WO2022244449A1 - Spinning method - Google Patents
Spinning method Download PDFInfo
- Publication number
- WO2022244449A1 WO2022244449A1 PCT/JP2022/013229 JP2022013229W WO2022244449A1 WO 2022244449 A1 WO2022244449 A1 WO 2022244449A1 JP 2022013229 W JP2022013229 W JP 2022013229W WO 2022244449 A1 WO2022244449 A1 WO 2022244449A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cross
- axis
- main body
- sectional shape
- spinning
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 210
- 238000009987 spinning Methods 0.000 title claims abstract description 125
- 230000002093 peripheral effect Effects 0.000 claims abstract description 53
- 238000003672 processing method Methods 0.000 claims description 11
- 238000000465 moulding Methods 0.000 abstract description 27
- 238000004519 manufacturing process Methods 0.000 abstract description 14
- 230000008569 process Effects 0.000 description 46
- 238000010586 diagram Methods 0.000 description 42
- 238000012545 processing Methods 0.000 description 30
- 238000003825 pressing Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 238000007796 conventional method Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000003754 machining Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/14—Spinning
Definitions
- the present invention relates to a spinning processing method. Specifically, the present invention relates to a spinning method capable of dealing with various cross-sectional shapes with high manufacturing efficiency while reducing problems such as buckling and/or unintended deformation.
- a cylindrical housing that houses a device such as an exhaust purification device and/or a silencer for a vehicle equipped with an internal combustion engine is generally a body portion that is a cylindrical portion having a relatively large cross-sectional area.
- a tip portion which is a cylindrical portion having a relatively small cross-sectional area; and a cylindrical portion which is interposed between the main body portion and the tip portion and has a cross section which decreases from the main body side to the tip side. and a tapered portion.
- the cross-sectional shape of at least one of the body portion and the tip portion may be changed due to the requirements for the space in which the housing is installed and/or the flow of fluid (e.g., exhaust gas, etc.) inside the housing.
- Non-circular shapes eg, ovals and ovals and polygons such as rectangles and triangles, etc.
- Specific examples of the case where at least one of the body portion and the tip portion has a non-circular cross-sectional shape include:
- the main body has a circular cross-sectional shape and the tip has a non-circular cross-sectional shape.
- the blank tube is relatively rotated around the axis of rotation of the blank tube, and the forming tool is directed from the center side to the edge side of the blank tube.
- a method of forming a tapered portion having a circular cross-sectional shape that decreases in diameter from the center side to the edge side at the end of the raw pipe by moving it so as to approach the rotation axis of the raw pipe according to the method is known. .
- Patent Document 1 Japanese Patent No. 4647140
- the generatrix of the tapered portion is recessed so that the inclination angle of the tapered portion with respect to the axis of the blank pipe gradually decreases from the center side to the edge side of the blank pipe.
- a molding method for forming a concave curve has been proposed. According to this, the height of the projection can be reduced.
- the forming tool since the forming tool is relatively rotated around the rotation axis of the blank tube (between the ovals), buckling and/or unintended deformation may occur when the difference between the major diameter and the minor diameter of the elliptical tube is large. Such problems are likely to occur, and the processing limit is low. In particular, when using a blank tube having a small wall thickness, the problem becomes more pronounced. As a measure for avoiding such a problem, for example, in the spinning process, the forming tool is moved along a trajectory that continuously changes from the elliptical cross-sectional shape of the blank pipe to the elliptical cross-sectional shape of the tapered portion. It is conceivable to control the movement of However, it is difficult to increase the processing speed in spinning processing involving such complicated control, and there is a problem that the processing time becomes long.
- Patent Document 2 Japanese Patent No. 4698890
- the center line of revolution of the forming tool for spinning processing with respect to the deformed tube is eccentric, and the forming tool is pressed into contact only with the projecting portion located on the opposite side of the eccentric direction.
- the protrusion amount of the protrusion can be reduced.
- performing the secondary processing after forming the deformed pipe as described above may lead to problems such as a decrease in manufacturing efficiency of the deformed pipe and an increase in manufacturing cost.
- Patent Document 3 Japanese Patent No. 6748992
- a cushioning member and a catalyst carrier are press-fitted into the main body of a cylindrical body having a non-circular curved cross section, and at least one end of the cylindrical body is subjected to spinning processing.
- the buffer member and the catalyst carrier are press-fitted into the main body portion of the tubular body while the main body portion of the tubular body is held by the clamp member, and the tubular body is held while being held by the clamp member. It has been proposed to form a tapered portion by performing a spinning process on at least one end of the .
- the inventors of the present invention found that the period during which the forming tool is brought into contact with only a part of the peripheral surface of the blank pipe only in a part of the revolution orbit of the forming tool that rotates along the circular revolution orbit in the spinning process. It has been found that the above problems can be solved by providing
- the spinning method according to the present invention is a cylindrical member having a body portion, a tip portion, and a gradually changing portion.
- This is a spinning method for integrally forming a shaped body from a blank pipe by spinning.
- the body portion is a portion of the unprocessed region of the blank pipe.
- the tip is a straight tubular portion formed at the end of the body and having a cross section different in shape and/or size from the cross section of the body.
- the gradually changing portion is formed between the body portion and the tip portion, and has a cross-sectional shape that changes from the cross-sectional shape of the main body portion to the cross-sectional shape of the tip portion as it goes from the end portion on the side of the body portion to the end portion on the side of the tip portion. It is a cylindrical portion that changes and communicates the internal space of the main body and the internal space of the distal end.
- the method of the present invention comprises a first step of forming a gradually changing portion at the end of the blank tube and a second step of forming a tip portion at the end of the gradually changing portion opposite to the main body. include.
- the orbit of the forming tool in the spinning process is circular.
- at least the first step includes a partial spinning period during which the partial spinning process is performed.
- the revolution axis of the forming tool and the axis of the blank pipe are eccentrically arranged so that the forming tool contacts only a part of the peripheral surface of the blank pipe in only a part of the revolution orbit of the forming tool. It is a spinning process that reduces the diameter of only a part of the circumference of the pipe.
- the cross-sectional shape of the main body can be one shape selected from the group consisting of circular, elliptical, oval, rectangular and triangular.
- the cross-sectional shape of the tip can also be any one shape selected from the group consisting of circular, elliptical, oval and polygonal.
- the cross-sectional shape of the main body and the cross-sectional shape of the tip may be the same or different.
- the relative positional relationship between the axis of the main body portion and the axis of the tip portion can be any one selected from the group consisting of coaxial, eccentric, inclined, and spatial geometric twist positions.
- the method of the present invention it is possible to reduce the diameter of only a part of the peripheral surface of the blank tube by the above-described partial spinning process. Therefore, according to the method of the present invention, even when the difference between the major diameter and the minor diameter of the blank tube is large, various cross-sectional shapes can be obtained while reducing problems such as buckling and/or unintended deformation. Gradually changing portions and tip portions having a wide variety of cross-sectional shapes can be easily formed from the blank tube.
- the orbit of the forming tool in the spinning process is circular. That is, the cross-section of the gradually changing portion that changes from the cross-sectional shape of the blank tube to the cross-sectional shape of the tip portion as in the above-described conventional spinning method (hereinafter sometimes referred to as the "conventional method").
- the processing speed can be increased and the processing time can be shortened.
- FIG. 1 is a schematic diagram showing a blank pipe used in one specific example of the spinning method (first method) according to the first embodiment of the present invention and a cylindrical body formed from the blank pipe. 1. It is a schematic diagram which illustrates the outline
- FIG. 4 is a schematic diagram showing a blank pipe used in another specific example of the first method and a cylindrical body formed from the blank pipe.
- FIG. 5 is a schematic diagram illustrating an outline of a process of forming a cylindrical body from the blank tube illustrated in FIG. 4 by a first method;
- FIG. 5 is a schematic diagram showing a blank pipe used in one specific example of the spinning method (second method) according to the second embodiment of the present invention and a cylindrical body formed from the blank pipe.
- FIG. 4 is a schematic diagram showing a blank pipe used in another specific example of the second method and a cylindrical body formed from the blank pipe.
- FIG. 10 is a schematic diagram showing a blank tube used in yet another specific example of the second method and a cylindrical body formed from the blank tube.
- FIG. 10 is a schematic diagram showing a blank pipe used in one specific example of the spinning method (third method) according to the third embodiment of the present invention and a tubular body formed from the blank pipe.
- FIG. 10 is a schematic diagram showing a process of eccentrically moving the axis of the distal end portion with respect to the axis of the main body portion.
- FIG. 10 is a schematic diagram showing a blank pipe used in another specific example of the third method and a cylindrical body formed from the blank pipe.
- FIG. 10 is a schematic diagram showing a blank pipe used in yet another specific example of the third method and a cylindrical body formed from the blank pipe.
- FIG. 10 is a schematic diagram showing a blank pipe used in yet another specific example of the third method and a cylindrical body formed from the blank pipe.
- FIG. 10 is a schematic diagram showing a blank pipe used in yet another specific example of the third method and a cylindrical body formed from the blank pipe.
- FIG. 5 is a schematic diagram illustrating the details of the process of forming a cylindrical body from the blank tube illustrated in FIG. 4 by the method of the present invention;
- FIG. 7 is a schematic diagram illustrating the details of the process of forming a cylindrical body from the blank tube illustrated in FIG. 6 by the method of the present invention.
- FIG. 8 is a schematic diagram illustrating the details of the process of forming a cylindrical body from the blank tube illustrated in FIG. 7 by the method of the present invention.
- FIG. 9 is a schematic diagram illustrating the details of the process of forming a cylindrical body from the blank pipe illustrated in FIG. 8 by the method of the present invention
- FIG. 10 is a schematic diagram illustrating the details of the process of forming a cylindrical body from the blank tube illustrated in FIG. 9 by the method of the present invention
- FIG. 12 is a schematic diagram illustrating the details of the process of forming a cylindrical body from the blank pipe illustrated in FIG. 11 by the method of the present invention
- FIG. 13 is a schematic diagram illustrating the details of the process of forming a tubular body from the blank tube illustrated in FIG. 12 by the method of the present invention
- FIG. 4 is a schematic diagram showing an example of a cylindrical body formed by a combination of the processing method disclosed in Patent Document 4 and the method of the present invention.
- the first method is a spinning method in which a tubular body, which is a tubular member having a main body portion, a tip portion, and a gradually changing portion, is integrally formed from a blank pipe by spinning.
- the material forming the blank pipe is not particularly limited as long as it can be formed into a desired shape by spinning. Specific examples of such materials include metal materials such as stainless steel.
- the details of the spinning process are well known to those skilled in the art, and will not be described here.
- the body portion is the portion other than the tip portion and the gradually changing portion of the cylindrical body, and is typically the portion consisting of the unprocessed region of the blank tube.
- the tip is a straight tubular portion formed at the end of the body and having a cross section different in shape and/or size from the cross section of the body. That is, in the cylindrical body formed by the first method, the cross-sectional shape of the tip portion and the cross-sectional shape of the body portion are different, the cross-sectional area of the tip portion and the cross-sectional area of the body portion are different, or The cross-sectional shape of the tip is different from the cross-sectional shape of the main body, and the cross-sectional area of the tip is different from the cross-sectional area of the main body. Specific examples of various combinations of the cross section of the tip portion and the cross section of the body portion in the cylindrical body molded by the first method will be described in detail later.
- the gradually changing portion is formed between the body portion and the tip portion, and has a cross-sectional shape that changes from the cross-sectional shape of the main body portion to the cross-sectional shape of the tip portion as it goes from the end portion on the side of the body portion to the end portion on the side of the tip portion. It is a cylindrical portion that changes and communicates the internal space of the main body and the internal space of the distal end.
- the gradually changing portion is a tapered diameter-reduced portion whose cross-sectional area gradually decreases from the end on the main body side toward the end on the tip side.
- the cross section of the gradually changing portion does not necessarily have to be reduced in diameter over the entire circumference, and may include a portion that is not reduced in diameter and/or a portion that is increased in diameter.
- the rate of change of the cross-sectional shape from the main body side to the tip side end toward the tip side end is not necessarily constant or uniform.
- the rate of change may vary along the axial direction of the gradually changing portion, or may vary along the axis of the gradually changing portion.
- the first method includes a first step of forming a gradually changing portion at the end of the blank tube and a second step of forming a tip portion at the end of the gradually changing portion opposite to the main body.
- the first method is a spinning method for integrally forming a tubular body, which is a tubular member having a main body portion, a tip end portion, and a gradually changing portion, from a blank tube by spinning. Therefore, in the first step, the gradually changing portion is integrally formed at the end of the blank tube by spinning, and in the second step, the gradually changing portion is formed at the end opposite to the main body portion by spinning. are integrally formed.
- the orbit of the forming tool in the spinning process is circular. That is, in the first method, the cross-sectional shape of the gradually changing portion that changes from the cross-sectional shape of the main body (base tube) to the cross-sectional shape of the tip portion as in the above-described conventional spinning method (conventional method). There is no need for complicated control of the movement of the forming tool to follow. Therefore, according to the first method, the machining speed can be increased and the machining time can be shortened.
- At least the first step includes a partial spinning period during which partial spinning is performed.
- the axis of revolution of the forming tool such as a roller or spatula and the axis of the blank pipe are made eccentric, so that the forming tool is moved to a part of the peripheral surface of the blank pipe only in a part of the revolution orbit of the forming tool.
- FIG. 1 is a schematic diagram showing a blank pipe used in one specific example of the first method and a cylindrical body formed from the blank pipe.
- (a) is a front view of the tube 11 viewed from the direction of the central axis AX, in which the major axis AL and the minor axis AS in the elliptical cross section are indicated by two-dot chain lines.
- (b) is a left side view of the base pipe 11 when viewed from the direction of the short axis AS, and the central axis AX passing through the center of the elliptical cross section is indicated by a chain double-dashed line.
- (c) is a front view of the cylindrical body 21 formed from the blank tube 11 by the first method when observed from the direction of the central axis AX
- (d) is a front view of the cylindrical body 21 formed from the short axis AS. It is a left side view when observed from the direction.
- the major axis AL and minor axis AS of the elliptical cross section and the central axis AX passing through the center of the elliptical cross section are indicated by two-dot chain lines, respectively.
- the tubular body 21 is a tubular member including a body portion 21a, a tip portion 21b, and a gradually changing portion 21c.
- the body portion 21a is a portion other than the tip portion 21b and the gradually changing portion 21c of the cylindrical body 21, and is a portion of the unprocessed region of the blank pipe 11.
- the tip portion 21b is formed at the opposite end of the body portion 21a of the gradually changing portion 21c formed at the end of the body portion 21a, and has a smaller diameter than the minor axis of the elliptical cross section of the body portion 21a.
- the gradually changing portion 21c is formed between the main body portion 21a and the tip portion 21b, and gradually changes from the elliptical cross-sectional shape of the main body portion 21a to the tip as it goes from the end on the side of the main body portion 21a to the end on the side of the tip portion 21b. It is a cylindrical portion whose cross-sectional shape changes to the circular cross-sectional shape of the portion 21b and communicates the internal space of the main body portion 21a and the internal space of the tip portion 21b. That is, in this case, it is necessary to process the end portion of the blank tube 11 having an elliptical cross-sectional shape by the first method to form a straight pipe-like tip portion 21b having a smaller circular cross-sectional shape.
- FIG. 2 is a schematic diagram illustrating an overview of the process of forming the cylindrical body 21 from the blank tube 11 illustrated in FIG. 1 by the first method.
- (a), (c), and (e) are front views of the work when observed from the axial direction, and the long and short axes of the elliptical cross section of the work are indicated by two-dot chain lines, respectively (however, , symbols AL and AS omitted).
- (b), (d) and (f) are left side views of the workpiece when observed from the minor axis direction, and the central axis passing through the center of the elliptical cross section is indicated by a two-dot chain line (however, , the symbol AX is omitted).
- the shapes of the blank tube 11, the cylindrical body 21, and the intermediate body (workpiece) in the process of being molded from the blank tube 11 to the cylindrical body 21 are drawn by thick solid lines, and the shapes of the blank tube 11 and the cylindrical body 21 are drawn by thick solid lines.
- a roller 41 as a forming tool in the spinning process is drawn by a thin solid line.
- the two rollers 41 are arranged at positions facing each other across the revolution axis, but the number of forming tools in the spinning process executed in the first method is limited to two. There may be one, or three or more.
- the revolution orbit Tc of the center (rotation axis) of the roller 41 and the revolution orbit Te of the innermost end of the roller 41 are drawn by a dashed line and a dashed line, respectively.
- the first step which is the step of forming the gradually changing portion 21c at the end of the blank pipe 11, and the tip portion at the end of the gradually changing portion 21c opposite to the main body portion 21a.
- the orbits Tc and Te of the forming tool (workpiece 41) in the spinning process are circular in any of the second steps, which are steps for forming 21b.
- the first step which is the step of forming the gradually changing portion 21c at the end of the blank pipe 11, is performed.
- the blank pipe 11 is rotated by rollers 41 (see solid curved arrows shown in the figure) rotating along a circular revolution orbit.
- the peripheral surface of the tube 11 near both ends of the major axis of the elliptical cross section (hereinafter sometimes referred to as "long axis side peripheral surface") is pressed to reduce the diameter.
- the cross-sectional shape of the portion of the workpiece that eventually becomes the tip portion 21b and the reduced diameter portion 21c is longer than the cross-sectional shape of the blank tube 11 (and the main body portion 21a), as illustrated in (c). It becomes a shape compressed (diameter-reduced) in the axial direction.
- work with a forming tool and diameter-reducing it may be called a "1st step.”
- the first step may be executed by one pass of the roller 41 or may be executed by multiple passes. Alternatively, the next step may be performed after the first step is repeatedly executed a plurality of times.
- the elliptical shape of the blank tube 11 is formed by so-called "coaxial spinning" in which the central axis of the blank tube 11 and the revolution axis of the roller 41 are aligned. Both peripheral surfaces (two major axis side peripheral surfaces) of the tube 11 near both ends of the major axis of the cross section of the shape were simultaneously pressed to reduce the diameter.
- the central axis of the blank tube 11 and the revolution axis of the roller 41 are eccentrically arranged so that the blank tube near both ends of the major axis of the elliptical cross section of the blank tube 11 is
- the two peripheral surfaces (two major axis side peripheral surfaces) of 11 may be individually pressed to reduce the diameter.
- the partial spinning period which is the period during which the partial spinning process is performed, does not necessarily occupy the entire period of the first step.
- the period during which the first step is executed should include the partial spinning period.
- the eccentric spinning processing on the one and the other short shaft side peripheral surfaces in the second step may also be performed by one pass of the roller 41 or may be performed by multiple passes.
- the normal spinning process when the normal spinning process is performed after a certain point in the middle of the first step as described above, the normal spinning process may also be performed by one pass of the roller 41, or may be performed multiple times. may be executed by the path of Furthermore, after performing the first step, the second step may be repeatedly performed multiple times. The second step may be performed before the first step depending on the cross-sectional shape to be formed. Furthermore, by repeatedly performing a set of such first step and second step, the gradually changing portion 21c may be formed at the end portion of the blank tube 11 .
- FIG. 3 is a schematic diagram illustrating the details of the process of forming the gradually changing portion 21c at the end portion of the blank tube 11 by repeatedly performing a set of the first step and the second step in the first step as described above. is. Note that reference numerals are omitted in FIG. 3 for the convenience of drawing space.
- (a) of FIG. 3 corresponds to (a) and (b) of FIG. 2, and (b) of FIG. 3 corresponds to (c) and (d) of FIG.
- the first step and the second step are executed in (c) and (d) for the second time.
- a set of 2 steps is performed.
- the first step is executed for the third time and the fourth time, respectively.
- the second step of forming the tip portion 21b at the end of the gradually changing portion 21c opposite to the main body portion 21a is performed.
- the tip portion 21b of the cylindrical body 21 shown in FIGS. 1(c) and 1(d) is a cylindrical portion formed coaxially with the body portion 21a. Therefore, in the first method illustrated in FIG. 2, the tip portion 21b is formed at the end of the gradually changing portion 21c on the side opposite to the main portion 21a by performing the second step by a normal coaxial spinning process. be able to.
- the spinning process performed in the second step may also be performed by one pass of the roller 41 or may be performed by multiple passes.
- FIG. 4 is a schematic diagram showing a blank pipe used in another specific example of the first method and a cylindrical body formed from the blank pipe.
- (a) is a front view of the tube 11 viewed from the direction of the central axis AX, in which the major axis AL and the minor axis AS in the elliptical cross section are indicated by two-dot chain lines.
- (b) is a left side view of the base pipe 11 when viewed from the direction of the short axis AS, and the central axis AX passing through the center of the elliptical cross section is indicated by a chain double-dashed line.
- the base pipe 11 illustrated in FIG. 4 is the same as the base pipe 11 illustrated in FIG.
- (c) is a front view of the cylindrical body 22 formed from the blank pipe 11 by the first method when observed from the direction of the central axis AX
- (d) is a front view of the cylindrical body 22 formed from the short axis AS. It is a left side view when observed from the direction.
- the major axis AL and minor axis AS of the elliptical cross section and the central axis AX passing through the center of the elliptical cross section are indicated by two-dot chain lines, respectively.
- the tubular body 22 is a tubular member including a body portion 22a, a tip portion 22b, and a gradually changing portion 22c.
- the body portion 22a is a portion other than the tip portion 22b and the gradually changing portion 22c of the cylindrical body 22, and is a portion of the unprocessed region of the blank pipe 11.
- the tip portion 22b is formed at the end of the gradually changing portion 22c formed at the end of the body portion 22a, opposite to the body portion 22a, and is smaller than the major axis and the minor axis of the elliptical cross section of the body portion 22a. It is a straight tubular section with an elliptical cross-section having a major and minor axis respectively.
- the gradually changing portion 22c is formed between the body portion 22a and the tip portion 22b, and gradually changes from the elliptical cross-sectional shape of the body portion 22a to the tip as it goes from the end on the side of the body portion 22a to the end on the side of the tip portion 22b. It is a cylindrical portion whose cross-sectional shape is reduced to the elliptical cross-sectional shape of the portion 22b (that is, its diameter is reduced) and which communicates between the internal space of the main body portion 22a and the internal space of the tip portion 22b. That is, in this case, it is necessary to process the end portion of the blank pipe 11 having an elliptical cross-sectional shape by the first method to form a straight pipe-like tip portion 22b having a smaller elliptical cross-sectional shape.
- FIG. 5 is a schematic diagram illustrating an overview of the process of forming the cylindrical body 22 from the blank tube 11 illustrated in FIG. 4 by the first method. Similar to FIG. 2 described above, (a), (c), and (e) are front views of the workpiece when observed from the axial direction, and the major axis and minor axis of the elliptical cross section of the workpiece are two points each. It is indicated by a dashed line (where the symbols AL and AS are omitted).
- (b), (d) and (f) are left side views of the workpiece when observed from the minor axis direction, and the central axis passing through the center of the elliptical cross section is indicated by a two-dot chain line (however, , the symbol AX is omitted).
- the shapes of the blank pipe 11, the cylindrical body 22, and the intermediate body (workpiece) in the process of being molded from the blank pipe 11 to the cylindrical body 22 are drawn by thick solid lines.
- a roller 41 as a forming tool in the spinning process performed in the first method is drawn by a thin solid line.
- the revolution track Tc of the center (rotation axis) of the roller 41 and the revolution track Te of the innermost end of the roller 41 are drawn by a dashed line and a broken line, respectively.
- the orbits Tc and Te of the forming tool (workpiece 41) in the spinning process are circular in both the first step and the second step.
- the first step which is the step of forming the gradually changing portion 22c at the end portion of the blank pipe 11, is performed.
- the long axis of the blank tube 11 is rotated by the roller 41 rotating along the circular revolution track (see the solid curved arrow shown in the drawing).
- the side peripheral surface is pressed to reduce the diameter.
- the cross-sectional shape of the portion that eventually becomes the tip portion 22b and the reduced diameter portion 22c of the work is longer than the cross-sectional shape of the base pipe 11 (and the main body portion 22a), as illustrated in (c). It becomes a shape compressed (diameter-reduced) in the axial direction. That is, the first step described above is executed.
- the central axis of the tube 11 and the revolution axis of the roller 41 are eccentrically (offset) (see the solid line arrows shown in the drawing) to perform so-called “eccentric spinning.”
- eccentric spinning By executing "processing", one of the peripheral surfaces of the tube 11 near both ends of the minor axis of the elliptical cross section of the tube 11 (hereinafter sometimes referred to as the "short axis side peripheral surface") is pressed to reduce the diameter.
- the hatched portion in (d) of the peripheral surface of the work is formed into a shape along the orbit of the roller 41 .
- the central axis of the blank tube 11 and the revolution axis of the roller 41 are eccentrically (offset) to the opposite sides, and the "eccentric spinning process” is performed in the same manner as described above.
