WO2022231042A1 - Novel variant and method for producing l-valine using same - Google Patents
Novel variant and method for producing l-valine using same Download PDFInfo
- Publication number
- WO2022231042A1 WO2022231042A1 PCT/KR2021/005522 KR2021005522W WO2022231042A1 WO 2022231042 A1 WO2022231042 A1 WO 2022231042A1 KR 2021005522 W KR2021005522 W KR 2021005522W WO 2022231042 A1 WO2022231042 A1 WO 2022231042A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- amino acid
- acid sequence
- present application
- variant
- Prior art date
Links
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 title claims abstract description 662
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 224
- 229960004295 valine Drugs 0.000 claims abstract description 341
- 241000186226 Corynebacterium glutamicum Species 0.000 claims abstract description 47
- 108091033319 polynucleotide Proteins 0.000 claims description 315
- 102000040430 polynucleotide Human genes 0.000 claims description 315
- 239000002157 polynucleotide Substances 0.000 claims description 315
- 108090000623 proteins and genes Proteins 0.000 claims description 221
- 102000004169 proteins and genes Human genes 0.000 claims description 152
- 150000001413 amino acids Chemical group 0.000 claims description 145
- 235000018102 proteins Nutrition 0.000 claims description 135
- 235000001014 amino acid Nutrition 0.000 claims description 112
- 229940024606 amino acid Drugs 0.000 claims description 111
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 62
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 36
- 239000004471 Glycine Substances 0.000 claims description 25
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 25
- 229960003136 leucine Drugs 0.000 claims description 25
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 claims description 24
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims description 24
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 23
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 19
- 229960003767 alanine Drugs 0.000 claims description 19
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 claims description 18
- 235000004279 alanine Nutrition 0.000 claims description 18
- 239000004472 Lysine Substances 0.000 claims description 17
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 16
- COLNVLDHVKWLRT-QMMMGPOBSA-N phenylalanine group Chemical group N[C@@H](CC1=CC=CC=C1)C(=O)O COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 16
- 230000002103 transcriptional effect Effects 0.000 claims description 16
- CKLJMWTZIZZHCS-REOHCLBHSA-N aspartic acid group Chemical group N[C@@H](CC(=O)O)C(=O)O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims description 15
- 235000003704 aspartic acid Nutrition 0.000 claims description 14
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 claims description 14
- 239000004475 Arginine Substances 0.000 claims description 13
- 108010070255 Aspartate-ammonia ligase Proteins 0.000 claims description 13
- 108010051753 Spermidine Synthase Proteins 0.000 claims description 13
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims description 13
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 13
- 239000004474 valine Substances 0.000 claims description 13
- 108010058756 ATP phosphoribosyltransferase Proteins 0.000 claims description 12
- 102100030413 Spermidine synthase Human genes 0.000 claims description 12
- 235000013922 glutamic acid Nutrition 0.000 claims description 12
- 239000004220 glutamic acid Substances 0.000 claims description 12
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 12
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 claims description 12
- 108010073086 succinyl-CoA-tetrahydrodipicolinate N-succinyltransferase Proteins 0.000 claims description 12
- 238000012258 culturing Methods 0.000 claims description 11
- 235000000346 sugar Nutrition 0.000 claims description 11
- 101710188260 5,10-methylenetetrahydrofolate reductase Proteins 0.000 claims description 10
- 102000009093 Dihydrolipoyllysine-residue acetyltransferase Human genes 0.000 claims description 10
- 108010073112 Dihydrolipoyllysine-residue acetyltransferase Proteins 0.000 claims description 10
- 108010046334 Urease Proteins 0.000 claims description 10
- 150000005693 branched-chain amino acids Chemical class 0.000 claims description 10
- 238000013518 transcription Methods 0.000 claims description 10
- 230000035897 transcription Effects 0.000 claims description 10
- 108050005273 Amino acid transporters Proteins 0.000 claims description 9
- 102000034263 Amino acid transporters Human genes 0.000 claims description 9
- 108010078791 Carrier Proteins Proteins 0.000 claims description 9
- 108090000612 Proline Oxidase Proteins 0.000 claims description 9
- 102000004177 Proline oxidase Human genes 0.000 claims description 9
- 235000018417 cysteine Nutrition 0.000 claims description 9
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 9
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 claims description 9
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 claims description 9
- 235000020004 porter Nutrition 0.000 claims description 9
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 8
- 239000004473 Threonine Substances 0.000 claims description 8
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 claims description 8
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims description 8
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 8
- ADVPTQAUNPRNPO-REOHCLBHSA-M 3-sulfino-L-alanine(1-) Chemical compound [O-]C(=O)[C@@H]([NH3+])CS([O-])=O ADVPTQAUNPRNPO-REOHCLBHSA-M 0.000 claims description 7
- 108091034856 WhiB family Proteins 0.000 claims description 7
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 claims description 4
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 claims description 4
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 claims description 4
- BITYXLXUCSKTJS-ZETCQYMHSA-N (2S)-2-isopropylmalic acid Chemical compound CC(C)[C@](O)(C(O)=O)CC(O)=O BITYXLXUCSKTJS-ZETCQYMHSA-N 0.000 claims description 3
- 108020004687 Malate Synthase Proteins 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 description 280
- 244000005700 microbiome Species 0.000 description 169
- 229920001184 polypeptide Polymers 0.000 description 167
- 102000004196 processed proteins & peptides Human genes 0.000 description 167
- 108090000765 processed proteins & peptides Proteins 0.000 description 167
- 230000001965 increasing effect Effects 0.000 description 140
- 230000000694 effects Effects 0.000 description 137
- 239000013598 vector Substances 0.000 description 113
- 230000014509 gene expression Effects 0.000 description 99
- 230000035772 mutation Effects 0.000 description 90
- 150000007523 nucleic acids Chemical group 0.000 description 90
- 108091028043 Nucleic acid sequence Proteins 0.000 description 86
- 239000013612 plasmid Substances 0.000 description 86
- 108020004705 Codon Proteins 0.000 description 75
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 70
- 239000002773 nucleotide Substances 0.000 description 64
- 125000003729 nucleotide group Chemical group 0.000 description 64
- 239000002609 medium Substances 0.000 description 50
- 238000010367 cloning Methods 0.000 description 44
- 230000001747 exhibiting effect Effects 0.000 description 39
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 36
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 36
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 36
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 36
- 239000008103 glucose Substances 0.000 description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 36
- 239000004202 carbamide Substances 0.000 description 35
- 239000012634 fragment Substances 0.000 description 35
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 34
- 239000012153 distilled water Substances 0.000 description 34
- 230000004927 fusion Effects 0.000 description 34
- 239000013587 production medium Substances 0.000 description 34
- 210000000349 chromosome Anatomy 0.000 description 32
- 239000003550 marker Substances 0.000 description 28
- 238000006467 substitution reaction Methods 0.000 description 28
- 241000186216 Corynebacterium Species 0.000 description 27
- 238000010276 construction Methods 0.000 description 27
- 238000012217 deletion Methods 0.000 description 27
- 230000037430 deletion Effects 0.000 description 27
- 210000004027 cell Anatomy 0.000 description 25
- 238000011156 evaluation Methods 0.000 description 25
- 238000003780 insertion Methods 0.000 description 25
- 230000037431 insertion Effects 0.000 description 25
- 230000004048 modification Effects 0.000 description 24
- 238000012986 modification Methods 0.000 description 24
- 238000007792 addition Methods 0.000 description 23
- 108020004414 DNA Proteins 0.000 description 21
- 230000006801 homologous recombination Effects 0.000 description 21
- 238000002744 homologous recombination Methods 0.000 description 21
- 239000000203 mixture Substances 0.000 description 21
- 241000588724 Escherichia coli Species 0.000 description 20
- 101100309436 Streptococcus mutans serotype c (strain ATCC 700610 / UA159) ftf gene Proteins 0.000 description 20
- 230000006870 function Effects 0.000 description 20
- 235000015097 nutrients Nutrition 0.000 description 20
- 239000000047 product Substances 0.000 description 20
- 101150025220 sacB gene Proteins 0.000 description 20
- 240000008042 Zea mays Species 0.000 description 19
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 19
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 19
- 235000005822 corn Nutrition 0.000 description 19
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 18
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 18
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 18
- 235000011130 ammonium sulphate Nutrition 0.000 description 18
- 229910000019 calcium carbonate Inorganic materials 0.000 description 18
- 229940041514 candida albicans extract Drugs 0.000 description 18
- 238000000855 fermentation Methods 0.000 description 18
- 230000004151 fermentation Effects 0.000 description 18
- 238000004128 high performance liquid chromatography Methods 0.000 description 18
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 18
- 235000019341 magnesium sulphate Nutrition 0.000 description 18
- 239000011591 potassium Substances 0.000 description 18
- 229910052700 potassium Inorganic materials 0.000 description 18
- 239000011780 sodium chloride Substances 0.000 description 18
- 230000014616 translation Effects 0.000 description 18
- 239000012138 yeast extract Substances 0.000 description 18
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 17
- 229920001817 Agar Polymers 0.000 description 17
- 108091026890 Coding region Proteins 0.000 description 17
- 241000807905 Corynebacterium glutamicum ATCC 14067 Species 0.000 description 17
- 108091092584 GDNA Proteins 0.000 description 17
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 17
- 108010073771 Soybean Proteins Proteins 0.000 description 17
- 239000008272 agar Substances 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 17
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 17
- 229960002079 calcium pantothenate Drugs 0.000 description 17
- 230000008859 change Effects 0.000 description 17
- 238000002474 experimental method Methods 0.000 description 17
- 229960003966 nicotinamide Drugs 0.000 description 17
- 235000005152 nicotinamide Nutrition 0.000 description 17
- 239000011570 nicotinamide Substances 0.000 description 17
- 235000016709 nutrition Nutrition 0.000 description 17
- 230000035764 nutrition Effects 0.000 description 17
- 230000037432 silent mutation Effects 0.000 description 17
- 239000007787 solid Substances 0.000 description 17
- 229940001941 soy protein Drugs 0.000 description 17
- 229960003495 thiamine Drugs 0.000 description 17
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 17
- 235000019190 thiamine hydrochloride Nutrition 0.000 description 17
- 239000011747 thiamine hydrochloride Substances 0.000 description 17
- 150000008575 L-amino acids Chemical class 0.000 description 16
- 238000000034 method Methods 0.000 description 16
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 15
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 230000000813 microbial effect Effects 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 10
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 10
- 108010036940 Levansucrase Proteins 0.000 description 10
- 108020005091 Replication Origin Proteins 0.000 description 10
- 230000002068 genetic effect Effects 0.000 description 10
- 229930027917 kanamycin Natural products 0.000 description 10
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 10
- 229960000318 kanamycin Drugs 0.000 description 10
- 229930182823 kanamycin A Natural products 0.000 description 10
- 108091008146 restriction endonucleases Proteins 0.000 description 10
- 230000000295 complement effect Effects 0.000 description 9
- 108091081024 Start codon Proteins 0.000 description 8
- 238000013519 translation Methods 0.000 description 8
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000009396 hybridization Methods 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 125000000539 amino acid group Chemical group 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 108010048295 2-isopropylmalate synthase Proteins 0.000 description 4
- 108020003589 5' Untranslated Regions Proteins 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 102100023927 Asparagine synthetase [glutamine-hydrolyzing] Human genes 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 108090000364 Ligases Proteins 0.000 description 4
- 102000003960 Ligases Human genes 0.000 description 4
- 108700026244 Open Reading Frames Proteins 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 235000013379 molasses Nutrition 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- RKNHJBVBFHDXGR-KEOHHSTQSA-N 1-(5-phospho-beta-D-ribosyl)-ATP Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O[C@H]1N1C(N=CN([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(O)=O)O2)O)C2=N)=C2N=C1 RKNHJBVBFHDXGR-KEOHHSTQSA-N 0.000 description 3
- 108020005544 Antisense RNA Proteins 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- 108010059152 cysteine sulfinate desulfinase Proteins 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- CXMBCXQHOXUCEO-BYPYZUCNSA-N (S)-2,3,4,5-tetrahydrodipicolinic acid Chemical compound OC(=O)[C@@H]1CCCC(C(O)=O)=N1 CXMBCXQHOXUCEO-BYPYZUCNSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 101710082690 Asparagine synthetase [glutamine-hydrolyzing] Proteins 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241000186145 Corynebacterium ammoniagenes Species 0.000 description 2
- 241000446654 Corynebacterium deserti Species 0.000 description 2
- 241001644925 Corynebacterium efficiens Species 0.000 description 2
- 241000291063 Corynebacterium halotolerans Species 0.000 description 2
- 241000128247 Corynebacterium pollutisoli Species 0.000 description 2
- 241000334675 Corynebacterium singulare Species 0.000 description 2
- 241000186308 Corynebacterium stationis Species 0.000 description 2
- 241000158523 Corynebacterium striatum Species 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 101710112373 Probable asparagine synthetase [glutamine-hydrolyzing] Proteins 0.000 description 2
- 102000012751 Pyruvate Dehydrogenase Complex Human genes 0.000 description 2
- 108010090051 Pyruvate Dehydrogenase Complex Proteins 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 101710110118 Urease accessory protein UreE Proteins 0.000 description 2
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000012136 culture method Methods 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 101150091570 gapA gene Proteins 0.000 description 2
- 238000012239 gene modification Methods 0.000 description 2
- 230000005017 genetic modification Effects 0.000 description 2
- 235000013617 genetically modified food Nutrition 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 230000034659 glycolysis Effects 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 229960000367 inositol Drugs 0.000 description 2
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004952 protein activity Effects 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 102200065441 rs1001873841 Human genes 0.000 description 2
- 102220220280 rs1060502525 Human genes 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- VNOYUJKHFWYWIR-ITIYDSSPSA-N succinyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 VNOYUJKHFWYWIR-ITIYDSSPSA-N 0.000 description 2
- 229960004793 sucrose Drugs 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 102000040811 transporter activity Human genes 0.000 description 2
- 108091092194 transporter activity Proteins 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- FBVVGPMIPAZFAW-RZVRUWJTSA-N (2S)-pyrrolidine-2-carboxylic acid Chemical compound OC(=O)[C@@H]1CCCN1.OC(=O)[C@@H]1CCCN1 FBVVGPMIPAZFAW-RZVRUWJTSA-N 0.000 description 1
- QYNUQALWYRSVHF-OLZOCXBDSA-N (6R)-5,10-methylenetetrahydrofolic acid Chemical compound C([C@H]1CNC=2N=C(NC(=O)C=2N1C1)N)N1C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 QYNUQALWYRSVHF-OLZOCXBDSA-N 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-L (R)-2-Hydroxy-3-(phosphonooxy)-propanal Natural products O=C[C@H](O)COP([O-])([O-])=O LXJXRIRHZLFYRP-VKHMYHEASA-L 0.000 description 1
- -1 (S)-1-pyrroline-5-carboxylate [ (S)-1-pyrroline-5-carboxylate] Chemical compound 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- 101710177681 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase Proteins 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- HABHUTWTLGRDDU-UHFFFAOYSA-N 2-oxopimelic acid Chemical compound OC(=O)CCCCC(=O)C(O)=O HABHUTWTLGRDDU-UHFFFAOYSA-N 0.000 description 1
- QHKABHOOEWYVLI-UHFFFAOYSA-N 3-methyl-2-oxobutanoic acid Chemical compound CC(C)C(=O)C(O)=O QHKABHOOEWYVLI-UHFFFAOYSA-N 0.000 description 1
- PQGCEDQWHSBAJP-TXICZTDVSA-N 5-O-phosphono-alpha-D-ribofuranosyl diphosphate Chemical compound O[C@H]1[C@@H](O)[C@@H](O[P@](O)(=O)OP(O)(O)=O)O[C@@H]1COP(O)(O)=O PQGCEDQWHSBAJP-TXICZTDVSA-N 0.000 description 1
- 101710102786 ATP-dependent leucine adenylase Proteins 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 102000057234 Acyl transferases Human genes 0.000 description 1
- 108700016155 Acyl transferases Proteins 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 101100533902 Arabidopsis thaliana SPL13A gene Proteins 0.000 description 1
- 101100533904 Arabidopsis thaliana SPL13B gene Proteins 0.000 description 1
- 101100508893 Bacillus subtilis (strain 168) iolR gene Proteins 0.000 description 1
- 101100455080 Bacillus subtilis (strain 168) lmrB gene Proteins 0.000 description 1
- 108091033409 CRISPR Proteins 0.000 description 1
- 238000010354 CRISPR gene editing Methods 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000186248 Corynebacterium callunae Species 0.000 description 1
- 241001605246 Corynebacterium crudilactis Species 0.000 description 1
- 241001134763 Corynebacterium flavescens Species 0.000 description 1
- 241000024402 Corynebacterium imitans Species 0.000 description 1
- 241000186249 Corynebacterium sp. Species 0.000 description 1
- 241000960580 Corynebacterium testudinoris Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-N D-glyceraldehyde 3-phosphate Chemical compound O=C[C@H](O)COP(O)(O)=O LXJXRIRHZLFYRP-VKHMYHEASA-N 0.000 description 1
- 238000012270 DNA recombination Methods 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 101150039774 GAPA1 gene Proteins 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- SDVXSCSNVVZWDD-LURJTMIESA-N L-2-succinylamino-6-oxoheptanedioic acid Chemical compound OC(=O)CCC(=O)N[C@H](C(O)=O)CCCC(=O)C(O)=O SDVXSCSNVVZWDD-LURJTMIESA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N L-Alanine Natural products C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- 239000004201 L-cysteine Substances 0.000 description 1
- 235000013878 L-cysteine Nutrition 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 150000007945 N-acyl ureas Chemical class 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 101100070556 Oryza sativa subsp. japonica HSFA4D gene Proteins 0.000 description 1
- 101100043227 Oryza sativa subsp. japonica SPL13 gene Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 101710192595 Polyamine aminopropyltransferase Proteins 0.000 description 1
- 101100282114 Pseudomonas aeruginosa (strain UCBPP-PA14) gap2 gene Proteins 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- ZUNBITIXDCPNSD-LSRJEVITSA-N S-adenosylmethioninamine Chemical compound O[C@@H]1[C@H](O)[C@@H](C[S+](CCCN)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZUNBITIXDCPNSD-LSRJEVITSA-N 0.000 description 1
- 101150099282 SPL7 gene Proteins 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 101150077561 aceF gene Proteins 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 101150098189 brnQ gene Proteins 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- FLKYBGKDCCEQQM-WYUVZMMLSA-M cefazolin sodium Chemical compound [Na+].S1C(C)=NN=C1SCC1=C(C([O-])=O)N2C(=O)[C@@H](NC(=O)CN3N=NN=C3)[C@H]2SC1 FLKYBGKDCCEQQM-WYUVZMMLSA-M 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000013601 cosmid vector Substances 0.000 description 1
- 108091000099 cysteine desulfurase Proteins 0.000 description 1
- 102000030626 cysteine desulfurase Human genes 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 101150073818 gap gene Proteins 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 101150032598 hisG gene Proteins 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 101150030681 iolR gene Proteins 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 101150087199 leuA gene Proteins 0.000 description 1
- ZNOVTXRBGFNYRX-ABLWVSNPSA-N levomefolic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 ZNOVTXRBGFNYRX-ABLWVSNPSA-N 0.000 description 1
- 235000007635 levomefolic acid Nutrition 0.000 description 1
- 239000011578 levomefolic acid Substances 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 101150051471 metF gene Proteins 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920001522 polyglycol ester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000006308 propyl amino group Chemical group 0.000 description 1
- 230000007398 protein translocation Effects 0.000 description 1
- 101150068263 putA gene Proteins 0.000 description 1
- 229940076788 pyruvate Drugs 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- NPCOQXAVBJJZBQ-UHFFFAOYSA-N reduced coenzyme Q9 Natural products COC1=C(O)C(C)=C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)C(O)=C1OC NPCOQXAVBJJZBQ-UHFFFAOYSA-N 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 101150079682 speE gene Proteins 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 1
- 229940040064 ubiquinol Drugs 0.000 description 1
- QNTNKSLOFHEFPK-UPTCCGCDSA-N ubiquinol-10 Chemical compound COC1=C(O)C(C)=C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)C(O)=C1OC QNTNKSLOFHEFPK-UPTCCGCDSA-N 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 101150008224 ureE gene Proteins 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 101150062776 yccA gene Proteins 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/77—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/08—Lysine; Diaminopimelic acid; Threonine; Valine
Definitions
- the present application relates to a novel L-valine-producing Corynebacterium glutamicum strain and a method for producing L-valine using the strain.
- One object of the present application is one or more or two or more selected from the group consisting of the following (1) to (17) (eg, 1, 2, 3, 4, 5, 6, 7) , 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17) protein variants:
- Serine Ser, Ser, S
- Phenylalanine, Phe, F phenylalanine, Phe, F
- serine which is an amino acid corresponding to position 130 of the amino acid sequence of SEQ ID NO: 13, is substituted with phenylalanine (Phenylalanine, Phe, F), consisting of the amino acid sequence shown in SEQ ID NO: 11, ATP an ATP phosphoribosyltransferase variant;
- Asparagine consisting of the amino acid sequence set forth in SEQ ID NO: 21, in which proline (Proline, Pro, P), which is an amino acid corresponding to position 192 of the amino acid sequence of SEQ ID NO: 23, is substituted with leucine (Leucine, Leu, L) Asparagine synthase variants;
- Alanine (Alanine, Ala, A), which is an amino acid corresponding to position 213 of the amino acid sequence of SEQ ID NO: 33, is substituted with valine (Valine, Val, V), consisting of the amino acid sequence set forth in SEQ ID NO: 31, spurspermidine synthase variants;
- cysteine consisting of the amino acid sequence set forth in SEQ ID NO: 41, in which proline (Proline, Pro, P), which is an amino acid corresponding to position 302 of the amino acid sequence of SEQ ID NO: 43, is substituted with serine (Serine, Ser, S) Cysteine sulfinate desulfinase variants
- Proline which is an amino acid corresponding to the 56th position of the amino acid sequence of SEQ ID NO: 53, is substituted with leucine (Leucine, Leu, L), consisting of the amino acid sequence set forth in SEQ ID NO: 51, urease Urease accessory protein variants;
- glycine which is an amino acid corresponding to position 834 of the amino acid sequence of SEQ ID NO: 63, is substituted with serine (Serine, Ser, S), consisting of the amino acid sequence set forth in SEQ ID NO: 61, proline Proline dehydrogenase variants;
- Arginine which is an amino acid corresponding to the 140th position of the amino acid sequence of SEQ ID NO: 73, is substituted with cysteine (Cysteine, Cys, C), consisting of the amino acid sequence set forth in SEQ ID NO: 71, tetra Hydrodipicolinate N-succinyltransferase (Tetrahydrodipicolinate N-succinyltransferase) variant;
- Arginine which is an amino acid corresponding to the 4th position of the amino acid sequence of SEQ ID NO: 83, is substituted with histidine (Histidine, His, H), consisting of the amino acid sequence set forth in SEQ ID NO: 81, 5 ,10-methylenetetrahydrofolate reductase (5,10-methylenetetrahydrofolate reductase) variant;
- Glutamic acid (Glutamic acid, Glu, E), which is an amino acid corresponding to position 253 of the amino acid sequence of SEQ ID NO: 93, is substituted with lysine (Lysine, Lys, K), consisting of the amino acid sequence set forth in SEQ ID NO: 91, protein (NCgl2805) variant;
- Alanine (Alanine, Ala, A), which is an amino acid corresponding to position 315 of the amino acid sequence of SEQ ID NO: 103, is substituted with valine (Valine, Val, V), consisting of the amino acid sequence shown in SEQ ID NO: 101, sugar Porter family MFS transporter (sugar porter family MFS transporter) variant;
- Glutamic acid (Glu, E), which is an amino acid corresponding to the 247th position of the amino acid sequence of SEQ ID NO: 113, is substituted with lysine (Lysine, Lys, K), consisting of the amino acid sequence set forth in SEQ ID NO: 111, transcriptional regulator variants;
- Proline which is an amino acid corresponding to the 87th position of the amino acid sequence of SEQ ID NO: 143, is substituted with leucine (Leucine, Leu, L), consisting of the amino acid sequence set forth in SEQ ID NO: 141, 2 -isopropylmalate synthase (2-isopropylmalate synthase) variant;
- Alanine (Alanine, Ala, A), which is an amino acid corresponding to the 112th position of the amino acid sequence of SEQ ID NO: 153, is substituted with Threonine (Threonine, Thr, T), consisting of the amino acid sequence set forth in SEQ ID NO: 151, branched branched-chain amino acid permease variants; and
- glycine (Glycine, Gly, G), which is an amino acid corresponding to the 134th position of the amino acid sequence of SEQ ID NO: 163, is substituted with serine (Serine, Ser, S), consisting of the amino acid sequence set forth in SEQ ID NO: 161, glycine A glyceraldehyde-3-phosphate dehydrogenase variant.
- Another object of the present application is to provide a polynucleotide encoding the above-described protein variant.
- Another object of the present application is, (i) one or more protein variants selected from the group consisting of protein variants of (1) to (17), (ii) protein variants of (1) to (17) above At least one polynucleotide selected from the group consisting of a polynucleotide encoding is to provide
- Another object of the present application is, (i) one or more protein variants selected from the group consisting of protein variants of (1) to (17), (ii) protein variants of (1) to (17) above Containing one or more polynucleotides selected from the group consisting of a polynucleotide encoding, or a combination of (i) and (ii), and having L-valine-producing ability, a Corynebacterium glutamicum strain is cultured in a medium It is to provide a method for producing L-valine, comprising the step of:
- One aspect of the present application is the amino acid sequence set forth in SEQ ID NO: 1 in which serine (Serine, Ser, S), which is an amino acid corresponding to position 109 of the amino acid sequence of SEQ ID NO: 3, is substituted with phenylalanine (Phenylalanine, Phe, F) It provides a protein variant consisting of.
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 1, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 109 based on the amino acid sequence of SEQ ID NO: 3 in the amino acid sequence set forth in SEQ ID NO: 1 is phenylalanine
- the amino acid sequence described in SEQ ID NO: 1 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the mutant of the present application may have an activity to increase L-valine production capacity compared to the wild-type polypeptide.
- Another aspect of the present application is to provide a polynucleotide encoding the variant.
- the polynucleotide encoding the variant of the present application may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 1.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 2.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 2.
- the base corresponding to position 326 based on the nucleic acid sequence of SEQ ID NO: 4 in the nucleic acid sequence set forth in SEQ ID NO: 2 is T, and at least the nucleic acid sequence set forth in SEQ ID NO: 2 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence.
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% homology or identity to the sequence of SEQ ID NO: 2 Having or including a nucleotide sequence that is more than, 98% or more, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 2 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 109th position of SEQ ID NO: 1 may be one of the codons encoding phenylalanine.
- Another aspect of the present application is the amino acid set forth in SEQ ID NO: 11 in which serine (Serine, Ser, S), which is an amino acid corresponding to position 130 of the amino acid sequence of SEQ ID NO: 13, is substituted with phenylalanine (Phenylalanine, Phe, F)
- An ATP phosphoribosyltransferase variant consisting of the sequence is provided.
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 11, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 130 based on the amino acid sequence of SEQ ID NO: 13 in the amino acid sequence set forth in SEQ ID NO: 11 is phenylalanine
- the amino acid sequence set forth in SEQ ID NO: 11 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the variant may have ATP phosphoribosyltransferase activity.
- the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
- ATP phosphoribosyltransferase refers to 1-(5-phospho-D-ribosyl)-ATP and diphosphate using ATP and 5-phospho -alpha-D-ribose 1-diphosphate producing polypeptide.
- ATP phosphoribosyltransferase of the present application may be used in combination with phosphoribosyl-ATP diphosphorylase (Phosphoribosyl-ATP diphosphorylase), phosphoribosyl-ATP pyrophosphorylase (Phosphoribosyl-ATP pyrophosphorylase) or HisG. have.
- the ATP phosphoribosyltransferase sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003860009.1, WP_003856149.1, WP_063967509.1, WP_074495858.1, etc.). Specifically, it may be a polypeptide having ATP phosphoribosyltransferase activity encoded by the hisG gene, but is not limited thereto.
- Another aspect of the present application is to provide a polynucleotide encoding the variant.
- the polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 11.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 12.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 12.
- the base corresponding to position 389 based on the nucleic acid sequence of SEQ ID NO: 14 in the nucleic acid sequence set forth in SEQ ID NO: 2 is T, and at least the nucleic acid sequence set forth in SEQ ID NO: 12 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence.
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 12 It has or contains a nucleotide sequence that is more than, 98% or more, and less than 100%, or has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of homology or identity with the sequence of SEQ ID NO: 12; 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 130th position of SEQ ID NO: 11 may be one of the codons encoding phenylalanine.
- Another aspect of the present application is the amino acid set forth in SEQ ID NO: 21 in which proline (Proline, Pro, P), which is an amino acid corresponding to the 192th position of the amino acid sequence of SEQ ID NO: 23, is substituted with leucine (Leucine, Leu, L)
- proline Proline, Pro, P
- leucine Leucine, Leu, L
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 21, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 192 based on the amino acid sequence of SEQ ID NO: 23 in the amino acid sequence set forth in SEQ ID NO: 21 is leucine, and the amino acid sequence set forth in SEQ ID NO: 21 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the variant may have asparagine synthase activity.
- the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
- amino acid synthase refers to glutamine-hydrolysing activity, and aspartate and glutamine are used as asparagine and glutamate. It is a polypeptide that converts Asparagine synthase of the present application may be used in combination with asparagine synthetase, asparagine synthetase (eg, Asparagine synthetase B), glutamine-dependent asparagine synthetase (glutamine-dependent asparagine synthetase) or LtsA.
- asparagine synthetase asparagine synthetase B
- glutamine-dependent asparagine synthetase glutamine-dependent asparagine synthetase
- LtsA LtsA
- the asparagine synthase sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003859651.1, WP_060564818.1, WP_040967635.1, etc.). Specifically, it may be a polypeptide having asparagine synthase activity encoded by the ltsA gene, but is not limited thereto.
- Another aspect of the present application is to provide a polynucleotide encoding the variant.
- the polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 21.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 22.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 22.
- the base corresponding to position 575 based on the nucleic acid sequence of SEQ ID NO: 24 in the nucleic acid sequence set forth in SEQ ID NO: 22 is T, and at least the nucleic acid sequence set forth in SEQ ID NO: 22 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence.
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 22 Having or including a nucleotide sequence that is more than, 98% or more, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 2 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 192th position of SEQ ID NO: 21 may be one of the codons encoding leucine.
- One aspect of the present application is the amino acid sequence set forth in SEQ ID NO: 31 in which alanine (Alanine, Ala, A), which is an amino acid corresponding to position 213 of the amino acid sequence of SEQ ID NO: 33, is substituted with valine (Valine, Val, V) It provides a spermidine synthase variant consisting of.
- alanine Ala, A
- valine Valine, Val, V
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 31, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 213 based on the amino acid sequence of SEQ ID NO: 33 in the amino acid sequence set forth in SEQ ID NO: 31 is valine
- the amino acid sequence set forth in SEQ ID NO: 31 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the variant may have spermidine synthase activity.
- the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
- the term "Spermidine synthase” is a polypeptide belonging to the aminopropyl transferase group, and during spermidine biosynthesis, the putre of the propylamine group of S-adenosylmethioninamine. It is a polypeptide that catalyzes the transition to Putrescine.
- the spermidine synthase of the present application may be used in combination with spermidine synthase, aminopropyltransferase, putrescine aminopropyltransferase, polyamine aminopropyltransferase, or SpeE. .
- the spermidine synthase sequence can be obtained from GenBank of NCBI, which is a known database. Specifically, it may be a polypeptide having spermidine synthase activity encoded by the speE gene, but is not limited thereto.
- Another aspect of the present application is to provide a polynucleotide encoding the variant.
- the polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 31.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 32.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 32.
- the base corresponding to position 638 based on the nucleic acid sequence of SEQ ID NO: 34 is T, and at least the nucleic acid sequence set forth in SEQ ID NO: 32 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence.
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 32 Having or including a nucleotide sequence that is greater than or equal to 98%, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 32 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 213th position of SEQ ID NO: 31 may be one of the codons encoding valine.
- Another aspect of the present application is the amino acid set forth in SEQ ID NO: 41 in which proline (Proline, Pro, P), which is an amino acid corresponding to position 302 of the amino acid sequence of SEQ ID NO: 43, is substituted with serine (Serine, Ser, S)
- proline Proline, Pro, P
- serine Ser, S
- a cysteine sulfinate disulfinase variant consisting of the sequence is provided.
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 41, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 302 based on the amino acid sequence of SEQ ID NO: 43 in the amino acid sequence set forth in SEQ ID NO: 41 is Serine
- the amino acid sequence set forth in SEQ ID NO: 1 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the variant may have cysteine sulfinate disulfinase activity.
- the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
- cysteine desulfurase or NadS
- L-cysteine and receptor acceptor; eg, [enzyme]-cysteine
- the cysteine sulfinate disulfinase sequence can be obtained from GenBank of NCBI, a known database (eg, WP_004568050.1, etc.). Specifically, it may be a polypeptide having cysteine sulfinate disulfinase activity encoded by the nadS gene, but is not limited thereto.
- Another aspect of the present application is to provide a polynucleotide encoding the variant.
- the polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 41.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 42.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 42.
- the base corresponding to position 904 based on the nucleic acid sequence of SEQ ID NO: 44 is T
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 42 It has or contains a nucleotide sequence that is at least 98%, and less than 100%, or has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of homology or identity with the sequence of SEQ ID NO: 42; 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 302th position of SEQ ID NO: 41 may be one of the codons encoding serine.
- Another aspect of the present application is the amino acid set forth in SEQ ID NO: 51 in which proline (Proline, Pro, P), which is an amino acid corresponding to the 56th position of the amino acid sequence of SEQ ID NO: 53, is substituted with leucine (Leucine, Leu, L)
- proline Proline, Pro, P
- leucine Leucine, Leu, L
- a urease accessory protein variant consisting of the sequence.
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 51, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 56 based on the amino acid sequence of SEQ ID NO: 53 in the amino acid sequence set forth in SEQ ID NO: 51 is leucine
- the amino acid sequence set forth in SEQ ID NO: 1 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the variant may have urease accessory protein activity.
- the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
- the term "Urease accessory protein (Ure)" is a Ni-containing urea hydrolase involved in nitrogen recycling from arginine, ureide, and purine and , is involved in activating urease by delivering Ni to proteins.
- the urease accessory protein of the present application may be urease accessory protein UreE (UreE).
- the sequence of the urease accessory protein UreE can be obtained from GenBank of NCBI, a known database (eg, WP_003859936.1, WP_038581987.1, WP_074492623.1, etc.). Specifically, it may be a polypeptide having a urease accessory protein activity encoded by the ureE gene, but is not limited thereto.
- Another aspect of the present application is to provide a polynucleotide encoding the variant.
- the polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 51.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 52.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 52.
- the base corresponding to position 167 based on the nucleic acid sequence of SEQ ID NO: 54 is T
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 52 Having or including a nucleotide sequence that is more than, 98% or more, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 2 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 56th position of SEQ ID NO: 51 may be one of the codons encoding leucine.
- Another aspect of the present application is the amino acid set forth in SEQ ID NO: 61 in which glycine (Glycine, Gly, G), which is an amino acid corresponding to the 834th position of the amino acid sequence of SEQ ID NO: 63, is substituted with serine (Serine, Ser, S)
- Glycine Glycine, Gly, G
- serine Ser, S
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 61, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 834 based on the amino acid sequence of SEQ ID NO: 63 in the amino acid sequence set forth in SEQ ID NO: 61 is serine, and the amino acid sequence set forth in SEQ ID NO: 61 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the variant may have proline dehydrogenase activity.
- the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
- proline dehydrogenase is a polypeptide belonging to the oxidoreductase family, and (S)-1-pyrroline-5-carboxylate [ (S)-1-pyrroline-5-carboxylate] and a polypeptide that catalyzes a reaction to produce ubiquinol.
- the proline dehydrogenase can be used in combination with PutA, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_034983428.1, etc.). Specifically, it may be a polypeptide having proline dehydrogenase activity encoded by the putA gene, but is not limited thereto.
- Another aspect of the present application is to provide a polynucleotide encoding the variant.
- the polynucleotide encoding the variant of the present application may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 61.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 62.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 62.
- the base corresponding to position 2500 based on the nucleic acid sequence of SEQ ID NO: 64 in the nucleic acid sequence set forth in SEQ ID NO: 62 is A, and at least the nucleic acid sequence set forth in SEQ ID NO: 62 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence.
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 62 It has or includes a nucleotide sequence that is greater than or equal to 98%, and less than 100%, or has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of homology or identity to the sequence of SEQ ID NO: 62; 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 834th position of SEQ ID NO: 61 may be one of the codons encoding serine.
- Another aspect of the present application is an amino acid set forth in SEQ ID NO: 71 in which arginine (Arginine, Arg, R), which is an amino acid corresponding to the 140th position of the amino acid sequence of SEQ ID NO: 73, is substituted with cysteine (Cysteine, Cys, C)
- cysteine Cysteine, Cys, C
- a tetrahydrodipicolinate N-succinyltransferase variant consisting of the sequence.
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 71, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 140 based on the amino acid sequence of SEQ ID NO: 73 in the amino acid sequence set forth in SEQ ID NO: 71 is cysteine
- the amino acid sequence set forth in SEQ ID NO: 71 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the variant may have tetrahydrodipicolinate N-succinyltransferase activity.
- the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
- Tetrahydrodipicolinate N-succinyltransferase is an acyltransferase-based polypeptide, succinyl-CoA, (S)-2,3,4,5-tetra Hydropyridine-2,6-dicarboxylate, and CoA and N-succinyl-L- 2 -amino-6-oxoheptanedioate (N-succinyl-L-2-amino- It is a polypeptide that catalyzes a reaction that produces 6-oxoheptanedioate).
- Tetrahydrodipicolinate N-succinyltransferase of the present application is tetrahydropicolinate succinylase, succinyl-CoA:tetrahydrodipicolinate N-succinyltransferase (succinyl-CoA:tetrahydrodipicolinate) N-succinyltransferase) or DapD2 may be used in combination.
- the tetrahydrodipicolinate N-succinyltransferase sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003863792.1, etc.). Specifically, it may be a polypeptide having tetrahydrodipicolinate N-succinyltransferase activity encoded by the dapD2 gene, but is not limited thereto.
- Another aspect of the present application is to provide a polynucleotide encoding the variant.
- the polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 71.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 72.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 72.
- the base corresponding to position 418 based on the nucleic acid sequence of SEQ ID NO: 74 is T, and at least the nucleic acid sequence set forth in SEQ ID NO: 72 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence.
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 72 It has or contains a nucleotide sequence of at least 98%, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 72 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 140th position of SEQ ID NO: 71 may be one of the codons encoding cysteine.
- One aspect of the present application is an amino acid sequence set forth in SEQ ID NO: 81 in which arginine (Arginine, Arg, R), which is an amino acid corresponding to the 4th position of the amino acid sequence of SEQ ID NO: 83, is substituted with histidine (Histidine, His, H) It provides a 5,10-methylenetetrahydrofolate reductase variant consisting of.
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 81, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 4 based on the amino acid sequence of SEQ ID NO: 83 in the amino acid sequence set forth in SEQ ID NO: 81 is histidine
- the amino acid sequence set forth in SEQ ID NO: 1 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the variant may have 5,10-methylenetetrahydrofolate reductase activity.
- the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
- the term "5,10-methylenetetrahydrofolate reductase” refers to a compound that catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. is a polypeptide.
- the 5,10-methylenetetrahydrofolate reductase can be used in combination with MetF, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003863792.1, etc.). Specifically, it may be a polypeptide having 5,10-methylenetetrahydrofolate reductase activity encoded by the metF gene, but is not limited thereto.
- Another aspect of the present application is to provide a polynucleotide encoding the variant.
- the polynucleotide encoding the variant of the present application may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 81.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 82.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 82.
- the base corresponding to position 11 based on the nucleic acid sequence of SEQ ID NO: 84 is A
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 82 or more, 98% or more, and less than 100% of the base sequence, or the homology or identity with the sequence of SEQ ID NO: 82 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 4th position of SEQ ID NO: 81 may be one of the codons encoding histidine.
- glutamic acid which is an amino acid corresponding to position 253 of the amino acid sequence of SEQ ID NO: 93, is substituted with lysine (Lysine, Lys, K), described in SEQ ID NO: 91 Protein variants, consisting of an amino acid sequence, are provided.
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 91, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 253 based on the amino acid sequence of SEQ ID NO: 93 in the amino acid sequence set forth in SEQ ID NO: 91 is lysine
- the amino acid sequence set forth in SEQ ID NO: 91 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the mutant of the present application may have an activity to increase L-valine production capacity compared to the wild-type polypeptide.
- Another aspect of the present application is to provide a polynucleotide encoding the variant.
- the polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 91.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 92.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 92.
- the base corresponding to position 757 based on the nucleic acid sequence of SEQ ID NO: 94 is A
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 92 It has or contains a nucleotide sequence of at least 98%, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 92 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 253th position of SEQ ID NO: 91 may be one of the codons encoding the lysine.
- One aspect of the present application is the amino acid sequence set forth in SEQ ID NO: 101 in which alanine (Alanine, Ala, A), which is an amino acid corresponding to position 315 of the amino acid sequence of SEQ ID NO: 103, is substituted with valine (Valine, Val, V) It provides a sugar porter family MFS transporter variant consisting of.
- alanine Ala, A
- valine Valine, Val, V
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 101, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 315 based on the amino acid sequence of SEQ ID NO: 103 in the amino acid sequence set forth in SEQ ID NO: 101 is valine
- the amino acid sequence set forth in SEQ ID NO: 101 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the mutant may have sugar porter-based MFS transporter activity.
- the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
- the term "sugar porter family MFS transporter” is one of inositol transporters.
- the sugar porter-based MFS transporter can be used in combination with IolT1, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003862502.1). Specifically, it may be a polypeptide having sugar porter-type MFS transporter activity encoded by the iolT1 gene, but is not limited thereto.
- Another aspect of the present application is to provide a polynucleotide encoding the variant.
- the polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 101.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 102.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 102.
- the base corresponding to position 944 based on the nucleic acid sequence of SEQ ID NO: 104 in the nucleic acid sequence set forth in SEQ ID NO: 102 is T, and at least the nucleic acid sequence set forth in SEQ ID NO: 102 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence.
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 102 Having or including a nucleotide sequence that is greater than or equal to 98%, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 102 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 315th position of SEQ ID NO: 101 may be one of the codons encoding valine.
- One aspect of the present application is an amino acid set forth in SEQ ID NO: 111 in which glutamic acid (Glu, E), which is an amino acid corresponding to the 247th position of the amino acid sequence of SEQ ID NO: 113, is substituted with lysine (Lysine, Lys, K)
- Glu, E glutamic acid
- lysine Lysine, Lys, K
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 111, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 247 based on the amino acid sequence of SEQ ID NO: 113 in the amino acid sequence set forth in SEQ ID NO: 111 is lysine
- the amino acid sequence described in SEQ ID NO: 111 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the mutant may have transcriptional regulator activity.
- the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
- the term "iolR, a transcriptional regulator,” is a transcriptional regulator involved in Myo-inositol utilization.
- the transcription regulator can be used in combination with IolR, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003857140.1). Specifically, it may be a polypeptide having a transcriptional regulator activity encoded by the iolR gene, but is not limited thereto.
- Another aspect of the present application is to provide a polynucleotide encoding the variant of the present application.
- the polynucleotide encoding the variant of the present application may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 111.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 112.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 112.
- the base corresponding to position 739 based on the nucleic acid sequence of SEQ ID NO: 114 is A
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 112 It has or contains a nucleotide sequence that is more than, 98% or more, and less than 100%, or has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of homology or identity with the sequence of SEQ ID NO: 112; 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 247th position of SEQ ID NO: 111 may be one of the codons encoding the lysine.
- glycine which is an amino acid corresponding to the 40th position of the amino acid sequence of SEQ ID NO: 123, is substituted with aspartic acid (Aspartic acid, Asp, D), SEQ ID NO: 121
- WhcA WhiB family transcriptional regulator
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 121, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 40 based on the amino acid sequence of SEQ ID NO: 123 in the amino acid sequence set forth in SEQ ID NO: 121 is aspartic acid
- the amino acid sequence set forth in SEQ ID NO: 121 an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7%, or 99.9% homology or identity with may include
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the mutant may have a WhiB-series transcriptional regulator WhcA activity.
- the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
- WhcA WiB family transcriptional regulator WhcA
- WhcA WhiB family transcriptional regulator WhcA
- the sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003863319.1). Specifically, it may be a polypeptide having a WhiB family transcriptional regulator WhcA activity encoded by the whcA gene, but is not limited thereto.
- Another aspect of the present application is to provide a polynucleotide encoding the variant of the present application.
- the polynucleotide encoding the variant of the present application may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 121.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 122.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 122.
- the base corresponding to position 119 based on the nucleic acid sequence of SEQ ID NO: 124 is A
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 122 It has or contains a nucleotide sequence that is at least 98%, and less than 100%, or has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of homology or identity to the sequence of SEQ ID NO: 122; 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 40th position of SEQ ID NO: 121 may be one of the codons encoding aspartic acid.
- glycine which is an amino acid corresponding to the 77th position of the amino acid sequence of SEQ ID NO: 133, is substituted with aspartic acid (Aspartic acid, Asp, D), SEQ ID NO: 131 It provides a dihydrolipoyl acetyltransferase variant, consisting of the amino acid sequence described as.
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 131, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 77 based on the amino acid sequence of SEQ ID NO: 133 in the amino acid sequence set forth in SEQ ID NO: 131 is aspartic acid
- the amino acid sequence set forth in SEQ ID NO: 131 an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7%, or 99.9% homology or identity with may include
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the variant may have dihydrolipoyl acetyltransferase activity.
- the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
- dihydrolipoamide acetyltransferase is an enzyme component of the multi-enzyme pyruvate dehydrogenase complex.
- the pyruvate dehydrogenase complex is responsible for the pyruvate decarboxylation step that links glycolysis to the citric acid cycle.
- the dihydrolipoyl acetyltransferase can be used in combination with AceF, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_034983836.1). Specifically, it may be a polypeptide having a dihydrolipoyl acetyltransferase activity encoded by the aceF gene, but is not limited thereto.
- Another aspect of the present application is to provide a polynucleotide encoding the variant of the present application.
- the polynucleotide encoding the variant of the present application may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 131.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 132.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 132.
- the base corresponding to position 230 based on the nucleic acid sequence of SEQ ID NO: 134 in the nucleic acid sequence set forth in SEQ ID NO: 132 is A, and at least the nucleic acid sequence set forth in SEQ ID NO: 132 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence.
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% homology or identity to the sequence of SEQ ID NO: 132 or more, 98% or more, and less than 100% of the base sequence, or homology or identity with the sequence of SEQ ID NO: 132 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 77th position of SEQ ID NO: 131 may be one of the codons encoding aspartic acid.
