[go: up one dir, main page]

WO2022239124A1 - はんだ粒子の分級方法、単分散はんだ粒子、及びはんだ粒子の分級システム - Google Patents

はんだ粒子の分級方法、単分散はんだ粒子、及びはんだ粒子の分級システム Download PDF

Info

Publication number
WO2022239124A1
WO2022239124A1 PCT/JP2021/017922 JP2021017922W WO2022239124A1 WO 2022239124 A1 WO2022239124 A1 WO 2022239124A1 JP 2021017922 W JP2021017922 W JP 2021017922W WO 2022239124 A1 WO2022239124 A1 WO 2022239124A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder particles
solder
electrode
opening
particles
Prior art date
Application number
PCT/JP2021/017922
Other languages
English (en)
French (fr)
Inventor
俊之 杉本
将平 山崎
弘行 伊澤
Original Assignee
昭和電工マテリアルズ株式会社
俊之 杉本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社, 俊之 杉本 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2021/017922 priority Critical patent/WO2022239124A1/ja
Priority to JP2023520994A priority patent/JPWO2022239701A1/ja
Priority to KR1020237038799A priority patent/KR20240006550A/ko
Priority to PCT/JP2022/019535 priority patent/WO2022239701A1/ja
Priority to CN202280033476.8A priority patent/CN117279715A/zh
Priority to US18/559,618 priority patent/US20240238804A1/en
Priority to TW111116766A priority patent/TW202247922A/zh
Publication of WO2022239124A1 publication Critical patent/WO2022239124A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/04Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices according to size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C7/00Separating solids from solids by electrostatic effect
    • B03C7/02Separators

