[go: up one dir, main page]

WO2022246776A1 - 一种电磁比例阀流量系数测试系统及方法 - Google Patents

一种电磁比例阀流量系数测试系统及方法 Download PDF

Info

Publication number
WO2022246776A1
WO2022246776A1 PCT/CN2021/096567 CN2021096567W WO2022246776A1 WO 2022246776 A1 WO2022246776 A1 WO 2022246776A1 CN 2021096567 W CN2021096567 W CN 2021096567W WO 2022246776 A1 WO2022246776 A1 WO 2022246776A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic proportional
flow
proportional valve
valve
reynolds number
Prior art date
Application number
PCT/CN2021/096567
Other languages
English (en)
French (fr)
Inventor
王骏
李迎吉
陈义
马俊峰
张禹鹏
Original Assignee
无锡职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡职业技术学院 filed Critical 无锡职业技术学院
Publication of WO2022246776A1 publication Critical patent/WO2022246776A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts

Definitions

  • the invention relates to the field of electromagnetic proportional valves, in particular to a testing system and method for the flow coefficient of an electromagnetic proportional valve.
  • the flow rate of the electromagnetic proportional valve when theoretically calculating the flow rate of the electromagnetic proportional valve, it is usually based on the principle of small orifice throttling, by testing the pressure P in at the inlet of the electromagnetic proportional valve and the pressure P out at the outlet, combined with the flow area A S of the spool and the flow rate of the fluid. Density ⁇ and flow coefficient C d , calculate the flow through the electromagnetic proportional valve spool. The flow rate calculated by this method and the flow rate verified by the actual test have a large error. The root cause is that the flow coefficient used in the calculation is usually a fixed empirical value of about 0.61, and the flow coefficient of the liquid changes when the flow state changes. In fact, the value of the electromagnetic proportional valve changes in real time, but a relatively accurate real-time changing flow coefficient C d cannot be obtained when actually calculating the flow rate of the electromagnetic proportional valve. big.
  • the object of the present invention is to aim at the defects existing in the prior art, and provide a flow coefficient testing system and testing method of the electromagnetic proportional valve, which can accurately obtain the real-time flow coefficient of the electromagnetic proportional valve, and calculate the flow coefficient of the valve from the flow coefficient. Accurate flow value, the error between the flow value and the actual flow is small, which meets the accuracy requirement of the theoretical calculation of the flow.
  • An electromagnetic proportional valve flow coefficient test system is characterized in that it includes a double-acting variable pump, a pilot relief valve, a flow meter, a shut-off valve and two pressure gauges;
  • the double-acting variable pump is connected to the electromagnetic proportional valve whose flow coefficient is to be determined through the oil inlet pipeline, and pumps the oil in the oil tank into the electromagnetic proportional reversing valve;
  • the oil inlet pipeline is provided with a first pressure gauge and a cut-off valve;
  • the first pressure gauge is used to measure the pressure value of the oil inlet of the electromagnetic proportional valve;
  • the cut-off valve is used to adjust the pressure of the oil inlet of the electromagnetic proportional valve;
  • the electromagnetic proportional valve leads to the oil tank through the oil return pipeline through the pilot relief valve; the pilot relief valve is used to adjust the pressure of the oil outlet of the electromagnetic proportional valve;
  • the oil return line is provided with a second pressure gauge and a flowmeter; the second pressure gauge is used to measure the pressure value of the oil outlet of the electromagnetic proportional valve; the flowmeter is used to measure the flow of the oil outlet of the electromagnetic proportional valve;
  • a safety valve is also arranged on the oil inlet pipeline.
  • the cracking pressure of the safety valve is higher than the pressure of the pilot relief valve, the components on the oil inlet pipeline and/or the pressures of the components on the oil outlet pipeline.
  • a method for testing the flow coefficient of an electromagnetic proportional valve characterized in that it comprises the following steps:
  • Step 1 Calculating the different flow coefficient C q and Reynolds number Re of the electromagnetic proportional valve corresponding to different flow Q;
  • step 1 the steps to calculate the flow coefficient C q corresponding to different flow Q are as follows:
  • step 1 the steps to calculate the corresponding Reynolds number R e under different flow rates Q are:
  • D h is the hydraulic diameter
  • is the liquid kinematic viscosity
  • x is the wetted circumference.
  • Loss is the target of the least square method fitting
  • a 0 , a 1 , a 2 , ...a k are k+1 fitting coefficients to be found