- Another aspect of the present application is the amino acid set forth in SEQ ID NO: 141 in which proline (Proline, Pro, P), which is an amino acid corresponding to the 87th position of the amino acid sequence of SEQ ID NO: 143, is substituted with leucine (Leucine, Leu, L)
- proline Proline, Pro, P
- leucine Leucine, Leu, L
- 2-isopropylmalate synthetase variant consisting of the sequence.
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 141, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 87 based on the amino acid sequence of SEQ ID NO: 143 in the amino acid sequence set forth in SEQ ID NO: 141 is leucine
- the amino acid sequence set forth in SEQ ID NO: 141 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the variant may have 2-isopropylmalate synthetase activity.
- the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
- 2-isopropylmalate synthase refers to a chemical reaction of acetyl-CoA + 3-methyl-2-oxobutanoate + H2O ⁇ (2S)-2-isopropylmalate + CoA. It is an enzyme that catalyzes
- the 2-isopropyl malate synthetase can be used in combination with LeuA, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_172768021.1). Specifically, it may be a polypeptide having 2-isopropyl malate synthase activity encoded by the leuA gene, but is not limited thereto.
- Another aspect of the present application is to provide a polynucleotide encoding the variant.
- the polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 141.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 142.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 142.
- the base corresponding to position 260 based on the nucleic acid sequence of SEQ ID NO: 144 is T
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more of homology or identity to the sequence of SEQ ID NO: 142.
- nucleotide sequence that is more than, 98% or more, and less than 100%, or has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of homology or identity with the sequence of SEQ ID NO: 142; 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 87th position of SEQ ID NO: 141 may be one of the codons encoding leucine.
- Another aspect of the present application is the amino acid set forth in SEQ ID NO: 151 in which alanine (Alanine, Ala, A), which is an amino acid corresponding to the 112th position of the amino acid sequence of SEQ ID NO: 153, is substituted with threonine (Threonine, Thr, T)
- alanine Ala, A
- Threonine, Thr, T threonine
- Threonine, Thr, T a branched chain amino acid permease variant consisting of the sequence.
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 151, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 112 based on the amino acid sequence of SEQ ID NO: 153 in the amino acid sequence set forth in SEQ ID NO: 151 is Threonine
- the amino acid sequence set forth in SEQ ID NO: 151 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the variant may have branched-chain amino acid permease activity.
- the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
- branched-chain amino acid permease is a component of a branched-chain amino acid (leucine, isoleucine, valine) transport system that operates by a proton motive force (PMF).
- PMF proton motive force
- the branched-chain amino acid permease can be used in combination with BrnQ, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_080708840.1). Specifically, it may be a polypeptide having a branched-chain amino acid permease activity encoded by the brnQ gene, but is not limited thereto.
- Another aspect of the present application is to provide a polynucleotide encoding the variant.
- the polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 151.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 152.
- the polynucleotide of the present application may consist of or consist essentially of the sequence of SEQ ID NO: 152.
- the base corresponding to position 334 based on the nucleic acid sequence of SEQ ID NO: 154 is A
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 152 It has or contains a nucleotide sequence that is greater than or equal to 98%, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 152 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 112th position of SEQ ID NO: 151 may be one of the codons encoding threonine.
- glycine which is an amino acid corresponding to the 134th position of the amino acid sequence of SEQ ID NO: 163, is substituted with serine (Serine, Ser, S), the amino acid set forth in SEQ ID NO: 161
- Ser, S serine
- the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 161, or may consist essentially of the amino acid sequence.
- the amino acid corresponding to position 134 based on the amino acid sequence of SEQ ID NO: 163 in the amino acid sequence set forth in SEQ ID NO: 161 is Serine
- the amino acid sequence set forth in SEQ ID NO: 161 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- the variant may have glyceraldehyde-3-phosphate dehydrogenase activity.
- the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
- the term "glyceraldehyde-3-phosphate dehydrogenase” is an enzyme of about 37 kDa that catalyzes the sixth step of glycolysis, and converts glyceraldehyde 3-phosphate to 1 It catalyzes the reversible reaction of conversion to ,3-bisphosphoglyceric acid.
- the glyceraldehyde-3-phosphate dehydrogenase can be used in combination with GapA, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003862250.1). Specifically, it may be a polypeptide having glyceraldehyde-3-phosphate dehydrogenase activity encoded by the gapA gene, but is not limited thereto.
- Another aspect of the present application is to provide a polynucleotide encoding the variant.
- the polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 161.
- the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 162.
- the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 162.
- the base corresponding to position 400 based on the nucleic acid sequence of SEQ ID NO: 164 is A
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% homology or identity to the sequence of SEQ ID NO: 162 It has or contains a nucleotide sequence of at least 98%, and less than 100%, or has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of homology or identity to the sequence of SEQ ID NO: 162; 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto.
- the codon encoding the amino acid corresponding to the 134th position of SEQ ID NO: 161 may be one of the codons encoding serine.
- conservative substitution means substituting one amino acid for another amino acid having similar structural and/or chemical properties. Such amino acid substitutions may generally occur based on similarity in the polarity, charge, solubility, hydrophobicity, hydrophilicity and/or amphipathic nature of the residues. Typically, conservative substitutions may have little or no effect on the activity of the protein or polypeptide.
- variant means that one or more amino acids are conservatively substituted and/or modified so that they differ from the amino acid sequence before the mutation of the variant but have functions or properties. refers to a polypeptide that is maintained. Such variants can generally be identified by modifying one or more amino acids in the amino acid sequence of the polypeptide and evaluating the properties of the modified polypeptide. That is, the ability of the variant may be increased, unchanged, or decreased compared to the polypeptide before the mutation. In addition, some variants may include variants in which one or more portions, such as an N-terminal leader sequence or a transmembrane domain, have been removed.
- variants may include variants in which a portion is removed from the N- and/or C-terminus of the mature protein.
- variant may be used interchangeably with terms such as mutant, modified, mutant polypeptide, mutated protein, mutant and mutant (in English, modified, modified polypeptide, modified protein, mutant, mutein, divergent, etc.) and, as long as it is a term used in a mutated sense, it is not limited thereto.
- variants may include deletions or additions of amino acids that have minimal effect on the properties and secondary structure of the polypeptide.
- a signal (or leader) sequence involved in protein translocation may be conjugated to the N-terminus of the mutant, either co-translationally or post-translationally.
- the variants may also be conjugated with other sequences or linkers for identification, purification, or synthesis.
- the term 'homology' or 'identity' refers to the degree of similarity between two given amino acid sequences or nucleotide sequences and may be expressed as a percentage.
- the terms homology and identity can often be used interchangeably.
- Sequence homology or identity of a conserved polynucleotide or polypeptide is determined by standard alignment algorithms, with default gap penalties established by the program used may be used. Substantially homologous or identical sequences are generally capable of hybridizing with all or part of a sequence under moderate or high stringent conditions. It is apparent that hybridization also includes hybridization with polynucleotides containing common codons or codons taking codon degeneracy into account in the polynucleotide.
- a GAP program can be defined as the total number of symbols in the shorter of the two sequences divided by the number of similarly aligned symbols (ie, nucleotides or amino acids).
- Default parameters for the GAP program are: (1) a binary comparison matrix (containing values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or a gap open penalty of 10, a gap extension penalty of 0.5); and (3) no penalty for end gaps.
- corresponding to refers to an amino acid residue at a position listed in a polypeptide, or an amino acid residue similar to, identical to, or homologous to a residue listed in a polypeptide. Identifying an amino acid at a corresponding position may be determining a specific amino acid in a sequence that refers to a specific sequence.
- corresponding region generally refers to a similar or corresponding position in a related protein or reference protein.
- any amino acid sequence can be replaced with the amino acid sequence of a subtype polypeptide provided herein (e.g., SEQ ID NOs: 3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113, 123 , 133, 143, 153, and/or 163), and based on this, each amino acid residue in the amino acid sequence is identified by reference to the numerical position of the amino acid residue corresponding to the amino acid residue in the amino acid sequence of the isotype polypeptide. can be numbered.
- a subtype polypeptide e.g., SEQ ID NOs: 3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113, 123 , 133, 143, 153, and/or 163
- a sequence alignment algorithm such as that described in this application can identify the position of an amino acid, or a position at which modifications, such as substitutions, insertions, or deletions, occur compared to a query sequence (also referred to as a "reference sequence").
- Such alignments include, for example, the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453), the Needle program in the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al. , 2000), Trends Genet. 16: 276-277), etc., but is not limited thereto, and a sequence alignment program known in the art, a pairwise sequence comparison algorithm, etc. may be appropriately used.
- polynucleotide refers to a DNA or RNA strand of a certain length or longer as a polymer of nucleotides in which nucleotide monomers are linked in a long chain by covalent bonds, and more specifically, provided in the present application. It refers to a polynucleotide fragment encoding a variant.
- the polynucleotide of the present application may be included without limitation as long as it is a probe that can be prepared from a known gene sequence, for example, a sequence that can hybridize under stringent conditions with a sequence complementary to all or part of the polynucleotide sequence of the present application.
- the "stringent condition” means a condition that enables specific hybridization between polynucleotides. These conditions are described in J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8).
- polynucleotides with high homology or identity 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or a condition in which polynucleotides having 99% or more homology or identity hybridize with each other and polynucleotides with lower homology or identity do not hybridize, or a washing condition of conventional Southern hybridization at 60°C, 1 ⁇ SSC, 0.1% SDS, specifically 60° C., 0.1 ⁇ SSC, 0.1% SDS, more specifically 68° C., 0.1 ⁇ SSC, 0.1% SDS at a salt concentration and temperature equivalent to one wash, specifically two to three times conditions can be enumerated.
- Hybridization requires that two nucleic acids have complementary sequences, although mismatch between bases is possible depending on the stringency of hybridization.
- complementary is used to describe the relationship between nucleotide bases capable of hybridizing to each other.
- adenine is complementary to thymine
- cytosine is complementary to guanine.
- the polynucleotides of the present application may also include substantially similar nucleic acid sequences as well as isolated nucleic acid fragments complementary to the overall sequence.
- a polynucleotide having homology or identity to the polynucleotide of the present application can be detected using the hybridization conditions including a hybridization step at a Tm value of 55° C. and using the above-described conditions.
- the Tm value may be 60° C., 63° C. or 65° C., but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
- the appropriate stringency for hybridizing the polynucleotides depends on the length of the polynucleotides and the degree of complementarity, and the parameters are well known in the art (eg, J. Sambrook et al., supra).
- Another aspect of the present application is to provide a vector comprising the polynucleotide of the present application.
- the vector may be an expression vector for expressing the polynucleotide in a host cell, but is not limited thereto.
- the vector of the present application may include a DNA preparation comprising a nucleotide sequence of a polynucleotide encoding the target polypeptide operably linked to a suitable expression control region (or expression control sequence) so that the target polypeptide can be expressed in a suitable host.
- the expression control region may include a promoter capable of initiating transcription, an optional operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating the termination of transcription and translation.
- the vector After transformation into an appropriate host cell, the vector can replicate or function independently of the host genome, and can be integrated into the genome itself.
- the vector used in the present application is not particularly limited, and any vector known in the art may be used.
- Examples of commonly used vectors include plasmids, cosmids, viruses and bacteriophages in a natural or recombinant state.
- pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A may be used as phage vectors or cosmid vectors, and pDZ-based, pBR-based, and pUC-based plasmid vectors may be used.
- pBluescript II-based pGEM-based, pTZ-based, pCL-based, pET-based and the like
- pDZ pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors and the like
- pC1BAC vectors and the like can be used.
- a polynucleotide encoding a target polypeptide may be inserted into a chromosome through a vector for intracellular chromosome insertion.
- the insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto.
- It may further include a selection marker (selection marker) for confirming whether the chromosome is inserted.
- the selection marker is used to select cells transformed with the vector, that is, to determine whether a target nucleic acid molecule is inserted, and selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or surface polypeptide expression. Markers to be given can be used. In an environment treated with a selective agent, only the cells expressing the selectable marker survive or exhibit other expression traits, so that the transformed cells can be selected.
- the term "transformation” refers to introducing a vector including a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoded by the polynucleotide can be expressed in the host cell.
- the transformed polynucleotide may include all of them regardless of whether they are inserted into the chromosome of the host cell or located outside the chromosome, as long as they can be expressed in the host cell.
- the polynucleotide includes DNA and/or RNA encoding a target polypeptide.
- the polynucleotide may be introduced in any form as long as it can be introduced and expressed into a host cell.
- the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct including all elements necessary for self-expression.
- the expression cassette may include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
- the expression cassette may be in the form of an expression vector capable of self-replication.
- the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
- operably linked means that a promoter sequence that initiates and mediates transcription of a polynucleotide encoding the target variant of the present application and the polynucleotide sequence are functionally linked.
- Another aspect of the present application is (i) one or more or two or more selected from the above-described variants (1) to (17) (eg, 1, 2, 3, 4, 5, 6) dog, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17) variants, (ii) polynucleotides encoding said variants; one or more or two or more (eg, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14) , 15, 16 or 17) polynucleotides, or (iii) a combination thereof, Corynebacterium glutamicum glutamicum ) to provide a strain.
- the strain of the present application may include a variant polypeptide of the present application, a polynucleotide encoding the polypeptide, a vector including the polynucleotide, or a combination thereof.
- strain or microorganism
- strain includes both wild-type microorganisms and microorganisms in which genetic modification has occurred naturally or artificially. As a result of which a specific mechanism is weakened or enhanced, it may be a microorganism including genetic modification for the production of a desired polypeptide, protein or product.
- the strain of the present application includes a strain comprising any one or more of one or more variants of the present application, one or more polynucleotides of the present application, and one or more vectors comprising one or more polynucleotides of the present application; strains modified to express one or more variants of the present application or one or more polynucleotides of the present application; a strain expressing one or more variants of the present application or one or more polynucleotides of the present application (eg, a recombinant strain); Or it may be a strain (eg, a recombinant strain) having one or more variant activities of the present application, but is not limited thereto.
- the strain of the present application may be a strain having L-valine-producing ability.
- the strain of the present application is a microorganism having naturally L-valine-producing ability, or a mutant of the present application or a polynucleotide (or a vector containing the polynucleotide) encoding the same is introduced into a parent strain without L-valine-producing ability. and/or L-valine-producing ability may be endowed, but is not limited thereto.
- the strain of the present application is transformed with a vector containing the polynucleotide of the present application or a polynucleotide encoding the variant of the present application, and expresses the variant of the present application as a cell or microorganism
- the strains of the application may include all microorganisms capable of producing L-valine, including the variants of the present application.
- the strain of the present application may be a recombinant strain in which the polynucleotide encoding the variant of the present application is increased in L-valine-producing ability in a natural wild-type microorganism or a microorganism producing L-valine.
- the recombinant strain with increased L-amino acid production ability is a natural wild-type microorganism or unmodified microorganism (ie, wild-type (SEQ ID NO: 3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113) , 123, 133, 143, 153, and/or 163) a microorganism or variant (SEQ ID NO: 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121) expressing the protein.
- microorganisms that do not express proteins may be microorganisms having an increased ability to produce L-valine compared to microorganisms that do not express proteins, but is not limited thereto.
- the non-modified microorganism which is the target strain for comparing the increase in L-valine production ability, may be the ATCC14067 strain and/or the Corynebacterium glutamicum CA08-0072 strain (KCCM11201P), but is not limited thereto. .
- the recombinant strain having increased L-valine production capacity may include a strain comprising any one or more of a mutant (NCgl1391 protein mutant) of SEQ ID NO: 1, a polynucleotide encoding the same, and a vector including the polynucleotide; a strain modified to express a variant of SEQ ID NO: 1 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 1 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having a variant activity of SEQ ID NO: 1 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation, 1.16 times or more, 1.17 times or more, 1.18 times or more, 1.19 times or more, about 1.2 times or more, 1.21 times or more, 1, 22 or about 1.23 times or more (the upper limit is not particularly limited, for example, about 10 times or less, about 5 times or more may be up to fold, up to about 3 fold, or up to about 2 fold) may be increased.
- the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 25.0% (or about 1.25 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
- the recombinant strain having an increased L-valine production ability is a strain comprising at least one of a mutant of SEQ ID NO: 11 (ATP phosphoribosyltransferase mutant), a polynucleotide encoding the same, and a vector including the polynucleotide ; a strain modified to express a variant of SEQ ID NO: 11 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 11 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 11 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation, 1.16 times or more, 1.17 times or more, 1.18 times or more, 1.19 times or more, or about 1.2 times or more (the upper limit is not particularly limited, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or more. may be below) may be increased.
- the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 21% (or about 1.21 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
- the recombinant strain having an increased L-valine production ability is a strain comprising at least one of a mutant (asparagine synthase mutant) of SEQ ID NO: 21, a polynucleotide encoding the same, and a vector including the polynucleotide; a strain modified to express a variant of SEQ ID NO: 21 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 21 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having a variant activity of SEQ ID NO: 21 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the upper limit is not particularly limited, For example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, about 30% or less, about 25% or less, or about 20% or less % or less), but is not limited thereto, as long as it has an increase of + value compared to the production capacity of the parent strain or unmodified microorganism before mutation.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.14 times or more, compared to the parent strain or unmodified microorganism before mutation. , or about 1.15 times or more (the upper limit is not particularly limited, for example, it may be about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less).
- the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 15% (or about 1.15 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
- the recombinant strain having an increased L-valine production ability is a strain comprising at least one of a mutant (spermidine synthase mutant) of SEQ ID NO: 31, a polynucleotide encoding the same, and a vector including the polynucleotide; a strain modified to express a variant of SEQ ID NO: 31 or a polynucleotide encoding the same; a strain expressing a variant of SEQ ID NO: 31 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having a variant activity of SEQ ID NO: 31 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, about 30% or less, about 25% or less, about 20% or less, or about 15% or less
- the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, about 30% or less, about 25% or less, about 20% or less, or about 15% or less
- a + value compared to the production capacity of the parent strain or unmodified microorganism before mutation As long as it has an increasing amount of , it is not limited thereto.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, or about 1.13 times or more (the upper limit is a special There is no limitation, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less) may be increased.
- the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 13.2% (or about 1.13 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
- the recombinant strain having an increased L-valine production ability includes any one or more of a mutant of SEQ ID NO: 41 (cysteine sulfinate disulfinase mutant), a polynucleotide encoding the same, and a vector including the polynucleotide strain; a strain modified to express a variant of SEQ ID NO: 41 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 41 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 41 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation.
- the upper limit is not particularly limited, for example, it may be about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less).
- the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 26% (or about 1.26 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
- the recombinant strain having an increased L-valine production ability is a strain comprising at least one of a mutant (urease accessory protein mutant) of SEQ ID NO: 51, a polynucleotide encoding the same, and a vector including the polynucleotide; a strain modified to express a variant of SEQ ID NO: 51 or a polynucleotide encoding the same; a strain expressing a variant of SEQ ID NO: 51 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having a variant activity of SEQ ID NO: 51 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation.
- the upper limit is not particularly limited, and may be, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less).
- the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 27.5% (or about 1.28 times) compared to the parent strain before mutation or an unmodified microorganism, but is not limited thereto. does not
- the recombinant strain having an increased L-valine production ability is a strain comprising at least one of a mutant (proline dehydrogenase mutant) of SEQ ID NO: 61, a polynucleotide encoding the same, and a vector including the polynucleotide; a strain modified to express a variant of SEQ ID NO: 61 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 61 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having a variant activity of SEQ ID NO: 61 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation, 1.16 times or more, 1.17 times or more, 1.18 times or more, 1.19 times or more, about 1.2 times or more, 1.25 times or more, 1.26 times or more, 1.27 times or more, or about 1.28 times or more (the upper limit is not particularly limited, for example, about 10 times It may be up to a fold, up to about 5 times, up to about 3 times, or up to about 2 times) may be increased.
- the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 28.6% (or about 1.29 times) compared to the parent strain before mutation or an unmodified microorganism, but is not limited thereto. does not
- the recombinant strain with increased L-valine production ability is a variant of SEQ ID NO: 71 (tetrahydrodipicolinate N-succinyltransferase mutant), a polynucleotide encoding the same, and a vector comprising the polynucleotide.
- strains comprising one or more; a strain modified to express a variant of SEQ ID NO: 71 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 71 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 71 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, about 30% or less, or about 25% or less) It is not limited thereto, as long as it has an increase in the + value compared to the productivity.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation. , about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, or about 1.19 times or more (the upper limit is not particularly limited, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times may be below) may be increased.
- the recombinant strain having increased L-valine production capacity may have an L-valine production capacity of about 19% (or about 1.19 times) increased compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
- the recombinant strain having an increased L-valine production ability is a mutant (5,10-methylenetetrahydrofolate reductase mutant) of SEQ ID NO: 81, a polynucleotide encoding the same, and a vector comprising the polynucleotide.
- strains comprising one or more; a strain modified to express a variant of SEQ ID NO: 81 or a polynucleotide encoding the same; a strain expressing a variant of SEQ ID NO: 81 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 81 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation, 1.16 times or more, 1.17 times or more, 1.18 times or more, 1.19 times or more, about 1.2 times or more, 1.25 times or more, about 1.3 times or more, about 1.31 times or more, about 1.32 times or more, or about 1.33 times or more (the upper limit is a special limitation is not, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less) may be increased.
- the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 32.1% (or about 1.32 times) compared to the parent strain before mutation or an unmodified microorganism, but is not limited thereto. does not
- the recombinant strain having increased L-valine production capacity may include a strain comprising at least one of a mutant of SEQ ID NO: 91 (NCgl2805 protein mutant), a polynucleotide encoding the same, and a vector including the polynucleotide; a strain modified to express a variant of SEQ ID NO: 91 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 91 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 91 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the upper limit is not particularly limited, for example, about 200% or less , about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, about 30% or less, about 25% or less, or about 20% or less) increased However, it is not limited thereto, as long as it has an increased amount of + value compared to the production capacity of the parent strain or unmodified microorganism before mutation.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.14 times or more, compared to the parent strain or unmodified microorganism before mutation. , or about 1.15 times or more (the upper limit is not particularly limited, and may be, for example, about 10 times or less, about 5 times or less, about 3 times or less, about 2 times or less, about 2 times or less).
- the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 15% (or about 1.15 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
- the recombinant strain having an increased L-valine production ability includes any one or more of a mutant of SEQ ID NO: 101 (sugar porter MFS transporter mutant), a polynucleotide encoding the same, and a vector including the polynucleotide strain; a strain modified to express a variant of SEQ ID NO: 101 or a polynucleotide encoding the same; a strain expressing a variant of SEQ ID NO: 101 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having a variant activity of SEQ ID NO: 101 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation, about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.25 times or more, about 1.26 times or more, about 1.27 times or more, about 1.28 times or more, about 1.29 times or more, About 1.3 times or more, about 1.31 times or more, about 1.32 times or more, or about 1.33 times or more (the upper limit is not particularly limited, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less. may be increased).
- the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 33% (or about 1.33 times) compared to the parent strain before mutation or an unmodified microorganism, but is not limited thereto. does not
- the recombinant strain having an increased L-valine production ability is a strain comprising any one or more of a mutant (transcriptional regulator mutant) of SEQ ID NO: 111, a polynucleotide encoding the same, and a vector including the polynucleotide; a strain modified to express a variant of SEQ ID NO: 111 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 111 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having a variant activity of SEQ ID NO: 111 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation. , about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.21 times or more, or about 1.22 times or more (the upper limit is not particularly limited, for example, about 10 times or less , about 5 times or less, about 3 times or less, or about 2 times or less) may be increased.
- the recombinant strain with increased L-valine production capacity may have an L-valine production capacity increased by about 22.2% (or about 1.22 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
- the recombinant strain having an increased L-valine production ability includes any one or more of a mutant of SEQ ID NO: 121 (WhcA variant of the WhiB family transcriptional regulator), a polynucleotide encoding the same, and a vector including the polynucleotide strain; a strain modified to express a variant of SEQ ID NO: 121 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 121 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 121 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation. , about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.21 times or more, about 1.22 times or more, about 1.23 times or more, about 1.24 times or more, or about 1.25 times or more.
- the upper limit value is not particularly limited, and may be increased by, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less.
- the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 25% (or about 1.25 times) compared to the parent strain before mutation or an unmodified microorganism, but is not limited thereto. does not
- the recombinant strain having an increased L-valine production ability includes any one or more of a mutant (dihydrolipoyl acetyltransferase mutant) of SEQ ID NO: 131, a polynucleotide encoding the same, and a vector including the polynucleotide strain comprising; a strain modified to express a variant of SEQ ID NO: 131 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 131 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 131 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation.
- the recombinant strain having increased L-valine production capacity may have an L-valine production capacity increased by about 30% (or about 1.3 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
- the recombinant strain having an increased L-valine production ability comprises any one or more of a mutant (2-isopropyl maleate synthetase mutant) of SEQ ID NO: 141, a polynucleotide encoding the same, and a vector including the polynucleotide strain comprising; a strain modified to express a variant of SEQ ID NO: 141 or a polynucleotide encoding the same; a strain expressing a variant of SEQ ID NO: 141 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 141 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation. , about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.25 times or more, about 1.26 times or more, or about 1.27 times or more (the upper limit is not particularly limited, for example, , about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less) may be increased.
- the recombinant strain having increased L-valine production capacity may have an L-valine production capacity increased by about 22.7% (or about 1.23 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
- the recombinant strain having increased L-valine production ability is a strain comprising at least one of a mutant (branched-chain amino acid permease mutant) of SEQ ID NO: 151, a polynucleotide encoding the same, and a vector including the polynucleotide ; a strain modified to express a variant of SEQ ID NO: 151 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 151 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 151 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation. , about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.25 times or more, about 1.26 times or more, about 1.27 times or more, or about 1.28 times or more (the upper limit is a special There is no limitation, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less) may be increased.
- the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 28.6% (or about 1.29 times) compared to the parent strain before mutation or an unmodified microorganism, but is not limited thereto. does not
- the recombinant strain having increased L-valine production ability is at least one of a mutant of SEQ ID NO: 161 (glyceraldehyde-3-phosphate dehydrogenase mutant), a polynucleotide encoding the same, and a vector including the polynucleotide a strain comprising; a strain modified to express a variant of SEQ ID NO: 161 or a polynucleotide encoding the same; a strain expressing a variant of SEQ ID NO: 161 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 161 (eg, a recombinant strain).
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation.
- the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation. , about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.25 times or more, or about 1.26 times or more (the upper limit is not particularly limited, for example, about 10 times or less , about 5 times or less, about 3 times or less, or about 2 times or less) may be increased.
- the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 26.3% (or about 1.26 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
- the term “about” includes all ranges including ⁇ 0.5, ⁇ 0.4, ⁇ 0.3, ⁇ 0.2, ⁇ 0.1, etc., and includes all values within a range equal to or similar to the value following the term about. However, it is not limited thereto.
- the term "unmodified microorganism” does not exclude a strain containing a mutation that can occur naturally in a microorganism, it is a wild-type strain or a natural-type strain itself, or a genetic variation caused by natural or artificial factors. It may mean the strain before being changed.
- the unmodified microorganism may refer to a strain in which the protein variant described herein has not been introduced or has been introduced.
- the "unmodified microorganism” may be used interchangeably with "strain before modification", “microbe before modification”, “unmodified strain”, “unmodified strain”, “unmodified microorganism” or "reference microorganism”.
- the microorganism of the present application is Corynebacterium glutamicum ( Corynebacterium glutamicum ), Corynebacterium crudilactis ), Corynebacterium deserti ( Corynebacterium deserti ), Cory Nebacterium efficiens ( Corynebacterium efficiens ), Corynebacterium callunae ), Corynebacterium stationis , Corynebacterium stationis ), Corynebacterium singulare ( Corynebacterium singulare ), Corynebacterium halo Tolerans ( Corynebacterium halotolerans ), Corynebacterium striatum ( Corynebacterium striatum ), Corynebacterium ammoniagenes ( Corynebacterium ammoniagenes ), Corynebacterium pollutisoli ( Corynebacterium pollutisoli ), Corynebacterium imitans imitans imitans imitans imit
- the term “weakened” of a polypeptide is a concept that includes both reduced or no activity compared to intrinsic activity.
- the attenuation may be used interchangeably with terms such as inactivation, deficiency, down-regulation, decrease, reduce, attenuation, and the like.
- the attenuation is when the activity of the polypeptide itself is reduced or eliminated compared to the activity of the polypeptide possessed by the original microorganism due to mutation of the polynucleotide encoding the polypeptide, etc.
- the overall polypeptide activity level and/or concentration (expression amount) in the cell is lower than that of the native strain due to (translation) inhibition, etc., when the expression of the polynucleotide is not made at all, and/or when the expression of the polynucleotide is Even if there is no activity of the polypeptide, it may also be included.
- the “intrinsic activity” refers to the activity of a specific polypeptide originally possessed by the parent strain, wild-type or unmodified microorganism before transformation when the trait is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activity before modification”. “Inactivation, deficiency, reduction, downregulation, reduction, attenuation” of the activity of a polypeptide compared to the intrinsic activity means that the activity of the specific polypeptide originally possessed by the parent strain or unmodified microorganism before transformation is lowered.
- Attenuation of the activity of such a polypeptide may be performed by any method known in the art, but is not limited thereto, and may be achieved by application of various methods well known in the art (eg, Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012, etc.).
- the attenuation of the polypeptide of the present application is
- an antisense oligonucleotide eg, antisense RNA
- an antisense oligonucleotide that complementarily binds to the transcript of said gene encoding the polypeptide
- deletion of a part or all of the gene encoding the polypeptide may be the removal of the entire polynucleotide encoding the endogenous target polypeptide in the chromosome, replacement with a polynucleotide in which some nucleotides are deleted, or replacement with a marker gene.
- the expression control region includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating the termination of transcription and translation.
- the base sequence modification encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a base encoding another start codon having a lower polypeptide expression rate than the intrinsic start codon It may be substituted with a sequence, but is not limited thereto.
- the modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above is a deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to weaken the activity of the polypeptide.
- a combination thereof may result in a mutation in sequence, or replacement with an amino acid sequence or polynucleotide sequence improved to have weaker activity or an amino acid sequence or polynucleotide sequence improved to have no activity, but is not limited thereto.
- the expression of a gene may be inhibited or attenuated, but is not limited thereto.
- antisense oligonucleotide eg, antisense RNA
- antisense RNA an antisense oligonucleotide that complementarily binds to the transcript of the gene encoding the polypeptide
- Weintraub, H. et al. Antisense-RNA as a molecular tool. for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986].
- RTE reverse transcription engineering
- the term “enhancement” of a polypeptide activity means that the activity of the polypeptide is increased compared to the intrinsic activity.
- the reinforcement may be used interchangeably with terms such as activation, up-regulation, overexpression, and increase.
- activation, enhancement, up-regulation, overexpression, and increase may include all of those exhibiting an activity that was not originally possessed, or exhibiting an improved activity compared to an intrinsic activity or an activity prior to modification.
- intrinsic activity refers to the activity of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before the transformation when the trait is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activity before modification”.
- Enhancement”, “up-regulation”, “overexpression” or “increase” in the activity of a polypeptide compared to its intrinsic activity means that the activity and/or concentration (expression) of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before transformation. amount), which means improved.
- the enrichment can be achieved by introducing an exogenous polypeptide, or by enhancing the activity and/or concentration (expression amount) of the endogenous polypeptide. Whether or not the activity of the polypeptide is enhanced can be confirmed from the increase in the level of activity, expression level, or the amount of product excreted from the polypeptide.
- the enhancement of the activity of the polypeptide can be applied by various methods well known in the art, and is not limited as long as it can enhance the activity of the target polypeptide compared to the microorganism before modification. Specifically, it may be one using genetic engineering and/or protein engineering well known to those skilled in the art, which is a routine method of molecular biology, but is not limited thereto (eg, Sitnicka et al. Functional Analysis of Genes. Advances in Cell). Biology 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012, etc.).
- modification of the polynucleotide sequence encoding the polypeptide to enhance the polypeptide activity eg, modification of the polynucleotide sequence of the polypeptide gene to encode a polypeptide modified to enhance the activity of the polypeptide
- the increase in the intracellular copy number of the polynucleotide encoding the polypeptide is achieved by introduction into the host cell of a vector to which the polynucleotide encoding the polypeptide is operably linked, which can replicate and function independently of the host it may be Alternatively, the polynucleotide encoding the polypeptide may be achieved by introducing one copy or two or more copies into a chromosome in a host cell.
- the introduction into the chromosome may be performed by introducing a vector capable of inserting the polynucleotide into the chromosome in the host cell into the host cell, but is not limited thereto.
- the vector is the same as described above.
- Replacing the gene expression control region (or expression control sequence) on the chromosome encoding the polypeptide with a sequence with strong activity is, for example, deletion, insertion, non-conservative or Conservative substitution or a combination thereof may result in a mutation in the sequence, or replacement with a sequence having a stronger activity.
- the expression control region is not particularly limited thereto, but may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence controlling the termination of transcription and translation.
- the original promoter may be replaced with a strong promoter, but is not limited thereto.
- Examples of known strong promoters include CJ1 to CJ7 promoters (US 7662943 B2), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter, SPL13 (sm3) promoter (US Patent US 10584338 B2), O2 promoter (US Patent US 10273491 B2), tkt promoter, yccA promoter, etc., but is not limited thereto.
- Modification of the nucleotide sequence encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a nucleotide sequence encoding another start codon having a higher expression rate of the polypeptide compared to the intrinsic start codon. It may be a substitution, but is not limited thereto.
- the modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above may include deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide;
- a combination thereof may result in sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have stronger activity or an amino acid sequence or polynucleotide sequence improved to increase activity, but is not limited thereto.
- the replacement may be specifically performed by inserting a polynucleotide into a chromosome by homologous recombination, but is not limited thereto.
- the vector used may further include a selection marker for confirming whether or not the chromosome is inserted.
- the selection marker is the same as described above.
- the introduction of the foreign polynucleotide exhibiting the activity of the polypeptide may be the introduction of the foreign polynucleotide encoding the polypeptide exhibiting the same/similar activity as the polypeptide into a host cell.
- the foreign polynucleotide is not limited in its origin or sequence as long as it exhibits the same/similar activity as the polypeptide.
- the method used for the introduction can be performed by appropriately selecting a known transformation method by those skilled in the art, and the introduced polynucleotide is expressed in a host cell to generate a polypeptide and increase its activity.
- Codon optimization of the polynucleotide encoding the polypeptide is codon-optimized so that the transcription or translation of the endogenous polynucleotide is increased in the host cell, or the transcription and translation of the foreign polynucleotide is optimized in the host cell. It may be that its codons are optimized so that the
- Selecting an exposed site by analyzing the tertiary structure of the polypeptide and modifying or chemically modifying it is, for example, by comparing the sequence information of the polypeptide to be analyzed with a database in which sequence information of known proteins is stored to determine the degree of sequence similarity. Accordingly, it may be to determine a template protein candidate, check the structure based on this, and select an exposed site to be modified or chemically modified and modified or modified.
- Such enhancement of polypeptide activity is to increase the activity or concentration of the corresponding polypeptide based on the activity or concentration of the polypeptide expressed in the wild-type or pre-modified microbial strain, or increase the amount of product produced from the polypeptide.
- the present invention is not limited thereto.
- Modification of some or all of the polynucleotide in the microorganism of the present application is (a) homologous recombination using a vector for chromosome insertion in the microorganism or engineered nuclease (e.g., CRISPR) -Cas9) and/or (b) induced by light and/or chemical treatment such as ultraviolet and radiation, but not limited thereto.
- the method for modifying part or all of the gene may include a method by DNA recombination technology.
- a part or all of the gene may be deleted.
- the injected nucleotide sequence or vector may include a dominant selection marker, but is not limited thereto.
- Another aspect of the present application provides a method for producing L-amino acids, comprising the step of culturing a Corynebacterium glutamicum strain comprising the mutant of the present application or the polynucleotide of the present application in a medium.
- the L-amino acid production method of the present application may include culturing a Corynebacterium glutamicum strain comprising the mutant of the present application or the polynucleotide of the present application or the vector of the present application in a medium.
- L-amino acid of the present application may be L-valine.
- the term "cultivation” means growing the Corynebacterium glutamicum strain of the present application under moderately controlled environmental conditions.
- the culture process of the present application may be performed according to a suitable medium and culture conditions known in the art. Such a culture process can be easily adjusted and used by those skilled in the art according to the selected strain.
- the culture may be a batch, continuous and/or fed-batch, but is not limited thereto.
- the term "medium” refers to a material in which nutrients required for culturing the Corynebacterium glutamicum strain of the present application are mixed as a main component, and nutrients including water essential for survival and growth and growth factors.
- any medium and other culture conditions used for culturing the Corynebacterium glutamicum strain of the present application may be used without any particular limitation as long as it is a medium used for culturing conventional microorganisms, but the Corynebacterium glutamicum of the present application Lium glutamicum strain can be cultured while controlling the temperature, pH, etc. under aerobic conditions in a conventional medium containing an appropriate carbon source, nitrogen source, phosphorus, inorganic compound, amino acid and / or vitamin and the like.
- the culture medium for the Corynebacterium sp. strain can be found in the literature ["Manual of Methods for General Bacteriology” by the American Society for Bacteriology (Washington D.C., USA, 1981)].
- the carbon source includes carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, maltose, and the like; sugar alcohols such as mannitol and sorbitol; organic acids such as pyruvic acid, lactic acid, citric acid and the like; amino acids such as glutamic acid, methionine, lysine, and the like may be included.
- natural organic nutrient sources such as starch hydrolyzate, molasses, blackstrap molasses, rice winter, cassava, sugar cane offal and corn steep liquor can be used, specifically glucose and sterilized pre-treated molasses (i.e., converted to reducing sugar). molasses) may be used, and other appropriate amounts of carbon sources may be variously used without limitation. These carbon sources may be used alone or in combination of two or more, but is not limited thereto.
- nitrogen source examples include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine, and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or degradation products thereof, defatted soybean cake or degradation products thereof, etc. can be used These nitrogen sources may be used alone or in combination of two or more, but is not limited thereto.
- inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate
- Amino acids such as glutamic acid, methionine, glutamine
- organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract
- the phosphorus may include potassium first potassium phosphate, second potassium phosphate, or a sodium-containing salt corresponding thereto.
- potassium first potassium phosphate potassium phosphate
- second potassium phosphate or a sodium-containing salt corresponding thereto.
- sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, etc. may be used, and in addition, amino acids, vitamins and/or suitable precursors may be included. These components or precursors may be added to the medium either batchwise or continuously. However, the present invention is not limited thereto.
- compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. may be added to the medium in an appropriate manner to adjust the pH of the medium.
- an antifoaming agent such as fatty acid polyglycol ester may be used to suppress bubble formation.
- oxygen or oxygen-containing gas may be injected into the medium, or nitrogen, hydrogen or carbon dioxide gas may be injected without or without gas to maintain anaerobic and microaerobic conditions, it is not
- the culture temperature may be maintained at 20 to 45° C., specifically, 25 to 40° C., and may be cultured for about 10 to 160 hours, but is not limited thereto.
- the L-amino acid produced by the culture of the present application may be secreted into the medium or may remain in the cell.
- the L-amino acid production method of the present application includes the steps of preparing the Corynebacterium glutamicum strain of the present application, preparing a medium for culturing the strain, or a combination thereof (regardless of the order, in any order) ), for example, prior to the culturing step, may further include.
- the method for producing L-amino acids of the present application may further include recovering L-amino acids from the culture medium (the culture medium) or the Corynebacterium glutamicum strain.
- the recovering step may be further included after the culturing step.
- the recovery may be to collect the desired L-amino acid using a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method, etc. .
- a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method, etc. .
- chromatography such as island chromatography, HPLC, or a combination thereof may be used, and a desired L-amino acid may be recovered from a medium or a microorganism using a suitable method known in the art.
- the L-amino acid production method of the present application may include an additional purification step.
- the purification may be performed using a suitable method known in the art.
- the recovery step and the purification step are performed continuously or discontinuously, regardless of the order, or integrated into one step may be performed, but is not limited thereto.
- variants, polynucleotides, vectors, strains, and the like are as described in the other aspects above.
- Another aspect of the present application is a variant of the present application, a polynucleotide encoding the variant, a vector including the polynucleotide or a Corynebacterium glutamicum strain comprising the polynucleotide of the present application; the culture medium; Or to provide a composition for the production of L- amino acids comprising a combination of two or more of them.
- composition of the present application may further include any suitable excipients commonly used in compositions for the production of amino acids, and these excipients may be, for example, preservatives, wetting agents, dispersing agents, suspending agents, buffering agents, stabilizing agents or isotonic agents, etc.
- excipients commonly used in compositions for the production of amino acids
- these excipients may be, for example, preservatives, wetting agents, dispersing agents, suspending agents, buffering agents, stabilizing agents or isotonic agents, etc.
- the present invention is not limited thereto.
- composition of the present application variants, polynucleotides, vectors, strains, media and L-amino acids are the same as those described in the other aspects above.
- FIG. 1 is a schematic diagram of a pDCM2 plasmid.
- Example 1 Production of microorganisms expressing NCgl1391 protein mutant and L-valine production using the same
- a plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd.
- a plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73].
- the thus synthesized pDCM2 plasmid has the following characteristics.
- PCR was performed using a primer pair of sequences of SEQ ID NOs: 5 and 6 and a pair of primers of sequences of SEQ ID NOs: 7 and 8, respectively.
- overlapping PCR was performed again using the primer pair of SEQ ID NO: 5 and SEQ ID NO: 8 to obtain a fragment.
- PCR was repeated 30 times for 30 seconds at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-NCgl1391 (S109F). The sequences of the primers used in this Example are shown in Table 1 below.
- Example 1.2 The vector prepared in Example 1.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
- the L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 1.3.1.
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 3 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
- the mutant strain CA08-0072_NCgl1391_S109F was named Corynebacterium glutamicum CA08-1743, and was deposited with the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, with an accession number KCCM12860P on December 02, 2020.
- KCCM Korean Culture of Microorganisms
- Example 2 Production of microorganisms expressing ATP phosphoribosyltransferase mutants and L-valine production using the same
- a plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd.
- a plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73].
- the thus synthesized pDCM2 plasmid has the following characteristics.
- PCR was performed using a primer pair of sequences of SEQ ID NOs: 15 and 16 and a pair of primers of sequences of SEQ ID NOs: 17 and 18, respectively.
- overlapping PCR was performed again using the primer pair of SEQ ID NO: 15 and SEQ ID NO: 18 to obtain a fragment.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-hisG(S130F). The sequences of the primers used in this Example are shown in Table 4 below.
- Example 2.2 The vector prepared in Example 2.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
- the L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 2.3.1.
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 6 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
- the CA08-0072_hisG_S130F strain exhibited increased L-valine-producing ability compared to the control.
- the mutant strain CA08-0072_hisG_S130F was named Corynebacterium glutamicum CA08-1744, and was deposited with the accession number KCCM12861P on December 02, 2020 at the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty.
- KCCM Korean Culture of Microorganisms
- Example 3 Preparation of microorganisms expressing asparagine synthase variants and L-valine production using the same
- a plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd.
- a plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73].
- the thus synthesized pDCM2 plasmid has the following characteristics.
- PCR was performed using the primer pair of the sequences of SEQ ID NOs: 25 and 26 and the primer pair of the sequences of SEQ ID NOs: 27 and 28 using gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, respectively.
- gDNA genomic DNA
- overlapping PCR was performed again using a pair of primers of SEQ ID NO: 25 and SEQ ID NO: 28 to obtain a fragment.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-ltsA (P192L). The sequences of the primers used in this Example are shown in Table 7 below.
- Example 3.2 The vector prepared in Example 3.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
- the L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 3.3.1.
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 9 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
- the mutant strain CA08-0072_ltsA_P192L was named Corynebacterium glutamicum CA08-1747, and was deposited with the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, as of December 02, 2020 with an accession number KCCM12863P.
- KCCM Korean Culture of Microorganisms
- Example 4 Production of microorganisms expressing spermidine synthase variants and L-valine production using the same
- a plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd.
- a plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73].
- the thus synthesized pDCM2 plasmid has the following characteristics.
- PCR was performed using the primer pair of SEQ ID NOs: 35 and 36 and the primer pair of SEQ ID NOs: 37 and 38 using gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, respectively.
- gDNA genomic DNA
- overlapping PCR was performed again using the primer pair of SEQ ID NO: 35 and SEQ ID NO: 38 to obtain a fragment.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-speE (A213V). The sequences of the primers used in this Example are shown in Table 10 below.
- Example 4.2 The vector prepared in Example 4.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
- the L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 4.3.1.
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 12 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
- the CA08-0072_speE_A213V strain exhibited increased L-valine-producing ability compared to the control.
- the mutant strain CA08-0072_speE_A213V was named Corynebacterium glutamicum CA08-1748, and was deposited with the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, under the accession number KCCM12864P on December 02, 2020.
- KCCM Korean Culture of Microorganisms
- Example 5 Production of microorganisms expressing cysteine sulfinate disulfinase variants and L-valine production using the same
- a plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd.
- a plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73].
- the thus synthesized pDCM2 plasmid has the following characteristics.
- PCR was performed using the primer pair of the sequences of SEQ ID NOs: 45 and 46 and the primer pair of the sequences of SEQ ID NOs: 47 and 48 using gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, respectively.
- gDNA genomic DNA
- overlapping PCR was performed again using the primer pair of SEQ ID NO: 45 and SEQ ID NO: 48 to obtain a fragment.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-nadS (P302S). The sequences of the primers used in this Example are shown in Table 13 below.
- Example 5.2 The vector prepared in Example 5.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
- the L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 5.3.1.
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 15 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
- the CA08-0072_nadS_P302S strain exhibited increased L-valine-producing ability compared to the control.
- the mutant strain CA08-0072_nadS_P302S was named Corynebacterium glutamicum CA08-1751, and was deposited with the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, with an accession number KCCM12867P as of December 02, 2020.
- KCCM Korean Culture of Microorganisms
- Example 6 Production of microorganisms expressing urease accessory protein variants and L-valine production using the same
- a plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd.
- a plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73].
- the thus synthesized pDCM2 plasmid has the following characteristics.
- PCR was performed using the primer pair of sequences of SEQ ID NOs: 55 and 56 and the primer pair of sequences of SEQ ID NOs: 57 and 58, respectively, using gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template.
- gDNA genomic DNA
- overlapping PCR was performed again using the primer pair of SEQ ID NO: 55 and SEQ ID NO: 58 to obtain a fragment.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-ureE (P56L). The sequences of the primers used in this Example are shown in Table 16 below.
- Example 6.2 The vector prepared in Example 6.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 18 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
- the mutant strain CA08-0072_ureE_P56L was named Corynebacterium glutamicum CA08-1749, and was deposited with the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, as of December 02, 2020 with an accession number KCCM12865P.
- KCCM Korean Culture of Microorganisms
- Example 7 Production of microorganisms expressing proline dehydrogenase variants and L-valine production using the same
- a plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd.
- a plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73].
- the thus synthesized pDCM2 plasmid has the following characteristics.
- PCR was performed using a primer pair of sequences of SEQ ID NOs: 65 and 66 and a pair of primers of sequences of SEQ ID NOs: 67 and 68, respectively.