- the other peripheral surface (minor axis side peripheral surface) of the tube 11 near both ends of the minor axis of the elliptical cross section is also shaped along the revolution orbit of the roller 41 in the same manner as described above. That is, the above-described second step is executed.
- the "eccentric spinning process” corresponds to the "partial spinning process”
- the period during which the "eccentric spinning process” is performed corresponds to the "partial spinning period”.
- the cross-sectional shape of the end portion of the gradually changing portion 22c on the side opposite to the body portion 22a is changed to the cross-sectional shape of the tip portion 22b by repeatedly performing the above-described first step and second step a predetermined number of times. Continue until a match is found.
- the second step of forming the tip portion 22b at the end of the gradually changing portion 22c opposite to the main body portion 22a is performed.
- a tip portion 22b of the cylindrical body 22 illustrated in FIGS. 4(c) and 4(d) is an elliptical cylindrical portion formed coaxially with the main body portion 21a. Therefore, in the second step included in the first method illustrated in FIG. 5, while maintaining the cross-sectional shape and size, the first step and the second step are repeated a predetermined number of times as in the first step described above. Executed repeatedly.
- the first step not only the first step but also the second step may include a partial spinning period during which the partial spinning process is performed.
- the second step may be performed after repeatedly performing the first step a plurality of times. , the second step may be repeatedly performed multiple times after the first step is performed. Further, each spinning process performed in the first step and the second step may be performed by one pass of the roller 41 or may be performed by multiple passes.
- the cross-sectional shape of the main body of the tube and the cylindrical body is elliptical, and the cross-sectional shape of the tip of the cylindrical body is circular and elliptical.
- the combination of the cross-sectional shape of the main body of the tube and the cylindrical body to which the first method is applied and the cross-sectional shape of the tip of the cylindrical body is not limited to the above, and a wide variety of combinations of cross-sectional shapes are possible. (details will be described later).
- the case where the axis of the body portion and the axis of the tip portion of the cylindrical body are coaxial has been described.
- the relative positional relationship between the axis of the main body portion and the axis of the distal end portion is not limited to the above, and various positional relationships are possible (details will be described later).
- the first method may further include additional steps such as subjecting the tubular body to processing.
- the dimensions of the cylindrical body obtained by performing the first step and the second step may be slightly larger than the finally required dimensions of the cylindrical body.
- the tip portion formed at the tip of the tubular body is generally used as a connecting portion between the tubular body and other members (for example, an exhaust pipe, etc.). Therefore, depending on the use of the cylindrical body, it may be necessary to process the tip portion in accordance with the member connected to the tip portion.
- the first method may further include an additional step of secondary processing the tip portion by, for example, cutting after the above-described first and second steps.
- the first method only a portion of the peripheral surface of the blank pipe can be reduced in diameter by the partial spinning process described above. Therefore, according to the first method, even when the difference between the major diameter and the minor diameter of the blank pipe is large, various cross-sectional shapes can be obtained while reducing problems such as buckling and/or unintended deformation. Gradually changing portions and tip portions having a wide variety of cross-sectional shapes can be easily formed from the blank tube.
- the orbit of the forming tool in the spinning process is circular. That is, in the first method, it is necessary to control the movement of the forming tool in a complicated manner so as to follow the cross-sectional shape of the gradually changing portion, which changes from the cross-sectional shape of the blank tube to the cross-sectional shape of the tip portion, as in the conventional method described above. There is no Therefore, according to the first method, the machining speed can be increased and the machining time can be shortened.
- the first method unlike the conventional method described above, there is no need to perform secondary processing after forming the cylindrical body or to hold the main body using additional members. Therefore, according to the first method, problems such as a decrease in manufacturing efficiency and an increase in manufacturing cost can be reduced.
- the cross-sectional shape of the main body of the tube and the cylindrical body is elliptical and the cross-sectional shape of the tip of the cylindrical body is circular and elliptical will be described.
- the combination of the cross-sectional shape of the main body of the tube and the cylindrical body to which the first method is applied and the cross-sectional shape of the tip of the cylindrical body is not limited to the above, and a wide variety of combinations of cross-sectional shapes are possible. is.
- the cross-sectional shape of the main body can be any one shape selected from the group consisting of circular, elliptical, oval and polygonal.
- the cross-sectional shape of the tip can also be any one shape selected from the group consisting of circular, elliptical, oval and polygonal.
- Polygons include a wide variety of shapes such as triangles, quadrilaterals (eg, rectangles, parallelograms, rhombuses, trapezoids, etc.), pentagons, hexagons, heptagons and octagons. Also, these polygons do not necessarily have to be linearly symmetrical or rotationally symmetrical.
- the cross-sectional shape of the main body and the cross-sectional shape of the tip may be the same or different.
- the second method is the above-described first method, wherein the cross-sectional shape of the main body is any one selected from the group consisting of a circle, an ellipse, an oval and a polygon, and the cross-section of the tip is
- the spinning method is characterized in that the shape is one selected from the group consisting of a circle, an ellipse, an oval and a polygon.
- each side of a polygon does not necessarily have to be a perfect straight line. It does not have to be configured.
- at least one of four sides may be formed by a gentle curve, and the angle at which adjacent sides intersect may not necessarily be 90 degrees.
- Rectangles also include, for example, rectangles with rounded corners and rectangles with chamfers. The same is true for other polygons such as triangles.
- the cross-sectional shape of the body portion is elliptical and the cross-sectional shape of the tip portion is also elliptical.
- the main body portion 23a may have a circular cross-sectional shape and the tip portion 23b may have an elliptical cross-sectional shape.
- the cross-sectional shape of the main body portion 24a may be rectangular (rectangular with rounded corners) and the cross-sectional shape of the tip portion 24b may be circular.
- the cross-sectional shape of the body portion 25a may be rectangular (rectangle with rounded corners) and the cross-sectional shape of the tip portion 25b may be elliptical.
- the gradual change portion and the tip portion having various cross-sectional shapes can be obtained from the blank tube having various cross-sectional shapes. can be easily molded.
- the relative positional relationship between the axis of the main body portion and the axis of the distal end portion is not limited to the above, and various positional relationships are possible.
- the axis of the main body and the axis of the tip may be parallel to each other but may be offset (eccentric), and the axis of the main body and the axis of the tip may be in the same plane. or in a so-called "spatial geometric twist position" where the axis of the body and the axis of the tip are not parallel and do not intersect.
- the third method is the above-described first method or second method, wherein the relative positional relationship between the axis of the main body and the axis of the distal end is coaxial, eccentric, tilted, and spatial geometric torsion.
- the spinning method is characterized in that the position is any one selected from the group consisting of the positions of
- FIG. 9 is a schematic diagram showing a blank tube 11 used in one specific example of the third method and a tubular body 26 molded from the blank tube 11.
- the base pipe 11 illustrated in FIG. 9 is the same as the base pipe 11 illustrated in FIGS.
- the axis of the tip portion 26b having a circular cross-section with respect to the axis of the body portion 26a having the same elliptical cross-section as that of the base pipe 11 is on the left side of the drawing. It has the same configuration as the cylindrical body 21 illustrated in FIG. 1 except that it is eccentric.
- Such eccentricity is due to the fact that in the first step, which is the step of forming the gradually changing portion 26b at the end of the tube 11 (the end of the main body portion 26a), the amount of diameter reduction of the work is more to the right than to the left as viewed in the drawing. can be achieved by setting the relative positional relationship between the revolution axis of the roller 41 and the axis of the workpiece in the partial spinning process so that
- the amount of eccentricity of the axis of the main body portion 26a of the work with respect to the revolution axis of the roller 41 in the second step executed in the first step is defined as the eccentric direction of the axis of the tip portion 26b with respect to the axis of the main body portion 26a. is relatively small with respect to the short shaft side peripheral surface on the same side as the main body portion 26a, and is relatively small with respect to the short shaft side peripheral surface on the side opposite to the eccentric direction of the shaft of the tip portion 26b with respect to the axis of the main body portion 26a. set to a large value.
- the axis of the main body portion 26a of the work with respect to the revolution axis of the roller 41 It is eccentric in the direction opposite to the eccentric direction (of the axis of the distal end portion 26b) (see the straight arrow shown in the figure).
- the eccentricity is achieved in a desired direction and displacement, and the cross-sectional shape and position of the end portion of the gradually changing portion 26b on the distal end side (opposite side to the main body portion 26a) changes to the cross-sectional shape and position of the distal end portion 26b. It can be achieved by matching shape and position respectively.
- FIG. 11 is a schematic diagram showing a blank tube 11 used in another specific example of the third method and a cylindrical body 27 formed from the blank tube 11.
- the base pipe 11 illustrated in FIG. 11 is the same as the base pipe 11 illustrated in FIGS.
- the cylindrical body 27 illustrated in FIG. 11 the axis of the tip portion 26b having a circular cross-sectional shape with respect to the axis of the main body portion 26a having the same elliptical cross-sectional shape as that of the base tube 11 is at the upper left as viewed in the drawing. It has the same configuration as the cylindrical body 21 illustrated in FIG. 1 and the cylindrical body 26 illustrated in FIG. 9 except that it is eccentric to the side.
- Such eccentricity is a step of forming a gradually changing portion 27b at the end of the base pipe 11 (the end of the main body portion 27a), as in the case of the cylindrical body 26 illustrated in FIGS.
- This can be achieved by appropriately setting the relative positional relationship between the revolution axis of the roller 41 and the axis of the workpiece in the partial spinning process executed in the first step (details will be described later).
- FIG. 12 is a schematic diagram showing the blank tube 13 used in yet another specific example of the third method and the cylindrical body 28 formed from the blank tube 13.
- the base pipe 13 illustrated in FIG. 12 is the same as the base pipe 13 illustrated in FIGS.
- the cylindrical body 28 illustrated in FIG. It has the same configuration as the cylindrical body 24 illustrated in FIG.
- Such eccentricity is performed in the first step, which is a step of forming a gradually changing portion 28b at the end of the blank pipe 13 (the end of the main body portion 28a), as in the case of the cylindrical body 27 illustrated in FIG. can be achieved by appropriately setting the relative positional relationship between the revolution axis of the roller 41 and the axis of the work in the partial spinning process executed in (details will be described later).
- FIG. 13 shows a blank tube 13 used in a further specific example of the third method and a cylindrical body formed from the blank tube 13 and having an inclined axis of the main body 29a and the tip 29b.
- 29 is a schematic diagram showing 29.
- FIG. In the first step of forming the gradually changing portion 29c such a cylindrical body 29 rotates the workpiece by a predetermined angle around an axis parallel to the short axis of the blank pipe 13 (that is, the short axis of the main body portion 29a). It can be shaped by performing spinning while rolling.
- FIG. 14 shows the blank tube 13 used in a further specific example of the third method and the relative positional relationship between the axis of the main body part 30a and the axis of the tip part 30b formed from the blank tube 13.
- FIG. 4 is a schematic diagram showing a tubular body 30 at a position of geometrical twist;
- FIG. 14(e) is a top view (top view) when the cylindrical body 30 is observed from above in the direction of the long axis AL.
- the relative positional relationship between the axis of the main body and the axis of the tip can be any one selected from the group consisting of coaxial, inclined and spatial geometric twist positions. The procedure is well known to those skilled in the art and will not be described in detail here.
- the tubular body can be molded by the third method regardless of whether the cross-sectional shape of the main body portion and the cross-sectional shape of the tip portion of the tubular body are the same shape or different shapes.
- the cylindrical body is formed by a normal spinning process. can be molded, but such a cylindrical body may be molded by a third method.
- the relative positional relationship between the axis of the main body portion and the axis of the tip portion is maintained while enjoying the effects achieved by the above-described first method and/or the second method.
- a cylindrical body that is any one selected from the group consisting of coaxial, eccentric, inclined and spatial geometric twist positions can be easily formed.
- Cylindrical body 21 having circular cross-sectional shape and tip end portion 21b located coaxially with main body portion 21a is formed from raw tube 11 having elliptical cross-sectional shape. Since the method of the present invention has already been described with reference to FIGS. 1 to 3, description thereof will be omitted here.
- FIG. 5 is a schematic diagram illustrating an overview of the process of forming the cylindrical body 22 from the blank pipe 11 illustrated in FIG. 4, the details of the forming process will be described again here.
- FIG. 15 is a schematic diagram illustrating the details of the process of forming the cylindrical body 22 from the blank tube 11 illustrated in FIG. 4 by the first method.
- FIG. 15 and FIGS. 16 to 21 which will be referred to later, reference numerals are omitted for convenience of drawing space, as in FIG.
- the vertical direction toward the drawing is the long axis direction of the portion having the irregular cross section
- the horizontal direction toward the drawing is the short axis direction of the portion having the irregular cross section.
- axial direction That is, the upper and lower circumferential surfaces of the work as viewed in the drawing are the long axis side circumferential surfaces, and the left and right circumferential surfaces of the work as viewed in the drawing are the short axis side circumferential surfaces.
- FIG. 15 corresponds to (a) and (b) of FIG. 5
- (b) of FIG. 15 corresponds to (c) and (d) of FIG.
- the first step and the second step are executed for the second time in (c) and (d).
- a set of 2 steps is performed.
- the third and fourth sets of the first step and the second step are executed.
- the cross-sectional shape of the end portion of the gradually changing portion 22c on the distal end side can be the same cross-sectional shape as the cross-sectional shape of the distal end portion 22b having an elliptical cross-sectional shape. That is, the molding of the gradually changing portion 22c is completed, and the first step ends.
- the second step which is a step of forming the tip portion 22b at the tip end of the gradually changing portion 22c.
- a distal end portion 22b of the cylindrical body 22 illustrated in FIGS. 4(c) and 4(d) is an elliptical cylindrical portion formed coaxially with the main body portion 22a. Therefore, in the second step, while maintaining the shape and size of the cross section, the first step and the second step are repeatedly performed a predetermined number of times in the same manner as in the first step described above, and the distal end portion 22b is formed. .
- a cylindrical body 23 having an elliptical cross-sectional shape and a tip portion 23b located coaxially with the body portion 23a is formed from the blank tube 12 having a circular cross-sectional shape.
- the method according to the invention has already been described with reference to FIG. However, since the details of the process of forming the cylindrical body 23 from the blank pipe 12 illustrated in FIG. 6 are not described, the details of the forming process will be described here.
- FIG. 16 is a schematic diagram illustrating the details of the process of forming the cylindrical body 23 from the blank tube 12 illustrated in FIG. 6 by the method of the present invention.
- the second step is executed twice consecutively. Specifically, in (a), the first partial spinning process is applied to the short axis side peripheral surface of the blank tube 12 having a circular cross-sectional shape.
- the short axis side peripheral surface of the workpiece is subjected to a second partial spinning process.
- a set of first and second steps is performed. Specifically, in (c), the long axis side peripheral surface of the work is partially spun, and in (d), the short axis side peripheral surface of the work is partially spun.
- the set of the first step and the second step is performed one more time
- the set of the first step and the second step is performed one more time. times.
- the last first step is performed.
- the cross-sectional shape of the end portion of the gradually changing portion 23c on the distal end side can be the same cross-sectional shape as the cross-sectional shape of the distal end portion 23b having an elliptical cross-sectional shape. That is, the molding of the gradually changing portion 23c is completed, and the first step ends.
- a second step is performed, which is a step of forming the tip portion 23b at the tip end of the gradually changing portion 23c.
- a tip portion 23b of the cylindrical body 23 illustrated in FIGS. 6(c) and 6(d) is an elliptical cylindrical portion formed coaxially with the main body portion 23a. Therefore, in the second step, while maintaining the shape and size of the cross section, the first step and the second step are repeatedly performed a predetermined number of times in the same manner as in the first step described above, and the tip portion 23b is formed. . This completes the molding of the tubular body 23 illustrated in FIGS. 6(c) and 6(d) and FIG. 16(j).
- the cylindrical body 24 having a circular cross-sectional shape and having a tip portion 24b located coaxially with the main body portion 24a is formed into a rectangular (rounded rectangular) cross section.
- the method of the present invention for forming from a shaped blank 13 has already been described with reference to FIG. However, since the details of the process of forming the cylindrical body 24 from the blank tube 13 illustrated in FIG. 7 are not described, the details of the forming process will be described here.
- FIG. 17 is a schematic diagram illustrating the details of the process of forming the cylindrical body 24 from the blank tube 13 illustrated in FIG. 7 by the method of the present invention.
- a set of the second step and the first step is executed for the first time.
- the first partial spinning process is applied to the short-axis side peripheral surface of the blank tube 13 having a rectangular cross-sectional shape.
- the corners of the rectangular cross-section are located on the outermost side from the center axis in the cross section of the blank tube 13, so the corners are partially spun.
- a first partial spinning process is applied to the long axis side peripheral surface of the work.
- the second set of the second step and the first step is executed.
- the rollers come into contact with not only the corners of the workpiece but also the areas near both ends of the minor axis of the peripheral surface on the side of the minor axis.
- a set of the second step and the first step is executed for the third time.
- the diameter of the revolution orbit at the innermost end of the roller becomes smaller than the rectangular cross section of the main body portion 24a. smaller than the dimension in the axial direction (short side).
- a second step is performed, which is a step of forming the distal end portion 24b at the distal end portion of the gradually changing portion 24c.
- a tip portion 24b provided in the cylindrical body 24 illustrated in FIGS. 7(c) and 7(d) is a cylindrical portion formed coaxially with the main body portion 24a. Therefore, in the second step, a normal coaxial spinning process is performed while maintaining the cross-sectional shape and size to form the tip portion 24b. This completes the molding of the cylindrical body 24 illustrated in FIGS. 7(c) and (d) and FIG. 17(i).
- FIG. 18 is a schematic diagram illustrating the details of the process of forming the cylindrical body 25 from the blank tube 13 illustrated in FIG. 8 by the method of the present invention.
- a set of the second step and the first step is executed for the first time.
- the first partial spinning process is applied to the short-axis side peripheral surface of the blank tube 13 having a rectangular cross-sectional shape.
- the outermost portion from the central axis in the cross section of the blank tube 13 is the corner of the rectangular cross section, so partial spinning is not possible. It will be applied to the corners.
- a first partial spinning process is applied to the long axis side peripheral surface of the work.
- the second set of the second step and the first step is executed.
- the rollers are not only in the corners of the workpiece but also in the regions near both ends of the minor axis of the peripheral surface on the minor axis side. come into contact.
- the set of the first step and the second step is executed for the third time in (e) and (f)
- the set of the first step and the second step is executed for the fourth time in (g) and (h). be done.
- the cross-sectional shape of the gradually changing portion 25c matches the cross-sectional shape and size of the distal end portion 25b. That is, the molding of the gradually changing portion 25c is completed, and the first step ends.
- the second step which is a step of forming the distal end portion 25b at the distal end portion of the gradually changing portion 25c.
- a distal end portion 245 of the cylindrical body 25 shown in FIGS. 8(c) and 8(d) is an elliptical cylindrical portion formed coaxially with the main body portion 25a. Therefore, in the second step, while maintaining the shape and size of the cross section, the first step and the second step are repeatedly performed a predetermined number of times in the same manner as in the first step described above, and the distal end portion 25b is formed. . This completes the molding of the cylindrical body 25 illustrated in FIGS. 8(c) and 8(d).
- FIG. 10 shows the main body relative to the revolution axis of the forming tool not only in the second step but also in the first step in the first step included in the method of the present invention for forming a tubular body from a blank tube illustrated in FIG. Since it is a schematic diagram illustrating the outline of the process of eccentrically moving the axis of the tip portion with respect to the axis of the body portion by eccentrically moving the axis of the portion, the details of the molding process will be described here again.
- FIG. 19 is a schematic diagram illustrating the details of the process of forming the cylindrical body 26 from the blank pipe 11 illustrated in FIG. 9 by the method of the present invention.
- the first step and the second step are executed for the second time in (c) and (d).
- a set with the second step is performed.
- the set of the first step and the second step is executed for the third time.
- the amount of eccentricity of the axis of the body portion 26a of the work with respect to the revolution axis of the roller in the second step is set in the direction opposite to the eccentricity direction (left side in the drawing) of the axis of the tip portion 26b with respect to the axis of the body portion 26a.
- the side (right side as viewed in the drawing) is set relatively large with respect to the short axis side peripheral surface, and the same side as the eccentric direction of the shaft of the tip portion 26b with respect to the shaft of the main body portion 26a (left side as viewed in the drawing). is set relatively small with respect to the short axis side peripheral surface of (see the straight arrow shown in the figure).
- the center of the cross section of the work is shifted leftward as viewed in the drawing.
- the first step is executed for the fourth time.
- the shape is circular (having a diameter greater than that of tip 26b).
- the rollers can contact the entire circumference of the work, so that by performing normal eccentric spinning processing, the cross-sectional shape and The first step is continued until the size matches the cross-sectional shape and size of the tip 26b (ie, a circular cross-sectional shape having the same diameter as the cross-sectional shape of the tip 26b). Thereby, the molding of the gradually changing portion 26c is completed, and the first step ends.
- the axis of the body portion 26a of the work is eccentric with respect to the revolution axis of the roller.
- the axis of the body portion 26a of the workpiece may be eccentric with respect to the revolution axis of the roller in the second step executed before the second time.
- the axis of the main body portion 26a of the work with respect to the revolution axis of the roller (the tip portion 26b with respect to the axis of the main body portion 26a) It may be eccentric in the direction opposite to the direction of eccentricity of the shaft.
- a second step is performed, which is a step of forming the tip portion 26b at the end portion of the gradually changing portion 26c opposite to the main body portion 26a.
- a tip portion 26b of the cylindrical body 26 illustrated in FIGS. 10(c) and 10(d) is a cylindrical portion having an axis parallel to the axis of the body portion 26a. Therefore, in the second step, the tip portion 26b can be formed at the end of the gradually changing portion 26c opposite to the main body portion 26a by normal spinning processing without further eccentricity. This completes the molding of the cylindrical body 26 illustrated in FIGS. 9(c) and (d) and FIG. 10(c).
- a cylindrical body 27 having a circular cross-sectional shape and having a distal end portion 27b eccentric to the upper left side of the drawing with respect to the body portion 27a is formed into an elliptical shape.
- the method of the present invention for forming from a blank tube 11 having a cross-sectional shape has already been described with reference to FIG. However, since the details of the process of forming the cylindrical body 27 from the blank pipe 11 illustrated in FIG. 11 are not described, the details of the forming process will be described here.
- the base pipe 11 illustrated in FIG. 11 is the same as the base pipe 11 illustrated in FIGS. 1, 4, 9 and 10.
- the axis of the tip portion 26b having a circular cross-sectional shape with respect to the axis of the main body portion 26a having the same elliptical cross-sectional shape as that of the base tube 11 is at the upper left as viewed in the drawing. It has the same configuration as the cylindrical body 21 illustrated in FIG. 1 and the cylindrical body 26 illustrated in FIG. 9 except that it is eccentric to the side.
- FIG. 20 is a schematic diagram illustrating the details of the process of forming the cylindrical body 27 from the blank tube 11 illustrated in FIG. 11 by the method of the present invention.
- the first step and the second step are executed in (c) and (d) for the second time.
- a set with the second step is performed.
- the axis of the main body 27a of the work is eccentric downward in the drawing with respect to the revolution axis of the roller (straight arrow shown in the drawing). ).
- the center of the cross-section of the workpiece is eccentric upward in the drawing.
- the axis of the main body portion 27a of the work relative to the revolution axis of the roller is eccentric downward as viewed in the drawing, and eccentric in the horizontal direction as viewed in the drawing.
- the amount is set so that the amount of eccentricity toward the right side of the drawing is greater than the amount of eccentricity toward the left side (see the two straight arrows shown in each drawing).
- the center of the cross section of the work is decentered to the upper left side as viewed in the drawing.
- the first step is executed for the third and fourth times, respectively.
- the axis of the main body portion 27a of the work is eccentric to the lower right side of the drawing with respect to the revolution axis of the roller (in each drawing, see the two straight arrows shown).
- the center of the cross section of the workpiece is further eccentric to the upper left side of the drawing.
- the workpiece has a circular cross-sectional shape (having a diameter greater than that of tip 27b).
- the roller can be in contact with the entire circumference of the workpiece, so that the cross-sectional shape of the gradually changing portion 27c and the The first step is continued until the size matches the cross-sectional shape and size of the tip 27b (ie, a circular cross-sectional shape with the same diameter as the cross-sectional shape of the tip 27b). Thereby, the molding of the gradually changing portion 27c is completed, and the first step ends.
- a second step is performed, which is a step of forming the tip portion 27b at the end portion of the gradually changing portion 27c opposite to the main body portion 27a.
- a tip portion 27b provided in the tubular body 27 illustrated in FIGS. 11(c) and 11(d) is a cylindrical portion having an axis parallel to the axis of the main body portion 27a. Therefore, in the second step, the leading end portion 27b can be formed at the end portion of the gradually changing portion 27c opposite to the main body portion 27a by normal spinning processing without further eccentricity. This completes the molding of the cylindrical body 27 illustrated in FIGS. 11(c) and (d) and FIG. 20(h).