  • k ⁇ n is the order of the fitting polynomial
  • n is the total number of tests
  • C qi is the corresponding discharge coefficient calculated under the i-th flow test
  • Rei is the corresponding Reynolds number calculated under the i-th flow test.
  • step 3 the method of pre-obtaining the Reynolds number R'e of any electromagnetic proportional valve to be tested with the same specifications as the electromagnetic proportional valve is:
  • V, ⁇ , ⁇ are the flow velocity, liquid density and viscosity coefficient of the fluid respectively, and d is a characteristic length.
  • the electromagnetic proportional reversing valve is adjusted to the left and right flow passages respectively, and the functions C q corresponding to the left and right flow coefficients and Reynolds numbers are respectively fitted by steps 1 to 3.
  • f(R e ) using this function, under the condition that the Reynolds number of any electromagnetic proportional valve to be tested with the same specifications as the electromagnetic proportional valve is obtained in advance, calculate the left or right position corresponding to the electromagnetic proportional valve to be tested Bit channel flow coefficient.
  • the test system and method of the present invention can make the curve relationship between the flow coefficient of the electromagnetic proportional valve and the Reynolds value, and fit the relationship function between the flow coefficient and the Reynolds value by the least square method, and determine the situation of the Reynolds number of the valve in any way Under this condition, the real-time flow coefficient of the valve can be determined quickly and accurately, avoiding the situation of only taking a fixed value of the flow coefficient when determining the flow coefficient based on experience and other subjective factors without considering the change of the flow state. Therefore, the flow value of the valve at the corresponding moment can be accurately calculated theoretically, and the problem of large deviation of the flow rate in theoretical calculation is solved.
  • Figure 1 is a schematic diagram of the flow coefficient test
  • Fig. 2 is the schematic diagram of small hole throttling
  • Fig. 3 is the relationship curve diagram of the discharge coefficient and Reynolds number change that test system records in an embodiment
  • the electromagnetic proportional valve flow coefficient test system of this embodiment includes pilot relief valve 1, 2 flow meters, pressure gauge 4, shut-off valve 5, safety valve 6, double-acting variable pump 7 and the flow coefficient to be determined Electromagnetic proportional reversing valve 3.
  • the double-acting variable pump 7 pumps the oil in the oil tank into the electromagnetic proportional reversing valve 3 to provide power oil source for the testing system.
  • a pressure gauge 4 and a shut-off valve 5 are arranged on the oil inlet pipeline connected between the double-acting variable pump 7 and the electromagnetic proportional reversing valve 3 .
  • the pressure gauge 4 is used to measure the pressure value of the oil inlet of the electromagnetic proportional reversing valve 3 .
  • the shut-off valve 5 is used to adjust the pressure value of the oil inlet of the electromagnetic proportional reversing valve 3 to meet the test requirements.
  • the oil return line of the electromagnetic proportional reversing valve 3 leads to the oil tank through the pilot relief valve 1.
  • the pilot relief valve 1 is used to adjust the pressure of the oil outlet of the electromagnetic proportional reversing valve 3, so that it can realize the function of controlling the pressure difference between the inlet and outlet.
  • a pressure gauge and a flow meter 2 are arranged on the oil return pipeline connected between the electromagnetic proportional reversing valve 3 and the pilot relief valve 1, and the pressure gauge is used to measure the pressure value of the oil outlet of the electromagnetic proportional reversing valve 3.
  • the flow meter 2 is used to measure the flow of the oil outlet of the electromagnetic proportional reversing valve 3 .
  • a safety valve 6 is also arranged on the oil inlet pipeline, and the safety valve 6 is connected in the oil inlet pipeline after the double-acting variable displacement pump.
  • the opening pressure of the safety valve 6 is higher than the pressure of the pilot relief valve 1, and generally does not open. When the test system pipeline pressure is too high, the safety valve 6 opens, and the safety valve 6 protects the safety of the system components.
  • the set opening pressure of the safety valve is higher than the working pressure of all components in the pipeline.