- overlapping PCR was performed again using the primer pair of SEQ ID NO: 65 and SEQ ID NO: 68 to obtain a fragment.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-putA(G834S). The sequences of the primers used in this Example are shown in Table 19 below.
- Example 7.2 The vector prepared in Example 7.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 21 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
- the CA08-0072_putA_G834S strain exhibited increased L-valine-producing ability compared to the control.
- the mutant strain CA08-0072_putA_G834S was named Corynebacterium glutamicum CA08-1750, and was deposited at the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, with an accession number KCCM12866P as of December 02, 2020.
- KCCM Korean Culture of Microorganisms
- Example 8 Preparation of microorganisms expressing tetrahydrodipicolinate N-succinyltransferase mutant and L-valine production using the same
- a plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd.
- a plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73].
- the thus synthesized pDCM2 plasmid has the following characteristics.
- PCR was performed using a pair of primers of SEQ ID NOs: 75 and 76 and a pair of primers of SEQ ID NOs: 77 and 78 using gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, respectively.
- gDNA genomic DNA
- overlapping PCR was performed again using the primer pair of SEQ ID NO: 75 and SEQ ID NO: 78 to obtain a fragment.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-dapD2 (R140C). The sequences of the primers used in this Example are shown in Table 22 below.
- Example 8.2 The vector prepared in Example 8.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
- a strain in which homologous recombination occurred was selected using the primer pair of SEQ ID NOs: 79 and 80, and was named CA08-0072_dapD2_R140C.
- the sequences of the primers used in this Example are shown in Table 23 below.
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentration of L-valine is shown in Table 24 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
- the CA08-0072_dapD2_R140C strain exhibited increased L-valine-producing ability compared to the control.
- the mutant strain CA08-0072_dapD2_R140C was named Corynebacterium glutamicum CA08-1752, and was deposited at the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, with an accession number KCCM12868P as of December 02, 2020.
- KCCM Korean Culture of Microorganisms
- Example 9 Preparation of microorganisms expressing variants of 5,10-methylenetetrahydrofolate reductase and production of L-valine using the same
- a plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd.
- a plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73].
- the thus synthesized pDCM2 plasmid has the following characteristics.
- PCR was performed using a primer pair of sequences of SEQ ID NOs: 85 and 86 and a pair of primers of sequences of SEQ ID NOs: 87 and 88, respectively.
- overlapping PCR was performed again using the primer pair of SEQ ID NO: 85 and SEQ ID NO: 88 to obtain a fragment.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-metF(R4H). The sequences of the primers used in this Example are shown in Table 25 below.
- the vector prepared in Example 9.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
- the L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 9.3.1.
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 27 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
- the mutant strain CA08-0072_metF_R4H was named Corynebacterium glutamicum CA08-1746, and was deposited with the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, with an accession number KCCM12862P as of December 02, 2020.
- KCCM Korean Culture of Microorganisms
- Example 10 Production of microorganisms expressing NCgl2805 protein variant and L-valine production using the same
- a plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd.
- a plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73].
- the thus synthesized pDCM2 plasmid has the following characteristics.
- the mutant (E253K; SEQ ID NO: 91) in which the glutamic acid (Glu, E) at position 253 of the protein consisting of the amino acid sequence of SEQ ID NO: 93 is substituted with lysine (Lys, K) on L-valine production
- Glu, E glutamic acid
- lysine Lys, K
- PCR was performed using a primer pair of sequences of SEQ ID NOs: 95 and 96 and a pair of primers of sequences of SEQ ID NOs: 97 and 98, respectively.
- overlapping PCR was performed again using the primer pair of SEQ ID NO: 95 and SEQ ID NO: 98 to obtain a fragment.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-NCgl2805 (E253K). The sequences of the primers used in this Example are shown in Table 28 below.
- Example 10 The vector prepared in Example 10.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
- the L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 10.3.1.
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 30 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
- the mutant strain CA08-0072_NCgl2805_E253K was named Corynebacterium glutamicum CA08-1745, and was deposited with the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, as of December 22, 2020 with an accession number KCCM12909P.
- KCCM Korean Culture of Microorganisms
- Example 11 Preparation of a recombinant strain comprising a sugar porter-based MFS transporter mutant and L-valine production using the same
- PCR was performed, respectively.
- overlapping PCR was performed again using the primer pair of SEQ ID NO: 105 and SEQ ID NO: 108 to obtain a fragment.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-iolT1 (A315V). The sequences of the primers used in this Example are shown in Table 31 below.
- Example 11.1 The vector prepared in Example 11.1 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P) (see US 8,465,962).
- a strain having homologous recombination was selected using the primer pair of SEQ ID NOs: 109 and 110, and named CA08-0072_iolT1_A315V.
- the sequences of the primers used in this Example are shown in Table 32 below.
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 33 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
- the CA08-0072_iolT1_A315V strain exhibited increased L-valine-producing ability compared to the control.
- Glu, E glutamic acid
- lysine Lysine
- PCR was performed using a primer pair of SEQ ID NOs: 115 and 116 and a pair of primers of SEQ ID NOs: 117 and 118, respectively.
- overlapping PCR was performed again using a pair of primers of SEQ ID NO: 115 and SEQ ID NO: 118 to obtain a fragment.
- PCR was repeated 30 times for 30 seconds at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-iolR (E247K). The sequences of the primers used in this Example are shown in Table 34 below.
- Example 12.1 The vector prepared in Example 12.1 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P) (see US 8,465,962).
- a strain having homologous recombination was selected using the primer pair of SEQ ID NOs: 119 and 120 and named CA08-0072_iolR_E247K.
- the sequences of the primers used in this Example are shown in Table 35 below.
- the L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 12.2.1.
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 36 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
- the CA08-0072_iolR_E247K strain exhibited increased L-valine-producing ability compared to the control.
- PCR was performed using the primer pair of SEQ ID NOs: 125 and 126 and the primer pair of SEQ ID NOs: 127 and 128 using gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, respectively.
- gDNA genomic DNA
- overlapping PCR was performed again using a pair of primers of SEQ ID NO: 125 and SEQ ID NO: 128 to obtain a fragment.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-whcA (G40D). The sequences of the primers used in this Example are shown in Table 37 below.
- Example 13.1 The vector prepared in Example 13.1 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P) (see US 8,465,962).
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 39 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
- the CA08-0072_whcA_G40D strain exhibited increased L-valine-producing ability compared to the control.
- Example 14 Preparation of a recombinant strain containing a dihydrolipoyl acetyltransferase mutant and L-valine production using the same
- PCR was performed, respectively.
- overlapping PCR was performed again using a primer pair of SEQ ID NO: 135 and SEQ ID NO: 138 to obtain a fragment.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-aceF (G77D). The sequences of the primers used in this Example are shown in Table 40 below.
- Example 14.1 The vector prepared in Example 14.1 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P) (see US 8,465,962).
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentration of L-valine is shown in Table 42 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
- the CA08-0072_aceF_G77D strain exhibited increased L-valine-producing ability compared to the control.
- Example 15 Preparation of recombinant strain containing 2-isopropylmalate synthetase mutant and production of L-valine using the same
- PCR was performed, respectively.
- overlapping PCR was performed again using a primer pair of SEQ ID NO: 145 and SEQ ID NO: 148 to obtain a fragment.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-leuA (P87L). The sequences of the primers used in this Example are shown in Table 43 below.
- Example 15.1 The vector prepared in Example 15.1 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P) (see US 8,465,962).
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 45 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
- the CA08-0072_leuA_P87L strain exhibited an increased L-valine-producing ability compared to the control.
- Example 16 Preparation of a recombinant strain containing a branched-chain amino acid permease mutant and L-valine production using the same
- PCR was performed using the primer pair of the sequences of SEQ ID NOs: 155 and 156 and the primer pair of the sequences of SEQ ID NOs: 157 and 158 using gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, respectively.
- gDNA genomic DNA
- overlapping PCR was performed again using a primer pair of SEQ ID NO: 155 and SEQ ID NO: 158 to obtain a fragment.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-brnQ(A112T). The sequences of the primers used in this Example are shown in Table 46 below.
- Example 161 The vector prepared in Example 16.1 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P) (see US 8,465,962).
- the L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 16.2.1.
- each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentration of L-valine is shown in Table 48 below.
- Glucose 10 g broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
The present application relates to a novel L-valine-producing Corynebacterium glutamicum strain and a method for producing L-valine using the strain.
Description
본 출원은 신규한 L-발린 생산 코리네박테리움 글루타미쿰 균주 및 상기 균주를 이용한 L-발린 생산 방법에 관한 것이다. The present application relates to a novel L-valine-producing Corynebacterium glutamicum strain and a method for producing L-valine using the strain.
L-아미노산 및 기타 유용물질을 생산하기 위하여, 고효율 생산 미생물 및 발효공정기술 개발을 위한 다양한 연구들이 수행되고 있다. 예를 들어, L-발린 생합성에 관여하는 효소를 코딩하는 유전자의 발현을 증가시키거나 또는 생합성에 불필요한 유전자를 제거하는 것과 같은 목적 물질 특이적 접근 방법이 주로 이용되고 있다(US 8465962 B2).In order to produce L-amino acids and other useful substances, various studies are being conducted for the development of high-efficiency production microorganisms and fermentation process technology. For example, a target substance-specific approach such as increasing the expression of a gene encoding an enzyme involved in L-valine biosynthesis or removing a gene unnecessary for biosynthesis is mainly used (US8465962 B2).
L-발린의 수요 증가에 따라 효과적인 L-발린의 생산능 증가를 위한 연구가 필요한 실정이다.As the demand for L-valine increases, there is a need for research to effectively increase the production capacity of L-valine.
본 출원의 하나의 목적은 다음의 (1) 내지 (17)로 이루어진 군에서 선택된 하나 이상 또는 2개 이상 (예컨대, 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개, 13개, 14개, 15개, 16개 또는 17개)의 단백질 변이체를 제공하는 것이다:One object of the present application is one or more or two or more selected from the group consisting of the following (1) to (17) (eg, 1, 2, 3, 4, 5, 6, 7) , 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17) protein variants:
(1) 서열번호 3의 아미노산 서열의 109번째 위치에 상응하는 아미노산인 세린(Serine, Ser, S)이 페닐알라닌(Phenylalanine, Phe, F)으로 치환된, 서열번호 1로 기재된 아미노산 서열로 이루어진, 단백질(NCgl1391) 변이체;(1) Serine (Serine, Ser, S), which is an amino acid corresponding to position 109 of the amino acid sequence of SEQ ID NO: 3, is substituted with phenylalanine (Phenylalanine, Phe, F), consisting of the amino acid sequence shown in SEQ ID NO: 1, protein (NCgl1391) variant;
(2) 서열번호 13의 아미노산 서열의 130번째 위치에 상응하는 아미노산인 세린(serine, Ser, S)이 페닐알라닌(Phenylalanine, Phe, F)으로 치환된, 서열번호 11로 기재된 아미노산 서열로 이루어진, ATP 포스포리보실트랜스퍼라제(ATP phosphoribosyltransferase) 변이체;(2) serine (serine, Ser, S), which is an amino acid corresponding to position 130 of the amino acid sequence of SEQ ID NO: 13, is substituted with phenylalanine (Phenylalanine, Phe, F), consisting of the amino acid sequence shown in SEQ ID NO: 11, ATP an ATP phosphoribosyltransferase variant;
(3) 서열번호 23의 아미노산 서열의 192번째 위치에 상응하는 아미노산인 프롤린(Proline, Pro, P)이 류신(Leucine, Leu, L)으로 치환된, 서열번호 21로 기재된 아미노산 서열로 이루어진, 아스파라긴 신타제(Asparagine synthase) 변이체;(3) Asparagine, consisting of the amino acid sequence set forth in SEQ ID NO: 21, in which proline (Proline, Pro, P), which is an amino acid corresponding to position 192 of the amino acid sequence of SEQ ID NO: 23, is substituted with leucine (Leucine, Leu, L) Asparagine synthase variants;
(4) 서열번호 33의 아미노산 서열의 213번째 위치에 상응하는 아미노산인 알라닌(Alanine, Ala, A)이 발린(Valine, Val, V)으로 치환된, 서열번호 31로 기재된 아미노산 서열로 이루어진, 스퍼미딘 신타제(Spermidine synthase) 변이체;(4) Alanine (Alanine, Ala, A), which is an amino acid corresponding to position 213 of the amino acid sequence of SEQ ID NO: 33, is substituted with valine (Valine, Val, V), consisting of the amino acid sequence set forth in SEQ ID NO: 31, spur Spermidine synthase variants;
(5) 서열번호 43의 아미노산 서열의 302번째 위치에 상응하는 아미노산인 프롤린(Proline, Pro, P)이 세린(Serine, Ser, S)으로 치환된, 서열번호 41로 기재된 아미노산 서열로 이루어진, 시스테인 설피네이트 디설피나제(Cysteine sulfinate desulfinase) 변이체(5) cysteine consisting of the amino acid sequence set forth in SEQ ID NO: 41, in which proline (Proline, Pro, P), which is an amino acid corresponding to position 302 of the amino acid sequence of SEQ ID NO: 43, is substituted with serine (Serine, Ser, S) Cysteine sulfinate desulfinase variants
(6) 서열번호 53의 아미노산 서열의 56번째 위치에 상응하는 아미노산인 프롤린(Proline, Pro, P)이 류신(Leucine, Leu, L)으로 치환된, 서열번호 51로 기재된 아미노산 서열로 이루어진, 우레아제 부속 단백질(Urease accessory protein) 변이체;(6) Proline (Proline, Pro, P), which is an amino acid corresponding to the 56th position of the amino acid sequence of SEQ ID NO: 53, is substituted with leucine (Leucine, Leu, L), consisting of the amino acid sequence set forth in SEQ ID NO: 51, urease Urease accessory protein variants;
(7) 서열번호 63의 아미노산 서열의 834번째 위치에 상응하는 아미노산인 글리신(Glycine, Gly, G)이 세린(Serine, Ser, S)으로 치환된, 서열번호 61로 기재된 아미노산 서열로 이루어진, 프롤린 탈수소효소(Proline dehydrogenase) 변이체;(7) glycine (Glycine, Gly, G), which is an amino acid corresponding to position 834 of the amino acid sequence of SEQ ID NO: 63, is substituted with serine (Serine, Ser, S), consisting of the amino acid sequence set forth in SEQ ID NO: 61, proline Proline dehydrogenase variants;
(8) 서열번호 73의 아미노산 서열의 140번째 위치에 상응하는 아미노산인 아르기닌(Arginine, Arg, R)이 시스테인(Cysteine, Cys, C)으로 치환된, 서열번호 71로 기재된 아미노산 서열로 이루어진, 테트라하이드로디피콜리네이트 N-숙시닐트랜스퍼라제(Tetrahydrodipicolinate N-succinyltransferase) 변이체;(8) Arginine (Arginine, Arg, R), which is an amino acid corresponding to the 140th position of the amino acid sequence of SEQ ID NO: 73, is substituted with cysteine (Cysteine, Cys, C), consisting of the amino acid sequence set forth in SEQ ID NO: 71, tetra Hydrodipicolinate N-succinyltransferase (Tetrahydrodipicolinate N-succinyltransferase) variant;
(9) 서열번호 83의 아미노산 서열의 4번째 위치에 상응하는 아미노산인 아르기닌(Arginine, Arg, R)이 히스티딘(Histidine, His, H)으로 치환된, 서열번호 81로 기재된 아미노산 서열로 이루어진, 5,10-메틸렌테트라하이드로폴레이트 리덕타제(5,10-methylenetetrahydrofolate reductase) 변이체;(9) Arginine (Arginine, Arg, R), which is an amino acid corresponding to the 4th position of the amino acid sequence of SEQ ID NO: 83, is substituted with histidine (Histidine, His, H), consisting of the amino acid sequence set forth in SEQ ID NO: 81, 5 ,10-methylenetetrahydrofolate reductase (5,10-methylenetetrahydrofolate reductase) variant;
(10) 서열번호 93의 아미노산 서열의 253번째 위치에 상응하는 아미노산인 글루탐산(Glutamic acid, Glu, E)이 라이신(Lysine, Lys, K)으로 치환된, 서열번호 91로 기재된 아미노산 서열로 이루어진, 단백질(NCgl2805) 변이체;(10) Glutamic acid (Glutamic acid, Glu, E), which is an amino acid corresponding to position 253 of the amino acid sequence of SEQ ID NO: 93, is substituted with lysine (Lysine, Lys, K), consisting of the amino acid sequence set forth in SEQ ID NO: 91, protein (NCgl2805) variant;
(11) 서열번호 103의 아미노산 서열의 315번째 위치에 상응하는 아미노산인 알라닌(Alanine, Ala, A)이 발린(Valine, Val, V)으로 치환된, 서열번호 101로 기재된 아미노산 서열로 이루어진, 슈가 포터 계열 MFS 트랜스포터(sugar porter family MFS transporter) 변이체;(11) Alanine (Alanine, Ala, A), which is an amino acid corresponding to position 315 of the amino acid sequence of SEQ ID NO: 103, is substituted with valine (Valine, Val, V), consisting of the amino acid sequence shown in SEQ ID NO: 101, sugar Porter family MFS transporter (sugar porter family MFS transporter) variant;
(12) 서열번호 113의 아미노산 서열의 247번째 위치에 상응하는 아미노산인 글루탐산(Glutamic acid, Glu, E)이 라이신(Lysine, Lys, K)으로 치환된, 서열번호 111로 기재된 아미노산 서열로 이루어진, 전사 조절자(transcriptional regulator) 변이체;(12) Glutamic acid (Glu, E), which is an amino acid corresponding to the 247th position of the amino acid sequence of SEQ ID NO: 113, is substituted with lysine (Lysine, Lys, K), consisting of the amino acid sequence set forth in SEQ ID NO: 111, transcriptional regulator variants;
(13) 서열번호 123의 아미노산 서열의 40번째 위치에 상응하는 아미노산인 글리신(Glycine, Gly, G)이 아스파트산(Aspartic acid, Asp, D)으로 치환된, 서열번호 121로 기재된 아미노산 서열로 이루어진, WhiB 계열 전사 조절자 WhcA(WhiB family transcriptional regulator WhcA) 변이체;(13) The amino acid sequence shown in SEQ ID NO: 121 in which glycine (Glycine, Gly, G), which is an amino acid corresponding to the 40th position of the amino acid sequence of SEQ ID NO: 123, is substituted with aspartic acid (Asp, D) consisting of a WhiB family transcriptional regulator WhcA (WhcA) variant;
(14) 서열번호 133의 아미노산 서열의 77번째 위치에 상응하는 아미노산인 글리신(Glycine, Gly, G)이 아스파트산(Aspartic acid, Asp, D)으로 치환된, 서열번호 131로 기재된 아미노산 서열로 이루어진, 디히드로리포일 아세틸기전이효소(dihydrolipoamide acetyltransferase) 변이체;(14) The amino acid sequence shown in SEQ ID NO: 131 in which glycine (Glycine, Gly, G), which is an amino acid corresponding to the 77th position of the amino acid sequence of SEQ ID NO: 133, is substituted with aspartic acid (Asp, D) Consisting of, dihydrolipoyl acetyltransferase (dihydrolipoamide acetyltransferase) variant;
(15) 서열번호 143의 아미노산 서열의 87번째 위치에 상응하는 아미노산인 프롤린(Proline, Pro, P)이 류신(Leucine, Leu, L)으로 치환된, 서열번호 141로 기재된 아미노산 서열로 이루어진, 2-이소프로필말레이트합성효소(2-isopropylmalate synthase) 변이체;(15) Proline (Proline, Pro, P), which is an amino acid corresponding to the 87th position of the amino acid sequence of SEQ ID NO: 143, is substituted with leucine (Leucine, Leu, L), consisting of the amino acid sequence set forth in SEQ ID NO: 141, 2 -isopropylmalate synthase (2-isopropylmalate synthase) variant;
(16) 서열번호 153의 아미노산 서열의 112번째 위치에 상응하는 아미노산인 알라닌(Alanine, Ala, A)이 트레오닌(Threonine, Thr, T)으로 치환된, 서열번호 151로 기재된 아미노산 서열로 이루어진, 분지쇄아미노산 투과효소(branched-chain amino acid permease) 변이체; 및(16) Alanine (Alanine, Ala, A), which is an amino acid corresponding to the 112th position of the amino acid sequence of SEQ ID NO: 153, is substituted with Threonine (Threonine, Thr, T), consisting of the amino acid sequence set forth in SEQ ID NO: 151, branched branched-chain amino acid permease variants; and
(17) 서열번호 163의 아미노산 서열의 134번째 위치에 상응하는 아미노산인 글리신(Glycine, Gly, G)이 세린(Serine, Ser, S)으로 치환된, 서열번호 161로 기재된 아미노산 서열로 이루어진, 글리세르알데히드-3-인산탈수소효소(glyceraldehyde-3-phosphate dehydrogenase) 변이체.(17) glycine (Glycine, Gly, G), which is an amino acid corresponding to the 134th position of the amino acid sequence of SEQ ID NO: 163, is substituted with serine (Serine, Ser, S), consisting of the amino acid sequence set forth in SEQ ID NO: 161, glycine A glyceraldehyde-3-phosphate dehydrogenase variant.
본 출원의 다른 하나의 목적은 상기한 단백질 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another object of the present application is to provide a polynucleotide encoding the above-described protein variant.
본 출원의 또 다른 하나의 목적은, 상기한 (i) (1) 내지 (17)의 단백질 변이체로 이루어진 군에서 선택된 1종 이상의 단백질 변이체, (ii) 상기 (1) 내지 (17)의 단백질 변이체를 코딩하는 폴리뉴클레오티드로 이루어진 군에서 선택된 1종 이상의 폴리뉴클레오티드, 또는 (i) 및 (ii)의 조합을 포함하고, L-발린 생산능을 가진, 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 균주를 제공하는 것이다.Another object of the present application is, (i) one or more protein variants selected from the group consisting of protein variants of (1) to (17), (ii) protein variants of (1) to (17) above At least one polynucleotide selected from the group consisting of a polynucleotide encoding is to provide
본 출원의 또 다른 하나의 목적은, 상기한 (i) (1) 내지 (17)의 단백질 변이체로 이루어진 군에서 선택된 1종 이상의 단백질 변이체, (ii) 상기 (1) 내지 (17)의 단백질 변이체를 코딩하는 폴리뉴클레오티드로 이루어진 군에서 선택된 1종 이상의 폴리뉴클레오티드, 또는 (i) 및 (ii)의 조합을 포함하고, L-발린 생산능을 가진, 코리네박테리움 글루타미쿰 균주를 배지에서 배양하는 단계를 포함하는, L-발린 생산 방법을 제공하는 것이다.Another object of the present application is, (i) one or more protein variants selected from the group consisting of protein variants of (1) to (17), (ii) protein variants of (1) to (17) above Containing one or more polynucleotides selected from the group consisting of a polynucleotide encoding, or a combination of (i) and (ii), and having L-valine-producing ability, a Corynebacterium glutamicum strain is cultured in a medium It is to provide a method for producing L-valine, comprising the step of:
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다. 또한, 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.This will be described in detail as follows. Meanwhile, each description and embodiment disclosed in the present application may be applied to each other description and embodiment. That is, all combinations of the various elements disclosed in this application fall within the scope of this application. In addition, it cannot be seen that the scope of the present application is limited by the detailed description described below. In addition, a number of papers and patent documents are referenced throughout this specification and their citations are indicated. The disclosure contents of the cited papers and patent documents are incorporated herein by reference in their entirety to more clearly describe the level of the technical field to which the present invention pertains and the content of the present invention.
단백질 protein
변이체variant
및 폴리뉴클레오티드 and polynucleotides
(1) 단백질 변이체 (서열번호 1) 및 이를 코딩하는 폴리뉴클레오티드(1) protein variant (SEQ ID NO: 1) and polynucleotide encoding the same
본 출원의 하나의 양태는 서열번호 3의 아미노산 서열의 109번째 위치에 상응하는 아미노산인 세린(Serine, Ser, S)이 페닐알라닌(Phenylalanine, Phe, F)으로 치환된, 서열번호 1로 기재된 아미노산 서열로 이루어진, 단백질 변이체를 제공한다. One aspect of the present application is the amino acid sequence set forth in SEQ ID NO: 1 in which serine (Serine, Ser, S), which is an amino acid corresponding to position 109 of the amino acid sequence of SEQ ID NO: 3, is substituted with phenylalanine (Phenylalanine, Phe, F) It provides a protein variant consisting of.
일 예에서, 본 출원의 변이체는 서열번호 1로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.In one example, the variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 1, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 1로 기재된 아미노산 서열에서 서열번호 3의 아미노산 서열을 기준으로 109번 위치에 상응하는 아미노산은 페닐알라닌(Phenylalanine)이고, 상기 서열번호 1로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 109 based on the amino acid sequence of SEQ ID NO: 3 in the amino acid sequence set forth in SEQ ID NO: 1 is phenylalanine, and the amino acid sequence described in SEQ ID NO: 1 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 본 출원의 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이 증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the mutant of the present application may have an activity to increase L-valine production capacity compared to the wild-type polypeptide.
본 출원의 다른 하나의 양태는 상기 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant.
본 출원의 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 1로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 2의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 2의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant of the present application may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 1. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 2. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 2.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 2로 기재된 핵산 서열에서 서열번호 4의 핵산 서열을 기준으로 326번 위치에 상응하는 염기는 T이고, 상기 서열번호 2로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, the base corresponding to position 326 based on the nucleic acid sequence of SEQ ID NO: 4 in the nucleic acid sequence set forth in SEQ ID NO: 2 is T, and at least the nucleic acid sequence set forth in SEQ ID NO: 2 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 2의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 2의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 1의 109번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 페닐알라닌을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% homology or identity to the sequence of SEQ ID NO: 2 Having or including a nucleotide sequence that is more than, 98% or more, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 2 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 109th position of SEQ ID NO: 1 may be one of the codons encoding phenylalanine.
(2) 단백질 변이체 (서열번호 11) 및 이를 코딩하는 폴리뉴클레오티드(2) a protein variant (SEQ ID NO: 11) and a polynucleotide encoding the same
본 출원의 또 하나의 양태는 서열번호 13의 아미노산 서열의 130번째 위치에 상응하는 아미노산인 세린(Serine, Ser, S)이 페닐알라닌(Phenylalanine, Phe, F)으로 치환된, 서열번호 11로 기재된 아미노산 서열로 이루어진, ATP 포스포리보실트랜스퍼라제 변이체를 제공한다. Another aspect of the present application is the amino acid set forth in SEQ ID NO: 11 in which serine (Serine, Ser, S), which is an amino acid corresponding to position 130 of the amino acid sequence of SEQ ID NO: 13, is substituted with phenylalanine (Phenylalanine, Phe, F) An ATP phosphoribosyltransferase variant consisting of the sequence is provided.
본 출원의 변이체는 서열번호 11로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 11, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 11로 기재된 아미노산 서열에서 서열번호 13의 아미노산 서열을 기준으로 130번 위치에 상응하는 아미노산은 페닐알라닌(Phenylalanine)이고, 상기 서열번호 11로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 130 based on the amino acid sequence of SEQ ID NO: 13 in the amino acid sequence set forth in SEQ ID NO: 11 is phenylalanine, and the amino acid sequence set forth in SEQ ID NO: 11 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 상기 변이체는 ATP 포스포리보실트랜스퍼라제 활성을 가질 수 있다. 또한, 상기 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이 증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the variant may have ATP phosphoribosyltransferase activity. In addition, the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
본 출원에서 용어, "ATP 포스포리보실트랜스퍼라제 (ATP phosphoribosyltransferase)"는 1-(5-포스포-D-리보실)-ATP 및 디포스페이트(diphosphate)를 기질로 사용하여 ATP 및 5-포스포-알파-D-리보스 1-디포스페이트를 생산하는 폴리펩티드이다. 본 출원의 ATP 포스포리보실트랜스퍼라제는 포스포리보실-ATP 다이포스포릴라제 (Phosphoribosyl-ATP diphosphorylase), 포스포리보실-ATP 피로포스포릴라제 (Phosphoribosyl-ATP pyrophosphorylase) 또는 HisG로 혼용하여 사용될 수 있다. 본 출원에서 상기 ATP 포스포리보실트랜스퍼라제는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다(예컨대, WP_003860009.1, WP_003856149.1, WP_063967509.1, WP_074495858.1 등). 구체적으로 hisG 유전자에 의해 코딩되는 ATP 포스포리보실트랜스퍼라제 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.In the present application, the term "ATP phosphoribosyltransferase" refers to 1-(5-phospho-D-ribosyl)-ATP and diphosphate using ATP and 5-phospho -alpha-D-ribose 1-diphosphate producing polypeptide. ATP phosphoribosyltransferase of the present application may be used in combination with phosphoribosyl-ATP diphosphorylase (Phosphoribosyl-ATP diphosphorylase), phosphoribosyl-ATP pyrophosphorylase (Phosphoribosyl-ATP pyrophosphorylase) or HisG. have. In the present application, the ATP phosphoribosyltransferase sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003860009.1, WP_003856149.1, WP_063967509.1, WP_074495858.1, etc.). Specifically, it may be a polypeptide having ATP phosphoribosyltransferase activity encoded by the hisG gene, but is not limited thereto.
본 출원의 다른 하나의 양태는 상기 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant.
상기 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 11로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 12의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 12의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 11. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 12. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 12.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 2로 기재된 핵산 서열에서 서열번호 14의 핵산 서열을 기준으로 389번 위치에 상응하는 염기는 T이고, 상기 서열번호 12로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, the base corresponding to position 389 based on the nucleic acid sequence of SEQ ID NO: 14 in the nucleic acid sequence set forth in SEQ ID NO: 2 is T, and at least the nucleic acid sequence set forth in SEQ ID NO: 12 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 12의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 12의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 11의 130번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 페닐알라닌을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 12 It has or contains a nucleotide sequence that is more than, 98% or more, and less than 100%, or has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of homology or identity with the sequence of SEQ ID NO: 12; 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 130th position of SEQ ID NO: 11 may be one of the codons encoding phenylalanine.
(3) 단백질 변이체 (서열번호 21) 및 이를 코딩하는 폴리뉴클레오티드(3) protein variant (SEQ ID NO: 21) and polynucleotides encoding the same
본 출원의 또 하나의 양태는 서열번호 23의 아미노산 서열의 192번째 위치에 상응하는 아미노산인 프롤린(Proline, Pro, P)이 류신(Leucine, Leu, L)으로 치환된, 서열번호 21로 기재된 아미노산 서열로 이루어진, 아스파라긴 신타제 변이체를 제공한다. Another aspect of the present application is the amino acid set forth in SEQ ID NO: 21 in which proline (Proline, Pro, P), which is an amino acid corresponding to the 192th position of the amino acid sequence of SEQ ID NO: 23, is substituted with leucine (Leucine, Leu, L) An asparagine synthase variant consisting of the sequence is provided.
본 출원의 변이체는 서열번호 21로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 21, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 21로 기재된 아미노산 서열에서 서열번호 23의 아미노산 서열을 기준으로 192번 위치에 상응하는 아미노산은 류신(Leucine)이고, 상기 서열번호 21로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 192 based on the amino acid sequence of SEQ ID NO: 23 in the amino acid sequence set forth in SEQ ID NO: 21 is leucine, and the amino acid sequence set forth in SEQ ID NO: 21 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 상기 변이체는 아스파라긴 신타제 활성을 가질 수 있다. 또한, 상기 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이 증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the variant may have asparagine synthase activity. In addition, the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
본 출원에서 용어, "아스파라긴 신타제 (Asparagine synthase)"는, 글루타민 가수분해(glutamine-hydrolysing) 활성을 가질 수 있고, 아스파테이트(aspartate)와 글루타민(glutamine)을 아스파라긴(asparagine) 및 글루타메이트(glutamate)로 변환시키는 폴리펩티드이다. 본 출원의 아스파라긴 신타제는 아스파라긴 합성효소, 아스파라긴 신테타제(Asparagine synthetase; e.g., Asparagine synthetase B), 글루타민-의존 아스파라긴 신테타제(glutamine-dependent asparagine synthetase) 또는 LtsA로 혼용하여 사용될 수 있다. 본 출원에서 상기 아스파라긴 신타제는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다 (예컨대, WP_003859651.1, WP_060564818.1, WP_040967635.1 등). 구체적으로 ltsA 유전자에 의해 코딩되는 아스파라긴 신타제 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term “asparagine synthase” refers to glutamine-hydrolysing activity, and aspartate and glutamine are used as asparagine and glutamate. It is a polypeptide that converts Asparagine synthase of the present application may be used in combination with asparagine synthetase, asparagine synthetase (eg, Asparagine synthetase B), glutamine-dependent asparagine synthetase (glutamine-dependent asparagine synthetase) or LtsA. In the present application, the asparagine synthase sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003859651.1, WP_060564818.1, WP_040967635.1, etc.). Specifically, it may be a polypeptide having asparagine synthase activity encoded by the ltsA gene, but is not limited thereto.
본 출원의 다른 하나의 양태는 상기 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant.
상기 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 21로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 22의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 22의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 21. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 22. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 22.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 22로 기재된 핵산 서열에서 서열번호 24의 핵산 서열을 기준으로 575번 위치에 상응하는 염기는 T이고, 상기 서열번호 22로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, the base corresponding to position 575 based on the nucleic acid sequence of SEQ ID NO: 24 in the nucleic acid sequence set forth in SEQ ID NO: 22 is T, and at least the nucleic acid sequence set forth in SEQ ID NO: 22 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 22의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 2의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 21의 192번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 류신을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 22 Having or including a nucleotide sequence that is more than, 98% or more, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 2 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 192th position of SEQ ID NO: 21 may be one of the codons encoding leucine.
(4) 단백질 변이체 (서열번호 31) 및 이를 코딩하는 폴리뉴클레오티드(4) protein variant (SEQ ID NO: 31) and polynucleotides encoding the same
본 출원의 하나의 양태는 서열번호 33의 아미노산 서열의 213번째 위치에 상응하는 아미노산인 알라닌(Alanine, Ala, A)이 발린(Valine, Val, V)으로 치환된, 서열번호 31로 기재된 아미노산 서열로 이루어진, 스퍼미딘 신타제 변이체를 제공한다. One aspect of the present application is the amino acid sequence set forth in SEQ ID NO: 31 in which alanine (Alanine, Ala, A), which is an amino acid corresponding to position 213 of the amino acid sequence of SEQ ID NO: 33, is substituted with valine (Valine, Val, V) It provides a spermidine synthase variant consisting of.
본 출원의 변이체는 서열번호 31로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 31, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 31로 기재된 아미노산 서열에서 서열번호 33의 아미노산 서열을 기준으로 213번 위치에 상응하는 아미노산은 발린(Valine)이고, 상기 서열번호 31로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 213 based on the amino acid sequence of SEQ ID NO: 33 in the amino acid sequence set forth in SEQ ID NO: 31 is valine, and the amino acid sequence set forth in SEQ ID NO: 31 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 상기 변이체는 스퍼미딘 신타제 활성을 가질 수 있다. 또한, 상기 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이 증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the variant may have spermidine synthase activity. In addition, the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
본 출원에서 용어, "스퍼미딘 신타제 (Spermidine synthase)"는, 아미노프로필 전이효소 그룹에 속하는 폴리펩티드로서, 스퍼미딘 생합성 중, S-아데노실메티오닌아민(S-adenosylmethioninamine)의 프로필아민기의 퓨트레신(Putrescine)으로의 전이를 촉매하는 폴리펩티드이다. 본 출원의 스퍼미딘 신타제는 스퍼미딘 합성효소, 아미노프로필트랜스퍼라제(Aminopropyltransferase), 퓨트레신 아미노프로필트랜스퍼라제(Putrescine aminopropyltransferase), 폴리아민 아미노트랜스퍼라제(Polyamine aminopropyltransferase) 또는 SpeE 등으로 혼용하여 사용될 수 있다. 본 출원에서 상기 스퍼미딘 신타제는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다. 구체적으로 speE 유전자에 의해 코딩되는 스퍼미딘 신타제 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term "Spermidine synthase" is a polypeptide belonging to the aminopropyl transferase group, and during spermidine biosynthesis, the putre of the propylamine group of S-adenosylmethioninamine. It is a polypeptide that catalyzes the transition to Putrescine. The spermidine synthase of the present application may be used in combination with spermidine synthase, aminopropyltransferase, putrescine aminopropyltransferase, polyamine aminopropyltransferase, or SpeE. . In the present application, the spermidine synthase sequence can be obtained from GenBank of NCBI, which is a known database. Specifically, it may be a polypeptide having spermidine synthase activity encoded by the speE gene, but is not limited thereto.
본 출원의 다른 하나의 양태는 상기 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant.
상기 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 31로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 32의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 32의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 31. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 32. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 32.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 32로 기재된 핵산 서열에서 서열번호 34의 핵산 서열을 기준으로 638번 위치에 상응하는 염기는 T이고, 상기 서열번호 32로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, in the nucleic acid sequence set forth in SEQ ID NO: 32, the base corresponding to position 638 based on the nucleic acid sequence of SEQ ID NO: 34 is T, and at least the nucleic acid sequence set forth in SEQ ID NO: 32 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 32의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 32의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 31의 213번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 발린을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 32 Having or including a nucleotide sequence that is greater than or equal to 98%, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 32 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 213th position of SEQ ID NO: 31 may be one of the codons encoding valine.
(5) 단백질 변이체 (서열번호 41) 및 이를 코딩하는 폴리뉴클레오티드(5) protein variant (SEQ ID NO: 41) and polynucleotides encoding the same
본 출원의 또 하나의 양태는 서열번호 43의 아미노산 서열의 302번째 위치에 상응하는 아미노산인 프롤린(Proline, Pro, P)이 세린(Serine, Ser, S)으로 치환된, 서열번호 41로 기재된 아미노산 서열로 이루어진, 시스테인 설피네이트 디설피나제 변이체를 제공한다. Another aspect of the present application is the amino acid set forth in SEQ ID NO: 41 in which proline (Proline, Pro, P), which is an amino acid corresponding to position 302 of the amino acid sequence of SEQ ID NO: 43, is substituted with serine (Serine, Ser, S) A cysteine sulfinate disulfinase variant consisting of the sequence is provided.
본 출원의 변이체는 서열번호 41로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 41, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 41로 기재된 아미노산 서열에서 서열번호 43의 아미노산 서열을 기준으로 302번 위치에 상응하는 아미노산은 세린(Serine)이고, 상기 서열번호 1로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 302 based on the amino acid sequence of SEQ ID NO: 43 in the amino acid sequence set forth in SEQ ID NO: 41 is Serine, and the amino acid sequence set forth in SEQ ID NO: 1 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 상기 변이체는 시스테인 설피네이트 디설피나제 활성을 가질 수 있다. 또한, 상기 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이 증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the variant may have cysteine sulfinate disulfinase activity. In addition, the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
본 출원에서 용어, "시스테인 설피네이트 디설피나제 (Cysteine sulfinate desulfinase)"는 시스테인 디설퓨라제(Cysteine desulfurase) 또는 NadS라고도 불리며, L-시스테인과 수용체(acceptor; e.g., [enzyme]-cysteine)을 기질로 하여 L-알라닌과 S-설패닐-수용체(S-sulfanyl-acceptor; e.g., [enzyme]-S-sulfanylcysteine)을 생산하는 반응을 촉매하는 폴리펩티드이다. 본 출원에서 상기 시스테인 설피네이트 디설피나제는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다 (예컨대, WP_004568050.1 등). 구체적으로 nadS 유전자에 의해 코딩되는 시스테인 설피네이트 디설피나제 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term "Cysteine sulfinate desulfinase (Cysteine sulfinate desulfinase)" is also called cysteine desulfurase or NadS, L-cysteine and receptor (acceptor; eg, [enzyme]-cysteine) as a substrate It is a polypeptide that catalyzes a reaction that produces L-alanine and S-sulfanyl-acceptor (eg, [enzyme]-S-sulfanylcysteine). In the present application, the cysteine sulfinate disulfinase sequence can be obtained from GenBank of NCBI, a known database (eg, WP_004568050.1, etc.). Specifically, it may be a polypeptide having cysteine sulfinate disulfinase activity encoded by the nadS gene, but is not limited thereto.
본 출원의 다른 하나의 양태는 상기 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant.
상기 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 41로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 42의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 42의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 41. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 42. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 42.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 2로 기재된 핵산 서열에서 서열번호 44의 핵산 서열을 기준으로 904번 위치에 상응하는 염기는 T이고, 상기 서열번호 42로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, in the nucleic acid sequence set forth in SEQ ID NO: 2, the base corresponding to position 904 based on the nucleic acid sequence of SEQ ID NO: 44 is T, and the nucleic acid sequence set forth in SEQ ID NO: 42 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 42의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 42의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 41의 302번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 세린을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 42 It has or contains a nucleotide sequence that is at least 98%, and less than 100%, or has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of homology or identity with the sequence of SEQ ID NO: 42; 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 302th position of SEQ ID NO: 41 may be one of the codons encoding serine.
(6) 단백질 변이체 (서열번호 51) 및 이를 코딩하는 폴리뉴클레오티드(6) protein variant (SEQ ID NO: 51) and polynucleotides encoding the same
본 출원의 또 하나의 양태는 서열번호 53의 아미노산 서열의 56번째 위치에 상응하는 아미노산인 프롤린(Proline, Pro, P)이 류신(Leucine, Leu, L)으로 치환된, 서열번호 51로 기재된 아미노산 서열로 이루어진, 우레아제 부속 단백질 변이체를 제공한다. Another aspect of the present application is the amino acid set forth in SEQ ID NO: 51 in which proline (Proline, Pro, P), which is an amino acid corresponding to the 56th position of the amino acid sequence of SEQ ID NO: 53, is substituted with leucine (Leucine, Leu, L) Provided is a urease accessory protein variant consisting of the sequence.
본 출원의 변이체는 서열번호 51로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 51, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 51로 기재된 아미노산 서열에서 서열번호 53의 아미노산 서열을 기준으로 56번 위치에 상응하는 아미노산은 류신(Leucine)이고, 상기 서열번호 1로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 56 based on the amino acid sequence of SEQ ID NO: 53 in the amino acid sequence set forth in SEQ ID NO: 51 is leucine, and the amino acid sequence set forth in SEQ ID NO: 1 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 상기 변이체는 우레아제 부속 단백질 활성을 가질 수 있다. 또한, 상기 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이 증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the variant may have urease accessory protein activity. In addition, the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
본 출원에서 용어, "우레아제 부속 단백질 (Urease accessory protein; Ure)"는 아르기닌, 우레이드(ureide), 및 퓨린에서의 nitrogen recycling에 수반되는 Ni-함유 우레아 가수분해효소 (Ni-containing urea hydrolase)이며, Ni를 단백질에 전달하여 우레아제를 활성화시키는데 관여한다. 본 출원의 우레아제 부속 단백질은 우레아제 부속단백질 UreE(Urease accessory protein UreE)일 수 있다. 본 출원에서 상기 우레아제 부속 단백질 UreE은 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다 (예컨대, WP_003859936.1, WP_038581987.1, WP_074492623.1 등). 구체적으로 ureE 유전자에 의해 코딩되는 우레아제 부속 단백질 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term "Urease accessory protein (Ure)" is a Ni-containing urea hydrolase involved in nitrogen recycling from arginine, ureide, and purine and , is involved in activating urease by delivering Ni to proteins. The urease accessory protein of the present application may be urease accessory protein UreE (UreE). In the present application, the sequence of the urease accessory protein UreE can be obtained from GenBank of NCBI, a known database (eg, WP_003859936.1, WP_038581987.1, WP_074492623.1, etc.). Specifically, it may be a polypeptide having a urease accessory protein activity encoded by the ureE gene, but is not limited thereto.
본 출원의 다른 하나의 양태는 상기 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant.
상기 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 51로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 52의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 52의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 51. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 52. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 52.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 52로 기재된 핵산 서열에서 서열번호 54의 핵산 서열을 기준으로 167번 위치에 상응하는 염기는 T이고, 상기 서열번호 52로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, in the nucleic acid sequence set forth in SEQ ID NO: 52, the base corresponding to position 167 based on the nucleic acid sequence of SEQ ID NO: 54 is T, and the nucleic acid sequence set forth in SEQ ID NO: 52 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 52의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 2의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 51의 56번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 류신을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 52 Having or including a nucleotide sequence that is more than, 98% or more, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 2 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 56th position of SEQ ID NO: 51 may be one of the codons encoding leucine.
(7) 단백질 변이체 (서열번호 61) 및 이를 코딩하는 폴리뉴클레오티드(7) protein variant (SEQ ID NO: 61) and polynucleotides encoding the same
본 출원의 또 하나의 양태는 서열번호 63의 아미노산 서열의 834번째 위치에 상응하는 아미노산인 글리신(Glycine, Gly, G)이 세린(Serine, Ser, S)으로 치환된, 서열번호 61로 기재된 아미노산 서열로 이루어진, 프롤린 탈수소효소 변이체를 제공한다. Another aspect of the present application is the amino acid set forth in SEQ ID NO: 61 in which glycine (Glycine, Gly, G), which is an amino acid corresponding to the 834th position of the amino acid sequence of SEQ ID NO: 63, is substituted with serine (Serine, Ser, S) A proline dehydrogenase variant comprising the sequence is provided.
본 출원의 변이체는 서열번호 61로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 61, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 61로 기재된 아미노산 서열에서 서열번호 63의 아미노산 서열을 기준으로 834번 위치에 상응하는 아미노산은 세린(Serine)이고, 상기 서열번호 61로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 834 based on the amino acid sequence of SEQ ID NO: 63 in the amino acid sequence set forth in SEQ ID NO: 61 is serine, and the amino acid sequence set forth in SEQ ID NO: 61 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 상기 변이체는 프롤린 탈수소효소 활성을 가질 수 있다. 또한, 상기 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the variant may have proline dehydrogenase activity. In addition, the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
본 출원에서 용어, "프롤린 탈수소효소 (Proline dehydrogenase)"는, 산화환원효소 계열에 속하는 폴리펩티드로서, L-프롤린과 유비퀴논을 기질로 하여 (S)-1-피롤린-5-카르복실레이트[(S)-1-pyrroline-5-carboxylate] 및 유비퀴놀(ubiquinol)을 생산하는 반응을 촉매하는 폴리펩티드이다. 본 출원에서 상기 프롤린 탈수소효소는 PutA와 혼용하여 사용될 수 있으며, 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다 (예컨대, WP_034983428.1 등). 구체적으로 putA 유전자에 의해 코딩되는 프롤린 탈수소효소 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term "proline dehydrogenase" is a polypeptide belonging to the oxidoreductase family, and (S)-1-pyrroline-5-carboxylate [ (S)-1-pyrroline-5-carboxylate] and a polypeptide that catalyzes a reaction to produce ubiquinol. In the present application, the proline dehydrogenase can be used in combination with PutA, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_034983428.1, etc.). Specifically, it may be a polypeptide having proline dehydrogenase activity encoded by the putA gene, but is not limited thereto.
본 출원의 다른 하나의 양태는 상기 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant.
본 출원의 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 61로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 62의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 62의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant of the present application may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 61. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 62. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 62.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 62로 기재된 핵산 서열에서 서열번호 64의 핵산 서열을 기준으로 2500번 위치에 상응하는 염기는 A이고, 상기 서열번호 62로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, the base corresponding to position 2500 based on the nucleic acid sequence of SEQ ID NO: 64 in the nucleic acid sequence set forth in SEQ ID NO: 62 is A, and at least the nucleic acid sequence set forth in SEQ ID NO: 62 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 62의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 62의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 61의 834번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 세린을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 62 It has or includes a nucleotide sequence that is greater than or equal to 98%, and less than 100%, or has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of homology or identity to the sequence of SEQ ID NO: 62; 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 834th position of SEQ ID NO: 61 may be one of the codons encoding serine.
(8) 단백질 변이체 (서열번호 71) 및 이를 코딩하는 폴리뉴클레오티드(8) protein variant (SEQ ID NO: 71) and polynucleotides encoding the same
본 출원의 또 하나의 양태는 서열번호 73의 아미노산 서열의 140번째 위치에 상응하는 아미노산인 아르기닌(Arginine, Arg, R)이 시스테인(Cysteine, Cys, C)으로 치환된, 서열번호 71로 기재된 아미노산 서열로 이루어진, 테트라하이드로디피콜리네이트 N-숙시닐트랜스퍼라제 변이체를 제공한다. Another aspect of the present application is an amino acid set forth in SEQ ID NO: 71 in which arginine (Arginine, Arg, R), which is an amino acid corresponding to the 140th position of the amino acid sequence of SEQ ID NO: 73, is substituted with cysteine (Cysteine, Cys, C) Provided is a tetrahydrodipicolinate N-succinyltransferase variant consisting of the sequence.
본 출원의 변이체는 서열번호 71로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 71, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 71로 기재된 아미노산 서열에서 서열번호 73의 아미노산 서열을 기준으로 140번 위치에 상응하는 아미노산은 시스테인(Cysteine)이고, 상기 서열번호 71로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 140 based on the amino acid sequence of SEQ ID NO: 73 in the amino acid sequence set forth in SEQ ID NO: 71 is cysteine, and the amino acid sequence set forth in SEQ ID NO: 71 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 상기 변이체는 테트라하이드로디피콜리네이트 N-숙시닐트랜스퍼라제 활성을 가질 수 있다. 또한, 상기 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이 증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the variant may have tetrahydrodipicolinate N-succinyltransferase activity. In addition, the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
본 출원에서 용어, "테트라하이드로디피콜리네이트 N-숙시닐트랜스퍼라제 (Tetrahydrodipicolinate N-succinyltransferase)"는 아실트랜스퍼라제 계열 폴리펩티드로서, 숙시닐-CoA, (S)-2,3,4,5-테트라하이드로피리딘-2,6-디카르복실레이트, 및 H2O를 기질로 하여 CoA 및 N-숙시닐-L-2-아미노-6-옥소헵탄디오에이트(N-succinyl-L-2-amino-6-oxoheptanedioate)를 생산하는 반응을 촉매하는 폴리펩티드이다. 본 출원의 테트라하이드로디피콜리네이트 N-숙시닐트랜스퍼라제는 테트라하이드로피콜리네이트 숙시닐라제(tetrahydropicolinate succinylase), 숙시닐-CoA:테트라하이드로디피콜리네이트 N-숙시닐트랜스퍼라제(succinyl-CoA:tetrahydrodipicolinate N-succinyltransferase) 또는 DapD2 등으로 혼용하여 사용될 수 있다. 본 출원에서 상기 테트라하이드로디피콜리네이트 N-숙시닐트랜스퍼라제는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다 (예컨대, WP_003863792.1 등). 구체적으로 dapD2 유전자에 의해 코딩되는 테트라하이드로디피콜리네이트 N-숙시닐트랜스퍼라제 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term "Tetrahydrodipicolinate N-succinyltransferase" is an acyltransferase-based polypeptide, succinyl-CoA, (S)-2,3,4,5-tetra Hydropyridine-2,6-dicarboxylate, and CoA and N-succinyl-L- 2 -amino-6-oxoheptanedioate (N-succinyl-L-2-amino- It is a polypeptide that catalyzes a reaction that produces 6-oxoheptanedioate). Tetrahydrodipicolinate N-succinyltransferase of the present application is tetrahydropicolinate succinylase, succinyl-CoA:tetrahydrodipicolinate N-succinyltransferase (succinyl-CoA:tetrahydrodipicolinate) N-succinyltransferase) or DapD2 may be used in combination. In the present application, the tetrahydrodipicolinate N-succinyltransferase sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003863792.1, etc.). Specifically, it may be a polypeptide having tetrahydrodipicolinate N-succinyltransferase activity encoded by the dapD2 gene, but is not limited thereto.
본 출원의 다른 하나의 양태는 상기 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant.
상기 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 71로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 72의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 72의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 71. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 72. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 72.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 72로 기재된 핵산 서열에서 서열번호 74의 핵산 서열을 기준으로 418번 위치에 상응하는 염기는 T이고, 상기 서열번호 72로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, in the nucleic acid sequence set forth in SEQ ID NO: 72, the base corresponding to position 418 based on the nucleic acid sequence of SEQ ID NO: 74 is T, and at least the nucleic acid sequence set forth in SEQ ID NO: 72 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 72의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 72의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 71의 140번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 시스테인을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 72 It has or contains a nucleotide sequence of at least 98%, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 72 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 140th position of SEQ ID NO: 71 may be one of the codons encoding cysteine.
(9) 단백질 변이체 (서열번호 81) 및 이를 코딩하는 폴리뉴클레오티드(9) protein variant (SEQ ID NO: 81) and polynucleotides encoding the same
본 출원의 하나의 양태는 서열번호 83의 아미노산 서열의 4번째 위치에 상응하는 아미노산인 아르기닌(Arginine, Arg, R)이 히스티딘(Histidine, His, H)으로 치환된, 서열번호 81로 기재된 아미노산 서열로 이루어진, 5,10-메틸렌테트라하이드로폴레이트 리덕타제 변이체를 제공한다. One aspect of the present application is an amino acid sequence set forth in SEQ ID NO: 81 in which arginine (Arginine, Arg, R), which is an amino acid corresponding to the 4th position of the amino acid sequence of SEQ ID NO: 83, is substituted with histidine (Histidine, His, H) It provides a 5,10-methylenetetrahydrofolate reductase variant consisting of.
본 출원의 변이체는 서열번호 81로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 81, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 81로 기재된 아미노산 서열에서 서열번호 83의 아미노산 서열을 기준으로 4번 위치에 상응하는 아미노산은 히스티딘(Histidine)이고, 상기 서열번호 1로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 4 based on the amino acid sequence of SEQ ID NO: 83 in the amino acid sequence set forth in SEQ ID NO: 81 is histidine, and the amino acid sequence set forth in SEQ ID NO: 1 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 상기 변이체는 5,10-메틸렌테트라하이드로폴레이트 리덕타제 활성을 가질 수 있다. 또한, 상기 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이 증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the variant may have 5,10-methylenetetrahydrofolate reductase activity. In addition, the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
본 출원에서 용어, "5,10-메틸렌테트라하이드로폴레이트 리덕타제 (5,10-methylenetetrahydrofolate reductase)"는 5,10-메틸렌테트라하이드로폴레이트의 5-메틸테트라하이드로폴레이트로의 전환을 촉매하는 폴리펩티드이다. 본 출원에서 상기 5,10-메틸렌테트라하이드로폴레이트 리덕타제는 MetF와 혼용하여 사용될 수 있고, 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다 (예컨대, WP_003863792.1 등). 구체적으로 metF 유전자에 의해 코딩되는 5,10-메틸렌테트라하이드로폴레이트 리덕타제 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term "5,10-methylenetetrahydrofolate reductase" refers to a compound that catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. is a polypeptide. In the present application, the 5,10-methylenetetrahydrofolate reductase can be used in combination with MetF, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003863792.1, etc.). Specifically, it may be a polypeptide having 5,10-methylenetetrahydrofolate reductase activity encoded by the metF gene, but is not limited thereto.
본 출원의 다른 하나의 양태는 상기 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant.
본 출원의 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 81로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 82의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 82의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant of the present application may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 81. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 82. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 82.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 82로 기재된 핵산 서열에서 서열번호 84의 핵산 서열을 기준으로 11번 위치에 상응하는 염기는 A이고, 상기 서열번호 82로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, in the nucleic acid sequence set forth in SEQ ID NO: 82, the base corresponding to position 11 based on the nucleic acid sequence of SEQ ID NO: 84 is A, and the nucleic acid sequence set forth in SEQ ID NO: 82 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 82의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 82의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 81의 4번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 히스티딘을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 82 or more, 98% or more, and less than 100% of the base sequence, or the homology or identity with the sequence of SEQ ID NO: 82 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 4th position of SEQ ID NO: 81 may be one of the codons encoding histidine.
(10) 단백질 변이체 (서열번호 91) 및 이를 코딩하는 폴리뉴클레오티드(10) protein variant (SEQ ID NO: 91) and polynucleotides encoding the same
본 출원의 또 하나의 양태는 서열번호 93의 아미노산 서열의 253번째 위치에 상응하는 아미노산인 글루탐산(Glutamic acid, Glu, E)이 라이신(Lysine, Lys, K)으로 치환된, 서열번호 91로 기재된 아미노산 서열로 이루어진, 단백질 변이체를 제공한다. Another aspect of the present application is that glutamic acid (Glutamic acid, Glu, E), which is an amino acid corresponding to position 253 of the amino acid sequence of SEQ ID NO: 93, is substituted with lysine (Lysine, Lys, K), described in SEQ ID NO: 91 Protein variants, consisting of an amino acid sequence, are provided.
본 출원의 변이체는 서열번호 91로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 91, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 91로 기재된 아미노산 서열에서 서열번호 93의 아미노산 서열을 기준으로 253번 위치에 상응하는 아미노산은 라이신 (Lysine)이고, 상기 서열번호 91로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 253 based on the amino acid sequence of SEQ ID NO: 93 in the amino acid sequence set forth in SEQ ID NO: 91 is lysine, and the amino acid sequence set forth in SEQ ID NO: 91 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 본 출원의 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이 증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the mutant of the present application may have an activity to increase L-valine production capacity compared to the wild-type polypeptide.
본 출원의 다른 하나의 양태는 상기 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant.
상기 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 91로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 92의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 92의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 91. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 92. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 92.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 92로 기재된 핵산 서열에서 서열번호 94의 핵산 서열을 기준으로 757번 위치에 상응하는 염기는 A이고, 상기 서열번호 92로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, in the nucleic acid sequence set forth in SEQ ID NO: 92, the base corresponding to position 757 based on the nucleic acid sequence of SEQ ID NO: 94 is A, and the nucleic acid sequence set forth in SEQ ID NO: 92 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 92의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 92의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 91의 253번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 라이신을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 92 It has or contains a nucleotide sequence of at least 98%, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 92 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 253th position of SEQ ID NO: 91 may be one of the codons encoding the lysine.
(11) 단백질 변이체 (서열번호 101) 및 이를 코딩하는 폴리뉴클레오티드(11) protein variant (SEQ ID NO: 101) and polynucleotides encoding the same
본 출원의 하나의 양태는 서열번호 103의 아미노산 서열의 315번째 위치에 상응하는 아미노산인 알라닌(Alanine, Ala, A)이 발린(Valine, Val, V)으로 치환된, 서열번호 101로 기재된 아미노산 서열로 이루어진, 슈가 포터 계열 MFS 트랜스포터 변이체를 제공한다. One aspect of the present application is the amino acid sequence set forth in SEQ ID NO: 101 in which alanine (Alanine, Ala, A), which is an amino acid corresponding to position 315 of the amino acid sequence of SEQ ID NO: 103, is substituted with valine (Valine, Val, V) It provides a sugar porter family MFS transporter variant consisting of.
본 출원의 변이체는 서열번호 101로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 101, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 101로 기재된 아미노산 서열에서 서열번호 103의 아미노산 서열을 기준으로 315번 위치에 상응하는 아미노산은 발린(Valine)이고, 상기 서열번호 101로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 315 based on the amino acid sequence of SEQ ID NO: 103 in the amino acid sequence set forth in SEQ ID NO: 101 is valine, and the amino acid sequence set forth in SEQ ID NO: 101 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 상기 변이체는 슈가 포터 계열 MFS 트랜스포터 활성을 가질 수 있다. 또한, 상기 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the mutant may have sugar porter-based MFS transporter activity. In addition, the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
본 출원에서 용어, "슈가 포터 계열 MFS 트랜스포터 (sugar porter family MFS transporter)"는, 이노시톨 트랜스포터 (inositol transporter) 중 하나이다. 본 출원에서 상기 슈가 포터 계열 MFS 트랜스포터는 IolT1과 혼용하여 사용될 수 있으며, 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다 (예컨대, WP_003862502.1). 구체적으로 iolT1 유전자에 의해 코딩되는 슈가 포터 계열 MFS 트랜스포터 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term "sugar porter family MFS transporter" is one of inositol transporters. In the present application, the sugar porter-based MFS transporter can be used in combination with IolT1, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003862502.1). Specifically, it may be a polypeptide having sugar porter-type MFS transporter activity encoded by the iolT1 gene, but is not limited thereto.
본 출원의 다른 하나의 양태는 상기 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant.
상기 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 101로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 102의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 102의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 101. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 102. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 102.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 102로 기재된 핵산 서열에서 서열번호 104의 핵산 서열을 기준으로 944번 위치에 상응하는 염기는 T이고, 상기 서열번호 102로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, the base corresponding to position 944 based on the nucleic acid sequence of SEQ ID NO: 104 in the nucleic acid sequence set forth in SEQ ID NO: 102 is T, and at least the nucleic acid sequence set forth in SEQ ID NO: 102 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 102의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 102의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 101의 315번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 발린을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 102 Having or including a nucleotide sequence that is greater than or equal to 98%, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 102 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 315th position of SEQ ID NO: 101 may be one of the codons encoding valine.
(12) 단백질 변이체 (서열번호 111) 및 이를 코딩하는 폴리뉴클레오티드(12) protein variant (SEQ ID NO: 111) and polynucleotide encoding the same
본 출원의 하나의 양태는 서열번호 113의 아미노산 서열의 247번째 위치에 상응하는 아미노산인 글루탐산(Glutamic acid, Glu, E)이 라이신(Lysine, Lys, K)으로 치환된, 서열번호 111로 기재된 아미노산 서열로 이루어진, 전사 조절자 변이체를 제공한다. One aspect of the present application is an amino acid set forth in SEQ ID NO: 111 in which glutamic acid (Glu, E), which is an amino acid corresponding to the 247th position of the amino acid sequence of SEQ ID NO: 113, is substituted with lysine (Lysine, Lys, K) A transcriptional regulator variant, consisting of the sequence, is provided.
본 출원의 변이체는 서열번호 111로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 111, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 111로 기재된 아미노산 서열에서 서열번호 113의 아미노산 서열을 기준으로 247번 위치에 상응하는 아미노산은 라이신(Lysine)이고, 상기 서열번호 111로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 247 based on the amino acid sequence of SEQ ID NO: 113 in the amino acid sequence set forth in SEQ ID NO: 111 is lysine, and the amino acid sequence described in SEQ ID NO: 111 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 상기 변이체는 전사 조절자 활성을 가질 수 있다. 또한, 상기 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the mutant may have transcriptional regulator activity. In addition, the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
본 출원에서 용어, "전사 조절자 (transcriptional regulator)인 iolR"은, Myo-inositol 이용에 관여하는 전사 조절자이다. 본 출원에서 상기 전사 조절자는 IolR와 혼용하여 사용될 수 있으며, 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다 (예컨대, WP_003857140.1). 구체적으로 iolR 유전자에 의해 코딩되는 전사 조절자 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term "iolR, a transcriptional regulator," is a transcriptional regulator involved in Myo-inositol utilization. In the present application, the transcription regulator can be used in combination with IolR, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003857140.1). Specifically, it may be a polypeptide having a transcriptional regulator activity encoded by the iolR gene, but is not limited thereto.
본 출원의 다른 하나의 양태는 본 출원의 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant of the present application.
본 출원의 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 111로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 112의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 112의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant of the present application may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 111. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 112. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 112.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 112로 기재된 핵산 서열에서 서열번호 114의 핵산 서열을 기준으로 739번 위치에 상응하는 염기는 A이고, 상기 서열번호 112로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, in the nucleic acid sequence set forth in SEQ ID NO: 112, the base corresponding to position 739 based on the nucleic acid sequence of SEQ ID NO: 114 is A, and the nucleic acid sequence set forth in SEQ ID NO: 112 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 112의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 112의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 111의 247번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 라이신을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 112 It has or contains a nucleotide sequence that is more than, 98% or more, and less than 100%, or has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of homology or identity with the sequence of SEQ ID NO: 112; 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 247th position of SEQ ID NO: 111 may be one of the codons encoding the lysine.
(13) 단백질 변이체 (서열번호 121) 및 이를 코딩하는 폴리뉴클레오티드(13) protein variant (SEQ ID NO: 121) and polynucleotides encoding the same
본 출원의 또 하나의 양태는 서열번호 123의 아미노산 서열의 40번째 위치에 상응하는 아미노산인 글리신(Glycine, Gly, G)이 아스파트산(Aspartic acid, Asp, D)으로 치환된, 서열번호 121로 기재된 아미노산 서열로 이루어진, WhiB 계열 전사 조절자 WhcA 변이체를 제공한다. Another aspect of the present application is that glycine (Glycine, Gly, G), which is an amino acid corresponding to the 40th position of the amino acid sequence of SEQ ID NO: 123, is substituted with aspartic acid (Aspartic acid, Asp, D), SEQ ID NO: 121 It provides a variant of the WhiB family transcriptional regulator WhcA, consisting of the amino acid sequence described as .
본 출원의 변이체는 서열번호 121로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 121, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 121로 기재된 아미노산 서열에서 서열번호 123의 아미노산 서열을 기준으로 40번 위치에 상응하는 아미노산은 아스파트산(Aspartic acid)이고, 상기 서열번호 121로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 40 based on the amino acid sequence of SEQ ID NO: 123 in the amino acid sequence set forth in SEQ ID NO: 121 is aspartic acid, and the amino acid sequence set forth in SEQ ID NO: 121 an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7%, or 99.9% homology or identity with may include In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 상기 변이체는 WhiB 계열 전사 조절자 WhcA 활성을 가질 수 있다. 또한, 상기 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the mutant may have a WhiB-series transcriptional regulator WhcA activity. In addition, the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
본 출원에서 용어, "WhiB 계열 전사 조절자 WhcA (WhiB family transcriptional regulator WhcA)"는 본 출원에서 WhcA와 혼용하여 사용될 수 있으며, 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다 (예컨대, WP_003863319.1). 구체적으로 whcA 유전자에 의해 코딩되는 WhiB 계열 전사 조절자 WhcA 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.In the present application, the term "WhcA (WhiB family transcriptional regulator WhcA)" may be used interchangeably with WhcA in this application, and the sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003863319.1). Specifically, it may be a polypeptide having a WhiB family transcriptional regulator WhcA activity encoded by the whcA gene, but is not limited thereto.
본 출원의 다른 하나의 양태는 본 출원의 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant of the present application.
본 출원의 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 121로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 122의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 122의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant of the present application may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 121. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 122. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 122.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 122로 기재된 핵산 서열에서 서열번호 124의 핵산 서열을 기준으로 119번 위치에 상응하는 염기는 A이고, 상기 서열번호 122로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, in the nucleic acid sequence set forth in SEQ ID NO: 122, the base corresponding to position 119 based on the nucleic acid sequence of SEQ ID NO: 124 is A, and the nucleic acid sequence set forth in SEQ ID NO: 122 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 122의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 122의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 121의 40번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 아스파트산을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 122 It has or contains a nucleotide sequence that is at least 98%, and less than 100%, or has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of homology or identity to the sequence of SEQ ID NO: 122; 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 40th position of SEQ ID NO: 121 may be one of the codons encoding aspartic acid.
(14) 단백질 변이체 (서열번호 131) 및 이를 코딩하는 폴리뉴클레오티드(14) protein variant (SEQ ID NO: 131) and polynucleotides encoding the same
본 출원의 또 하나의 양태는 서열번호 133의 아미노산 서열의 77번째 위치에 상응하는 아미노산인 글리신(Glycine, Gly, G)이 아스파트산(Aspartic acid, Asp, D)으로 치환된, 서열번호 131로 기재된 아미노산 서열로 이루어진, 디히드로리포일 아세틸기전이효소 변이체를 제공한다. Another aspect of the present application is that glycine (Glycine, Gly, G), which is an amino acid corresponding to the 77th position of the amino acid sequence of SEQ ID NO: 133, is substituted with aspartic acid (Aspartic acid, Asp, D), SEQ ID NO: 131 It provides a dihydrolipoyl acetyltransferase variant, consisting of the amino acid sequence described as.
본 출원의 변이체는 서열번호 131로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 131, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 131로 기재된 아미노산 서열에서 서열번호 133의 아미노산 서열을 기준으로 77번 위치에 상응하는 아미노산은 아스파트산(Aspartic acid)이고, 상기 서열번호 131로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 77 based on the amino acid sequence of SEQ ID NO: 133 in the amino acid sequence set forth in SEQ ID NO: 131 is aspartic acid, and the amino acid sequence set forth in SEQ ID NO: 131 an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7%, or 99.9% homology or identity with may include In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 상기 변이체는 디히드로리포일 아세틸기전이효소 활성을 가질 수 있다. 또한, 상기 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the variant may have dihydrolipoyl acetyltransferase activity. In addition, the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
본 출원에서 용어, "디히드로리포일 아세틸기전이효소 (dihydrolipoamide acetyltransferase)"는 다 효소 피루베이트 데하이드로게나제 복합체의 효소 성분이다. 피루베이트 데하이드로게나제 복합체는 해당 분해를 시트르산 사이클에 연결시키는 피루베이트 탈카르복실화 단계를 담당한다. 본 출원에서 상기 디히드로리포일 아세틸기전이효소는 AceF와 혼용하여 사용될 수 있으며, 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다 (예컨대, WP_034983836.1). 구체적으로 aceF 유전자에 의해 코딩되는 디히드로리포일 아세틸기전이효소 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term "dihydrolipoamide acetyltransferase" is an enzyme component of the multi-enzyme pyruvate dehydrogenase complex. The pyruvate dehydrogenase complex is responsible for the pyruvate decarboxylation step that links glycolysis to the citric acid cycle. In the present application, the dihydrolipoyl acetyltransferase can be used in combination with AceF, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_034983836.1). Specifically, it may be a polypeptide having a dihydrolipoyl acetyltransferase activity encoded by the aceF gene, but is not limited thereto.
본 출원의 다른 하나의 양태는 본 출원의 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant of the present application.
본 출원의 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 131로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 132의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 132의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant of the present application may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 131. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 132. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 132.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 132로 기재된 핵산 서열에서 서열번호 134의 핵산 서열을 기준으로 230번 위치에 상응하는 염기는 A이고, 상기 서열번호 132로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, the base corresponding to position 230 based on the nucleic acid sequence of SEQ ID NO: 134 in the nucleic acid sequence set forth in SEQ ID NO: 132 is A, and at least the nucleic acid sequence set forth in SEQ ID NO: 132 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 132의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 132의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 131의 77번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 아스파트산을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% homology or identity to the sequence of SEQ ID NO: 132 or more, 98% or more, and less than 100% of the base sequence, or homology or identity with the sequence of SEQ ID NO: 132 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 77th position of SEQ ID NO: 131 may be one of the codons encoding aspartic acid.
(15) 단백질 변이체 (서열번호 141) 및 이를 코딩하는 폴리뉴클레오티드(15) protein variant (SEQ ID NO: 141) and polynucleotides encoding the same
본 출원의 또 하나의 양태는 서열번호 143의 아미노산 서열의 87번째 위치에 상응하는 아미노산인 프롤린(Proline, Pro, P)이 류신(Leucine, Leu, L)으로 치환된, 서열번호 141로 기재된 아미노산 서열로 이루어진, 2-이소프로필말레이트합성효소 변이체를 제공한다. Another aspect of the present application is the amino acid set forth in SEQ ID NO: 141 in which proline (Proline, Pro, P), which is an amino acid corresponding to the 87th position of the amino acid sequence of SEQ ID NO: 143, is substituted with leucine (Leucine, Leu, L) Provided is a 2-isopropylmalate synthetase variant consisting of the sequence.
본 출원의 변이체는 서열번호 141로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 141, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 141로 기재된 아미노산 서열에서 서열번호 143의 아미노산 서열을 기준으로 87번 위치에 상응하는 아미노산은 류신(Leucine)이고, 상기 서열번호 141로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 87 based on the amino acid sequence of SEQ ID NO: 143 in the amino acid sequence set forth in SEQ ID NO: 141 is leucine, and the amino acid sequence set forth in SEQ ID NO: 141 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 상기 변이체는 2-이소프로필말레이트합성효소 활성을 가질 수 있다. 또한, 상기 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the variant may have 2-isopropylmalate synthetase activity. In addition, the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
본 출원에서 용어, "2-이소프로필말레이트합성효소 (2-isopropylmalate synthase)"는, acetyl-CoA + 3-methyl-2-oxobutanoate + H2O ↔ (2S)-2-isopropylmalate + CoA의 화학 반응을 촉매하는 효소이다. 본 출원에서 상기 2-이소프로필말레이트합성효소는 LeuA와 혼용하여 사용될 수 있으며, 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다 (예컨대, WP_172768021.1). 구체적으로 leuA 유전자에 의해 코딩되는 2-이소프로필말레이트합성효소 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term "2-isopropylmalate synthase" refers to a chemical reaction of acetyl-CoA + 3-methyl-2-oxobutanoate + H2O ↔ (2S)-2-isopropylmalate + CoA. It is an enzyme that catalyzes In the present application, the 2-isopropyl malate synthetase can be used in combination with LeuA, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_172768021.1). Specifically, it may be a polypeptide having 2-isopropyl malate synthase activity encoded by the leuA gene, but is not limited thereto.
본 출원의 다른 하나의 양태는 상기 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant.
상기 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 141로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 142의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 142의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 141. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 142. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 142.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 142로 기재된 핵산 서열에서 서열번호 144의 핵산 서열을 기준으로 260번 위치에 상응하는 염기는 T이고, 상기 서열번호 142로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, in the nucleic acid sequence set forth in SEQ ID NO: 142, the base corresponding to position 260 based on the nucleic acid sequence of SEQ ID NO: 144 is T, and the nucleic acid sequence set forth in SEQ ID NO: 142 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 142의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 142의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 141의 87번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 류신을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more of homology or identity to the sequence of SEQ ID NO: 142. It has or contains a nucleotide sequence that is more than, 98% or more, and less than 100%, or has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of homology or identity with the sequence of SEQ ID NO: 142; 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 87th position of SEQ ID NO: 141 may be one of the codons encoding leucine.
(16) 단백질 변이체 (서열번호 151) 및 이를 코딩하는 폴리뉴클레오티드(16) protein variant (SEQ ID NO: 151) and polynucleotides encoding the same
본 출원의 또 하나의 양태는 서열번호 153의 아미노산 서열의 112번째 위치에 상응하는 아미노산인 알라닌(Alanine, Ala, A)이 트레오닌(Threonine, Thr, T)으로 치환된, 서열번호 151로 기재된 아미노산 서열로 이루어진, 분지쇄아미노산 투과효소 변이체를 제공한다. Another aspect of the present application is the amino acid set forth in SEQ ID NO: 151 in which alanine (Alanine, Ala, A), which is an amino acid corresponding to the 112th position of the amino acid sequence of SEQ ID NO: 153, is substituted with threonine (Threonine, Thr, T) Provided is a branched chain amino acid permease variant consisting of the sequence.
본 출원의 변이체는 서열번호 151로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 151, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 151로 기재된 아미노산 서열에서 서열번호 153의 아미노산 서열을 기준으로 112번 위치에 상응하는 아미노산은 트레오닌(Threonine)이고, 상기 서열번호 151로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 112 based on the amino acid sequence of SEQ ID NO: 153 in the amino acid sequence set forth in SEQ ID NO: 151 is Threonine, and the amino acid sequence set forth in SEQ ID NO: 151 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 상기 변이체는 분지쇄아미노산 투과효소 활성을 가질 수 있다. 또한, 상기 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the variant may have branched-chain amino acid permease activity. In addition, the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
본 출원에서 용어, "분지쇄아미노산 투과효소 (branched-chain amino acid permease)"는, 분지쇄인아미노산(류신, 이소루신, 발린) 수송시스템의 구성 요소로서 PMF (proton motive force)에 의해 작동한다. 본 출원에서 상기 분지쇄아미노산 투과효소는 BrnQ와 혼용하여 사용될 수 있으며, 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다 (예컨대, WP_080708840.1). 구체적으로 brnQ 유전자에 의해 코딩되는 분지쇄아미노산 투과효소 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term "branched-chain amino acid permease" is a component of a branched-chain amino acid (leucine, isoleucine, valine) transport system that operates by a proton motive force (PMF). . In the present application, the branched-chain amino acid permease can be used in combination with BrnQ, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_080708840.1). Specifically, it may be a polypeptide having a branched-chain amino acid permease activity encoded by the brnQ gene, but is not limited thereto.
본 출원의 다른 하나의 양태는 상기 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant.
상기 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 151로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 152의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 152의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 151. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 152. In addition, the polynucleotide of the present application may consist of or consist essentially of the sequence of SEQ ID NO: 152.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 152로 기재된 핵산 서열에서 서열번호 154의 핵산 서열을 기준으로 334번 위치에 상응하는 염기는 A이고, 상기 서열번호 152로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, in the nucleic acid sequence set forth in SEQ ID NO: 152, the base corresponding to position 334 based on the nucleic acid sequence of SEQ ID NO: 154 is A, and the nucleic acid sequence set forth in SEQ ID NO: 152 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 152의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 152의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 151의 112번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 트레오닌을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more homology or identity to the sequence of SEQ ID NO: 152 It has or contains a nucleotide sequence that is greater than or equal to 98%, and less than 100%, or homology or identity with the sequence of SEQ ID NO: 152 is 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 112th position of SEQ ID NO: 151 may be one of the codons encoding threonine.
(17) 단백질 변이체 (서열번호 161) 및 이를 코딩하는 폴리뉴클레오티드(17) protein variant (SEQ ID NO: 161) and polynucleotides encoding the same
본 출원의 또 하나의 양태는 서열번호 163의 아미노산 서열의 134번째 위치에 상응하는 아미노산인 글리신(Glycine, Gly, G)이 세린(Serine, Ser, S)으로 치환된, 서열번호 161로 기재된 아미노산 서열로 이루어진, 글리세르알데히드-3-인산탈수소효소 변이체를 제공한다. Another aspect of the present application is that glycine (Glycine, Gly, G), which is an amino acid corresponding to the 134th position of the amino acid sequence of SEQ ID NO: 163, is substituted with serine (Serine, Ser, S), the amino acid set forth in SEQ ID NO: 161 A glyceraldehyde-3-phosphate dehydrogenase variant comprising the sequence is provided.
본 출원의 변이체는 서열번호 161로 기재된 아미노산 서열을 가지거나 포함하거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.The variant of the present application may have or include the amino acid sequence set forth in SEQ ID NO: 161, or may consist essentially of the amino acid sequence.
또한, 본 출원의 변이체는 상기 서열번호 161로 기재된 아미노산 서열에서 서열번호 163의 아미노산 서열을 기준으로 134번 위치에 상응하는 아미노산은 세린(Serine)이고, 상기 서열번호 161로 기재된 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다. In addition, in the variant of the present application, the amino acid corresponding to position 134 based on the amino acid sequence of SEQ ID NO: 163 in the amino acid sequence set forth in SEQ ID NO: 161 is Serine, and the amino acid sequence set forth in SEQ ID NO: 161 and at least 70 may comprise an amino acid sequence having at least %, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% homology or identity. have. In addition, as long as it is an amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the variant of the present application, variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.For example, sequence additions or deletions, naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
본 출원의 일 예로, 상기 변이체는 글리세르알데히드-3-인산탈수소효소 활성을 가질 수 있다. 또한, 상기 변이체는 야생형 폴리펩티드에 비해 L-발린 생산능이증가되도록 하는 활성을 가질 수 있다.As an example of the present application, the variant may have glyceraldehyde-3-phosphate dehydrogenase activity. In addition, the mutant may have an activity to increase the ability to produce L-valine compared to the wild-type polypeptide.
본 출원에서 용어, "글리세르알데히드-3-인산탈수소효소 (glyceraldehyde-3-phosphate dehydrogenase)"는, 해당과정의 6번째 단계를 촉매하는 약 37 kDa의 효소로, 글리세르알데하이드 3-인산을 1,3-비스포스포글리세르산으로 전환시키는 가역적인 반응을 촉매 한다. 본 출원에서 상기 글리세르알데히드-3-인산탈수소효소 는 GapA와 혼용하여 사용될 수 있으며, 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다 (예컨대, WP_003862250.1). 구체적으로 gapA 유전자에 의해 코딩되는 글리세르알데히드-3-인산탈수소효소 활성을 갖는 폴리펩티드일 수 있으나, 이에 제한되지 않는다.As used herein, the term "glyceraldehyde-3-phosphate dehydrogenase" is an enzyme of about 37 kDa that catalyzes the sixth step of glycolysis, and converts glyceraldehyde 3-phosphate to 1 It catalyzes the reversible reaction of conversion to ,3-bisphosphoglyceric acid. In the present application, the glyceraldehyde-3-phosphate dehydrogenase can be used in combination with GapA, and its sequence can be obtained from GenBank of NCBI, a known database (eg, WP_003862250.1). Specifically, it may be a polypeptide having glyceraldehyde-3-phosphate dehydrogenase activity encoded by the gapA gene, but is not limited thereto.
본 출원의 다른 하나의 양태는 상기 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the variant.
상기 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 161로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 162의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 162의 서열로 이루어지거나, 필수적으로 구성될 수 있다. The polynucleotide encoding the variant may include a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 161. As an example of the present application, the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 162. In addition, the polynucleotide of the present application may consist of, or consist essentially of, the sequence of SEQ ID NO: 162.
또 다른 예에서, 본 출원의 폴리뉴클레오티드는 상기 서열번호 162로 기재된 핵산 서열에서 서열번호 164의 핵산 서열을 기준으로 400번 위치에 상응하는 염기는 A이고, 상기 서열번호 162로 기재된 핵산 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% 또는 99.9% 이상의 상동성 또는 동일성을 가지는 핵산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 폴리펩티드나 단백질을 암호화하는 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 핵산 서열을 갖는 폴리뉴클레오티드도 본 출원의 범위 내에 포함됨은 자명하다.In another example, in the polynucleotide of the present application, in the nucleic acid sequence set forth in SEQ ID NO: 162, the base corresponding to position 400 based on the nucleic acid sequence of SEQ ID NO: 164 is A, and the nucleic acid sequence set forth in SEQ ID NO: 162 and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity of a nucleic acid sequence. can In addition, if a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide having a nucleic acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted, or added It is obvious that they are included within the scope of the present application.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 162의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 162의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 161의 134번째 위치에 상응하는 아미노산을 코딩하는 코돈은, 세린을 코딩하는 코돈 중 하나일 수 있다.In consideration of codon degeneracy or preferred codons in organisms that want to express the variants of the present application, the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% homology or identity to the sequence of SEQ ID NO: 162 It has or contains a nucleotide sequence of at least 98%, and less than 100%, or has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of homology or identity to the sequence of SEQ ID NO: 162; 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% of the nucleotide sequence may consist of or consist essentially of, but is not limited thereto. In this case, in the sequence having the homology or identity, the codon encoding the amino acid corresponding to the 134th position of SEQ ID NO: 161 may be one of the codons encoding serine.
본 출원에서, 용어 "보존적 치환(conservative substitution)"은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하, 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다. 통상적으로, 보존적 치환은 단백질 또는 폴리펩티드의 활성에 거의 영향을 미치지 않거나 또는 영향을 미치지 않을 수 있다.As used herein, the term "conservative substitution" means substituting one amino acid for another amino acid having similar structural and/or chemical properties. Such amino acid substitutions may generally occur based on similarity in the polarity, charge, solubility, hydrophobicity, hydrophilicity and/or amphipathic nature of the residues. Typically, conservative substitutions may have little or no effect on the activity of the protein or polypeptide.
본 출원에서, 용어 "변이체(variant)"는 하나 이상의 아미노산이 보존적 치환(conservative substitution) 및/또는 변형(modification)되어 상기 변이체의 변이 전 아미노산 서열과 상이하나 기능(functions) 또는 특성(properties)이 유지되는 폴리펩티드를 지칭한다. 이러한 변이체는 일반적으로 상기 폴리펩티드의 아미노산 서열 중 하나 이상의 아미노산을 변형하고, 상기 변형된 폴리펩티드의 특성을 평가하여 동정(identify)될 수 있다. 즉, 변이체의 능력은 변이 전 폴리펩티드에 비하여 증가되거나, 변하지 않거나, 또는 감소될 수 있다. 또한, 일부 변이체는 N-말단 리더 서열 또는 막전이 도메인(transmembrane domain)과 같은 하나 이상의 부분이 제거된 변이체를 포함할 수 있다. 다른 변이체는 성숙 단백질(mature protein)의 N- 및/또는 C-말단으로부터 일부분이 제거된 변이체를 포함할 수 있다. 상기 용어 "변이체"는 변이형, 변형, 변이형 폴리펩티드, 변이된 단백질, 변이 및 변이체 등의 용어(영문 표현으로는 modification, modified polypeptide, modified protein, mutant, mutein, divergent 등)가 혼용되어 사용될 수 있으며, 변이된 의미로 사용되는 용어라면 이에 제한되지 않는다. In the present application, the term "variant" means that one or more amino acids are conservatively substituted and/or modified so that they differ from the amino acid sequence before the mutation of the variant but have functions or properties. refers to a polypeptide that is maintained. Such variants can generally be identified by modifying one or more amino acids in the amino acid sequence of the polypeptide and evaluating the properties of the modified polypeptide. That is, the ability of the variant may be increased, unchanged, or decreased compared to the polypeptide before the mutation. In addition, some variants may include variants in which one or more portions, such as an N-terminal leader sequence or a transmembrane domain, have been removed. Other variants may include variants in which a portion is removed from the N- and/or C-terminus of the mature protein. The term "variant" may be used interchangeably with terms such as mutant, modified, mutant polypeptide, mutated protein, mutant and mutant (in English, modified, modified polypeptide, modified protein, mutant, mutein, divergent, etc.) and, as long as it is a term used in a mutated sense, it is not limited thereto.
또한, 변이체는 폴리펩티드의 특성과 2차 구조에 최소한의 영향을 갖는 아미노산들의 결실 또는 부가를 포함할 수 있다. 예를 들면 변이체의 N-말단에는 번역-동시에(co-translationally) 또는 번역-후에(post-translationally) 단백질의 이동(translocation)에 관여하는 시그널(또는 리더) 서열이 컨쥬게이트 될 수 있다. 또한 상기 변이체는 확인, 정제, 또는 합성할 수 있도록 다른 서열 또는 링커와 컨쥬게이트 될 수 있다. In addition, variants may include deletions or additions of amino acids that have minimal effect on the properties and secondary structure of the polypeptide. For example, a signal (or leader) sequence involved in protein translocation may be conjugated to the N-terminus of the mutant, either co-translationally or post-translationally. The variants may also be conjugated with other sequences or linkers for identification, purification, or synthesis.
본 출원에서 용어, '상동성 (homology)' 또는 '동일성 (identity)'은 두 개의 주어진 아미노산 서열 또는 염기 서열 상호간 유사한 정도를 의미하며 백분율로 표시될 수 있다. 용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.As used herein, the term 'homology' or 'identity' refers to the degree of similarity between two given amino acid sequences or nucleotide sequences and may be expressed as a percentage. The terms homology and identity can often be used interchangeably.
보존된(conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나(homologous) 또는 동일한(identical) 서열은 일반적으로 서열 전체 또는 일부분과 중간 또는 높은 엄격한 조건(stringent conditions)에서 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 일반 코돈 또는 코돈 축퇴성을 고려한 코돈을 함유하는 폴리뉴클레오티드와의 하이브리드화 역시 포함됨이 자명하다.Sequence homology or identity of a conserved polynucleotide or polypeptide is determined by standard alignment algorithms, with default gap penalties established by the program used may be used. Substantially homologous or identical sequences are generally capable of hybridizing with all or part of a sequence under moderate or high stringent conditions. It is apparent that hybridization also includes hybridization with polynucleotides containing common codons or codons taking codon degeneracy into account in the polynucleotide.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는, 예를 들어, Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다(GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.Whether any two polynucleotide or polypeptide sequences have homology, similarity or identity can be determined, for example, by Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: 2444, using a known computer algorithm such as the "FASTA" program. or, as performed in the Needleman program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277) (version 5.0.0 or later), Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) can be used to determine (GCG program package (Devereux, J., et al, Nucleic Acids) Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop , [ED.,] Academic Press, San Diego, 1994, and [CARILLO ETA/.] (1988) SIAM J Applied Math 48: 1073).For example, BLAST of the National Center for Biotechnology Information Database, or ClustalW can be used to determine homology, similarity or identity.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은, 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482 에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol. 48:443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의할 수 있다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 이진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL (NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다.Homology, similarity or identity of polynucleotides or polypeptides is described, for example, in Smith and Waterman, Adv. Appl. Math (1981) 2:482, see, for example, Needleman et al. (1970), J Mol Biol. can be determined by comparing sequence information using a GAP computer program such as 48:443. In summary, a GAP program can be defined as the total number of symbols in the shorter of the two sequences divided by the number of similarly aligned symbols (ie, nucleotides or amino acids). Default parameters for the GAP program are: (1) a binary comparison matrix (containing values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or a gap open penalty of 10, a gap extension penalty of 0.5); and (3) no penalty for end gaps.
본 출원에서 용어, "상응하는(corresponding to)"은, 폴리펩티드에서 열거되는 위치의 아미노산 잔기이거나, 또는 폴리펩티드에서 열거되는 잔기와 유사하거나 동일하거나 상동한 아미노산 잔기를 지칭한다. 상응하는 위치의 아미노산을 확인하는 것은 특정 서열을 참조하는 서열의 특정 아미노산을 결정하는 것일 수 있다. 본 출원에 사용된 "상응 영역"은 일반적으로 관련 단백질 또는 참조 (reference) 단백질에서의 유사하거나 대응되는 위치를 지칭한다. As used herein, the term “corresponding to” refers to an amino acid residue at a position listed in a polypeptide, or an amino acid residue similar to, identical to, or homologous to a residue listed in a polypeptide. Identifying an amino acid at a corresponding position may be determining a specific amino acid in a sequence that refers to a specific sequence. As used herein, "corresponding region" generally refers to a similar or corresponding position in a related protein or reference protein.
예를 들어, 임의의 아미노산 서열을 본 출원에서 제공되는 아생형 폴리펩티드의 아미노산 서열 (예컨대, 서열번호 3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113, 123, 133, 143, 153, 및/또는 163)과 정렬(align)하고, 이를 토대로 상기 아미노산 서열의 각 아미노산 잔기는 상기 아생형 폴리펩티드의 아미노산 서열의 아미노산 잔기와 상응하는 아미노산 잔기의 숫자 위치를 참조하여 넘버링 할 수 있다. 예를 들어, 본 출원에 기재된 것과 같은 서열 정렬 알고리즘은, 쿼리 시퀀스("참조 서열"이라고도 함)와 비교하여 아미노산의 위치, 또는 치환, 삽입 또는 결실 등의 변형이 발생하는 위치를 확인할 수 있다.For example, any amino acid sequence can be replaced with the amino acid sequence of a subtype polypeptide provided herein (e.g., SEQ ID NOs: 3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113, 123 , 133, 143, 153, and/or 163), and based on this, each amino acid residue in the amino acid sequence is identified by reference to the numerical position of the amino acid residue corresponding to the amino acid residue in the amino acid sequence of the isotype polypeptide. can be numbered. For example, a sequence alignment algorithm such as that described in this application can identify the position of an amino acid, or a position at which modifications, such as substitutions, insertions, or deletions, occur compared to a query sequence (also referred to as a "reference sequence").
이러한 정렬에는 예를 들어 Needleman-Wunsch 알고리즘 (Needleman 및 Wunsch, 1970, J. Mol. Biol. 48: 443-453), EMBOSS 패키지의 Needle 프로그램 (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000), Trends Genet. 16: 276-277) 등을 이용할 수 있으나, 이에 제한되지 않고 당업계에 알려진 서열 정렬 프로그램, 쌍 서열(pairwise sequence) 비교 알고리즘 등을 적절히 사용할 수 있다.Such alignments include, for example, the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453), the Needle program in the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al. , 2000), Trends Genet. 16: 276-277), etc., but is not limited thereto, and a sequence alignment program known in the art, a pairwise sequence comparison algorithm, etc. may be appropriately used.
본 출원에서 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 본 출원에서 제공되는 변이체를 코딩하는 폴리뉴클레오티드 단편을 의미한다.As used herein, the term "polynucleotide" refers to a DNA or RNA strand of a certain length or longer as a polymer of nucleotides in which nucleotide monomers are linked in a long chain by covalent bonds, and more specifically, provided in the present application. It refers to a polynucleotide fragment encoding a variant.
본 출원의 폴리뉴클레오티드는 공지의 유전자 서열로부터 제조될 수 있는 프로브, 예를 들면, 본 출원의 폴리뉴클레오티드 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이브리드화할 수 있는 서열이라면 제한없이 포함될 수 있다. 상기 "엄격한 조건(stringent condition)"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌(J. Sambrook et al.,Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al.,Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8 참조)에 구체적으로 기재되어 있다. 예를 들어, 상동성 또는 동일성이 높은 폴리뉴클레오티드끼리, 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 또는 99% 이상의 상동성 또는 동일성을 갖는 폴리뉴클레오티드끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 폴리뉴클레오티드끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화(southern hybridization)의 세척 조건인 60℃, 1ХSSC, 0.1% SDS, 구체적으로 60℃, 0.1ХSSC, 0.1% SDS, 보다 구체적으로 68℃, 0.1ХSSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로 2회 내지 3회 세정하는 조건을 열거할 수 있다.The polynucleotide of the present application may be included without limitation as long as it is a probe that can be prepared from a known gene sequence, for example, a sequence that can hybridize under stringent conditions with a sequence complementary to all or part of the polynucleotide sequence of the present application. . The "stringent condition" means a condition that enables specific hybridization between polynucleotides. These conditions are described in J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8). For example, polynucleotides with high homology or identity, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or a condition in which polynucleotides having 99% or more homology or identity hybridize with each other and polynucleotides with lower homology or identity do not hybridize, or a washing condition of conventional Southern hybridization at 60°C, 1 ХSSC, 0.1% SDS, specifically 60° C., 0.1ХSSC, 0.1% SDS, more specifically 68° C., 0.1ХSSC, 0.1% SDS at a salt concentration and temperature equivalent to one wash, specifically two to three times conditions can be enumerated.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치(mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데닌은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원의 폴리뉴클레오티드는 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.Hybridization requires that two nucleic acids have complementary sequences, although mismatch between bases is possible depending on the stringency of hybridization. The term "complementary" is used to describe the relationship between nucleotide bases capable of hybridizing to each other. For example, with respect to DNA, adenine is complementary to thymine and cytosine is complementary to guanine. Accordingly, the polynucleotides of the present application may also include substantially similar nucleic acid sequences as well as isolated nucleic acid fragments complementary to the overall sequence.
구체적으로, 본 출원의 폴리뉴클레오티드와 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60℃, 63℃ 또는 65℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.Specifically, a polynucleotide having homology or identity to the polynucleotide of the present application can be detected using the hybridization conditions including a hybridization step at a Tm value of 55° C. and using the above-described conditions. In addition, the Tm value may be 60° C., 63° C. or 65° C., but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
상기 폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(예컨대, J. Sambrook et al., 상동).The appropriate stringency for hybridizing the polynucleotides depends on the length of the polynucleotides and the degree of complementarity, and the parameters are well known in the art (eg, J. Sambrook et al., supra).
재조합 벡터recombinant vector
본 출원의 또 다른 하나의 양태는 본 출원의 폴리뉴클레오티드를 포함하는 벡터를 제공하는 것이다. 상기 벡터는 상기 폴리뉴클레오티드를 숙주세포에서 발현시키기 위한 발현 벡터일 수 있으나, 이에 제한되지 않는다.Another aspect of the present application is to provide a vector comprising the polynucleotide of the present application. The vector may be an expression vector for expressing the polynucleotide in a host cell, but is not limited thereto.
본 출원 벡터는 적합한 숙주 내에서 목적 폴리펩티드를 발현시킬 수 있도록 적합한 발현조절영역(또는 발현조절서열)에 작동 가능하게 연결된 상기 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드의 염기서열을 포함하는 DNA 제조물을 포함할 수 있다. 상기 발현조절영역은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.The vector of the present application may include a DNA preparation comprising a nucleotide sequence of a polynucleotide encoding the target polypeptide operably linked to a suitable expression control region (or expression control sequence) so that the target polypeptide can be expressed in a suitable host. have. The expression control region may include a promoter capable of initiating transcription, an optional operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating the termination of transcription and translation. After transformation into an appropriate host cell, the vector can replicate or function independently of the host genome, and can be integrated into the genome itself.
본 출원에서 사용되는 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pDZ계, pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.The vector used in the present application is not particularly limited, and any vector known in the art may be used. Examples of commonly used vectors include plasmids, cosmids, viruses and bacteriophages in a natural or recombinant state. For example, pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A may be used as phage vectors or cosmid vectors, and pDZ-based, pBR-based, and pUC-based plasmid vectors may be used. , pBluescript II-based, pGEM-based, pTZ-based, pCL-based, pET-based and the like can be used. Specifically, pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors and the like can be used.
일례로 세포 내 염색체 삽입용 벡터를 통해 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 염색체 내로 삽입할 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합(homologous recombination)에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 폴리펩티드의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.For example, a polynucleotide encoding a target polypeptide may be inserted into a chromosome through a vector for intracellular chromosome insertion. The insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto. It may further include a selection marker (selection marker) for confirming whether the chromosome is inserted. The selection marker is used to select cells transformed with the vector, that is, to determine whether a target nucleic acid molecule is inserted, and selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or surface polypeptide expression. Markers to be given can be used. In an environment treated with a selective agent, only the cells expressing the selectable marker survive or exhibit other expression traits, so that the transformed cells can be selected.
본 출원에서 용어 "형질전환"은 표적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 혹은 미생물 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 폴리펩티드가 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 목적 폴리펩티드를 코딩하는 DNA 및/또는 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로도 도입될 수 있다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 제한되지 않는다.As used herein, the term "transformation" refers to introducing a vector including a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoded by the polynucleotide can be expressed in the host cell. The transformed polynucleotide may include all of them regardless of whether they are inserted into the chromosome of the host cell or located outside the chromosome, as long as they can be expressed in the host cell. In addition, the polynucleotide includes DNA and/or RNA encoding a target polypeptide. The polynucleotide may be introduced in any form as long as it can be introduced and expressed into a host cell. For example, the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct including all elements necessary for self-expression. The expression cassette may include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal. The expression cassette may be in the form of an expression vector capable of self-replication. In addition, the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 변이체를 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 폴리뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 의미한다.In addition, the term “operably linked” as used herein means that a promoter sequence that initiates and mediates transcription of a polynucleotide encoding the target variant of the present application and the polynucleotide sequence are functionally linked.
재조합 미생물Recombinant microorganisms
본 출원의 또 다른 하나의 양태는, (i) 상기한 변이체 (1) 내지 (17) 중 선택된 하나 이상 또는 2개 이상 (예컨대, 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개, 13개, 14개, 15개, 16개 또는 17개)의 변이체, (ii) 상기 변이체를 코딩하는 폴리뉴클레오티드 중 선택된 하나 이상 또는 2개 이상 (예컨대, 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개, 13개, 14개, 15개, 16개 또는 17개)의 폴리뉴클레오티드, 또는 (iii) 이들의 조합을 포함하는, 코리네박테리움 글루타미쿰(Corynebacterium
glutamicum) 균주를 제공하는 것이다.Another aspect of the present application is (i) one or more or two or more selected from the above-described variants (1) to (17) (eg, 1, 2, 3, 4, 5, 6) dog, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17) variants, (ii) polynucleotides encoding said variants; one or more or two or more (eg, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14) , 15, 16 or 17) polynucleotides, or (iii) a combination thereof, Corynebacterium glutamicum glutamicum ) to provide a strain.
본 출원의 균주는 본 출원의 변이형 폴리펩티드, 상기 폴리펩티드를 암호화하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터, 또는 이들의 조합을 포함할 수 있다.The strain of the present application may include a variant polypeptide of the present application, a polynucleotide encoding the polypeptide, a vector including the polynucleotide, or a combination thereof.
본 출원에서 용어, "균주(또는 미생물)"는 야생형 미생물이나 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하며, 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거나 불활성화되는 등의 원인으로 인해서 특정 기작이 약화되거나 강화된 미생물로서, 목적하는 폴리펩티드, 단백질 또는 산물의 생산을 위하여 유전적 변형(modification)을 포함하는 미생물일 수 있다.As used herein, the term "strain (or microorganism)" includes both wild-type microorganisms and microorganisms in which genetic modification has occurred naturally or artificially. As a result of which a specific mechanism is weakened or enhanced, it may be a microorganism including genetic modification for the production of a desired polypeptide, protein or product.
본 출원의 균주는 본 출원의 하나 이상의 변이체, 본 출원의 하나 이상의 폴리뉴클레오티드 및 본 출원의 하나 이상의 폴리뉴클레오티드를 포함하는 하나 이상의 벡터 중 어느 하나 이상을 포함하는 균주; 본 출원의 하나 이상의 변이체 또는 본 출원의 하나 이상의 폴리뉴클레오티드를 발현하도록 변형된 균주; 본 출원의 하나 이상의 변이체 또는 본 출원의 하나 이상의 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 본 출원의 하나 이상의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있으나, 이에 제한되지 않는다.The strain of the present application includes a strain comprising any one or more of one or more variants of the present application, one or more polynucleotides of the present application, and one or more vectors comprising one or more polynucleotides of the present application; strains modified to express one or more variants of the present application or one or more polynucleotides of the present application; a strain expressing one or more variants of the present application or one or more polynucleotides of the present application (eg, a recombinant strain); Or it may be a strain (eg, a recombinant strain) having one or more variant activities of the present application, but is not limited thereto.
본 출원의 균주는 L-발린 생산능을 가진 균주일 수 있다.The strain of the present application may be a strain having L-valine-producing ability.
본 출원의 균주는 자연적으로 L-발린 생산능을 가지고 있는 미생물, 또는 L-발린 생산능이 없는 모균주에 본 출원의 변이체 또는 이를 코딩하는 폴리뉴클레오티드 (또는 상기 폴리뉴클레오티드를 포함하는 벡터)가 도입되거나 및/또는 L-발린 생산능이 부여된 미생물일 수 있으나 이에 제한되지 않는다. The strain of the present application is a microorganism having naturally L-valine-producing ability, or a mutant of the present application or a polynucleotide (or a vector containing the polynucleotide) encoding the same is introduced into a parent strain without L-valine-producing ability. and/or L-valine-producing ability may be endowed, but is not limited thereto.
일 예로, 본 출원의 균주는 본 출원의 폴리뉴클레오티드 또는 본 출원의 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환되어, 본 출원의 변이체를 발현하는 세포 또는 미생물로서, 본 출원의 목적상 본 출원의 균주는 본 출원의 변이체를 포함하여 L-발린을 생산할 수 있는 미생물을 모두 포함할 수 있다. 예를 들어, 본 출원의 균주는 천연의 야생형 미생물 또는 L-발린을 생산하는 미생물에 본 출원의 변이체를 코딩하는 폴리뉴클레오티드가 L-발린 생산능이 증가된 재조합 균주일 수 있다. As an example, the strain of the present application is transformed with a vector containing the polynucleotide of the present application or a polynucleotide encoding the variant of the present application, and expresses the variant of the present application as a cell or microorganism, The strains of the application may include all microorganisms capable of producing L-valine, including the variants of the present application. For example, the strain of the present application may be a recombinant strain in which the polynucleotide encoding the variant of the present application is increased in L-valine-producing ability in a natural wild-type microorganism or a microorganism producing L-valine.
상기 L-아미노산 생산능이 증가된 재조합 균주는, 천연의 야생형 미생물 또는 비변형 미생물 (즉, 야생형(서열번호 3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113, 123, 133, 143, 153, 및/또는 163) 단백질을 발현하는 미생물 또는 변이형(서열번호 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 및/또는 161) 단백질을 발현하지 않는 미생물)에 비하여 L-발린 생산능이 증가된 미생물일 수 있으나, 이에 제한되는 것은 아니다. 그 예로, 상기 L-발린 생산능의 증가 여부를 비교하는 대상 균주인, 비변형 미생물은 ATCC14067 균주 및/또는 코리네박테리움 글루타미쿰 CA08-0072 균주 (KCCM11201P) 일 수 있으나, 이에 제한되지 않는다.The recombinant strain with increased L-amino acid production ability is a natural wild-type microorganism or unmodified microorganism (ie, wild-type (SEQ ID NO: 3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113) , 123, 133, 143, 153, and/or 163) a microorganism or variant (SEQ ID NO: 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121) expressing the protein. , 131, 141, 151, and/or 161) microorganisms that do not express proteins) may be microorganisms having an increased ability to produce L-valine compared to microorganisms that do not express proteins, but is not limited thereto. For example, the non-modified microorganism, which is the target strain for comparing the increase in L-valine production ability, may be the ATCC14067 strain and/or the Corynebacterium glutamicum CA08-0072 strain (KCCM11201P), but is not limited thereto. .
일 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 1의 변이체(NCgl1391 단백질 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 1의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 1의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 1의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As an example, the recombinant strain having increased L-valine production capacity may include a strain comprising any one or more of a mutant (NCgl1391 protein mutant) of SEQ ID NO: 1, a polynucleotide encoding the same, and a vector including the polynucleotide; a strain modified to express a variant of SEQ ID NO: 1 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 1 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having a variant activity of SEQ ID NO: 1 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 또는 약 23.5% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 약 30% 이하 또는 약 25% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 1.15배 이상, 1.16배 이상, 1.17배 이상, 1.18배 이상, 1.19배 이상, 약 1.2 배 이상, 1.21배 이상, 1, 22 또는 약 1.23배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% at least about 19%, at least about 19.5%, at least about 20%, at least about 20.5%, at least about 21%, at least about 21.5%, at least about 22%, at least about 22.5%, at least about 23%, or at least about 23.5 % or more (the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, about 30% or less or about 25% or less), but is not limited thereto, as long as it has an increased amount of + value compared to the production capacity of the parent strain or unmodified microorganism before mutation. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation, 1.16 times or more, 1.17 times or more, 1.18 times or more, 1.19 times or more, about 1.2 times or more, 1.21 times or more, 1, 22 or about 1.23 times or more (the upper limit is not particularly limited, for example, about 10 times or less, about 5 times or more may be up to fold, up to about 3 fold, or up to about 2 fold) may be increased.
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 25.0% (또는 약 1.25배) 증가된 것일 수 있으나, 이에 제한되지 않는다. More specifically, the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 25.0% (or about 1.25 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 11의 변이체(ATP 포스포리보실트랜스퍼라제 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 11의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 11의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 11의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As another example, the recombinant strain having an increased L-valine production ability is a strain comprising at least one of a mutant of SEQ ID NO: 11 (ATP phosphoribosyltransferase mutant), a polynucleotide encoding the same, and a vector including the polynucleotide ; a strain modified to express a variant of SEQ ID NO: 11 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 11 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 11 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 20.6% 이상, 약 20.7% 이상, 약 20.8% 이상, 약 20.9% 이상, 또는 약 21% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 약 30% 이하, 또는 약 25% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 1.15배 이상, 1.16배 이상, 1.17배 이상, 1.18배 이상, 1.19배 이상, 또는 약 1.2 배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 20.6% or more, about 20.7% or more, about 20.8% or more, about 20.9% or more, or about 21% or more (the upper limit is There is no particular limitation, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, about 30% or less, or about 25% or less. % or less), but is not limited thereto, as long as it has an increase of + value compared to the production capacity of the parent strain or unmodified microorganism before mutation. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation, 1.16 times or more, 1.17 times or more, 1.18 times or more, 1.19 times or more, or about 1.2 times or more (the upper limit is not particularly limited, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or more. may be below) may be increased.
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 21% (또는 약 1.21배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 21% (or about 1.21 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
또 다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 21의 변이체(아스파라긴 신타제 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 21의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 21의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 21의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As another example, the recombinant strain having an increased L-valine production ability is a strain comprising at least one of a mutant (asparagine synthase mutant) of SEQ ID NO: 21, a polynucleotide encoding the same, and a vector including the polynucleotide; a strain modified to express a variant of SEQ ID NO: 21 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 21 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having a variant activity of SEQ ID NO: 21 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 14.6% 이상, 약 14.7% 이상, 약 14.8% 이상, 약 14.9% 이상, 약 15% 이상, 또는 약 15.1% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 약 30% 이하, 약 25% 이하, 또는 약 20% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 약 1.14배 이상, 또는 약 1.15배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 14.6% or more, about 14.7% or more, about 14.8% or more, about 14.9% or more, about 15% or more, or about 15.1% or more (the upper limit is not particularly limited, For example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, about 30% or less, about 25% or less, or about 20% or less % or less), but is not limited thereto, as long as it has an increase of + value compared to the production capacity of the parent strain or unmodified microorganism before mutation. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.14 times or more, compared to the parent strain or unmodified microorganism before mutation. , or about 1.15 times or more (the upper limit is not particularly limited, for example, it may be about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less).
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 15% (또는 약 1.15배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 15% (or about 1.15 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
또 다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 31의 변이체(스퍼미딘 신타제 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 31의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 31의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 31의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As another example, the recombinant strain having an increased L-valine production ability is a strain comprising at least one of a mutant (spermidine synthase mutant) of SEQ ID NO: 31, a polynucleotide encoding the same, and a vector including the polynucleotide; a strain modified to express a variant of SEQ ID NO: 31 or a polynucleotide encoding the same; a strain expressing a variant of SEQ ID NO: 31 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having a variant activity of SEQ ID NO: 31 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.1% 이상, 약 13.2% 이상, 또는 약 13.3% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 약 30% 이하, 약 25% 이하, 약 20% 이하, 또는 약 15% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 또는 약 1.13배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.1% or more, about 13.2% or more, or about 13.3% or more (the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, about 30% or less, about 25% or less, about 20% or less, or about 15% or less) may be increased, but a + value compared to the production capacity of the parent strain or unmodified microorganism before mutation As long as it has an increasing amount of , it is not limited thereto. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, or about 1.13 times or more (the upper limit is a special There is no limitation, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less) may be increased.
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 13.2% (또는 약 1.13배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 13.2% (or about 1.13 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
또 다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 41의 변이체(시스테인 설피네이트 디설피나제 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 41의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 41의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 41의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As another example, the recombinant strain having an increased L-valine production ability includes any one or more of a mutant of SEQ ID NO: 41 (cysteine sulfinate disulfinase mutant), a polynucleotide encoding the same, and a vector including the polynucleotide strain; a strain modified to express a variant of SEQ ID NO: 41 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 41 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 41 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 약 23.5% 이상, 약 24% 이상, 약 24.5% 이상, 약 25% 이상, 약 25.5% 이상, 약 25.7% 이상, 약 26% 이상, 또는 약 26.1% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 또는 약 30% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 약 1.15배 이상, 약 1.16배 이상, 약 1.17배 이상, 약 1.18배 이상, 약 1.19배 이상, 약 1.2 배 이상, 약 1.21 배 이상, 약 1.22 배 이상, 약 1.23 배 이상, 약 1.24 배 이상, 약 1.25배 이상, 또는 약 1.26배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 25% or more, about 25.5% or more, about 25.7% or more, about 26% or more, or about 26.1% or more (the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, or about 30% or less) Or, as long as it has an increased amount of + value compared to the production capacity of the unmodified microorganism, it is not limited thereto. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation. , about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.21 times or more, about 1.22 times or more, about 1.23 times or more, about 1.24 times or more, about 1.25 times or more , or about 1.26 times or more (the upper limit is not particularly limited, for example, it may be about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less).
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 26% (또는 약 1.26배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 26% (or about 1.26 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
또 다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 51의 변이체(우레아제 부속 단백질 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 51의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 51의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 51의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As another example, the recombinant strain having an increased L-valine production ability is a strain comprising at least one of a mutant (urease accessory protein mutant) of SEQ ID NO: 51, a polynucleotide encoding the same, and a vector including the polynucleotide; a strain modified to express a variant of SEQ ID NO: 51 or a polynucleotide encoding the same; a strain expressing a variant of SEQ ID NO: 51 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having a variant activity of SEQ ID NO: 51 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 약 23.5% 이상, 약 24% 이상, 약 24.5% 이상, 약 25% 이상, 약 25.5% 이상, 약 26% 이상, 약 26.5% 이상, 약 27% 이상, 약 27.1% 이상, 약 27.2% 이상, 약 27.3% 이상, 약 27.4% 이상, 약 27.5% 이상, 또는 약 27.6% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 또는 약 30% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 약 1.15배 이상, 약 1.16배 이상, 약 1.17배 이상, 약 1.18배 이상, 약 1.19배 이상, 약 1.2 배 이상, 약 1.21 배 이상, 약 1.22 배 이상, 약 1.23 배 이상, 약 1.24 배 이상, 약 1.25배 이상, 약 1.26배 이상, 또는 약 1.27배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 25% or more, about 25.5% or more, about 26% or more, about 26.5% or more, about 27% or more, about 27.1% or more, about 27.2% or more, about 27.3% or more, about 27.4% or more, about 27.5% or more, or about 27.6% or more (the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, or about 30% or less) may be increased) . In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation. , about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.21 times or more, about 1.22 times or more, about 1.23 times or more, about 1.24 times or more, about 1.25 times or more , about 1.26 times or more, or about 1.27 times or more (the upper limit is not particularly limited, and may be, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less).
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 27.5% (또는 약 1.28배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 27.5% (or about 1.28 times) compared to the parent strain before mutation or an unmodified microorganism, but is not limited thereto. does not
또 다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 61의 변이체(프롤린 탈수소효소 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 61의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 61의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 61의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As another example, the recombinant strain having an increased L-valine production ability is a strain comprising at least one of a mutant (proline dehydrogenase mutant) of SEQ ID NO: 61, a polynucleotide encoding the same, and a vector including the polynucleotide; a strain modified to express a variant of SEQ ID NO: 61 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 61 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having a variant activity of SEQ ID NO: 61 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 약 23.5% 이상, 약 24% 이상, 약 24.5% 이상, 약 25% 이상, 약 25.5% 이상, 약 26% 이상, 약 26.5% 이상, 약 27% 이상, 약 27.5% 이상, 약 28% 이상, 약 28.1% 이상, 약 28.2% 이상, 약 28.3% 이상, 약 28.4% 이상, 또는 약 28.5% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 또는 약 33% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 1.15배 이상, 1.16배 이상, 1.17배 이상, 1.18배 이상, 1.19배 이상, 약 1.2 배 이상, 1.25배 이상, 1.26배 이상, 1.27배 이상, 또는 약 1.28배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 25% or more, about 25.5% or more, about 26% or more, about 26.5% or more, about 27% or more, about 27.5% or more, about 28% or more, about 28.1% or more, about 28.2% or more, about 28.3% or more, about 28.4% or more, or about 28.5% or more (the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, or about 33% or less) may be increased, but as long as it has an increase in + value compared to the production capacity of the parent strain or unmodified microorganism before mutation , but not limited thereto. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation, 1.16 times or more, 1.17 times or more, 1.18 times or more, 1.19 times or more, about 1.2 times or more, 1.25 times or more, 1.26 times or more, 1.27 times or more, or about 1.28 times or more (the upper limit is not particularly limited, for example, about 10 times It may be up to a fold, up to about 5 times, up to about 3 times, or up to about 2 times) may be increased.
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 28.6% (또는 약 1.29배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 28.6% (or about 1.29 times) compared to the parent strain before mutation or an unmodified microorganism, but is not limited thereto. does not
또 다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 71의 변이체(테트라하이드로디피콜리네이트 N-숙시닐트랜스퍼라제 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 71의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 71의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 71의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As another example, the recombinant strain with increased L-valine production ability is a variant of SEQ ID NO: 71 (tetrahydrodipicolinate N-succinyltransferase mutant), a polynucleotide encoding the same, and a vector comprising the polynucleotide. strains comprising one or more; a strain modified to express a variant of SEQ ID NO: 71 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 71 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 71 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 18.6% 이상, 약 18.7% 이상, 약 18.8% 이상, 약 18.9% 이상, 또는 약 19% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 약 30% 이하, 또는 약 25% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 약 1.15배 이상, 약 1.16배 이상, 약 1.17배 이상, 약 1.18배 이상, 또는 약 1.19배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 18.6% or more, about 18.7% or more, about 18.8% or more, about 18.9% or more, or about 19% or more (the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, about 30% or less, or about 25% or less) It is not limited thereto, as long as it has an increase in the + value compared to the productivity. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation. , about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, or about 1.19 times or more (the upper limit is not particularly limited, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times may be below) may be increased.
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 19% (또는 약 1.19배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain having increased L-valine production capacity may have an L-valine production capacity of about 19% (or about 1.19 times) increased compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
또 다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 81의 변이체(5,10-메틸렌테트라하이드로폴레이트 리덕타제 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 81의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 81의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 81의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As another example, the recombinant strain having an increased L-valine production ability is a mutant (5,10-methylenetetrahydrofolate reductase mutant) of SEQ ID NO: 81, a polynucleotide encoding the same, and a vector comprising the polynucleotide. strains comprising one or more; a strain modified to express a variant of SEQ ID NO: 81 or a polynucleotide encoding the same; a strain expressing a variant of SEQ ID NO: 81 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 81 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 약 23.5% 이상, 약 24% 이상, 약 24.5% 이상, 약 25% 이상, 약 25.5% 이상, 약 26% 이상, 약 26.5% 이상, 약 27% 이상, 약 27.5% 이상, 약 28% 이상, 약 28.5% 이상, 약 29% 이상, 약 29.5% 이상, 약 30% 이상, 약 30.5% 이상, 약 31% 이상, 약 31.5% 이상, 약 32% 이상, 약 32.5% 이상, 약 33% 이상, 약 33.1% 이상, 약 33.2% 이상, 또는 약 33.3% 이상, (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 또는 약 35% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 1.15배 이상, 1.16배 이상, 1.17배 이상, 1.18배 이상, 1.19배 이상, 약 1.2 배 이상, 1.25배 이상, 약 1.3배 이상, 약 1.31배 이상, 약 1.32배 이상,또는 약 1.33배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 25% or more, about 25.5% or more, about 26% or more, about 26.5% or more, about 27% or more, about 27.5% or more, about 28% or more, about 28.5% or more, about 29% or more, about 29.5% or more, about 30% or more, about 30.5% or more, about 31% or more, about 31.5% or more, about 32% or more, about 32.5% or more, about 33% or more, about 33.1% or more, about 33.2% or more, or about 33.3% or more, (the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40 % or less, or about 35% or less) may be increased, but is not limited thereto, as long as it has an increase in + value compared to the production capacity of the parent strain or unmodified microorganism before mutation. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation, 1.16 times or more, 1.17 times or more, 1.18 times or more, 1.19 times or more, about 1.2 times or more, 1.25 times or more, about 1.3 times or more, about 1.31 times or more, about 1.32 times or more, or about 1.33 times or more (the upper limit is a special limitation is not, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less) may be increased.
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 32.1% (또는 약 1.32배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 32.1% (or about 1.32 times) compared to the parent strain before mutation or an unmodified microorganism, but is not limited thereto. does not
또 다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 91의 변이체(NCgl2805 단백질 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 91의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 91의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 91의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As another example, the recombinant strain having increased L-valine production capacity may include a strain comprising at least one of a mutant of SEQ ID NO: 91 (NCgl2805 protein mutant), a polynucleotide encoding the same, and a vector including the polynucleotide; a strain modified to express a variant of SEQ ID NO: 91 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 91 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 91 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 14.6% 이상, 약 14.7% 이상, 약 14.8% 이상, 약 14.9% 이상 또는 약 15% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 약 30% 이하, 약 25% 이하 또는 약 20% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 약 1.14배 이상, 또는 약 1.15배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 약 2배 이하 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 14.6% or more, about 14.7% or more, about 14.8% or more, about 14.9% or more, or about 15% or more (the upper limit is not particularly limited, for example, about 200% or less , about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, about 30% or less, about 25% or less, or about 20% or less) increased However, it is not limited thereto, as long as it has an increased amount of + value compared to the production capacity of the parent strain or unmodified microorganism before mutation. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.14 times or more, compared to the parent strain or unmodified microorganism before mutation. , or about 1.15 times or more (the upper limit is not particularly limited, and may be, for example, about 10 times or less, about 5 times or less, about 3 times or less, about 2 times or less, about 2 times or less).
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 15% (또는 약 1.15배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 15% (or about 1.15 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
또 다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 101의 변이체(슈가 포터 계열 MFS 트랜스포터 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 101의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 101의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 101의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As another example, the recombinant strain having an increased L-valine production ability includes any one or more of a mutant of SEQ ID NO: 101 (sugar porter MFS transporter mutant), a polynucleotide encoding the same, and a vector including the polynucleotide strain; a strain modified to express a variant of SEQ ID NO: 101 or a polynucleotide encoding the same; a strain expressing a variant of SEQ ID NO: 101 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having a variant activity of SEQ ID NO: 101 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 약 23.5% 이상, 약 24% 이상, 약 24.5% 이상, 약 25% 이상, 약 25.5% 이상, 약 26% 이상, 약 26.5% 이상, 약 27% 이상, 약 27.5% 이상, 약 28% 이상, 약 28.5% 이상, 약 29% 이상, 약 29.5% 이상, 약 30% 이상, 약 30.5% 이상, 약 31% 이상, 약 31.5% 이상, 약 32% 이상, 약 32.5% 이상, 약 32.6% 이상, 약 32.7% 이상, 약 32.8% 이상, 약 32.9% 이상, 또는 약 33% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 또는 약 35% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 1.15배 이상, 약 1.16배 이상, 약 1.17배 이상, 약 1.18배 이상, 약 1.19배 이상, 약 1.2 배 이상, 약 1.25배 이상, 약 1.26배 이상, 약 1.27배 이상, 약 1.28배 이상, 약 1.29배 이상, 약 1.3배 이상, 약 1.31배 이상, 약 1.32배 이상, 또는 약 1.33배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 25% or more, about 25.5% or more, about 26% or more, about 26.5% or more, about 27% or more, about 27.5% or more, about 28% or more, about 28.5% or more, about 29% or more, about 29.5% or more, about 30% or more, about 30.5% or more, about 31% or more, about 31.5% or more, about 32% or more, about 32.5% or more, about 32.6% or more, about 32.7% or more, about 32.8% or more, about 32.9% or more, or about 33% or more (the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, or about 35% or less) may be increased, but is not limited thereto, as long as it has an increase in + value compared to the production capacity of the parent strain or unmodified microorganism before mutation. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation, about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.25 times or more, about 1.26 times or more, about 1.27 times or more, about 1.28 times or more, about 1.29 times or more, About 1.3 times or more, about 1.31 times or more, about 1.32 times or more, or about 1.33 times or more (the upper limit is not particularly limited, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less. may be increased).
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 33% (또는 약 1.33배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 33% (or about 1.33 times) compared to the parent strain before mutation or an unmodified microorganism, but is not limited thereto. does not
또 다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 111의 변이체(전사 조절자 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 111의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 111의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 111의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다. As another example, the recombinant strain having an increased L-valine production ability is a strain comprising any one or more of a mutant (transcriptional regulator mutant) of SEQ ID NO: 111, a polynucleotide encoding the same, and a vector including the polynucleotide; a strain modified to express a variant of SEQ ID NO: 111 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 111 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having a variant activity of SEQ ID NO: 111 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.1% 이상, 또는 약 22.2% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 또는 약 33% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 약 1.15배 이상, 약 1.16배 이상, 약 1.17배 이상, 약 1.18배 이상, 약 1.19배 이상, 약 1.2 배 이상, 약 1.21배 이상, 또는 약 1.22배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.1% or more, or about 22.2% or more (the upper limit is There is no particular limitation, for example, it may be about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, or about 33% or less) It may be increased, but it is not limited thereto as long as it has an increased amount of + value compared to the production capacity of the parent strain or unmodified microorganism before mutation. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation. , about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.21 times or more, or about 1.22 times or more (the upper limit is not particularly limited, for example, about 10 times or less , about 5 times or less, about 3 times or less, or about 2 times or less) may be increased.
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 22.2% (또는 약 1.22배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain with increased L-valine production capacity may have an L-valine production capacity increased by about 22.2% (or about 1.22 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
또 다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 121의 변이체(WhiB 계열 전사 조절자 WhcA 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 121의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 121의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 121의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As another example, the recombinant strain having an increased L-valine production ability includes any one or more of a mutant of SEQ ID NO: 121 (WhcA variant of the WhiB family transcriptional regulator), a polynucleotide encoding the same, and a vector including the polynucleotide strain; a strain modified to express a variant of SEQ ID NO: 121 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 121 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 121 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 약 23.5% 이상, 약 24% 이상, 약 24.5% 이상, 약 24.6% 이상, 약 24.7% 이상, 약 24.8% 이상, 약 24.9% 이상, 또는 약 25% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 또는 약 33% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 약 1.15배 이상, 약 1.16배 이상, 약 1.17배 이상, 약 1.18배 이상, 약 1.19배 이상, 약 1.2 배 이상, 약 1.21배 이상, 약 1.22배 이상, 약 1.23배 이상, 약 1.24배 이상, 또는 약 1.25배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 24.6% or more, about 24.7% or more, about 24.8% or more, about 24.9% or more, or about 25% or more (the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, or about 33% or less) Or, as long as it has an increased amount of + value compared to the production capacity of the unmodified microorganism, it is not limited thereto. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation. , about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.21 times or more, about 1.22 times or more, about 1.23 times or more, about 1.24 times or more, or about 1.25 times or more. The upper limit value is not particularly limited, and may be increased by, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less.
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 25% (또는 약 1.25배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 25% (or about 1.25 times) compared to the parent strain before mutation or an unmodified microorganism, but is not limited thereto. does not
또 다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 131의 변이체(디히드로리포일 아세틸기전이효소 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 131의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 131의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 131의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As another example, the recombinant strain having an increased L-valine production ability includes any one or more of a mutant (dihydrolipoyl acetyltransferase mutant) of SEQ ID NO: 131, a polynucleotide encoding the same, and a vector including the polynucleotide strain comprising; a strain modified to express a variant of SEQ ID NO: 131 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 131 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 131 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 약 23.5% 이상, 약 24% 이상, 약 24.5% 이상, 약 25% 이상, 약 25.5% 이상, 약 26% 이상, 약 26.5% 이상, 약 27% 이상, 약 27.5% 이상, 약 28% 이상, 약 28.5% 이상, 약 29% 이상, 약 29.5% 이상, 약 29.6% 이상, 약 29.7% 이상, 약 29.8% 이상, 약 29.9% 이상, 또는 약 30% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 또는 약 33% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 약 1.15배 이상, 약 1.16배 이상, 약 1.17배 이상, 약 1.18배 이상, 약 1.19배 이상, 약 1.2 배 이상, 약 1.25배 이상, 약 1.26배 이상, 약 1.27배 이상, 약 1.28배 이상, 약 1.9배 이상, 또는 약 1.3배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 25% or more, about 25.5% or more, about 26% or more, about 26.5% or more, about 27% or more, about 27.5% or more, about 28% or more, about 28.5% or more, about 29% or more, about 29.5% or more, about 29.6% or more, about 29.7% or more, about 29.8% or more, about 29.9% or more, or about 30% or more (the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, or about 33% or less) Or, as long as it has an increased amount of + value compared to the production capacity of the unmodified microorganism, it is not limited thereto. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation. , about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.25 times or more, about 1.26 times or more, about 1.27 times or more, about 1.28 times or more, about 1.9 times or more , or about 1.3 times or more (the upper limit is not particularly limited, and may be, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less).
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 30% (또는 약 1.3배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain having increased L-valine production capacity may have an L-valine production capacity increased by about 30% (or about 1.3 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
또 다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 141의 변이체(2-이소프로필말레이트합성효소 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 141의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 141의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 141의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As another example, the recombinant strain having an increased L-valine production ability comprises any one or more of a mutant (2-isopropyl maleate synthetase mutant) of SEQ ID NO: 141, a polynucleotide encoding the same, and a vector including the polynucleotide strain comprising; a strain modified to express a variant of SEQ ID NO: 141 or a polynucleotide encoding the same; a strain expressing a variant of SEQ ID NO: 141 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 141 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 22.6% 이상, 또는 약 22.7% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 또는 약 33% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 약 1.15배 이상, 약 1.16배 이상, 약 1.17배 이상, 약 1.18배 이상, 약 1.19배 이상, 약 1.2 배 이상, 약 1.25배 이상, 약 1.26배 이상, 또는 약 1.27배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 22.6% or more, or about 22.7% or more % or more (the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, or about 33% or less % or less), but is not limited thereto, as long as it has an increase of + value compared to the production capacity of the parent strain or unmodified microorganism before mutation. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation. , about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.25 times or more, about 1.26 times or more, or about 1.27 times or more (the upper limit is not particularly limited, for example, , about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less) may be increased.
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 22.7% (또는 약 1.23배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain having increased L-valine production capacity may have an L-valine production capacity increased by about 22.7% (or about 1.23 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
또 다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 151의 변이체(분지쇄아미노산 투과효소 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 151의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 151의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 151의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As another example, the recombinant strain having increased L-valine production ability is a strain comprising at least one of a mutant (branched-chain amino acid permease mutant) of SEQ ID NO: 151, a polynucleotide encoding the same, and a vector including the polynucleotide ; a strain modified to express a variant of SEQ ID NO: 151 or a polynucleotide encoding the same; a strain expressing the variant of SEQ ID NO: 151 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 151 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 약 23.5% 이상, 약 24% 이상, 약 24.5% 이상, 약 25% 이상, 약 25.5% 이상, 약 26% 이상, 약 26.5% 이상, 약 27% 이상, 약 27.5% 이상, 약 28% 이상, 약 28.1% 이상, 약 28.2% 이상, 약 28.3% 이상, 약 28.4% 이상, 약 28.5% 이상, 또는 약 28.6% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 또는 약 33% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 약 1.15배 이상, 약 1.16배 이상, 약 1.17배 이상, 약 1.18배 이상, 약 1.19배 이상, 약 1.2 배 이상, 약 1.25배 이상, 약 1.26배 이상, 약 1.27배 이상, 또는 약 1.28배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 25% or more, about 25.5% or more, about 26% or more, about 26.5% or more, about 27% or more, about 27.5% or more, about 28% or more, about 28.1% or more, about 28.2% or more, about 28.3% or more, about 28.4% or more, about 28.5% or more, or about 28.6% or more (the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, or about 33% or less) may be increased, but a + value compared to the production capacity of the parent strain or unmodified microorganism before mutation As long as it has an increasing amount of , it is not limited thereto. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation. , about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.25 times or more, about 1.26 times or more, about 1.27 times or more, or about 1.28 times or more (the upper limit is a special There is no limitation, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less) may be increased.
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 28.6% (또는 약 1.29배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 28.6% (or about 1.29 times) compared to the parent strain before mutation or an unmodified microorganism, but is not limited thereto. does not
또 다른 예로, 상기 L-발린 생산능이 증가된 재조합 균주는 서열번호 161의 변이체(글리세르알데히드-3-인산탈수소효소 변이체), 이를 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 서열번호 161의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 균주; 서열번호 161의 변이체 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 서열번호 161의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있다.As another example, the recombinant strain having increased L-valine production ability is at least one of a mutant of SEQ ID NO: 161 (glyceraldehyde-3-phosphate dehydrogenase mutant), a polynucleotide encoding the same, and a vector including the polynucleotide a strain comprising; a strain modified to express a variant of SEQ ID NO: 161 or a polynucleotide encoding the same; a strain expressing a variant of SEQ ID NO: 161 or a polynucleotide encoding the same (eg, a recombinant strain); Or it may be a strain having the mutant activity of SEQ ID NO: 161 (eg, a recombinant strain).
상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 10.5% 이상, 약 11% 이상, 약 11.5%이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 약 23.5% 이상, 약 24% 이상, 약 24.5% 이상, 약 25% 이상, 약 25.5% 이상, 약 26% 이상, 약 26.1% 이상, 약 26.2% 이상, 또는 약 26.3% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 또는 약 33% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 1.1배 이상, 약 1.12배 이상, 약 1.13배 이상, 약 1.15배 이상, 약 1.16배 이상, 약 1.17배 이상, 약 1.18배 이상, 약 1.19배 이상, 약 1.2 배 이상, 약 1.25배 이상, 또는 약 1.26배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있다.The recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, or about 7%, compared to the parent strain or unmodified microorganism before mutation. or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 25% or more, about 25.5% or more, about 26% or more, about 26.1% or more, about 26.2% or more, or about 26.3% or more (the upper limit is not particularly limited, For example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, or about 33% or less) may be increased , as long as it has an increased amount of + value compared to the production capacity of the parent strain or unmodified microorganism before mutation, but is not limited thereto. In another example, the recombinant strain having an increased L-valine production capacity has an L-valine production capacity of about 1.1 times or more, about 1.12 times or more, about 1.13 times or more, about 1.15 times or more, compared to the parent strain or unmodified microorganism before mutation. , about 1.16 times or more, about 1.17 times or more, about 1.18 times or more, about 1.19 times or more, about 1.2 times or more, about 1.25 times or more, or about 1.26 times or more (the upper limit is not particularly limited, for example, about 10 times or less , about 5 times or less, about 3 times or less, or about 2 times or less) may be increased.
보다 구체적으로는, 상기 L-발린 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-발린 생산능이 약 26.3% (또는 약 1.26배) 증가된 것일 수 있으나, 이에 제한되지 않는다.More specifically, the recombinant strain having an increased L-valine production capacity may have an L-valine production capacity increased by about 26.3% (or about 1.26 times) compared to the parent strain or unmodified microorganism before mutation, but is not limited thereto. does not
본 출원에서, 용어 “약(about)”은 ±0.5, ±0.4, ±0.3, ±0.2, ±0.1 등을 모두 포함하는 범위로, 약 이란 용어 뒤에 나오는 수치와 동등하거나 유사한 범위의 수치를 모두 포함하나, 이에 제한되지 않는다.In the present application, the term “about” includes all ranges including ±0.5, ±0.4, ±0.3, ±0.2, ±0.1, etc., and includes all values within a range equal to or similar to the value following the term about. However, it is not limited thereto.
본 출원에서 용어, "비변형 미생물"은 미생물에 자연적으로 발생할 수 있는 돌연변이를 포함하는 균주를 제외하는 것이 아니며, 야생형 균주 또는 천연형 균주 자체이거나, 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화되기 전 균주를 의미할 수 있다. 예를 들어, 상기 비변형 미생물은 본 명세서에 기재된 단백질 변이체가 도입되지 않거나 도입되기 전의 균주를 의미할 수 있다. 상기 "비변형 미생물"은 “변형 전 균주”, “변형 전 미생물”, “비변이 균주”, “비변형 균주”, “비변이 미생물” 또는 “기준 미생물”과 혼용될 수 있다.As used herein, the term "unmodified microorganism" does not exclude a strain containing a mutation that can occur naturally in a microorganism, it is a wild-type strain or a natural-type strain itself, or a genetic variation caused by natural or artificial factors. It may mean the strain before being changed. For example, the unmodified microorganism may refer to a strain in which the protein variant described herein has not been introduced or has been introduced. The "unmodified microorganism" may be used interchangeably with "strain before modification", "microbe before modification", "unmodified strain", "unmodified strain", "unmodified microorganism" or "reference microorganism".
본 출원의 또 다른 일 예로, 본 출원의 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 크루디락티스(Corynebacterium crudilactis), 코리네박테리움 데세르티(Corynebacterium deserti), 코리네박테리움 이피시엔스(Corynebacterium efficiens), 코리네박테리움 칼루내(Corynebacterium callunae), 코리네박테리움 스테셔니스(Corynebacterium stationis), 코리네박테리움 싱굴라레(Corynebacterium singulare), 코리네박테리움 할로톨레란스(Corynebacterium halotolerans), 코리네박테리움 스트리아툼(Corynebacterium striatum), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 폴루티솔리(Corynebacterium pollutisoli), 코리네박테리움 이미탄스(Corynebacterium imitans), 코리네박테리움 테스투디노리스(Corynebacterium testudinoris), 또는 코리네박테리움 플라베스센스(Corynebacterium flavescens)일 수 있다.In another example of the present application, the microorganism of the present application is Corynebacterium glutamicum ( Corynebacterium glutamicum ), Corynebacterium crudilactis ), Corynebacterium deserti ( Corynebacterium deserti ), Cory Nebacterium efficiens ( Corynebacterium efficiens ), Corynebacterium callunae ), Corynebacterium stationis , Corynebacterium stationis ), Corynebacterium singulare ( Corynebacterium singulare ), Corynebacterium halo Tolerans ( Corynebacterium halotolerans ), Corynebacterium striatum ( Corynebacterium striatum ), Corynebacterium ammoniagenes ( Corynebacterium ammoniagenes ), Corynebacterium pollutisoli ( Corynebacterium pollutisoli ), Corynebacterium imitans imitans ), Corynebacterium testudinoris , or Corynebacterium flavescens .
본 출원에서 용어, 폴리펩티드의 “약화”는 내재적 활성에 비하여 활성이 감소되거나 또는 활성이 없는 것을 모두 포함하는 개념이다. 상기 약화는 불활성화(inactivation), 결핍(deficiency), 하향조절(down-regulation), 감소(decrease), 저하(reduce), 감쇠(attenuation) 등의 용어와 혼용될 수 있다. As used herein, the term “weakened” of a polypeptide is a concept that includes both reduced or no activity compared to intrinsic activity. The attenuation may be used interchangeably with terms such as inactivation, deficiency, down-regulation, decrease, reduce, attenuation, and the like.
상기 약화는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드의 변이 등으로 폴리펩티드 자체의 활성이 본래 미생물이 가지고 있는 폴리펩티드의 활성에 비해 감소 또는 제거된 경우, 이를 코딩하는 폴리뉴클레오티드의 유전자의 발현 저해 또는 폴리펩티드로의 번역(translation) 저해 등으로 세포 내에서 전체적인 폴리펩티드 활성 정도 및/또는 농도(발현량)가 천연형 균주에 비하여 낮은 경우, 상기 폴리뉴클레오티드의 발현이 전혀 이루어지지 않은 경우, 및/또는 폴리뉴클레오티드의 발현이 되더라도 폴리펩티드의 활성이 없는 경우 역시 포함할 수 있다. 상기 “내재적 활성”은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주, 야생형 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 “변형 전 활성”과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 “불활성화, 결핍, 감소, 하향조절, 저하, 감쇠”한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성에 비하여 낮아진 것을 의미한다. The attenuation is when the activity of the polypeptide itself is reduced or eliminated compared to the activity of the polypeptide possessed by the original microorganism due to mutation of the polynucleotide encoding the polypeptide, etc. When the overall polypeptide activity level and/or concentration (expression amount) in the cell is lower than that of the native strain due to (translation) inhibition, etc., when the expression of the polynucleotide is not made at all, and/or when the expression of the polynucleotide is Even if there is no activity of the polypeptide, it may also be included. The “intrinsic activity” refers to the activity of a specific polypeptide originally possessed by the parent strain, wild-type or unmodified microorganism before transformation when the trait is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activity before modification”. “Inactivation, deficiency, reduction, downregulation, reduction, attenuation” of the activity of a polypeptide compared to the intrinsic activity means that the activity of the specific polypeptide originally possessed by the parent strain or unmodified microorganism before transformation is lowered.
이러한 폴리펩티드의 활성의 약화는, 당업계에 알려진 임의의 방법에 의하여 수행될 수 있으나 이로 제한되는 것은 아니며, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다(예컨대, Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012 등).Attenuation of the activity of such a polypeptide may be performed by any method known in the art, but is not limited thereto, and may be achieved by application of various methods well known in the art (eg, Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012, etc.).
구체적으로, 본 출원의 폴리펩티드의 약화는Specifically, the attenuation of the polypeptide of the present application is
1) 폴리펩티드를 코딩하는 유전자 전체 또는 일부의 결손;1) deletion of all or part of a gene encoding a polypeptide;
2) 폴리펩티드를 코딩하는 유전자의 발현이 감소하도록 발현조절영역(또는 발현조절서열)의 변형;2) modification of the expression control region (or expression control sequence) to reduce the expression of the gene encoding the polypeptide;
3) 폴리펩티드의 활성이 제거 또는 약화되도록 상기 폴리펩티드를 구성하는 아미노산 서열의 변형(예컨대, 아미노산 서열 상의 1 이상의 아미노산의 삭제/치환/부가);3) modification of the amino acid sequence constituting the polypeptide such that the activity of the polypeptide is eliminated or attenuated (eg, deletion/substitution/addition of one or more amino acids on the amino acid sequence);
4) 폴리펩티드의 활성이 제거 또는 약화되도록 상기 폴리펩티드를 코딩하는 유전자 서열의 변형 (예를 들어, 폴리펩티드의 활성이 제거 또는 약화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 핵산염기 서열 상의 1 이상의 핵산염기의 삭제/치환/부가);4) modification of the gene sequence encoding the polypeptide such that the activity of the polypeptide is eliminated or attenuated (eg, one or more nucleobases on the nucleotide sequence of the polypeptide gene to encode a polypeptide modified such that the activity of the polypeptide is eliminated or attenuated) deletion/replacement/addition of);
5) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형;5) modification of the nucleotide sequence encoding the initiation codon or 5'-UTR region of the gene transcript encoding the polypeptide;
6) 폴리펩티드를 코딩하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입;6) introduction of an antisense oligonucleotide (eg, antisense RNA) that complementarily binds to the transcript of said gene encoding the polypeptide;
7) 리보솜(ribosome)의 부착이 불가능한 2차 구조물을 형성시키기 위하여 폴리펩티드를 코딩하는 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열의 부가;7) adding a sequence complementary to the Shine-Dalgarno sequence in front of the Shine-Dalgarno sequence of the gene encoding the polypeptide to form a secondary structure that cannot be attached to the ribosome;
8) 폴리펩티드를 코딩하는 유전자 서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터의 부가(Reverse transcription engineering, RTE); 또는8) addition of a promoter transcribed in the opposite direction to the 3' end of the open reading frame (ORF) of the gene sequence encoding the polypeptide (Reverse transcription engineering, RTE); or
9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.9) It may be a combination of two or more selected from 1) to 8) above, but is not particularly limited thereto.
예컨대, for example,
상기 1) 폴리펩티드를 코딩하는 상기 유전자 일부 또는 전체의 결손은, 염색체 내 내재적 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드 전체의 제거, 일부 뉴클레오티드가 결실된 폴리뉴클레오티드로의 교체 또는 마커 유전자로 교체일 수 있다.1) The deletion of a part or all of the gene encoding the polypeptide may be the removal of the entire polynucleotide encoding the endogenous target polypeptide in the chromosome, replacement with a polynucleotide in which some nucleotides are deleted, or replacement with a marker gene.
또한, 상기 2) 발현조절영역(또는 발현조절서열)의 변형은, 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 발현조절영역(또는 발현조절서열) 상의 변이 발생, 또는 더욱 약한 활성을 갖는 서열로의 교체일 수 있다. 상기 발현조절영역에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함하나, 이에 한정되는 것은 아니다.In addition, the above 2) modification of the expression control region (or expression control sequence), deletion, insertion, non-conservative or conservative substitution, or a combination thereof, mutation in the expression control region (or expression control sequence) occurs, or weaker replacement with an active sequence. The expression control region includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating the termination of transcription and translation.
또한, 상기 3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 낮은 다른 개시코돈을 코딩하는 염기서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.In addition, 3) the base sequence modification encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a base encoding another start codon having a lower polypeptide expression rate than the intrinsic start codon It may be substituted with a sequence, but is not limited thereto.
또한, 상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은 폴리펩티드의 활성을 약화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 약한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 없도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 예를 들면, 폴리뉴클레오티드 서열 내 변이를 도입하여 종결 코돈을 형성시킴으로써, 유전자의 발현을 저해하거나 약화시킬 수 있으나, 이에 제한되지 않는다.In addition, the modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above is a deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to weaken the activity of the polypeptide. Or a combination thereof may result in a mutation in sequence, or replacement with an amino acid sequence or polynucleotide sequence improved to have weaker activity or an amino acid sequence or polynucleotide sequence improved to have no activity, but is not limited thereto. For example, by introducing a mutation in the polynucleotide sequence to form a stop codon, the expression of a gene may be inhibited or attenuated, but is not limited thereto.
상기 6) 폴리펩티드를 코딩하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입은 예를 들어 문헌 [Weintraub, H. et al., Antisense-RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986]을 참고할 수 있다.6) The introduction of an antisense oligonucleotide (eg, antisense RNA) that complementarily binds to the transcript of the gene encoding the polypeptide is described, for example, in Weintraub, H. et al., Antisense-RNA as a molecular tool. for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986].
상기 7) 리보솜(ribosome)의 부착이 불가능한 2차 구조물을 형성시키기 위하여 폴리펩티드를 코딩하는 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열의 부가는 mRNA 번역을 불가능하게 하거나 속도를 저하시키는 것일 수 있다.7) Addition of a sequence complementary to the Shine-Dalgarno sequence in front of the Shine-Dalgarno sequence of the gene encoding the polypeptide to form a secondary structure that cannot be attached to the ribosome is mRNA translation It may make it impossible or slow it down.
상기 8) 폴리펩티드를 코딩하는 유전자서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터의 부가(Reverse transcription engineering, RTE)는 상기 폴리펩티드를 코딩하는 유전자의 전사체에 상보적인 안티센스 뉴클레오티드를 만들어 활성을 약화하는 것일 수 있다.8) the addition of a promoter transcribed in the opposite direction to the 3' end of the open reading frame (ORF) of the gene sequence encoding the polypeptide (Reverse transcription engineering, RTE) is an antisense complementary to the transcript of the gene encoding the polypeptide It may be to attenuate activity by making nucleotides.
본 출원에서 용어, 폴리펩티드 활성의 “강화”는, 폴리펩티드의 활성이 내재적 활성에 비하여 증가되는 것을 의미한다. 상기 강화는 활성화(activation), 상향조절(up-regulation), 과발현(overexpression), 증가(increase) 등의 용어와 혼용될 수 있다. 여기서 활성화, 강화, 상향조절, 과발현, 증가는 본래 가지고 있지 않았던 활성을 나타내게 되는 것, 또는 내재적 활성 또는 변형 전 활성에 비하여 향상된 활성을 나타내게 되는 것을 모두 포함할 수 있다. 상기 “내재적 활성”은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 “변형 전 활성”과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 “강화”, “상향조절”, “과발현” 또는 “증가”한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성 및/또는 농도(발현량)에 비하여 향상된 것을 의미한다. As used herein, the term “enhancement” of a polypeptide activity means that the activity of the polypeptide is increased compared to the intrinsic activity. The reinforcement may be used interchangeably with terms such as activation, up-regulation, overexpression, and increase. Herein, activation, enhancement, up-regulation, overexpression, and increase may include all of those exhibiting an activity that was not originally possessed, or exhibiting an improved activity compared to an intrinsic activity or an activity prior to modification. The “intrinsic activity” refers to the activity of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before the transformation when the trait is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activity before modification”. “Enhancement”, “up-regulation”, “overexpression” or “increase” in the activity of a polypeptide compared to its intrinsic activity means that the activity and/or concentration (expression) of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before transformation. amount), which means improved.
상기 강화는 외래의 폴리펩티드를 도입하거나, 내재적인 폴리펩티드의 활성 강화 및/또는 농도(발현량)를 통해 달성할 수 있다. 상기 폴리펩티드의 활성의 강화 여부는 해당 폴리펩티드의 활성 정도, 발현량 또는 해당 폴리펩티드로부터 배출되는 산물의 양의 증가로부터 확인할 수 있다.The enrichment can be achieved by introducing an exogenous polypeptide, or by enhancing the activity and/or concentration (expression amount) of the endogenous polypeptide. Whether or not the activity of the polypeptide is enhanced can be confirmed from the increase in the level of activity, expression level, or the amount of product excreted from the polypeptide.
상기 폴리펩티드의 활성의 강화는 당해 분야에 잘 알려진 다양한 방법의 적용이 가능하며, 목적 폴리펩티드의 활성을 변형전 미생물보다 강화시킬 수 있는 한, 제한되지 않는다. 구체적으로, 분자생물학의 일상적 방법인 당업계의 통상의 기술자에게 잘 알려진 유전자 공학 및/또는 단백질 공학을 이용한 것일 수 있으나, 이로 제한되지 않는다(예컨대, Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012 등).The enhancement of the activity of the polypeptide can be applied by various methods well known in the art, and is not limited as long as it can enhance the activity of the target polypeptide compared to the microorganism before modification. Specifically, it may be one using genetic engineering and/or protein engineering well known to those skilled in the art, which is a routine method of molecular biology, but is not limited thereto (eg, Sitnicka et al. Functional Analysis of Genes. Advances in Cell). Biology 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012, etc.).
구체적으로, 본 출원의 폴리펩티드의 강화는Specifically, the enrichment of the polypeptide of the present application is
1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가; 1) increasing the intracellular copy number of a polynucleotide encoding the polypeptide;
2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역을 활성이 강력한 서열로 교체; 2) replacing the gene expression control region on the chromosome encoding the polypeptide with a sequence with strong activity;
3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형; 3) modification of the nucleotide sequence encoding the initiation codon or 5'-UTR region of the gene transcript encoding the polypeptide;
4) 폴리펩티드 활성이 강화되도록 상기 폴리펩티드의 아미노산 서열의 변형;4) modification of the amino acid sequence of said polypeptide to enhance polypeptide activity;
5) 폴리펩티드 활성이 강화되도록 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열의 변형 (예를 들어, 폴리펩티드의 활성이 강화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 폴리뉴클레오티드 서열의 변형);5) modification of the polynucleotide sequence encoding the polypeptide to enhance the polypeptide activity (eg, modification of the polynucleotide sequence of the polypeptide gene to encode a polypeptide modified to enhance the activity of the polypeptide);
6) 폴리펩티드의 활성을 나타내는 외래 폴리펩티드 또는 이를 코딩하는 외래 폴리뉴클레오티드의 도입; 6) introduction of a foreign polypeptide exhibiting the activity of the polypeptide or a foreign polynucleotide encoding the same;
7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화; 7) codon optimization of the polynucleotide encoding the polypeptide;
8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식; 또는8) by analyzing the tertiary structure of the polypeptide to select an exposed site for modification or chemical modification; or
9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.9) It may be a combination of two or more selected from 1) to 8) above, but is not particularly limited thereto.
보다 구체적으로,More specifically,
상기 1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 작동가능하게 연결된, 숙주와 무관하게 복제되고 기능할 수 있는 벡터의 숙주세포 내로의 도입에 의해 달성되는 것일 수 있다. 또는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 숙주세포 내의 염색체 내에 1 카피 또는 2 카피 이상 도입에 의해 달성되는 것일 수 있다. 상기 염색체 내에 도입은 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터가 숙주세포 내에 도입됨으로써 수행될 수 있으나, 이에 제한되지 않는다. 상기 벡터는 전술한 바와 같다.1) The increase in the intracellular copy number of the polynucleotide encoding the polypeptide is achieved by introduction into the host cell of a vector to which the polynucleotide encoding the polypeptide is operably linked, which can replicate and function independently of the host it may be Alternatively, the polynucleotide encoding the polypeptide may be achieved by introducing one copy or two or more copies into a chromosome in a host cell. The introduction into the chromosome may be performed by introducing a vector capable of inserting the polynucleotide into the chromosome in the host cell into the host cell, but is not limited thereto. The vector is the same as described above.
상기 2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역(또는 발현조절서열)을 활성이 강력한 서열로 교체는, 예를 들면, 상기 발현조절영역의 활성을 더욱 강화하도록 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 가지는 서열로의 교체일 수 있다. 상기 발현조절영역은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 그리고 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다. 일 예로, 본래의 프로모터를 강력한 프로모터로 교체시키는 것일 수 있으나, 이에 제한되지 않는다.2) Replacing the gene expression control region (or expression control sequence) on the chromosome encoding the polypeptide with a sequence with strong activity is, for example, deletion, insertion, non-conservative or Conservative substitution or a combination thereof may result in a mutation in the sequence, or replacement with a sequence having a stronger activity. The expression control region is not particularly limited thereto, but may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence controlling the termination of transcription and translation. As an example, the original promoter may be replaced with a strong promoter, but is not limited thereto.
공지된 강력한 프로모터의 예에는 CJ1 내지 CJ7 프로모터(미국등록특허 US 7662943 B2), lac 프로모터, trp 프로모터, trc 프로모터, tac 프로모터, 람다 파아지 PR 프로모터, PL 프로모터, tet 프로모터, gapA 프로모터, SPL7 프로모터, SPL13(sm3) 프로모터(미국등록특허 US 10584338 B2), O2 프로모터(미국등록특허 US 10273491 B2), tkt 프로모터, yccA 프로모터 등이 있으나, 이에 제한되지 않는다.Examples of known strong promoters include CJ1 to CJ7 promoters (US 7662943 B2), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter, SPL13 (sm3) promoter (US Patent US 10584338 B2), O2 promoter (US Patent US 10273491 B2), tkt promoter, yccA promoter, etc., but is not limited thereto.
상기 3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 높은 다른 개시코돈을 코딩하는 염기 서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.3) Modification of the nucleotide sequence encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a nucleotide sequence encoding another start codon having a higher expression rate of the polypeptide compared to the intrinsic start codon. It may be a substitution, but is not limited thereto.
상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은, 폴리펩티드의 활성을 강화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 증가하도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 상기 교체는 구체적으로 상동재조합에 의하여 폴리뉴클레오티드를 염색체내로 삽입함으로써 수행될 수 있으나, 이에 제한되지 않는다. 이때 사용되는 벡터는 염색체 삽입 여부를 확인하기 위한 선별 마커 (selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 전술한 바와 같다.The modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above may include deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide; A combination thereof may result in sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have stronger activity or an amino acid sequence or polynucleotide sequence improved to increase activity, but is not limited thereto. The replacement may be specifically performed by inserting a polynucleotide into a chromosome by homologous recombination, but is not limited thereto. In this case, the vector used may further include a selection marker for confirming whether or not the chromosome is inserted. The selection marker is the same as described above.
상기 6) 폴리펩티드의 활성을 나타내는 외래 폴리뉴클레오티드의 도입은, 상기 폴리펩티드와 동일/유사한 활성을 나타내는 폴리펩티드를 코딩하는 외래 폴리뉴클레오티드의 숙주세포 내 도입일 수 있다. 상기 외래 폴리뉴클레오티드는 상기 폴리펩티드와 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한이 없다. 상기 도입에 이용되는 방법은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 폴리펩티드가 생성되어 그 활성이 증가될 수 있다.6) The introduction of the foreign polynucleotide exhibiting the activity of the polypeptide may be the introduction of the foreign polynucleotide encoding the polypeptide exhibiting the same/similar activity as the polypeptide into a host cell. The foreign polynucleotide is not limited in its origin or sequence as long as it exhibits the same/similar activity as the polypeptide. The method used for the introduction can be performed by appropriately selecting a known transformation method by those skilled in the art, and the introduced polynucleotide is expressed in a host cell to generate a polypeptide and increase its activity.
상기 7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화는, 내재 폴리뉴클레오티드가 숙주세포 내에서 전사 또는 번역이 증가하도록 코돈 최적화한 것이거나, 또는 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화한 것일 수 있다.7) Codon optimization of the polynucleotide encoding the polypeptide is codon-optimized so that the transcription or translation of the endogenous polynucleotide is increased in the host cell, or the transcription and translation of the foreign polynucleotide is optimized in the host cell. It may be that its codons are optimized so that the
상기 8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식하는 것은, 예를 들어 분석하고자 하는 폴리펩티드의 서열정보를 기지 단백질들의 서열정보가 저장된 데이터베이스와 비교함으로써 서열의 유사성 정도에 따라 주형 단백질 후보를 결정하고 이를 토대로 구조를 확인하여, 변형하거나 화학적으로 수식할 노출 부위를 선택하여 변형 또는 수식하는 것일 수 있다.8) Selecting an exposed site by analyzing the tertiary structure of the polypeptide and modifying or chemically modifying it is, for example, by comparing the sequence information of the polypeptide to be analyzed with a database in which sequence information of known proteins is stored to determine the degree of sequence similarity. Accordingly, it may be to determine a template protein candidate, check the structure based on this, and select an exposed site to be modified or chemically modified and modified or modified.
이와 같은 폴리펩티드 활성의 강화는, 상응하는 폴리펩티드의 활성 또는 농도 발현량이 야생형이나 변형 전 미생물 균주에서 발현된 폴리펩티드의 활성 또는 농도를 기준으로 하여 증가되거나, 해당 폴리펩티드로부터 생산되는 산물의 양의 증가되는 것일 수 있으나, 이에 제한되는 것은 아니다.Such enhancement of polypeptide activity is to increase the activity or concentration of the corresponding polypeptide based on the activity or concentration of the polypeptide expressed in the wild-type or pre-modified microbial strain, or increase the amount of product produced from the polypeptide. However, the present invention is not limited thereto.
본 출원의 미생물에서 폴리뉴클레오티드의 일부 또는 전체의 변형 (예컨대, 상술한 단백질 변이체를 코딩하기 위한 변형)은 (a) 미생물 내 염색체 삽입용 벡터를 이용한 상동 재조합 또는 유전자가위 (engineered nuclease, e.g., CRISPR-Cas9)을 이용한 유전체 교정 및/또는 (b) 자외선 및 방사선 등과 같은 빛 및/또는 화학물질 처리에 의해 유도될 수 있으나 이에 제한되지 않는다. 상기 유전자 일부 또는 전체의 변형 방법에는 DNA 재조합 기술에 의한 방법이 포함될 수 있다. 예를 들면, 목적 유전자와 상동성이 있는 뉴클레오티드 서열을 포함하는 뉴클레오티드 서열 또는 벡터를 상기 미생물에 주입하여 상동 재조합(homologous recombination)이 일어나게 함으로써 유전자 일부 또는 전체의 결손이 이루어질 수 있다. 상기 주입되는 뉴클레오티드 서열 또는 벡터는 우성 선별 마커를 포함할 수 있으나, 이에 제한되는 것은 아니다. Modification of some or all of the polynucleotide in the microorganism of the present application (eg, modification for encoding the above-described protein variant) is (a) homologous recombination using a vector for chromosome insertion in the microorganism or engineered nuclease (e.g., CRISPR) -Cas9) and/or (b) induced by light and/or chemical treatment such as ultraviolet and radiation, but not limited thereto. The method for modifying part or all of the gene may include a method by DNA recombination technology. For example, by injecting a nucleotide sequence or a vector containing a nucleotide sequence homologous to a target gene into the microorganism to cause homologous recombination, a part or all of the gene may be deleted. The injected nucleotide sequence or vector may include a dominant selection marker, but is not limited thereto.
본 출원의 미생물에서, 변이체, 폴리뉴클레오티드 및 L-발린 등은 상기 다른 양태에서 기재한 바와 같다.In the microorganism of the present application, variants, polynucleotides, L-valine, and the like are as described in the other aspects above.
L-아미노산의 생산Production of L-amino acids
본 출원의 또 다른 하나의 양태는 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드를 포함하는 코리네박테리움 글루타미쿰 균주를 배지에서 배양하는 단계를 포함하는, L-아미노산 생산방법을 제공한다. Another aspect of the present application provides a method for producing L-amino acids, comprising the step of culturing a Corynebacterium glutamicum strain comprising the mutant of the present application or the polynucleotide of the present application in a medium.
본 출원의 L-아미노산 생산방법은 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드 또는 본 출원의 벡터를 포함하는 코리네박테리움 글루타미쿰 균주를 배지에서 배양하는 단계를 포함할 수 있다.The L-amino acid production method of the present application may include culturing a Corynebacterium glutamicum strain comprising the mutant of the present application or the polynucleotide of the present application or the vector of the present application in a medium.
더불어, 본 출원의 L-아미노산은 L-발린일 수 있다.In addition, the L-amino acid of the present application may be L-valine.
본 출원에서, 용어 "배양"은 본 출원의 코리네박테리움 글루타미쿰 균주를 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본 출원의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 구체적으로 상기 배양은 회분식, 연속식 및/또는 유가식일 수 있으나, 이에 제한되는 것은 아니다.In the present application, the term "cultivation" means growing the Corynebacterium glutamicum strain of the present application under moderately controlled environmental conditions. The culture process of the present application may be performed according to a suitable medium and culture conditions known in the art. Such a culture process can be easily adjusted and used by those skilled in the art according to the selected strain. Specifically, the culture may be a batch, continuous and/or fed-batch, but is not limited thereto.
본 출원에서 용어, "배지"는 본 출원의 코리네박테리움 글루타미쿰 균주를 배양하기 위해 필요로 하는 영양물질을 주성분으로 혼합한 물질을 의미하며, 생존 및 발육에 불가결한 물을 비롯하여 영양물질 및 발육인자 등을 공급한다. 구체적으로, 본 출원의 코리네박테리움 글루타미쿰 균주의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용할 수 있으나, 본 출원의 코리네박테리움 글루타미쿰 균주를 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다. As used herein, the term "medium" refers to a material in which nutrients required for culturing the Corynebacterium glutamicum strain of the present application are mixed as a main component, and nutrients including water essential for survival and growth and growth factors. Specifically, any medium and other culture conditions used for culturing the Corynebacterium glutamicum strain of the present application may be used without any particular limitation as long as it is a medium used for culturing conventional microorganisms, but the Corynebacterium glutamicum of the present application Lium glutamicum strain can be cultured while controlling the temperature, pH, etc. under aerobic conditions in a conventional medium containing an appropriate carbon source, nitrogen source, phosphorus, inorganic compound, amino acid and / or vitamin and the like.
구체적으로, 코리네박테리움 속 균주에 대한 배양 배지는 문헌["Manual of Methods for General Bacteriology" by the American Society for Bacteriology (Washington D.C., USA, 1981)]에서 찾아 볼 수 있다.Specifically, the culture medium for the Corynebacterium sp. strain can be found in the literature ["Manual of Methods for General Bacteriology" by the American Society for Bacteriology (Washington D.C., USA, 1981)].
본 출원에서 상기 탄소원으로는 글루코오스, 사카로오스, 락토오스, 프룩토오스, 수크로오스, 말토오스 등과 같은 탄수화물; 만니톨, 소르비톨 등과 같은 당 알코올, 피루브산, 락트산, 시트르산 등과 같은 유기산; 글루탐산, 메티오닌, 리신 등과 같은 아미노산 등이 포함될 수 있다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 구체적으로는 글루코오스 및 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀) 등과 같은 탄수화물이 사용될 수 있으며, 그 외의 적정량의 탄소원을 제한 없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.In the present application, the carbon source includes carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, maltose, and the like; sugar alcohols such as mannitol and sorbitol; organic acids such as pyruvic acid, lactic acid, citric acid and the like; amino acids such as glutamic acid, methionine, lysine, and the like may be included. In addition, natural organic nutrient sources such as starch hydrolyzate, molasses, blackstrap molasses, rice winter, cassava, sugar cane offal and corn steep liquor can be used, specifically glucose and sterilized pre-treated molasses (i.e., converted to reducing sugar). molasses) may be used, and other appropriate amounts of carbon sources may be variously used without limitation. These carbon sources may be used alone or in combination of two or more, but is not limited thereto.
상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.Examples of the nitrogen source include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine, and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or degradation products thereof, defatted soybean cake or degradation products thereof, etc. can be used These nitrogen sources may be used alone or in combination of two or more, but is not limited thereto.
상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 소디움-함유 염 등이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 이들 구성성분 또는 전구체는 배지에 회분식 또는 연속식으로 첨가될 수 있다. 그러나, 이에 한정되는 것은 아니다.The phosphorus may include potassium first potassium phosphate, second potassium phosphate, or a sodium-containing salt corresponding thereto. As the inorganic compound, sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, etc. may be used, and in addition, amino acids, vitamins and/or suitable precursors may be included. These components or precursors may be added to the medium either batchwise or continuously. However, the present invention is not limited thereto.
또한, 본 출원의 코리네박테리움 글루타미쿰 균주의 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물을 배지에 적절한 방식으로 첨가하여, 배지의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배지의 호기 상태를 유지하기 위하여, 배지 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있으며, 이에 한정되는 것은 아니다.In addition, during the culture of the Corynebacterium glutamicum strain of the present application, compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. may be added to the medium in an appropriate manner to adjust the pH of the medium. In addition, during culturing, an antifoaming agent such as fatty acid polyglycol ester may be used to suppress bubble formation. In addition, in order to maintain the aerobic state of the medium, oxygen or oxygen-containing gas may be injected into the medium, or nitrogen, hydrogen or carbon dioxide gas may be injected without or without gas to maintain anaerobic and microaerobic conditions, it is not
본 출원의 배양에서 배양온도는 20 내지 45℃ 구체적으로는 25 내지 40℃ 를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 한정되는 것은 아니다. In the culture of the present application, the culture temperature may be maintained at 20 to 45° C., specifically, 25 to 40° C., and may be cultured for about 10 to 160 hours, but is not limited thereto.
본 출원의 배양에 의하여 생산된 L-아미노산은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.The L-amino acid produced by the culture of the present application may be secreted into the medium or may remain in the cell.
본 출원의 L-아미노산 생산방법은, 본 출원의 코리네박테리움 글루타미쿰 균주를 준비하는 단계, 상기 균주를 배양하기 위한 배지를 준비하는 단계, 또는 이들의 조합(순서에 무관, in any order)을, 예를 들어, 상기 배양하는 단계 이전에, 추가로 포함할 수 있다. The L-amino acid production method of the present application includes the steps of preparing the Corynebacterium glutamicum strain of the present application, preparing a medium for culturing the strain, or a combination thereof (regardless of the order, in any order) ), for example, prior to the culturing step, may further include.
본 출원의 L-아미노산 생산방법은, 상기 배양에 따른 배지(배양이 수행된 배지) 또는 코리네박테리움 글루타미쿰 균주로부터 L-아미노산을 회수하는 단계를 추가로 포함할 수 있다. 상기 회수하는 단계는 상기 배양하는 단계 이후에 추가로 포함될 수 있다.The method for producing L-amino acids of the present application may further include recovering L-amino acids from the culture medium (the culture medium) or the Corynebacterium glutamicum strain. The recovering step may be further included after the culturing step.
상기 회수는 본 출원의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 목적하는 L-아미노산을 수집(collect)하는 것일 수 있다. 예를 들어, 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 또는 이들의 방법을 조합하여 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 L-아미노산을 회수할 수 있다.The recovery may be to collect the desired L-amino acid using a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method, etc. . For example, centrifugation, filtration, treatment with a crystallized protein precipitating agent (salting out method), extraction, ultrasonic disruption, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity Various chromatography such as island chromatography, HPLC, or a combination thereof may be used, and a desired L-amino acid may be recovered from a medium or a microorganism using a suitable method known in the art.
또한, 본 출원의 L-아미노산 생산방법은, 추가적으로 정제 단계를 포함할 수 있다. 상기 정제는 당해 기술분야에 공지된 적합한 방법을 이용하여, 수행할 수 있다. 일 예에서, 본 출원의 L-아미노산 생산방법이 회수 단계와 정제 단계를 모두 포함하는 경우, 상기 회수 단계와 정제 단계는 순서에 상관없이 연속적 또는 비연속적으로 수행되거나, 동시에 또는 하나의 단계로 통합되어 수행될 수 있으나, 이에 제한되는 것은 아니다.In addition, the L-amino acid production method of the present application may include an additional purification step. The purification may be performed using a suitable method known in the art. In one example, when the L-amino acid production method of the present application includes both the recovery step and the purification step, the recovery step and the purification step are performed continuously or discontinuously, regardless of the order, or integrated into one step may be performed, but is not limited thereto.
본 출원의 방법에서, 변이체, 폴리뉴클레오티드, 벡터 및 균주 등은 상기 다른 양태에서 기재한 바와 같다.In the method of the present application, variants, polynucleotides, vectors, strains, and the like are as described in the other aspects above.
본 출원의 또 다른 하나의 양태는 본 출원의 변이체, 상기 변이체를 코딩하는 폴리뉴클레오타이드, 상기 폴리뉴클레오타이드를 포함하는 벡터 또는 본 출원의 폴리뉴클레오티드를 포함하는 코리네박테리움 글루타미쿰 균주; 이를 배양한 배지; 또는 이들 중 2 이상의 조합을 포함하는 L-아미노산 생산용 조성물을 제공하는 것이다.Another aspect of the present application is a variant of the present application, a polynucleotide encoding the variant, a vector including the polynucleotide or a Corynebacterium glutamicum strain comprising the polynucleotide of the present application; the culture medium; Or to provide a composition for the production of L- amino acids comprising a combination of two or more of them.
본 출원의 조성물은 아미노산 생산용 조성물에 통상 사용되는 임의의 적합한 부형제를 추가로 포함할 수 있으며, 이러한 부형제는, 예를 들어 보존제, 습윤제, 분산제, 현탁화제, 완충제, 안정화제 또는 등장화제 등일 수 있으나, 이에 한정되는 것은 아니다.The composition of the present application may further include any suitable excipients commonly used in compositions for the production of amino acids, and these excipients may be, for example, preservatives, wetting agents, dispersing agents, suspending agents, buffering agents, stabilizing agents or isotonic agents, etc. However, the present invention is not limited thereto.
본 출원의 조성물에서, 변이체, 폴리뉴클레오티드, 벡터, 균주, 배지 및 L-아미노산 등은 상기 다른 양태에서 기재한 바와 같다.In the composition of the present application, variants, polynucleotides, vectors, strains, media and L-amino acids are the same as those described in the other aspects above.
본 출원의 신규한 단백질 변이체를 포함하는, 코리네박테리움 글루타미쿰 균주를 배양하는 경우, 기존 비변형 폴리펩티드를 갖는 미생물에 비해 고수율의 L-발린 생산이 가능하다. In the case of culturing the Corynebacterium glutamicum strain, including the novel protein variant of the present application, it is possible to produce L-valine in a high yield compared to a microorganism having an existing unmodified polypeptide.
도 1은 pDCM2 플라스미드의 모식도이다.1 is a schematic diagram of a pDCM2 plasmid.
이하 본 출원을 실시예에 의해 보다 상세하게 설명한다. 그러나 하기 실시예는 본 출원을 예시하기 위한 바람직한 실시양태에 불과한 것이며 따라서, 본 출원의 권리범위를 이에 한정하는 것으로 의도되지는 않는다. 한편, 본 명세서에 기재되지 않은 기술적인 사항들은 본 출원의 기술 분야 또는 유사 기술 분야에서 숙련된 통상의 기술자이면 충분히 이해하고 용이하게 실시할 수 있다.Hereinafter, the present application will be described in more detail by way of Examples. However, the following examples are merely preferred embodiments for illustrating the present application, and therefore, are not intended to limit the scope of the present application thereto. On the other hand, technical matters not described in this specification can be sufficiently understood and easily implemented by those skilled in the art or similar technical fields of the present application.
실시예 1: NCgl1391 단백질 변이체를 발현하는 미생물의 제작 및 이를 이용한 L-발린 생산Example 1: Production of microorganisms expressing NCgl1391 protein mutant and L-valine production using the same
1.1. 플라스미드의 제작1.1. Construction of the plasmid
코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드(pDCM2, 도 1, 서열번호 171)를 디자인하였고, 바이오닉스(주)의 유전자 합성(Gene-synthesis) 서비스를 이용하여 플라스미드를 합성하였다. 일반적으로 알려진 sacB 시스템 관련 논문[Gene, 145 (1994) 69-73]을 참고로 하여 클로닝에 활용하기 용이한 제한효소(restriction enzyme)를 포함하도록 플라스미드를 설계하였다. 이렇게 합성된 pDCM2 플라스미드는 다음과 같은 특성을 갖는다. A plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd. A plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73]. The thus synthesized pDCM2 plasmid has the following characteristics.
1) 대장균에서만 작용하는 복제 기점(replication origin)을 가지고 있어 대장균 내에서는 자가 복제(self-replication)가 가능하나 코리네박테리움에서는 자가 복제가 불가능한 특성을 갖는다. 1) Since it has a replication origin that works only in E. coli, self-replication is possible in E. coli, but self-replication is impossible in Corynebacterium.
2) 선별 마커로 카나마이신 내성 유전자를 갖는다. 2) It has a kanamycin resistance gene as a selectable marker.
3) 2차 양성 선별(positive-selection) 마커로 레반 수크라제(Levan sucrase) 유전자(sacB)를 갖는다. 3) It has a Levan sucrase gene (sacB) as a secondary positive-selection marker.
4) 최종 제작된 균주에는 pDCM2 플라스미드로부터 유래한 어떠한 유전자 정보도 남지 않는다. 4) No genetic information derived from the pDCM2 plasmid is left in the finally constructed strain.
1.2. 미생물내 단백질 변이체 발현을 위한 벡터 제작1.2. Vector construction for expression of protein variants in microorganisms
서열번호 3의 아미노산 서열로 이루어진 단백질의 109번째 위치의 세린(Ser, S)이 페닐알라닌(Phe, F)으로 치환된 변이체(S109F; 서열번호 1)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 하기와 같이 제작하였다. To determine the effect of a mutant (S109F; SEQ ID NO: 1) in which serine (Ser, S) at position 109 of the protein consisting of the amino acid sequence of SEQ ID NO: 3 is substituted with phenylalanine (Phe, F) on L-valine production, its A vector for constructing an expression strain was prepared as follows.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 5 및 6의 서열의 프라이머 쌍과 서열번호 7 및 8의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 5 및 서열번호 8의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-NCgl1391(S109F)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 1에 기재하였다. Using the gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, PCR was performed using a primer pair of sequences of SEQ ID NOs: 5 and 6 and a pair of primers of sequences of SEQ ID NOs: 7 and 8, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using the primer pair of SEQ ID NO: 5 and SEQ ID NO: 8 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times for 30 seconds at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-NCgl1391 (S109F). The sequences of the primers used in this Example are shown in Table 1 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
NCgl1391_1FNCgl1391_1F | TCGAGCTCGGTACCCACGGCCTCATGGATGACGTCTTCGAGCTCGGTACCCACGGCCTCATGGATGACGCTCT | 서열번호 5SEQ ID NO: 5 |
NCgl1391_2RNCgl1391_2R | TCGTGGATGTAGCGCACAGAGAACCCACGGCGTTGCATATAGGATCGTGGATGTAGCGCACAGAGAACCCACGGCGTTGCATATAGGA | 서열번호 6SEQ ID NO: 6 |
NCgl1391_3FNCgl1391_3F | TCCTATATGCAACGCCGTGGGTTCTCTGTGCGCTACATCCACGATCCTATATGCAACGCCGTGGGTTCTCTGTGCGCTACATCCACGA | 서열번호 7SEQ ID NO: 7 |
NCgl1391_4RNCgl1391_4R | CTCTAGAGGATCCCCTTTGCTCGTTCAGACAGCTCGCTCTAGAGGATCCCCTTTGCTCGTTCAGACAGCTCG | 서열번호 8SEQ ID NO: 8 |
1.3. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가1.3. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
1.3.1. 단백질1.3.1. protein
변이체 발현 균주 제작Production of mutant expression strains
상기 실시예 1.2에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P)에 형질전환 하였다.The vector prepared in Example 1.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
형질 전환된 균주들에서 서열번호 9와 10의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_NCgl1391_S109F로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 2에 기재하였다.
In the transformed strains, a strain in which homologous recombination occurred using the primer pair of SEQ ID NOs: 9 and 10 was selected and named CA08-0072_NCgl1391_S109F. The sequences of the primers used in this Example are shown in Table 2 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
NCgl1391_5FNCgl1391_5F | ACGGCCTCATGGATGACGTCTACGGCTCATGGATGACGTCT | 서열번호 9SEQ ID NO: 9 |
NCgl1391_6RNCgl1391_6R | TTTGCTCGTTCAGACAGCTCGTTTGCTCGTTCAGACAGCTCG | 서열번호 10SEQ ID NO: 10 |
1.3.2. 단백질 1.3.2. protein
변이체variant
발현 균주의 L-발린 L-valine of the expression strain
생산능productivity
비교 compare
상기 실시예 1.3.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.The L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 1.3.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 3에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 3 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 3에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 3 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율(%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 2.82.8 | -- |
CA08-0072_NCgl1391_S109FCA08-0072_NCgl1391_S109F | 3.53.5 | 25.025.0 |
표 3과 같이, CA08-0072_NCgl1391_S109F 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 3, the CA08-0072_NCgl1391_S109F strain exhibited increased L-valine-producing ability compared to the control.
상기 변이 균주 CA08-0072_NCgl1391_S109F는 Corynebacterium glutamicum CA08-1743로 명명되었고, 부다페스트 조약 하의 미생물기탁기관인 한국미생물보존센터(Korean Culture of Microorganisms, KCCM)에 2020년 12월 02일자로 수탁번호 KCCM12860P로 기탁되었다.The mutant strain CA08-0072_NCgl1391_S109F was named Corynebacterium glutamicum CA08-1743, and was deposited with the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, with an accession number KCCM12860P on December 02, 2020.
실시예 2: ATP 포스포리보실트랜스퍼라제 변이체를 발현하는 미생물의 제작 및 이를 이용한 L-발린 생산Example 2: Production of microorganisms expressing ATP phosphoribosyltransferase mutants and L-valine production using the same
2.1. 플라스미드의 제작2.1. Construction of the plasmid
코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드(pDCM2, 도 1, 서열번호 171)를 디자인하였고, 바이오닉스(주)의 유전자 합성(Gene-synthesis) 서비스를 이용하여 플라스미드를 합성하였다. 일반적으로 알려진 sacB 시스템 관련 논문[Gene, 145 (1994) 69-73]을 참고로 하여 클로닝에 활용하기 용이한 제한효소(restriction enzyme)를 포함하도록 플라스미드를 설계하였다. 이렇게 합성된 pDCM2 플라스미드는 다음과 같은 특성을 갖는다. A plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd. A plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73]. The thus synthesized pDCM2 plasmid has the following characteristics.
1) 대장균에서만 작용하는 복제 기점(replication origin)을 가지고 있어 대장균 내에서는 자가 복제(self-replication)가 가능하나 코리네박테리움에서는 자가 복제가 불가능한 특성을 갖는다. 1) Since it has a replication origin that works only in E. coli, self-replication is possible in E. coli, but self-replication is impossible in Corynebacterium.
2) 선별 마커로 카나마이신 내성 유전자를 갖는다. 2) It has a kanamycin resistance gene as a selectable marker.
3) 2차 양성 선별(positive-selection) 마커로 레반 수크라제(Levan sucrase) 유전자(sacB)를 갖는다. 3) It has a Levan sucrase gene (sacB) as a secondary positive-selection marker.
4) 최종 제작된 균주에는 pDCM2 플라스미드로부터 유래한 어떠한 유전자 정보도 남지 않는다. 4) No genetic information derived from the pDCM2 plasmid is left in the finally constructed strain.
2.2. 미생물내 단백질 변이체 발현을 위한 벡터 제작2.2. Vector construction for expression of protein variants in microorganisms
서열번호 13의 아미노산 서열로 이루어진 단백질의 130번째 위치의 세린(Ser, S)이 페닐알라닌(Phe, F)으로 치환된 변이체(S130F; 서열번호 11)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 하기와 같이 제작하였다. To determine the effect of a mutant (S130F; SEQ ID NO: 11) in which serine (Ser, S) at position 130 of the protein consisting of the amino acid sequence of SEQ ID NO: 13 is substituted with phenylalanine (Phe, F) on L-valine production, its A vector for constructing an expression strain was prepared as follows.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 15 및 16의 서열의 프라이머 쌍과 서열번호 17 및 18의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 15 및 서열번호 18의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-hisG(S130F)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 4에 기재하였다. Using the gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, PCR was performed using a primer pair of sequences of SEQ ID NOs: 15 and 16 and a pair of primers of sequences of SEQ ID NOs: 17 and 18, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using the primer pair of SEQ ID NO: 15 and SEQ ID NO: 18 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-hisG(S130F). The sequences of the primers used in this Example are shown in Table 4 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
hisG_1FhisG_1F | TCGAGCTCGGTACCCATGTTGAAAATCGCTGTCCCATCGAGCTCGGTACCCATGTTGAAAATCGCTGTCCCA | 서열번호 15SEQ ID NO: 15 |
hisG_2RhisG_2R | GTCGAGGCGGAGCACCTCAGCGAAAAGCCCACGTGCTGCGAGGTGTCGAGGCGGAGCACCTCAGCGAAAAGCCCACGTGCTGCGAGGT | 서열번호 16SEQ ID NO: 16 |
hisG_3FhisG_3F | ACCTCGCAGCACGTGGGCTTTTCGCTGAGGTGCTCCGCCTCGACACCTCGCAGCACGTGGGCTTTTCGCTGAGGTGCTCCGCCTCGAC | 서열번호 17SEQ ID NO: 17 |
hisG_4RhisG_4R | CTCTAGAGGATCCCCCTAGATGCGGGCGATGCGGATCTCTAGAGGATCCCCCTAGATGCGGGCGATGCGGAT | 서열번호 18SEQ ID NO: 18 |
2.3. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가2.3. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
2.3.1. 단백질2.3.1. protein
변이체 발현 균주 제작Production of mutant expression strains
상기 실시예 2.2에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P)에 형질전환 하였다.The vector prepared in Example 2.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
형질 전환된 균주들에서 서열번호 19와 20의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_hisG_S130F로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 5에 기재하였다.
In the transformed strains, a strain in which homologous recombination occurred using the primer pair of SEQ ID NOs: 19 and 20 was selected and named CA08-0072_hisG_S130F. The sequences of the primers used in this Example are shown in Table 5 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
hisG_5FhisG_5F | ATGTTGAAAATCGCTGTCCCAATGTTGAAAATCGCTGTCCCA | 서열번호 19SEQ ID NO: 19 |
hisG_6RhisG_6R | CTAGATGCGGGCGATGCGGATCTAGATCGGGCGATGCGGAT | 서열번호 20SEQ ID NO: 20 |
2.3.2. 단백질 2.3.2. protein
변이체variant
발현 균주의 L-발린 L-valine of the expression strain
생산능productivity
비교 compare
상기 실시예 2.3.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.The L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 2.3.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 6에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 6 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 6에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 6 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율(%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 2.82.8 | -- |
CA08-0072_hisG_S130FCA08-0072_hisG_S130F | 3.393.39 | 21.121.1 |
표 6과 같이, CA08-0072_hisG_S130F 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 6, the CA08-0072_hisG_S130F strain exhibited increased L-valine-producing ability compared to the control.
상기 변이 균주 CA08-0072_hisG_S130F는 Corynebacterium glutamicum CA08-1744로 명명되었고, 부다페스트 조약 하의 미생물기탁기관인 한국미생물보존센터(Korean Culture of Microorganisms, KCCM)에 2020년 12월 02일자로 수탁번호 KCCM12861P로 기탁되었다.The mutant strain CA08-0072_hisG_S130F was named Corynebacterium glutamicum CA08-1744, and was deposited with the accession number KCCM12861P on December 02, 2020 at the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty.
실시예 3: 아스파라긴 신타제 변이체를 발현하는 미생물의 제작 및 이를 이용한 L-발린 생산Example 3: Preparation of microorganisms expressing asparagine synthase variants and L-valine production using the same
3.1. 플라스미드의 제작3.1. Construction of the plasmid
코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드(pDCM2, 도 1, 서열번호 171)를 디자인하였고, 바이오닉스(주)의 유전자 합성(Gene-synthesis) 서비스를 이용하여 플라스미드를 합성하였다. 일반적으로 알려진 sacB 시스템 관련 논문[Gene, 145 (1994) 69-73]을 참고로 하여 클로닝에 활용하기 용이한 제한효소(restriction enzyme)를 포함하도록 플라스미드를 설계하였다. 이렇게 합성된 pDCM2 플라스미드는 다음과 같은 특성을 갖는다. A plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd. A plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73]. The thus synthesized pDCM2 plasmid has the following characteristics.
1) 대장균에서만 작용하는 복제 기점(replication origin)을 가지고 있어 대장균 내에서는 자가 복제(self-replication)가 가능하나 코리네박테리움에서는 자가 복제가 불가능한 특성을 갖는다. 1) Since it has a replication origin that works only in E. coli, self-replication is possible in E. coli, but self-replication is impossible in Corynebacterium.
2) 선별 마커로 카나마이신 내성 유전자를 갖는다. 2) It has a kanamycin resistance gene as a selectable marker.
3) 2차 양성 선별(positive-selection) 마커로 레반 수크라제(Levan sucrase) 유전자(sacB)를 갖는다. 3) It has a Levan sucrase gene (sacB) as a secondary positive-selection marker.
4) 최종 제작된 균주에는 pDCM2 플라스미드로부터 유래한 어떠한 유전자 정보도 남지 않는다. 4) No genetic information derived from the pDCM2 plasmid is left in the finally constructed strain.
3.2. 미생물내 단백질 변이체 발현을 위한 벡터 제작3.2. Vector construction for expression of protein variants in microorganisms
서열번호 23의 아미노산 서열로 이루어진 단백질의 192번째 위치의 프롤린(Pro, P)이 류신(Leu, L)으로 치환된 변이체(P192L; 서열번호 21)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 하기와 같이 제작하였다. To determine the effect of the mutant (P192L; SEQ ID NO: 21) in which proline (Pro, P) at position 192 of the protein consisting of the amino acid sequence of SEQ ID NO: 23 is substituted with leucine (Leu, L) on L-valine production, its A vector for constructing an expression strain was prepared as follows.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 25 및 26의 서열의 프라이머 쌍과 서열번호 27 및 28의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 25 및 서열번호 28의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-ltsA(P192L)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 7에 기재하였다. PCR was performed using the primer pair of the sequences of SEQ ID NOs: 25 and 26 and the primer pair of the sequences of SEQ ID NOs: 27 and 28 using gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using a pair of primers of SEQ ID NO: 25 and SEQ ID NO: 28 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-ltsA (P192L). The sequences of the primers used in this Example are shown in Table 7 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
ltsA_1FltsA_1F | TCGAGCTCGGTACCCCTCCATCATTGATATTGCACATCGAGCTCGGTACCCCTCCATCATTGATATTGCACA | 서열번호 25SEQ ID NO: 25 |
ltsA_2RltsA_2R | TTCTGTTCCAGCTTGCCGCCCAGACGAACTGTTGCGGTGCAGCCTTCTGTTCCAGCTTGCCGCCCAGACGAACTGTTGCGGTGCAGCC | 서열번호 26SEQ ID NO: 26 |
ltsA_3FltsA_3F | GGCTGCACCGCAACAGTTCGTCTGGGCGGCAAGCTGGAACAGAAGGCTGCACCGCAACAGTTCGTCTGGGCGGCAAGCTGGAACAGAA | 서열번호 27SEQ ID NO: 27 |
ltsA_4RltsA_4R | CTCTAGAGGATCCCCCTTGACGTGCTTACGTGCTTCCTCTAGAGGATCCCCCTTGACGTGCTTACGTGCTTC | 서열번호 28SEQ ID NO: 28 |
3.3. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가3.3. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
3.3.1. 단백질3.3.1. protein
변이체 발현 균주 제작Production of mutant expression strains
상기 실시예 3.2에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P)에 형질전환 하였다.The vector prepared in Example 3.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
형질 전환된 균주들에서 서열번호 29와 30의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_ltsA_P192L 로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 8에 기재하였다.
In the transformed strains, a strain in which homologous recombination occurred using the primer pair of SEQ ID NOs: 29 and 30 was selected and named CA08-0072_ltsA_P192L. The sequences of the primers used in this Example are shown in Table 8 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
ltsA_5FltsA_5F | CTCCATCATTGATATTGCACACTCCATCATTGATATTGCACA | 서열번호 29SEQ ID NO: 29 |
ltsA_6RltsA_6R | CTTGACGTGCTTACGTGCTTCCTTGACTGCTTACGTGCTTC | 서열번호 30SEQ ID NO: 30 |
3.3.2. 단백질 변이체 발현 균주의 L-발린 생산능 비교3.3.2. Comparison of L-valine production capacity of protein variant expression strains
상기 실시예 3.3.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.The L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 3.3.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 9에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 9 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 9에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 9 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율(%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 2.82.8 | -- |
CA08-0072_ltsA_P192LCA08-0072_ltsA_P192L | 3.233.23 | 15.415.4 |
표 9와 같이, CA08-0072_ltsA_P192L 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 9, the CA08-0072_ltsA_P192L strain exhibited increased L-valine-producing ability compared to the control.
상기 변이 균주 CA08-0072_ltsA_P192L는 Corynebacterium glutamicum CA08-1747로 명명되었고, 부다페스트 조약 하의 미생물기탁기관인 한국미생물보존센터(Korean Culture of Microorganisms, KCCM)에 2020년 12월 02일자로 수탁번호 KCCM12863P로 기탁되었다.The mutant strain CA08-0072_ltsA_P192L was named Corynebacterium glutamicum CA08-1747, and was deposited with the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, as of December 02, 2020 with an accession number KCCM12863P.
실시예 4: 스퍼미딘 신타제 변이체를 발현하는 미생물의 제작 및 이를 이용한 L-발린 생산Example 4: Production of microorganisms expressing spermidine synthase variants and L-valine production using the same
4.1. 플라스미드의 제작4.1. Construction of the plasmid
코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드(pDCM2, 도 1, 서열번호 171)를 디자인하였고, 바이오닉스(주)의 유전자 합성(Gene-synthesis) 서비스를 이용하여 플라스미드를 합성하였다. 일반적으로 알려진 sacB 시스템 관련 논문[Gene, 145 (1994) 69-73]을 참고로 하여 클로닝에 활용하기 용이한 제한효소(restriction enzyme)를 포함하도록 플라스미드를 설계하였다. 이렇게 합성된 pDCM2 플라스미드는 다음과 같은 특성을 갖는다. A plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd. A plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73]. The thus synthesized pDCM2 plasmid has the following characteristics.
1) 대장균에서만 작용하는 복제 기점(replication origin)을 가지고 있어 대장균 내에서는 자가 복제(self-replication)가 가능하나 코리네박테리움에서는 자가 복제가 불가능한 특성을 갖는다. 1) Since it has a replication origin that works only in E. coli, self-replication is possible in E. coli, but self-replication is impossible in Corynebacterium.
2) 선별 마커로 카나마이신 내성 유전자를 갖는다. 2) It has a kanamycin resistance gene as a selectable marker.
3) 2차 양성 선별(positive-selection) 마커로 레반 수크라제(Levan sucrase) 유전자(sacB)를 갖는다. 3) It has a Levan sucrase gene (sacB) as a secondary positive-selection marker.
4) 최종 제작된 균주에는 pDCM2 플라스미드로부터 유래한 어떠한 유전자 정보도 남지 않는다. 4) No genetic information derived from the pDCM2 plasmid is left in the finally constructed strain.
4.2. 미생물내 단백질 변이체 발현을 위한 벡터 제작4.2. Vector construction for expression of protein variants in microorganisms
서열번호 33의 아미노산 서열로 이루어진 단백질의 213번째 위치의 알라닌(Ala, A)이 발린(Val, V)으로 치환된 변이체(A213V; 서열번호 31)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 하기와 같이 제작하였다. To determine the effect of the mutant (A213V; SEQ ID NO: 31) in which alanine (Ala, A) at position 213 of the protein consisting of the amino acid sequence of SEQ ID NO: 33 is substituted with valine (Val, V) on L-valine production, its A vector for constructing an expression strain was prepared as follows.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 35 및 36의 서열의 프라이머 쌍과 서열번호 37 및 38의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 35 및 서열번호 38의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-speE(A213V)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 10에 기재하였다. PCR was performed using the primer pair of SEQ ID NOs: 35 and 36 and the primer pair of SEQ ID NOs: 37 and 38 using gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using the primer pair of SEQ ID NO: 35 and SEQ ID NO: 38 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-speE (A213V). The sequences of the primers used in this Example are shown in Table 10 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
speE_1FspeE_1F | TCGAGCTCGGTACCCCCTCCCTCATCGTCGCAGGTTTCGAGCTCGGTACCCCCTCCCTCATCGTCGCAGGTT | 서열번호 35SEQ ID NO: 35 |
speE_2RspeE_2R | CACGGTGGCAAGCGCTGCGATCACGAGAAGAAGCGCCACCACGGCACGGTGGCAAGCGCTGCGATCACGAGAAGAAGCGCCACCACGG | 서열번호 36SEQ ID NO: 36 |
speE_3FspeE_3F | CCGTGGTGGCGCTTCTTCTCGTGATCGCAGCGCTTGCCACCGTGCCGTGGTGGCGCTTCTTCTCGTGATCGCAGCGCTTGCCACCGTG | 서열번호 37SEQ ID NO: 37 |
speE_4RspeE_4R | CTCTAGAGGATCCCCCTGGCCATGGTGTCGTTGTTTCTCTAGAGGATCCCCCTGGCCATGGTGTCGTTGTTT | 서열번호 38SEQ ID NO: 38 |
4.3. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가4.3. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
4.3.1. 단백질4.3.1. protein
변이체 발현 균주 제작Production of mutant expression strains
상기 실시예 4.2에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P)에 형질전환 하였다.The vector prepared in Example 4.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
형질 전환된 균주들에서 서열번호 39와 40의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_speE_A213V로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 11에 기재하였다.
In the transformed strains, a strain in which homologous recombination occurred using the primer pair of SEQ ID NOs: 39 and 40 was selected and named CA08-0072_speE_A213V. The sequences of the primers used in this Example are shown in Table 11 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
speE_5FspeE_5F | CCTCCCTCATCGTCGCAGGTTCCTCCCTCATCGTCGCAGGTT | 서열번호 39SEQ ID NO: 39 |
speE_6RspeE_6R | CTGGCCATGGTGTCGTTGTTTCTGGCCATGGTGTCGTTGTTTT | 서열번호 40SEQ ID NO: 40 |
4.3.2. 단백질 4.3.2. protein
변이체variant
발현 균주의 L-발린 L-valine of the expression strain
생산능productivity
비교 compare
상기 실시예 4.3.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.The L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 4.3.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 12에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 12 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 12에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 12 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율 (%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 2.82.8 | -- |
CA08-0072_speE_A213VCA08-0072_speE_A213V | 3.173.17 | 13.213.2 |
표 12와 같이, CA08-0072_speE_A213V 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 12, the CA08-0072_speE_A213V strain exhibited increased L-valine-producing ability compared to the control.
상기 변이 균주 CA08-0072_speE_A213V는 Corynebacterium glutamicum CA08-1748로 명명되었고, 부다페스트 조약 하의 미생물기탁기관인 한국미생물보존센터(Korean Culture of Microorganisms, KCCM)에 2020년 12월 02일자로 수탁번호 KCCM12864P로 기탁되었다.The mutant strain CA08-0072_speE_A213V was named Corynebacterium glutamicum CA08-1748, and was deposited with the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, under the accession number KCCM12864P on December 02, 2020.
실시예 5: 시스테인 설피네이트 디설피나제 변이체를 발현하는 미생물의 제작 및 이를 이용한 L-발린 생산Example 5: Production of microorganisms expressing cysteine sulfinate disulfinase variants and L-valine production using the same
5.1. 플라스미드의 제작5.1. Construction of the plasmid
코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드(pDCM2, 도 1, 서열번호 171)를 디자인하였고, 바이오닉스(주)의 유전자 합성(Gene-synthesis) 서비스를 이용하여 플라스미드를 합성하였다. 일반적으로 알려진 sacB 시스템 관련 논문[Gene, 145 (1994) 69-73]을 참고로 하여 클로닝에 활용하기 용이한 제한효소(restriction enzyme)를 포함하도록 플라스미드를 설계하였다. 이렇게 합성된 pDCM2 플라스미드는 다음과 같은 특성을 갖는다. A plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd. A plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73]. The thus synthesized pDCM2 plasmid has the following characteristics.
1) 대장균에서만 작용하는 복제 기점(replication origin)을 가지고 있어 대장균 내에서는 자가 복제(self-replication)가 가능하나 코리네박테리움에서는 자가 복제가 불가능한 특성을 갖는다. 1) Since it has a replication origin that works only in E. coli, self-replication is possible in E. coli, but self-replication is impossible in Corynebacterium.
2) 선별 마커로 카나마이신 내성 유전자를 갖는다. 2) It has a kanamycin resistance gene as a selectable marker.
3) 2차 양성 선별(positive-selection) 마커로 레반 수크라제(Levan sucrase) 유전자(sacB)를 갖는다. 3) It has a Levan sucrase gene (sacB) as a secondary positive-selection marker.
4) 최종 제작된 균주에는 pDCM2 플라스미드로부터 유래한 어떠한 유전자 정보도 남지 않는다. 4) No genetic information derived from the pDCM2 plasmid is left in the finally constructed strain.
5.2. 미생물내 단백질 변이체 발현을 위한 벡터 제작5.2. Vector construction for expression of protein variants in microorganisms
서열번호 43의 아미노산 서열로 이루어진 단백질의 302번째 위치의 프롤린(Pro, P)이 세린(Ser, S)으로 치환된 변이체(P302S; 서열번호 41)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 하기와 같이 제작하였다. To determine the effect of the mutant (P302S; SEQ ID NO: 41) in which proline (Pro, P) at position 302 of the protein consisting of the amino acid sequence of SEQ ID NO: 43 is substituted with serine (Ser, S) on L-valine production, its A vector for constructing an expression strain was prepared as follows.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 45 및 46의 서열의 프라이머 쌍과 서열번호 47 및 48의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 45 및 서열번호 48의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-nadS(P302S)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 13에 기재하였다. PCR was performed using the primer pair of the sequences of SEQ ID NOs: 45 and 46 and the primer pair of the sequences of SEQ ID NOs: 47 and 48 using gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using the primer pair of SEQ ID NO: 45 and SEQ ID NO: 48 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-nadS (P302S). The sequences of the primers used in this Example are shown in Table 13 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
nadS_1FnadS_1F | TCGAGCTCGGTACCCCAGTCAGGCCGGACACCACATTCGAGCTCGGTACCCCAGTCAGGCCGGACACCACAT | 서열번호 45SEQ ID NO: 45 |
nadS_2RnadS_2R | CCGGAACCACAGGCAGATCCAGAGGAGCAGACAATGCCTTGGCGCCGGAACCACAGGCAGATCCAGAGGAGCAGACAATGCCTTGGCG | 서열번호 46SEQ ID NO: 46 |
nadS_3FnadS_3F | CGCCAAGGCATTGTCTGCTCCTCTGGATCTGCCTGTGGTTCCGGCGCCAAGGCATTGTCTGCTCCTCTGGATCTGCCTGTGGTTCCGG | 서열번호 47SEQ ID NO: 47 |
nadS_4RnadS_4R | CTCTAGAGGATCCCCTGATGCCAGCAGTGCAGTCCACTCTAGAGGATCCCCTGATGCCAGCAGTGCAGTCCA | 서열번호 48SEQ ID NO: 48 |
5.3. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가5.3. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
5.3.1. 단백질5.3.1. protein
변이체 발현 균주 제작Production of mutant expression strains
상기 실시예 5.2에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P)에 형질전환 하였다.The vector prepared in Example 5.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
형질 전환된 균주들에서 서열번호 49와 50의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_nadS_P302S로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 14에 기재하였다.
In the transformed strains, a strain in which homologous recombination occurred using the primer pair of SEQ ID NOs: 49 and 50 was selected and named CA08-0072_nadS_P302S. The sequences of the primers used in this Example are shown in Table 14 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
nadS_5FnadS_5F | CAGTCAGGCCGGACACCACATCAGTCAGGCCGGACACCACAT | 서열번호 49SEQ ID NO: 49 |
nadS_6RnadS_6R | TGATGCCAGCAGTGCAGTCCATGATGCCAGCAGTGCAGTCCA | 서열번호 50SEQ ID NO: 50 |
5.3.2. 단백질 변이체 발현 균주의 L-발린 생산능 비교5.3.2. Comparison of L-valine production capacity of protein variant expression strains
상기 실시예 5.3.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.The L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 5.3.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 15에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 15 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 15에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 15 below.
균 주strain | L-발린 농도(g/L)L-valine concentration (g/L) | L-발린 농도 증가율(%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 2.82.8 | -- |
CA08-0072_nadS_P302SCA08-0072_nadS_P302S | 3.533.53 | 26.126.1 |
표 15와 같이, CA08-0072_nadS_P302S 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 15, the CA08-0072_nadS_P302S strain exhibited increased L-valine-producing ability compared to the control.
상기 변이 균주 CA08-0072_nadS_P302S 는 Corynebacterium glutamicum CA08-1751로 명명되었고, 부다페스트 조약 하의 미생물기탁기관인 한국미생물보존센터(Korean Culture of Microorganisms, KCCM)에 2020년 12월 02일자로 수탁번호 KCCM12867P로 기탁되었다.The mutant strain CA08-0072_nadS_P302S was named Corynebacterium glutamicum CA08-1751, and was deposited with the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, with an accession number KCCM12867P as of December 02, 2020.
실시예 6: 우레아제 부속 단백질 변이체를 발현하는 미생물의 제작 및 이를 이용한 L-발린 생산Example 6: Production of microorganisms expressing urease accessory protein variants and L-valine production using the same
6.1. 플라스미드의 제작6.1. Construction of the plasmid
코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드(pDCM2, 도 1, 서열번호 171)를 디자인하였고, 바이오닉스(주)의 유전자 합성(Gene-synthesis) 서비스를 이용하여 플라스미드를 합성하였다. 일반적으로 알려진 sacB 시스템 관련 논문[Gene, 145 (1994) 69-73]을 참고로 하여 클로닝에 활용하기 용이한 제한효소(restriction enzyme)를 포함하도록 플라스미드를 설계하였다. 이렇게 합성된 pDCM2 플라스미드는 다음과 같은 특성을 갖는다. A plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd. A plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73]. The thus synthesized pDCM2 plasmid has the following characteristics.
1) 대장균에서만 작용하는 복제 기점(replication origin)을 가지고 있어 대장균 내에서는 자가 복제(self-replication)가 가능하나 코리네박테리움에서는 자가 복제가 불가능한 특성을 갖는다. 1) Since it has a replication origin that works only in E. coli, self-replication is possible in E. coli, but self-replication is impossible in Corynebacterium.
2) 선별 마커로 카나마이신 내성 유전자를 갖는다. 2) It has a kanamycin resistance gene as a selectable marker.
3) 2차 양성 선별(positive-selection) 마커로 레반 수크라제(Levan sucrase) 유전자(sacB)를 갖는다. 3) It has a Levan sucrase gene (sacB) as a secondary positive-selection marker.
4) 최종 제작된 균주에는 pDCM2 플라스미드로부터 유래한 어떠한 유전자 정보도 남지 않는다. 4) No genetic information derived from the pDCM2 plasmid is left in the finally constructed strain.
6.2. 미생물내 단백질 변이체 발현을 위한 벡터 제작6.2. Vector construction for expression of protein variants in microorganisms
서열번호 53의 아미노산 서열로 이루어진 단백질의 56번째 위치의 프롤린(Pro, P)이 류신(Leu, L)으로 치환된 변이체(P56L; 서열번호 51)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 하기와 같이 제작하였다. To determine the effect of the mutant (P56L; SEQ ID NO: 51) in which proline (Pro, P) at position 56 of the protein consisting of the amino acid sequence of SEQ ID NO: 53 is substituted with leucine (Leu, L) on L-valine production, its A vector for constructing an expression strain was prepared as follows.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 55 및 56의 서열의 프라이머 쌍과 서열번호 57 및 58의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 55 및 서열번호 58의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-ureE(P56L)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 16에 기재하였다. PCR was performed using the primer pair of sequences of SEQ ID NOs: 55 and 56 and the primer pair of sequences of SEQ ID NOs: 57 and 58, respectively, using gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using the primer pair of SEQ ID NO: 55 and SEQ ID NO: 58 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-ureE (P56L). The sequences of the primers used in this Example are shown in Table 16 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
ureE_1FureE_1F | TCGAGCTCGGTACCCTGGGTTGATGGTCAATTCCCTTCGAGCTCGGTACCCTGGGTTGATGGTCAATTCCCT | 서열번호 55SEQ ID NO: 55 |
ureE_2RureE_2R | CACATCGCCTTCCCGCAGGATGAGGTGCCCGTGATTGAGCCGCACACATCGCCTTCCCGCAGGATGAGGTGCCCGTGATTGAGCCGCA | 서열번호 56SEQ ID NO: 56 |
ureE_3FureE_3F | TGCGGCTCAATCACGGGCACCTCATCCTGCGGGAAGGCGATGTGTGCGGCTCAATCACGGGCACCTCATCCTGCGGGAAGGCGATGTG | 서열번호 57SEQ ID NO: 57 |
ureE_4RureE_4R | CTCTAGAGGATCCCCAAACATCCTCATTGCCAAAGCCTCTAGAGGATCCCCAAACATCCTCATTGCCAAAGC | 서열번호 58SEQ ID NO: 58 |
6.3. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가6.3. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
6.3.1. 단백질6.3.1. protein
변이체 발현 균주 제작Production of mutant expression strains
상기 실시예 6.2에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P)에 형질전환 하였다.The vector prepared in Example 6.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
형질 전환된 균주들에서 서열번호 59와 60의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_ureE_P56L 로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 17에 기재하였다.
In the transformed strains, a strain in which homologous recombination occurred using the primer pair of SEQ ID NOs: 59 and 60 was selected and named CA08-0072_ureE_P56L. The sequences of the primers used in this Example are shown in Table 17 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
ureE_5FureE_5F | TGGGTTGATGGTCAATTCCCTTGGGTTGATGGTCAATTCCCT | 서열번호 59SEQ ID NO: 59 |
ureE_6RureE_6R | AAACATCCTCATTGCCAAAGCAAACATCCTCATTGCCAAAGC | 서열번호 60SEQ ID NO: 60 |
6.3.2. 단백질 변이체 발현 균주의 L-발린 생산능 비교6.3.2. Comparison of L-valine production capacity of protein variant expression strains
상기 실시예 6.3.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.L-valine production ability was analyzed through the evaluation of flask fermentation titer of each strain and control parent strain prepared in Example 6.3.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 18에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 18 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 18에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 18 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율(%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 2.82.8 | -- |
CA08-0072_ureE_P56LCA08-0072_ureE_P56L | 3.573.57 | 27.527.5 |
표 18과 같이, CA08-0072_ureE_P56L 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 18, the CA08-0072_ureE_P56L strain exhibited increased L-valine-producing ability compared to the control.
상기 변이 균주 CA08-0072_ureE_P56L은 Corynebacterium glutamicum CA08-1749로 명명되었고, 부다페스트 조약 하의 미생물기탁기관인 한국미생물보존센터(Korean Culture of Microorganisms, KCCM)에 2020년 12월 02일자로 수탁번호 KCCM12865P로 기탁되었다.The mutant strain CA08-0072_ureE_P56L was named Corynebacterium glutamicum CA08-1749, and was deposited with the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, as of December 02, 2020 with an accession number KCCM12865P.
실시예 7: 프롤린 탈수소효소 변이체를 발현하는 미생물의 제작 및 이를 이용한 L-발린 생산Example 7: Production of microorganisms expressing proline dehydrogenase variants and L-valine production using the same
7.1. 플라스미드의 제작7.1. Construction of the plasmid
코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드(pDCM2, 도 1, 서열번호 171)를 디자인하였고, 바이오닉스(주)의 유전자 합성(Gene-synthesis) 서비스를 이용하여 플라스미드를 합성하였다. 일반적으로 알려진 sacB 시스템 관련 논문[Gene, 145 (1994) 69-73]을 참고로 하여 클로닝에 활용하기 용이한 제한효소(restriction enzyme)를 포함하도록 플라스미드를 설계하였다. 이렇게 합성된 pDCM2 플라스미드는 다음과 같은 특성을 갖는다. A plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd. A plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73]. The thus synthesized pDCM2 plasmid has the following characteristics.
1) 대장균에서만 작용하는 복제 기점(replication origin)을 가지고 있어 대장균 내에서는 자가 복제(self-replication)가 가능하나 코리네박테리움에서는 자가 복제가 불가능한 특성을 갖는다. 1) Since it has a replication origin that works only in E. coli, self-replication is possible in E. coli, but self-replication is impossible in Corynebacterium.
2) 선별 마커로 카나마이신 내성 유전자를 갖는다. 2) It has a kanamycin resistance gene as a selectable marker.
3) 2차 양성 선별(positive-selection) 마커로 레반 수크라제(Levan sucrase) 유전자(sacB)를 갖는다. 3) It has a Levan sucrase gene (sacB) as a secondary positive-selection marker.
4) 최종 제작된 균주에는 pDCM2 플라스미드로부터 유래한 어떠한 유전자 정보도 남지 않는다. 4) No genetic information derived from the pDCM2 plasmid is left in the finally constructed strain.
7.2. 미생물내 단백질 변이체 발현을 위한 벡터 제작7.2. Vector construction for expression of protein variants in microorganisms
서열번호 63의 아미노산 서열로 이루어진 단백질의 834번째 위치의 글리신(Gly, G)이 세린(Ser, S)으로 치환된 변이체(G834S; 서열번호 61)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 하기와 같이 제작하였다. To determine the effect of a mutant (G834S; SEQ ID NO: 61) in which glycine (Gly, G) at position 834 of the protein consisting of the amino acid sequence of SEQ ID NO: 63 is substituted with serine (Ser, S) on L-valine production, its A vector for constructing an expression strain was prepared as follows.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 65 및 66의 서열의 프라이머 쌍과 서열번호 67 및 68의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 65 및 서열번호 68의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-putA(G834S)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 19에 기재하였다. Using the gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, PCR was performed using a primer pair of sequences of SEQ ID NOs: 65 and 66 and a pair of primers of sequences of SEQ ID NOs: 67 and 68, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using the primer pair of SEQ ID NO: 65 and SEQ ID NO: 68 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-putA(G834S). The sequences of the primers used in this Example are shown in Table 19 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
putA_1FputA_1F | TCGAGCTCGGTACCCCCGGCGTTCCCCGCGAGGTTCTCGAGCTCGGTACCCCCGGCGTTCCCCGCGAGGTTC | 서열번호 65SEQ ID NO: 65 |
putA_2RputA_2R | GGTTTGACGCCTTCTTTGATGCTGGGTGACCAGAGTCGGCCGGTGGTTTGACGCCTTCTTTGATGCTGGGTGACCAGAGTCGGCCGGT | 서열번호 66SEQ ID NO: 66 |
putA_3FputA_3F | ACCGGCCGACTCTGGTCACCCAGCATCAAAGAAGGCGTCAAACCACCGGCCGACTCTGGTCACCCAGCATCAAAGAAGGCGTCAAACC | 서열번호 67SEQ ID NO: 67 |
putA_4RputA_4R | CTCTAGAGGATCCCCCGGAAGATGTTGGCTTCTACACTCTAGAGGATCCCCCGGAAGATGTTGGCTTCTACA | 서열번호 68SEQ ID NO: 68 |
7.3. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가7.3. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
7.3.1. 단백질7.3.1. protein
변이체 발현 균주 제작Production of mutant expression strains
상기 실시예 7.2에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P)에 형질전환 하였다.The vector prepared in Example 7.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
형질 전환된 균주들에서 서열번호 69와 70의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_putA_G834S로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 20에 기재하였다.
In the transformed strains, a strain in which homologous recombination occurred using the primer pair of SEQ ID NOs: 69 and 70 was selected and named CA08-0072_putA_G834S. The sequences of the primers used in this Example are shown in Table 20 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
putA_5FputA_5F | CCGGCGTTCCCCGCGAGGTTCCCGGCGTTCCCCGCGAGGTTC | 서열번호 69SEQ ID NO: 69 |
putA_6RputA_6R | CGGAAGATGTTGGCTTCTACACGGAAGATGTTGGCTTCTACA | 서열번호 70SEQ ID NO: 70 |
7.3.2. 단백질 7.3.2. protein
변이체variant
발현 균주의 L-발린 L-valine of the expression strain
생산능productivity
비교 compare
상기 실시예 7.3.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.L-valine production capacity was analyzed through the evaluation of flask fermentation titer of each strain and control parent strain prepared in Example 7.3.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 21에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 21 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 21에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 21 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율(%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 2.82.8 | -- |
CA08-0072_putA_G834SCA08-0072_putA_G834S | 3.63.6 | 28.628.6 |
표 21과 같이, CA08-0072_putA_G834S 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 21, the CA08-0072_putA_G834S strain exhibited increased L-valine-producing ability compared to the control.
상기 변이 균주 CA08-0072_putA_G834S는 Corynebacterium glutamicum CA08-1750으로 명명되었고, 부다페스트 조약 하의 미생물기탁기관인 한국미생물보존센터(Korean Culture of Microorganisms, KCCM)에 2020년 12월 02일자로 수탁번호 KCCM12866P로 기탁되었다.The mutant strain CA08-0072_putA_G834S was named Corynebacterium glutamicum CA08-1750, and was deposited at the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, with an accession number KCCM12866P as of December 02, 2020.
실시예 8: 테트라하이드로디피콜리네이트 N-숙시닐트랜스퍼라제 변이체를 발현하는 미생물의 제작 및 이를 이용한 L-발린 생산Example 8: Preparation of microorganisms expressing tetrahydrodipicolinate N-succinyltransferase mutant and L-valine production using the same
8.1. 플라스미드의 제작8.1. Construction of the plasmid
코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드(pDCM2, 도 1, 서열번호 171)를 디자인하였고, 바이오닉스(주)의 유전자 합성(Gene-synthesis) 서비스를 이용하여 플라스미드를 합성하였다. 일반적으로 알려진 sacB 시스템 관련 논문[Gene, 145 (1994) 69-73]을 참고로 하여 클로닝에 활용하기 용이한 제한효소(restriction enzyme)를 포함하도록 플라스미드를 설계하였다. 이렇게 합성된 pDCM2 플라스미드는 다음과 같은 특성을 갖는다. A plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd. A plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73]. The thus synthesized pDCM2 plasmid has the following characteristics.
1) 대장균에서만 작용하는 복제 기점(replication origin)을 가지고 있어 대장균 내에서는 자가 복제(self-replication)가 가능하나 코리네박테리움에서는 자가 복제가 불가능한 특성을 갖는다. 1) Since it has a replication origin that works only in E. coli, self-replication is possible in E. coli, but self-replication is impossible in Corynebacterium.
2) 선별 마커로 카나마이신 내성 유전자를 갖는다. 2) It has a kanamycin resistance gene as a selectable marker.
3) 2차 양성 선별(positive-selection) 마커로 레반 수크라제(Levan sucrase) 유전자(sacB)를 갖는다. 3) It has a Levan sucrase gene (sacB) as a secondary positive-selection marker.
4) 최종 제작된 균주에는 pDCM2 플라스미드로부터 유래한 어떠한 유전자 정보도 남지 않는다. 4) No genetic information derived from the pDCM2 plasmid is left in the finally constructed strain.
8.2. 미생물내 단백질 변이체 발현을 위한 벡터 제작8.2. Vector construction for expression of protein variants in microorganisms
서열번호 73의 아미노산 서열로 이루어진 단백질의 140번째 위치의 아르기닌(Arg, R)이 시스테인(Cys, C)으로 치환된 변이체(R140C; 서열번호 71)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 하기와 같이 제작하였다. To determine the effect of a variant (R140C; SEQ ID NO: 71) in which arginine (Arg, R) at the 140th position of the protein consisting of the amino acid sequence of SEQ ID NO: 73 is substituted with cysteine (Cys, C) on L-valine production, its A vector for constructing an expression strain was prepared as follows.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 75 및 76의 서열의 프라이머 쌍과 서열번호 77 및 78의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 75 및 서열번호 78의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-dapD2(R140C)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 22에 기재하였다. PCR was performed using a pair of primers of SEQ ID NOs: 75 and 76 and a pair of primers of SEQ ID NOs: 77 and 78 using gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using the primer pair of SEQ ID NO: 75 and SEQ ID NO: 78 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-dapD2 (R140C). The sequences of the primers used in this Example are shown in Table 22 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
dapD2_1FdapD2_1F | TCGAGCTCGGTACCCATGAGTGAAAACATTCGCGGATCGAGCTCGGTACCCATGAGTGAAAACATTCGCGGA | 서열번호 75SEQ ID NO: 75 |
dapD2_2RdapD2_2R | CCGCGGGACCGCAGAGCACCACACACCCACTCAAAGTTTTCAGGCCCGGGGACCGCAGAGGCACCACACACCCACTCAAAGTTTTCAGG | 서열번호 76SEQ ID NO: 76 |
dapD2_3FdapD2_3F | CCTGAAAACTTTGAGTGGGTGTGTGGTGCTCTGCGGTCCCGCGGCCTGAAAACTTTGAGTGGGTGTGTGGTGCTCTGCGGTCCCGCGG | 서열번호 77SEQ ID NO: 77 |
dapD2_4RdapD2_4R | CTCTAGAGGATCCCCCCGGATTCACGCTTGATTGACCTCTAGAGGATCCCCCCGGATTCACGCTTGATTGAC | 서열번호 78SEQ ID NO: 78 |
8.3. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가8.3. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
8.3.1. 단백질8.3.1. protein
변이체 발현 균주 제작Production of mutant expression strains
상기 실시예 8.2에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P)에 형질전환 하였다.The vector prepared in Example 8.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
형질 전환된 균주들에서 서열번호 79와 80의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_dapD2_R140C로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 23에 기재하였다.
In the transformed strains, a strain in which homologous recombination occurred was selected using the primer pair of SEQ ID NOs: 79 and 80, and was named CA08-0072_dapD2_R140C. The sequences of the primers used in this Example are shown in Table 23 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
dapD2_5FdapD2_5F | ATGAGTGAAAACATTCGCGGAATGAGTGAAAACATTCGCGGA | 서열번호 79SEQ ID NO: 79 |
dapD2_6RdapD2_6R | CCGGATTCACGCTTGATTGACCCGGATTCACGCTTGATTGAC | 서열번호 80SEQ ID NO: 80 |
8.3.2. 단백질 변이체 발현 균주의 L-발린 생산능 비교8.3.2. Comparison of L-valine production capacity of protein variant expression strains
상기 실시예 8.3.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.L-valine production ability was analyzed through the flask fermentation titer evaluation of each strain and control parent strain prepared in Example 8.3.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 24에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentration of L-valine is shown in Table 24 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 24에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 24 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율 (%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 2.82.8 | -- |
CA08-0072_dapD2_R140CCA08-0072_dapD2_R140C | 3.333.33 | 18.918.9 |
표 24와 같이, CA08-0072_dapD2_R140C 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 24, the CA08-0072_dapD2_R140C strain exhibited increased L-valine-producing ability compared to the control.
상기 변이 균주 CA08-0072_dapD2_R140C는 Corynebacterium glutamicum CA08-1752로 명명되었고, 부다페스트 조약 하의 미생물기탁기관인 한국미생물보존센터(Korean Culture of Microorganisms, KCCM)에 2020년 12월 02일자로 수탁번호 KCCM12868P로 기탁되었다.The mutant strain CA08-0072_dapD2_R140C was named Corynebacterium glutamicum CA08-1752, and was deposited at the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, with an accession number KCCM12868P as of December 02, 2020.
실시예 9: 5,10-메틸렌테트라하이드로폴레이트 리덕타제 변이체를 발현하는 미생물의 제작 및 이를 이용한 L-발린 생산Example 9: Preparation of microorganisms expressing variants of 5,10-methylenetetrahydrofolate reductase and production of L-valine using the same
9.1. 플라스미드의 제작9.1. Construction of the plasmid
코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드(pDCM2, 도 1, 서열번호 171)를 디자인하였고, 바이오닉스(주)의 유전자 합성(Gene-synthesis) 서비스를 이용하여 플라스미드를 합성하였다. 일반적으로 알려진 sacB 시스템 관련 논문[Gene, 145 (1994) 69-73]을 참고로 하여 클로닝에 활용하기 용이한 제한효소(restriction enzyme)를 포함하도록 플라스미드를 설계하였다. 이렇게 합성된 pDCM2 플라스미드는 다음과 같은 특성을 갖는다. A plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd. A plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73]. The thus synthesized pDCM2 plasmid has the following characteristics.
1) 대장균에서만 작용하는 복제 기점(replication origin)을 가지고 있어 대장균 내에서는 자가 복제(self-replication)가 가능하나 코리네박테리움에서는 자가 복제가 불가능한 특성을 갖는다. 1) Since it has a replication origin that works only in E. coli, self-replication is possible in E. coli, but self-replication is impossible in Corynebacterium.
2) 선별 마커로 카나마이신 내성 유전자를 갖는다. 2) It has a kanamycin resistance gene as a selectable marker.
3) 2차 양성 선별(positive-selection) 마커로 레반 수크라제(Levan sucrase) 유전자(sacB)를 갖는다. 3) It has a Levan sucrase gene (sacB) as a secondary positive-selection marker.
4) 최종 제작된 균주에는 pDCM2 플라스미드로부터 유래한 어떠한 유전자 정보도 남지 않는다. 4) No genetic information derived from the pDCM2 plasmid is left in the finally constructed strain.
9.2. 미생물내 단백질 변이체 발현을 위한 벡터 제작9.2. Vector construction for expression of protein variants in microorganisms
서열번호 83의 아미노산 서열로 이루어진 단백질의 4번째 위치의 아르기닌(Arg, R)이 히스티딘(His, H)으로 치환된 변이체(R4H; 서열번호 81)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 하기와 같이 제작하였다. To determine the effect of the mutant (R4H; SEQ ID NO: 81) in which arginine (Arg, R) at the 4th position of the protein consisting of the amino acid sequence of SEQ ID NO: 83 is substituted with histidine (His, H) on L-valine production, its A vector for constructing an expression strain was prepared as follows.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 85 및 86의 서열의 프라이머 쌍과 서열번호 87 및 88의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 85 및 서열번호 88의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-metF(R4H)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 25에 기재하였다. Using the gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, PCR was performed using a primer pair of sequences of SEQ ID NOs: 85 and 86 and a pair of primers of sequences of SEQ ID NOs: 87 and 88, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using the primer pair of SEQ ID NO: 85 and SEQ ID NO: 88 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-metF(R4H). The sequences of the primers used in this Example are shown in Table 25 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
metF_1FmetF_1F | TCGAGCTCGGTACCCTTCAGAAGAATTCTTATGGCCTCGAGCTCGGTACCCTTCAGAAGAATTCTTATGGCC | 서열번호 85SEQ ID NO: 85 |
metF_2RmetF_2R | CTCTTCAGCTGCATCATCGTGGGGTGGCATAAACTCGACAGAAACTCTTCAGCTGCATCATCGTGGGGTGGCATAAACTCGACAGAAA | 서열번호 86SEQ ID NO: 86 |
metF_3FmetF_3F | TTTCTGTCGAGTTTATGCCACCCCACGATGATGCAGCTGAAGAGTTTCTGTCGAGTTTATGCCACCCCACGATGATGCAGCTGAAGAG | 서열번호 87SEQ ID NO: 87 |
metF_4RmetF_4R | CTCTAGAGGATCCCCATCAAAGAACATCTGCGTGATCTCTAGAGGATCCCCATCAAAGAACATCTGCGTGAT | 서열번호 88SEQ ID NO: 88 |
9.3. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가9.3. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
9.3.1. 단백질9.3.1. protein
변이체 발현 균주 제작Production of mutant expression strains
상기 실시예 9.2에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P)에 형질전환 하였다.The vector prepared in Example 9.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
형질 전환된 균주들에서 서열번호 89와 90의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_metF_R4H로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 26에 기재하였다.
In the transformed strains, a strain in which homologous recombination occurred using the primer pair of SEQ ID NOs: 89 and 90 was selected and named CA08-0072_metF_R4H. The sequences of the primers used in this Example are shown in Table 26 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
metF_5FmetF_5F | TTCAGAAGAATTCTTATGGCCTTCAGAAGAATTCTTATGGCC | 서열번호 89SEQ ID NO: 89 |
metF_6RmetF_6R | ATCAAAGAACATCTGCGTGATATCAAAGAACATCTGCGTGAT | 서열번호 90SEQ ID NO: 90 |
9.3.2. 단백질 9.3.2. protein
변이체variant
발현 균주의 L-발린 L-valine of the expression strain
생산능productivity
비교 compare
상기 실시예 9.3.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.The L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 9.3.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 27에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 27 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 27에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 27 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율 (%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 2.82.8 | -- |
CA08-0072_metF_R4HCA08-0072_metF_R4H | 3.73.7 | 32.132.1 |
표 27과 같이, CA08-0072_metF_R4H 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 27, the CA08-0072_metF_R4H strain exhibited increased L-valine-producing ability compared to the control.
상기 변이 균주 CA08-0072_metF_R4H는 Corynebacterium glutamicum CA08-1746으로 명명되었고, 부다페스트 조약 하의 미생물기탁기관인 한국미생물보존센터(Korean Culture of Microorganisms, KCCM)에 2020년 12월 02일자로 수탁번호 KCCM12862P로 기탁되었다.The mutant strain CA08-0072_metF_R4H was named Corynebacterium glutamicum CA08-1746, and was deposited with the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, with an accession number KCCM12862P as of December 02, 2020.
실시예 10: NCgl2805 단백질 변이체를 발현하는 미생물의 제작 및 이를 이용한 L-발린 생산Example 10: Production of microorganisms expressing NCgl2805 protein variant and L-valine production using the same
10.1. 플라스미드의 제작10.1. Construction of plasmids
코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드(pDCM2, 도 1, 서열번호 171)를 디자인하였고, 바이오닉스(주)의 유전자 합성(Gene-synthesis) 서비스를 이용하여 플라스미드를 합성하였다. 일반적으로 알려진 sacB 시스템 관련 논문[Gene, 145 (1994) 69-73]을 참고로 하여 클로닝에 활용하기 용이한 제한효소(restriction enzyme)를 포함하도록 플라스미드를 설계하였다. 이렇게 합성된 pDCM2 플라스미드는 다음과 같은 특성을 갖는다. A plasmid (pDCM2, FIG. 1, SEQ ID NO: 171) for the insertion and replacement of genes in the Corynebacterium chromosome was designed, and the plasmid was synthesized using the Gene-synthesis service of Bionics Co., Ltd. A plasmid was designed to include a restriction enzyme that is easy to use for cloning with reference to a generally known sacB system related paper [Gene, 145 (1994) 69-73]. The thus synthesized pDCM2 plasmid has the following characteristics.
1) 대장균에서만 작용하는 복제 기점(replication origin)을 가지고 있어 대장균 내에서는 자가 복제(self-replication)가 가능하나 코리네박테리움에서는 자가 복제가 불가능한 특성을 갖는다. 1) Since it has a replication origin that works only in E. coli, self-replication is possible in E. coli, but self-replication is impossible in Corynebacterium.
2) 선별 마커로 카나마이신 내성 유전자를 갖는다. 2) It has a kanamycin resistance gene as a selectable marker.
3) 2차 양성 선별(positive-selection) 마커로 레반 수크라제(Levan sucrase) 유전자(sacB)를 갖는다. 3) It has a Levan sucrase gene (sacB) as a secondary positive-selection marker.
4) 최종 제작된 균주에는 pDCM2 플라스미드로부터 유래한 어떠한 유전자 정보도 남지 않는다. 4) No genetic information derived from the pDCM2 plasmid is left in the finally constructed strain.
10.2. 미생물내 단백질 변이체 발현을 위한 벡터 제작10.2. Vector construction for expression of protein variants in microorganisms
서열번호 93의 아미노산 서열로 이루어진 단백질의 253번째 위치의 글루탐산(Glu, E)이 라이신(Lys, K)으로 치환된 변이체(E253K; 서열번호 91)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 하기와 같이 제작하였다. The mutant (E253K; SEQ ID NO: 91) in which the glutamic acid (Glu, E) at position 253 of the protein consisting of the amino acid sequence of SEQ ID NO: 93 is substituted with lysine (Lys, K) on L-valine production To determine the effect thereof A vector for constructing an expression strain was prepared as follows.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 95 및 96의 서열의 프라이머 쌍과 서열번호 97 및 98의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 95 및 서열번호 98의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-NCgl2805(E253K)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 28에 기재하였다. Using the gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, PCR was performed using a primer pair of sequences of SEQ ID NOs: 95 and 96 and a pair of primers of sequences of SEQ ID NOs: 97 and 98, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using the primer pair of SEQ ID NO: 95 and SEQ ID NO: 98 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-NCgl2805 (E253K). The sequences of the primers used in this Example are shown in Table 28 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
NCgl2805_1FNCgl2805_1F | TCGAGCTCGGTACCCAAGACGCCGTACTCTACGACTCGAGCTCGGTACCCAAGACGCCGTACTCTACGAC | 서열번호 95SEQ ID NO: 95 |
NCgl2805_2RNCgl2805_2R | ACCATGGAATCCAACTCTTTACCCTGGTAGAGCTGTGCTTGACCATGGAATCCAACTCTTTACCCTGGTAGAGCTGTGCTTG | 서열번호 96SEQ ID NO: 96 |
NCgl2805_3FNCgl2805_3F | CAAGCACAGCTCTACCAGGGTAAAGAGTTGGATTCCATGGTCAAGCACAGCTCTACCAGGGTAAAGAGTTGGATTCCATGGT | 서열번호 97SEQ ID NO: 97 |
NCgl2805_4RNCgl2805_4R | CTCTAGAGGATCCCCAGCGCCAGAAGGCATTTCACCTCTAGAGGATCCCCAGCGCCAGAAGGCATTTCAC | 서열번호 98SEQ ID NO: 98 |
10.3. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가10.3. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
10.3.1. 단백질10.3.1. protein
변이체 발현 균주 제작Production of mutant expression strains
상기 실시예 10.2에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P)에 형질전환 하였다.The vector prepared in Example 10.2 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P).
형질 전환된 균주들에서 서열번호 99와 100의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_NCgl2805_E253K로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 29에 기재하였다.
In the transformed strains, a strain in which homologous recombination occurred using the primer pair of SEQ ID NOs: 99 and 100 was selected and named CA08-0072_NCgl2805_E253K. The sequences of the primers used in this Example are shown in Table 29 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
NCgl2805_5FNCgl2805_5F | AAGACGCCGTACTCTACGACAAGACGCCGTACTCTACGAC | 서열번호 99SEQ ID NO: 99 |
NCgl2805_6RNCgl2805_6R | AGCGCCAGAAGGCATTTCACAGCGCCAGAAGGCATTTCAC | 서열번호 100SEQ ID NO: 100 |
10.3.2. 단백질 10.3.2. protein
변이체variant
발현 균주의 L-발린 L-valine of the expression strain
생산능productivity
비교 compare
상기 실시예 10.3.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.The L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 10.3.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 30에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 30 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 30에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 30 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율(%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 2.82.8 | -- |
CA08-0072_NCgl2805_E253KCA08-0072_NCgl2805_E253K | 3.223.22 | 15%15% |
표 30과 같이, CA08-0072_NCgl2805_E253K 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 30, the CA08-0072_NCgl2805_E253K strain exhibited increased L-valine-producing ability compared to the control.
상기 변이 균주 CA08-0072_NCgl2805_E253K는 Corynebacterium glutamicum CA08-1745로 명명되었고, 부다페스트 조약 하의 미생물기탁기관인 한국미생물보존센터(Korean Culture of Microorganisms, KCCM)에 2020년 12월 22일자로 수탁번호 KCCM12909P로 기탁되었다.The mutant strain CA08-0072_NCgl2805_E253K was named Corynebacterium glutamicum CA08-1745, and was deposited with the Korean Culture of Microorganisms (KCCM), a microbial depository under the Budapest Treaty, as of December 22, 2020 with an accession number KCCM12909P.
실시예 11: 슈가 포터 계열 MFS 트랜스포터 변이체를 포함하는 재조합 균주의 제조 및 이를 이용한 L-발린 생산Example 11: Preparation of a recombinant strain comprising a sugar porter-based MFS transporter mutant and L-valine production using the same
11.1. 미생물내 단백질 변이체 발현을 위한 벡터 제작11.1. Vector construction for expression of protein variants in microorganisms
서열번호 103의 아미노산 서열로 이루어진 단백질의 315번째 위치의 알라닌(Ala, A)이 발린(Val, V)으로 치환된 변이체(A315V; 서열번호 101)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드 pDCM2 (대한민국 공개번호 제 10-2020-0136813호)를 이용하여 하기와 같이 제작하였다. To determine the effect of the mutant (A315V; SEQ ID NO: 101) in which alanine (Ala, A) at position 315 of the protein consisting of the amino acid sequence of SEQ ID NO: 103 is substituted with valine (Val, V) on L-valine production, its A vector for constructing an expression strain was prepared as follows using the plasmid pDCM2 (Korea Publication No. 10-2020-0136813) for the insertion and replacement of genes in the Corynebacterium chromosome.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 105 및 106의 서열의 프라이머 쌍과 서열번호 107 및 108의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 105 및 서열번호 108의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-iolT1(A315V)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 31에 기재하였다. Using the gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template and a primer pair of SEQ ID NOs: 105 and 106 and a pair of primers of SEQ ID NOs: 107 and 108, PCR was performed, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using the primer pair of SEQ ID NO: 105 and SEQ ID NO: 108 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-iolT1 (A315V). The sequences of the primers used in this Example are shown in Table 31 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
iolT1_1FiolT1_1F | TGAATTCGAGCTCGGTACCCTGTCTACCTGGCTGAACTTGTGAATTCGAGCTCGGTACCCTGTCTACCTGGCTGAACTTG | 서열번호 105SEQ ID NO: 105 |
iolT1_2RiolT1_2R | TCCAGGTGCCACGTTGaCGATCAGAGCTGCATTTCCAGGTGCCACGTTGaCGATCAGAGCTGCATT | 서열번호 106SEQ ID NO: 106 |
iolT1_3FiolT1_3F | AATGCAGCTCTGATCGtCAACGTGGCACCTGGAAATGCAGCTCTGATCGtCAACGTGGCACCTGGA | 서열번호 107SEQ ID NO: 107 |
iolT1_4RiolT1_4R | GTCGACTCTAGAGGATCCCCATATCCTTGTTGAAGATGACGTCGACTCTAGAGGATCCCCATATCCTTGTTGAAGATGAC | 서열번호 108SEQ ID NO: 108 |
11.2. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가11.2. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
11.2.1. 단백질 변이체 발현 균주 제작11.2.1. Production of protein mutant expression strains
상기 실시예 11.1에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P) (US 8,465,962 참조)에 형질전환 하였다.The vector prepared in Example 11.1 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P) (see US 8,465,962).
형질 전환된 균주들에서 서열번호 109와 110의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_iolT1_A315V로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 32에 기재하였다.
In the transformed strains, a strain having homologous recombination was selected using the primer pair of SEQ ID NOs: 109 and 110, and named CA08-0072_iolT1_A315V. The sequences of the primers used in this Example are shown in Table 32 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
iolT1_5FiolT1_5F | TGTCTACCTGGCTGAACTTGTGTCTACCTGGCTGAACTTG | 서열번호 109SEQ ID NO: 109 |
iolT1_6RiolT1_6R | ATATCCTTGTTGAAGATGACATATCCTTGTTGAAGATGAC | 서열번호 110SEQ ID NO: 110 |
11.2.2. 단백질 11.2.2. protein
변이체variant
발현 균주의 L-발린 L-valine of the expression strain
생산능productivity
비교 compare
상기 실시예 11.2.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.L-valine production ability was analyzed through flask fermentation titer evaluation of each strain and control parent strain prepared in Example 11.2.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 33에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 33 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 33에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 33 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율(%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 2.12.1 | -- |
CA08-0072_iolT1_A315VCA08-0072_iolT1_A315V | 2.82.8 | 33.333.3 |
표 33과 같이, CA08-0072_iolT1_A315V 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 33, the CA08-0072_iolT1_A315V strain exhibited increased L-valine-producing ability compared to the control.
실시예 12: 전사 조절자 변이체를 포함하는 재조합 균주의 제조 및 이를 이용한 L-발린 생산Example 12: Preparation of Recombinant Strain Containing Transcriptional Regulator Mutants and Production of L-Valine Using the Same
12.1. 미생물내 단백질 변이체 발현을 위한 벡터 제작12.1. Vector construction for expression of protein variants in microorganisms
서열번호 113의 아미노산 서열로 이루어진 단백질의 247번째 위치의 글루탐산(Glu, E)이 라이신(Lys, K)으로 치환된 변이체(E247K; 서열번호 111)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드 pDCM2 (대한민국 공개번호 제 10-2020-0136813호)를 이용하여 하기와 같이 제작하였다. The mutant (E247K; SEQ ID NO: 111) in which the glutamic acid (Glu, E) at the 247th position of the protein consisting of the amino acid sequence of SEQ ID NO: 113 is substituted with lysine (Lys, K) on L-valine production To determine the effect thereof A vector for constructing an expression strain was prepared as follows using the plasmid pDCM2 (Korea Publication No. 10-2020-0136813) for the insertion and replacement of genes in the Corynebacterium chromosome.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 115 및 116의 서열의 프라이머 쌍과 서열번호 117 및 118의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 115 및 서열번호 118의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-iolR(E247K)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 34에 기재하였다. Using the gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, PCR was performed using a primer pair of SEQ ID NOs: 115 and 116 and a pair of primers of SEQ ID NOs: 117 and 118, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using a pair of primers of SEQ ID NO: 115 and SEQ ID NO: 118 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times for 30 seconds at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-iolR (E247K). The sequences of the primers used in this Example are shown in Table 34 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
iolR_1FiolR_1F | TGAATTCGAGCTCGGTACCCCCAAGAAGTCGTAGACAAAGTGAATTCGAGCTCGGTACCCCAAGAAGTCGTAGACAAAG | 서열번호 115SEQ ID NO: 115 |
iolR_2RiolR_2R | GCCACCAGAGTGGTTTtAAAGTTGTACATATCTGCCACCAGAGTGGTTTtAAAGTTGTACATATCT | 서열번호 116SEQ ID NO: 116 |
iolR_3FiolR_3F | AGATATGTACAACTTTaAAACCACTCTGGTGGCAGATATGTACAACTTTaAAACCACTCTGGTGGC | 서열번호 117SEQ ID NO: 117 |
iolR_4RiolR_4R | GTCGACTCTAGAGGATCCCCTTGAGCTAAGTATCCTATGAGTCGACTCTAGAGGATCCCCTTGAGCTAAGTATCCTATGA | 서열번호 118SEQ ID NO: 118 |
12.2. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가12.2. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
12.2.1. 단백질 변이체 발현 균주 제작12.2.1. Production of protein mutant expression strains
상기 실시예 12.1에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P) (US 8,465,962 참조)에 형질전환 하였다.The vector prepared in Example 12.1 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P) (see US 8,465,962).
형질 전환된 균주들에서 서열번호 119와 120의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_iolR_E247K로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 35에 기재하였다.
In the transformed strains, a strain having homologous recombination was selected using the primer pair of SEQ ID NOs: 119 and 120 and named CA08-0072_iolR_E247K. The sequences of the primers used in this Example are shown in Table 35 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
iolR_5FiolR_5F | CCAAGAAGTCGTAGACAAAGCCAAGAAGTCGTAGACAAAG | 서열번호 119SEQ ID NO: 119 |
iolR_6RiolR_6R | TTGAGCTAAGTATCCTATGATTGAGCTAAGTATCCTATGA | 서열번호 120SEQ ID NO: 120 |
12.2.2. 단백질 12.2.2. protein
변이체variant
발현 균주의 L-발린 L-valine of the expression strain
생산능productivity
비교 compare
상기 실시예 12.2.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.The L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 12.2.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 36에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 36 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 36에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 36 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율(%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 1.81.8 | -- |
CA08-0072_iolR_E247KCA08-0072_iolR_E247K | 2.22.2 | 22.222.2 |
표 36과 같이, CA08-0072_iolR_E247K 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 36, the CA08-0072_iolR_E247K strain exhibited increased L-valine-producing ability compared to the control.
실시예 13: WhiB 계열 전사 조절자 WhcA 변이체를 포함하는 재조합 균주의 제조 및 이를 이용한 L-발린 생산Example 13: Preparation of Recombinant Strain Containing WhiB Family Transcriptional Regulator WhcA Variant and Production of L-Valine Using the Same
13.1. 미생물내 단백질 변이체 발현을 위한 벡터 제작13.1. Vector construction for expression of protein variants in microorganisms
서열번호 123의 아미노산 서열로 이루어진 단백질의 40번째 위치의 글리신(Gly, G)이 아스파트산(Asp, D)으로 치환된 변이체(G40D; 서열번호 121)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드 pDCM2 (대한민국 공개번호 제 10-2020-0136813호)를 이용하여 하기와 같이 제작하였다. The effect of the mutant (G40D; SEQ ID NO: 121) in which glycine (Gly, G) at the 40th position of the protein consisting of the amino acid sequence of SEQ ID NO: 123 is substituted with aspartic acid (Asp, D) on L-valine production A vector for constructing an expression strain thereof was prepared as follows using the plasmid pDCM2 (Korea Publication No. 10-2020-0136813) for the insertion and replacement of genes in the Corynebacterium chromosome.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 125 및 126의 서열의 프라이머 쌍과 서열번호 127 및 128의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 125 및 서열번호 128의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-whcA(G40D)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 37에 기재하였다. PCR was performed using the primer pair of SEQ ID NOs: 125 and 126 and the primer pair of SEQ ID NOs: 127 and 128 using gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using a pair of primers of SEQ ID NO: 125 and SEQ ID NO: 128 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-whcA (G40D). The sequences of the primers used in this Example are shown in Table 37 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
whcA_1FwhcA_1F | TGAATTCGAGCTCGGTACCCTATTCGCAACTGTGCTTACGTGAATTCGAGCTCGGTACCCTATTCGCAACTGTGCTTACG | 서열번호 125SEQ ID NO: 125 |
whcA_2RwhcA_2R | CAATGCATCTGGGTCGtCATTTCGACACTTTGCCAATGCATCTGGGTCGtCATTTCGACACTTTGC | 서열번호 126SEQ ID NO: 126 |
whcA_3FwhcA_3F | GCAAAGTGTCGAAATGaCGACCCAGATGCATTGGCAAAGTGTCGAAATGaCGACCCAGATGCATTG | 서열번호 127SEQ ID NO: 127 |
whcA_4RwhcA_4R | GTCGACTCTAGAGGATCCCCATCTGCTTAGTTGCATGCGTGTCGACTCTAGAGGATCCCCATCTGCTTAGTTGCATGCGT | 서열번호 128SEQ ID NO: 128 |
13.2. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가13.2. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
13.2.1. 단백질 변이체 발현 균주 제작13.2.1. Production of protein mutant expression strains
상기 실시예 13.1에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P) (US 8,465,962 참조)에 형질전환 하였다.The vector prepared in Example 13.1 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P) (see US 8,465,962).
형질 전환된 균주들에서 서열번호 129와 130의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_whcA_G40D로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 38에 기재하였다.
In the transformed strains, a strain in which homologous recombination occurred using the primer pair of SEQ ID NOs: 129 and 130 was selected and named CA08-0072_whcA_G40D. The sequences of the primers used in this Example are shown in Table 38 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
whcA_5FwhcA_5F | TATTCGCAACTGTGCTTACGTATTCGCAACTGTGCTTACG | 서열번호 129SEQ ID NO: 129 |
whcA_6RwhcA_6R | ATCTGCTTAGTTGCATGCGTATTCTGCTTAGTTGCATGCGT | 서열번호 130SEQ ID NO: 130 |
13.2.2. 단백질 13.2.2. protein
변이체variant
발현 균주의 L-발린 L-valine of the expression strain
생산능productivity
비교 compare
상기 실시예 13.2.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.L-valine production ability was analyzed through flask fermentation titer evaluation of each strain and control parent strain prepared in Example 13.2.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 39에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 39 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 39에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 39 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율(%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 2.02.0 | -- |
CA08-0072_whcA_G40DCA08-0072_whcA_G40D | 2.52.5 | 25.025.0 |
표 39와 같이, CA08-0072_whcA_G40D 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 39, the CA08-0072_whcA_G40D strain exhibited increased L-valine-producing ability compared to the control.
실시예 14: 디히드로리포일 아세틸기전이효소 변이체를 포함하는 재조합 균주의 제조 및 이를 이용한 L-발린 생산Example 14: Preparation of a recombinant strain containing a dihydrolipoyl acetyltransferase mutant and L-valine production using the same
14.1. 미생물내 단백질 변이체 발현을 위한 벡터 제작14.1. Vector construction for expression of protein variants in microorganisms
서열번호 133의 아미노산 서열로 이루어진 단백질의 77번째 위치의 글리신(Gly, G)이 아스파트산 (Asp, D)으로 치환된 변이체(G77D; 서열번호 131)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드 pDCM2 (대한민국 공개번호 제 10-2020-0136813호)를 이용하여 하기와 같이 제작하였다. The effect of a mutant (G77D; SEQ ID NO: 131) in which glycine (Gly, G) at position 77 of the protein consisting of the amino acid sequence of SEQ ID NO: 133 is substituted with aspartic acid (Asp, D) on L-valine production A vector for constructing an expression strain thereof was prepared as follows using the plasmid pDCM2 (Korea Publication No. 10-2020-0136813) for the insertion and replacement of genes in the Corynebacterium chromosome.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 135 및 136의 서열의 프라이머 쌍과 서열번호 137 및 138의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 135 및 서열번호 138의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-aceF(G77D)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 40에 기재하였다. Using the gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template and a primer pair of SEQ ID NOs: 135 and 136 and a pair of primers of SEQ ID NOs: 137 and 138, PCR was performed, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using a primer pair of SEQ ID NO: 135 and SEQ ID NO: 138 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-aceF (G77D). The sequences of the primers used in this Example are shown in Table 40 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
aceF_1FaceF_1F | TGAATTCGAGCTCGGTACCCACGACAGACATCTCATTGACTGAATTCGAGCTCGGTACCCACGACAGACATCTCATTGAC | 서열번호 135SEQ ID NO: 135 |
aceF_2RaceF_2R | AGTCTCATCAGCATCGtCGATTATTGCAATGACAGTCTCATCAGCATCGtCGATTATTGCAATGAC | 서열번호 136SEQ ID NO: 136 |
aceF_3FaceF_3F | GTCATTGCAATAATCGaCGATGCTGATGAGACTGTCATTGCAATAATCGaCGATGCTGATGAGACT | 서열번호 137SEQ ID NO: 137 |
aceF_4RaceF_4R | GTCGACTCTAGAGGATCCCCGGTGGAGACCTCAAGAAGTGGTCGACTCTAGAGGATCCCCGGTGGAGACCTCAAGAAGTG | 서열번호 138SEQ ID NO: 138 |
14.2. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가14.2. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
14.2.1. 단백질 변이체 발현 균주 제작14.2.1. Production of protein mutant expression strains
상기 실시예 14.1에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P)(US 8,465,962 참조)에 형질전환 하였다.The vector prepared in Example 14.1 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P) (see US 8,465,962).
형질 전환된 균주들에서 서열번호 139와 140의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_aceF_G77D로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 41에 기재하였다.
In the transformed strains, a strain in which homologous recombination occurred using the primer pair of SEQ ID NOs: 139 and 140 was selected and named CA08-0072_aceF_G77D. The sequences of the primers used in this Example are shown in Table 41 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
aceF_5FaceF_5F | ACGACAGACATCTCATTGACACGACAGACATCTCATTGAC | 서열번호 139SEQ ID NO: 139 |
aceF_6RaceF_6R | GGTGGAGACCTCAAGAAGTGGGTGGAGACCTCAAGAAGTG | 서열번호 140SEQ ID NO: 140 |
14.2.2. 단백질 14.2.2. protein
변이체variant
발현 균주의 L-발린 L-valine of the expression strain
생산능productivity
비교 compare
상기 실시예 14.2.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.L-valine production ability was analyzed through the evaluation of flask fermentation titer of each strain and control parent strain prepared in Example 14.2.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 42에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentration of L-valine is shown in Table 42 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 42에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 42 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율(%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 2.02.0 | -- |
CA08-0072_aceF_G77DCA08-0072_aceF_G77D | 2.62.6 | 30.030.0 |
표 42와 같이, CA08-0072_aceF_G77D 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 42, the CA08-0072_aceF_G77D strain exhibited increased L-valine-producing ability compared to the control.
실시예 15: 2-이소프로필말레이트합성효소 변이체를 포함하는 재조합 균주의 제조 및 이를 이용한 L-발린 생산Example 15: Preparation of recombinant strain containing 2-isopropylmalate synthetase mutant and production of L-valine using the same
15.1. 미생물내 단백질 변이체 발현을 위한 벡터 제작15.1. Vector construction for expression of protein variants in microorganisms
서열번호 143의 아미노산 서열로 이루어진 단백질의 87번째 위치의 프롤린(Pro, P)이 류신(Leu, L)으로 치환된 변이체(P87L; 서열번호 141)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드 pDCM2 (대한민국 공개번호 제 10-2020-0136813호)를 이용하여 하기와 같이 제작하였다. To determine the effect of the mutant (P87L; SEQ ID NO: 141) in which proline (Pro, P) at position 87 of the protein consisting of the amino acid sequence of SEQ ID NO: 143 is substituted with leucine (Leu, L) on L-valine production, its A vector for constructing an expression strain was prepared as follows using the plasmid pDCM2 (Korea Publication No. 10-2020-0136813) for the insertion and replacement of genes in the Corynebacterium chromosome.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 145 및 146의 서열의 프라이머 쌍과 서열번호 147 및 148의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 145 및 서열번호 148의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-leuA(P87L)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 43에 기재하였다. Using the gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template and a primer pair of SEQ ID NOs: 145 and 146 and a pair of primers of SEQ ID NOs: 147 and 148, PCR was performed, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using a primer pair of SEQ ID NO: 145 and SEQ ID NO: 148 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-leuA (P87L). The sequences of the primers used in this Example are shown in Table 43 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
leuA_1FleuA_1F | TGAATTCGAGCTCGGTACCCTGACAGCACTGGAACTGGGCTGAATTCGAGCTCGGTACCCTGACAGCACTGGAACTGGGC | 서열번호 145SEQ ID NO: 145 |
leuA_2RleuA_2R | GCGGCGCTTACGCTCAaGAGACATCGGATCAATGCGGCGCTTACGCTCAaGAGACATCGGATCAAT | 서열번호 146SEQ ID NO: 146 |
leuA_3FleuA_3F | ATTGATCCGATGTCTCtTGAGCGTAAGCGCCGCATTGATCCGATGTCTCtTGAGCGTAAGCGCCGC | 서열번호 147SEQ ID NO: 147 |
leuA_4RleuA_4R | GTCGACTCTAGAGGATCCCCATTCAATGGAGTCTGCGTAAGTCGACTCTAGAGGATCCCCATTCAATGGAGTCTGCGTAA | 서열번호 148SEQ ID NO: 148 |
15.2. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가15.2. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
15.2.1. 단백질 변이체 발현 균주 제작15.2.1. Production of protein mutant expression strains
상기 실시예 15.1에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P) (US 8,465,962 참조)에 형질전환 하였다.The vector prepared in Example 15.1 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P) (see US 8,465,962).
형질 전환된 균주들에서 서열번호 149와 150의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_leuA_P87L로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 44에 기재하였다.
In the transformed strains, a strain in which homologous recombination occurred using the primer pair of SEQ ID NOs: 149 and 150 was selected and named CA08-0072_leuA_P87L. The sequences of the primers used in this Example are shown in Table 44 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
leuA_5FleuA_5F | TGACAGCACTGGAACTGGGCTGACAGCACTGGAACTGGGC | 서열번호 149SEQ ID NO: 149 |
leuA_6RleuA_6R | ATTCAATGGAGTCTGCGTAAATTCAATGGAGTCTGCGTAA | 서열번호 150SEQ ID NO: 150 |
15.2.2. 단백질 15.2.2. protein
변이체variant
발현 균주의 L-발린 L-valine of the expression strain
생산능productivity
비교 compare
상기 실시예 15.2.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.L-valine production capacity was analyzed through flask fermentation titer evaluation of each strain and control parent strain prepared in Example 15.2.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 45에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentrations of L-valine are shown in Table 45 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 45에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 45 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율(%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 2.22.2 | -- |
CA08-0072_leuA_P87LCA08-0072_leuA_P87L | 2.72.7 | 22.722.7 |
표 45와 같이, CA08-0072_leuA_P87L 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 45, the CA08-0072_leuA_P87L strain exhibited an increased L-valine-producing ability compared to the control.
실시예 16: 분지쇄아미노산 투과효소 변이체를 포함하는 재조합 균주의 제조 및 이를 이용한 L-발린 생산Example 16: Preparation of a recombinant strain containing a branched-chain amino acid permease mutant and L-valine production using the same
16.1. 미생물내 단백질 변이체 발현을 위한 벡터 제작16.1. Vector construction for expression of protein variants in microorganisms
서열번호 153의 아미노산 서열로 이루어진 단백질의 112번째 위치의 알라닌(Ala, A)이 트레오닌(Thr, T)으로 치환된 변이체(A112T; 서열번호 151)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드 pDCM2 (대한민국 공개번호 제 10-2020-0136813호)를 이용하여 하기와 같이 제작하였다. To determine the effect of a mutant (A112T; SEQ ID NO: 151) in which alanine (Ala, A) at position 112 of the protein consisting of the amino acid sequence of SEQ ID NO: 153 is substituted with threonine (Thr, T) on L-valine production, its A vector for constructing an expression strain was prepared as follows using the plasmid pDCM2 (Korea Publication No. 10-2020-0136813) for the insertion and replacement of genes in the Corynebacterium chromosome.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 155 및 156의 서열의 프라이머 쌍과 서열번호 157 및 158의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 155 및 서열번호 158의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-brnQ(A112T)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 46에 기재하였다. PCR was performed using the primer pair of the sequences of SEQ ID NOs: 155 and 156 and the primer pair of the sequences of SEQ ID NOs: 157 and 158 using gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using a primer pair of SEQ ID NO: 155 and SEQ ID NO: 158 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-brnQ(A112T). The sequences of the primers used in this Example are shown in Table 46 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
brnQ_1FbrnQ_1F | TGAATTCGAGCTCGGTACCCTTGATGTGGTTGGACTTCGCTGAATTCGAGCTCGGTACCCTTGATGTGGTTGGACTTCGC | 서열번호 155SEQ ID NO: 155 |
brnQ_2RbrnQ_2R | AAGCCCGAATAAAGCGtATTATCGACGCCAACCAAGCCCGAATAAAGCGtATTATCGACGCCAACC | 서열번호 156SEQ ID NO: 156 |
brnQ_3FbrnQ_3F | GGTTGGCGTCGATAATaCGCTTTATTCGGGCTTGGTTGGCGTCGATAATaCGCTTTATTCGGGCTT | 서열번호 7SEQ ID NO: 7 |
brnQ_4RbrnQ_4R | GTCGACTCTAGAGGATCCCCGCACTGATCAGACCAACTGCGTCGACTCTAGAGGATCCCCGCACTGATCAGACCAACTGC | 서열번호 8SEQ ID NO: 8 |
16.2. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가16.2. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
16.2.1. 단백질 변이체 발현 균주 제작16.2.1. Production of protein mutant expression strains
상기 실시예 16.1에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P) (US 8,465,962 참조)에 형질전환 하였다.The vector prepared in Example 16.1 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P) (see US 8,465,962).
형질 전환된 균주들에서 서열번호 159와 160의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_brnQ_A112T로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 2에 기재하였다.
In the transformed strains, a strain in which homologous recombination occurred using the primer pair of SEQ ID NOs: 159 and 160 was selected and named CA08-0072_brnQ_A112T. The sequences of the primers used in this Example are shown in Table 2 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
brnQ_5FbrnQ_5F | TTGATGTGGTTGGACTTCGCTTGATGTGGTTGGACTTCGC | 서열번호 159SEQ ID NO: 159 |
brnQ_6RbrnQ_6R | GCACTGATCAGACCAACTGCGCACTGATCAGACCAACTGC | 서열번호 160SEQ ID NO: 160 |
16.2.2. 단백질 16.2.2. protein
변이체variant
발현 균주의 L-발린 L-valine of the expression strain
생산능productivity
비교 compare
상기 실시예 16.2.1에서 제작된 각 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.The L-valine production ability was analyzed by evaluating the flask fermentation titer of each strain and the control parent strain prepared in Example 16.2.1.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 48에 나타내었다.First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC, and the analyzed concentration of L-valine is shown in Table 48 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 48에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 48 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율(%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 2.12.1 | -- |
CA08-0072_brnQ_A112TCA08-0072_brnQ_A112T | 2.72.7 | 28.628.6 |
표 48과 같이, CA08-0072_brnQ_A112T 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 48, the CA08-0072_brnQ_A112T strain exhibited an increased L-valine-producing ability compared to the control.
실시예 17: 글리세르알데히드-3-인산탈수소효소 변이체를 포함하는 재조합 균주의 제조 및 이를 이용한 L-발린 생산Example 17: Preparation of a recombinant strain containing a glyceraldehyde-3-phosphate dehydrogenase mutant and L-valine production using the same
17.1. 미생물내 단백질 변이체 발현을 위한 벡터 제작17.1. Vector construction for expression of protein variants in microorganisms
서열번호 163의 아미노산 서열로 이루어진 단백질의 134번째 위치의 글리신(Gly, G)이 세린(Ser, S)으로 치환된 변이체(G134S; 서열번호 161)가 L-발린 생산에 미치는 영향을 확인하고자 이의 발현 균주 제작을 위한 벡터를 코리네박테리움 염색체 내 유전자의 삽입 및 교체를 위한 플라스미드 pDCM2 (대한민국 공개번호 제 10-2020-0136813호)를 이용하여 하기와 같이 제작하였다. To determine the effect of a mutant (G134S; SEQ ID NO: 161) in which glycine (Gly, G) at position 134 of the protein consisting of the amino acid sequence of SEQ ID NO: 163 is substituted with serine (Ser, S) on L-valine production, its A vector for constructing an expression strain was prepared as follows using the plasmid pDCM2 (Korea Publication No. 10-2020-0136813) for the insertion and replacement of genes in the Corynebacterium chromosome.
야생형 코리네박테리움 글루타미쿰 ATCC14067의 gDNA(genomic DNA)를 주형으로 서열번호 165 및 166의 서열의 프라이머 쌍과 서열번호 167 및 168의 서열의 프라이머 쌍을 이용하여 각각 PCR을 수행하였다. 상기에서 얻어진 두 단편의 혼합물을 주형으로 서열번호 165 및 서열번호 168의 서열의 프라이머 쌍을 이용하여 다시 오버랩핑(overlapping) PCR을 수행하여 단편을 수득하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초, 55℃에서 30초, 72℃ 에서 1분 30초를 30회 반복한 후, 72℃에서 5분간 수행하였다. pDCM2 벡터는 smaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDCM2-gapA(G134S)라 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 49에 기재하였다. Using the gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, PCR was performed using a pair of primers of SEQ ID NOs: 165 and 166 and a pair of primers of SEQ ID NOs: 167 and 168, respectively. Using the mixture of the two fragments obtained above as a template, overlapping PCR was performed again using a primer pair of SEQ ID NO: 165 and SEQ ID NO: 168 to obtain a fragment. After denaturing at 94°C for 5 minutes, PCR was repeated 30 times for 30 seconds at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes. The pDCM2 vector was treated with smal and the PCR product obtained above was fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDCM2-gapA (G134S). The sequences of the primers used in this Example are shown in Table 49 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
gapA_1FgapA_1F | TGAATTCGAGCTCGGTACCCTTCTGTCAGCTCAAGAATTCTGAATTCGAGCTCGGTACCCTTCTGTCAGCTCAGAATTC | 서열번호 165SEQ ID NO: 165 |
gapA_2RgapA_2R | GACTCGTGGTTCACACtGTAAACGAAGGTTGCGGACTCGTGGTTCACACtGTAAACGAAGGTTGCG | 서열번호 166SEQ ID NO: 166 |
gapA_3FgapA_3F | CGCAACCTTCGTTTACaGTGTGAACCACGAGTCCGCAACCTTCGTTTACaGTGTGAACCACGAGTC | 서열번호 167SEQ ID NO: 167 |
gapA_4RgapA_4R | GTCGACTCTAGAGGATCCCCAACTAATTAGAGCTTGGAAGGTCGACTCTAGAGGATCCCCAACTAATTAGAGCTTGGAAG | 서열번호 168SEQ ID NO: 168 |
17.2. 단백질 변이체를 발현하는 미생물의 L-발린 생산능 평가17.2. Evaluation of L-valine-producing ability of microorganisms expressing protein variants
17.2.1. 단백질 변이체 발현 균주 제작17.2.1. Production of protein variant expression strains
상기 실시예 17.1에서 제작한 벡터를 코리네박테리움 글루타미쿰 CA08-0072 (KCCM11201P) (US 8,465,962 참조)에 형질전환 하였다.The vector prepared in Example 17.1 was transformed into Corynebacterium glutamicum CA08-0072 (KCCM11201P) (see US 8,465,962).
형질 전환된 균주들에서 서열번호 169와 170의 서열의 프라이머 쌍을 이용하여 상동성 재조합이 일어난 균주를 선별하고 CA08-0072_gapA_G134S로 명명하였다. 본 실시예에서 사용한 프라이머의 서열은 하기 표 50에 기재하였다.
In the transformed strains, a strain in which homologous recombination occurred using the primer pair of SEQ ID NOs: 169 and 170 was selected and named CA08-0072_gapA_G134S. The sequences of the primers used in this Example are shown in Table 50 below.
명칭designation | 서열 (5’->3’)sequence (5'->3') | 서열번호SEQ ID NO: |
gapA_5FgapA_5F | TTCTGTCAGCTCAAGAATTCTTCTGTCAGCTCAAGAATTC | 서열번호 169SEQ ID NO: 169 |
gapA_6RgapA_6R | AACTAATTAGAGCTTGGAAGAACTAATTAGAGCTTGGAAG | 서열번호 170SEQ ID NO: 170 |
17.2.2. 단백질 17.2.2. protein
변이체variant
발현 균주의 L-발린 L-valine of the expression strain
생산능productivity
비교 compare
상기 실시예 17.2.1에서 제작된 균주 및 대조군 모균주의 플라스크 발효역가 평가를 통해 L-발린 생산능을 분석하였다.The L-valine production ability was analyzed through the flask fermentation titer evaluation of the strain prepared in Example 17.2.1 and the control parent strain.
먼저, 각각의 콜로니는 영양배지에서 계대 배양된 후, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하였고, 분석한 L-발린의 농도를 하기 표 51에 나타내었다 First, each colony was subcultured in a nutrient medium, and then each strain was inoculated in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Then, the concentration of L-valine was analyzed using HPLC, and the analyzed concentration of L-valine is shown in Table 51 below.
<영양배지 (pH 7.2)><Nutrition medium (pH 7.2)>
포도당 10 g, 육즙 5 g, 폴리펩톤 10 g, 염화나트륨 2.5 g, 효모엑기스 5 g, 한천 20 g, 유레아 2 g (증류수 1 리터 기준)Glucose 10 g, broth 5 g, polypeptone 10 g, sodium chloride 2.5 g, yeast extract 5 g, agar 20 g, urea 2 g (based on 1 liter of distilled water)
<생산배지 (pH 7.0)><Production medium (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 mg, 판토텐산칼슘 2 mg, 니코틴아마이드 3 mg, 탄산칼슘 30 g(증류수 1리터 기준).Glucose 100 g, Ammonium Sulfate 40 g, Soy Protein 2.5 g, Corn Steep Solids 5 g, Urea 3 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 μg, Thiamine-HCl 1 mg, calcium pantothenate 2 mg, nicotinamide 3 mg, calcium carbonate 30 g (based on 1 liter of distilled water).
상기 실험은 3번 반복하였으며, 그 분석 결과의 평균값을 아래 표 51에 나타내었다.The experiment was repeated 3 times, and the average value of the analysis results is shown in Table 51 below.
균 주strain | L-발린 농도 (g/L)L-valine concentration (g/L) | L-발린 농도 증가율(%)L-valine concentration increase rate (%) |
CA08-0072CA08-0072 | 1.91.9 | -- |
CA08-0072_gapA_G134SCA08-0072_gapA_G134S | 2.42.4 | 26.326.3 |
표 51과 같이, CA08-0072_gapA_G134S 균주는 대조군에 비해 증가된 L-발린 생산능을 나타내었다.As shown in Table 51, the CA08-0072_gapA_G134S strain exhibited increased L-valine-producing ability compared to the control.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present application pertains will be able to understand that the present application may be embodied in other specific forms without changing the technical spirit or essential characteristics thereof. In this regard, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The scope of the present application should be construed as including all changes or modifications derived from the meaning and scope of the claims described below, rather than the above detailed description, and equivalent concepts thereof, to be included in the scope of the present application.
기탁기관명 : 한국미생물보존센터Name of deposit institution: Korea Microorganism Conservation Center
수탁번호 : KCCM12860PAccession number: KCCM12860P
수탁일자 : 20201202Deposit date: 20201202
기탁기관명 : 한국미생물보존센터Name of deposit institution: Korea Microorganism Conservation Center
수탁번호 : KCCM12861PAccession number: KCCM12861P
수탁일자 : 20201202Deposit date: 20201202
기탁기관명 : 한국미생물보존센터Name of deposit institution: Korea Microorganism Conservation Center
수탁번호 : KCCM12863PAccession number: KCCM12863P
수탁일자 : 20201202Deposit date: 20201202
기탁기관명 : 한국미생물보존센터Name of deposit institution: Korea Microorganism Conservation Center
수탁번호 : KCCM12864PAccession number: KCCM12864P
수탁일자 : 20201202Deposit date: 20201202
기탁기관명 : 한국미생물보존센터Name of deposit institution: Korea Microorganism Conservation Center
수탁번호 : KCCM12867PAccession number: KCCM12867P
수탁일자 : 20201202Deposit date: 20201202
기탁기관명 : 한국미생물보존센터Name of deposit institution: Korea Microorganism Conservation Center
수탁번호 : KCCM12865PAccession number: KCCM12865P
수탁일자 : 20201202Deposit date: 20201202
기탁기관명 : 한국미생물보존센터Name of deposit institution: Korea Microorganism Conservation Center
수탁번호 : KCCM12866PAccession number: KCCM12866P
수탁일자 : 20201202Deposit date: 20201202
기탁기관명 : 한국미생물보존센터Name of deposit institution: Korea Microorganism Conservation Center
수탁번호 : KCCM12868PAccession number: KCCM12868P
수탁일자 : 20201202Deposit date: 20201202
기탁기관명 : 한국미생물보존센터Name of deposit institution: Korea Microorganism Conservation Center
수탁번호 : KCCM12862PAccession number: KCCM12862P
수탁일자 : 20201202Deposit date: 20201202
기탁기관명 : 한국미생물보존센터Name of deposit institution: Korea Microorganism Conservation Center
수탁번호 : KCCM12909PAccession number: KCCM12909P
수탁일자 : 20201222Deposit date: 20201222
Claims (3)
- (i) 다음의 (1) 내지 (17)로 이루어진 군에서 선택된 하나 이상의 변이체, (i) at least one variant selected from the group consisting of the following (1) to (17),(ii) 상기 변이체를 코딩하는 하나 이상의 폴리뉴클레오티드, 또는 (ii) one or more polynucleotides encoding the variant, or(iii) 이들의 조합(iii) combinations thereof;을 포함하는, 코리네박테리움 글루타미쿰 균주:A Corynebacterium glutamicum strain comprising:(1) 서열번호 3의 아미노산 서열의 109번째 위치에 상응하는 아미노산인 세린이 페닐알라닌으로 치환된, 서열번호 1로 기재된 아미노산 서열로 이루어진, 단백질 변이체;(1) a protein variant, consisting of the amino acid sequence set forth in SEQ ID NO: 1, in which serine, an amino acid corresponding to position 109 of the amino acid sequence of SEQ ID NO: 3, is substituted with phenylalanine;(2) 서열번호 13의 아미노산 서열의 130번째 위치에 상응하는 아미노산인 세린이 페닐알라닌으로 치환된, 서열번호 11로 기재된 아미노산 서열로 이루어진, ATP 포스포리보실트랜스퍼라제 변이체;(2) an ATP phosphoribosyltransferase variant, consisting of the amino acid sequence shown in SEQ ID NO: 11, in which serine, an amino acid corresponding to position 130 of the amino acid sequence of SEQ ID NO: 13, is substituted with phenylalanine;(3) 서열번호 23의 아미노산 서열의 192번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 21로 기재된 아미노산 서열로 이루어진, 아스파라긴 신타제 변이체;(3) an asparagine synthase variant, consisting of the amino acid sequence shown in SEQ ID NO: 21, in which proline, an amino acid corresponding to position 192 of the amino acid sequence of SEQ ID NO: 23, is substituted with leucine;(4) 서열번호 33의 아미노산 서열의 213번째 위치에 상응하는 아미노산인 알라닌이 발린으로 치환된, 서열번호 31로 기재된 아미노산 서열로 이루어진, 스퍼미딘 신타제 변이체;(4) spermidine synthase variant, consisting of the amino acid sequence set forth in SEQ ID NO: 31, in which alanine, an amino acid corresponding to position 213 of the amino acid sequence of SEQ ID NO: 33, is substituted with valine;(5) 서열번호 43의 아미노산 서열의 302번째 위치에 상응하는 아미노산인 프롤린이 세린으로 치환된, 서열번호 41로 기재된 아미노산 서열로 이루어진, 시스테인 설피네이트 디설피나제 변이체(5) a cysteine sulfinate disulfinase variant, consisting of the amino acid sequence set forth in SEQ ID NO: 41, in which proline, an amino acid corresponding to position 302 of the amino acid sequence of SEQ ID NO: 43, is substituted with serine(6) 서열번호 53의 아미노산 서열의 56번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 51로 기재된 아미노산 서열로 이루어진, 우레아제 부속 단백질 변이체;(6) a urease accessory protein variant, consisting of the amino acid sequence set forth in SEQ ID NO: 51, in which proline, an amino acid corresponding to position 56 of the amino acid sequence of SEQ ID NO: 53, is substituted with leucine;(7) 서열번호 63의 아미노산 서열의 834번째 위치에 상응하는 아미노산인 글리신이 세린으로 치환된, 서열번호 61로 기재된 아미노산 서열로 이루어진, 프롤린 탈수소효소 변이체;(7) a proline dehydrogenase variant, consisting of the amino acid sequence set forth in SEQ ID NO: 61, in which glycine, an amino acid corresponding to position 834 of the amino acid sequence of SEQ ID NO: 63, is substituted with serine;(8) 서열번호 73의 아미노산 서열의 140번째 위치에 상응하는 아미노산인 아르기닌이 시스테인으로 치환된, 서열번호 71로 기재된 아미노산 서열로 이루어진, 테트라하이드로디피콜리네이트 N-숙시닐트랜스퍼라제 변이체;(8) a tetrahydrodipicolinate N-succinyltransferase variant, consisting of the amino acid sequence shown in SEQ ID NO: 71, in which arginine, an amino acid corresponding to position 140 of the amino acid sequence of SEQ ID NO: 73, is substituted with cysteine;(9) 서열번호 83의 아미노산 서열의 4번째 위치에 상응하는 아미노산인 아르기닌이 히스티딘으로 치환된, 서열번호 81로 기재된 아미노산 서열로 이루어진, 5,10-메틸렌테트라하이드로폴레이트 리덕타제 변이체;(9) a 5,10-methylenetetrahydrofolate reductase variant, consisting of the amino acid sequence set forth in SEQ ID NO: 81, in which arginine, an amino acid corresponding to the 4th position of the amino acid sequence of SEQ ID NO: 83, is substituted with histidine;(10) 서열번호 93의 아미노산 서열의 253번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 91로 기재된 아미노산 서열로 이루어진, 단백질 변이체;(10) a protein variant, consisting of the amino acid sequence set forth in SEQ ID NO: 91, in which glutamic acid, an amino acid corresponding to position 253 of the amino acid sequence of SEQ ID NO: 93, is substituted with lysine;(11) 서열번호 103의 아미노산 서열의 315번째 위치에 상응하는 아미노산인 알라닌이 발린으로 치환된, 서열번호 101로 기재된 아미노산 서열로 이루어진, 슈가 포터 계열 MFS 트랜스포터 변이체;(11) a sugar porter family MFS transporter variant, consisting of the amino acid sequence shown in SEQ ID NO: 101, in which alanine, an amino acid corresponding to position 315 of the amino acid sequence of SEQ ID NO: 103, is substituted with valine;(12) 서열번호 113의 아미노산 서열의 247번째 위치에 상응하는 아미노산인 글루탐산이 라이신으로 치환된, 서열번호 111로 기재된 아미노산 서열로 이루어진, 전사 조절자 변이체;(12) a transcription regulator variant, consisting of the amino acid sequence set forth in SEQ ID NO: 111, in which glutamic acid, an amino acid corresponding to position 247 of the amino acid sequence of SEQ ID NO: 113, is substituted with lysine;(13) 서열번호 123의 아미노산 서열의 40번째 위치에 상응하는 아미노산인 글리신이 아스파트산으로 치환된, 서열번호 121로 기재된 아미노산 서열로 이루어진, WhiB 계열 전사 조절자 WhcA 변이체;(13) a WhiB family transcriptional regulator WHCA variant, consisting of the amino acid sequence shown in SEQ ID NO: 121, in which glycine, an amino acid corresponding to the 40th position of the amino acid sequence of SEQ ID NO: 123, is substituted with aspartic acid;(14) 서열번호 133의 아미노산 서열의 77번째 위치에 상응하는 아미노산인 글리신이 아스파트산으로 치환된, 서열번호 131로 기재된 아미노산 서열로 이루어진, 디히드로리포일 아세틸기전이효소 변이체;(14) a dihydrolipoyl acetyltransferase variant, consisting of the amino acid sequence shown in SEQ ID NO: 131, in which glycine, an amino acid corresponding to position 77 of the amino acid sequence of SEQ ID NO: 133, is substituted with aspartic acid;(15) 서열번호 143의 아미노산 서열의 87번째 위치에 상응하는 아미노산인 프롤린이 류신으로 치환된, 서열번호 141로 기재된 아미노산 서열로 이루어진, 2-이소프로필말레이트합성효소 변이체;(15) a 2-isopropyl malate synthetase variant, consisting of the amino acid sequence set forth in SEQ ID NO: 141, in which proline, an amino acid corresponding to position 87 of the amino acid sequence of SEQ ID NO: 143, is substituted with leucine;(16) 서열번호 153의 아미노산 서열의 112번째 위치에 상응하는 아미노산인 알라닌이 트레오닌으로 치환된, 서열번호 151로 기재된 아미노산 서열로 이루어진, 분지쇄아미노산 투과효소 변이체; 및(16) a branched chain amino acid permease variant, consisting of the amino acid sequence set forth in SEQ ID NO: 151, in which alanine, an amino acid corresponding to position 112 of the amino acid sequence of SEQ ID NO: 153, is substituted with threonine; and(17) 서열번호 163의 아미노산 서열의 134번째 위치에 상응하는 아미노산인 글리신이 세린으로 치환된, 서열번호 161로 기재된 아미노산 서열로 이루어진, 글리세르알데히드-3-인산탈수소효소 변이체.(17) A glyceraldehyde-3-phosphate dehydrogenase variant comprising the amino acid sequence set forth in SEQ ID NO: 161, wherein glycine, an amino acid corresponding to position 134 of the amino acid sequence of SEQ ID NO: 163, is substituted with serine.
- 제1항에 있어서, 상기 균주는,According to claim 1, wherein the strain,(i) 상기 (1) 내지 (17)로 이루어진 군에서 선택된 두 개 이상의 변이체, (i) two or more variants selected from the group consisting of (1) to (17),(ii) 상기 변이체를 코딩하는 두 개 이상의 폴리뉴클레오티드, 또는 (ii) two or more polynucleotides encoding the variant, or(iii) 이들의 조합(iii) combinations thereof;을 포함하는 것인, 균주.A strain comprising a.
- 제1항 또는 제2항의 코리네박테리움 글루타미쿰 균주를 배지에서 배양하는 단계를 포함하는, L-발린 생산 방법.A method for producing L-valine, comprising the step of culturing the Corynebacterium glutamicum strain of claim 1 or 2 in a medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2021/005522 WO2022231042A1 (en) | 2021-04-30 | 2021-04-30 | Novel variant and method for producing l-valine using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2021/005522 WO2022231042A1 (en) | 2021-04-30 | 2021-04-30 | Novel variant and method for producing l-valine using same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022231042A1 true WO2022231042A1 (en) | 2022-11-03 |
Family
ID=83846895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/005522 WO2022231042A1 (en) | 2021-04-30 | 2021-04-30 | Novel variant and method for producing l-valine using same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022231042A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070254345A1 (en) * | 2004-11-25 | 2007-11-01 | Keita Fukui | L-Amino Acid-Producing Bacterium and a Method for Producing L-Amino Acid |
KR101117022B1 (en) * | 2011-08-16 | 2012-03-16 | 씨제이제일제당 (주) | A microorganism having enhanced l-valine production and process for preparing l-valine using the same |
KR20150143699A (en) * | 2014-02-14 | 2015-12-23 | 인스티튜트 오브 마이크로바이올로지, 차이니즈 아카데미 오브 사이언스즈 | Recombinant strain producing l-amino acids, constructing method therefor and method for producing l-amino acids |
US20170051324A1 (en) * | 2014-04-30 | 2017-02-23 | Evonik Degussa Gmbh | Method for Producing L-Amino Acids in Corynebacteria Using a Glycine Cleavage System |
KR20200080163A (en) * | 2018-12-26 | 2020-07-06 | 대상 주식회사 | Mutant of Escherichia coli or Mutant of Corynebacterium glutamicum for Producing L-amino acid and Method for Producing L-amino acid Using the Same |
KR102281361B1 (en) * | 2021-01-26 | 2021-07-22 | 씨제이제일제당 (주) | Novel asparagine synthase variant and a method for producing L-valine using the same |
KR102281360B1 (en) * | 2021-01-26 | 2021-07-22 | 씨제이제일제당 (주) | Novel ATP phosphoribosyltransferase variant and a method for producing L-valine using the same |
-
2021
- 2021-04-30 WO PCT/KR2021/005522 patent/WO2022231042A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070254345A1 (en) * | 2004-11-25 | 2007-11-01 | Keita Fukui | L-Amino Acid-Producing Bacterium and a Method for Producing L-Amino Acid |
KR101117022B1 (en) * | 2011-08-16 | 2012-03-16 | 씨제이제일제당 (주) | A microorganism having enhanced l-valine production and process for preparing l-valine using the same |
KR20150143699A (en) * | 2014-02-14 | 2015-12-23 | 인스티튜트 오브 마이크로바이올로지, 차이니즈 아카데미 오브 사이언스즈 | Recombinant strain producing l-amino acids, constructing method therefor and method for producing l-amino acids |
US20170051324A1 (en) * | 2014-04-30 | 2017-02-23 | Evonik Degussa Gmbh | Method for Producing L-Amino Acids in Corynebacteria Using a Glycine Cleavage System |
KR20200080163A (en) * | 2018-12-26 | 2020-07-06 | 대상 주식회사 | Mutant of Escherichia coli or Mutant of Corynebacterium glutamicum for Producing L-amino acid and Method for Producing L-amino acid Using the Same |
KR102281361B1 (en) * | 2021-01-26 | 2021-07-22 | 씨제이제일제당 (주) | Novel asparagine synthase variant and a method for producing L-valine using the same |
KR102281360B1 (en) * | 2021-01-26 | 2021-07-22 | 씨제이제일제당 (주) | Novel ATP phosphoribosyltransferase variant and a method for producing L-valine using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020204427A1 (en) | Novel l-tryptophan export protein variant and method for producing l-tryptophan using same | |
WO2019164348A1 (en) | Novel l-tryptophan export protein and method for producing l-tryptophan using same | |
WO2021049866A1 (en) | L-threonine export protein variant and method for production of l-threonine using same | |
WO2022163951A1 (en) | Novel protein variant and method for producing l-lysine using same | |
WO2021150029A1 (en) | Method for producing l-amino acid by using microorganism containing nadp dependent glyceraldehyde-3-phosphate dehydrogenase | |
WO2017069578A1 (en) | Corynebacterium sp. microorganism having l-isoleucine producing ability and method for producing l-isoleucine by using same | |
WO2021167414A1 (en) | Purine nucleotide-producing microorganism and purine nucleotide production method using same | |
WO2021125896A1 (en) | Mutant of inner membrane protein, and method for producing target product by using same | |
WO2021261733A1 (en) | Novel modified l-threonine dehydratase and method for producing l-isoleucine using same | |
WO2020226341A1 (en) | Microorganism producing l-amino acid and method for producing l-amino acid by using same | |
WO2021060696A1 (en) | Modified polypeptide of dihydrodipicolinate reductase, and method for producing l-threonine by using same | |
WO2022050671A1 (en) | L-valine-producing microorganisms and l-valine producing method using same | |
WO2021085999A1 (en) | L-methionine producing microorganism to which protein encoded by foreign metz gene is introduced and method for producing l-methionine using same | |
WO2022225075A1 (en) | Novel variant, and method for producing xmp or gmp using same | |
WO2022164118A1 (en) | Prephenate dehydratase variant and method for producing branched-chain amino acid using same | |
WO2019017706A2 (en) | Putrescine-producing microorganism and putrescine-producing method using same | |
WO2022231036A1 (en) | Novel variant, and method for producing l-glutamic acid using same | |
WO2022231042A1 (en) | Novel variant and method for producing l-valine using same | |
WO2022124708A1 (en) | Novel branched-chain amino acid aminotransferase mutant and isoleucine production method using same | |
WO2023277307A1 (en) | Strain for producing highly concentrated l-glutamic acid, and l-glutamic acid production method using same | |
WO2022231037A1 (en) | Novel variant, and method for producing imp using same | |
WO2022163904A1 (en) | Novel protein variant and method for producing l-lysine using same | |
WO2022163981A1 (en) | Arog aldolase variant and method for producing brached chain amino acid by using same | |
WO2022231027A1 (en) | Novel variant, and method for producing l-tryptophan using same | |
WO2022270991A1 (en) | Novel method for producing poly-4-hydroxybutyrate and 1,4-butanediol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21939425 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21939425 Country of ref document: EP Kind code of ref document: A1 |