- the base pipe 13 illustrated in FIG. 12 is the same as the base pipe 13 illustrated in FIGS.
- the tubular body 28 illustrated in FIG. It has the same configuration as the cylindrical body 24 illustrated in FIG.
- FIG. 21 is a schematic diagram illustrating the details of the process of forming the cylindrical body 28 from the blank tube 13 illustrated in FIG. 12 by the method of the present invention.
- a set of the second step and the first step is executed for the first time. Similar to the molding process of the cylindrical body 24 illustrated in FIG. 7 explained with reference to FIG. Therefore, the partial spinning process for the short shaft side peripheral surface is applied to the corners.
- a first partial spinning process is applied to the long axis side peripheral surface of the work.
- the axis of the body portion 28a of the work is eccentric to the lower side and the right side of the drawing with respect to the revolution axis of the roller (see the two straight arrows shown in each drawing).
- the center of the cross section of the work is decentered to the upper left side as viewed in the drawing.
- the second set of the second step and the first step is executed.
- the axis of the main body portion 28a of the work relative to the revolution axis of the roller is eccentrically lowered as viewed in the drawing, and in the horizontal direction as viewed in the drawing. , is set so that the amount of eccentricity toward the right side of the drawing is greater than the amount of eccentricity toward the left side (see the two straight arrows shown in each figure).
- the center of the cross section of the workpiece is further eccentric to the upper left side of the drawing.
- the axis of the main body portion 28a of the work with respect to the revolution axis of the roller is significantly greater than the first step executed in (b). It is eccentric to the bottom and to the right as viewed in the drawing (see the two straight arrows shown in each drawing).
- the axis of the main body 28a of the work with respect to the revolution axis of the roller It is decentered further to the right (see the two straight arrows shown in each figure).
- the center of the cross section of the workpiece is further eccentric to the upper left side of the drawing.
- the rollers can contact the entire circumference of the workpiece, so that the gradually changing portion 28c can be matches the cross-sectional shape and size of tip 28b (ie, a circular cross-sectional shape having the same diameter as the cross-sectional shape of tip 28b). Thereby, the molding of the gradually changing portion 28c is completed, and the first step ends.
- the second step which is a step of forming the tip portion 28b at the tip end of the gradually changing portion 28c.
- a tip portion 28b of the cylindrical body 28 shown in FIGS. 12(c) and 12(d) is a cylindrical portion having an axis parallel to the axis of the main body portion 28a. Therefore, in the second step, the tip portion 28b can be formed at the end of the gradually changing portion 28c opposite to the main body portion 28a by a normal spinning process without further eccentricity. This completes the molding of the tubular body 27 illustrated in FIGS. 12(c) and (d) and FIG. 21(i).
- the method of the present invention may further include an additional step of applying the cylindrical body to press working with a mold having a mold.
- the dimensions of the cylindrical body obtained by performing the first step and the second step may be slightly larger than the finally required dimensions of the cylindrical body.
- the tip portion is cut to match the member connected to the tip portion (for example, an exhaust pipe, etc.)
- the method of the present invention may further include additional steps such as fabricating the .
- Patent Document 4 Japanese Patent No. 6630300
- an open core metal is inserted into at least one of the open ends on both ends of the cylindrical body molded by the method of the present invention to support and restrain, and at least a part of the gradually changing portion is not supported or restrained.
- a hole punch may be punched in a predetermined area within the outer edge of the seat surface.
- FIG. 22 is a schematic diagram showing an example of a cylindrical body formed by a combination of the processing method disclosed in Patent Document 4 and the method of the present invention.
- a cylindrical body 31 illustrated in FIG. 22 includes a body portion 31a, a tip portion 31b, and a gradually changing portion 31c, similarly to the cylindrical body 26 illustrated in FIGS. 31d and a through hole 31e formed in the gradually changing portion 31c by the processing method disclosed in .
- the bearing surface and the through hole can be formed with high dimensional accuracy in the gradually changing portion of the cylindrical body having various cross-sectional shapes.
- the first step of reducing the diameter by pressing the long axis side peripheral surface of the work with the forming tool and the second step of reducing the diameter by pressing the short axis side peripheral surface of the work with the forming tool. were both performed in the first step.
- the gradually changing portion and the tip end have a circumference equal to the circumference of the base pipe (that is, the circumference of the main body) and have a cross-sectional shape that is different from the cross-sectional shape of the base pipe (that is, the cross-sectional shape of the main body).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
This spinning method integrally forms, by spinning a stock pipe, a tubular body which is a tubular member provided with a body section comprising an un-machined section of the stock pipe, a straight pipe-shaped distal end section formed at an end of the body section and having a different cross-sectional shape and/or size than the body section, and a gradually varied section formed between the body section and the distal end section, wherein: the revolution orbit of a forming tool in the spinning is circular, both in a first step for forming the gradually varied section at the end of a stock pipe and in a second step for forming the distal end section at the end of the gradually varied section on the side opposite the body section; and at least the first step includes a period in which the molding tool contacts only a section of the peripheral surface of the stock pipe, only in a part of the revolution orbit of the forming tool, by making the revolution axis of the molding tool and the axis of the stock pipe eccentric, such that only said section of the peripheral surface of the stock pipe is reduced in diameter. Due to this configuration, a spinning method is provided that reduces problems, such as buckling and/or unforeseen deformation, and that can handle various cross-sectional shapes, with high production efficiency.
Description
本発明は、スピニング加工方法に関する。具体的には、本発明は、座屈及び/又は意図せぬ変形等の問題を低減しつつ高い製造効率にて多様な断面形状に対応可能なスピニング加工方法に関する。
The present invention relates to a spinning processing method. Specifically, the present invention relates to a spinning method capable of dealing with various cross-sectional shapes with high manufacturing efficiency while reducing problems such as buckling and/or unintended deformation.
例えば内燃機関を搭載する自動車用の排気浄化装置及び/又は消音器等の装置を収容する筒状の筐体は、一般的に、相対的に大きい断面積を有する筒状の部分である本体部と、相対的に小さい断面積を有する筒状の部分である先端部と、本体部と先端部との間に介在し本体部側から先端部側へ向かうにつれて小さくなる断面を有する筒状の部分であるテーパ部と、を有する。このような装置の用途によっては、例えば筐体が設置される空間及び/又は筐体の内部における流体(例えば排気等)の流れ等に対する要請から、本体部及び先端部の少なくとも一方の断面形状を非円形(例えば楕円形及び長円形並びに矩形及び三角形等の多角形等)とすることが必要となる場合がある。このように本体部及び先端部の少なくとも一方の断面形状を非円形とする場合の具体例としては、本体部の断面形状が非円形であり先端部の断面形状が非円形又は円形である場合及び本体部の断面形状が円形であり先端部の断面形状が非円形である場合を挙げることができる。
For example, a cylindrical housing that houses a device such as an exhaust purification device and/or a silencer for a vehicle equipped with an internal combustion engine is generally a body portion that is a cylindrical portion having a relatively large cross-sectional area. a tip portion which is a cylindrical portion having a relatively small cross-sectional area; and a cylindrical portion which is interposed between the main body portion and the tip portion and has a cross section which decreases from the main body side to the tip side. and a tapered portion. Depending on the application of such a device, for example, the cross-sectional shape of at least one of the body portion and the tip portion may be changed due to the requirements for the space in which the housing is installed and/or the flow of fluid (e.g., exhaust gas, etc.) inside the housing. Non-circular shapes (eg, ovals and ovals and polygons such as rectangles and triangles, etc.) may be required. Specific examples of the case where at least one of the body portion and the tip portion has a non-circular cross-sectional shape include: For example, the main body has a circular cross-sectional shape and the tip has a non-circular cross-sectional shape.
例えば、楕円形の断面形状を有する素管(楕円管)の端部外周に成形具を押し付けつつ素管の回転軸線を中心として相対回転させると共に成形具を素管の中央側から端縁側へ向かうに従って素管の回転軸線に接近するように移動させることにより、素管の端部に中央側から端縁側へ向かうに従って小径となる円形の断面形状を有する先細り部を成形する方法が知られている。しかしながら、このような方法によってテーパ状の先細り部を形成すると、楕円管の短軸方向における外周と先細り部の外周との交差部に短軸方向に突出する突出部が形成されて、この突出部が他の部材に干渉するという問題がある。
For example, while pressing the forming tool against the outer periphery of the end of a blank tube having an elliptical cross-sectional shape (elliptical tube), the blank tube is relatively rotated around the axis of rotation of the blank tube, and the forming tool is directed from the center side to the edge side of the blank tube. A method of forming a tapered portion having a circular cross-sectional shape that decreases in diameter from the center side to the edge side at the end of the raw pipe by moving it so as to approach the rotation axis of the raw pipe according to the method is known. . However, when the tapered portion is formed by such a method, a protrusion projecting in the minor axis direction is formed at the intersection of the outer periphery of the oval tube in the minor axis direction and the outer periphery of the tapered portion. interferes with other members.
そこで、特許文献1(特許第4647140号公報)においては、素管の軸線に対する先細り部の傾斜角度が素管の中央側から端縁側へ向かうに従って漸次小さくなるように先細り部の母線を中凹の凹曲線とする成形方法が提案されている。これによれば、上記突出部の高さを低減することができるとされている。
Therefore, in Patent Document 1 (Japanese Patent No. 4647140), the generatrix of the tapered portion is recessed so that the inclination angle of the tapered portion with respect to the axis of the blank pipe gradually decreases from the center side to the edge side of the blank pipe. A molding method for forming a concave curve has been proposed. According to this, the height of the projection can be reduced.
しかしながら、上記方法においては素管(楕円間)の回転軸線を中心として成形具を相対回転させるので、楕円管の長径と短径との差が大きい場合に例えば座屈及び/又は意図せぬ変形等の問題が生じ易く加工限界が低い。特に、肉厚が薄い素管を用いる場合、当該問題がより顕著となる。斯かる問題を回避するための方策としては、例えば、スピニング加工において、素管が有する楕円形の断面形状から先細り部の楕円形の断面形状へと連続的に変化する軌道に沿うように成形具の動きを制御することが考えられる。しかしながら、このような複雑な制御を伴うスピニング加工において加工速度を高めることは困難であり、加工時間が長くなるという問題がある。
However, in the above method, since the forming tool is relatively rotated around the rotation axis of the blank tube (between the ovals), buckling and/or unintended deformation may occur when the difference between the major diameter and the minor diameter of the elliptical tube is large. Such problems are likely to occur, and the processing limit is low. In particular, when using a blank tube having a small wall thickness, the problem becomes more pronounced. As a measure for avoiding such a problem, for example, in the spinning process, the forming tool is moved along a trajectory that continuously changes from the elliptical cross-sectional shape of the blank pipe to the elliptical cross-sectional shape of the tapered portion. It is conceivable to control the movement of However, it is difficult to increase the processing speed in spinning processing involving such complicated control, and there is a problem that the processing time becomes long.
更に、特許文献2(特許第4698890号公報)においては、素管部の端部に縮径部を形成してなる異形管を成形した後に、更なるスピニング加工によって突出部の突出量を減少させる加工方法が提案されている。当該加工方法によれば、スピニング加工用の成形具の上記異形管に対する公転中心線を偏芯させて当該偏芯方向とは逆側に位置する突出部にのみ成形具を押圧接触させることにより当該突出部の突出量を低減することができる。しかしながら、上記のように異形管の成形後に二次加工を行うことは、例えば異形管の製造効率の低下及び製造コストの増大等の問題に繋がる虞がある。
Furthermore, in Patent Document 2 (Japanese Patent No. 4698890), after molding a deformed tube formed by forming a diameter-reduced portion at the end of the blank tube portion, the protrusion amount of the projecting portion is reduced by further spinning. Processing methods have been proposed. According to the processing method, the center line of revolution of the forming tool for spinning processing with respect to the deformed tube is eccentric, and the forming tool is pressed into contact only with the projecting portion located on the opposite side of the eccentric direction. The protrusion amount of the protrusion can be reduced. However, performing the secondary processing after forming the deformed pipe as described above may lead to problems such as a decrease in manufacturing efficiency of the deformed pipe and an increase in manufacturing cost.
加えて、特許文献3(特許第6748992号公報)においては、非円形の曲線断面を有する筒状体の本体部内に緩衝部材及び触媒担体を圧入すると共に筒状体の少なくとも一端部に対しスピニング加工を行う触媒コンバータの製造方法において、筒状体の本体部がクランプ部材によって保持された状態にて緩衝部材及び触媒担体を本体部内に圧入し、クランプ部材によって保持された状態のままで筒状体の少なくとも一端部に対しスピニング加工を行ってテーパ部を形成することが提案されている。これによれば、少なくとも本体部については上述したような突出部及び/又は意図しない変形の発生を低減することができる。しかしながら、例えば製造効率の低下及び製造コストの増大等の問題を低減する観点からは、クランプ部材のような付加的な部材を用いて本体部を保持する工程を必要としない技術がより望ましいことは言うまでも無い。
In addition, in Patent Document 3 (Japanese Patent No. 6748992), a cushioning member and a catalyst carrier are press-fitted into the main body of a cylindrical body having a non-circular curved cross section, and at least one end of the cylindrical body is subjected to spinning processing. In the manufacturing method of the catalytic converter, the buffer member and the catalyst carrier are press-fitted into the main body portion of the tubular body while the main body portion of the tubular body is held by the clamp member, and the tubular body is held while being held by the clamp member. It has been proposed to form a tapered portion by performing a spinning process on at least one end of the . According to this, it is possible to reduce the occurrence of protrusions and/or unintended deformation as described above at least for the main body. However, from the viewpoint of reducing problems such as a decrease in manufacturing efficiency and an increase in manufacturing cost, a technique that does not require a step of holding the main body using an additional member such as a clamp member is more desirable. Needless to say.
前述したように、当該技術分野においては、座屈及び/又は意図せぬ変形等の問題を低減しつつ高い製造効率にて多様な断面形状に対応可能なスピニング加工方法が求められている。
As described above, in the technical field, there is a demand for a spinning method that can handle various cross-sectional shapes with high manufacturing efficiency while reducing problems such as buckling and/or unintended deformation.
そこで、本発明者は鋭意研究の結果、スピニング加工において円形の公転軌道に沿って回転する成形具の公転軌道の一部のみにおいて成形具を素管の周面の一部のみに接触させる期間を設けることにより、上記課題を解決することができることを見出した。
Therefore, as a result of intensive research, the inventors of the present invention found that the period during which the forming tool is brought into contact with only a part of the peripheral surface of the blank pipe only in a part of the revolution orbit of the forming tool that rotates along the circular revolution orbit in the spinning process. It has been found that the above problems can be solved by providing
具体的には、本発明に係るスピニング加工方法(以降、「本発明方法」と称呼される場合がある。)は、本体部と先端部と徐変部とを備える筒状の部材である筒状体をスピニング加工によって素管から一体的に形成するスピニング加工方法である。本体部は、素管の加工されていない領域からなる部分である。先端部は、本体部の端部に形成され且つ本体部の断面とは形状及び/又は大きさが異なる断面を有する直管状の部分である。徐変部は、本体部と先端部との間に形成され且つ本体部側の端部から先端部側の端部へと向かうに従って本体部の断面形状から先端部の断面形状へと断面形状が変化し且つ本体部の内部空間と先端部の内部空間とを連通する筒状の部分である。本発明方法は、素管の端部に徐変部を形成する工程である第1工程及び徐変部の本体部とは反対側の端部に先端部を形成する工程である第2工程を含む。
Specifically, the spinning method according to the present invention (hereinafter sometimes referred to as the "method of the present invention") is a cylindrical member having a body portion, a tip portion, and a gradually changing portion. This is a spinning method for integrally forming a shaped body from a blank pipe by spinning. The body portion is a portion of the unprocessed region of the blank pipe. The tip is a straight tubular portion formed at the end of the body and having a cross section different in shape and/or size from the cross section of the body. The gradually changing portion is formed between the body portion and the tip portion, and has a cross-sectional shape that changes from the cross-sectional shape of the main body portion to the cross-sectional shape of the tip portion as it goes from the end portion on the side of the body portion to the end portion on the side of the tip portion. It is a cylindrical portion that changes and communicates the internal space of the main body and the internal space of the distal end. The method of the present invention comprises a first step of forming a gradually changing portion at the end of the blank tube and a second step of forming a tip portion at the end of the gradually changing portion opposite to the main body. include.
更に、第1工程及び第2工程の何れにおいてもスピニング加工における成形具の公転軌道は円形である。加えて、少なくとも第1工程は、部分スピニング加工が実行される期間である部分スピニング期間を含む。部分スピニング加工とは、成形具の公転軸と素管の軸とを偏芯させることにより成形具の公転軌道の一部のみにおいて成形具を素管の周面の一部のみに接触させて素管の周面の一部のみを縮径させるスピニング加工である。
Furthermore, in both the first step and the second step, the orbit of the forming tool in the spinning process is circular. Additionally, at least the first step includes a partial spinning period during which the partial spinning process is performed. In the partial spinning process, the revolution axis of the forming tool and the axis of the blank pipe are eccentrically arranged so that the forming tool contacts only a part of the peripheral surface of the blank pipe in only a part of the revolution orbit of the forming tool. It is a spinning process that reduces the diameter of only a part of the circumference of the pipe.
本体部の断面形状は、円形、楕円形、長円形、矩形及び三角形からなる群より選ばれる1つの形状とすることができる。先端部の断面形状もまた、円形、楕円形、長円形及び多角形からなる群より選ばれる何れか1つの形状とすることができる。本体部の断面形状と先端部の断面形状とは、同じであっても異なっていてもよい。また、本体部の軸と先端部の軸との相対的な位置関係は、同軸、偏芯、傾斜及び空間幾何学的ねじれの位置からなる群より選ばれる何れか1つとすることができる。
The cross-sectional shape of the main body can be one shape selected from the group consisting of circular, elliptical, oval, rectangular and triangular. The cross-sectional shape of the tip can also be any one shape selected from the group consisting of circular, elliptical, oval and polygonal. The cross-sectional shape of the main body and the cross-sectional shape of the tip may be the same or different. Also, the relative positional relationship between the axis of the main body portion and the axis of the tip portion can be any one selected from the group consisting of coaxial, eccentric, inclined, and spatial geometric twist positions.
上述したように、本発明方法においては、上述した部分スピニング加工により素管の周面の一部のみを縮径させることができる。従って、本発明方法によれば、素管の長径と短径との差が大きい場合においても、例えば座屈及び/又は意図せぬ変形等の問題を低減しつつ、多種多様な断面形状を有する素管から多種多様な断面形状を有する徐変部及び先端部を容易に成形することができる。
As described above, in the method of the present invention, it is possible to reduce the diameter of only a part of the peripheral surface of the blank tube by the above-described partial spinning process. Therefore, according to the method of the present invention, even when the difference between the major diameter and the minor diameter of the blank tube is large, various cross-sectional shapes can be obtained while reducing problems such as buckling and/or unintended deformation. Gradually changing portions and tip portions having a wide variety of cross-sectional shapes can be easily formed from the blank tube.
更に、本発明方法に含まれる第1工程及び第2工程の何れにおいても、スピニング加工における成形具の公転軌道は円形である。即ち、前述した従来技術に係るスピニング加工方法(以降、「従来方法」と称呼される場合がある。)のように素管の断面形状から先端部の断面形状へと変化する徐変部の断面形状に沿うように成形具の動きを複雑に制御する必要が無い。従って、本発明方法によれば、加工速度を高めることができ、加工時間を短縮することができる。
Furthermore, in both the first step and the second step included in the method of the present invention, the orbit of the forming tool in the spinning process is circular. That is, the cross-section of the gradually changing portion that changes from the cross-sectional shape of the blank tube to the cross-sectional shape of the tip portion as in the above-described conventional spinning method (hereinafter sometimes referred to as the "conventional method"). There is no need to complicatedly control the movement of the forming tool so as to follow the shape. Therefore, according to the method of the present invention, the processing speed can be increased and the processing time can be shortened.
加えて、本発明方法においては、前述した従来方法のように筒状体の成形後に二次加工を行ったり付加的な部材を用いて本体部を保持したりする必要が無い。従って、本発明方法によれば、製造効率の低下及び製造コストの増大等の問題を低減することができる。
In addition, in the method of the present invention, unlike the conventional method described above, there is no need to perform secondary processing after forming the cylindrical body or to use additional members to hold the main body. Therefore, according to the method of the present invention, problems such as a decrease in production efficiency and an increase in production cost can be reduced.
本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の各実施形態についての説明から容易に理解されるであろう。
Other objects, features and attendant advantages of the present invention will be easily understood from the description of each embodiment of the present invention described with reference to the following drawings.
《第1実施形態》
以下、図面を参照しながら本発明の第1実施形態に係るスピニング加工方法(以降、「第1方法」と称呼される場合がある。)について説明する。 <<1st Embodiment>>
A spinning method according to a first embodiment of the present invention (hereinafter sometimes referred to as "first method") will be described below with reference to the drawings.
以下、図面を参照しながら本発明の第1実施形態に係るスピニング加工方法(以降、「第1方法」と称呼される場合がある。)について説明する。 <<1st Embodiment>>
A spinning method according to a first embodiment of the present invention (hereinafter sometimes referred to as "first method") will be described below with reference to the drawings.
第1方法は、本体部と先端部と徐変部とを備える筒状の部材である筒状体をスピニング加工によって素管から一体的に形成するスピニング加工方法である。素管を形成する材料は、スピニング加工によって所望の形状に成形することが可能である限り、特に限定されない。このような材料の具体例としては、例えばステンレス鋼等の金属材料を挙げることができる。スピニング加工の詳細については、当業者に周知であるので、ここでの説明は省略する。
The first method is a spinning method in which a tubular body, which is a tubular member having a main body portion, a tip portion, and a gradually changing portion, is integrally formed from a blank pipe by spinning. The material forming the blank pipe is not particularly limited as long as it can be formed into a desired shape by spinning. Specific examples of such materials include metal materials such as stainless steel. The details of the spinning process are well known to those skilled in the art, and will not be described here.
本体部は、筒状体の先端部及び徐変部以外の部分であり、典型的には素管の加工されていない領域からなる部分である。先端部は、本体部の端部に形成され且つ本体部の断面とは形状及び/又は大きさが異なる断面を有する直管状の部分である。即ち、第1方法によって成形される筒状体においては、先端部の断面形状と本体部の断面形状とが異なっているか、先端部の断面積と本体部の断面積とが異なっているか、或いは先端部の断面形状と本体部の断面形状とが異なっており且つ先端部の断面積と本体部の断面積とが異なっている。第1方法によって成形される筒状体における先端部の断面と本体部の断面との様々な組み合わせの具体例については後に詳述する。
The body portion is the portion other than the tip portion and the gradually changing portion of the cylindrical body, and is typically the portion consisting of the unprocessed region of the blank tube. The tip is a straight tubular portion formed at the end of the body and having a cross section different in shape and/or size from the cross section of the body. That is, in the cylindrical body formed by the first method, the cross-sectional shape of the tip portion and the cross-sectional shape of the body portion are different, the cross-sectional area of the tip portion and the cross-sectional area of the body portion are different, or The cross-sectional shape of the tip is different from the cross-sectional shape of the main body, and the cross-sectional area of the tip is different from the cross-sectional area of the main body. Specific examples of various combinations of the cross section of the tip portion and the cross section of the body portion in the cylindrical body molded by the first method will be described in detail later.
徐変部は、本体部と先端部との間に形成され且つ本体部側の端部から先端部側の端部へと向かうに従って本体部の断面形状から先端部の断面形状へと断面形状が変化し且つ本体部の内部空間と先端部の内部空間とを連通する筒状の部分である。典型的には、徐変部は本体部側の端部から先端部側の端部へと向かうに従って断面積が徐々に小さくなるテーパ状の縮径部である。但し、徐変部の断面は必ずしも全周に亘って縮径している必要は無く、縮径していない部分及び/又は拡径している部分が含まれていてもよい。また、本体部側の端部から先端部側の端部へと向かうに従って本体部の断面形状から先端部の断面形状へと断面形状が変化する変化率は必ずしも一定又は均等である必要は無い。例えば、徐変部の軸方向に沿って上記変化率が変化していてもよく、徐変部の軸周りに沿って上記変化率が変化していてもよい。
The gradually changing portion is formed between the body portion and the tip portion, and has a cross-sectional shape that changes from the cross-sectional shape of the main body portion to the cross-sectional shape of the tip portion as it goes from the end portion on the side of the body portion to the end portion on the side of the tip portion. It is a cylindrical portion that changes and communicates the internal space of the main body and the internal space of the distal end. Typically, the gradually changing portion is a tapered diameter-reduced portion whose cross-sectional area gradually decreases from the end on the main body side toward the end on the tip side. However, the cross section of the gradually changing portion does not necessarily have to be reduced in diameter over the entire circumference, and may include a portion that is not reduced in diameter and/or a portion that is increased in diameter. Further, the rate of change of the cross-sectional shape from the main body side to the tip side end toward the tip side end is not necessarily constant or uniform. For example, the rate of change may vary along the axial direction of the gradually changing portion, or may vary along the axis of the gradually changing portion.