  • Electromagnetic proportional directional control valve 3 is a standard electromagnetic proportional directional control valve of any specification selected as the tested part. By measuring the pressure and flow of the inlet and outlet of electromagnetic proportional directional directional valve 3, the flow coefficient of the valve of this specification can be obtained. and the regular function of Reynolds number, so that the Reynolds number of any electromagnetic proportional directional valve to be tested with the same specifications as the standard electromagnetic proportional directional valve can be obtained quickly and accurately The flow coefficient of the electromagnetic proportional directional valve to be tested.
  • Q is the flow rate through the electromagnetic proportional valve
  • C q is the flow coefficient
  • AS is the flow area of the electromagnetic proportional valve spool
  • is the fluid density
  • P in is the pressure at the inlet
  • P out is the pressure at the outlet.
  • Re is the Reynolds number
  • D h is the hydraulic diameter
  • is the liquid kinematic viscosity
  • x is the wetted circumference, that is, the circumference of the pipe wall of the section.
  • the liquid kinematic viscosity ⁇ is a fixed value. According to the type of oil injected into the electromagnetic proportional valve, the liquid kinematic viscosity ⁇ can be found out.
  • the flow area A S and the wetted circumference x can be obtained according to the position and structure of the valve core.
  • the Reynolds number Re corresponding to the flow Q can be calculated from formulas (2) and (3).
  • Loss is the sum of squared errors, that is, the target of the least square method fitting, a 0 , a 1 , a 2 , ...a k are k+1 fitting coefficients to be found, k ⁇ n, and k is the fitting coefficient
  • C qi is the corresponding discharge coefficient calculated under the i-th flow test
  • Rei is the corresponding Reynolds number calculated under the i-th flow test
  • n is the total number of tests.
  • the flow coefficient can be determined quickly and accurately when the Reynolds number of the valve has been obtained in any way in advance, avoiding subjective factors such as only relying on experience when determining the flow coefficient , without considering the change of the flow state, only a fixed value of the discharge coefficient is taken.
  • the pipeline is connected to the oil outlet, then passes through the oil return circuit of the electromagnetic proportional reversing valve 3, then passes through the flow meter 2, then passes through the pressure gauge of the oil return circuit, and finally enters the fuel tank after being pressure-regulated by the pilot relief valve 1.
  • Q is the flow rate through the electromagnetic proportional valve
  • C q is the flow coefficient
  • AS is the flow area of the electromagnetic proportional valve spool
  • is the fluid density
  • P in is the pressure at the inlet
  • P out is the pressure at the outlet.
  • the liquid kinematic viscosity is a fixed value, which can be found out according to the type of oil product ⁇ , the flow area A s and the wetted area x can be obtained according to the displacement and structure of the valve core. According to the flow rate Q 1 measured above, the following (2) and (3) can calculate the corresponding Reynolds number R e1 ;
  • Different flow rates can obtain different flow coefficients C q2 .
  • the liquid kinematic viscosity is a fixed value, which can be found out according to the type of oil product ⁇ , the flow area A s, and the wetted circumference x can be obtained according to the displacement and structure of the valve core. 2) and (3) can calculate the corresponding Reynolds number R e2 ;
  • ⁇ Liquid kinematic viscosity is a fixed value.
  • the liquid kinematic viscosity ⁇ can be found according to the type of oil product.
  • the flow area A s and wet circumference x can be obtained according to the displacement and structure of the valve core. 2) and (3) can calculate the corresponding Reynolds number R en .
  • the method for obtaining the Reynolds number of the electromagnetic proportional directional valve to be tested can adopt some methods in the prior art. In the present embodiment, only the following calculation method is exemplified, and formula (6) is used to calculate the Reynolds number R' e :
  • V, ⁇ , ⁇ are the flow velocity, liquid density and viscosity coefficient of the fluid respectively, and d is a characteristic length. For example, if the fluid flows through a circular pipe, then d is the equivalent diameter of the pipe.
  • the flow channels of the left and right positions of the electromagnetic proportional directional valve are not exactly the same, the flow coefficient and Reynolds number are also different. Therefore, in order to obtain a more accurate flow coefficient, the left and right positions of the electromagnetic proportional directional valve of the same specification are also considered.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种电磁比例阀流量系数测试系统及方法,测试系统包括双作用变量泵(7)、先导溢流阀(1)、流量计(2)、截流阀(5)和两个压力计(4)。通过多次测量的电磁比例阀(3)进出油口的压力值及流量计(2)算出流量系数与雷诺数,建立电磁比例阀(3)的流量系数与雷诺数间的关系函数式;在预先获得了电磁比例阀(3)雷诺数的条件下,通过关系函数式查出电磁比例阀(3)雷诺数对应的流量系数。避免了在确定流量系数时仅凭经验等主观因素,而未考虑流动状态变化的情况下,仅取一个固定数值的流量系数的情况,从而可以在理论上准确计算电磁比例阀(3)在对应时刻的流量值,解决了理论计算流量偏差较大的问题。

