码;校验单位时长从第二码道中获取。
在一些实施例中,为了防止离心机转子转速意外波动,造成目标转子编码识别错误,设置校验环节,以确定转速稳定,进而确定目标转子编码识别无误。校验单位时长是基于第二磁极包括一对磁极的情况下,在第二磁极安装于相邻的编码孔时,第二码道中预设电平信号的时长即相邻编码孔的间隔时长,也就是单位时长;如此,可以将该单位时长作为校验第一码道编码是否准确的校验单位时长。或者,在第二磁极未安装于相邻的编码孔时,获取第二码道中预设电平信号的时长,并结合第二磁极的安装位置,即安装一对磁极的编码孔的间距与相邻编码孔的间距的倍数关系,计算获得单位时长,从而获得校验单位时长。
可选地,步骤S204,控制装置确定目标转子编码后,根据校验单位时长校验目标转子编码,包括:
S2041,控制装置根据校验单位时长和第一码道中每个电平信号的时长,确定校验转子编码。
S2042,在校验转子编码与目标转子编码不同的情况下,控制装置再次获取第一码 道中每个电平信号的时长。
本实施例中,利用校验单位时长和第一码道中每个电平信号的时长,获得校验转子编码,进一步地,判断校验转子编码与目标转子编码时是否相同,若二者相同,则表明检测阶段的离心机转子转速稳定;若二者不相同,则表明检测阶段的离心机转子转速不稳定,目标转子编码的准确性较差,需重新获取电平信号,以便提高转子识别的正确率。
作为一种示例,可以获取转子两个机械周期内的校验单位时长,判断根据两个校验单位时长获得的校验转子编码和目标转子编码的异同;若三者相同,则目标转子编码准确;若三者不相同,则需重新获取电平信号,确定目标转子编码。上述转子的两个机械周期与第一码道检测电平信号的周期相关联,可以是连续的两个周期,也可以是不连续的周期,但应尽量避免间隔周期较长;间隔周期越长,意味着离心机转子发生波动的概率越高,从而造成校验失败。
可选地,步骤S2041,控制装置根据校验单位时长和第一码道中每个电平信号的时长,确定校验转子编码,包括:
S2041-1,控制装置根据校验单位时长和第一码道中每个电平信号的时长,确定第一码道中每个电平信号的校验孔间隔数;其中,Sc
i=T
i/T
c,Sc
i表示校验孔间隔数、T
c表示校验单位时长、T
i表示第一码道中第i个电平信号的时长,i表示第一码道中电平信号的序号。
S2041-2,控制装置按照第一码道中每个电平信号的获取顺序,依次排列校验孔间隔数,获得校验转子编码。
本实施例中,根据校验单位时长,确定每个电平信号对应的校验孔间隔数;再依据第一码道中每个电平信号的获取顺序,对校验孔间隔数排序后即可获得校验转子编码。如此,基于校验转子编码,判断校验转子编码与目标转子编码的异同,进而提高转子编码的准确性。
可选地,控制装置确定校验孔间隔数后,按照四舍五入原则,对校验孔间隔数Sc
i取整;在取整后的所有校验孔间隔数之和与第一码道中编码孔数不同的情况下,第一霍尔传感器再次检测编第一码道的电平信号。
在一些实施例中,因通讯延迟,导致控制装置获取的电平信号时长的存在一定的误差;如此,计算校验孔间隔数时,存在校验孔间隔数不为整数的情况;针对这种情况,按照四舍五入的原则,对校验孔间隔数取整,从而得到校验转子编码,这样,避免向上取整或向下取整导致的错误率,有助于提高转子编码的准确性。
在一些实施例中,需校验取整后的校验孔间隔数,以确保取整后的校验孔间隔数之和等于第一码道中编码孔数,从而提高转子编码的准确性。如果校验失败,则说明取整后的校验孔间隔数不合法,表示检测的电平信号时长有误,需再次检测第一码道中每个电平信号的时长,即重新执行步骤S201。
可选地,步骤S204中,从第二码道中获取校验单位时长包括:在第二码道的电平信号为预设电平信号的情况下,控制装置控制第二霍尔传感器检测第二码道中预设电平信号的时长;控制装置根据第二码道中预设电平信号的时长及所述预设电平信号对应的编码孔的间距,获得检验单位时长。
本实施例中,校验单位时长是基于第二磁极包括一对磁极的情况下从第二码道中获取的。作为一种示例,第二码道中一对磁极的编码孔间距等于第一码道中相邻编码孔的间距,在检测到预设电平信号的同时,可以检测第二码道中预设电平信号的时长,该预设电平信号的时长可以作为校验单位时长。作为另一种实施例,第二码道中一对磁极的编码孔间距为第一码道中相邻编码孔间距的N倍时,可以通过第二码道中预设电平信号的时长除以N获得校验单位时长。
可选地,步骤S203,控制装置根据第一码道中每个电平信号的时长和第一码道的编码孔数,确定目标转子编码;包括:
S2031,控制装置根据第一码道中每个电平信号的时长和第一码道的总孔数,确定目标单位时长;
S2032,控制装置基于目标单位时长,确定第一码道中每个电平信号的目标孔间隔数;
S2033,控制装置按照第一码道中每个电平信号的获取顺序,依次排列目标孔间隔数,获得目标转子编码。