Definitions

  • the present disclosure relates to a solder particle classification method, monodisperse solder particles, and a solder particle classification system.
  • Solder paste which is a mixture of solder particles and paste-like flux, is used in surface mounting technology for mounting electronic devices on printed wiring boards. Spherical particles having a diameter of about 100 ⁇ m or more are generally used as the solder particles.
  • solder particles are produced by various methods, and studies have been made to suppress variations in particle size in various production methods (see, for example, Patent Document 1 below).
  • the present disclosure aims to provide a method for classifying solder particles, monodisperse solder particles, and a system for classifying solder particles.
  • a first electrode having a static dissipative or conductive placement portion, and an insulation property provided with a plurality of openings facing the placement portion and opening toward the placement portion side.
  • Solder particles P arranged in the arrangement portion by forming an electric field between the first electrode and the second electrode of the electrostatic attraction device, a first step of electrostatically attracting the solder particles P2 to the attracting portion; a second step of removing the solder particles P2 that are attracted to the attracting portion and not accommodated in the opening from the attracting portion; and a third step of collecting the solder particles P1 contained in a part, wherein the average particle diameter of the solder particles P is 10 ⁇ m or more.
  • the second step can efficiently remove solder particles having a large particle size that are not accommodated in the openings, and the dispersity of the recovered solder particles P1 can be made smaller than that of the solder particles P. can be done. This makes it possible to obtain solder particles with a small CV value (coefficient of variation of particle size) of the particle size. Further, according to the above method, the average particle size of the collected solder particles P1 can be easily changed by adjusting the opening size of the opening.
  • the solder particles P may have a particle diameter of less than 10 ⁇ m at a rate of 30% or less.
  • MDp/OD satisfies 0.5 to 1.5, where MDp ( ⁇ m) is the average particle diameter of the solder particles P and OD ( ⁇ m) is the opening diameter of the opening. can be anything.
  • Another aspect of the present disclosure relates to monodisperse solder particles having an average particle size of 10 to 30 ⁇ m and a particle size CV value of 3 to 15%.
  • Another aspect of the present disclosure relates to monodisperse solder particles having an average particle size of 30 to 70 ⁇ m and a particle size CV value of 3 to 15%.
  • Another aspect of the present disclosure relates to monodisperse solder particles having an average particle size of 70 to 100 ⁇ m and a particle size CV value of 3 to 15%.
  • Each of the above monodisperse solder particles has the above configuration, so that it is possible to maintain a constant gap between the electrode and the wiring during mounting in surface mounting, and to suppress the gap variation in each wiring.
  • the method of classifying solder particles described above can be manufactured from solder particles that are manufactured by a normal method, and thus can be said to be excellent in productivity.
  • Another aspect of the present disclosure is an insulation provided with a first electrode having a static dissipative or conductive placement portion, and a plurality of openings facing the placement portion and opening on the placement portion side a second electrode having an adsorption portion having a property; a removing means for removing from the adsorption portion the solder particles that are adsorbed to the adsorption portion and are not accommodated in the opening;
  • the present invention relates to a solder particle classification system comprising a recovery means for recovering solder particles contained in an opening of an adsorption section.
  • solder particle classification method described above can be implemented, and solder particles with a small particle diameter CV value (particle diameter variation coefficient) can be obtained. Also, by adjusting the opening diameter of the opening, the average particle diameter of the obtained solder particles can be easily changed. Therefore, the solder particle classification system described above can also be applied as a monodisperse solder particle production system.
  • FIG. 2(a) is a plan view schematically showing an example of the adsorption portion
  • FIG. 2(b) is a sectional view taken along line Ib--Ib of FIG. 2(a).
  • FIG. 4 is a schematic diagram for explaining a method of classifying solder particles;
  • FIG. 4 is a schematic diagram for explaining a method of classifying solder particles;
  • SEM images of Solder Particle-1 and Solder Particle-2. 4 shows SEM images of solder particles before and after classification in Example 1.
  • FIG. 4 is SEM images of solder particles before and after classification in Comparative Example 1.
  • FIG. 4 is SEM images of solder particles before and after classification in Comparative Example 1.
  • the upper limit value or lower limit value of the numerical range at one stage may be replaced with the upper limit value or lower limit value of the numerical range at another stage.
  • the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • a collection of a plurality of particles is also referred to herein as a "particle".
  • the solder particle classification method of the present embodiment includes a first electrode having a static dissipative or conductive placement portion, and a plurality of openings facing the placement portion and opening on the placement portion side. and a second electrode having an insulating adsorption portion, and an electrostatic adsorption device having an electrostatic adsorption device, wherein an electric field is formed between the first electrode and the second electrode of the electrostatic adsorption device.
  • a first step of electrostatically attracting the solder particles P in the attracting portion a second step of removing the solder particles P2 that are attracted to the attracting portion and not accommodated in the opening; and a third step of collecting the solder particles P1 accommodated in the opening.
  • FIG. 1 is a diagram showing a schematic configuration of an electrostatic adsorption device used in the solder particle classification method of the present embodiment.
  • the electrostatic adsorption device 1 includes a lower electrode (first electrode) 2 having an arrangement portion 2a, and an upper electrode having an adsorption portion 4 arranged above the arrangement portion 2a in the direction of gravity and facing the arrangement portion 2a. (second electrode) 3; Solder particles P are arranged in the arrangement portion 2a.
  • the arrangement portion 2a shown in FIG. 1 is integrated with the lower electrode main body and is the surface on the upper electrode 3 side.
  • the placement portion 2a may be provided separately on the surface of the lower electrode 2 on the upper electrode 3 side.
  • a material having static electricity dissipative property or conductivity can be used as a material for the lower electrode 2.
  • a material having a surface resistivity of 10 13 ⁇ or less can be used, and specific examples include metals and glass.
  • the shape of the lower electrode 2 is not particularly limited, but may be, for example, a flat plate shape, a roll shape, or the like.
  • a material having electrostatic dissipative properties or conductivity can be used as the material of the placement portion 2a provided on the surface of the lower electrode 2 on the side of the upper electrode 3.
  • a material having electrostatic dissipative properties or conductivity can be used as the material of the placement portion 2a provided on the surface of the lower electrode 2 on the side of the upper electrode 3.
  • a material having electrostatic dissipative properties or conductivity can be used.
  • a material having a surface resistivity of 10 13 ⁇ or less can be used, and specific examples include metal, glass, and conductive resin such as conductive polytetrafluoroethylene (PTFE).
  • the shape of the placement portion 2a is not particularly limited as long as the solder particles can be placed thereon. For example, it may have a shape that has a bottom surface and a side surface and is open in the direction of the adsorption section.
  • the static electricity dissipative placement portion may have a surface resistivity of 10 13 ⁇ or less, or 10 6 ⁇ or more.
  • the conductive placement portion may have a surface resistivity of 10 6 ⁇ or less, or 10 ⁇ 3 ⁇ or more.
  • the electrode body constituting the upper electrode 3 one having static electricity dissipative properties or conductivity can be used.
  • a material having a surface resistivity of 10 13 ⁇ or less can be used, and specific examples include metals and glass.
  • the shape of the electrode body is not particularly limited, but may be, for example, a flat plate shape or a roll shape.
  • the adsorption section 4 is provided with a plurality of openings 10 that open toward the placement section.
  • the openings 10 may be provided in a predetermined pattern.
  • An insulating material can be used as the material of the adsorption part 4 .
  • materials with surface resistivities greater than 10 13 ⁇ can be used.
  • the shape of the adsorption portion 4 is not particularly limited as long as it has the above-described opening. It may be a film that can be separated from the electrode body.
  • FIG. 2 is a plan view schematically showing an example of a suction portion
  • (b) of FIG. 2 is a cross-sectional view taken along line Ib-Ib of (a) of FIG.
  • the suction portion 4 shown in FIG. 2A is provided with a plurality of openings (recesses) 10 having a predetermined pattern (opening pattern).
  • the predetermined pattern (opening pattern) may be a regular arrangement or an irregular arrangement.
  • the opening 10 of the suction portion 4 may be tapered such that the opening area increases from the bottom portion 10a side of the opening portion 10 toward the surface 4a side of the suction portion 4 . That is, as shown in FIGS. 2A and 2B, the width of the bottom portion 10a of the opening 10 (the width a in FIGS. 2A and 2B) (Width b in (a) and (b) of FIG. 2 (hereinafter also referred to as "opening diameter" of the opening). Then, the size of the opening 10 (width a, width b, volume, taper angle, depth, etc.) may be set according to the size of the solder particles to be accommodated.
  • the width b (opening diameter) of the opening can be appropriately set so that the average particle diameter of the collected solder particles P1 is within a predetermined range.
  • the width b (opening diameter) of the opening can be 5 to 120 ⁇ m, 6 to 120 ⁇ m, or 7 to 120 ⁇ m.
  • the width b (opening diameter) of the opening can be appropriately set so that the average particle diameter of the collected solder particles P1 is within a predetermined range. Further, from the viewpoint of improving recovery efficiency, MDp/OD satisfies 0.5 to 1.5, where MDp ( ⁇ m) is the average particle diameter of the solder particles P and OD ( ⁇ m) is the opening diameter of the opening. may satisfy 0.75 to 1.25, or may satisfy 0.9 to 1.1.
  • the shape of the opening 10 may be a shape other than the shapes shown in FIGS. 2(a) and 2(b).
  • the shape of the openings on the surface 4a may be elliptical, triangular, quadrangular, polygonal, etc., in addition to circular.
  • the bottom portion 10a may also have a shape other than a flat surface, such as a mountain shape, a valley shape, an aggregate of fine protrusions, or the like.
  • the solder particles P1 accommodated in the opening of the adsorption portion may not be wholly accommodated in the opening, and may be in a state in which a portion of the solder particles protrude from the surface 4a of the adsorption portion. .
  • 2/3 or less of the particle diameter of the particles may protrude, or 1/2 or less of the particle diameter may protrude.
  • the adsorption portion 4 As materials for forming the adsorption portion 4, for example, inorganic materials such as silicon, various ceramics, glass, metals such as stainless steel, and organic materials such as various resins can be used.
  • the opening 10 of the adsorption section can be formed by known methods such as photolithography, nanoimprinting, machining, electron beam processing, and radiation processing.
  • the adsorption part 4 may be a single layer, or may be composed of a plurality of layers such as a laminate of a base layer and an opening layer provided with an opening.
  • the adsorption part 4 is a laminate, for example, it is a film provided with an opening layer formed on a base layer such as PET using a photocurable resin composition by a method such as photolithography or nanoimprinting. good too.
  • the lower electrode 2 and the upper electrode 3 are arranged with a predetermined distance therebetween, and the distance D1 between the electrodes can be 0.5 to 100 mm, preferably 1 to 20 mm. may be 2 to 15 mm.
  • the lower electrode 2 may be movable, in which case the solder particles can be easily supplied continuously.
  • the bottom electrode can be provided on the surface of a belt or cylindrical roller.
  • the upper electrode 3 may be movable, and in this case, it becomes easy to continuously supply the adsorption portions for adsorbing the solder particles.
  • the upper electrode can be provided on the surface of a belt or cylindrical roller.
  • the power supply 5 may be anything that can form an electric field between the lower electrode and the upper electrode, and for example, a known high voltage power supply can be used.
  • the high voltage power supply may be a DC power supply or an AC power supply.
  • the control unit 6 can have functions such as adjustment of applied voltage and application time, for example.
  • solder particles P to be arranged in the arrangement portion solder particles manufactured by a known method can be used, and commercially available products such as micro solder balls may be used.