第1方法は、素管の端部に徐変部を形成する工程である第1工程及び徐変部の本体部とは反対側の端部に先端部を形成する工程である第2工程を含む。上述したように第1方法は、本体部と先端部と徐変部とを備える筒状の部材である筒状体をスピニング加工によって素管から一体的に形成するスピニング加工方法である。従って、第1工程においてはスピニング加工によって素管の端部に徐変部が一体的に形成され、第2工程においてはスピニング加工によって徐変部の本体部とは反対側の端部に先端部が一体的に形成される。
The first method includes a first step of forming a gradually changing portion at the end of the blank tube and a second step of forming a tip portion at the end of the gradually changing portion opposite to the main body. include. As described above, the first method is a spinning method for integrally forming a tubular body, which is a tubular member having a main body portion, a tip end portion, and a gradually changing portion, from a blank tube by spinning. Therefore, in the first step, the gradually changing portion is integrally formed at the end of the blank tube by spinning, and in the second step, the gradually changing portion is formed at the end opposite to the main body portion by spinning. are integrally formed.
更に、第1工程及び第2工程の何れにおいてもスピニング加工における成形具の公転軌道は円形である。即ち、第1方法においては、前述した従来技術に係るスピニング加工方法(従来方法)のように本体部(素管)の断面形状から先端部の断面形状へと変化する徐変部の断面形状に沿うように成形具の動きを複雑に制御する必要が無い。従って、第1方法によれば、加工速度を高めることができ、加工時間を短縮することができる。
Furthermore, in both the first step and the second step, the orbit of the forming tool in the spinning process is circular. That is, in the first method, the cross-sectional shape of the gradually changing portion that changes from the cross-sectional shape of the main body (base tube) to the cross-sectional shape of the tip portion as in the above-described conventional spinning method (conventional method). There is no need for complicated control of the movement of the forming tool to follow. Therefore, according to the first method, the machining speed can be increased and the machining time can be shortened.
加えて、少なくとも第1工程は、部分スピニング加工が実行される期間である部分スピニング期間を含む。部分スピニング加工とは、例えばローラ及びへら等の成形具の公転軸と素管の軸とを偏芯させることにより成形具の公転軌道の一部のみにおいて成形具を素管の周面の一部のみに接触させて素管の周面の一部のみを縮径させるスピニング加工である。即ち、第1方法においては、部分スピニング加工により素管の周面の一部のみを縮径させることができる。従って、素管の長径と短径との差が大きい場合においても例えば座屈及び/又は意図せぬ変形等の問題を低減しつつ、多種多様な断面形状を有する素管(本体部)から多種多様な断面形状を有する徐変部及び先端部を容易に成形することができる。
In addition, at least the first step includes a partial spinning period during which partial spinning is performed. In the partial spinning process, the axis of revolution of the forming tool such as a roller or spatula and the axis of the blank pipe are made eccentric, so that the forming tool is moved to a part of the peripheral surface of the blank pipe only in a part of the revolution orbit of the forming tool. It is a spinning process that reduces the diameter of only a part of the peripheral surface of the mother tube by contacting the chisel. That is, in the first method, it is possible to reduce the diameter of only a part of the peripheral surface of the mother pipe by partial spinning. Therefore, even when the difference between the long diameter and the short diameter of the raw pipe is large, various problems such as buckling and/or unintended deformation can be reduced, and a wide variety of raw pipes (main parts) having various cross-sectional shapes can be obtained. Gradual change portions and tip portions having various cross-sectional shapes can be easily molded.
更に、前述した従来方法のように筒状体の成形後に二次加工を行ったり付加的な部材を用いて本体部を保持したりする必要が無い。従って、第1方法によれば、製造効率の低下及び製造コストの増大等の問題を低減することができる。
Furthermore, unlike the conventional method described above, there is no need to perform secondary processing after molding the cylindrical body or to hold the main body using additional members. Therefore, according to the first method, problems such as a decrease in manufacturing efficiency and an increase in manufacturing cost can be reduced.
ここで、図面を参照しながら、第1方法の幾つかの具体例について詳しく説明する。図1は、第1方法の1つの具体例において使用される素管及び当該素管から成形される筒状体を示す模式図である。(a)は素管11を中心軸AXの方向から観察した場合における正面図であり、楕円形の断面における長軸AL及び短軸ASがそれぞれ二点鎖線によって示されている。(b)は素管11を短軸ASの方向から観察した場合における左側面図であり、楕円形の断面の中心を通る中心軸AXが二点鎖線によって示されている。
Here, some specific examples of the first method will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing a blank pipe used in one specific example of the first method and a cylindrical body formed from the blank pipe. (a) is a front view of the tube 11 viewed from the direction of the central axis AX, in which the major axis AL and the minor axis AS in the elliptical cross section are indicated by two-dot chain lines. (b) is a left side view of the base pipe 11 when viewed from the direction of the short axis AS, and the central axis AX passing through the center of the elliptical cross section is indicated by a chain double-dashed line.
一方、(c)は第1方法によって素管11から成形される筒状体21を中心軸AXの方向から観察した場合における正面図であり、(d)は筒状体21を短軸ASの方向から観察した場合における左側面図である。(c)及び(d)においても、楕円形の断面における長軸AL及び短軸AS並びに楕円形の断面の中心を通る中心軸AXが二点鎖線によってそれぞれ示されている。(c)及び(d)に例示するように、筒状体21は本体部21aと先端部21bと徐変部21cとを備える筒状の部材である。
On the other hand, (c) is a front view of the cylindrical body 21 formed from the blank tube 11 by the first method when observed from the direction of the central axis AX, and (d) is a front view of the cylindrical body 21 formed from the short axis AS. It is a left side view when observed from the direction. In (c) and (d), the major axis AL and minor axis AS of the elliptical cross section and the central axis AX passing through the center of the elliptical cross section are indicated by two-dot chain lines, respectively. As illustrated in (c) and (d), the tubular body 21 is a tubular member including a body portion 21a, a tip portion 21b, and a gradually changing portion 21c.
本体部21aは、筒状体21の先端部21b及び徐変部21c以外の部分であり、素管11の加工されていない領域からなる部分である。先端部21bは、本体部21aの端部に形成された徐変部21cの本体部21aとは反対側の端部に形成され且つ本体部21aの楕円形の断面の短径よりも小さい直径を有する円形の断面を有する直管状の部分である。徐変部21cは、本体部21aと先端部21bとの間に形成され且つ本体部21a側の端部から先端部21b側の端部へと向かうに従って本体部21aの楕円形の断面形状から先端部21bの円形の断面形状へと断面形状が変化し且つ本体部21aの内部空間と先端部21bの内部空間とを連通する筒状の部分である。即ち、この場合、楕円形の断面形状を有する素管11の端部を第1方法によって加工して、より小さい円形の断面形状を有する直管状の先端部21bを成形する必要がある。
The body portion 21a is a portion other than the tip portion 21b and the gradually changing portion 21c of the cylindrical body 21, and is a portion of the unprocessed region of the blank pipe 11. The tip portion 21b is formed at the opposite end of the body portion 21a of the gradually changing portion 21c formed at the end of the body portion 21a, and has a smaller diameter than the minor axis of the elliptical cross section of the body portion 21a. It is a straight tubular section with a circular cross-section having a The gradually changing portion 21c is formed between the main body portion 21a and the tip portion 21b, and gradually changes from the elliptical cross-sectional shape of the main body portion 21a to the tip as it goes from the end on the side of the main body portion 21a to the end on the side of the tip portion 21b. It is a cylindrical portion whose cross-sectional shape changes to the circular cross-sectional shape of the portion 21b and communicates the internal space of the main body portion 21a and the internal space of the tip portion 21b. That is, in this case, it is necessary to process the end portion of the blank tube 11 having an elliptical cross-sectional shape by the first method to form a straight pipe-like tip portion 21b having a smaller circular cross-sectional shape.
次に、第1方法によって素管11から筒状体21が成形される過程について説明する。尚、以下の説明においては、素管、筒状体及び素管から筒状体へと成形される過程にある中間体が「ワーク」と総称される場合がある。図2は、図1に例示した素管11から筒状体21が第1方法によって成形される過程の概要を例示する模式図である。(a)、(c)及び(e)はワークを軸方向から観察した場合における正面図であり、ワークの楕円形の断面における長軸及び短軸がそれぞれ二点鎖線によって示されている(但し、符号AL及びASは省略した)。(b)、(d)及び(f)はワークを上記短径方向から観察した場合における左側面図であり、楕円形の断面の中心を通る中心軸が二点鎖線によって示されている(但し、符号AXは省略した)。
Next, the process of forming the cylindrical body 21 from the blank tube 11 by the first method will be described. In the following description, the raw tube, the cylindrical body, and the intermediate body in the process of being formed from the raw tube into the cylindrical body may be collectively referred to as "work". FIG. 2 is a schematic diagram illustrating an overview of the process of forming the cylindrical body 21 from the blank tube 11 illustrated in FIG. 1 by the first method. (a), (c), and (e) are front views of the work when observed from the axial direction, and the long and short axes of the elliptical cross section of the work are indicated by two-dot chain lines, respectively (however, , symbols AL and AS omitted). (b), (d) and (f) are left side views of the workpiece when observed from the minor axis direction, and the central axis passing through the center of the elliptical cross section is indicated by a two-dot chain line (however, , the symbol AX is omitted).
図2においては、素管11、筒状体21及び素管11から筒状体21へと成形される過程にある中間体(ワーク)の形状が太い実線によって描かれ、第1方法において実行されるスピニング加工における成形具としてのローラ41が細い実線によって描かれている。尚、図2に示す例においては2つのローラ41が公転軸を挟んで互いに対向する位置に配設されているが、第1方法において実行されるスピニング加工における成形具の数は2つに限定されるものではなく、1つであってもよく、或いは3つ以上であってもよい。
In FIG. 2, the shapes of the blank tube 11, the cylindrical body 21, and the intermediate body (workpiece) in the process of being molded from the blank tube 11 to the cylindrical body 21 are drawn by thick solid lines, and the shapes of the blank tube 11 and the cylindrical body 21 are drawn by thick solid lines. A roller 41 as a forming tool in the spinning process is drawn by a thin solid line. In the example shown in FIG. 2, the two rollers 41 are arranged at positions facing each other across the revolution axis, but the number of forming tools in the spinning process executed in the first method is limited to two. There may be one, or three or more.
更に、ローラ41の中心(自転軸)の公転軌道Tc及びローラ41の最内端の公転軌道Teがそれぞれ一点鎖線及び破線によって描かれている。上述したように、第1方法においては、素管11の端部に徐変部21cを形成する工程である第1工程及び徐変部21cの本体部21aとは反対側の端部に先端部21bを形成する工程である第2工程の何れにおいてもスピニング加工における成形具(ワーク41)の公転軌道Tc及びTeは円形である。
Furthermore, the revolution orbit Tc of the center (rotation axis) of the roller 41 and the revolution orbit Te of the innermost end of the roller 41 are drawn by a dashed line and a dashed line, respectively. As described above, in the first method, the first step, which is the step of forming the gradually changing portion 21c at the end of the blank pipe 11, and the tip portion at the end of the gradually changing portion 21c opposite to the main body portion 21a. The orbits Tc and Te of the forming tool (workpiece 41) in the spinning process are circular in any of the second steps, which are steps for forming 21b.
上述したように、第1方法においては、先ず、素管11の端部に徐変部21cを形成する工程である第1工程が実行される。図2に示す例においては、(a)及び(b)に例示するように、先ず、円形の公転軌道に沿って回転する(図中に示す実線の曲線矢印を参照)ローラ41によって素管11の楕円形の断面の長径の両端近傍の素管11の周面(以降、「長軸側周面」と称呼される場合がある。)を押圧して縮径させる。その結果、ワークの最終的に先端部21b及び縮径部21cとなる部分の断面形状が、(c)に例示するように、素管11(及び本体部21a)の断面形状に比べて、長軸方向において押し縮められた(縮径された)形状となる。以降、このようにワークの長軸側周面を成形具によって押圧して縮径させる過程を「第1ステップ」と称呼する場合がある。
As described above, in the first method, first, the first step, which is the step of forming the gradually changing portion 21c at the end of the blank pipe 11, is performed. In the example shown in FIG. 2, first, as illustrated in (a) and (b), the blank pipe 11 is rotated by rollers 41 (see solid curved arrows shown in the figure) rotating along a circular revolution orbit. The peripheral surface of the tube 11 near both ends of the major axis of the elliptical cross section (hereinafter sometimes referred to as "long axis side peripheral surface") is pressed to reduce the diameter. As a result, the cross-sectional shape of the portion of the workpiece that eventually becomes the tip portion 21b and the reduced diameter portion 21c is longer than the cross-sectional shape of the blank tube 11 (and the main body portion 21a), as illustrated in (c). It becomes a shape compressed (diameter-reduced) in the axial direction. Henceforth, the process of pressing the long-axis side peripheral surface of a workpiece|work with a forming tool and diameter-reducing it may be called a "1st step."
尚、第1ステップは、ローラ41の1回のパスによって実行してもよく或いは複数回のパスによって実行してもよい。また、第1ステップを複数回繰り返し実行した後に次のステップへと進んでもよい。更に、図2の(a)及び(b)に例示した第1ステップにおいては、素管11の中心軸とローラ41の公転軸とが一致する所謂「同軸スピニング加工」により、素管11の楕円形の断面の長径の両端近傍の素管11の周面(2つの長軸側周面)の両方を同時に押圧して縮径させた。しかしながら、詳しくは後述するように、第1ステップにおいても、素管11の中心軸とローラ41の公転軸とを偏芯させて、素管11の楕円形の断面の長径の両端近傍の素管11の2つの周面(2つの長軸側周面)を個別に押圧して縮径させてもよい。
Note that the first step may be executed by one pass of the roller 41 or may be executed by multiple passes. Alternatively, the next step may be performed after the first step is repeatedly executed a plurality of times. Furthermore, in the first step illustrated in FIGS. 2A and 2B, the elliptical shape of the blank tube 11 is formed by so-called "coaxial spinning" in which the central axis of the blank tube 11 and the revolution axis of the roller 41 are aligned. Both peripheral surfaces (two major axis side peripheral surfaces) of the tube 11 near both ends of the major axis of the cross section of the shape were simultaneously pressed to reduce the diameter. However, as will be described later in detail, even in the first step, the central axis of the blank tube 11 and the revolution axis of the roller 41 are eccentrically arranged so that the blank tube near both ends of the major axis of the elliptical cross section of the blank tube 11 is The two peripheral surfaces (two major axis side peripheral surfaces) of 11 may be individually pressed to reduce the diameter.
次に、(c)に例示するように、素管11の中心軸とローラ41の公転軸とを偏芯(オフセット)させて(図中に示す実線の直線矢印を参照)所謂「偏芯スピニング加工」を実行することにより、素管11の楕円形の断面の短径の両端近傍のワークの周面(以降、「短軸側周面」と称呼される場合がある。)の一方を押圧して縮径させる。これにより、ワークの周面の(d)において斜線が施された部分がローラ41の公転軌道に沿った形状に成形される。更に、図2には例示しないが、素管11の中心軸とローラ41の公転軸とを反対側に偏芯(オフセット)させて上記と同様に「偏芯スピニング加工」を実行することにより、素管11の楕円形の断面の短径の両端近傍のワークの周面(短軸側周面)の他方も上記と同様にローラ41の公転軌道に沿った形状に成形される。以降、このように偏芯スピニング加工によりワークの短軸側周面を成形具によって押圧して縮径させる過程を「第2ステップ」と称呼する場合がある。
Next, as exemplified in (c), the central axis of the tube 11 and the revolution axis of the roller 41 are eccentrically (offset) (see the solid line arrows shown in the drawing) to perform so-called "eccentric spinning." By executing "processing", one of the peripheral surfaces of the workpiece near both ends of the short axis of the elliptical cross section of the blank tube 11 (hereinafter sometimes referred to as "short axis side peripheral surface") is pressed. to reduce the diameter. As a result, the hatched portion in (d) of the peripheral surface of the work is formed into a shape along the orbit of the roller 41 . Furthermore, although not illustrated in FIG. 2, by eccentrically (offsetting) the central axis of the tube 11 and the revolution axis of the roller 41 to the opposite side and executing the "eccentric spinning process" in the same manner as described above, The other peripheral surface of the work near both ends of the minor axis of the elliptical cross section of the blank tube 11 (minor axis side peripheral surface) is also shaped along the revolution orbit of the roller 41 in the same manner as described above. Hereinafter, the process of reducing the diameter of the work by pressing the short axis side peripheral surface of the work with a forming tool by eccentric spinning may be referred to as a "second step".
上記「偏芯スピニング加工」の各々においては、成形具としてのローラ41の公転軸と素管11の軸とを偏芯させることによりローラ41の最内端の公転軌道Teの一部のみにおいてローラ41を素管11の周面の一部のみに接触させて素管11の周面の一部のみを縮径させている。即ち、上記「偏芯スピニング加工」は上述した「部分スピニング加工」に該当し、上記「偏芯スピニング加工」が実行される期間は上述した「部分スピニング期間」に該当する。
In each of the above-mentioned "eccentric spinning processes", by eccentrically rotating the revolution axis of the roller 41 as a forming tool and the axis of the blank tube 11, the roller 41 is rotated only in a part of the revolution track Te at the innermost end of the roller 41. 41 is brought into contact with only part of the peripheral surface of the blank pipe 11 to reduce the diameter of only part of the peripheral surface of the blank pipe 11 . That is, the "eccentric spinning process" corresponds to the "partial spinning process" described above, and the period during which the "eccentric spinning process" is performed corresponds to the "partial spinning period" described above.
但し、図1に例示したように、図2に例示する第1方法において楕円形の断面形状を有する素管11から成形される筒状体21が備える先端部21bは、本体部21aの端部に形成された徐変部21cの本体部21aとは反対側の端部に形成され且つ本体部21aの楕円形の断面の短径よりも小さい直径を有する円形の断面を有する直管状の部分である。従って、素管11の端部に徐変部21cを形成する工程である第1工程の途中のある時点において、第1ステップ及び第2ステップの何れにおいてもローラ41の最内端の公転軌道Teの直径が本体部21aの楕円形の断面の短径よりも小さくなる。この時点以降は、ワークの全周に亘ってローラ41が接触する通常のスピニング加工を実行することにより、徐変部21cの断面形状が先端部21bの断面の形状及び大きさに一致するまで第1工程を継続することができる。
However, as illustrated in FIG. 1, the tip portion 21b provided in the cylindrical body 21 formed from the blank tube 11 having an elliptical cross-sectional shape in the first method illustrated in FIG. A straight tubular portion having a circular cross section with a diameter smaller than the minor axis of the elliptical cross section of the main body portion 21a, which is formed at the end of the gradually changing portion 21c opposite to the main body portion 21a. be. Therefore, at some point during the first step, which is the step of forming the gradually changing portion 21c at the end of the blank tube 11, the innermost revolving orbit Te of the roller 41 is reached in both the first step and the second step. is smaller than the minor axis of the elliptical cross section of the body portion 21a. After this time point, by performing normal spinning processing in which the roller 41 is in contact with the entire circumference of the workpiece, the cross-sectional shape of the gradually changing portion 21c matches the cross-sectional shape and size of the tip portion 21b. One step can be continued.
上記のように、第1方法においては、部分スピニング加工が実行される期間である部分スピニング期間が必ずしも第1工程の全期間を占めている必要は無い。換言すれば、第1工程が実行される期間に部分スピニング期間が含まれていればよい。
As described above, in the first method, the partial spinning period, which is the period during which the partial spinning process is performed, does not necessarily occupy the entire period of the first step. In other words, the period during which the first step is executed should include the partial spinning period.
尚、第2ステップにおける一方及び他方の短軸側周面に対する偏芯スピニング加工もまた、ローラ41の1回のパスによって実行してもよく或いは複数回のパスによって実行してもよい。また、上述したように第1工程の途中のある時点以降において通常のスピニング加工が実行される場合、当該通常のスピニング加工もまた、ローラ41の1回のパスによって実行してもよく或いは複数回のパスによって実行してもよい。更に、第1ステップを実行した後に第2ステップを複数回繰り返し実行してもよい。尚、成形しようとする断面形状によっては、第1ステップの前に第2ステップを実行してもよい。更に、このような第1ステップと第2ステップとの組を繰り返し実行することにより、素管11の端部に徐変部21cを形成してもよい。
It should be noted that the eccentric spinning processing on the one and the other short shaft side peripheral surfaces in the second step may also be performed by one pass of the roller 41 or may be performed by multiple passes. Further, when the normal spinning process is performed after a certain point in the middle of the first step as described above, the normal spinning process may also be performed by one pass of the roller 41, or may be performed multiple times. may be executed by the path of Furthermore, after performing the first step, the second step may be repeatedly performed multiple times. The second step may be performed before the first step depending on the cross-sectional shape to be formed. Furthermore, by repeatedly performing a set of such first step and second step, the gradually changing portion 21c may be formed at the end portion of the blank tube 11 .
図3は、上記のように第1工程において第1ステップと第2ステップとの組を繰り返し実行することにより素管11の端部に徐変部21cを形成する過程の詳細を例示する模式図である。尚、図3においては描画スペースの都合上、符号は省略されている。図3の(a)は図2の(a)及び(b)に該当し、図3の(b)は図2の(c)及び(d)に該当する。図3に示す例においては、(a)及び(b)において1回目の第1ステップと第2ステップとの組が実行された後に(c)及び(d)において2回目の第1ステップと第2ステップとの組が実行される。そして、(e)及び(f)において3回目及び4回目の第1ステップがそれぞれ実行される。
FIG. 3 is a schematic diagram illustrating the details of the process of forming the gradually changing portion 21c at the end portion of the blank tube 11 by repeatedly performing a set of the first step and the second step in the first step as described above. is. Note that reference numerals are omitted in FIG. 3 for the convenience of drawing space. (a) of FIG. 3 corresponds to (a) and (b) of FIG. 2, and (b) of FIG. 3 corresponds to (c) and (d) of FIG. In the example shown in FIG. 3, after the set of the first step and the second step is executed for the first time in (a) and (b), the first step and the second step are executed in (c) and (d) for the second time. A set of 2 steps is performed. Then, in (e) and (f), the first step is executed for the third time and the fourth time, respectively.
次に、第1方法においては、上述した第1工程の後に、徐変部21cの本体部21aとは反対側の端部に先端部21bを形成する工程である第2工程が実行される。図1の(c)及び(d)に例示した筒状体21が備える先端部21bは本体部21aと同軸に形成された円筒状の部分である。従って、図2に例示した第1方法においては、通常の同軸スピニング加工によって第2工程を実施することにより、徐変部21cの本体部21aとは反対側の端部に先端部21bを形成することができる。これにより、図1の(c)及び(d)並びに図2の(e)及び(f)に例示した筒状体21の成形が完了する。尚、第2工程において実行されるスピニング加工もまた、ローラ41の1回のパスによって実行してもよく或いは複数回のパスによって実行してもよい。
Next, in the first method, after the above-described first step, the second step of forming the tip portion 21b at the end of the gradually changing portion 21c opposite to the main body portion 21a is performed. The tip portion 21b of the cylindrical body 21 shown in FIGS. 1(c) and 1(d) is a cylindrical portion formed coaxially with the body portion 21a. Therefore, in the first method illustrated in FIG. 2, the tip portion 21b is formed at the end of the gradually changing portion 21c on the side opposite to the main portion 21a by performing the second step by a normal coaxial spinning process. be able to. This completes the molding of the cylindrical body 21 illustrated in FIGS. 1(c) and (d) and FIGS. 2(e) and (f). The spinning process performed in the second step may also be performed by one pass of the roller 41 or may be performed by multiple passes.
ここで、更なる図面を参照しながら、第1方法のもう1つの具体例について詳しく説明する。図4は、第1方法のもう1つの具体例において使用される素管及び当該素管から成形される筒状体を示す模式図である。(a)は素管11を中心軸AXの方向から観察した場合における正面図であり、楕円形の断面における長軸AL及び短軸ASがそれぞれ二点鎖線によって示されている。(b)は素管11を短軸ASの方向から観察した場合における左側面図であり、楕円形の断面の中心を通る中心軸AXが二点鎖線によって示されている。図4に例示する素管11は、図1に例示した素管11と同じである。
Another specific example of the first method will now be described in detail with reference to further drawings. FIG. 4 is a schematic diagram showing a blank pipe used in another specific example of the first method and a cylindrical body formed from the blank pipe. (a) is a front view of the tube 11 viewed from the direction of the central axis AX, in which the major axis AL and the minor axis AS in the elliptical cross section are indicated by two-dot chain lines. (b) is a left side view of the base pipe 11 when viewed from the direction of the short axis AS, and the central axis AX passing through the center of the elliptical cross section is indicated by a chain double-dashed line. The base pipe 11 illustrated in FIG. 4 is the same as the base pipe 11 illustrated in FIG.