本实施例中,控制装置采用三个步骤获取目标转子编码。第一步,确定目标单位时长,即相邻编码孔的间隔时长。在一些实施例中,在第一码道中编码孔数既定的情况下,获取编码盘转动一圈的时长,即可得到目标单位时长。第二步,确定第一码道中每个电平信号的目标孔间隔数。在一些实施例中,在目标单位时长和第一码道中每个电平信号时长既定的情况下,第一码道中每个电平信号的时长与目标单位时长的商即为每个电平信号的目标孔间隔数。第三步,确定目标转子编码。在一些实施例中,根据第一码道中每个电平信号的获取顺序,排序每个电平信号的目标孔间隔数,从而获得目标转子编码。这样,通过捕获编码盘第一码道上多对磁极产生的电平信号,获得目标转子编码,以助 于识别不同类型的转子。
可选地,步骤S2031,控制装置根据第一码道中每个电平信号的时长和第一码道的编码孔数,确定目标单位时长;包括:
计算
其中,S表示第一码道的编码孔数、T
i表示第i个电平信号的时长、T
u表示目标单位时长,n表示第一码道的磁极对数,i表示第一码道中电平信号的序号。
本实施例中,通过累计第一码道中每个电平信号的时长,获取编码盘转动一周的时长,进而结合第一码道的编码孔数,计算目标单位时长。此外,在第一码道的多对磁极均按照相同的磁性顺序安装时,第一码道中电平信号的数量等于2倍的磁极对数。
可选地,步骤S2032,控制装置基于目标单位时长,确定第一码道中每个电平信号的目标孔间隔数;包括:
计算S
i=T
i/T
u;
其中,T
i表示第一码道中第i个电平信号的时长、T
u表示目标单位时长、S
i表示第一码道中第i个电平信号的目标孔间隔数。
本实施例中,获取目标孔间隔数后,可以按照四舍五入原则,对目标孔间隔数S
i取整;在取整后的所有目标孔间隔数之和与第一码道中编码孔数不同的情况下,再次检测编第一码道的电平信号。具体内容可参考前文,其原理与校验孔间隔数的取整原理相同,不在此赘述。
此外,确定目标转子编码后,查询转子类型表,以获得目标转子的运行参数,进而判断用户设置的参数是否合理,如果合理,则离心机接收到转子识别成功的信号,离心机可正常加速;如果不合理,则发出警告。
结合图5所示,本公开实施例提供一种用于离心机转子识别的装置,包括处理器(processor)500和存储器(memory)501。可选地,该装置还可以包括通信接口(Communication Interface)502和总线503。其中,处理器500、通信接口502、存储器501可以通过总线503完成相互间的通信。通信接口502可以用于信息传输。处理器500可以调用存储器501中的逻辑指令,以执行上述实施例的用于离心机转子识别的方法。
此外,上述的存储器501中的逻辑指令可以通过软件功能单元的形式实现并作为独 立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器501作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器500通过运行存储在存储器501中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于离心机转子识别的方法。
存储器501可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器501可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于离心机转子识别的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于离心机转子识别的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises) 和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行 地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
Claims (12)
- 一种离心机转子识别系统,其特征在于,包括:编码盘(11),包括第一码道(111)和第二码道(112);第一磁极(113),安装于所述第一码道(111)的编码孔中,所述第一磁极(113)包括多对磁极;所述多对磁极用于产生多个电平信号,以进行转子编码;第二磁极(114),安装于所述第二码道(112)的编码孔中,所述第二磁极(114)包括一个磁极或一对磁极;所述第二磁极(114)用于产生预设电平信号,以识别转子编码的码头;其中,所述第二码道(112)的预设电平信号对应的起始编码孔与所述第一码道(111)的编码孔交错布置;所述第二码道(112)中预设电平信号对应的起始编码孔与所述第一码道(111)中转子编码码头的电平信号对应的起始编码孔相邻,且所述第二码道(112)的预设电平信号早于所述第一码道(111)中转子编码码头的电平信号;所述转子编码码头的电平信号对应的起始编码孔是所述第一码道中任一编码孔。
- 根据权利要求1所述的转子识别系统,其特征在于,所述第二码道(112)相邻的编码孔的间距与所述第一码道(111)中相邻编码孔的间距呈倍数关系。