  • Solder particles may comprise, for example, tin or a tin alloy.
  • tin alloy for example, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi—Ag alloy, Sn—Ag—Cu alloy, Sn—Cu alloy, etc. are used. be able to. Specific examples of these tin alloys include the following examples.
  • Solder particles may include, for example, indium or an indium alloy.
  • the indium alloy for example, an In--Bi alloy, an In--Ag alloy, or the like can be used. Specific examples of these indium alloys include the following examples. ⁇ In-Bi (In66.3% by mass, Bi33.7% by mass, melting point 72° C.) ⁇ In-Bi (In 33.0% by mass, Bi 67.0% by mass, melting point 109 ° C.) ⁇ In-Ag (97.0% by mass of In, 3.0% by mass of Ag, melting point 145°C)
  • the solder particles may further contain one or more selected from Ag, Cu, Ni, Bi, Zn, Pd, Pb, Au, P and B.
  • the shape of the solder particles P may be spherical or substantially spherical, or may be non-spherical such as scale-like or elliptical (rugby ball)-like.
  • solder particles P solder particles with an average particle diameter of 10 ⁇ m or more can be used.
  • the solder particles P arranged in the arrangement portion can sufficiently contain solder particles that are present as single particles without agglomeration, and the CV value of the particle diameter of the collected solder particles P1 is can be easily reduced.
  • the average particle size of solder particles is obtained by randomly measuring the particle size of 100 solder particles using a digital caliper from a photograph taken with an SEM, and averaging these.
  • the solder particles have a shape other than a spherical shape, it is obtained by measuring the longest diameter of the solder particles by the method described above.
  • the CV value of the particle size of the solder particles is calculated by dividing the standard deviation of the particle size measured by the above method by the average particle size and multiplying by 100.
  • the solder particles P may have a proportion of particles having a particle diameter of less than 10 ⁇ m of 30% or less, or 20% or less. , 10% or less, and may not contain particles having a particle diameter of less than 10 ⁇ m.
  • Percentage means the ratio (percentage) based on the number.
  • the proportion of particles with a particle diameter of less than 10 ⁇ m is obtained as follows. First, the particle diameters of 100 solder particles are randomly measured using a digital vernier caliper from a photograph taken by an SEM. By counting the number of particles with a particle diameter of less than 10 ⁇ m, dividing this number by the total number (100) and multiplying by 100, the proportion of particles with a particle diameter of less than 10 ⁇ m can be obtained. When the solder particles have a shape other than a spherical shape, the particle size is defined as the longest diameter of the solder particles.
  • the solder particles P may be previously treated to remove solder particles with a particle size of less than 10 ⁇ m by a known classification method such as dry classification with a sieve and sedimentation classification.
  • the proportion of particles having a particle diameter of 30 ⁇ m or more in the solder particles P may be 50% or less, or 40% or less. It may be 30% or less, and may not contain particles with a particle diameter of 30 ⁇ m or more.
  • the solder particles P may be previously treated to remove solder particles with a particle size of 30 ⁇ m or more by a known classification method such as dry classification with a sieve or sedimentation classification.
  • the average particle size of the solder particles P1 may be 10-100 ⁇ m, 10-80 ⁇ m, 10-50 ⁇ m, 10-30 ⁇ m, 30-70 ⁇ m, 50-80 ⁇ m, 50-100 ⁇ m, or 70-100 ⁇ m.
  • the CV value of the particle diameter of the solder particles P1 may be 1% to 20%, 2% to 18%, or 3% to 15%.
  • FIG. 3 is a schematic diagram for explaining the solder particle classification method of the present embodiment.
  • (a) of FIG. 3 shows a state in which solder particles P are arranged in the arrangement portion.
  • the solder particles P charged to the opposite polarity to that of the upper electrode in the placement portion rise due to electrostatic attraction.
  • the rising solder particles P are electrostatically attracted to the attraction portion.
  • the solder particles electrostatically attracted to the attraction portion are divided into solder particles P1 accommodated in the openings and solder particles P2 not accommodated in the openings.
  • solder particles that are adsorbed to the opening but are not accommodated are Included in the solder particles P2.
  • the electric field strength to be applied may be 0.1 to 30 kV/cm, may be 0.2 to 30 kV/cm, or may be 0.5 to 20 kV/cm.
  • the application of the electric field may be continuous or intermittent.
  • the application time of the electric field can be appropriately set according to the amount of solder particles to be adsorbed by the adsorption portion.
  • the electrostatic attraction of the solder particles can be stopped when the solder particles are sufficiently attracted to the attraction part 4 due to the effect of reducing the electric field due to the attraction of the solder particles to the insulation attraction part 4 . . That is, since the intensity of the electric field between the lower electrode 2 and the upper electrode 3 becomes smaller as the solder particles adhere to the adsorption portion 4, the electric field between the electrodes is reduced in addition to the disappearance of the solder particles in the arrangement portion. By making it sufficiently small, it is also possible to stop the jumping of solder particles.
  • solder particles can be supplied by making the lower electrode 2 movable or by replenishing the solder particles to the arrangement portion, the solder can be applied until the electric field becomes sufficiently weak. Particles can be adsorbed on the adsorption part.
  • the first electrode and the second electrode are arranged on the lower side and the upper side with respect to the direction of gravity, respectively.
  • the direction of movement may be horizontal or may be inclined with respect to the direction of gravity.
  • the first electrode and the second electrode can be configured in the same manner as described above.
  • solder particles P2 Surplus particles
  • Methods for removing excess particles include physical removal means such as air blow, brush, and squeegee, and electrostatic removal means such as ionizers.
  • FIG. 4 is a schematic diagram for explaining the solder particle classification method of the present embodiment.
  • FIG. 4( a ) shows a mode in which the solder particles P ⁇ b>2 adsorbed to the adsorption portion 4 and not accommodated in the opening 10 are removed by the air blow 20 .
  • the removed surplus particles may be collected and recycled.
  • solder particles P1 accommodated in the openings are recovered from the adsorption portion that has passed through the second step.
  • Methods of collection include ultrasonic dispersion, wind force collection, and particle collection by impact on the adsorption part.
  • the adsorption part 4 is immersed in a liquid 24 such as an arbitrary organic solvent in an ultrasonic dispersion device 22, and the solder particles P1 contained in the openings 10 are dispersed into the liquid 24 by ultrasonic waves.
  • a distributed mode is shown.
  • the solder particles P1 can be collected through the third step.
  • the collected solder particles P1 may be used as they are as solder particles with a reduced CV value of the particle diameter, or may be used by being mixed with other solder particles.
  • the collected solder particles P1 can also be subjected to another classification process.
  • the method of classifying solder particles according to the present embodiment can reduce problems such as a decrease in productivity due to clogging and damage to the surface of solder particles, which are likely to occur in a method of classifying particles using a sieve.
  • solder particle classification method of the present embodiment monodisperse solder particles having a desired average particle size and a reduced CV value of the particle size can be produced. That is, the method for classifying solder particles according to the present embodiment can be used as a method for producing monodisperse solder particles.
  • the monodisperse solder particles of this embodiment have an average particle size of 10 to 100 ⁇ m and a CV value of the particle size of 1 to 30%.
  • the monodisperse solder particles of this embodiment may have an average particle diameter of 10 to 30 ⁇ m and a CV value of the particle diameter of 3 to 15%.
  • the monodisperse solder particles of this embodiment may have an average particle diameter of 30 to 70 ⁇ m and a CV value of the particle diameter of 3 to 15%.
  • the monodisperse solder particles of this embodiment may have an average particle diameter of 70 to 100 ⁇ m and a CV value of the particle diameter of 3 to 15%.
  • solder particle classification method of the present embodiment can be said to be excellent in productivity in that it can be manufactured from solder particles manufactured by a normal method.
  • the material and shape of the monodisperse solder particles of this embodiment can be the same as those of the solder particles P described above.
  • the monodisperse solder particles of the present embodiment have an average particle size of 10 to 100 ⁇ m, 10 to 80 ⁇ m, 10 to 50 ⁇ m, 10 to 30 ⁇ m, 30 to 70 ⁇ m, 50 to 80 ⁇ m. , 50 to 100 ⁇ m, or 70 to 100 ⁇ m, and the CV value of the particle size may be 1% to 20%, 2% to 18%, or 3% to 15%.
  • the solder classification system of the present embodiment includes a first electrode having a static dissipative or conductive placement portion, and an insulation electrode provided with a plurality of openings facing the placement portion and opening toward the placement portion. a second electrode having an adsorption portion having a property; a removing means for removing from the adsorption portion the solder particles that are adsorbed to the adsorption portion and are not accommodated in the opening; collecting means for collecting the solder particles accommodated in the opening of the adsorption portion.
  • the electrostatic adsorption device, removal means, and recovery means can be configured in the same manner as those used in the solder particle classification method described above.
  • solder particle classification method described above can be implemented, and solder particles with a small particle diameter CV value (particle diameter variation coefficient) can be obtained. Also, by adjusting the opening diameter of the opening, the average particle diameter of the obtained solder particles can be easily changed. Therefore, the solder particle classification system described above can also be applied as a monodisperse solder particle production system.
  • solder particles (Solder particles -1) Spherical solder particles (material: 43% by mass of Sn, 57% by mass of Bi, melting point: 138° C.) having a particle size distribution with a particle size of 1 to 5 ⁇ m were prepared.
  • solder particles -2 Spherical solder particles having a particle size distribution of 20 to 38 ⁇ m (material: 43% by mass of Sn, 57% by mass of Bi, melting point: 138° C., ratio of particles with a particle size of 30 ⁇ m or more: 20%) were prepared.
  • a resin film provided with a plurality of openings was prepared by coating a PET film with a thickness of 50 ⁇ m with a UV curable resin and irradiating UV while pressing a mold having a predetermined convex pattern.
  • the openings were shaped such that a, b, and c in FIG. 2(b) are 20 ⁇ m, 22 ⁇ m, and 20 ⁇ m, respectively.
  • the shortest distance between adjacent openings in the resin film was 20 ⁇ m.
  • Example 1 A device having the same configuration as the electrostatic adsorption device 1 of the above-described embodiment was prepared, and an aluminum plate (thickness 1 mm) was used as the lower electrode 2, and one main surface was the resin film of Production Example 1 as the upper electrode 3. A coated aluminum plate (1 mm thick) was used and the distance between the electrodes was set to 5 mm.
  • Solder particles-2 were sprinkled on the surface of the aluminum plate (lower electrode), and a voltage of 3.0 kV was applied between the electrodes for 5 seconds to electrostatically attract the solder particles to the resin film that was the attraction part. After that, excess particles were removed by air blow.
  • the resin film from which excess particles were removed was immersed in isopropyl alcohol, ultrasonically dispersed, and then allowed to stand to collect the solder particles that precipitated in isopropyl alcohol.
  • solder particles were collected in the same manner as in Example 1, except that solder particles-1 were sprayed on the surface of the aluminum plate (lower electrode) instead of solder particles-2.
  • solder particles-1, solder particles-2, and solder particles collected in Example 1 and Comparative Example 1 were imaged with an SEM. Using a digital vernier caliper, the diameter of 100 particles was randomly measured from the obtained photograph, and the average particle size and the CV value of the particle size were calculated. Table 1 shows the results.
  • FIG. 5(a) shows an SEM image of solder particle-1 (magnification: 3000 times)
  • FIG. 5(b) shows an SEM image of solder particle-2 (magnification: 200 times).
  • FIG. 6 shows SEM images (magnification: 500 times) of solder particles before and after classification in Example 1, where (a) shows before classification and (b) shows after classification.
  • FIG. 7 shows SEM images (magnification: 3000 ⁇ ) of solder particles before and after classification in Comparative Example 1, where (a) shows before classification and (b) shows after classification.
  • Electrostatic adsorption apparatus 2 Lower electrode (first electrode) 2a... Arrangement part 3... Upper electrode (second electrode) 4... Adsorption part 5... Power supply 6... Control part 10... Apertures, P, P1, P2 . . . solder particles.