一方、(c)は第1方法によって素管11から成形される筒状体22を中心軸AXの方向から観察した場合における正面図であり、(d)は筒状体22を短軸ASの方向から観察した場合における左側面図である。(c)及び(d)においても、楕円形の断面における長軸AL及び短軸AS並びに楕円形の断面の中心を通る中心軸AXが二点鎖線によってそれぞれ示されている。(c)及び(d)に例示するように、筒状体22は本体部22aと先端部22bと徐変部22cとを備える筒状の部材である。
On the other hand, (c) is a front view of the cylindrical body 22 formed from the blank pipe 11 by the first method when observed from the direction of the central axis AX, and (d) is a front view of the cylindrical body 22 formed from the short axis AS. It is a left side view when observed from the direction. In (c) and (d), the major axis AL and minor axis AS of the elliptical cross section and the central axis AX passing through the center of the elliptical cross section are indicated by two-dot chain lines, respectively. As illustrated in (c) and (d), the tubular body 22 is a tubular member including a body portion 22a, a tip portion 22b, and a gradually changing portion 22c.
本体部22aは、筒状体22の先端部22b及び徐変部22c以外の部分であり、素管11の加工されていない領域からなる部分である。先端部22bは、本体部22aの端部に形成された徐変部22cの本体部22aとは反対側の端部に形成され且つ本体部22aの楕円形の断面の長径及び短径よりも小さい長径及び短径をそれぞれ有する楕円形の断面を有する直管状の部分である。徐変部22cは、本体部22aと先端部22bとの間に形成され且つ本体部22a側の端部から先端部22b側の端部へと向かうに従って本体部22aの楕円形の断面形状から先端部22bの楕円形の断面形状へと断面形状が縮小し(即ち、縮径し)且つ本体部22aの内部空間と先端部22bの内部空間とを連通する筒状の部分である。即ち、この場合、楕円形の断面形状を有する素管11の端部を第1方法によって加工して、より小さい楕円形の断面形状を有する直管状の先端部22bを成形する必要がある。
The body portion 22a is a portion other than the tip portion 22b and the gradually changing portion 22c of the cylindrical body 22, and is a portion of the unprocessed region of the blank pipe 11. The tip portion 22b is formed at the end of the gradually changing portion 22c formed at the end of the body portion 22a, opposite to the body portion 22a, and is smaller than the major axis and the minor axis of the elliptical cross section of the body portion 22a. It is a straight tubular section with an elliptical cross-section having a major and minor axis respectively. The gradually changing portion 22c is formed between the body portion 22a and the tip portion 22b, and gradually changes from the elliptical cross-sectional shape of the body portion 22a to the tip as it goes from the end on the side of the body portion 22a to the end on the side of the tip portion 22b. It is a cylindrical portion whose cross-sectional shape is reduced to the elliptical cross-sectional shape of the portion 22b (that is, its diameter is reduced) and which communicates between the internal space of the main body portion 22a and the internal space of the tip portion 22b. That is, in this case, it is necessary to process the end portion of the blank pipe 11 having an elliptical cross-sectional shape by the first method to form a straight pipe-like tip portion 22b having a smaller elliptical cross-sectional shape.
次に、第1方法によって素管11から筒状体22が成形される過程について説明する。図5は、図4に例示した素管11から筒状体22が第1方法によって成形される過程の概要を例示する模式図である。上述した図2と同様に、(a)、(c)及び(e)はワークを軸方向から観察した場合における正面図であり、ワークの楕円形の断面における長軸及び短軸がそれぞれ二点鎖線によって示されている(但し、符号AL及びASは省略した)。(b)、(d)及び(f)はワークを上記短径方向から観察した場合における左側面図であり、楕円形の断面の中心を通る中心軸が二点鎖線によって示されている(但し、符号AXは省略した)。
Next, the process of forming the cylindrical body 22 from the blank pipe 11 by the first method will be described. FIG. 5 is a schematic diagram illustrating an overview of the process of forming the cylindrical body 22 from the blank tube 11 illustrated in FIG. 4 by the first method. Similar to FIG. 2 described above, (a), (c), and (e) are front views of the workpiece when observed from the axial direction, and the major axis and minor axis of the elliptical cross section of the workpiece are two points each. It is indicated by a dashed line (where the symbols AL and AS are omitted). (b), (d) and (f) are left side views of the workpiece when observed from the minor axis direction, and the central axis passing through the center of the elliptical cross section is indicated by a two-dot chain line (however, , the symbol AX is omitted).
上述した図2と同様に、図5においても、素管11、筒状体22及び素管11から筒状体22へと成形される過程にある中間体(ワーク)の形状が太い実線によって描かれ、第1方法において実行されるスピニング加工における成形具としてのローラ41が細い実線によって描かれている。更に、ローラ41の中心(自転軸)の公転軌道Tc及びローラ41の最内端の公転軌道Teがそれぞれ一点鎖線及び破線によって描かれている。図5に例示する第1方法においても、第1工程及び第2工程の何れにおいてもスピニング加工における成形具(ワーク41)の公転軌道Tc及びTeは円形である。
As in FIG. 2 described above, in FIG. 5 as well, the shapes of the blank pipe 11, the cylindrical body 22, and the intermediate body (workpiece) in the process of being molded from the blank pipe 11 to the cylindrical body 22 are drawn by thick solid lines. , and a roller 41 as a forming tool in the spinning process performed in the first method is drawn by a thin solid line. Furthermore, the revolution track Tc of the center (rotation axis) of the roller 41 and the revolution track Te of the innermost end of the roller 41 are drawn by a dashed line and a broken line, respectively. In the first method illustrated in FIG. 5 as well, the orbits Tc and Te of the forming tool (workpiece 41) in the spinning process are circular in both the first step and the second step.
図5に例示する第1方法においても、先ず、素管11の端部に徐変部22cを形成する工程である第1工程が実行される。具体的には、(a)及び(b)に例示すように、先ず、円形の公転軌道に沿って回転する(図中に示す実線の曲線矢印を参照)ローラ41によって素管11の長軸側周面を押圧して縮径させる。その結果、ワークの最終的に先端部22b及び縮径部22cとなる部分の断面形状が、(c)に例示するように、素管11(及び本体部22a)の断面形状に比べて、長軸方向において押し縮められた(縮径された)形状となる。即ち、上述した第1ステップが実行される。
Also in the first method illustrated in FIG. 5, first, the first step, which is the step of forming the gradually changing portion 22c at the end portion of the blank pipe 11, is performed. Specifically, as exemplified in (a) and (b), first, the long axis of the blank tube 11 is rotated by the roller 41 rotating along the circular revolution track (see the solid curved arrow shown in the drawing). The side peripheral surface is pressed to reduce the diameter. As a result, the cross-sectional shape of the portion that eventually becomes the tip portion 22b and the reduced diameter portion 22c of the work is longer than the cross-sectional shape of the base pipe 11 (and the main body portion 22a), as illustrated in (c). It becomes a shape compressed (diameter-reduced) in the axial direction. That is, the first step described above is executed.
次に、(c)に例示するように、素管11の中心軸とローラ41の公転軸とを偏芯(オフセット)させて(図中に示す実線の直線矢印を参照)所謂「偏芯スピニング加工」を実行することにより、素管11の楕円形の断面の短径の両端近傍の素管11の周面(以降、「短軸側周面」と称呼される場合がある。)の一方を押圧して縮径させる。これにより、ワークの周面の(d)において斜線が施された部分がローラ41の公転軌道に沿った形状に成形される。更に、図示しないが、素管11の中心軸とローラ41の公転軸とを反対側に偏芯(オフセット)させて上記と同様に「偏芯スピニング加工」を実行することにより、素管11の楕円形の断面の短径の両端近傍の素管11の周面(短軸側周面)の他方も上記と同様にローラ41の公転軌道に沿った形状に成形される。即ち、上述した第2ステップが実行される。尚、上述したように、上記「偏芯スピニング加工」は上述した「部分スピニング加工」に該当し、上記「偏芯スピニング加工」が実行される期間は上述した「部分スピニング期間」に該当する。
Next, as exemplified in (c), the central axis of the tube 11 and the revolution axis of the roller 41 are eccentrically (offset) (see the solid line arrows shown in the drawing) to perform so-called "eccentric spinning." By executing "processing", one of the peripheral surfaces of the tube 11 near both ends of the minor axis of the elliptical cross section of the tube 11 (hereinafter sometimes referred to as the "short axis side peripheral surface") is pressed to reduce the diameter. As a result, the hatched portion in (d) of the peripheral surface of the work is formed into a shape along the orbit of the roller 41 . Furthermore, although not shown, the central axis of the blank tube 11 and the revolution axis of the roller 41 are eccentrically (offset) to the opposite sides, and the "eccentric spinning process" is performed in the same manner as described above. The other peripheral surface (minor axis side peripheral surface) of the tube 11 near both ends of the minor axis of the elliptical cross section is also shaped along the revolution orbit of the roller 41 in the same manner as described above. That is, the above-described second step is executed. As described above, the "eccentric spinning process" corresponds to the "partial spinning process", and the period during which the "eccentric spinning process" is performed corresponds to the "partial spinning period".
第1工程は、上述した第1ステップ及び第2ステップを所定の回数だけ繰り返し実行することにより徐変部22cの本体部22aとは反対側の端部における断面形状が先端部22bの断面形状に一致するまで継続される。
In the first step, the cross-sectional shape of the end portion of the gradually changing portion 22c on the side opposite to the body portion 22a is changed to the cross-sectional shape of the tip portion 22b by repeatedly performing the above-described first step and second step a predetermined number of times. Continue until a match is found.
次に、第1方法においては、第1工程の後に、徐変部22cの本体部22aとは反対側の端部に先端部22bを形成する工程である第2工程が実行される。図4の(c)及び(d)に例示した筒状体22が備える先端部22bは本体部21aと同軸に形成された楕円筒状の部分である。従って、図5に例示した第1方法に含まれる第2工程においては、断面の形状及び大きさを維持しつつ、上述した第1工程と同様に第1ステップ及び第2ステップが所定の回数だけ繰り返し実行される。
Next, in the first method, after the first step, the second step of forming the tip portion 22b at the end of the gradually changing portion 22c opposite to the main body portion 22a is performed. A tip portion 22b of the cylindrical body 22 illustrated in FIGS. 4(c) and 4(d) is an elliptical cylindrical portion formed coaxially with the main body portion 21a. Therefore, in the second step included in the first method illustrated in FIG. 5, while maintaining the cross-sectional shape and size, the first step and the second step are repeated a predetermined number of times as in the first step described above. Executed repeatedly.
上記のように、第1方法においては、部分スピニング加工が実行される期間である部分スピニング期間が第1工程のみならず第2工程にも含まれていてもよい。
As described above, in the first method, not only the first step but also the second step may include a partial spinning period during which the partial spinning process is performed.
尚、図4及び図5に例示した第1方法においても、図1及び図2に例示した第1方法と同様に、第1ステップを複数回繰り返し実行した後に第2ステップを実行してもよく、第1ステップを実行した後に第2ステップを複数回繰り返し実行してもよい。また、第1工程及び第2工程において実行される各スピニング加工をローラ41の1回のパスによって実行してもよく或いは複数回のパスによって実行してもよい。
4 and 5, like the first method illustrated in FIGS. 1 and 2, the second step may be performed after repeatedly performing the first step a plurality of times. , the second step may be repeatedly performed multiple times after the first step is performed. Further, each spinning process performed in the first step and the second step may be performed by one pass of the roller 41 or may be performed by multiple passes.
尚、上述した第1方法の2つの具体例においては、素管及び筒状体の本体部の断面形状が楕円形であり且つ筒状体の先端部の断面形状が円形及び楕円形である場合について説明した。しかしながら、第1方法が適用される素管及び筒状体の本体部の断面形状と筒状体の先端部の断面形状との組み合わせは上記に限定されず、多種多様な断面形状の組み合わせが可能である(詳しくは後述する)。また、上述した第1方法の2つの具体例においては、筒状体の本体部の軸と先端部の軸とが同軸である場合について説明した。しかしながら、本体部の軸と先端部の軸との相対的な位置関係は上記に限定されず、多種多様な位置関係が可能である(詳しくは後述する)。
In the two specific examples of the first method described above, the cross-sectional shape of the main body of the tube and the cylindrical body is elliptical, and the cross-sectional shape of the tip of the cylindrical body is circular and elliptical. explained. However, the combination of the cross-sectional shape of the main body of the tube and the cylindrical body to which the first method is applied and the cross-sectional shape of the tip of the cylindrical body is not limited to the above, and a wide variety of combinations of cross-sectional shapes are possible. (details will be described later). Further, in the above-described two specific examples of the first method, the case where the axis of the body portion and the axis of the tip portion of the cylindrical body are coaxial has been described. However, the relative positional relationship between the axis of the main body portion and the axis of the distal end portion is not limited to the above, and various positional relationships are possible (details will be described later).
更に、例えば極めて高い寸法精度が筒状体に要求される場合等においては、例えば、上述した第1工程及び第2工程の後に、所期の寸法精度に対応する成形面を有する金型によるプレス加工に筒状体を付す追加工程等を第1方法が更に含んでもよい。この場合、第1工程及び第2工程の実行によって得られる筒状体の寸法が最終的に要求される筒状体の寸法よりも僅かに大きくなるようにしてもよい。
Furthermore, for example, when extremely high dimensional accuracy is required for the cylindrical body, for example, after the above-described first step and second step, pressing with a mold having a molding surface corresponding to the desired dimensional accuracy The first method may further include additional steps such as subjecting the tubular body to processing. In this case, the dimensions of the cylindrical body obtained by performing the first step and the second step may be slightly larger than the finally required dimensions of the cylindrical body.
加えて、筒状体の先端に形成される先端部は例えば筒状体と他の部材(例えば、排気管等)との接続部位として使用されることが一般的である。従って、筒状体の用途によっては、先端部に接続される部材に合わせて先端部を加工することが必要となる場合がある。このような場合等においては、例えば、上述した第1工程及び第2工程の後に、例えば切削加工等により先端部を二次加工する追加工程を第1方法が更に含んでもよい。
In addition, the tip portion formed at the tip of the tubular body is generally used as a connecting portion between the tubular body and other members (for example, an exhaust pipe, etc.). Therefore, depending on the use of the cylindrical body, it may be necessary to process the tip portion in accordance with the member connected to the tip portion. In such a case, for example, the first method may further include an additional step of secondary processing the tip portion by, for example, cutting after the above-described first and second steps.
以上説明してきたように、第1方法においては、上述した部分スピニング加工により素管の周面の一部のみを縮径させることができる。従って、第1方法によれば、素管の長径と短径との差が大きい場合においても、例えば座屈及び/又は意図せぬ変形等の問題を低減しつつ、多種多様な断面形状を有する素管から多種多様な断面形状を有する徐変部及び先端部を容易に成形することができる。
As described above, in the first method, only a portion of the peripheral surface of the blank pipe can be reduced in diameter by the partial spinning process described above. Therefore, according to the first method, even when the difference between the major diameter and the minor diameter of the blank pipe is large, various cross-sectional shapes can be obtained while reducing problems such as buckling and/or unintended deformation. Gradually changing portions and tip portions having a wide variety of cross-sectional shapes can be easily formed from the blank tube.
更に、第1方法に含まれる第1工程及び第2工程の何れにおいても、スピニング加工における成形具の公転軌道は円形である。即ち、第1方法においては、前述した従来方法のように素管の断面形状から先端部の断面形状へと変化する徐変部の断面形状に沿うように成形具の動きを複雑に制御する必要が無い。従って、第1方法によれば、加工速度を高めることができ、加工時間を短縮することができる。
Furthermore, in both the first step and the second step included in the first method, the orbit of the forming tool in the spinning process is circular. That is, in the first method, it is necessary to control the movement of the forming tool in a complicated manner so as to follow the cross-sectional shape of the gradually changing portion, which changes from the cross-sectional shape of the blank tube to the cross-sectional shape of the tip portion, as in the conventional method described above. There is no Therefore, according to the first method, the machining speed can be increased and the machining time can be shortened.
加えて、第1方法においては、前述した従来方法のように筒状体の成形後に二次加工を行ったり付加的な部材を用いて本体部を保持したりする必要が無い。従って、第1方法によれば、製造効率の低下及び製造コストの増大等の問題を低減することができる。
In addition, in the first method, unlike the conventional method described above, there is no need to perform secondary processing after forming the cylindrical body or to hold the main body using additional members. Therefore, according to the first method, problems such as a decrease in manufacturing efficiency and an increase in manufacturing cost can be reduced.
《第2実施形態》
以下、図面を参照しながら本発明の第2実施形態に係るスピニング加工方法(以降、「第2方法」と称呼される場合がある。)について説明する。 <<Second embodiment>>
A spinning method according to a second embodiment of the present invention (hereinafter sometimes referred to as "second method") will be described below with reference to the drawings.
以下、図面を参照しながら本発明の第2実施形態に係るスピニング加工方法(以降、「第2方法」と称呼される場合がある。)について説明する。 <<Second embodiment>>
A spinning method according to a second embodiment of the present invention (hereinafter sometimes referred to as "second method") will be described below with reference to the drawings.
上述した第1方法の2つの具体例においては、素管及び筒状体の本体部の断面形状が楕円形であり且つ筒状体の先端部の断面形状が円形及び楕円形である場合について説明した。しかしながら、第1方法が適用される素管及び筒状体の本体部の断面形状と筒状体の先端部の断面形状との組み合わせは上記に限定されず、多種多様な断面形状の組み合わせが可能である。
In the two specific examples of the first method described above, the case where the cross-sectional shape of the main body of the tube and the cylindrical body is elliptical and the cross-sectional shape of the tip of the cylindrical body is circular and elliptical will be described. did. However, the combination of the cross-sectional shape of the main body of the tube and the cylindrical body to which the first method is applied and the cross-sectional shape of the tip of the cylindrical body is not limited to the above, and a wide variety of combinations of cross-sectional shapes are possible. is.
具体的には、本体部の断面形状は、円形、楕円形、長円形及び多角形からなる群より選ばれる何れか1つの形状とすることができる。一方、先端部の断面形状もまた、円形、楕円形、長円形及び多角形からなる群より選ばれる何れか1つの形状とすることができる。ここでいう多角形には、例えば三角形、四角形(例えば、矩形、平行四辺形、菱形及び台形等)、五角形、六角形、七角形及び八角形等、多種多様な形状が含まれる。また、これらの多角形は、必ずしも線対称又は回転対称な形状でなくてもよい。尚、本体部の断面形状と先端部の断面形状とは、同じであっても異なっていてもよい。
Specifically, the cross-sectional shape of the main body can be any one shape selected from the group consisting of circular, elliptical, oval and polygonal. On the other hand, the cross-sectional shape of the tip can also be any one shape selected from the group consisting of circular, elliptical, oval and polygonal. Polygons, as used herein, include a wide variety of shapes such as triangles, quadrilaterals (eg, rectangles, parallelograms, rhombuses, trapezoids, etc.), pentagons, hexagons, heptagons and octagons. Also, these polygons do not necessarily have to be linearly symmetrical or rotationally symmetrical. The cross-sectional shape of the main body and the cross-sectional shape of the tip may be the same or different.
そこで、第2方法は、上述した第1方法であって、本体部の断面形状が円形、楕円形、長円形及び多角形からなる群より選ばれる何れか1つの形状であり、先端部の断面形状が円形、楕円形、長円形及び多角形からなる群より選ばれる何れか1つの形状であることを特徴とするスピニング加工方法である。
Therefore, the second method is the above-described first method, wherein the cross-sectional shape of the main body is any one selected from the group consisting of a circle, an ellipse, an oval and a polygon, and the cross-section of the tip is The spinning method is characterized in that the shape is one selected from the group consisting of a circle, an ellipse, an oval and a polygon.
本明細書において使用される「円形」、「楕円形」、「長円形」及び「多角形」なる用語によって表される図形は、必ずしも厳密な定義を満たす図形に限定されるものではなく、所謂「略円形」、「略楕円形」、「略長円形」及び「略多角形」なる用語によって表される図形をも含むことができる。具体的には、円形には、真円のみならず、当業者によって円形と認められる限りにおいて、ある程度の寸法誤差を有するものも含まれる。楕円形及び長円形(「レーストラック形」とも称呼される)についても同様である。また、多角形には、当業者によって多角形と認められる限りにおいて、個々の辺は必ずしも完全な直線でなくてもよく、隣り合う2つの辺を構成する2本の直線の交わりによって角部が構成されていなくてもよい。例えば、矩形の場合、4つの辺の少なくとも1つが緩やかな曲線によって構成されていてもよく、隣り合う辺が交わる角度は必ずしも90°でなくてもよい。更に、例えば角丸長方形及び面取りされた長方形等も矩形に含まれる。三角形等の他の多角形についても同様である。
The figures represented by the terms "circular", "elliptical", "oval" and "polygonal" used herein are not necessarily limited to figures that meet strict definitions, and are not necessarily limited to figures that meet the strict definition. Shapes represented by the terms "generally circular", "generally oval", "generally oval" and "generally polygonal" can also be included. Specifically, a circle includes not only a perfect circle but also a circle with a certain degree of dimensional error as long as it is recognized as a circle by those skilled in the art. The same is true for ellipses and ovals (also called "racetracks"). In addition, as long as a person skilled in the art recognizes a polygon, each side of a polygon does not necessarily have to be a perfect straight line. It does not have to be configured. For example, in the case of a rectangle, at least one of four sides may be formed by a gentle curve, and the angle at which adjacent sides intersect may not necessarily be 90 degrees. Rectangles also include, for example, rectangles with rounded corners and rectangles with chamfers. The same is true for other polygons such as triangles.
上述した第1方法に関する説明においては、図1の(c)及び(d)に例示したように本体部の断面形状が楕円形であり且つ先端部の断面形状が円形である場合及び図4の(c)及び(d)に例示したように本体部の断面形状が楕円形であり且つ先端部の断面形状もまた楕円形である場合を例示した。しかしながら、図6に例示するように、本体部23aの断面形状が円形であり且つ先端部23bの断面形状が楕円形であってもよい。また、図7に例示するように、本体部24aの断面形状が矩形(角丸長方形)であり且つ先端部24bの断面形状が円形であってもよい。更に、図8に例示するように、本体部25aの断面形状が矩形(角丸長方形)であり且つ先端部25bの断面形状が楕円形であってもよい。
In the above description of the first method, as illustrated in (c) and (d) of FIG. As exemplified in (c) and (d), the cross-sectional shape of the body portion is elliptical and the cross-sectional shape of the tip portion is also elliptical. However, as illustrated in FIG. 6, the main body portion 23a may have a circular cross-sectional shape and the tip portion 23b may have an elliptical cross-sectional shape. Further, as illustrated in FIG. 7, the cross-sectional shape of the main body portion 24a may be rectangular (rectangular with rounded corners) and the cross-sectional shape of the tip portion 24b may be circular. Furthermore, as illustrated in FIG. 8, the cross-sectional shape of the body portion 25a may be rectangular (rectangle with rounded corners) and the cross-sectional shape of the tip portion 25b may be elliptical.
以上のように、第2方法によれば、上述した第1方法によって達成される効果を享受しつつ、多種多様な断面形状を有する素管から多種多様な断面形状を有する徐変部及び先端部を容易に成形することができる。
As described above, according to the second method, while enjoying the effects achieved by the above-described first method, the gradual change portion and the tip portion having various cross-sectional shapes can be obtained from the blank tube having various cross-sectional shapes. can be easily molded.
《第3実施形態》
以下、図面を参照しながら本発明の第3実施形態に係るスピニング加工方法(以降、「第3方法」と称呼される場合がある。)について説明する。 <<Third embodiment>>
Hereinafter, a spinning method according to a third embodiment of the present invention (hereinafter sometimes referred to as "third method") will be described with reference to the drawings.
以下、図面を参照しながら本発明の第3実施形態に係るスピニング加工方法(以降、「第3方法」と称呼される場合がある。)について説明する。 <<Third embodiment>>
Hereinafter, a spinning method according to a third embodiment of the present invention (hereinafter sometimes referred to as "third method") will be described with reference to the drawings.