Description

一种电磁比例阀流量系数测试系统及方法 技术领域
本发明涉及电磁比例阀领域,具体来讲,涉及一种电磁比例阀流量系数的测试系统与方法。
背景技术
目前,在理论计算电磁比例阀的流量时,通常是根据小孔节流原理,通过测试电磁比例阀进口处压力P in、出口处压力P out,再结合阀芯的通流面积A S、流体密度ρ和流量系数C d,计算出通过电磁比例阀阀芯的流量。此方法计算出的流量和实际测试验证的流量有较大的误差,根本原因在于计算时采用的流量系数通常是取固定的经验值约为0.61,而液体在流动状态变化的情况下,流量系数的数值其实是实时发生变化的,而实际计算电磁比例阀的流量时无法获得一个相对准确的实时变化的流量系数C d,从而导致了理论上计算得到的电磁比例阀流量与实际的流量误差较大。
发明内容
本发明目的是针对现有技术存在的缺陷,提供了一种电磁比例阀流量系数测试系统和测试方法,可以准确的得出电磁比例阀实时的流量系数,由该流量系数可以计算出该阀更准确的流量值,该流量值与实际的流量误差小,满足了对流量的理论计算的准确性需求。
为解决上述技术问题,本发明采用的技术方案如下:
一种电磁比例阀流量系数测试系统,其特征在于,包括双作用变量泵、先导溢流阀、流量计、截流阀和两个压力计;
所述双作用变量泵通过进油管路与待确定流量系数的电磁比例阀连接,将油箱中的油泵入电磁比例换向阀;
所述进油管路上设置第一压力计和截流阀;所述第一压力计用于测量电磁比例阀进油口压力值;所述截流阀用于调节电磁比例阀进油口压力;
所述电磁比例阀通过回油管路经所述先导溢流阀通向油箱;所述先导溢流阀用于调节电磁比例阀出油口的压力;
所述回油管路上设置有第二压力计和流量计;所述第二压力计用于测量电磁比例阀 出油口压力值;所述流量计用于测量电磁比例阀出油口的流量;
通过多次测量电磁比例阀进出油口的压力值及流量计算出流量系数与雷诺数,建立电磁比例阀的流量系数与雷诺数间的关系函数;
在预先获得了与所述电磁比例阀相同规格的任一待测电磁比例阀雷诺数的条件下,通过所述关系函数式计算出该待测电磁比例阀雷诺数对应的流量系数。
所述进油管路上还设置有安全阀。
所述安全阀的开启压力高于所述先导溢流阀、进油管路上各元件和/或出油管路上各元件的压力。
一种电磁比例阀流量系数测试方法,其特征在于,包括以下步骤:
步骤1、计算电磁比例阀在不同流量Q下对应的不同的流量系数C q和雷诺数R e
步骤2、根据各流量下计算出的流量系数C q和对应的雷诺数R e,建立流量系数C q和雷诺数R e的数值关系曲线,通过最小二乘法拟合出两者的函数关系式C q=f(R e);
步骤3、利用所作出的C q=f(R e)函数,在预先获得了与所述电磁比例阀相同规格的任一待测电磁比例阀雷诺数的条件下,计算出该待测电磁比例阀对应的流量系数。
步骤1中,计算不同流量Q下对应的流量系数C q的步骤为:
测量所述电磁比例阀进口处压力P in、出口处压力P out及保持P in-P out恒定的情况下对应的流量Q,固定电磁比例阀阀芯的位置保持不变,根据电磁比例阀阀芯的位置和阀芯结构得到阀芯的通流面积A S,结合流体密度ρ,根据式(1)计算出流量系数C q值;
Figure PCTCN2021096567-appb-000001
步骤1中,计算不同流量Q下对应的雷诺数R e的步骤为:
在测量的流量Q的基础上,由式(2)、(3)计算出该流量Q对应的雷诺数R e
Figure PCTCN2021096567-appb-000002
Figure PCTCN2021096567-appb-000003
其中,D h为水力直径,υ为液体运动粘度,x为湿周。
步骤2中,采用最小二乘法,利用式(4)、(5)拟合出流量系数C q和雷诺数R e两者的函数关系式C q=f(R e):
f(R e)=a 0+a 1R e+a 2R e 2+a 3R e 3+.........a kR e k      (4)
Figure PCTCN2021096567-appb-000004
其中,Loss为最小二乘法拟合的目标,a 0、a 1、a 2、...a k为k+1个待求的拟合系数,k≤n,k为拟合多项式阶数,n为测试总次数,C qi为第i次流量测试下计算的对应流量系数,R ei为第i次流量测试下计算的对应雷诺数。
进一步地,步骤3中,预先获得与所述电磁比例阀相同规格的任一待测电磁比例阀雷诺数R′ e的方法为:
Figure PCTCN2021096567-appb-000005
其中,V、ρ、μ分别为流体的流速、液体密度与黏性系数,d为一特征长度。
进一步地,将所述电磁比例换向阀分别调节至左位和右位流道,采用步骤1-步骤3,分别拟合出左位和右位的流量系数和雷诺数对应的函数C q=f(R e),利用该函数,在预先获得了与所述电磁比例阀相同规格的任一待测电磁比例阀雷诺数的条件下,计算出该待测电磁比例阀对应的左位或者右位流道流量系数。