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Electrostatic Separation (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

はんだ粒子の分級方法は、静電気拡散性又は導電性を有する配置部、を有する第一の電極2と、配置部と対向し、配置部側に開口する複数の開口部10が設けられている絶縁性を有する吸着部4、を有する第二の電極3と、を備える静電吸着装置、の第一の電極2と第二の電極3との間に電界を形成することにより、配置部に配置されているはんだ粒子Pを吸着部4に静電吸着させる第1工程と、吸着部4の開口部10以外に吸着しているはんだ粒子P2を除去する第2工程と、第2工程を経た吸着部4から、開口部に収容されているはんだ粒子P1を回収する第3工程と、を備え、はんだ粒子Pの平均粒子径が10μm以上である。

Description

はんだ粒子の分級方法、単分散はんだ粒子、及びはんだ粒子の分級システム
 本開示は、はんだ粒子の分級方法、単分散はんだ粒子、及びはんだ粒子の分級システムに関する。
 プリント配線基板等に電子デバイスを実装する表面実装技術では、はんだ粒子とペースト状のフラックスとが混合されたソルダーペーストが使用されている。はんだ粒子は、通常、直径が約100μm以上の球状粒子が用いられている。
 近年、スマートフォン、パソコン、タブレット等の電子機器に対する小型軽量化、高機能化の要求が高まっており、それに伴い、電子機器の耐久信頼性の更なる向上が求められている。そのため、実装時の電極-配線間のギャップを一定に維持し、各配線でのギャップバラつきを抑制することが要求されている。
 上記の要求への対応の一つとして、はんだ粒子の粒径分布の均一化がある。はんだ粒子は種々の方法によって製造されており、各種の製造方法において粒径のばらつきを抑制する検討もなされている(例えば、下記特許文献1を参照)。
特開2016-160442号公報
 しかしながら、特許文献1に記載の方法であっても、製造されるはんだ粒子には、篩分けによって分けられる不良品が多く含まれており、分散度が小さい単分散はんだ粒子を得るうえで、はんだ粒子の分級が必要とされている。
 本開示は、はんだ粒子の分級方法、単分散はんだ粒子、及びはんだ粒子の分級システムを提供することを目的とする。
 本開示の一態様は、静電気拡散性又は導電性を有する配置部、を有する第一の電極と、配置部と対向し、配置部側に開口する複数の開口部が設けられている絶縁性を有する吸着部、を有する第二の電極と、を備える静電吸着装置、の第一の電極と第二の電極との間に電界を形成することにより、配置部に配置されているはんだ粒子Pを吸着部に静電吸着させる第1工程と、吸着部に吸着し、開口部に収容されていないはんだ粒子P2を吸着部から除去する第2工程と、第2工程を経た吸着部から、開口部に収容されているはんだ粒子P1を回収する第3工程と、を備え、はんだ粒子Pの平均粒子径が10μm以上である、はんだ粒子の分級方法に関する。
 上記の方法によれば、第2工程によって、開口部に収容されない粒子径が大きいはんだ粒子を効率よく除去することができ、回収されるはんだ粒子P1の分散度をはんだ粒子Pよりも小さくすることができる。これにより、粒子径のCV値(粒子径の変動係数)の小さいはんだ粒子を得ることができる。また、上記の方法によれば、開口部の開口径を調節することによって、回収するはんだ粒子P1の平均粒子径を容易に変更することができる。
 回収するはんだ粒子P1の粒子径のCV値を小さくする観点から、上記はんだ粒子Pは、粒子径10μm未満の粒子の割合が30個%以下であってもよい。
 上記のはんだ粒子の分級方法は、はんだ粒子Pの平均粒子径をMDp(μm)、開口部の開口径をOD(μm)としたときに、MDp/ODが0.5~1.5を満たすものであってもよい。
 本開示の別の一態様は、平均粒子径が10~30μmであり、粒子径のCV値が3~15%である、単分散はんだ粒子に関する。
 本開示の別の一態様は、平均粒子径が30~70μmであり、粒子径のCV値が3~15%である、単分散はんだ粒子に関する。
 本開示の別の一態様は、平均粒子径が70~100μmであり、粒子径のCV値が3~15%である、単分散はんだ粒子に関する。
 上記の単分散はんだ粒子はそれぞれ、上記構成を有することにより、表面実装における実装時の電極-配線間のギャップを一定に維持し、各配線でのギャップバラつきを抑制するという要求に対応可能であるとともに、上述したはんだ粒子の分級方法によって、通常の方法で製造されるはんだ粒子から製造できる点で、生産性に優れたものであるといえる。
 本開示の別の一態様は、静電気拡散性又は導電性を有する配置部、を有する第一の電極と、配置部と対向し、配置部側に開口する複数の開口部が設けられている絶縁性を有する吸着部、を有する第二の電極と、を備える、静電吸着装置と、吸着部に吸着し、開口部に収容されていないはんだ粒子を吸着部から除去するための除去手段と、吸着部の開口部に収容されているはんだ粒子を回収するための回収手段と、を備える、はんだ粒子の分級システムに関する。
 上記のはんだ粒子の分級システムによれば、上述したはんだ粒子の分級方法を実施することができ、粒子径のCV値(粒子径の変動係数)の小さいはんだ粒子を得ることができる。また、開口部の開口径を調節することによって、得られるはんだ粒子の平均粒子径を容易に変更することができる。したがって、上記のはんだ粒子の分級システムは、単分散はんだ粒子の製造システムとして適用することもできる。
 本開示によれば、はんだ粒子の分級方法、単分散はんだ粒子、及びはんだ粒子の分級システムを提供することができる。
はんだ粒子の分級方法で用いられる静電吸着装置の概略構成を示す図である。 図2の(a)は吸着部の一例を模式的に示す平面図であり、図2の(b)は図2の(a)のIb-Ib線における断面図である。 はんだ粒子の分級方法を説明するための模式図である。 はんだ粒子の分級方法を説明するための模式図である。 はんだ粒子-1及びはんだ粒子-2のSEM画像である。 実施例1における分級前後のはんだ粒子のSEM画像である。 比較例1における分級前後のはんだ粒子のSEM画像である。
 以下、場合により図面を参照しつつ、本開示を実施するための形態について詳細に説明する。ただし、本開示は以下の実施形態に限定されるものではない。
 なお、本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、本明細書では、便宜上、複数の粒子の集合も「粒子」と称する。
[はんだ粒子の分級方法]
 本実施形態のはんだ粒子の分級方法は、静電気拡散性又は導電性を有する配置部、を有する第一の電極と、配置部と対向し、配置部側に開口する複数の開口部が設けられている絶縁性を有する吸着部、を有する第二の電極と、を備える静電吸着装置、の第一の電極と第二の電極との間に電界を形成することにより、配置部に配置されているはんだ粒子Pを吸着部に静電吸着させる第1工程と、吸着部に吸着し、開口部に収容されていないはんだ粒子P2を除去する第2工程と、第2工程を経た吸着部から、開口部に収容されているはんだ粒子P1を回収する第3工程と、を備える。
 図1は、本実施形態のはんだ粒子の分級方法で用いられる静電吸着装置の概略構成を示す図である。
 静電吸着装置1は、配置部2aを有する下部電極(第一の電極)2と、配置部2aよりも重力方向の上方側に配置され、配置部2aと対向する吸着部4を有する上部電極(第二の電極)3と、下部電極2及び上部電極3に接続された電源5と、電源5に接続された制御部6とを備える。配置部2aには、はんだ粒子Pが配置される。
 図1に示される配置部2aは、下部電極本体と一体となっており、上部電極3側の表面である。配置部2aは、下部電極2の上部電極3側の表面上に別途設けられていてもよい。
 下部電極2の材質としては、静電気拡散性又は導電性を有するものを用いることができる。例えば、表面抵抗率が1013Ω以下の材料を用いることができ、具体的には、金属、ガラス等が挙げられる。下部電極2の形状としては、特に限定されないが、例えば、平板状、ロール状などであってもよい。
 下部電極2の上部電極3側の表面上に設けられる配置部2aの材質としては、静電気拡散性又は導電性を有するものを用いることができる。例えば、表面抵抗率が1013Ω以下の材料を用いることができ、具体的には、金属、ガラス、及び、導電性ポリテトラフルオロエチレン(PTFE)等の導電性樹脂などが挙げられる。配置部2aの形状としては、はんだ粒子を配置できるものであれば特に限定されず、下部電極2の電極本体の表面に形成された膜若しくはフィルムであってもよく、はんだ粒子を収容できる形状、例えば、底面及び側面を有し、吸着部方向に開口している形状であってもよい。
 静電気拡散性の配置部は、表面抵抗率が1013Ω以下であってもよく、10Ω以上であってもよい。導電性の配置部は、表面抵抗率が10Ω以下であってもよく、10-3Ω以上であってもよい。
 上部電極3を構成する電極本体としては、静電気拡散性又は導電性を有するものを用いることができる。例えば、表面抵抗率が1013Ω以下の材料を用いることができ、具体的には、金属、ガラス等が挙げられる。電極本体の形状としては、特に限定されないが、例えば、平板状、ロール状などであってもよい。