上述した第1方法の2つの具体例及び第2方法の3つの具体例においては、筒状体の本体部の軸と先端部の軸とが同軸である場合について説明した。しかしながら、本体部の軸と先端部の軸との相対的な位置関係は上記に限定されず、多種多様な位置関係が可能である。具体的には、例えば、本体部の軸と先端部の軸とが平行ではあるもののずれて(偏芯して)いてもよく、本体部の軸と先端部の軸とが同一平面内において所定の角度にて交差して(傾斜して)いてもよく、或いは本体部の軸と先端部の軸とが平行ではなく且つ交差しない所謂「空間幾何学的ねじれの位置」にあってもよい。
In the two specific examples of the first method and the three specific examples of the second method described above, the case where the axis of the main body part and the axis of the tip part of the cylindrical body are coaxial has been described. However, the relative positional relationship between the axis of the main body portion and the axis of the distal end portion is not limited to the above, and various positional relationships are possible. Specifically, for example, the axis of the main body and the axis of the tip may be parallel to each other but may be offset (eccentric), and the axis of the main body and the axis of the tip may be in the same plane. or in a so-called "spatial geometric twist position" where the axis of the body and the axis of the tip are not parallel and do not intersect.
そこで、第3方法は、上述した第1方法又は第2方法であって、本体部の軸と先端部の軸との相対的な位置関係は、同軸、偏芯、傾斜及び空間幾何学的ねじれの位置からなる群より選ばれる何れか1つであることを特徴とするスピニング加工方法である。
Therefore, the third method is the above-described first method or second method, wherein the relative positional relationship between the axis of the main body and the axis of the distal end is coaxial, eccentric, tilted, and spatial geometric torsion. The spinning method is characterized in that the position is any one selected from the group consisting of the positions of
本体部の軸と先端部の軸との相対的な位置関係が同軸ではない筒状体の幾つかの例につき、以下に図面を参照しながら説明する。
Several examples of cylindrical bodies in which the relative positional relationship between the axis of the main body and the axis of the tip are not coaxial will be described below with reference to the drawings.
先ず、図9は、第3方法の1つの具体例において使用される素管11及び当該素管11から成形される筒状体26を示す模式図である。図9に例示する素管11は、図1及び図4に例示した素管11と同じである。一方、図9に例示する筒状体26は、素管11と同じ楕円形の断面形状を有する本体部26aの軸に対して円形の断面形状を有する先端部26bの軸が図面に向かって左側へ偏芯している点を除き、図1に例示した筒状体21と同様の構成を有する。このような偏芯は、素管11の端部(本体部26aの端部)に徐変部26bを形成する工程である第1工程においてワークの縮径量が図面に向かって左側よりも右側の方が大きくなるように部分スピニング加工におけるローラ41の公転軸とワークの軸との相対的な位置関係を設定することにより達成することができる。
First, FIG. 9 is a schematic diagram showing a blank tube 11 used in one specific example of the third method and a tubular body 26 molded from the blank tube 11. FIG. The base pipe 11 illustrated in FIG. 9 is the same as the base pipe 11 illustrated in FIGS. On the other hand, in the cylindrical body 26 illustrated in FIG. 9, the axis of the tip portion 26b having a circular cross-section with respect to the axis of the body portion 26a having the same elliptical cross-section as that of the base pipe 11 is on the left side of the drawing. It has the same configuration as the cylindrical body 21 illustrated in FIG. 1 except that it is eccentric. Such eccentricity is due to the fact that in the first step, which is the step of forming the gradually changing portion 26b at the end of the tube 11 (the end of the main body portion 26a), the amount of diameter reduction of the work is more to the right than to the left as viewed in the drawing. can be achieved by setting the relative positional relationship between the revolution axis of the roller 41 and the axis of the workpiece in the partial spinning process so that
具体的には、第1工程において実行される第2ステップにおけるローラ41の公転軸に対するワークの本体部26aの軸の偏芯量を、本体部26aの軸に対する先端部26bの軸の偏芯方向と同じ側の短軸側周面に対しては相対的に小さく設定し、本体部26aの軸に対する先端部26bの軸の偏芯方向とは反対側の短軸側周面に対しては相対的に大きく設定する。加えて、図10に例示するように、長軸側周面を押圧して縮径させる第1ステップにおいても、ローラ41の公転軸に対するワークの本体部26aの軸を(本体部26aの軸に対する先端部26bの軸の)偏芯方向とは反対側へ偏芯させる(図中に示す直線矢印を参照)。これにより、所期の方向及び変位にて偏芯を達成して、徐変部26bの先端側(本体部26aとは反対側)の端部における断面の形状及び位置が先端部26bの断面の形状及び位置とそれぞれ一致させることにより達成することができる。
Specifically, the amount of eccentricity of the axis of the main body portion 26a of the work with respect to the revolution axis of the roller 41 in the second step executed in the first step is defined as the eccentric direction of the axis of the tip portion 26b with respect to the axis of the main body portion 26a. is relatively small with respect to the short shaft side peripheral surface on the same side as the main body portion 26a, and is relatively small with respect to the short shaft side peripheral surface on the side opposite to the eccentric direction of the shaft of the tip portion 26b with respect to the axis of the main body portion 26a. set to a large value. In addition, as illustrated in FIG. 10, in the first step of pressing the long axis side peripheral surface to reduce the diameter, the axis of the main body portion 26a of the work with respect to the revolution axis of the roller 41 ( It is eccentric in the direction opposite to the eccentric direction (of the axis of the distal end portion 26b) (see the straight arrow shown in the figure). As a result, the eccentricity is achieved in a desired direction and displacement, and the cross-sectional shape and position of the end portion of the gradually changing portion 26b on the distal end side (opposite side to the main body portion 26a) changes to the cross-sectional shape and position of the distal end portion 26b. It can be achieved by matching shape and position respectively.
次に、図11は、第3方法のもう1つの具体例において使用される素管11及び当該素管11から成形される筒状体27を示す模式図である。図11に例示する素管11は、図1、図4、図9及び図10に例示した素管11と同じである。一方、図11に例示する筒状体27は、素管11と同じ楕円形の断面形状を有する本体部26aの軸に対して円形の断面形状を有する先端部26bの軸が図面に向かって左上側へ偏芯している点を除き、図1に例示した筒状体21及び図9に例示した筒状体26と同様の構成を有する。このような偏芯は、図9及び図10に例示した筒状体26の場合と同様に、素管11の端部(本体部27aの端部)に徐変部27bを形成する工程である第1工程において実行される部分スピニング加工におけるローラ41の公転軸とワークの軸との相対的な位置関係を適宜設定することにより達成することができる(詳しくは後述する)。
Next, FIG. 11 is a schematic diagram showing a blank tube 11 used in another specific example of the third method and a cylindrical body 27 formed from the blank tube 11. As shown in FIG. The base pipe 11 illustrated in FIG. 11 is the same as the base pipe 11 illustrated in FIGS. On the other hand, in the cylindrical body 27 illustrated in FIG. 11, the axis of the tip portion 26b having a circular cross-sectional shape with respect to the axis of the main body portion 26a having the same elliptical cross-sectional shape as that of the base tube 11 is at the upper left as viewed in the drawing. It has the same configuration as the cylindrical body 21 illustrated in FIG. 1 and the cylindrical body 26 illustrated in FIG. 9 except that it is eccentric to the side. Such eccentricity is a step of forming a gradually changing portion 27b at the end of the base pipe 11 (the end of the main body portion 27a), as in the case of the cylindrical body 26 illustrated in FIGS. This can be achieved by appropriately setting the relative positional relationship between the revolution axis of the roller 41 and the axis of the workpiece in the partial spinning process executed in the first step (details will be described later).
次に、図12は、第3方法の更にもう1つの具体例において使用される素管13及び当該素管13から成形される筒状体28を示す模式図である。図12に例示する素管13は、図7及び図8に例示した素管13と同じである。一方、図12に例示する筒状体28は、素管13と同じ矩形(角丸長方形)の断面形状を有する本体部28aの軸に対して円形の断面形状を有する先端部28bの軸が図面に向かって左上側へ偏芯している点を除き、図7に例示した筒状体24と同様の構成を有する。このような偏芯は、図11に例示した筒状体27の場合と同様に、素管13の端部(本体部28aの端部)に徐変部28bを形成する工程である第1工程において実行される部分スピニング加工におけるローラ41の公転軸とワークの軸との相対的な位置関係を適宜設定することにより達成することができる(詳しくは後述する)。
Next, FIG. 12 is a schematic diagram showing the blank tube 13 used in yet another specific example of the third method and the cylindrical body 28 formed from the blank tube 13. As shown in FIG. The base pipe 13 illustrated in FIG. 12 is the same as the base pipe 13 illustrated in FIGS. On the other hand, in the cylindrical body 28 illustrated in FIG. It has the same configuration as the cylindrical body 24 illustrated in FIG. Such eccentricity is performed in the first step, which is a step of forming a gradually changing portion 28b at the end of the blank pipe 13 (the end of the main body portion 28a), as in the case of the cylindrical body 27 illustrated in FIG. can be achieved by appropriately setting the relative positional relationship between the revolution axis of the roller 41 and the axis of the work in the partial spinning process executed in (details will be described later).
第3方法に関する上記説明においては、筒状体の本体部の軸と先端部の軸との相対的な位置関係が偏芯である場合について例示した。しかしながら、スピニング加工において当業者が周知の手法を適用することにより、筒状体の本体部の軸と先端部の軸との相対的な位置関係が同軸、傾斜又は空間幾何学的ねじれの位置である筒状体もまた第3方法によって容易に成形することができる。
In the above description of the third method, the case where the relative positional relationship between the axis of the main body and the axis of the tip of the cylindrical body is eccentric was exemplified. However, by applying a technique well known to those skilled in the art in spinning processing, the relative positional relationship between the axis of the main body of the cylindrical body and the axis of the tip can be coaxial, inclined or spatially geometrically twisted. Certain tubular bodies can also be easily formed by the third method.
例えば、図13は、第3方法の更なる具体例において使用される素管13及び当該素管13から成形され且つ本体部29aの軸と先端部29bの軸とが傾斜している筒状体29を示す模式図である。このような筒状体29は、徐変部29cを成形する第1工程において素管13の短軸(即ち、本体部29aの短軸)に平行な軸の周りにワークを所定の角度だけ回転させながらスピニング加工を施すことによって成形することができる。一方、図14は、第3方法の更なる具体例において使用される素管13及び当該素管13から成形され且つ本体部30aの軸と先端部30bの軸との相対的な位置関係が空間幾何学的ねじれの位置である筒状体30を示す模式図である。尚、図14の(e)は、筒状体30を長軸ALの方向において上方から観察した場合における上面図(頂面図)である。
For example, FIG. 13 shows a blank tube 13 used in a further specific example of the third method and a cylindrical body formed from the blank tube 13 and having an inclined axis of the main body 29a and the tip 29b. 29 is a schematic diagram showing 29. FIG. In the first step of forming the gradually changing portion 29c, such a cylindrical body 29 rotates the workpiece by a predetermined angle around an axis parallel to the short axis of the blank pipe 13 (that is, the short axis of the main body portion 29a). It can be shaped by performing spinning while rolling. On the other hand, FIG. 14 shows the blank tube 13 used in a further specific example of the third method and the relative positional relationship between the axis of the main body part 30a and the axis of the tip part 30b formed from the blank tube 13. FIG. 4 is a schematic diagram showing a tubular body 30 at a position of geometrical twist; In addition, FIG. 14(e) is a top view (top view) when the cylindrical body 30 is observed from above in the direction of the long axis AL.
尚、本体部の軸と先端部の軸との相対的な位置関係を同軸、傾斜及び空間幾何学的ねじれの位置からなる群より選ばれる何れか1つとすることができるスピニング加工の具体的な手順については当業者に周知であるので、ここでの詳細な説明は省略する。
In addition, the relative positional relationship between the axis of the main body and the axis of the tip can be any one selected from the group consisting of coaxial, inclined and spatial geometric twist positions. The procedure is well known to those skilled in the art and will not be described in detail here.
また、筒状体の本体部の断面形状と先端部の断面形状とが同じ形状であっても或いは異なる形状であっても、当該筒状体を第3方法により成形することができる。尚、本体部の軸と先端部の軸との相対的な位置関係が同軸であり且つ本体部の断面形状及び先端部の断面形状が何れも円形である場合は通常のスピニング加工によって筒状体を成形することができるが、このような筒状体を第3方法によって成形してもよい。
Further, the tubular body can be molded by the third method regardless of whether the cross-sectional shape of the main body portion and the cross-sectional shape of the tip portion of the tubular body are the same shape or different shapes. When the relative positional relationship between the axis of the main body and the axis of the tip is coaxial and the cross-sectional shape of the main body and the cross-sectional shape of the tip are both circular, the cylindrical body is formed by a normal spinning process. can be molded, but such a cylindrical body may be molded by a third method.
以上のように、第3方法によれば、上述した第1方法及び/又は第2方法によって達成される効果を享受しつつ、本体部の軸と先端部の軸との相対的な位置関係が同軸、偏芯、傾斜及び空間幾何学的ねじれの位置からなる群より選ばれる何れか1つである筒状体を容易に成形することができる。
As described above, according to the third method, the relative positional relationship between the axis of the main body portion and the axis of the tip portion is maintained while enjoying the effects achieved by the above-described first method and/or the second method. A cylindrical body that is any one selected from the group consisting of coaxial, eccentric, inclined and spatial geometric twist positions can be easily formed.
以上のように説明してきた第1方法乃至第3方法を始めとする本発明に係るスピニング加工方法(本発明方法)の様々な実施例につき、以下に図面を参照しながら説明する。但し、以下に説明する各種実施例は例示に過ぎない。本発明方法の具体的な構成(例えば、第1工程において実行される第1ステップ及び第2ステップの回数及び順序並びに第1ステップ及び第2ステップにおける成形具のパスの数等)は、本発明方法によって成形しようとする筒状体の形状に応じて適宜定めることができる。
Various embodiments of the spinning method (method of the present invention) according to the present invention, including the first to third methods described above, will be described below with reference to the drawings. However, the various embodiments described below are merely examples. The specific configuration of the method of the present invention (for example, the number and order of the first step and the second step performed in the first step, the number of passes of the forming tool in the first step and the second step, etc.) It can be appropriately determined according to the shape of the cylindrical body to be molded by the method.
(1)楕円形から円形への同軸スピニング加工
円形の断面形状を有し且つ本体部21aと同軸に位置する先端部21bを備える筒状体21を楕円形の断面形状を有する素管11から成形する本発明方法については、図1乃至図3を参照しながら既に説明した通りであるので、ここでの説明は省略する。 (1) Coaxial Spinning Processing from Elliptical Shape to CircularShape Cylindrical body 21 having circular cross-sectional shape and tip end portion 21b located coaxially with main body portion 21a is formed from raw tube 11 having elliptical cross-sectional shape. Since the method of the present invention has already been described with reference to FIGS. 1 to 3, description thereof will be omitted here.
円形の断面形状を有し且つ本体部21aと同軸に位置する先端部21bを備える筒状体21を楕円形の断面形状を有する素管11から成形する本発明方法については、図1乃至図3を参照しながら既に説明した通りであるので、ここでの説明は省略する。 (1) Coaxial Spinning Processing from Elliptical Shape to Circular
(2)楕円形から楕円形への同軸スピニング加工
楕円形の断面形状を有し且つ本体部22aと同軸に位置する先端部22bを備える筒状体22を楕円形の断面形状を有する素管11から成形する本発明方法については、図4及び図5を参照しながら既に説明した。しかしながら、図5は図4に例示した素管11から筒状体22が成形される過程の概要を例示する模式図であるので、ここで改めて当該成形過程の詳細について説明する。 (2) Coaxial Spinning Processing from Elliptical to Elliptical The method of the present invention for molding from has already been described with reference to FIGS. However, since FIG. 5 is a schematic diagram illustrating an overview of the process of forming thecylindrical body 22 from the blank pipe 11 illustrated in FIG. 4, the details of the forming process will be described again here.
楕円形の断面形状を有し且つ本体部22aと同軸に位置する先端部22bを備える筒状体22を楕円形の断面形状を有する素管11から成形する本発明方法については、図4及び図5を参照しながら既に説明した。しかしながら、図5は図4に例示した素管11から筒状体22が成形される過程の概要を例示する模式図であるので、ここで改めて当該成形過程の詳細について説明する。 (2) Coaxial Spinning Processing from Elliptical to Elliptical The method of the present invention for molding from has already been described with reference to FIGS. However, since FIG. 5 is a schematic diagram illustrating an overview of the process of forming the
図15は、図4に例示した素管11から筒状体22が第1方法によって成形される過程の詳細を例示する模式図である。図15及び後に参照される図16乃至図21においても、前述した図3と同様に、描画スペースの都合上、符号は省略されている。また、図15及び後に参照される図16乃至図21においては、図面に向かって上下方向が異形断面を有する部分の長軸方向であり、図面に向かって左右方向が異形断面を有する部分の短軸方向である。即ち、ワークの図面に向かって上下の周面が長軸側周面であり、ワークの図面に向かって左右の周面が短軸側周面である。
FIG. 15 is a schematic diagram illustrating the details of the process of forming the cylindrical body 22 from the blank tube 11 illustrated in FIG. 4 by the first method. Also in FIG. 15 and FIGS. 16 to 21 which will be referred to later, reference numerals are omitted for convenience of drawing space, as in FIG. In addition, in FIG. 15 and FIGS. 16 to 21 to be referred to later, the vertical direction toward the drawing is the long axis direction of the portion having the irregular cross section, and the horizontal direction toward the drawing is the short axis direction of the portion having the irregular cross section. axial direction. That is, the upper and lower circumferential surfaces of the work as viewed in the drawing are the long axis side circumferential surfaces, and the left and right circumferential surfaces of the work as viewed in the drawing are the short axis side circumferential surfaces.
図15の(a)は図5の(a)及び(b)に該当し、図15の(b)は図5の(c)及び(d)に該当する。図15に示す例においては、(a)及び(b)において1回目の第1ステップと第2ステップとの組が実行された後に(c)及び(d)において2回目の第1ステップと第2ステップとの組が実行される。そして、(e)及び(f)において3回目及び4回目の第1ステップと第2ステップとの組が実行される。これにより、徐変部22cの先端側(本体部22aとは反対側)の端部の断面形状を、楕円形の断面形状を有する先端部22bの断面形状と同じ断面形状とすることができる。即ち、徐変部22cの成形が完了し、第1工程が終了する。
(a) of FIG. 15 corresponds to (a) and (b) of FIG. 5, and (b) of FIG. 15 corresponds to (c) and (d) of FIG. In the example shown in FIG. 15, after the set of the first step and the second step is executed for the first time in (a) and (b), the first step and the second step are executed for the second time in (c) and (d). A set of 2 steps is performed. Then, in (e) and (f), the third and fourth sets of the first step and the second step are executed. As a result, the cross-sectional shape of the end portion of the gradually changing portion 22c on the distal end side (the side opposite to the main body portion 22a) can be the same cross-sectional shape as the cross-sectional shape of the distal end portion 22b having an elliptical cross-sectional shape. That is, the molding of the gradually changing portion 22c is completed, and the first step ends.
次に、徐変部22cの先端側の端部に先端部22bを形成する工程である第2工程が実行される。図4の(c)及び(d)に例示した筒状体22が備える先端部22bは本体部22aと同軸に形成された楕円筒状の部分である。従って、第2工程においては、断面の形状及び大きさを維持しつつ、上述した第1工程と同様に第1ステップ及び第2ステップが所定の回数だけ繰り返し実行され、先端部22bが成形される。これにより、図4の(c)及び(d)並びに図5の(e)及び(f)に例示した筒状体22の成形が完了する。
Next, the second step, which is a step of forming the tip portion 22b at the tip end of the gradually changing portion 22c, is performed. A distal end portion 22b of the cylindrical body 22 illustrated in FIGS. 4(c) and 4(d) is an elliptical cylindrical portion formed coaxially with the main body portion 22a. Therefore, in the second step, while maintaining the shape and size of the cross section, the first step and the second step are repeatedly performed a predetermined number of times in the same manner as in the first step described above, and the distal end portion 22b is formed. . This completes the molding of the cylindrical body 22 illustrated in FIGS. 4(c) and (d) and FIGS. 5(e) and (f).
(3)円形から楕円形への同軸スピニング加工
楕円形の断面形状を有し且つ本体部23aと同軸に位置する先端部23bを備える筒状体23を円形の断面形状を有する素管12から成形する本発明方法については、図6を参照しながら既に説明した。しかしながら、図6に例示した素管12から筒状体23が成形される過程の詳細については説明されていないので、ここで当該成形過程の詳細について説明する。 (3) Coaxial Spinning Processing from Circular to Elliptical Acylindrical body 23 having an elliptical cross-sectional shape and a tip portion 23b located coaxially with the body portion 23a is formed from the blank tube 12 having a circular cross-sectional shape. The method according to the invention has already been described with reference to FIG. However, since the details of the process of forming the cylindrical body 23 from the blank pipe 12 illustrated in FIG. 6 are not described, the details of the forming process will be described here.
楕円形の断面形状を有し且つ本体部23aと同軸に位置する先端部23bを備える筒状体23を円形の断面形状を有する素管12から成形する本発明方法については、図6を参照しながら既に説明した。しかしながら、図6に例示した素管12から筒状体23が成形される過程の詳細については説明されていないので、ここで当該成形過程の詳細について説明する。 (3) Coaxial Spinning Processing from Circular to Elliptical A
図16は、図6に例示した素管12から筒状体23が本発明方法によって成形される過程の詳細を例示する模式図である。先ず、(a)及び(b)において、第2ステップが2回連続して実行される。具体的には、(a)において、円形の断面形状を有する素管12の短軸側周面に対して1回目の部分スピニング加工が施される。次いで、(b)において、ワークの短軸側周面に対して2回目の部分スピニング加工が施される。次に、(c)及び(d)において、第1ステップと第2ステップとの組が実行される。具体的には、(c)においてワークの長軸側周面に対して部分スピニング加工が施され、(d)においてワークの短軸側周面に対して部分スピニング加工が施される。
FIG. 16 is a schematic diagram illustrating the details of the process of forming the cylindrical body 23 from the blank tube 12 illustrated in FIG. 6 by the method of the present invention. First, in (a) and (b), the second step is executed twice consecutively. Specifically, in (a), the first partial spinning process is applied to the short axis side peripheral surface of the blank tube 12 having a circular cross-sectional shape. Next, in (b), the short axis side peripheral surface of the workpiece is subjected to a second partial spinning process. Next, in (c) and (d), a set of first and second steps is performed. Specifically, in (c), the long axis side peripheral surface of the work is partially spun, and in (d), the short axis side peripheral surface of the work is partially spun.
次に、(e)及び(f)において第1ステップと第2ステップとの組がもう1回実行され、(g)及び(h)において第1ステップと第2ステップとの組が更にもう1回実行される。最後に、(i)において最後の第1ステップが実行される。これにより、徐変部23cの先端側(本体部23aとは反対側)の端部の断面形状を、楕円形の断面形状を有する先端部23bの断面形状と同じ断面形状とすることができる。即ち、徐変部23cの成形が完了し、第1工程が終了する。
Next, in (e) and (f), the set of the first step and the second step is performed one more time, and in (g) and (h), the set of the first step and the second step is performed one more time. times. Finally, in (i) the last first step is performed. As a result, the cross-sectional shape of the end portion of the gradually changing portion 23c on the distal end side (the side opposite to the main body portion 23a) can be the same cross-sectional shape as the cross-sectional shape of the distal end portion 23b having an elliptical cross-sectional shape. That is, the molding of the gradually changing portion 23c is completed, and the first step ends.
次に、徐変部23cの先端側の端部に先端部23bを形成する工程である第2工程が実行される。図6の(c)及び(d)に例示した筒状体23が備える先端部23bは本体部23aと同軸に形成された楕円筒状の部分である。従って、第2工程においては、断面の形状及び大きさを維持しつつ、上述した第1工程と同様に第1ステップ及び第2ステップが所定の回数だけ繰り返し実行され、先端部23bが成形される。これにより、図6の(c)及び(d)並びに図16の(j)に例示した筒状体23の成形が完了する。
Next, a second step is performed, which is a step of forming the tip portion 23b at the tip end of the gradually changing portion 23c. A tip portion 23b of the cylindrical body 23 illustrated in FIGS. 6(c) and 6(d) is an elliptical cylindrical portion formed coaxially with the main body portion 23a. Therefore, in the second step, while maintaining the shape and size of the cross section, the first step and the second step are repeatedly performed a predetermined number of times in the same manner as in the first step described above, and the tip portion 23b is formed. . This completes the molding of the tubular body 23 illustrated in FIGS. 6(c) and 6(d) and FIG. 16(j).