本发明的有益效果:
本发明的测试系统和方法可以作出电磁比例阀的流量系数与雷诺值间的曲线关系,通过最小二乘法拟合出流量系数与雷诺值的关系函数,在任意方式确定了该阀雷诺数的情况下,可以快速准确的确定出该阀的实时流量系数,避免了在确定流量系数时仅凭经验等主观因素,而未考虑流动状态变化的情况下,仅取一个固定数值的流量系数的情况,从而可以在理论上准确计算该阀在对应时刻的流量值,解决了理论计算流量偏差较大的问题。
附图说明
图1为流量系数测试原理图;
图2为小孔节流原理图;
图3为一实施例中测试系统测得的流量系数与雷诺数变化的关系曲线图;
附图标记说明:1-先导溢流阀,2-流量计,3-电磁比例阀,4-压力计,5-截流阀,6-安全阀,7-双作用变量泵。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1
如图1所示,本实施例的电磁比例阀流量系数测试系统包括先导溢流阀1、2流量计、压力计4、截流阀5、安全阀6、双作用变量泵7和待确定流量系数的电磁比例换向阀3。
双作用变量泵7将油箱中的油泵入电磁比例换向阀3中,用于给测试系统提供动力油源。
双作用变量泵7与电磁比例换向阀3之间连接的进油管路上设置有压力计4和截流阀5。压力计4用于测量电磁比例换向阀3进油口压力值。截流阀5用于调节电磁比例换向阀3进油口压力值,使其满足测试需求。
电磁比例换向阀3的回油管路经先导溢流阀1通向油箱。先导溢流阀1用于调节电磁比例换向阀3出油口的压力,使其实现控制进出油口压差的作用。
电磁比例换向阀3与先导溢流阀1之间连接的回油管路上设置有压力计和流量计2,该压力计用于测量电磁比例换向阀3出油口压力值。流量计2用于测量电磁比例换向阀3出油口的流量。
进油管路上还设置有安全阀6,安全阀6连接在双作用变量泵之后的进油管路中。安全阀6的开启压力高于先导溢流阀1的压力,一般情况下不开启,当测试系统管路压力过高时,安全阀6开启,由安全阀6保护系统元件安全。所述安全阀设定开启压力高于管路中所有元件的工作压力。
电磁比例换向阀3为选择的任一规格的标准电磁比例换向阀先作为被测件,通过测量电磁比例换向阀3进出油口的压力及流量可得出该规格的阀的流量系数与雷诺数的规律函数,从而可以在采用其他方式或途径已经获得了与该标准电磁比例换向阀相同规格的任一待测电磁比例换向阀雷诺数的情况下,就可以快速准确的得到该待测电磁比例换向阀的流量系数。
实施例2
本实施例的电磁比例阀流量系数测试方法,包括以下步骤:
根据电磁比例阀的流量Q的计算式(1):
Figure PCTCN2021096567-appb-000006
Figure PCTCN2021096567-appb-000007
其中,Q为通过电磁比例阀的流量,C q为流量系数,A S为电磁比例阀阀芯通流面积,ρ为流体密度,P in为进口处压力,P out为出口处压力。
测量出进口处压力P in、出口处压力P out、流量Q,然后固定电磁比例阀阀芯的位置保持不变,根据阀芯的位置和阀芯结构得出阀芯的通流面积A S,然后计算出流量系数C q,不同流量可以得出不同流量系数C q
由以下公式:
Figure PCTCN2021096567-appb-000008
Figure PCTCN2021096567-appb-000009
其中,R e为雷诺数,D h为水力直径,υ为液体运动粘度,x为湿周,即截面的管壁周长。液体运动粘度υ为固定值,根据电磁比例阀内所注入的油品型号可查出液体运动粘度υ,通流面积A S、湿周x可根据阀芯位置和结构得出,在式(1)测得的流量Q的基础上,由式(2)、(3)可计算出该流量Q对应的雷诺数R e
根据各流量下计算出的流量系数C q和对应的雷诺数R e值,建立流量系数C q和雷诺数R e的数值关系曲线,通过最小二乘法拟合出两者的函数关系式C q=f(R e):
f(R e)=a 0+a 1R e+a 2R e 2+a 3R e 3+.........a kR e k      (4)
Figure PCTCN2021096567-appb-000010
其中,Loss为误差平方和,即最小二乘法拟合的目标,a 0、a 1、a 2、...a k为k+1个待求的拟合系数,k≤n,k为拟合多项式阶数,C qi为第i次流量测试下计算的对应流量系数,R ei为第i次流量测试下计算的对应雷诺数,n为测试总次数。
利用最小二乘法拟合工具拟合出C q=f(R e)并作出该函数。
根据所作出的C q=f(R e)函数,在任意方式已预先获得了该阀雷诺数的情况下可以快速准确的确定出流量系数,避免了在确定流量系数时仅凭经验等主观因素,而未考虑流动状态变化的情况下,仅取一个固定数值的流量系数的情况。
下面结合图1和图2所示,详细说明本方法的具体测试过程:
起动双作用变量泵7,将电磁比例换向阀3调节至左位,油液经过进油路压力计4和截流阀5后,再通过电磁比例换向阀3的左位,进油路通过管路与出油路相连,接着经过电磁比例换向阀3的回油路,然后经过流量计2,再经过回油路压力计,最后经过先导溢流阀1调压后进入油箱。
待系统运行正常后,进行第1次调节测试,首先调节电磁比例换向阀3前方的截流阀5,使进油路压力计4达到设定值P in1,然后调节先导溢流阀1,使出油路压力计达到设定值P out1,在保持P in1-P out1恒定的情况下,记录下对应的流量计2的读数Q 1,固定电磁比例换向阀3阀芯的位置保持不变,根据阀芯的位置和阀芯结构得出阀芯的通流面积A s,然后将上述数据代入下面公式(1)中计算出流量系数C q1值,不同流量可以得出不同流量系数C q1
Figure PCTCN2021096567-appb-000011
式中,Q为通过电磁比例阀的流量,C q为流量系数,A S为电磁比例阀阀芯通流面积,ρ为流体密度,P in为进口处压力,P out为出口处压力。
υ液体运动粘度为固定值,根据油品型号可查出液体运动粘度υ,通流面积A s、湿周x根据阀芯位移和结构可得出,根据以上测得的流量Q 1,由下面(2)、(3)两式可计算出对应的雷诺数R e1
Figure PCTCN2021096567-appb-000012
Figure PCTCN2021096567-appb-000013
进行第2次调节测试,重复上述步骤,调节电磁比例换向阀3前方的截流阀5,使进油路压力计4达到设定值P in2,然后调节先导溢流阀1,使出油路压力计达到设定值P out2,在保持P in2-P out2恒定的情况下,记录下对应的流量计2上读数Q 2,固定电磁比例换向阀阀芯的位置保持不变,根据阀芯的位置和阀芯结构得出阀芯的通流面积A s,然后将上述数据代入公式(1)中计算出流量系数C q2值,不同流量可以得出不同流量系数C q2。υ液体运动粘度为固定值,根据油品型号可查出液体运动粘度υ,通流面积A s、湿周x根据阀芯位移和结构可得出,根据以上测得的流量Q 2,由(2)、(3)两式可计算出对应的雷诺数R e2
直到进行第n次调节测试,重复上述步骤,继续调节电磁比例换向阀3前方的截流阀5,使进油路压力计4达到设定值P inn,然后调节先导溢流阀1,使出油路压力计达到设定值P outn,在保持P inn-P outn恒定的情况下,记录下对应的流量计2上读数Q n固定电磁比例换向阀阀芯的位置保持不变,根据阀芯的位置和阀芯结构得出阀芯的通流面积A s,然后将上述数据代入公式(1)中计算出流量系数C qn值,不同流量可以得出不同流量系数C qn。υ液体运动粘度为固定值,根据油品型号可查出液体运动粘度υ,通流面积A s、湿周x根据阀芯位移和结构可得出,根据以上测得的流量Q n,由(2)、(3)两式可计算出对应的雷诺数R en
根据以上第i次调节测试计算出的不同流量系数C qi和对应的雷诺数R ei值,在坐标系中绘出各流量系数C qi和对应的雷诺数R e坐标点,如图3所示。
根据测试计算出的流量系数C qi和对应的雷诺数R ei,根据公式(4)、(5)最小二乘法拟合出函数C q=f(R e),
f(R e)=a 0+a 1R e+a 2R e 2+a 3R e 3+.........a kR e k      (4)
Figure PCTCN2021096567-appb-000014
根据所作出的C q=f(R e)函数,在采用其他方式或途径已经获得了与该标准电磁比例换向阀相同规格的任一待测电磁比例换向阀雷诺数的情况下,就可以快速准确的得到该待测电磁比例换向阀的流量系数。
获得待测电磁比例换向阀的雷诺数的方法可以采用现有技术中的一些方法,本实施例中仅例举下面一种计算方法,采用公式(6)计算雷诺数R′ e
Figure PCTCN2021096567-appb-000015
其中,V、ρ、μ分别为流体的流速、液体密度与黏性系数,d为一特征长度。例如流体流过圆形管道,则d为管道的当量直径。
由于电磁比例换向阀的左位和右位的流道不完全相同,流量系数和雷诺数也不同,因此,为了得到更准确的流量系数,还考虑了同一规格电磁比例换向阀左位和右位流道的流量系数的差别,需对左位和右位进行上述同样的测试过程,分别拟合出左位和右位的流量系数和雷诺数对应的函数C q=f(R e),利用该函数,在需要得到同规格的任一电磁比例换向阀的左位或右位流道的流量系数时,则可以通过其它方法先得到该电磁比例换 向阀的雷诺数,再根据拟合出的左位或右位流道的流量系数和雷诺数对应的函数C q=f(R e),对应得到该电磁比例换向阀对应流道的流量系数。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种电磁比例阀流量系数测试系统,其特征在于,包括双作用变量泵、先导溢流阀、流量计、截流阀和两个压力计;
    所述双作用变量泵通过进油管路与待确定流量系数的电磁比例阀连接,将油箱中的油泵入电磁比例换向阀;
    所述进油管路上设置第一压力计和截流阀;所述第一压力计用于测量电磁比例阀进油口压力值;所述截流阀用于调节电磁比例阀进油口压力;
    所述电磁比例阀通过回油管路经所述先导溢流阀通向油箱;所述先导溢流阀用于调节电磁比例阀出油口的压力;
    所述回油管路上设置有第二压力计和流量计;所述第二压力计用于测量电磁比例阀出油口压力值;所述流量计用于测量电磁比例阀出油口的流量;
    通过多次测量电磁比例阀进出油口的压力值及流量计算出流量系数与雷诺数,建立电磁比例阀的流量系数与雷诺数间的关系函数式;
    在预先获得了与所述电磁比例阀相同规格的任一待测电磁比例阀雷诺数的条件下,通过所述关系函数式计算出该待测电磁比例阀雷诺数对应的流量系数。
  2. 根据权利要求1所述的测试系统,其特征在于,所述进油管路上还设置有安全阀。
  3. 根据权利要求2所述的测试系统,其特征在于,所述安全阀的开启压力高于所述先导溢流阀、进油管路上各元件和/或出油管路上各元件的压力。
  4. 一种电磁比例阀流量系数测试方法,其特征在于,包括以下步骤:
    步骤1、计算电磁比例阀在不同流量Q下对应的不同的流量系数C q和雷诺数R e
    步骤2、根据各流量下计算出的流量系数C q和对应的雷诺数R e,建立流量系数C q和雷诺数R e的数值关系曲线,通过最小二乘法拟合出两者的函数关系式C q=f(R e);
    步骤3、利用所作出的C q=f(R e)函数,在预先获得了与所述电磁比例阀相同规格的任一待测电磁比例阀雷诺数的条件下,计算出该待测电磁比例阀对应的流量系数。
  5. 根据权利要求4所述的测试方法,其特征在于,步骤1中,计算不同流量Q下对应的流量系数C q的步骤为:
    测量所述电磁比例阀进口处压力P in、出口处压力P out及保持P in-P out恒定的情况下对应的流量Q,固定电磁比例阀阀芯的位置保持不变,根据电磁比例阀阀芯的位置和阀芯结构得到阀芯的通流面积A S,结合流体密度ρ,根据式(1)计算出流量系数C q值;
    Figure PCTCN2021096567-appb-100001
  6. 根据权利要求5所述的测试方法,其特征在于,步骤1中,计算不同流量Q下对应的雷诺数R e的步骤为:
    在测量的流量Q的基础上,由式(2)、(3)计算出该流量Q对应的雷诺数R e
    Figure PCTCN2021096567-appb-100002
    Figure PCTCN2021096567-appb-100003
    其中,D h为水力直径,υ为液体运动粘度,x为湿周。
  7. 根据权利要求6所述的测试方法,其特征在于,步骤2中,采用最小二乘法,利用式(4)、(5)拟合出流量系数C q和雷诺数R e两者的函数关系式C q=f(R e):
    f(R e)=a 0+a 1R e+a 2R e 2+a 3R e 3+.........a kR e k  (4)
    Figure PCTCN2021096567-appb-100004
    其中,Loss为最小二乘法拟合的目标,a 0、a 1、a 2、...a k为k+1个待求的拟合系数,k≤n,k为拟合多项式阶数,n为测试总次数,C qi为第i次流量测试下计算的对应流量系数,R ei为第i次流量测试下计算的对应雷诺数。
  8. 根据权利要求4所述的测试方法,其特征在于,步骤3中,预先获得与所述电磁比例阀相同规格的任一待测电磁比例阀雷诺数R′ e的方法为:
    Figure PCTCN2021096567-appb-100005
    其中,V、ρ、μ分别为流体的流速、液体密度与黏性系数,d为一特征长度。
  9. 根据权利要求4所述的测试方法,其特征在于,将所述电磁比例换向阀分别调节至左位和右位流道,采用步骤1-步骤3,分别拟合出左位和右位的流量系数和雷诺数对应的函数C q=f(R e),利用该函数,在预先获得了与所述电磁比例阀相同规格的任一待测电磁比例阀雷诺数的条件下,计算出该待测电磁比例阀对应的左位或者右位流道流量系数。
PCT/CN2021/096567 2021-05-24 2021-05-28 一种电磁比例阀流量系数测试系统及方法 WO2022246776A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110566748.8A CN113295395A (zh) 2021-05-24 2021-05-24 一种电磁比例阀流量系数测试系统及方法
CN202110566748.8 2021-05-24

Publications (1)

Publication Number Publication Date
WO2022246776A1 true WO2022246776A1 (zh) 2022-12-01

Family

ID=77324484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096567 WO2022246776A1 (zh) 2021-05-24 2021-05-28 一种电磁比例阀流量系数测试系统及方法

Country Status (2)

Country Link
CN (1) CN113295395A (zh)
WO (1) WO2022246776A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043511A (zh) * 2015-07-24 2015-11-11 合肥科迈捷智能传感技术有限公司 基于雷诺数的涡街流量计系数修正方法
WO2019041159A1 (zh) * 2017-08-30 2019-03-07 广州方时仪器有限公司 一种基于飞行时间法的流量测量传感器的结构与安装方法
CN109916478A (zh) * 2019-03-26 2019-06-21 银川融神威自动化仪表厂(有限公司) 一种流量系数标定、流量计检定方法和标准流量装置
CN109945943A (zh) * 2019-04-19 2019-06-28 中国人民解放军海军工程大学 适用于不同流体设备的双向流阻测试系统及方法
CN209148026U (zh) * 2018-10-17 2019-07-23 上海深拓液压技术有限公司 一种小孔特性实验装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3645730B2 (ja) * 1999-02-01 2005-05-11 本田技研工業株式会社 可変ベンチュリーの流量校正方法
CN102135511B (zh) * 2010-12-29 2013-08-28 浙江银轮机械股份有限公司 一种板翅式换热器翅片表面传热性能的测试方法及装置
CN103343742B (zh) * 2013-07-05 2015-05-27 合肥工业大学 柱塞泵特性测试系统及测试方法
CN103438243B (zh) * 2013-09-24 2015-05-13 淮海工学院 一种双阀芯相向旋转增量式电液数字流量控制阀
CN109869375A (zh) * 2019-03-29 2019-06-11 武汉科技大学 一种限速阀实时流量特性测试装置及其测试方法
CN110261100A (zh) * 2019-07-15 2019-09-20 天津英创汇智汽车技术有限公司 阀检测方法及阀检测系统
CN110426085A (zh) * 2019-08-29 2019-11-08 中电华创电力技术研究有限公司 一种节流式流量测量装置流量算法
CN111767663A (zh) * 2020-05-29 2020-10-13 江苏神通阀门股份有限公司 一种基于cfd仿真的阀门流量系数便捷计算方法
CN111982213B (zh) * 2020-08-20 2022-02-11 中国核动力研究设计院 一种核反应堆模拟燃料组件流量测量方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043511A (zh) * 2015-07-24 2015-11-11 合肥科迈捷智能传感技术有限公司 基于雷诺数的涡街流量计系数修正方法
WO2019041159A1 (zh) * 2017-08-30 2019-03-07 广州方时仪器有限公司 一种基于飞行时间法的流量测量传感器的结构与安装方法
CN209148026U (zh) * 2018-10-17 2019-07-23 上海深拓液压技术有限公司 一种小孔特性实验装置
CN109916478A (zh) * 2019-03-26 2019-06-21 银川融神威自动化仪表厂(有限公司) 一种流量系数标定、流量计检定方法和标准流量装置
CN109945943A (zh) * 2019-04-19 2019-06-28 中国人民解放军海军工程大学 适用于不同流体设备的双向流阻测试系统及方法

Also Published As

Publication number Publication date
CN113295395A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
CN102128666B (zh) 一种科里奥利质量流量计的标定方法
CN107655551B (zh) 一种质量式油耗仪的标定装置
CN111735520B (zh) 一种具有高低压双校准段的气体流量标准装置及其校准方法
CN104359661A (zh) 通用阀门性能试验装置
CN104458107B (zh) 一种简易的差压装置的检测方法
CN106869918A (zh) 海上油井产能测试实时调整方法
CN106918377A (zh) 用于虚拟流量计的校准装置、灵敏度确定模块及相应方法
CN104568078A (zh) 一种现场校准地面液压试验器的方法
CN105067155A (zh) 一种流量试验装置的压力和流速双闭环控制系统
WO2022246776A1 (zh) 一种电磁比例阀流量系数测试系统及方法
CN103900665B (zh) 容器组合及换向阀式pVTt法气体流量装置
CN102507078B (zh) 一种输送管流阻精确测量系统及测量方法
CN104019852A (zh) 一种基于节流件特征系数k的给水流量精确测试方法
WO2025021225A1 (zh) 水下化学药剂注入设备正反双向流量计量方法
CN109138979B (zh) 等流量分支路计量油气水井产量的方法和计量设备
CN109724659B (zh) 一种灶具燃气流量测试系统及测试方法
CN212254275U (zh) 一种具有高低压双校准段的气体流量标准装置
CN206945098U (zh) 一种科氏质量流量计校准系统
CN109026648A (zh) 一种泵类产品出口处的介质体积流量调节装置
RU2628657C2 (ru) Способ поверки и калибровки газовых счетчиков
CN205642568U (zh) 移动式流量在线标定系统
CN110848575A (zh) 一种可就地校准加药量的气田用加药系统及其方法
CN209040823U (zh) 等流量分支路计量油气水井产量的计量设备
CN103983314A (zh) 一种气体流量测量装置及控制方法
CN207472391U (zh) 一种质量式油耗仪的标定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942352

Country of ref document: EP

Kind code of ref document: A1