 吸着部4には、配置部側に開口する複数の開口部10が設けられている。開口部10は、所定のパターンで設けられていてもよい。吸着部4の材質としては、絶縁性材料を用いることができる。例えば、表面抵抗率が1013Ω超の材料を用いることができる。吸着部4の形状としては、上記の開口部が設けられているものであれば特に限定されず、上部電極3の電極本体の表面に形成された膜若しくはフィルムであってもよく、上部電極3の電極本体とは分離可能なフィルムであってもよい。
 図2の(a)は吸着部の一例を模式的に示す平面図であり、図2の(b)は図2の(a)のIb-Ib線における断面図である。図2の(a)に示す吸着部4は、所定のパターン(開口パターン)を有する複数の開口部(凹部)10が設けられている。所定のパターン(開口パターン)は規則的な配置であってもよく、不規則な配置であってもよい。
 吸着部4の開口部10は、開口部10の底部10a側から吸着部4の表面4a側に向けて開口面積が拡大するテーパ状に形成されていてもよい。すなわち、図2の(a)及び(b)に示すように、開口部10の底部10aの幅(図2の(a)及び(b)における幅a)は、開口部10の表面4aにおける開口の幅(図2の(a)及び(b)における幅b(以下、開口部の「開口径」ともいう)よりも狭いことが好ましい。そして、開口部10のサイズ(幅a、幅b、容積、テーパ角度及び深さ等)は、収容するはんだ粒子のサイズに応じて設定すればよい。
 開口の幅b(開口径)は、回収するはんだ粒子P1の平均粒子径が所定の範囲となるように適宜設定することができる。例えば、回収目的粒子径以外の粒子径を有するはんだ粒子の混入防止の観点から、開口の幅b(開口径)は、5~120μm、6~120μm、又は7~120μmとすることができる。
 開口の幅b(開口径)は、回収するはんだ粒子P1の平均粒子径が所定の範囲となるように適宜設定することができる。また、回収効率を高める観点から、はんだ粒子Pの平均粒子径をMDp(μm)、開口部の開口径をOD(μm)としたときに、MDp/ODが0.5~1.5を満たしていてもよく、0.75~1.25を満たしていてもよく、0.9~1.1を満たしていてもよい。
 なお、開口部10の形状は図2の(a)及び(b)に示す形状以外の形状であってもよい。例えば、表面4aにおける開口の形状は、円形以外に、楕円形、三角形、四角形、多角形等であってよい。底部10aについても、平面以外の形状であってもよく、例えば、山型、谷型、微細な突起の集合体等であってよい。
 吸着部の開口部に収容されているはんだ粒子P1は、粒子全体が開口部内に収容されていなくてもよく、はんだ粒子の一部が吸着部の表面4aから突出している状態であってもよい。例えば、粒子の粒子径の2/3以下の部分が突出していてもよく、1/2以下が突出していてもよい。
 吸着部4を構成する材料としては、例えば、シリコン、各種セラミックス、ガラス、ステンレススチール等の金属等の無機材料、並びに、各種樹脂等の有機材料を使用することができる。吸着部の開口部10は、フォトリソグラフ法、ナノインプリント、機械加工法、電子線加工法、放射線加工法等の公知の方法によって形成することができる。また、吸着部4は、単層であってもよく、基体層と開口部が設けられた開口部層との積層体のように複数の層から構成されていてもよい。吸着部4が積層体である場合、例えば、PET等の基体層上に、光硬化性樹脂組成物を用い、フォトリソグラフ法、ナノインプリント等の方法によって形成された開口部層を備えるフィルムであってもよい。
 静電吸着装置1において、下部電極2と上部電極3とは所定の間隔を設けて配置されており、その電極間距離D1は0.5~100mmとすることができ、1~20mmであってもよく、2~15mmであってもよい。
 静電吸着装置1において下部電極2は移動可能であってもよく、この場合、はんだ粒子を連続的に供給することが容易となる。例えば、ベルト又は円柱状のローラーの表面に下部電極を設けることができる。
 静電吸着装置1において上部電極3は移動可能であってもよく、この場合、はんだ粒子を吸着させる吸着部を連続的に供給することが容易となる。例えば、ベルト又は円柱状のローラーの表面に上部電極を設けることができる。
 電源5は、下部電極及び上部電極の間に電界を形成できるものであればよく、例えば、公知の高圧電源を用いることができる。高圧電源は、直流電源であってもよく、交流電源であってもよい。
 制御部6は、例えば、印加する電圧の調整、印加時間等の機能を有することができる。
(第1工程)
 第1工程では、静電吸着装置1の第一の電極2と第二の電極3との間に電界を形成することにより、配置部2aに配置されているはんだ粒子Pを吸着部4に静電吸着させる。
 配置部に配置させるはんだ粒子Pは、公知の方法で製造されるはんだ粒子を用いることができ、微小ソルダボール等の市販品を用いてもよい。
 はんだ粒子は、例えば、スズ又はスズ合金を含んでいてよい。スズ合金としては、例えば、In-Sn合金、In-Sn-Ag合金、Sn-Au合金、Sn-Bi合金、Sn-Bi-Ag合金、Sn-Ag-Cu合金、Sn-Cu合金等を用いることができる。これらのスズ合金の具体例としては、下記の例が挙げられる。
・In-Sn(In52質量%、Sn48質量% 融点118℃)
・In-Sn-Ag(In20質量%、Sn77.2質量%、Ag2.8質量% 融点175℃)
・Sn-Bi(Sn43質量%、Bi57質量% 融点138℃)
・Sn-Bi-Ag(Sn42質量%、Bi57質量%、Ag1質量% 融点139℃)
・Sn-Ag-Cu(Sn96.5質量%、Ag3質量%、Cu0.5質量% 融点217℃)
・Sn-Cu(Sn99.3質量%、Cu0.7質量% 融点227℃)
・Sn-Au(Sn21.0質量%、Au79.0質量% 融点278℃)
 はんだ粒子は、例えば、インジウム又はインジウム合金を含んでいてもよい。インジウム合金としては、例えば、In-Bi合金、In-Ag合金等を用いることができる。これらのインジウム合金の具体例としては、下記の例が挙げられる。
・In-Bi(In66.3質量%、Bi33.7質量% 融点72℃)
・In-Bi(In33.0質量%、Bi67.0質量% 融点109℃)
・In-Ag(In97.0質量%、Ag3.0質量% 融点145℃)
 はんだ粒子は、Ag、Cu、Ni、Bi、Zn、Pd、Pb、Au、P及びBから選ばれる一種以上を更に含んでもよい。
 はんだ粒子Pの形状は、球状又は略球状であってもよく、鱗片状、楕円(ラグビーボール)状等の非球形であってもよい。
 はんだ粒子Pとしては、平均粒子径が10μm以上であるはんだ粒子を用いることができる。この場合、配置部に配置されるはんだ粒子Pは、粒子同士が凝集せずに単粒子で存在しているはんだ粒子を充分含有することができ、回収されるはんだ粒子P1の粒子径のCV値を小さくすることが容易となる。
 はんだ粒子の平均粒子径は、SEMにて撮像した写真からデジタルノギスを用いて、ランダムにはんだ粒子100個の粒子径を測定し、これらを平均することにより求められる。はんだ粒子が球状以外の形状である場合は、上記方法にて当該はんだ粒子の最長径を測定することにより求められる。
 はんだ粒子の粒子径のCV値は、上記の方法によって測定された粒子径の標準偏差を平均粒子径で割った値に100を掛けることで算出される。
 回収するはんだ粒子P1の粒子径のCV値を小さくする観点から、はんだ粒子Pは、粒子径10μm未満の粒子の割合が30個%以下であってもよく、20個%以下であってもよく、10個%以下であってもよく、粒子径10μm未満の粒子を含んでいなくてもよい。
 「個%」は、個数基準の割合(百分率)を意味する。例えば、粒子径10μm未満の粒子の割合は、以下のようにして求められる。先ず、SEMにて撮像した写真からデジタルノギスを用いて、ランダムにはんだ粒子100個の粒子径を測定する。粒子径が10μm未満の粒子の個数をカウントし、この個数を全体の個数(100個)で割り100をかけることにより、粒子径10μm未満の粒子の割合を求めることができる。はんだ粒子が球状以外の形状である場合は、はんだ粒子の最長径を粒子径とする。
 はんだ粒子Pは、予め、篩による乾式分級及び沈降分級等の公知の分級方法によって、粒子径が10μm未満のはんだ粒子を除去する処理が施されたものであってもよい。
 回収目的粒子径以外の粒子径を有するはんだ粒子の混入防止の観点から、はんだ粒子Pは、粒子径30μm以上の粒子の割合が50個%以下であってもよく、40個%以下であってもよく、30個%以下であってもよく、粒子径30μm以上の粒子を含んでいなくてもよい。
 はんだ粒子Pは、予め、篩による乾式分級及び沈降分級等の公知の分級方法によって、粒子径が30μm以上のはんだ粒子を除去する処理が施されたものであってもよい。
 はんだ粒子P1の平均粒子径は、10~100μm、10~80μm、10~50μm、10~30μm、30~70μm、50~80μm、50~100μm、又は70~100μmであってもよい。
 はんだ粒子P1の粒子径のCV値は、1%~20%、2%~18%、又は、3%~15%であってもよい。