(4)矩形(角丸長方形)から円形への同軸スピニング加工
円形の断面形状を有し且つ本体部24aと同軸に位置する先端部24bを備える筒状体24を矩形(角丸長方形)の断面形状を有する素管13から成形する本発明方法については、図7を参照しながら既に説明した。しかしながら、図7に例示した素管13から筒状体24が成形される過程の詳細については説明されていないので、ここで当該成形過程の詳細について説明する。 (4) Coaxial Spinning Processing from Rectangle (Rounded Rectangle) to Circular Shape Thecylindrical body 24 having a circular cross-sectional shape and having a tip portion 24b located coaxially with the main body portion 24a is formed into a rectangular (rounded rectangular) cross section. The method of the present invention for forming from a shaped blank 13 has already been described with reference to FIG. However, since the details of the process of forming the cylindrical body 24 from the blank tube 13 illustrated in FIG. 7 are not described, the details of the forming process will be described here.
円形の断面形状を有し且つ本体部24aと同軸に位置する先端部24bを備える筒状体24を矩形(角丸長方形)の断面形状を有する素管13から成形する本発明方法については、図7を参照しながら既に説明した。しかしながら、図7に例示した素管13から筒状体24が成形される過程の詳細については説明されていないので、ここで当該成形過程の詳細について説明する。 (4) Coaxial Spinning Processing from Rectangle (Rounded Rectangle) to Circular Shape The
図17は、図7に例示した素管13から筒状体24が本発明方法によって成形される過程の詳細を例示する模式図である。先ず、(a)及び(b)において、1回目の第2ステップと第1ステップとの組が実行される。具体的には、(a)において、矩形の断面形状を有する素管13の短軸側周面に対して1回目の部分スピニング加工が施される。但し、この段階においては素管13の断面において中心軸から最も外側に位置する部分は矩形の断面形状の角部であるので、部分スピニング加工は角部に施されることとなる。次いで、(b)において、ワークの長軸側周面に対して1回目の部分スピニング加工が施される。
FIG. 17 is a schematic diagram illustrating the details of the process of forming the cylindrical body 24 from the blank tube 13 illustrated in FIG. 7 by the method of the present invention. First, in (a) and (b), a set of the second step and the first step is executed for the first time. Specifically, in (a), the first partial spinning process is applied to the short-axis side peripheral surface of the blank tube 13 having a rectangular cross-sectional shape. However, at this stage, the corners of the rectangular cross-section are located on the outermost side from the center axis in the cross section of the blank tube 13, so the corners are partially spun. Next, in (b), a first partial spinning process is applied to the long axis side peripheral surface of the work.
同様に、(c)及び(d)において2回目の第2ステップと第1ステップとの組が実行される。その結果、ワークの角部のみならず短軸側周面の短径の両端近傍の領域にもローラが接触するようになっている。次いで、(e)及び(f)において3回目の第2ステップと第1ステップとの組が実行される。その結果、素管13の端部に徐変部24cを形成する工程である第1工程の途中のこの時点において、ローラの最内端の公転軌道の直径が本体部24aの矩形の断面の短軸方向における寸法(短辺)よりも小さくなる。この時点以降は、(g)及び(h)に例示するように、ワークの全周に亘ってローラが接触する通常の同軸スピニング加工を実行することにより、徐変部24cの断面形状及び大きさが先端部24bの断面の形状及び大きさに一致するまで第1工程を継続する。これにより、徐変部24cの成形が完了し、第1工程が終了する。
Similarly, in (c) and (d), the second set of the second step and the first step is executed. As a result, the rollers come into contact with not only the corners of the workpiece but also the areas near both ends of the minor axis of the peripheral surface on the side of the minor axis. Next, in (e) and (f), a set of the second step and the first step is executed for the third time. As a result, at this point in the middle of the first step, which is the step of forming the gradually changing portion 24c at the end portion of the blank tube 13, the diameter of the revolution orbit at the innermost end of the roller becomes smaller than the rectangular cross section of the main body portion 24a. smaller than the dimension in the axial direction (short side). After this point, as illustrated in (g) and (h), normal coaxial spinning processing is performed in which the rollers are in contact with the entire circumference of the work, thereby obtaining the cross-sectional shape and size of the gradually changing portion 24c. matches the cross-sectional shape and size of tip 24b. Thereby, the molding of the gradually changing portion 24c is completed, and the first step ends.
次に、徐変部24cの先端側の端部に先端部24bを形成する工程である第2工程が実行される。図7の(c)及び(d)に例示した筒状体24が備える先端部24bは本体部24aと同軸に形成された円筒状の部分である。従って、第2工程においては、断面形状及び大きさを維持しつつ、通常の同軸スピニング加工が実行され、先端部24bが成形される。これにより、図7の(c)及び(d)並びに図17の(i)に例示した筒状体24の成形が完了する。
(5)矩形(角丸長方形)から楕円形への同軸スピニング加工
楕円形の断面形状を有し且つ本体部25aと同軸に位置する先端部25bを備える筒状体25を矩形(角丸長方形)の断面形状を有する素管13から成形する本発明方法については、図8を参照しながら既に説明した。しかしながら、図8に例示した素管13から筒状体25が成形される過程の詳細については説明されていないので、ここで当該成形過程の詳細について説明する。 Next, a second step is performed, which is a step of forming thedistal end portion 24b at the distal end portion of the gradually changing portion 24c. A tip portion 24b provided in the cylindrical body 24 illustrated in FIGS. 7(c) and 7(d) is a cylindrical portion formed coaxially with the main body portion 24a. Therefore, in the second step, a normal coaxial spinning process is performed while maintaining the cross-sectional shape and size to form the tip portion 24b. This completes the molding of the cylindrical body 24 illustrated in FIGS. 7(c) and (d) and FIG. 17(i).
(5) Coaxial Spinning Process from Rectangle (Rounded Rectangle) to Ellipse Thecylindrical body 25 having an elliptical cross-sectional shape and having a tip portion 25b located coaxially with the body portion 25a is formed into a rectangle (rounded rectangle). The method of the present invention for forming from a blank tube 13 having a cross-sectional shape of .lambda. has already been described with reference to FIG. However, since the details of the process of forming the cylindrical body 25 from the blank pipe 13 illustrated in FIG. 8 are not described, the details of the forming process will be described here.
(5)矩形(角丸長方形)から楕円形への同軸スピニング加工
楕円形の断面形状を有し且つ本体部25aと同軸に位置する先端部25bを備える筒状体25を矩形(角丸長方形)の断面形状を有する素管13から成形する本発明方法については、図8を参照しながら既に説明した。しかしながら、図8に例示した素管13から筒状体25が成形される過程の詳細については説明されていないので、ここで当該成形過程の詳細について説明する。 Next, a second step is performed, which is a step of forming the
(5) Coaxial Spinning Process from Rectangle (Rounded Rectangle) to Ellipse The
図18は、図8に例示した素管13から筒状体25が本発明方法によって成形される過程の詳細を例示する模式図である。先ず、(a)及び(b)において、1回目の第2ステップと第1ステップとの組が実行される。具体的には、(a)において、矩形の断面形状を有する素管13の短軸側周面に対して1回目の部分スピニング加工が施される。この場合もまた、図17に示した例と同様に、この段階においては素管13の断面において中心軸から最も外側に位置する部分は矩形の断面形状の角部であるので、部分スピニング加工は角部に施されることとなる。次いで、(b)において、ワークの長軸側周面に対して1回目の部分スピニング加工が施される。
FIG. 18 is a schematic diagram illustrating the details of the process of forming the cylindrical body 25 from the blank tube 13 illustrated in FIG. 8 by the method of the present invention. First, in (a) and (b), a set of the second step and the first step is executed for the first time. Specifically, in (a), the first partial spinning process is applied to the short-axis side peripheral surface of the blank tube 13 having a rectangular cross-sectional shape. In this case also, as in the example shown in FIG. 17, at this stage, the outermost portion from the central axis in the cross section of the blank tube 13 is the corner of the rectangular cross section, so partial spinning is not possible. It will be applied to the corners. Next, in (b), a first partial spinning process is applied to the long axis side peripheral surface of the work.
同様に、(c)及び(d)において2回目の第2ステップと第1ステップとの組が実行される。この例においては、当該2回目の第2ステップと第1ステップとの組が実行される時点において、ワークの角部のみならず短軸側周面の短径の両端近傍の領域にもローラが接触するようになっている。次いで、(e)及び(f)において3回目の第1ステップと第2ステップとの組が実行され、(g)及び(h)において4回目の第1ステップと第2ステップとの組が実行される。その結果、徐変部25cの断面形状が先端部25bの断面の形状及び大きさに一致する。即ち、徐変部25cの成形が完了し、第1工程が終了する。
Similarly, in (c) and (d), the second set of the second step and the first step is executed. In this example, when the pair of the second step and the first step is executed for the second time, the rollers are not only in the corners of the workpiece but also in the regions near both ends of the minor axis of the peripheral surface on the minor axis side. come into contact. Then, the set of the first step and the second step is executed for the third time in (e) and (f), and the set of the first step and the second step is executed for the fourth time in (g) and (h). be done. As a result, the cross-sectional shape of the gradually changing portion 25c matches the cross-sectional shape and size of the distal end portion 25b. That is, the molding of the gradually changing portion 25c is completed, and the first step ends.
次に、徐変部25cの先端側の端部に先端部25bを形成する工程である第2工程が実行される。図8の(c)及び(d)に例示した筒状体25が備える先端部245は本体部25aと同軸に形成された楕円筒状の部分である。従って、第2工程においては、断面の形状及び大きさを維持しつつ、上述した第1工程と同様に第1ステップ及び第2ステップが所定の回数だけ繰り返し実行され、先端部25bが成形される。これにより、図8の(c)及び(d)に例示した筒状体25の成形が完了する。
Next, the second step, which is a step of forming the distal end portion 25b at the distal end portion of the gradually changing portion 25c, is performed. A distal end portion 245 of the cylindrical body 25 shown in FIGS. 8(c) and 8(d) is an elliptical cylindrical portion formed coaxially with the main body portion 25a. Therefore, in the second step, while maintaining the shape and size of the cross section, the first step and the second step are repeatedly performed a predetermined number of times in the same manner as in the first step described above, and the distal end portion 25b is formed. . This completes the molding of the cylindrical body 25 illustrated in FIGS. 8(c) and 8(d).
(6)楕円形から円形への偏芯スピニング加工
上述した(1)乃至(5)においては何れも本体部と同軸に位置する先端部を備える筒状体を成形する本発明方法について説明してきた。当該(6)以降の説明においては、本体部の軸と先端部の軸との相対的な位置関係が偏芯である筒状体を成形する本発明方法について説明する。 (6) Eccentric Spinning Process from Elliptical Shape to Circular Shape In the above-mentioned (1) to (5), the method of the present invention for forming a cylindrical body having a tip portion located coaxially with the main body portion has been described. . In the description from (6) onwards, the method of the present invention for molding a cylindrical body in which the relative positional relationship between the axis of the body portion and the axis of the tip portion is eccentric will be described.
上述した(1)乃至(5)においては何れも本体部と同軸に位置する先端部を備える筒状体を成形する本発明方法について説明してきた。当該(6)以降の説明においては、本体部の軸と先端部の軸との相対的な位置関係が偏芯である筒状体を成形する本発明方法について説明する。 (6) Eccentric Spinning Process from Elliptical Shape to Circular Shape In the above-mentioned (1) to (5), the method of the present invention for forming a cylindrical body having a tip portion located coaxially with the main body portion has been described. . In the description from (6) onwards, the method of the present invention for molding a cylindrical body in which the relative positional relationship between the axis of the body portion and the axis of the tip portion is eccentric will be described.
円形の断面形状を有し且つ本体部26aに対して図面に向かって左側へ偏芯した先端部26bを備える筒状体26を楕円形の断面形状を有する素管11から成形する本発明方法については、図9及び図10を参照しながら既に説明した。しかしながら、図10は、図9に例示した素管から筒状体を成形する本発明方法に含まれる第1工程において第2ステップのみならず第1ステップにおいても成形具の公転軸に対して本体部の軸を偏芯させることにより本体部の軸に対して先端部の軸を偏芯させる過程の概要を例示する模式図であるので、ここで改めて当該成形過程の詳細について説明する。
A method of the present invention for forming a cylindrical body 26 having a circular cross-sectional shape and a front end portion 26b eccentric to the left side of the drawing with respect to a main body portion 26a from a blank tube 11 having an elliptical cross-sectional shape. has already been described with reference to FIGS. However, FIG. 10 shows the main body relative to the revolution axis of the forming tool not only in the second step but also in the first step in the first step included in the method of the present invention for forming a tubular body from a blank tube illustrated in FIG. Since it is a schematic diagram illustrating the outline of the process of eccentrically moving the axis of the tip portion with respect to the axis of the body portion by eccentrically moving the axis of the portion, the details of the molding process will be described here again.
図19は、図9に例示した素管11から筒状体26が本発明方法によって成形される過程の詳細を例示する模式図である。図19に示す例においては、(a)及び(b)において1回目の第1ステップと第2ステップとの組が実行された後に、(c)及び(d)において2回目の第1ステップと第2ステップとの組が実行される。そして、(e)及び(f)において3回目の第1ステップと第2ステップとの組が実行される。この際、第2ステップにおけるローラの公転軸に対するワークの本体部26aの軸の偏芯量を、本体部26aの軸に対する先端部26bの軸の偏芯方向(図面に向かって左側)とは反対側(図面に向かって右側)の短軸側周面に対しては相対的に大きく設定し、本体部26aの軸に対する先端部26bの軸の偏芯方向と同じ側(図面に向かって左側)の短軸側周面に対しては相対的に小さく設定する(図中に示す直線矢印を参照)。これにより、ワークの断面の中心が図面に向かって左側へと偏芯される。
FIG. 19 is a schematic diagram illustrating the details of the process of forming the cylindrical body 26 from the blank pipe 11 illustrated in FIG. 9 by the method of the present invention. In the example shown in FIG. 19, after the set of the first step and the second step is executed for the first time in (a) and (b), the first step and the second step are executed for the second time in (c) and (d). A set with the second step is performed. Then, in (e) and (f), the set of the first step and the second step is executed for the third time. At this time, the amount of eccentricity of the axis of the body portion 26a of the work with respect to the revolution axis of the roller in the second step is set in the direction opposite to the eccentricity direction (left side in the drawing) of the axis of the tip portion 26b with respect to the axis of the body portion 26a. The side (right side as viewed in the drawing) is set relatively large with respect to the short axis side peripheral surface, and the same side as the eccentric direction of the shaft of the tip portion 26b with respect to the shaft of the main body portion 26a (left side as viewed in the drawing). is set relatively small with respect to the short axis side peripheral surface of (see the straight arrow shown in the figure). As a result, the center of the cross section of the work is shifted leftward as viewed in the drawing.
次に、(g)において4回目の第1ステップが実行され、その結果、素管11の端部に徐変部26cを形成する工程である第1工程の途中のこの時点において、ワークの断面形状が(先端部26bの直径よりも大きい直径を有する)円形になる。この時点以降は、(h)に例示するように、ワークの全周に亘ってローラが接触することができるので、通常の偏芯スピニング加工を実行することにより、徐変部26cの断面形状及び大きさが先端部26bの断面の形状及び大きさに一致する(即ち、先端部26bの断面形状と同じ直径を有する円形の断面形状となる)まで第1工程を継続する。これにより、徐変部26cの成形が完了し、第1工程が終了する。
Next, in (g), the first step is executed for the fourth time. The shape is circular (having a diameter greater than that of tip 26b). After this point, as illustrated in (h), the rollers can contact the entire circumference of the work, so that by performing normal eccentric spinning processing, the cross-sectional shape and The first step is continued until the size matches the cross-sectional shape and size of the tip 26b (ie, a circular cross-sectional shape having the same diameter as the cross-sectional shape of the tip 26b). Thereby, the molding of the gradually changing portion 26c is completed, and the first step ends.
尚、図19に示した例においては上記のように3回目に実行される第2ステップにおいてローラの公転軸に対してワークの本体部26aの軸を偏芯させたが、目標とする徐変部26cの形状によっては2回目以前に実行される第2ステップにおいてローラの公転軸に対してワークの本体部26aの軸を偏芯させてもよい。また、図10に例示したように、長軸側周面を押圧して縮径させる第1ステップにおいてローラの公転軸に対するワークの本体部26aの軸を(本体部26aの軸に対する先端部26bの軸の)偏芯方向とは反対側へ偏芯させてもよい。
In the example shown in FIG. 19, in the second step executed for the third time as described above, the axis of the body portion 26a of the work is eccentric with respect to the revolution axis of the roller. Depending on the shape of the portion 26c, the axis of the body portion 26a of the workpiece may be eccentric with respect to the revolution axis of the roller in the second step executed before the second time. Further, as illustrated in FIG. 10, in the first step of pressing the long shaft side peripheral surface to reduce the diameter, the axis of the main body portion 26a of the work with respect to the revolution axis of the roller (the tip portion 26b with respect to the axis of the main body portion 26a) It may be eccentric in the direction opposite to the direction of eccentricity of the shaft.
次に、徐変部26cの本体部26aとは反対側の端部に先端部26bを形成する工程である第2工程が実行される。図10の(c)及び(d)に例示した筒状体26が備える先端部26bは本体部26aの軸に平行な軸を有する円筒状の部分である。従って、当該第2工程においては、更なる偏芯を伴わない通常のスピニング加工により、徐変部26cの本体部26aとは反対側の端部に先端部26bを形成することができる。これにより、図9の(c)及び(d)並びに図10の(c)に例示した筒状体26の成形が完了する。
Next, a second step is performed, which is a step of forming the tip portion 26b at the end portion of the gradually changing portion 26c opposite to the main body portion 26a. A tip portion 26b of the cylindrical body 26 illustrated in FIGS. 10(c) and 10(d) is a cylindrical portion having an axis parallel to the axis of the body portion 26a. Therefore, in the second step, the tip portion 26b can be formed at the end of the gradually changing portion 26c opposite to the main body portion 26a by normal spinning processing without further eccentricity. This completes the molding of the cylindrical body 26 illustrated in FIGS. 9(c) and (d) and FIG. 10(c).
(7)楕円形から円形への偏芯スピニング加工
円形の断面形状を有し且つ本体部27aに対して図面に向かって左上側へ偏芯した先端部27bを備える筒状体27を楕円形の断面形状を有する素管11から成形する本発明方法については、図11を参照しながら既に説明した。しかしながら、図11に例示した素管11から筒状体27が成形される過程の詳細については説明されていないので、ここで当該成形過程の詳細について説明する。 (7) Eccentric Spinning Processing from Elliptical to Circular Acylindrical body 27 having a circular cross-sectional shape and having a distal end portion 27b eccentric to the upper left side of the drawing with respect to the body portion 27a is formed into an elliptical shape. The method of the present invention for forming from a blank tube 11 having a cross-sectional shape has already been described with reference to FIG. However, since the details of the process of forming the cylindrical body 27 from the blank pipe 11 illustrated in FIG. 11 are not described, the details of the forming process will be described here.
円形の断面形状を有し且つ本体部27aに対して図面に向かって左上側へ偏芯した先端部27bを備える筒状体27を楕円形の断面形状を有する素管11から成形する本発明方法については、図11を参照しながら既に説明した。しかしながら、図11に例示した素管11から筒状体27が成形される過程の詳細については説明されていないので、ここで当該成形過程の詳細について説明する。 (7) Eccentric Spinning Processing from Elliptical to Circular A
前述したように、図11に例示した素管11は、図1、図4、図9及び図10に例示した素管11と同じである。一方、図11に例示する筒状体27は、素管11と同じ楕円形の断面形状を有する本体部26aの軸に対して円形の断面形状を有する先端部26bの軸が図面に向かって左上側へ偏芯している点を除き、図1に例示した筒状体21及び図9に例示した筒状体26と同様の構成を有する。
As described above, the base pipe 11 illustrated in FIG. 11 is the same as the base pipe 11 illustrated in FIGS. 1, 4, 9 and 10. On the other hand, in the cylindrical body 27 illustrated in FIG. 11, the axis of the tip portion 26b having a circular cross-sectional shape with respect to the axis of the main body portion 26a having the same elliptical cross-sectional shape as that of the base tube 11 is at the upper left as viewed in the drawing. It has the same configuration as the cylindrical body 21 illustrated in FIG. 1 and the cylindrical body 26 illustrated in FIG. 9 except that it is eccentric to the side.
図20は、図11に例示した素管11から筒状体27が本発明方法によって成形される過程の詳細を例示する模式図である。図20に示す例においては、(a)及び(b)において1回目の第1ステップと第2ステップとの組が実行された後に、(c)及び(d)において2回目の第1ステップと第2ステップとの組が実行される。この際、(c)において実行される第1ステップにおいて、ローラの公転軸に対してワークの本体部27aの軸が図面に向かって下側へと偏芯されている(図中に示す直線矢印を参照)。これにより、ワークの断面の中心が図面に向かって上側へと偏芯される。次いで、(d)において実行される第2ステップにおいては、ローラの公転軸に対するワークの本体部27aの軸を図面に向かって下側へと偏芯させると共に、図面に向かって左右方向における偏芯量については、図面に向かって右側への偏芯量が左側への偏芯量よりも大きくなるように設定されている(それぞれの図中に示す2本の直線矢印を参照)。これにより、ワークの断面の中心が図面に向かって左上側へと偏芯される。
FIG. 20 is a schematic diagram illustrating the details of the process of forming the cylindrical body 27 from the blank tube 11 illustrated in FIG. 11 by the method of the present invention. In the example shown in FIG. 20, after the set of the first step and the second step is executed for the first time in (a) and (b), the first step and the second step are executed in (c) and (d) for the second time. A set with the second step is performed. At this time, in the first step executed in (c), the axis of the main body 27a of the work is eccentric downward in the drawing with respect to the revolution axis of the roller (straight arrow shown in the drawing). ). As a result, the center of the cross-section of the workpiece is eccentric upward in the drawing. Next, in the second step executed in (d), the axis of the main body portion 27a of the work relative to the revolution axis of the roller is eccentric downward as viewed in the drawing, and eccentric in the horizontal direction as viewed in the drawing. The amount is set so that the amount of eccentricity toward the right side of the drawing is greater than the amount of eccentricity toward the left side (see the two straight arrows shown in each drawing). As a result, the center of the cross section of the work is decentered to the upper left side as viewed in the drawing.
次いで、(e)及び(f)において、3回目及び4回目の第1ステップがそれぞれ実行される。この際、(e)及び(f)の何れにおいても、ローラの公転軸に対してワークの本体部27aの軸が図面に向かって右下側へと偏芯されている(それぞれの図中に示す2本の直線矢印を参照)。これにより、ワークの断面の中心が図面に向かって左上側へと更に偏芯される。この時点において、ワークの断面形状が(先端部27bの直径よりも大きい直径を有する)円形になる。この時点以降は、(g)に例示するように、ワークの全周に亘ってローラが接触することができるので、通常の偏芯スピニング加工を実行することにより、徐変部27cの断面形状及び大きさが先端部27bの断面の形状及び大きさに一致する(即ち、先端部27bの断面形状と同じ直径を有する円形の断面形状となる)まで第1工程を継続する。これにより、徐変部27cの成形が完了し、第1工程が終了する。
Then, in (e) and (f), the first step is executed for the third and fourth times, respectively. At this time, in both (e) and (f), the axis of the main body portion 27a of the work is eccentric to the lower right side of the drawing with respect to the revolution axis of the roller (in each drawing, see the two straight arrows shown). As a result, the center of the cross section of the workpiece is further eccentric to the upper left side of the drawing. At this point, the workpiece has a circular cross-sectional shape (having a diameter greater than that of tip 27b). After this point, as shown in (g), the roller can be in contact with the entire circumference of the workpiece, so that the cross-sectional shape of the gradually changing portion 27c and the The first step is continued until the size matches the cross-sectional shape and size of the tip 27b (ie, a circular cross-sectional shape with the same diameter as the cross-sectional shape of the tip 27b). Thereby, the molding of the gradually changing portion 27c is completed, and the first step ends.
次に、徐変部27cの本体部27aとは反対側の端部に先端部27bを形成する工程である第2工程が実行される。図11の(c)及び(d)に例示した筒状体27が備える先端部27bは本体部27aの軸に平行な軸を有する円筒状の部分である。従って、当該第2工程においては、更なる偏芯を伴わない通常のスピニング加工により、徐変部27cの本体部27aとは反対側の端部に先端部27bを形成することができる。これにより、図11の(c)及び(d)並びに図20の(h)に例示した筒状体27の成形が完了する。
Next, a second step is performed, which is a step of forming the tip portion 27b at the end portion of the gradually changing portion 27c opposite to the main body portion 27a. A tip portion 27b provided in the tubular body 27 illustrated in FIGS. 11(c) and 11(d) is a cylindrical portion having an axis parallel to the axis of the main body portion 27a. Therefore, in the second step, the leading end portion 27b can be formed at the end portion of the gradually changing portion 27c opposite to the main body portion 27a by normal spinning processing without further eccentricity. This completes the molding of the cylindrical body 27 illustrated in FIGS. 11(c) and (d) and FIG. 20(h).