- 根据权利要求1或2所述的转子识别系统,其特征在于,还包括:第一霍尔传感器(12),用于检测所述第一码道上的电平信号;第二霍尔传感器(13),用于检测所述第二码道上的电平信号;其中,所述第一霍尔传感器为双极性带锁存霍尔传感器,在所述第二磁极包括一个磁极的情况下,所述第二霍尔传感器(13)为单极性或全极性霍尔传感器;在所述第二磁极包括一对磁极的情况下,所述第二霍尔传感器(13)为双极性带锁存霍尔传感器。
- 一种用于离心机转子识别的方法,基于如权利要求1至3任一项所述的转子识别系统,其中,所述方法包括:检测第二码道的电平信号;在所述第二码道的预设电平信号出现,且第一码道中电平信号初次发生变化的情况下,依次获取所述第一码道中每个电平信号的时长;根据所述第一码道中每个电平信号的时长和所述第一码道的编码孔数,确定目标转子编码。
- 根据权利要求4所述的方法,其特征在于,所述方法还包括:确定所述目标转子编码后,根据校验单位时长校验所述目标转子编码;所述校验单位时长从所述第二码道中获取。
- 根据权利要求5所述的方法,其特征在于,所述根据校验单位时长校验所述目标转子编码,包括:根据所述校验单位时长和所述第一码道中每个电平信号的时长,确定校验转子编码;在所述校验转子编码与所述目标转子编码不同的情况下,再次获取所述第一码道中每个电平信号的时长。
- 根据权利要求6所述的方法,其特征在于,所述根据所述校验单位时长和所述第一码道中每个电平信号的时长,确定校验转子编码,包括:根据所述校验单位时长和所述第一码道中每个电平信号的时长,确定所述第一码道中每个电平信号的校验孔间隔数;按照所述第一码道中每个电平信号的获取顺序,依次排列所述校验孔间隔数,获得校验转子编码;其中,Sc i=T i/T c,Sc i表示校验孔间隔数、T c表示校验单位时长、T i表示第i个电平信号的时长,i表示第一码道中电平信号的序号。
- 根据权利要求5所述的方法,其特征在于,从所述第二码道中获取校验单位时长,包括:在所述第二码道的预设电平信号出现的情况下,获取所述第二码道中预设电平信号的时长;根据所述第二码道中预设电平信号的时长及所述预设电平信号对应的编码孔的间距,获得检验单位时长。
- 根据权利要求4至8任一项所述的方法,其特征在于,所述根据所述第一码道中每个电平信号的时长和所述第一码道的编码孔数,确定目标转子编码,包括:根据所述第一码道中每个电平信号的时长和所述第一码道的编码孔数,确定目标单位时长;基于所述目标单位时长,确定所述第一码道中每个电平信号的目标孔间隔数;按照所述第一码道中每个电平信号的获取顺序,依次排列所述目标孔间隔数,获得目标转子编码。
- 根据权利要求9所述的方法,其特征在于,所述基于所述目标单位时长,确定所述第一码道中每个电平信号的目标孔间隔数,包括:计算S i=T i/T u;其中,T i表示第一码道中第i个电平信号的时长、T u表示目标单位时长、S i表示第一码道中第i个电平信号的目标孔间隔数。
- 一种用于离心机转子识别的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在运行所述程序指令时,执行如权利要求4至11任一项所述的用于离心机转子识别的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110595274.X | 2021-05-28 | ||
CN202110595274.XA CN115400886B (zh) | 2021-05-28 | 2021-05-28 | 离心机转子识别系统及用于离心机转子识别的方法、装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022247330A1 true WO2022247330A1 (zh) | 2022-12-01 |
Family
ID=84155404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/073395 WO2022247330A1 (zh) | 2021-05-28 | 2022-01-24 | 离心机转子识别系统及用于离心机转子识别的方法、装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115400886B (zh) |
WO (1) | WO2022247330A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4772254A (en) * | 1985-12-11 | 1988-09-20 | Kontron Holding A.G. | Centrifuge |
EP0560391A2 (de) * | 1992-03-13 | 1993-09-15 | Maschinenfabrik Berthold Hermle Aktiengesellschaft | Zentrifuge |
CN1094659A (zh) * | 1992-10-09 | 1994-11-09 | 纳幕尔杜邦公司 | 离心机转子识别系统 |
CN101846531A (zh) * | 2010-05-28 | 2010-09-29 | 江苏斯沃特电气有限公司 | 多极复合式磁编码器 |
CN106052723A (zh) * | 2016-06-01 | 2016-10-26 | 江苏森尼克电子科技有限公司 | 一种磁编码器及其导磁码盘及导磁码盘的制备方法 |
CN209182456U (zh) * | 2018-10-12 | 2019-07-30 | 湖南来欣科技有限公司 | 离心机转子识别装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH479433A (de) * | 1967-05-10 | 1969-10-15 | Finommechanikai Es Elektroniku | Verfahren und Einrichtung zur Informationsübertragung zwischen fahrbahngebundenen Fahrzeugen und der Fahrbahn beim Vorbeifahren des Fahrzeugs an einer gegebenen Stelle der Fahrbahn |
US3666883A (en) * | 1969-05-08 | 1972-05-30 | Matsushita Electric Ind Co Ltd | Speed detection and control |
GB1255852A (en) * | 1969-05-29 | 1971-12-01 | A & M Fell Mfg Ltd | Improvements in or relating to digital transducers |
JP4478537B2 (ja) * | 2004-09-03 | 2010-06-09 | 日本ビクター株式会社 | ブラシレスモータ |
CN100471030C (zh) * | 2006-03-01 | 2009-03-18 | 元山科技工业股份有限公司 | 无刷直流马达控制电路 |
JP4135748B2 (ja) * | 2006-04-27 | 2008-08-20 | 国産電機株式会社 | エンジン制御装置 |
CN101589537A (zh) * | 2007-02-06 | 2009-11-25 | 本田技研工业株式会社 | 电动机、转子构造及磁设备 |
JP5363167B2 (ja) * | 2008-05-29 | 2013-12-11 | セイコーインスツル株式会社 | ステッピングモータ制御回路及びアナログ電子時計 |
CN101667441B (zh) * | 2008-09-02 | 2012-06-20 | 北京赛金传媒科技有限公司 | 一种播放列表处理方法和系统 |
KR20110119505A (ko) * | 2010-04-27 | 2011-11-02 | 이정용 | 영구자석을 이용한 동력발생장치 |
CN103136378B (zh) * | 2013-03-27 | 2016-04-20 | 同方知网(北京)技术有限公司 | 一种基于结构概要的数据恢复方法 |
CN106767955A (zh) * | 2016-12-27 | 2017-05-31 | 江西省智成测控技术研究所有限责任公司 | 一种基于磁编码器的离轴式绝对角度测量的实现方法 |
US11448526B2 (en) * | 2018-03-02 | 2022-09-20 | Nidec Corporation | Position estimation method, position estimation device, and motor module for estimating position of rotor in motor |
CN109560682A (zh) * | 2019-01-25 | 2019-04-02 | 三峡大学 | 一种带有金属薄片的磁力齿轮装置 |
CN109827597A (zh) * | 2019-03-08 | 2019-05-31 | 溱者(上海)智能科技有限公司 | 一种编码承载器件及位置编码器装置 |
CN112117079B (zh) * | 2019-11-26 | 2022-08-26 | 昆山为涵电驱动科技有限公司 | 编码器磁体结构、编码器、电机、电气设备及车辆 |
CN111773467A (zh) * | 2020-08-21 | 2020-10-16 | 温州朝向科技有限公司 | 一种自动化肢体清创设备 |