 図3は、本実施形態のはんだ粒子の分級方法を説明するための模式図である。図3の(a)は、配置部にはんだ粒子Pが配置されている状態を示す。下部電極(第一の電極)及び上部電極(第二の電極)の間に電界を印加することにより、配置部で上部電極と逆極性に帯電しているはんだ粒子Pは静電引力によって上昇し、上昇したはんだ粒子Pは吸着部に静電吸着する。吸着部に静電吸着したはんだ粒子は、開口部に収容されたはんだ粒子P1と、開口部に収容されていないはんだ粒子P2とに分かれる。ここで、開口部に吸着しているが、収容されていない(例えば、粒子径の2/3超が吸着部の表面から突出している、或いは、第2工程で除去し得る)はんだ粒子は、はんだ粒子P2に含まれる。
 印加する電界強度としては、0.1~30kV/cmとすることができ、0.2~30kV/cmであってもよく、0.5~20kV/cmであってもよい。
 電界の印加は、連続的であってもよく、断続的であってもよい。
 電界の印加時間としては、吸着部に吸着させるはんだ粒子の量に応じて適宜設定することができる。
 本実施形態においては、絶縁性の吸着部4にはんだ粒子が吸着することによる電界の減少作用によって、吸着部4にはんだ粒子が充分に吸着した時点ではんだ粒子の静電吸着を止めることもできる。すなわち、下部電極2及び上部電極3の間の電界の強さは吸着部4にはんだ粒子が付着すればするほど小さくなることから、配置部のはんだ粒子がなくなること以外に、電極間の電界を充分に小さくすることではんだ粒子の飛昇を止めることもできる。この現象を利用し、例えば、下部電極2を移動可能にする或いは配置部へのはんだ粒子の補充を行うことで充分な量のはんだ粒子を供給できるようにすれば、電界が充分弱くなるまではんだ粒子を吸着部に吸着させることができる。
 上述した静電吸着装置では、第一の電極と第二の電極がそれぞれ重力方向に対して下側及び上側に配置されているが、本実施形態のはんだ粒子の分級方法においては、はんだ粒子の移動方向が、水平であってもよく、重力方向に対して傾斜していてもよい。これらの場合においても、第一の電極及び第二の電極は上記と同様の構成とすることができる。
(第2工程)
 第2工程では、吸着部4に吸着し、開口部10に収容されていないはんだ粒子P2(余剰粒子)を除去する。
 余剰粒子を除去する方法としては、エアブロー、ブラシ、スキージ等の物理的に除去する手段、イオナイザー等の静電的に除去する手段が挙げられる。
 図4は、本実施形態のはんだ粒子の分級方法を説明するための模式図である。図4の(a)は、吸着部4に吸着し、開口部10に収容されていないはんだ粒子P2を、エアブロー20によって除去している態様を示す。
 除去した余剰粒子は、回収してリサイクルしてもよい。
(第3工程)
 第3工程では、第2工程を経た吸着部から、開口部に収容されているはんだ粒子P1を回収する。
 回収する方法としては、超音波分散、風力による回収、吸着部への衝撃による粒子回収等が挙げられる。
 図4の(b)は、吸着部4を、超音波分散装置22の任意の有機溶剤等の液体24に浸漬し、超音波によって開口部10に収容されているはんだ粒子P1を液体24中に分散させている態様を示す。
 第3工程を経て、はんだ粒子P1を回収することができる。回収されたはんだ粒子P1は、そのまま、粒子径のCV値が低減されたはんだ粒子として用いてもよく、別のはんだ粒子と混合して用いてもよい。回収されたはんだ粒子P1は、更に別の分級処理に供することもできる。
 本実施形態のはんだ粒子の分級方法は、篩を用いて粒子を分級する方法で生じやすい、詰まりによる生産性の低下及びはんだ粒子表面へのダメージ等の不具合を低減することができる。
 本実施形態のはんだ粒子の分級方法を利用することにより、所望の平均粒子径を有する、粒子径のCV値が低減された単分散はんだ粒子を製造することができる。すなわち、本実施形態のはんだ粒子の分級方法は、単分散はんだ粒子の製造方法として利用することができる。
[単分散はんだ粒子]
 本実施形態の単分散はんだ粒子は、平均粒子径が10~100μmであり、粒子径のCV値が1~30%である。
 本実施形態の単分散はんだ粒子は、平均粒子径が10~30μmであり、粒子径のCV値が3~15%であってもよい。
 本実施形態の単分散はんだ粒子は、平均粒子径が30~70μmであり、粒子径のCV値が3~15%であってもよい。
 本実施形態の単分散はんだ粒子は、平均粒子径が70~100μmであり、粒子径のCV値が3~15%であってもよい。
 上述した単分散はんだ粒子はいずれも、上記構成を有することにより、表面実装における実装時の電極-配線間のギャップを一定に維持し、各配線でのギャップバラつきを抑制するという要求に対応可能であるとともに、本実施形態のはんだ粒子の分級方法によって、通常の方法で製造されるはんだ粒子から製造できる点で、生産性に優れたものであるといえる。
 本実施形態の単分散はんだ粒子の材質及び形状は、上述したはんだ粒子Pにおけるものと同様にすることができる。
 コストと単分散性との両立を図る観点から、本実施形態の単分散はんだ粒子は、平均粒子径が10~100μm、10~80μm、10~50μm、10~30μm、30~70μm、50~80μm、50~100μm、又は70~100μmであってもよく、粒子径のCV値が1%~20%、2%~18%、又は3%~15%であってもよい。
[はんだ分級システム]
 本実施形態のはんだ分級システムは、静電気拡散性又は導電性を有する配置部、を有する第一の電極と、配置部と対向し、配置部側に開口する複数の開口部が設けられている絶縁性を有する吸着部、を有する第二の電極と、を備える、静電吸着装置と、吸着部に吸着し、開口部に収容されていないはんだ粒子を吸着部から除去するための除去手段と、吸着部の開口部に収容されているはんだ粒子を回収するための回収手段と、を備える。
 静電吸着装置、除去手段及び回収手段は、上述したはんだ粒子の分級方法で用いられるものと同様の構成にすることができる。
 上記のはんだ粒子の分級システムによれば、上述したはんだ粒子の分級方法を実施することができ、粒子径のCV値(粒子径の変動係数)の小さいはんだ粒子を得ることができる。また、開口部の開口径を調節することによって、得られるはんだ粒子の平均粒子径を容易に変更することができる。したがって、上記のはんだ粒子の分級システムは、単分散はんだ粒子の製造システムとして適用することもできる。
 以下、実施例及び比較例によって、本開示をさらに具体的に説明するが、本開示は以下の実施例に限定されるものではない。
[はんだ粒子]
(はんだ粒子-1)
 粒子径1~5μmの粒度分布を有する球状はんだ粒子(材質:Sn43質量%、Bi57質量%、融点:138℃)を用意した。
(はんだ粒子-2)
 粒子径20~38μmの粒度分布を有する球状はんだ粒子(材質:Sn43質量%、Bi57質量%、融点:138℃、粒子径30μm以上の粒子の割合:20個%)を用意した。
[吸着部の作製]
(作製例1)
 厚さ50μmのPETフィルム上にUV硬化性樹脂を塗布し、所定の凸パターンを有するモールドを押圧しながらUVを照射することにより、複数の開口部が設けられた樹脂フィルムを用意した。なお、開口部は、図2の(b)におけるa、b及びcがそれぞれ、20μm、22μm及び20μmである形状とした。また、樹脂フィルムにおける隣接する開口の最短距離は20μmであった。
[はんだ粒子の分級]
(実施例1)
 上述した実施形態の静電吸着装置1と同様の構成を有する装置を用意し、下部電極2としてアルミニウム板(厚み1mm)を用い、上部電極3として一方の主面を作製例1の樹脂フィルムで被覆したアルミニウム板(厚み1mm)を用い、電極間距離を5mmに設定した。
 アルミニウム板(下部電極)の表面にはんだ粒子-2を散布し、電極間に3.0kVの電圧を5秒間印加して、はんだ粒子を吸着部である樹脂フィルムに静電吸着させた。その後、エアブローによって余剰粒子の除去を行った。
 余剰粒子を除去した樹脂フィルムを、イソプロピルアルコールに浸漬し、超音波分散させた後、静置し、イソプロピルアルコールに沈殿するはんだ粒子を回収した。
(比較例1)
 アルミニウム板(下部電極)の表面に、はんだ粒子-2に代えてはんだ粒子-1を散布したこと以外は実施例1と同様にして、はんだ粒子を回収した。
(はんだ粒子の評価)
 はんだ粒子-1、はんだ粒子-2、並びに実施例1及び比較例1で回収したはんだ粒子を、SEMにて撮像した。得られた写真からデジタルノギスを用いて、ランダムに粒子100個の直径を測定し、平均粒子径及び粒子径のCV値を算出した。結果を表1に示す。
 なお、図5の(a)は、はんだ粒子-1のSEM画像(倍率:3000倍)、図5の(b)は、はんだ粒子-2のSEM画像(倍率:200倍)を示す。図6は、実施例1における分級前後のはんだ粒子のSEM画像(倍率:500倍)であり、(a)が分級前、(b)が分級後を示す。図7は、比較例1における分級前後のはんだ粒子のSEM画像(倍率:3000倍)であり、(a)が分級前、(b)が分級後を示す。
Figure JPOXMLDOC01-appb-T000001
 1…静電吸着装置、2…下部電極(第一の電極)、2a…配置部、3…上部電極(第二の電極)、4…吸着部、5…電源、6…制御部、10…開口部、P,P1,P2…はんだ粒子。