(8)矩形(角丸長方形)から円形への偏芯スピニング加工
円形の断面形状を有し且つ本体部28aに対して図面に向かって左上側へ偏芯した先端部28bを備える筒状体28を矩形(角丸長方形)の断面形状を有する素管13から成形する本発明方法については、図12を参照しながら既に説明した。しかしながら、図15に例示した素管13から筒状体28が成形される過程の詳細については説明されていないので、ここで当該成形過程の詳細について説明する。 (8) Eccentric Spinning from a Rectangle (Rounded Rectangle) to aCircle Cylindrical body 28 having a circular cross-sectional shape and having a tip portion 28b that is eccentric to the upper left side of the drawing with respect to the body portion 28a. has already been described with reference to FIG. However, since the details of the process of forming the cylindrical body 28 from the blank tube 13 illustrated in FIG. 15 are not described, the details of the forming process will be described here.
円形の断面形状を有し且つ本体部28aに対して図面に向かって左上側へ偏芯した先端部28bを備える筒状体28を矩形(角丸長方形)の断面形状を有する素管13から成形する本発明方法については、図12を参照しながら既に説明した。しかしながら、図15に例示した素管13から筒状体28が成形される過程の詳細については説明されていないので、ここで当該成形過程の詳細について説明する。 (8) Eccentric Spinning from a Rectangle (Rounded Rectangle) to a
前述したように、図12に例示した素管13は、図7及び図8に例示した素管13と同じである。一方、図12に例示した筒状体28は、素管13と同じ矩形(角丸長方形)の断面形状を有する本体部28aの軸に対して円形の断面形状を有する先端部28bの軸が図面に向かって左上側へ偏芯している点を除き、図7に例示した筒状体24と同様の構成を有する。
As described above, the base pipe 13 illustrated in FIG. 12 is the same as the base pipe 13 illustrated in FIGS. On the other hand, in the tubular body 28 illustrated in FIG. It has the same configuration as the cylindrical body 24 illustrated in FIG.
図21は、図12に例示した素管13から筒状体28が本発明方法によって成形される過程の詳細を例示する模式図である。先ず、(a)及び(b)において、1回目の第2ステップと第1ステップとの組が実行される。図17を参照しながら説明した図7に例示した筒状体24の成形過程と同様に、(a)においては、素管13の断面において中心軸から最も外側に位置する部分は矩形の断面形状の角部であるので、短軸側周面に対する部分スピニング加工は角部に施されることとなる。次いで、(b)において、ワークの長軸側周面に対して1回目の部分スピニング加工が施される。この際、ローラの公転軸に対してワークの本体部28aの軸が図面に向かって下側及び右側へと偏芯されている(それぞれの図中に示す2本の直線矢印を参照)。これにより、ワークの断面の中心が図面に向かって左上側へと偏芯される。
FIG. 21 is a schematic diagram illustrating the details of the process of forming the cylindrical body 28 from the blank tube 13 illustrated in FIG. 12 by the method of the present invention. First, in (a) and (b), a set of the second step and the first step is executed for the first time. Similar to the molding process of the cylindrical body 24 illustrated in FIG. 7 explained with reference to FIG. Therefore, the partial spinning process for the short shaft side peripheral surface is applied to the corners. Next, in (b), a first partial spinning process is applied to the long axis side peripheral surface of the work. At this time, the axis of the body portion 28a of the work is eccentric to the lower side and the right side of the drawing with respect to the revolution axis of the roller (see the two straight arrows shown in each drawing). As a result, the center of the cross section of the work is decentered to the upper left side as viewed in the drawing.
次いで、(c)及び(d)において2回目の第2ステップと第1ステップとの組が実行される。この際、(c)において実行される2回目の第2ステップにおいて、ローラの公転軸に対するワークの本体部28aの軸を図面に向かって下側へと偏芯させると共に、図面に向かって左右方向における偏芯量については、図面に向かって右側への偏芯量が左側への偏芯量よりも大きくなるように設定されている(それぞれの図中に示す2本の直線矢印を参照)。これにより、ワークの断面の中心が図面に向かって左上側へと更に偏芯される。(d)において実行される2回目の第1ステップにおいては、ローラの公転軸に対してワークの本体部28aの軸が、(b)において実行された1回目の第1ステップよりも大幅に、図面に向かって下側及び右側へと偏芯されている(それぞれの図中に示す2本の直線矢印を参照)。その後(e)及び(f)において実行される3回目の第2ステップと第1ステップとの組においても、ローラの公転軸に対してワークの本体部28aの軸が図面に向かって下側及び右側へと更に大幅に偏芯される(それぞれの図中に示す2本の直線矢印を参照)。これにより、ワークの断面の中心が図面に向かって左上側へと更に偏芯される。
Next, in (c) and (d), the second set of the second step and the first step is executed. At this time, in the second step executed for the second time in (c), the axis of the main body portion 28a of the work relative to the revolution axis of the roller is eccentrically lowered as viewed in the drawing, and in the horizontal direction as viewed in the drawing. , is set so that the amount of eccentricity toward the right side of the drawing is greater than the amount of eccentricity toward the left side (see the two straight arrows shown in each figure). As a result, the center of the cross section of the workpiece is further eccentric to the upper left side of the drawing. In the second first step executed in (d), the axis of the main body portion 28a of the work with respect to the revolution axis of the roller is significantly greater than the first step executed in (b). It is eccentric to the bottom and to the right as viewed in the drawing (see the two straight arrows shown in each drawing). After that, in the set of the third second step and the first step executed in (e) and (f), the axis of the main body 28a of the work with respect to the revolution axis of the roller It is decentered further to the right (see the two straight arrows shown in each figure). As a result, the center of the cross section of the workpiece is further eccentric to the upper left side of the drawing.
この時点以降は、(g)及び(h)に例示するように、ワークの全周に亘ってローラが接触することができるので、通常の偏芯スピニング加工を実行することにより、徐変部28cの断面形状及び大きさが先端部28bの断面の形状及び大きさに一致する(即ち、先端部28bの断面形状と同じ直径を有する円形の断面形状となる)まで第1工程を継続する。これにより、徐変部28cの成形が完了し、第1工程が終了する。
After this point, as shown in (g) and (h), the rollers can contact the entire circumference of the workpiece, so that the gradually changing portion 28c can be matches the cross-sectional shape and size of tip 28b (ie, a circular cross-sectional shape having the same diameter as the cross-sectional shape of tip 28b). Thereby, the molding of the gradually changing portion 28c is completed, and the first step ends.
次に、徐変部28cの先端側の端部に先端部28bを形成する工程である第2工程が実行される。図12の(c)及び(d)に例示した筒状体28が備える先端部28bは本体部28aの軸に平行な軸を有する円筒状の部分である。従って、当該第2工程においては、更なる偏芯を伴わない通常のスピニング加工により、徐変部28cの本体部28aとは反対側の端部に先端部28bを形成することができる。これにより、図12の(c)及び(d)並びに図21の(i)に例示した筒状体27の成形が完了する。
Next, the second step, which is a step of forming the tip portion 28b at the tip end of the gradually changing portion 28c, is performed. A tip portion 28b of the cylindrical body 28 shown in FIGS. 12(c) and 12(d) is a cylindrical portion having an axis parallel to the axis of the main body portion 28a. Therefore, in the second step, the tip portion 28b can be formed at the end of the gradually changing portion 28c opposite to the main body portion 28a by a normal spinning process without further eccentricity. This completes the molding of the tubular body 27 illustrated in FIGS. 12(c) and (d) and FIG. 21(i).
(9)補足
上記説明においては、筒状体の本体部の軸と先端部の軸との相対的な位置関係が偏芯である場合について例示した。しかしながら、スピニング加工において当業者が周知の手法を適用することにより、筒状体の本体部の軸と先端部の軸との相対的な位置関係が同軸、傾斜又は空間幾何学的ねじれの位置である筒状体もまた本発明に係るスピニング加工方法(本発明方法)によって容易に成形することができる。 (9) Supplementary information In the above description, the case where the relative positional relationship between the axis of the main body of the cylindrical body and the axis of the distal end is eccentric has been exemplified. However, by applying a technique well known to those skilled in the art in spinning processing, the relative positional relationship between the axis of the main body of the cylindrical body and the axis of the tip can be coaxial, inclined or spatially geometrically twisted. A certain tubular body can also be easily formed by the spinning method according to the present invention (the method of the present invention).
上記説明においては、筒状体の本体部の軸と先端部の軸との相対的な位置関係が偏芯である場合について例示した。しかしながら、スピニング加工において当業者が周知の手法を適用することにより、筒状体の本体部の軸と先端部の軸との相対的な位置関係が同軸、傾斜又は空間幾何学的ねじれの位置である筒状体もまた本発明に係るスピニング加工方法(本発明方法)によって容易に成形することができる。 (9) Supplementary information In the above description, the case where the relative positional relationship between the axis of the main body of the cylindrical body and the axis of the distal end is eccentric has been exemplified. However, by applying a technique well known to those skilled in the art in spinning processing, the relative positional relationship between the axis of the main body of the cylindrical body and the axis of the tip can be coaxial, inclined or spatially geometrically twisted. A certain tubular body can also be easily formed by the spinning method according to the present invention (the method of the present invention).
また、例えば極めて高い寸法精度が筒状体に要求される場合等においては、前述したように、例えば、上述した第1工程及び第2工程の後に、所期の寸法精度に対応する成形面を有する金型によるプレス加工に筒状体を付す追加工程等を本発明方法が更に含んでもよい。この場合、第1工程及び第2工程の実行によって得られる筒状体の寸法が最終的に要求される筒状体の寸法よりも僅かに大きくなるようにしてもよい。加えて、筒状体の用途によっては、例えば、上述した第1工程及び第2工程の後に、例えば、先端部に接続される部材(例えば、排気管等)に合わせて切削加工等により先端部を二次加工する追加工程等を本発明方法が更に含んでもよい。
Further, for example, in the case where extremely high dimensional accuracy is required for the cylindrical body, as described above, for example, after the above-described first step and second step, a molding surface corresponding to the desired dimensional accuracy is formed. The method of the present invention may further include an additional step of applying the cylindrical body to press working with a mold having a mold. In this case, the dimensions of the cylindrical body obtained by performing the first step and the second step may be slightly larger than the finally required dimensions of the cylindrical body. In addition, depending on the use of the cylindrical body, for example, after the above-described first step and second step, for example, the tip portion is cut to match the member connected to the tip portion (for example, an exhaust pipe, etc.) The method of the present invention may further include additional steps such as fabricating the .
更に、筒状体の用途によっては、筒状体の先端部以外の箇所において更なる加工が必要とされる場合がある。具体的には、例えば、筒状体の徐変部に精度良く座面を形成したり当該座面に穿孔を施したりすることが必要となる場合がある。このような場合等においては、例えば特許文献4(特許第6630300号公報)において開示された加工方法を本発明方法に組み合わせてもよい。具体的には、本発明方法によって成形された筒状体の両端にある開口端の少なくとも一方に開口芯金を挿入して支持・拘束し且つ徐変部の少なくとも一部は支持・拘束しない状態にて徐変部の所定の領域に座押パンチを押圧して座面を形成した後に座面の外縁内の所定の領域に孔開パンチを穿って穿孔してもよい。
Furthermore, depending on the application of the cylindrical body, there are cases where further processing is required at locations other than the tip of the cylindrical body. Specifically, for example, it may be necessary to accurately form a bearing surface in the gradually changing portion of the cylindrical body or to perforate the bearing surface. In such cases, for example, the processing method disclosed in Patent Document 4 (Japanese Patent No. 6630300) may be combined with the method of the present invention. Specifically, an open core metal is inserted into at least one of the open ends on both ends of the cylindrical body molded by the method of the present invention to support and restrain, and at least a part of the gradually changing portion is not supported or restrained. After forming the seat surface by pressing the seat pressing punch against a predetermined area of the gradually changing portion, a hole punch may be punched in a predetermined area within the outer edge of the seat surface.
図22は、特許文献4において開示された加工方法と本発明方法との組み合わせによって成形された筒状体の一例を示す模式図である。図22に例示する筒状体31は、上述した図9、図10及び図19に例示した筒状体26と同様に本体部31aと先端部31bと徐変部31cとを備え且つ特許文献4において開示された加工方法によって徐変部31cに形成された座面31d及び貫通孔31eを備える。図22に例示するように、上記組み合わせによれば、本発明方法によって達成される効果に加えて、筒状体の徐変部に精度良く座面を形成し且つ穿孔を施すことができるので、多種多様な断面形状を有する筒状体の徐変部に高い寸法精度にて座面及び貫通孔を形成することができる。
FIG. 22 is a schematic diagram showing an example of a cylindrical body formed by a combination of the processing method disclosed in Patent Document 4 and the method of the present invention. A cylindrical body 31 illustrated in FIG. 22 includes a body portion 31a, a tip portion 31b, and a gradually changing portion 31c, similarly to the cylindrical body 26 illustrated in FIGS. 31d and a through hole 31e formed in the gradually changing portion 31c by the processing method disclosed in . As exemplified in FIG. 22, according to the above combination, in addition to the effects achieved by the method of the present invention, it is possible to precisely form the bearing surface and perforate the gradually changing portion of the cylindrical body. The bearing surface and the through hole can be formed with high dimensional accuracy in the gradually changing portion of the cylindrical body having various cross-sectional shapes.
尚、これまでの説明においては、ワークの長軸側周面を成形具によって押圧して縮径させる第1ステップ及びワークの短軸側周面を成形具によって押圧して縮径させる第2ステップの両方が第1工程において実行されていた。しかしながら、例えば、素管の周長(即ち本体部の周長)に等しい周長を有し且つ素管の断面形状(即ち本体部の断面形状)とは異なる断面形状を有する徐変部及び先端部を備える筒状体を成形する場合は、必ずしも第1ステップ及び第2ステップの両方を第1工程において実行する必要は無い。
In the description so far, the first step of reducing the diameter by pressing the long axis side peripheral surface of the work with the forming tool and the second step of reducing the diameter by pressing the short axis side peripheral surface of the work with the forming tool. were both performed in the first step. However, for example, the gradually changing portion and the tip end have a circumference equal to the circumference of the base pipe (that is, the circumference of the main body) and have a cross-sectional shape that is different from the cross-sectional shape of the base pipe (that is, the cross-sectional shape of the main body). When molding a cylindrical body having portions, it is not always necessary to perform both the first step and the second step in the first step.
以上、本発明を説明することを目的として、特定の構成を有する幾つかの実施形態及び実施例につき、時に添付図面を参照しながら説明してきたが、本発明の範囲は、これらの例示的な実施形態及び実施例に限定されると解釈されるべきではなく、特許請求の範囲及び明細書に記載された事項の範囲内で、適宜修正を加えることが可能であることは言うまでも無い。
Although several embodiments and examples having specific configurations have been described above for the purpose of illustrating the present invention, sometimes with reference to the accompanying drawings, the scope of the present invention is not limited to these exemplary embodiments. It should not be construed as being limited to the embodiments and examples, and it goes without saying that modifications can be made as appropriate within the scope of the claims and the matters described in the specification.
11,12,13…素管
21,22,23,24,25,26,27,28,29,30,31…筒状体
21a,22a,23a,24a,25a,26a,27a,28a,29a,30a,31a…本体部
21b,22b,23b,24b,25b,26b,27b,28b,29b,30b,31b…先端部
21c,22c,23c,24c,25c,26c,27c,28c,29c,30c,31c…徐変部
41…ローラ(成形具)
AL…断面の長軸
AS…断面の短軸
AX…断面の中心を通る中心軸
Tc…ローラの中心(自転軸)の公転軌道
Te…ローラの最内端の公転軌道 11, 12, 13... Element tube 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31... Cylindrical body 21a, 22a, 23a, 24a, 25a, 26a, 27a, 28a, 29a . , 31c... Gradual change part 41... Roller (former)
AL...Long axis of cross section AS...Short axis of cross section AX...Center axis passing through center of cross section Tc...Revolution track of roller center (rotation axis) Te...Revolution track of innermost end of roller
21,22,23,24,25,26,27,28,29,30,31…筒状体
21a,22a,23a,24a,25a,26a,27a,28a,29a,30a,31a…本体部
21b,22b,23b,24b,25b,26b,27b,28b,29b,30b,31b…先端部
21c,22c,23c,24c,25c,26c,27c,28c,29c,30c,31c…徐変部
41…ローラ(成形具)
AL…断面の長軸
AS…断面の短軸
AX…断面の中心を通る中心軸
Tc…ローラの中心(自転軸)の公転軌道
Te…ローラの最内端の公転軌道 11, 12, 13...
AL...Long axis of cross section AS...Short axis of cross section AX...Center axis passing through center of cross section Tc...Revolution track of roller center (rotation axis) Te...Revolution track of innermost end of roller
Claims (3)
- 素管の未加工の部分からなる本体部と、前記本体部の端部に形成され且つ前記本体部の断面とは形状及び/又は大きさが異なる断面を有する直管状の部分である先端部と、前記本体部と前記先端部との間に形成され且つ前記本体部側の端部から前記先端部側の端部へと向かうに従って前記本体部の断面形状から前記先端部の断面形状へと断面形状が変化し且つ前記本体部の内部空間と前記先端部の内部空間とを連通する筒状の部分である徐変部と、を備える筒状の部材である筒状体をスピニング加工によって前記素管から一体的に形成するスピニング加工方法であって、
前記素管の端部に前記徐変部を形成する工程である第1工程及び前記徐変部の前記本体部とは反対側の端部に前記先端部を形成する工程である第2工程の何れにおいても前記スピニング加工における成形具の公転軌道は円形であり、
少なくとも前記第1工程は、前記成形具の公転軸と前記素管の軸とを偏芯させることにより前記成形具の前記公転軌道の一部のみにおいて前記成形具を前記素管の周面の一部のみに接触させて前記素管の前記周面の前記一部のみを縮径させるスピニング加工である部分スピニング加工が実行される期間である部分スピニング期間を含む、
ことを特徴とする、スピニング加工方法。 A main body portion composed of an unprocessed portion of a blank tube, and a tip portion formed at the end of the main body portion and being a straight pipe portion having a cross section different in shape and/or size from the cross section of the main body portion. , which is formed between the main body portion and the tip portion and has a cross-sectional shape that changes from the cross-sectional shape of the main body portion to the cross-sectional shape of the tip portion as it goes from the end portion on the side of the main body portion to the end portion on the side of the tip portion. A cylindrical body, which is a cylindrical member having a gradually changing portion which is a cylindrical portion whose shape changes and communicates between the inner space of the main body portion and the inner space of the tip portion, is spun. A spinning method for integrally forming a tube,
A first step, which is a step of forming the gradually changing portion at the end portion of the blank tube, and a second step, which is a step of forming the tip portion at the end portion of the gradually changing portion opposite to the main body portion. In any case, the orbit of the forming tool in the spinning process is circular,
In at least the first step, by eccentrically moving the axis of revolution of the forming tool and the axis of the blank tube, the forming tool is moved to a portion of the peripheral surface of the blank tube only in part of the revolution orbit of the forming tool. Including a partial spinning period, which is a period during which a partial spinning process, which is a spinning process that reduces the diameter of only the part of the peripheral surface of the mother pipe by contacting only the part,
A spinning processing method characterized by: - 請求項1に記載されたスピニング加工方法であって、
前記本体部の断面形状は、円形、楕円形、長円形及び多角形からなる群より選ばれる何れか1つの形状であり、
前記先端部の断面形状は、円形、楕円形、長円形及び多角形からなる群より選ばれる何れか1つの形状である、
ことを特徴とする、スピニング加工方法。 A spinning processing method according to claim 1,
The cross-sectional shape of the main body is any one shape selected from the group consisting of a circle, an ellipse, an oval and a polygon,
The cross-sectional shape of the tip is any one shape selected from the group consisting of a circle, an ellipse, an oval and a polygon,
A spinning processing method characterized by: - 請求項1又は請求項2に記載されたスピニング加工方法であって、
前記本体部の軸と前記先端部の軸との相対的な位置関係は、同軸、偏芯、傾斜及び空間幾何学的ねじれの位置からなる群より選ばれる何れか1つである、
ことを特徴とする、スピニング加工方法。 The spinning method according to claim 1 or claim 2,
The relative positional relationship between the axis of the body portion and the axis of the tip portion is any one selected from the group consisting of coaxial, eccentric, inclined and spatial geometric twist positions,
A spinning processing method characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023522278A JP7433523B2 (en) | 2021-05-19 | 2022-03-22 | Spinning method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021084289 | 2021-05-19 | ||
JP2021-084289 | 2021-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022244449A1 true WO2022244449A1 (en) | 2022-11-24 |
Family
ID=84141533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/013229 WO2022244449A1 (en) | 2021-05-19 | 2022-03-22 | Spinning method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7433523B2 (en) |
WO (1) | WO2022244449A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002066665A (en) * | 2000-06-15 | 2002-03-05 | Fuji Kikai Kosakusho:Kk | Working method of cylinder body |
JP2002361342A (en) * | 2001-03-28 | 2002-12-17 | Sakamoto Industry Co Ltd | Processing method of the protruding part of deformed pipe |
JP2003062620A (en) * | 2001-08-28 | 2003-03-05 | Nippon Spindle Mfg Co Ltd | Method for drawing of end of noncircular tubular material |
JP4647140B2 (en) * | 2001-06-26 | 2011-03-09 | 坂本工業株式会社 | Tube end forming method |
JP6630300B2 (en) * | 2017-01-27 | 2020-01-15 | 株式会社三五 | Processing method of cylindrical body and cylindrical body |
JP6748992B2 (en) * | 2017-10-18 | 2020-09-02 | 株式会社三五 | Method of manufacturing catalytic converter |
-
2022
- 2022-03-22 JP JP2023522278A patent/JP7433523B2/en active Active
- 2022-03-22 WO PCT/JP2022/013229 patent/WO2022244449A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002066665A (en) * | 2000-06-15 | 2002-03-05 | Fuji Kikai Kosakusho:Kk | Working method of cylinder body |
JP2002361342A (en) * | 2001-03-28 | 2002-12-17 | Sakamoto Industry Co Ltd | Processing method of the protruding part of deformed pipe |
JP4647140B2 (en) * | 2001-06-26 | 2011-03-09 | 坂本工業株式会社 | Tube end forming method |
JP2003062620A (en) * | 2001-08-28 | 2003-03-05 | Nippon Spindle Mfg Co Ltd | Method for drawing of end of noncircular tubular material |
JP6630300B2 (en) * | 2017-01-27 | 2020-01-15 | 株式会社三五 | Processing method of cylindrical body and cylindrical body |
JP6748992B2 (en) * | 2017-10-18 | 2020-09-02 | 株式会社三五 | Method of manufacturing catalytic converter |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022244449A1 (en) | 2022-11-24 |
JP7433523B2 (en) | 2024-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103861987B (en) | Hollow shaft is swaged the method for designing of mould | |
CN101513660A (en) | Method for forming end portion of cylindrical workpiece | |
CN102825130B (en) | Method for progressively forming frustum-shaped part by using sheets in point-press manner | |
JPH09236130A (en) | Needle-like roller bearing holder and its manufacture | |
JP2000135533A (en) | Hub disk molding method and, metal spining roller to be used for molding thereof | |
JP2002102959A (en) | Manufacturing method for metal pipe having eccentric expanded diameter pipe end | |
WO2022244449A1 (en) | Spinning method | |
JP3719739B2 (en) | Method for manufacturing elastic universal joint yoke | |
US20020062562A1 (en) | Method of spin forming oblique end cones of a catalytic converter | |
WO2004041458A1 (en) | Deformed element pipe for hydraulic bulging, hydraulic bulging device using the element pipe, hydraulic bulging method using the element pipe, and hydraulic-bulged product | |
CN102161059B (en) | NC bending core head for thin walled tube of aluminum alloy with major diameter and design method thereof | |
JPS59163029A (en) | Flange forming head of thin walled metallic cylinder | |
JP2015024471A (en) | Processing tool and processing method for nut for ball screw | |
JP4698890B2 (en) | Processing method of protruding part of deformed pipe | |
US20160325332A1 (en) | Method and apparatus for forming elliptical hollow cylinder | |
JP4270921B2 (en) | Bottomed tube and method for forming the same | |
JP2004001023A (en) | Method for shaping metal vessel | |
JP4647140B2 (en) | Tube end forming method | |
JP3550647B2 (en) | Catalytic converter container and method of manufacturing the same | |
JPS58167037A (en) | Tool for working tube end | |
CN113134539B (en) | A spinning wheel, spinning component and spinning process | |
JP2002239657A (en) | Spinning method for tube | |
JP2021178333A (en) | Punch, burring method and manufacturing method of burring processed product | |
JP2006181638A (en) | Raceway ring for radial ball bearing and its manufacturing method | |
JP4442973B2 (en) | Steel pipe end expansion method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22804367 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023522278 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22804367 Country of ref document: EP Kind code of ref document: A1 |