-
2021
- 2021-05-28 CN CN202110595274.XA patent/CN115400886B/zh active Active
-
2022
- 2022-01-24 WO PCT/CN2022/073395 patent/WO2022247330A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4772254A (en) * | 1985-12-11 | 1988-09-20 | Kontron Holding A.G. | Centrifuge |
EP0560391A2 (de) * | 1992-03-13 | 1993-09-15 | Maschinenfabrik Berthold Hermle Aktiengesellschaft | Zentrifuge |
CN1094659A (zh) * | 1992-10-09 | 1994-11-09 | 纳幕尔杜邦公司 | 离心机转子识别系统 |
CN101846531A (zh) * | 2010-05-28 | 2010-09-29 | 江苏斯沃特电气有限公司 | 多极复合式磁编码器 |
CN106052723A (zh) * | 2016-06-01 | 2016-10-26 | 江苏森尼克电子科技有限公司 | 一种磁编码器及其导磁码盘及导磁码盘的制备方法 |
CN209182456U (zh) * | 2018-10-12 | 2019-07-30 | 湖南来欣科技有限公司 | 离心机转子识别装置 |
Also Published As
Publication number | Publication date |
---|---|
CN115400886B (zh) | 2024-10-15 |
CN115400886A (zh) | 2022-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102830247A (zh) | 一种检测旋转部件旋转状态的方法和装置 | |
CN106021165B (zh) | 一种lin总线解码、触发和分析技术 | |
CN1009893B (zh) | 测定数据传输速率的方法和装置 | |
CN104750567A (zh) | 一种基于fpga的看门狗复位方法 | |
CN102801531A (zh) | 一种基于声音传输的动态令牌的工作方法 | |
WO2022247330A1 (zh) | 离心机转子识别系统及用于离心机转子识别的方法、装置 | |
JPS62217746A (ja) | スタ−トビツト検出回路 | |
CN102368076B (zh) | 一种刷卡速度测试方法及刷卡速度测试设备 | |
CN103134532A (zh) | 一种基于绝对位置判定的圆周码道编解码方法 | |
CN101741542A (zh) | 数据通信设备、通信控制方法和程序 | |
CN101408924A (zh) | 射频识别标签芯片数据接收同步方法 | |
CN112069098B (zh) | 波特率识别方法及装置 | |
CN109327366A (zh) | 一种高速1553b总线信号解码器设计方法 | |
CN112235218B (zh) | 曼彻斯特信号解码方法及装置 | |
WO2022247328A1 (zh) | 用于离心机转子识别的方法及系统 | |
CN101145863B (zh) | 检测系统帧头偏移的装置和方法 | |
CN104539494A (zh) | 一种识别唤醒信号的方法及系统 | |
CN115086454B (zh) | 一种自适应振镜控制信号接口的方法、系统及存储介质 | |
CN112235221B (zh) | Bpsk信号解码方法及装置 | |
JP4630288B2 (ja) | 受信したシリアル転送アライメントシーケンスのレートの検証 | |
CN104009825B (zh) | 一种用于etc系统的fm0编码数据的解码装置 | |
TW202215749A (zh) | 用於感應式電源供應器之解碼方法及其供電模組 | |
CN106023570B (zh) | 一种自来水供水管网自动抄表系统 | |
CN106201759B (zh) | 一种防止fpga寄存器粘连的检测系统及方法 | |
CN106549890B (zh) | 一种数据接收方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22810067 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22810067 Country of ref document: EP Kind code of ref document: A1 |