Claims (7)

  1.  静電気拡散性又は導電性を有する配置部、を有する第一の電極と、前記配置部と対向し、前記配置部側に開口する複数の開口部が設けられている絶縁性を有する吸着部、を有する第二の電極と、を備える静電吸着装置、の前記第一の電極と前記第二の電極との間に電界を形成することにより、前記配置部に配置されているはんだ粒子Pを前記吸着部に静電吸着させる第1工程と、
     前記吸着部に吸着し、前記開口部に収容されていないはんだ粒子P2を前記吸着部から除去する第2工程と、
     前記第2工程を経た前記吸着部から、前記開口部に収容されているはんだ粒子P1を回収する第3工程と、を備え、
     前記はんだ粒子Pの平均粒子径が10μm以上である、はんだ粒子の分級方法。
  2.  前記はんだ粒子Pは、粒子径10μm未満の粒子の割合が30個%以下である、請求項1に記載のはんだ粒子の分級方法。
  3.  前記はんだ粒子Pの平均粒子径をMDp(μm)、前記開口部の開口径をOD(μm)としたときに、MDp/ODが0.5~1.5を満たす、請求項1又は2に記載のはんだ粒子の分級方法。
  4.  平均粒子径が10~30μmであり、粒子径のCV値が3~15%である、単分散はんだ粒子。
  5.  平均粒子径が30~70μmであり、粒子径のCV値が3~15%である、単分散はんだ粒子。
  6.  平均粒子径が70~100μmであり、粒子径のCV値が3~15%である、単分散はんだ粒子。
  7.  静電気拡散性又は導電性を有する配置部、を有する第一の電極と、
     前記配置部と対向し、前記配置部側に開口する複数の開口部が設けられている絶縁性を有する吸着部、を有する第二の電極と、を備える、静電吸着装置と、
     前記吸着部に吸着し、前記開口部に収容されていないはんだ粒子を前記吸着部から除去するための除去手段と、
     前記吸着部の前記開口部に収容されているはんだ粒子を回収するための回収手段と、
    を備える、はんだ粒子の分級システム。
PCT/JP2021/017922 2021-05-11 2021-05-11 はんだ粒子の分級方法、単分散はんだ粒子、及びはんだ粒子の分級システム WO2022239124A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2021/017922 WO2022239124A1 (ja) 2021-05-11 2021-05-11 はんだ粒子の分級方法、単分散はんだ粒子、及びはんだ粒子の分級システム
JP2023520994A JPWO2022239701A1 (ja) 2021-05-11 2022-05-02
KR1020237038799A KR20240006550A (ko) 2021-05-11 2022-05-02 땜납 입자의 분급 방법, 땜납 입자, 땜납 입자의 분급 시스템, 접착제 조성물, 및 접착제 필름
PCT/JP2022/019535 WO2022239701A1 (ja) 2021-05-11 2022-05-02 はんだ粒子の分級方法、はんだ粒子、はんだ粒子の分級システム、接着剤組成物、及び接着剤フィルム
CN202280033476.8A CN117279715A (zh) 2021-05-11 2022-05-02 焊料粒子的分级方法、焊料粒子、焊料粒子的分级系统、黏合剂组合物及黏合剂膜
US18/559,618 US20240238804A1 (en) 2021-05-11 2022-05-02 Solder particle classifying method, solder particle, solder particle classifying system, adhesive composition, and adhesive film
TW111116766A TW202247922A (zh) 2021-05-11 2022-05-04 焊料粒子的分級方法、焊料粒子、焊料粒子的分級系統、接著劑組成物、及接著劑膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017922 WO2022239124A1 (ja) 2021-05-11 2021-05-11 はんだ粒子の分級方法、単分散はんだ粒子、及びはんだ粒子の分級システム

Publications (1)

Publication Number Publication Date
WO2022239124A1 true WO2022239124A1 (ja) 2022-11-17

Family

ID=84028332

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/017922 WO2022239124A1 (ja) 2021-05-11 2021-05-11 はんだ粒子の分級方法、単分散はんだ粒子、及びはんだ粒子の分級システム
PCT/JP2022/019535 WO2022239701A1 (ja) 2021-05-11 2022-05-02 はんだ粒子の分級方法、はんだ粒子、はんだ粒子の分級システム、接着剤組成物、及び接着剤フィルム

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019535 WO2022239701A1 (ja) 2021-05-11 2022-05-02 はんだ粒子の分級方法、はんだ粒子、はんだ粒子の分級システム、接着剤組成物、及び接着剤フィルム

Country Status (6)

Country Link
US (1) US20240238804A1 (ja)
JP (1) JPWO2022239701A1 (ja)
KR (1) KR20240006550A (ja)
CN (1) CN117279715A (ja)
TW (1) TW202247922A (ja)
WO (2) WO2022239124A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152598A (ja) * 1997-11-19 1999-06-08 Sekisui Finechem Co Ltd 導電性微粒子及び導電接続構造体
JP2003272790A (ja) * 2002-03-13 2003-09-26 Sekisui Chem Co Ltd 導電性粒子配置フィルムの製造装置
JP2004025128A (ja) * 2002-06-28 2004-01-29 Hitachi Zosen Corp 導電材とプラスチック材の振動式選別装置
JP2004113929A (ja) * 2002-09-26 2004-04-15 Hitachi Metals Ltd 異常球分別装置
JP2019202239A (ja) * 2018-05-21 2019-11-28 国立大学法人山形大学 静電吸着装置
WO2020004510A1 (ja) * 2018-06-26 2020-01-02 日立化成株式会社 異方性導電フィルム及びその製造方法並びに接続構造体の製造方法
JP2021028895A (ja) * 2019-08-09 2021-02-25 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法
JP2021057293A (ja) * 2019-10-01 2021-04-08 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法
WO2021095726A1 (ja) * 2019-11-12 2021-05-20 昭和電工マテリアルズ株式会社 導電粒子の分散方法、及び静電吸着装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513531B2 (en) * 2009-07-15 2013-08-20 The Board Of Trustees Of The University Of Arkansas Electrodynamic arrays having nanomaterial electrodes
WO2013166317A2 (en) * 2012-05-02 2013-11-07 Sri International Handling and sorting materials using electroadhesion
JP6464814B2 (ja) 2015-02-26 2019-02-06 住友金属鉱山株式会社 はんだボールの製造装置および製造方法
NL2016789B1 (en) * 2016-05-17 2017-11-21 Hj Forever Patents B V Improved electrophoretic device
KR102020615B1 (ko) * 2018-12-19 2019-11-04 에이블메탈 주식회사 무연솔더 입자 분급장치 및 그 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152598A (ja) * 1997-11-19 1999-06-08 Sekisui Finechem Co Ltd 導電性微粒子及び導電接続構造体
JP2003272790A (ja) * 2002-03-13 2003-09-26 Sekisui Chem Co Ltd 導電性粒子配置フィルムの製造装置
JP2004025128A (ja) * 2002-06-28 2004-01-29 Hitachi Zosen Corp 導電材とプラスチック材の振動式選別装置
JP2004113929A (ja) * 2002-09-26 2004-04-15 Hitachi Metals Ltd 異常球分別装置
JP2019202239A (ja) * 2018-05-21 2019-11-28 国立大学法人山形大学 静電吸着装置
WO2020004510A1 (ja) * 2018-06-26 2020-01-02 日立化成株式会社 異方性導電フィルム及びその製造方法並びに接続構造体の製造方法
JP2021028895A (ja) * 2019-08-09 2021-02-25 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法
JP2021057293A (ja) * 2019-10-01 2021-04-08 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法
WO2021095726A1 (ja) * 2019-11-12 2021-05-20 昭和電工マテリアルズ株式会社 導電粒子の分散方法、及び静電吸着装置

Also Published As

Publication number Publication date
TW202247922A (zh) 2022-12-16
US20240238804A1 (en) 2024-07-18
CN117279715A (zh) 2023-12-22
WO2022239701A1 (ja) 2022-11-17
JPWO2022239701A1 (ja) 2022-11-17
KR20240006550A (ko) 2024-01-15

Similar Documents

Publication Publication Date Title
JP4841987B2 (ja) フレーク銀粉及びその製造方法
US8911823B2 (en) Mechanical sintering of nanoparticle inks and powders
WO2010094500A1 (de) Verfahren und vorrichtung zum herstellen einer kunstoffschicht
TW201840904A (zh) 分散體及使用該分散體的附導電性圖案之構造體的製造方法以及附導電性圖案之構造體
US11935669B2 (en) Method for dispersing conductive particles, and electrostatic adsorption device
WO2022239124A1 (ja) はんだ粒子の分級方法、単分散はんだ粒子、及びはんだ粒子の分級システム
CN112543693A (zh) 焊料粒子
CN111837199B (zh) 导电膜形成用组合物和导电膜的制造方法
JP4323257B2 (ja) 回路基板の製造方法、回路基板及び回路基板の製造装置
JP6199145B2 (ja) 複合型導電粒子の製造方法
Messal et al. Belt-type corona-electrostatic separator for the recovery of conductive and nonconductive products from micronized wastes
JP5353248B2 (ja) 配線基板及び配線基板の製造方法
WO2021206096A1 (ja) はんだ粒子、はんだ粒子の製造方法及びはんだ粒子付き基体
WO2022234803A1 (ja) 粉粒体の分散方法、及び静電吸着装置
JP5275736B2 (ja) 導電性微粒子の製造方法、導電性微粒子、異方性導電材料、及び、導電接続構造体
JP2025032609A (ja) 導電粒子の分散方法
JP2024173449A (ja) 導電粒子の分散方法
KR20210048602A (ko) 이방성 도전 필름의 제조 방법 및 이방성 도전 필름
JP2024029651A (ja) 導電粒子の分散方法及び静電吸着装置
JP5480576B2 (ja) 導電性微粒子、異方性導電材料、及び、接続構造体
JP2002052363A (ja) 異形球選別方法及び装置
JP2024029650A (ja) 導電粒子の分散方法及び静電吸着装置
JP2014049617A (ja) 基板の製造方法
JP2009076316A (ja) 配列粒子含有膜の製造方法
JP2005251584A (ja) 導電性微粒子、異方性導電材料及び導電接続構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP