[go: up one dir, main page]

WO2022230343A1 - Decomposer for odorous substance, article including decomposer for odorous substance, and method for decomposing odorous substance using same - Google Patents

Decomposer for odorous substance, article including decomposer for odorous substance, and method for decomposing odorous substance using same Download PDF

Info

Publication number
WO2022230343A1
WO2022230343A1 PCT/JP2022/008185 JP2022008185W WO2022230343A1 WO 2022230343 A1 WO2022230343 A1 WO 2022230343A1 JP 2022008185 W JP2022008185 W JP 2022008185W WO 2022230343 A1 WO2022230343 A1 WO 2022230343A1
Authority
WO
WIPO (PCT)
Prior art keywords
odorant
decomposing agent
decomposing
methyl mercaptan
ruthenium
Prior art date
Application number
PCT/JP2022/008185
Other languages
French (fr)
Japanese (ja)
Inventor
良太 橋口
寛 知久
晃世 和田山
Original Assignee
株式会社フルヤ金属
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フルヤ金属 filed Critical 株式会社フルヤ金属
Priority to JP2023517096A priority Critical patent/JPWO2022230343A1/ja
Publication of WO2022230343A1 publication Critical patent/WO2022230343A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an odorant decomposing agent in which particles containing ruthenium are supported on porous silica.
  • the present invention also relates to an odorant decomposing method using an odorant decomposing agent in which particles containing ruthenium are supported on porous silica, and an odorant decomposing article containing the odorant decomposing agent.
  • odors are classified as pollution along with air pollution, water pollution, soil pollution, noise, vibration, and ground subsidence, and cause damage to human health and the living environment. It is assumed. It is said that there are more than 400,000 kinds of odorous molecules, and odor is said to be a composite substance of these molecules. Odor is perceived when the concentration of these molecules reaches the human olfactory threshold.
  • Compound groups of odorous molecules include sulfur compounds, nitrogen compounds, aldehydes, hydrocarbons, lower fatty acids, and the like.
  • the smell threshold of methyl mercaptan which is a sulfur compound
  • the smell threshold of hydrogen sulfide is said to be 0.0004 ppm
  • the odor threshold of ammonia which is a nitrogen compound
  • the odor threshold of trimethylamine is said to be 0.00003 ppm.
  • these sulfur compounds or nitrogen compounds are said to be odor-causing substances, and methyl mercaptan, hydrogen sulfide, ammonia, and trimethylamine are called the four major malodorous substances.
  • a method for reducing the above-described odorous substances a method of adsorbing odorous substances with activated carbon is known.
  • Activated carbon adsorbs odorants to the adsorption sites of activated carbon and reduces odorants. Therefore, if the adsorption sites of activated carbon become saturated with odorants or other substances, the effect of reducing odorants is lost. As a result, the sustainability of the odorant reduction effect of activated carbon is limited, and periodic maintenance such as desorption of adsorbed odorants and replacement of activated carbon is required.
  • Known methods for decomposing odorants include a method of decomposing odorants by photocatalyst or plasma, and a method of decomposing odorants by direct combustion or catalytic combustion.
  • the method of decomposing odorous substances by means of a photocatalyst is a method of decomposing and removing odorous substances by irradiating a titanium oxide photocatalyst with ultraviolet rays to generate OH radicals and superoxide ions on the surface of the catalyst.
  • Light from sunlight or fluorescent lamps is often used as the light source, but the photocatalyst function is not exhibited in a dark environment.
  • the method of decomposing odorous substances by plasma is a method of performing high-frequency discharge in a gas to be treated containing odorous substances to generate active molecules, radicals, and ozone, and decomposing odors by their oxidizing ability.
  • a discharge device is required, and the equipment becomes large-scale.
  • the direct combustion method is a method of oxidizing and decomposing odorous substances by burning them in a high temperature environment of about 600°C to 800°C.
  • Catalytic combustion is a technology in which odorants are oxidized and removed on a catalyst at a temperature in the range of 150°C to 300°C. Both the direct combustion method and the catalytic combustion method require external energy to sustain a high-temperature environment.
  • Patent Document 1 describes at least one of a mixture of copper oxide and manganese oxide and a composite oxide of copper and manganese, and at least one of hydrophobic zeolite, sepiolite, and alkaline earth metal composite.
  • a deodorizing catalyst characterized by being formed by combining two is disclosed. It is shown that the odorant is oxidized and removed by heating the deodorizing catalyst at a temperature of about 150°C to 350°C.
  • Patent Document 2 discloses an odorant decomposing agent comprising platinum or a platinum-containing compound supported on porous silica, wherein the odorant is selected from aldehydes, fatty acids, sulfur compounds, and nitrogen compounds. Disclosed is a decomposing agent comprising at least one volatile compound and used in an atmosphere of 80 to -40°C in the presence of oxygen.
  • Patent Document 3 discloses a catalyst comprising a composite of platinum and ruthenium supported on porous silica, which is used for oxidative decomposition of ethylene or a mercaptan compound in the presence of oxygen.
  • the deodorizing catalyst described in Patent Document 1 heats the deodorizing catalyst to 200° C. when removing odorous substances, and the decomposition effect is not sufficient.
  • the decomposing agent for odorous substances described in Patent Document 2 uses platinum, which has a supported amount of platinum of 1% by mass and is relatively expensive.
  • the catalyst described in Patent Document 3 a composite of platinum and ruthenium is supported, but the amount of platinum supported is 0.5% by mass and the amount of ruthenium supported is 0.5% by mass, and platinum is expensive. is used. Therefore, there is a demand for a decomposing agent that requires little external energy, maintains its decomposing effect on odorous substances, and is relatively inexpensive.
  • the present inventors have completed the present invention as a result of diligent studies to solve the above problems. That is, the present invention has the following aspects.
  • An odorant decomposing agent comprising porous silica having an average pore diameter of 1 nm to 50 nm and a BET specific surface area of 300 to 2000 m 2 /g supporting ruthenium-containing particles having a particle diameter of 1 to 4 nm.
  • the odorant decomposing agent according to the above [1] or [2], wherein the amount of ruthenium supported is from 0.1 to 10% by mass.
  • An odorant-decomposing article comprising the odorant-decomposing agent according to any one of [1] to [6].
  • a method for decomposing an odorous substance comprising contacting the odorant-decomposing agent according to any one of [1] to [6] with an odorant in an atmosphere of 0° C. to 50° C. or less in the presence of oxygen.
  • a highly effective odorant decomposing agent is provided without consuming external energy.
  • FIG. 1 is a schematic diagram of a fixed-bed flow reactor used in [Example 1] to [Example 6] and [Example 8] to [Example 10].
  • FIG. Fig. 2 is a schematic diagram of a fixed-bed flow reactor used in [Example 7].
  • 4 is an image showing the results of STEM measurement of the odorant decomposing agent 1.
  • FIG. 1 is a graph obtained by measuring the peak pore diameter of odorant decomposing agent 1 and plotting BJH.
  • the odorant decomposing agent of the present invention comprises porous silica having an average pore size of 1 nm to 50 nm and a BET specific surface area of 300 to 2000 m 2 /g, and ruthenium-containing particles having a particle size of 1 to 4 nm supported thereon. .
  • the porous silica used as a catalyst carrier preferably has a large specific surface area.
  • the larger the specific surface area the larger the amount of metal particles that can be supported.
  • the pore diameter is the pore diameter, and when the peak pore diameter is measured by the BJH method, the range of the pore diameter can be estimated from that value.
  • the average pore diameter is preferably 1 to 10 nm.
  • the BET specific surface area is preferably 500 to 1500 m 2 /g from the viewpoint of supporting more ruthenium-containing particles.
  • mesoporous silica is preferable.
  • Mesoporous silica is a type of silica, and has uniform regular pores of 2 to 10 nm in a honeycomb state and a specific surface area of 1000 m 2 /g or more. Since mesoporous silica is characterized by a large specific surface area and regular pores, the reaction is likely to be promoted by the entry of molecules into the pores of mesoporous silica, and an improvement in the reactivity of the catalyst can be expected. In addition, since mesoporous silica has uniform regular pores, it is characterized in that it is easy to synthesize uniform nanoparticles inside the pores.
  • Mesoporous silica can be produced, for example, according to the method described in JP-A-2017-23889. Specifically, it is as follows. First, an inorganic raw material and an organic raw material are mixed and reacted to form an organic-inorganic composite having an inorganic skeleton formed around the organic material as a template. Next, porous silica is obtained by removing the organic matter from the resulting composite.
  • inorganic raw materials include alkoxysilanes such as tetramethoxysilane, tetraethoxysilane and tetrapropoxysilane, sodium silicate, kanemite (NaHSi 2 O 5.3H 2 O), silica, and silica-metal composite oxides. be done. These inorganic raw materials form a silicate skeleton. You may use these individually or in mixture of 2 or more types.
  • Organic raw materials used as templates include, for example, surfactants. Surfactants may be cationic, anionic or non
  • a method for forming a composite of an inorganic substance and an organic substance includes, for example, dissolving an organic raw material in a solvent, adding the inorganic raw material, adjusting the pH to a predetermined value, and then performing a polycondensation reaction while maintaining the reaction mixture at a predetermined temperature.
  • the reaction temperature of the polycondensation reaction varies depending on the types and concentrations of the organic raw materials and inorganic raw materials used, but is generally preferably about 0 to 100°C, more preferably 35 to 80°C.
  • the reaction time of the polycondensation reaction is preferably about 1 to 24 hours.
  • the above polycondensation reaction may be carried out either in a stationary state or in a stirring state, or in combination thereof.
  • Porous silica is obtained by removing the organic raw material from the composite obtained after the polycondensation reaction.
  • Organic matter can be removed from the composite of organic matter and inorganic matter by a method of baking at 400 to 800° C., a method of treatment with a solvent such as water or alcohol, or the like.
  • Ruthenium-containing particles of the present embodiment include ruthenium metal particles, particles containing ruthenium in the form of compounds such as ruthenium chloride and ruthenium oxide, alloy particles, and composite particles.
  • the alloy particles are two or more types of alloys composed of ruthenium and other metals, and are produced by, for example, converting a precursor of the metal to be alloyed into atoms with a reducing agent, and causing the atoms to self-aggregate and grow grains. For example, a method of obtaining alloy particles by suppressing the process with a protective agent.
  • the alloy particles are preferably nano-alloy particles having a particle size on the order of nanometers.
  • Composite particles include a core-shell structure containing ruthenium or co-supporting ruthenium and other metals.
  • a method for producing composite particles is, for example, to obtain ruthenium metal particles by hydrogen reduction from a ruthenium salt, and then support another metal around the ruthenium metal particles in a similar manner to obtain ruthenium.
  • a core-shell structure containing Composite particles may also be made in porous silica. For example, after supporting a ruthenium salt in the pores of porous silica by an impregnation method, ruthenium metal particles are obtained by hydrogen reduction, and then another metal is added in the pores of porous silica by a similar method. to co-load ruthenium and other metals within the pores of the porous silica.
  • the particles containing ruthenium have a particle size of 1 nm to 4 nm, preferably 1 nm to 2 nm. As the particle size becomes smaller, the specific surface area of the ruthenium-containing particles increases and the catalytic activity improves.
  • the particle size of the ruthenium-containing particles is preferably controlled by supporting them within the pores of the porous silica.
  • supporting particles containing ruthenium in the porous silica By supporting particles containing ruthenium in the porous silica, it is possible to prevent an increase in particle size due to particle growth and control the particle size to a predetermined value. In addition, it is believed that supporting particles containing ruthenium in the pores of porous silica has a molecular sieving effect in the catalytic reaction and improves catalytic activity and selectivity. Observation with a transmission electron microscope or the like can confirm whether or not the ruthenium particles are contained in the porous silica.
  • the other metals include platinum, palladium, rhodium, iridium, gold, silver, copper, rhenium, nickel, cobalt, iron, manganese, tungsten, molybdenum, chromium, and vanadium.
  • particles containing ruthenium are supported on the porous silica, and the amount of ruthenium supported is 0.1 to 10% by mass, where the total amount of the porous silica and ruthenium is 100% by mass. %.
  • the supported amount is preferably 0.1% by mass or more from the viewpoint of catalyst performance, and preferably 5% by mass or less from the viewpoint of production cost.
  • the odorant to be decomposed by the odorant decomposing agent is usually a molecule containing atoms other than carbon and hydrogen, and is a compound that reaches the human olfactory threshold at a relatively low concentration.
  • odorous substances include sulfur compounds, nitrogen compounds, aldehydes, hydrocarbons, lower fatty acids and the like.
  • the odorant decomposing agent of the present invention can be suitably used for nitrogen compounds and sulfur compounds which are generally said to cause odors.
  • Nitrogen compounds include ammonia, trimethylamine, ethylamine, triethylamine, and ethylenediamine.
  • the odorant decomposing agent of the present invention can be preferably used for ammonia or trimethylamine, and the odorant decomposing agent of the present invention can be used more preferably for ammonia.
  • Sulfur compounds include methyl mercaptan, hydrogen sulfide, dimethyl sulfide, dimethyl disulfide, and methyl sulfide.
  • the odorant decomposing agent of the present invention can be preferably used for methyl mercaptan or hydrogen sulfide, and the odorant decomposing agent of the present embodiment can be more preferably used for methyl mercaptan.
  • Both nitrogen and sulfur compounds may be generated during the spoilage process of meat, fish and eggs, and sulfur compounds as well as nitrogen compounds are believed to be the main components of garbage odor.
  • Livestock manure and human waste also contain sulfur compounds and nitrogen compounds.
  • these odorous compounds are contained in the air at a concentration equal to or higher than the olfactory threshold of humans, humans sense odors.
  • the odorant decomposing agent of the present embodiment By bringing the odorant decomposing agent of the present embodiment into contact with these odorants, the odorant can be converted into another odorless compound or less odorous compound, the concentration of the odorant is reduced, and the deodorant is deodorized. effect can be obtained.
  • Articles for decomposing odorous substances comprising the odorant decomposing agent of the present embodiment are those in which the odorant decomposing agent is in the form of powder, pellets, or films, and other moldings containing the odorant decomposing agent of the present invention. Installed or enclosed. When the odorant decomposing agent is in the form of powder or pellets, the powdery or pelletized odorant decomposing agent is filled in a film or non-woven fabric package or a box-like molding to produce an odorant decomposing article. may be used.
  • the odorant decomposing agent of the present embodiment can be dispersed in a liquid substance and applied to a substrate for use.
  • a substrate for use.
  • the shape of the substrate include film, sheet, columnar, honeycomb, nonwoven fabric, woven fabric, paper, and felt. , may be uneven.
  • the material include metal, resin, wood, paper, fiber, natural leather, and synthetic leather.
  • the base material is preferably a base material with a large surface area, and from the viewpoint of handling, a honeycomb-shaped base material, nonwoven fabric, or paper is preferable.
  • honeycomb as used herein is used in a broad sense, and is not limited to regular hexagons. and polygons such as triangles, quadrilaterals, pentagons, and hexagons.
  • the holes may all have the same shape, or may have two or more of these shapes.
  • honeycomb-shaped substrates examples include ceramic honeycombs and paper honeycombs.
  • the component of the ceramic honeycomb preferably consists of a component selected from the group consisting of cordierite, silicon carbide, silicon nitride, alumina, mullite, aluminum titanate, titania and zirconia.
  • the paper honeycomb is preferably made of paper selected from the group consisting of kraft paper, K-liner paper, reinforced core base paper, water-resistant core base paper, aluminum hydroxide paper, and the like.
  • insulating papers are preferred, and nonflammable or flame-retardant papers are preferred.
  • a ceramic honeycomb can be manufactured by extruding the above components into a predetermined shape.
  • the paper honeycomb can be produced by continuously forming and laminating the above paper into a flat plate shape, a corrugated shape, a cylindrical shape, a honeycomb shape, or the like. These are appropriately selected and used according to the purpose and environment.
  • a ceramic honeycomb is preferable from the viewpoint of heat resistance, and a paper honeycomb is preferable from the viewpoint of lightness.
  • Non-woven fabrics include aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyethylene fiber, polypropylene fiber, polyolefin fiber, rayon fiber, low density polyethylene resin, ethylene vinyl acetate resin, copolymerized polyamide resin, copolymerized It is made of fibers such as polyester resin, polyphenylene sulfide resin, polyester/modacrylic resin, etc. From the viewpoint of heat resistance, aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyester/modacrylic resin is preferable. A polyester/modacrylic resin is more preferable from the viewpoint of being rich in flame retardancy and washability from the outside air.
  • paper examples include Japanese paper, Western paper, paperboard (cardboard), wrapping paper (wrapping paper and envelopes), packaging materials, and food packaging materials. Also, food packaging materials are preferable from the viewpoint of being highly resistant to oil and lipids and flame retardant.
  • the article for decomposing an odorous substance of the present embodiment When using the article for decomposing an odorous substance of the present embodiment, it is preferably placed in the vicinity of the odor generating source at a temperature of 0° C. to 50° C. in the presence of oxygen, as in the method for decomposing an odorous substance described below. It is preferable to control the flow of the odorant-containing gas so that the odorant-containing gas and oxygen generated from the odor source come into contact with the odorant-decomposing agent of the present invention.
  • the use of the odorant decomposing article can be in closed or open systems.
  • gas containing a large amount of sulfur compounds or nitrogen compounds, which are odorous substances can be used. It is preferable to use it by placing it near the source of the
  • the odorant can be decomposed by placing it in the vicinity of the source of odor, such as a kitchen drain or kitchen garbage thrown away in a trash can. It can be put directly into the drain or brought into direct contact with garbage. The closer the distance between the odor generating source and the odorant decomposing agent is, the better from the viewpoint of odorant decomposing efficiency.
  • the room is filled with odor, and there may be two or more odor sources in the space, or the odor source may not be identified.
  • an airflow may be generated by a fan or the like, and an odorant decomposing agent may be placed in the flow path of the airflow to decompose the odorant.
  • the airflow can increase the efficiency of decomposing odorants.
  • a filter coated with an odorant decomposing agent in air conditioners, air purifiers, etc., the odorant and the odorant decomposing agent come into contact with each other on the filter, making it ideal for increasing the efficiency of decomposing odorous substances. be.
  • the odorant decomposition method of the present invention decomposes an odorant by contacting the odorant decomposing agent with the odorant in an atmosphere of 0°C to 50°C or less in the presence of oxygen.
  • Ordinary catalysts do not have high decomposition ability in an atmosphere of 0°C to 50°C or less, but the odorant decomposing agent of the present invention has decomposition performance of odorants even in an atmosphere of 0°C to 50°C or less. It is possible to decompose odorants with a small amount of external energy.
  • the temperature is preferably 0°C to 30°C.
  • the odorant decomposing agent contacts the odorant in the presence of oxygen, thereby converting the odorant into a less odorous substance, thereby exhibiting an odor reducing effect.
  • the details of the decomposition of the odorant are unknown, it is believed that the following reactions are caused by the odorant decomposing agent in the present embodiment, for example.
  • the decomposition of methyl mercaptan is presumed to be as follows. (Assumed oxidation reaction of methyl mercaptan) 2CH3SH + 7O2 ⁇ 2H2SO4 + 2CO2 + 2H2O CH3SH +3O2 ⁇ SO2 + CO2 + 2H2O 2CH3SH + 3O2 ⁇ 2H2S + 2CO2 + 2H2O 2CH3SH+ 3 / 2O2 ⁇ ( CH3 )2S + SO2 + H2O 2CH3SH + 1/ 2O2 ⁇ ( CH3 ) 2S2 + H2O
  • the decomposition of ammonia is presumed to have the following reactions. (Assumed oxidation reaction of ammonia) 2NH3 + 3 / 2O2 ⁇ N2 + 3H2O 2NH3 + 2O2 ⁇ N2O + 3H2O 4NH3 + 5O2 ⁇ 4NO + 6H2O 4NH3 + 7O2 ⁇ 4NO2 + 6H2O
  • Methyl mercaptan and ammonia described in the left formula of the above reaction formula are compounds that reach the human olfactory threshold even at low concentrations, but they react with oxygen and decompose into the compounds shown in the right formula of the reaction formula. .
  • the product compound shown in the right-hand side of the reaction formula is a compound that reaches the olfactory threshold of humans at a relatively high concentration, and as a result, it is thought that the odor becomes less perceptible.
  • a compound reaches the human olfactory threshold at a relatively high concentration as a result of passing through other intermediate substances.
  • the concentration of oxygen present may be the stoichiometric amount of the above reaction formula with respect to the odorant, and may be from 2 to 4 times, preferably from 3 to 4 times, the odorant.
  • Oxygen coexistence with other gases is preferable from the viewpoint of safety, and coexistence with an inert gas such as nitrogen, helium or argon is preferable.
  • the oxygen concentration is preferably 1% by volume or more and 21% by volume or less, more preferably 15% by volume or more and 21% by volume or less.
  • the odorant decomposition method of the present embodiment is preferably carried out in the presence of air.
  • the odorant decomposing agent or odorant decomposing article is placed in a place where odor is generated, such as a toilet, a trash can, or a kitchen, in the presence of oxygen.
  • a pellet-shaped catalyst is placed in a breathable plastic container.
  • the odorant decomposing agent By placing it on board, it is possible to decompose and remove odorous substances and reduce odors. It is also possible to apply the odorant decomposing agent to wallpaper, curtains, sheets and the like.
  • the odorant decomposing agent or articles for decomposing odorous substances of the present embodiment to the filters of the exhaust system of the indoor air conditioner and garbage storage area, the odorous substances in the space come into contact with the odorant decomposing agent. , it is also possible to reduce the odor efficiently.
  • the honeycomb-shaped odorant decomposing agent of the present invention for example, in the exhaust system of a conventional garbage disposal apparatus, odorous substances can be reduced without heating the odorant decomposing agent.
  • the present embodiment is not limited to the configuration of the embodiment described above.
  • any other configuration may be added or replaced with any configuration that exhibits similar functions.
  • the odorant decomposition method of the present invention may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action.
  • Example 1 Synthesis of odorant decomposing agent supporting ruthenium
  • TMPS-4R powdery mesoporous silica
  • alumina was formed into pellets having a diameter of about 1.5 mm and a length of about 4 mm using an extruder. After drying the molded pellets at 80° C. for 24 hours, they were calcined at 500 to 600° C. for 1 hour to obtain mesoporous silica pellets.
  • BET specific surface area The BET specific surface areas of the odorant decomposing agents of Example 1 and Comparative Examples 1 and 2 were obtained by nitrogen adsorption/desorption measurement using a specific surface area/pore size distribution measuring device (BELSORP-miniII, manufactured by Microtrack Bell Co., Ltd.). It was measured by the BET method using the adsorption isotherm. Table 1 shows the measured results.
  • pore volume The pore volumes of the odorant decomposing agents of Example 1 and Comparative Examples 1 and 2 were measured by the ⁇ S plot method using a specific surface area/pore size distribution measuring device (BELSORP-miniII, manufactured by Microtrack Bell Co., Ltd.). . Table 1 shows the measured results.
  • the average particle size of the primary particles was measured by TEM observation.
  • the average particle diameter of 101 metal primary particles in the mesoporous silica carrier was measured by TEM observation at a magnification of 800,000, and the average particle diameter was 1.72 nm.
  • the odorant decomposing agent 1 was photographed by STEM observation.
  • the results are shown in FIG. In FIG. 3, the striped portions are the pores of the porous silica, and the portions that appear as round black dots are the ruthenium particles, and the ruthenium particles are supported along the pores of the porous silica. I know that
  • Example 1 A fixed-bed flow-type reactor shown in FIG. 1 was prepared, and the ammonia decomposition evaluation of the odorant decomposing agent 1 was performed by the fixed-bed flow-type. As a pretreatment, 50 mg of the odorant decomposing agent 1 was weighed and heated at 150° C. for 2 hours in an air atmosphere using a heating device, and then the reaction tube 5 was filled with the odorant decomposing agent 1 .
  • the reaction tube is not heated, and in a normal temperature atmosphere, a pre-adjusted ammonia-containing helium gas having an ammonia concentration of 100 ppm, an oxygen concentration of 20% by volume, and the balance being helium is circulated from the gas reservoir 1 at a flow rate of 15.3 mL/min.
  • the concentration of ammonia in the ammonia-containing helium gas after passing through the odorant decomposing agent 1 was measured with a detector tube 6 (manufactured by GASTEC).
  • Table 2 shows the results of measuring the outlet concentration of ammonia.
  • the detection lower limit of the detector tube is 0.5 ppm, and the removal rate in Table 2 was calculated by the following formula 1.
  • Example 2 and 3 Evaluation of ammonia decomposition was carried out in the same manner as in Example 1, except that the odorant decomposing agent 1 was changed to the odorant decomposing agent 2 or 3. Table 2 shows the results.
  • the removal rate of the odorant decomposing agent 2 of Comparative Example 1 was 2% after 18 hours, and the removal rate of the odorant decomposing agent 3 of Comparative Example 2 was 0% after 17 hours.
  • the odorant decomposing agent 1 maintained a removal rate of about 80% even after 18 hours.
  • Example 4 (Ammonia decomposition durability test) [Example 4] Using the same fixed-bed flow reactor as in Example 1, an ammonia decomposition test was conducted by a fixed-bed flow system after the odorant decomposing agent 1 was exposed to ammonia for a long period of time. As a pretreatment, 50 mg of the odorant decomposing agent 1 was weighed and heated at 150° C. for 2 hours in an air atmosphere using a heating device. The reaction tube was not heated, and in a normal temperature atmosphere, a previously adjusted ammonia-containing helium gas having an ammonia concentration of 1000 ppm and the balance being helium was passed through the gas reservoir 1 at a flow rate of 15.3 mL/min for 46 hours.
  • the composition of the helium gas containing ammonia is changed to 100 ppm oxygen 20% by volume of ammonia and the balance is helium.
  • Table 3 shows the results of measuring the outlet concentration of ammonia.
  • the detection lower limit of the detector tube is 0.5 ppm, and the removal rate in Table 3 was calculated by the formula (1) described in Example 1. Table 3 shows the calculated results.
  • the odorant decomposing agent 1 maintained an ammonia removal rate of 80% or more even after continuous exposure to 1000 ppm of ammonia for 46 hours.
  • Example 5 (Methyl mercaptan decomposition test 1) [Example 5] Using the same fixed-bed flow reactor as in Example 1, evaluation of methyl mercaptan decomposition of odorant decomposing agent 1 was performed by a fixed-bed flow system. As a pretreatment, 50 mg of the odorant decomposing agent 1 was weighed and heated at 150° C. for 2 hours in an air atmosphere using a heating device, and then the reaction tube 5 was filled with the odorant decomposing agent 1 .
  • the reaction tube is not heated, and in a normal temperature atmosphere, helium gas containing methyl mercaptan, which has a methyl mercaptan concentration of 14 ppm, an oxygen concentration of 20 vol%, and the balance is helium, is supplied to gas reservoir 1 at a flow rate of 15.3 mL / min.
  • the concentration of methyl mercaptan in the helium gas containing methyl mercaptan after passing through the odorant decomposing agent 1 was measured with a detector tube 6 (manufactured by Gastech).
  • Table 4 shows the results of measuring the outlet concentration of methyl mercaptan.
  • the detection lower limit of the detector tube is 0.25 ppm, and the removal rate in Table 4 was calculated by Equation 2 below.
  • Methyl mercaptan removal rate (%) (methyl mercaptan concentration in gas reservoir 1 - methyl mercaptan concentration measured with detector tube 6) / methyl mercaptan concentration in gas reservoir 1 x 100
  • Example 6 Methyl mercaptan decomposition evaluation was performed in the same manner as in Example 5 except that the odorant decomposing agent 1 was changed to the odorant decomposing agent 2 in Example 5. Table 4 shows the results.
  • the odorant decomposing agent 2 of Comparative Example 1 had a low removal rate of 7.1% after 11 hours, but the odorant decomposing agent 1 of Example 1 had a removal rate of 40% or more even after 15 hours. maintained.
  • Example 7 (Methyl mercaptan decomposition test 2) [Example 7] A fixed-bed flow-type reactor shown in FIG. 2 was prepared, and evaluation of decomposition of methyl mercaptan of the odorant decomposing agent 1 and evaluation of the product were carried out by the fixed-bed flow-type. As a pretreatment, 50 mg of the odorant decomposing agent 1 was weighed and heated at 80° C. for 30 minutes under vacuum conditions using a heating device, and further heated at 120° C. for 60 minutes. 1 was filled.
  • the reaction tube is not heated, and nitrogen gas containing methyl mercaptan, which has been adjusted in advance and has a methyl mercaptan concentration of 20 ppm, an oxygen concentration of 20% by volume, and the balance being nitrogen, is circulated from the gas reservoir 1 at a flow rate of 100 mL/min in a room temperature atmosphere.
  • hydrogen sulfide, sulfur dioxide, dimethyl sulfide and dimethyl disulfide expected as products generated by the reaction of methyl mercaptan in the nitrogen gas containing methyl mercaptan after passing through the odorant decomposing agent 1 and methyl mercaptan and oxygen. was measured by GC-FPD (GC-2014, manufactured by Shimadzu Corporation). Table 5 shows the results of measuring each substance.
  • the lower detection limit for GC-FPD is 0.1 ppm.
  • Example 8 Evaluation of decomposition of methyl mercaptan and evaluation of the product were carried out in the same manner as in Example 7, except that odorant decomposing agent 1 was changed to odorant decomposing agent 3. Table 5 shows the measurement results.
  • Example 9 (Methyl mercaptan degradability durability test) [Example 9] Using the same fixed-bed flow reactor as in Example 1, a methyl mercaptan decomposition test after exposing the odorant decomposing agent 1 to methyl mercaptan for a long period of time and a methyl mercaptan decomposition test under an elevated temperature heating environment were carried out by a fixed-bed flow system. gone. As a pretreatment, 50 mg of the odorant decomposing agent 1 was weighed and heated at 150° C. for 2 hours in an air atmosphere using a heating device, and then the reaction tube 5 was filled with the odorant decomposing agent 1 .
  • helium gas containing methyl mercaptan prepared in advance and having a methyl mercaptan concentration of 80 ppm, an oxygen concentration of 20% by volume, and the balance being helium was supplied to the gas reservoir 1 in a room temperature atmosphere without heating the reaction tube.
  • Accelerated deterioration treatment was performed by circulating for 81 hours at a flow rate of 12.5 mL/min. After that, the composition of the gas was changed to 14 ppm of methyl mercaptan, 20% by volume of oxygen, and the remainder to helium, and the gas was passed through the gas reservoir 1 at the same flow rate.
  • odorant decomposing agent 1 was continuously exposed to 80 ppm of methyl mercaptan for 81 hours as an accelerated aging treatment. The removal rate of methyl mercaptan after hours showed 28.6%. From the results in Tables 5 and 6, it was clarified that the odorant decomposing agent 1 has the function of converting methyl mercaptan into another compound through a catalytic reaction, thereby maintaining its decomposing effect.
  • Example 10 (Identification test of methyl mercaptan decomposition products) Using the same fixed-bed flow reactor as in Example 1, it was verified whether sulfuric acid was adsorbed on the odorant decomposing agent 1 as a decomposition product after decomposition of methyl mercaptan. As a pretreatment, 50 mg of the odorant decomposing agent 1 was weighed and heated at 150° C. for 2 hours in an air atmosphere using a heating device, and then the reaction tube 5 was filled with the odorant decomposing agent 1 .
  • helium gas containing methyl mercaptan which has a methyl mercaptan concentration of 14 ppm, an oxygen concentration of 20% by volume, and the balance being helium, is added to the odorant decomposing agent 1 in a normal temperature atmosphere from the gas reservoir 1. /min for 24 hours to obtain a steady state in which the adsorption of methyl mercaptan by the odorant decomposing agent 1 no longer affects the behavior of removing methyl mercaptan.
  • helium gas containing methyl mercaptan having a methyl mercaptan concentration of 14 ppm, an oxygen concentration of 20% by volume, and the balance being helium was passed through the odorant decomposing agent 1 at a flow rate of 12.5 mL/min for 24 hours from the gas reservoir 1.
  • the gas to be measured was allowed to flow for a total of 48 hours, together with the treatment for establishing a steady state.
  • the odorant decomposing agent of the present invention reacts with ammonia and methylcaptan to decompose these substances even at room temperature, and is therefore considered to maintain its activity.
  • the odorant decomposing agent of the present invention can be used to remove odorous substances containing nitrogen compounds and sulfur compounds generated in toilets, kitchens, trash cans, other living spaces, garbage disposal sites, garbage disposal sites, and livestock farms. It is suitably used for decomposing at room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Catalysts (AREA)

Abstract

[Problem] To provide a decomposer for odorous substances which decomposes odorous substances even at low temperatures with a small amount of external energy and which retains the decomposition effect over a relatively long period. [Solution] A decomposer for odorous substances which comprises porous silica having an average pore diameter of 1-50 nm and a BET specific surface area of 300-2,000 m2/g and, supported thereon, ruthenium-containing particles having a particle diameter of 1-4 nm.

Description

臭気物質分解剤、臭気物質分解剤を備えた物品およびそれを用いた臭気物質分解方法Odor Substance Decomposing Agent, Article Equipped with Odor Substance Decomposing Agent, and Odor Substance Decomposing Method Using the Same
 本発明は多孔質シリカにルテニウムを含有する粒子を担持した臭気物質分解剤に関する。また本発明は多孔質シリカにルテニウムを含有する粒子を担持した臭気物質分解剤を用いた臭気物質分解方法および該臭気物質分解剤を含む臭気物質分解用物品に関する。 The present invention relates to an odorant decomposing agent in which particles containing ruthenium are supported on porous silica. The present invention also relates to an odorant decomposing method using an odorant decomposing agent in which particles containing ruthenium are supported on porous silica, and an odorant decomposing article containing the odorant decomposing agent.
 我が国の環境基本法第2条において、悪臭は、大気汚染、水質の汚濁、土壌の汚染、騒音、振動、地盤の沈下と共に、公害として位置づけられており、人の健康または生活環境に被害を生じさせるものとされている。
 臭気を持つ分子は40万種以上あるといわれており、臭気はこれらの分子の複合物質といわれている。これらの分子の濃度が、人間の臭覚閾値に達すると臭気を感じる。臭気を持つ分子の化合物群は、硫黄化合物、窒素化合物、アルデヒド、炭化水素、低級脂肪酸等があげられる。例えば、硫黄化合物であるメチルメルカプタンの臭覚閾値は、0.00007ppm、硫化水素の臭覚閾値は、0.0004ppmといわれている。また、窒素化合物であるアンモニアの臭覚閾値は、1.5ppm、トリメチルアミンの臭覚閾値は、0.00003ppmといわれている。一般的に、これら硫黄化合物または窒素化合物が臭気の原因物質といわれており、メチルメルカプタン、硫化水素、アンモニア、トリメチルアミンが4大悪臭物質と呼ばれている。
According to Article 2 of Japan's Basic Environment Law, offensive odors are classified as pollution along with air pollution, water pollution, soil pollution, noise, vibration, and ground subsidence, and cause damage to human health and the living environment. It is assumed.
It is said that there are more than 400,000 kinds of odorous molecules, and odor is said to be a composite substance of these molecules. Odor is perceived when the concentration of these molecules reaches the human olfactory threshold. Compound groups of odorous molecules include sulfur compounds, nitrogen compounds, aldehydes, hydrocarbons, lower fatty acids, and the like. For example, the smell threshold of methyl mercaptan, which is a sulfur compound, is said to be 0.00007 ppm, and the smell threshold of hydrogen sulfide is said to be 0.0004 ppm. Further, the odor threshold of ammonia, which is a nitrogen compound, is said to be 1.5 ppm, and the odor threshold of trimethylamine is said to be 0.00003 ppm. Generally, these sulfur compounds or nitrogen compounds are said to be odor-causing substances, and methyl mercaptan, hydrogen sulfide, ammonia, and trimethylamine are called the four major malodorous substances.
 上記の臭気物質を低減させる方法として、活性炭による臭気物質を吸着する方法が知られている。活性炭は、活性炭の吸着サイトに臭気物質を吸着し、臭気物質を低減させる。したがって活性炭の吸着サイトが臭気物質やその他の物質で飽和した場合、臭気物質の低減効果がなくなる。その結果、活性炭の臭気物質低減効果の持続性には制約があり、吸着した臭気物質の脱着や活性炭の交換等の定期的なメンテナンスが必要である。
 一方、吸着ではなく臭気物質の分解により臭気物質を低減する方法もある。
 臭気物質を分解する方法は、光触媒またはプラズマにより臭気物質を分解する方法、直接燃焼または触媒燃焼により臭気物質を分解する方法が知られている。
 光触媒による臭気物質を分解する方法は、酸化チタン光触媒に紫外線を照射し触媒表面にOHラジカルやスーパーオキシドイオンを生成させて、臭気物質を分解除去する方法である。光源は、太陽光や蛍光灯からの光を利用する場合が多いが、暗い環境においては、光触媒の機能は発揮されない。光の乏しい環境下においては、外部電源を用いて発生させた光を光触媒に照射して、光触媒機能を発揮させるが、設備が大掛かりになり、また外部電源によるエネルギーが必要となる。
 プラズマによる臭気物質を分解する方法は、臭気物質を含んだ被処理ガス中で高周波放電を行い、活性分子、ラジカル、オゾンを発生させ、その酸化能力により、臭気を分解する方法である。プラズマを発生させるためには、放電デバイスが必要であり、設備が大掛かりとなる。
 直接燃焼による方法は、600℃から800℃程度の高温環境で、臭気物質を燃焼させることにより、臭気物質を酸化分解する方法である。
触媒燃焼は、150℃から300℃の範囲で、触媒上で臭気物質を酸化反応させ、臭気物質を酸化除去する技術である。
 直接燃焼による方法、触媒燃焼による方法は、いずれも高温環境を持続するための外部エネルギーが必要である。
As a method for reducing the above-described odorous substances, a method of adsorbing odorous substances with activated carbon is known. Activated carbon adsorbs odorants to the adsorption sites of activated carbon and reduces odorants. Therefore, if the adsorption sites of activated carbon become saturated with odorants or other substances, the effect of reducing odorants is lost. As a result, the sustainability of the odorant reduction effect of activated carbon is limited, and periodic maintenance such as desorption of adsorbed odorants and replacement of activated carbon is required.
On the other hand, there is also a method of reducing odorous substances by decomposition of odorous substances instead of adsorption.
Known methods for decomposing odorants include a method of decomposing odorants by photocatalyst or plasma, and a method of decomposing odorants by direct combustion or catalytic combustion.
The method of decomposing odorous substances by means of a photocatalyst is a method of decomposing and removing odorous substances by irradiating a titanium oxide photocatalyst with ultraviolet rays to generate OH radicals and superoxide ions on the surface of the catalyst. Light from sunlight or fluorescent lamps is often used as the light source, but the photocatalyst function is not exhibited in a dark environment. In a light-poor environment, the photocatalyst is irradiated with light generated using an external power source to exert its photocatalytic function, but this requires large-scale equipment and energy from the external power source.
The method of decomposing odorous substances by plasma is a method of performing high-frequency discharge in a gas to be treated containing odorous substances to generate active molecules, radicals, and ozone, and decomposing odors by their oxidizing ability. In order to generate plasma, a discharge device is required, and the equipment becomes large-scale.
The direct combustion method is a method of oxidizing and decomposing odorous substances by burning them in a high temperature environment of about 600°C to 800°C.
Catalytic combustion is a technology in which odorants are oxidized and removed on a catalyst at a temperature in the range of 150°C to 300°C.
Both the direct combustion method and the catalytic combustion method require external energy to sustain a high-temperature environment.
 前記方法以外に、特許文献1には、銅酸化物とマンガン酸化物の混合物および銅とマンガンの複合酸化物のうち少なくとも一方と、疎水性ゼオライト、セピオライト、アルカリ土類金属複合物のうち少なくとも一つとを組み合わせて形成することを特徴とする脱臭触媒が開示されている。脱臭触媒を150℃から350℃程度の温度で加温することにより、臭気物質を酸化除去させることが示されている。 In addition to the above method, Patent Document 1 describes at least one of a mixture of copper oxide and manganese oxide and a composite oxide of copper and manganese, and at least one of hydrophobic zeolite, sepiolite, and alkaline earth metal composite. A deodorizing catalyst characterized by being formed by combining two is disclosed. It is shown that the odorant is oxidized and removed by heating the deodorizing catalyst at a temperature of about 150°C to 350°C.
 特許文献2には、多孔質シリカに白金または白金含有化合物を担持させてなる臭気物質の分解剤であって、前記臭気物質が、アルデヒド類、脂肪酸類、硫黄化合物、および窒素化合物から選択される少なくとも1種の揮発性化合物を含み、酸素の存在下、80から-40℃の雰囲気下で使用される分解剤が開示されている。 Patent Document 2 discloses an odorant decomposing agent comprising platinum or a platinum-containing compound supported on porous silica, wherein the odorant is selected from aldehydes, fatty acids, sulfur compounds, and nitrogen compounds. Disclosed is a decomposing agent comprising at least one volatile compound and used in an atmosphere of 80 to -40°C in the presence of oxygen.
 特許文献3には、多孔質シリカに白金とルテニウムの複合体を担持させてなる触媒であって、酸素の存在下、エチレンまたはメルカプタン化合物を酸化分解するために用いる触媒が開示されている。 Patent Document 3 discloses a catalyst comprising a composite of platinum and ruthenium supported on porous silica, which is used for oxidative decomposition of ethylene or a mercaptan compound in the presence of oxygen.
特開2006-263613号公報JP 2006-263613 A WO2017/010472号公報WO2017/010472 WO2019/027057号公報WO2019/027057
 しかしながら特許文献1に記載の脱臭触媒は臭気物質を除去する際、200℃に脱臭触媒を加熱しており、分解効果が十分では無い。また、特許文献2に記載の臭気物質の分解剤は、白金の担持量が1質量%と比較的コストが高い白金を使用している。特許文献3に記載の触媒は、白金とルテニウムの複合体が担持されているが、白金の担持量が0.5質量%、ルテニウムの担持量が0.5質量%であり、コストが高い白金が使用されている。したがって外部からのエネルギーが少なく、臭気物質の分解効果が持続して、かつ比較的コストが安い分解剤が求められている。
 本発明の目的は外部からのエネルギーが少ない低温でも臭気物質を分解し、その分解効果が比較的長時間持続し、かつ白金よりコストが安い金属を用いた臭気物質分解剤の提供を目的とする。
However, the deodorizing catalyst described in Patent Document 1 heats the deodorizing catalyst to 200° C. when removing odorous substances, and the decomposition effect is not sufficient. Further, the decomposing agent for odorous substances described in Patent Document 2 uses platinum, which has a supported amount of platinum of 1% by mass and is relatively expensive. In the catalyst described in Patent Document 3, a composite of platinum and ruthenium is supported, but the amount of platinum supported is 0.5% by mass and the amount of ruthenium supported is 0.5% by mass, and platinum is expensive. is used. Therefore, there is a demand for a decomposing agent that requires little external energy, maintains its decomposing effect on odorous substances, and is relatively inexpensive.
It is an object of the present invention to provide an odorant decomposer which decomposes odorants even at low temperatures requiring little energy from the outside, whose decomposing effect lasts for a relatively long time, and which uses a metal whose cost is lower than that of platinum. .
 本発明者らは、上記課題を解決するべく鋭意検討を行った結果、本発明を完成するに至った。すなわち本発明は下記の態様を有する。 The present inventors have completed the present invention as a result of diligent studies to solve the above problems. That is, the present invention has the following aspects.
[1]
 平均細孔径が1nmから50nm、BET比表面積が300から2000m/gである多孔質シリカに、粒径1から4nmのルテニウムを含有する粒子を担持した臭気物質分解剤。
[2]
 前記多孔質シリカが、メソポーラスシリカである前記[1]に記載の臭気物質分解剤。
[3]
 前記ルテニウムの担持量が、0.1から10質量%である前記[1]または[2]に記載の臭気物質分解剤。
[4]
 前記臭気物質分解剤の分解対象となる臭気物質が、硫黄化合物または窒素化合物である前記[1]から[3]のいずれかに記載の臭気物質分解剤。
[5]
 前記硫黄化合物が、メチルメルカプタンである前記[4]に記載の臭気物質分解剤。
[6]
 前記窒素化合物が、アンモニアである前記[4]に記載の臭気物質分解剤。
[7]
 前記[1]から[6]のいずれかに記載の臭気物質分解剤を備える臭気物質分解用物品。
[8]
 酸素存在下0℃から50℃以下の雰囲気で、前記[1]から[6]のいずれかに記載の臭気物質分解剤と臭気物質を接触させる臭気物質分解方法。
[1]
An odorant decomposing agent comprising porous silica having an average pore diameter of 1 nm to 50 nm and a BET specific surface area of 300 to 2000 m 2 /g supporting ruthenium-containing particles having a particle diameter of 1 to 4 nm.
[2]
The odorant decomposing agent according to the above [1], wherein the porous silica is mesoporous silica.
[3]
The odorant decomposing agent according to the above [1] or [2], wherein the amount of ruthenium supported is from 0.1 to 10% by mass.
[4]
The odorant decomposing agent according to any one of [1] to [3], wherein the odorant to be decomposed by the odorant decomposing agent is a sulfur compound or a nitrogen compound.
[5]
The odorant decomposing agent according to [4], wherein the sulfur compound is methyl mercaptan.
[6]
The odorant decomposing agent according to [4], wherein the nitrogen compound is ammonia.
[7]
An odorant-decomposing article comprising the odorant-decomposing agent according to any one of [1] to [6].
[8]
A method for decomposing an odorous substance, comprising contacting the odorant-decomposing agent according to any one of [1] to [6] with an odorant in an atmosphere of 0° C. to 50° C. or less in the presence of oxygen.
 本発明によれば、外部エネルギーを消費することなく、かつ、効果が高い臭気物質分解剤が提供される。 According to the present invention, a highly effective odorant decomposing agent is provided without consuming external energy.
[例1]~[例6]および[例8]~[例10]で用いた固定床流通式反応装置の模式図である。1 is a schematic diagram of a fixed-bed flow reactor used in [Example 1] to [Example 6] and [Example 8] to [Example 10]. FIG. [例7]で用いた固定床流通式反応装置の模式図である。Fig. 2 is a schematic diagram of a fixed-bed flow reactor used in [Example 7]. 臭気物質分解剤1をSTEMで測定した結果を示す画像である。4 is an image showing the results of STEM measurement of the odorant decomposing agent 1. FIG. 臭気物質分解剤1のピーク細孔径を測定し、BJHプロットしたときのグラフである。1 is a graph obtained by measuring the peak pore diameter of odorant decomposing agent 1 and plotting BJH.
 本発明の臭気物質分解剤は、平均細孔径が1nmから50nm、BET比表面積が300から2000m/gである多孔質シリカに粒径1から4nmのルテニウムを含有する粒子を担持したものである。 The odorant decomposing agent of the present invention comprises porous silica having an average pore size of 1 nm to 50 nm and a BET specific surface area of 300 to 2000 m 2 /g, and ruthenium-containing particles having a particle size of 1 to 4 nm supported thereon. .
 触媒活性の観点から、触媒担体として用いる多孔質シリカは、比表面積が大きいものが好ましい。比表面積が大きいほど、担持する金属粒子の量を多くできる。細孔径とは細孔直径であり、BJH法でピーク細孔径を測定すると、その値から細孔直径の範囲を推定することができる。
 触媒反応の促進という観点から平均細孔径は1から10nmが好ましい。
 より多くのルテニウムを含有する粒子を担持させる観点からBET比表面積は500から1500m/gが好ましい。
From the viewpoint of catalytic activity, the porous silica used as a catalyst carrier preferably has a large specific surface area. The larger the specific surface area, the larger the amount of metal particles that can be supported. The pore diameter is the pore diameter, and when the peak pore diameter is measured by the BJH method, the range of the pore diameter can be estimated from that value.
From the viewpoint of promoting the catalytic reaction, the average pore diameter is preferably 1 to 10 nm.
The BET specific surface area is preferably 500 to 1500 m 2 /g from the viewpoint of supporting more ruthenium-containing particles.
 前記多孔質シリカの中でも、メソポーラスシリカが好ましい。メソポーラスシリカはシリカの一種であり、ハニカム状態の2から10nmの均一な規則性細孔と1000m/g以上の比表面積を有する。メソポーラスシリカは、大きな比表面積および規則性細孔という特徴を有するため、メソポーラスシリカの細孔に分子が入ることで反応が促進されやすく、触媒の反応性の向上が期待できる。また、メソポーラスシリカは、均一な規則性細孔を保有するため、細孔内部に均一なナノ粒子を合成しやすいという特徴がある。 Among the porous silica, mesoporous silica is preferable. Mesoporous silica is a type of silica, and has uniform regular pores of 2 to 10 nm in a honeycomb state and a specific surface area of 1000 m 2 /g or more. Since mesoporous silica is characterized by a large specific surface area and regular pores, the reaction is likely to be promoted by the entry of molecules into the pores of mesoporous silica, and an improvement in the reactivity of the catalyst can be expected. In addition, since mesoporous silica has uniform regular pores, it is characterized in that it is easy to synthesize uniform nanoparticles inside the pores.
 メソポーラスシリカの製造方法としては、例えば特開2017-23889号公報に記載されている方法にしたがって、製造することができる。具体的には、次のとおりである。
 まず、無機原料と有機原料を混合し、反応させることにより、有機物を鋳型としてそのまわりに無機物の骨格が形成された有機物と無機物の複合体を形成させる。次いで、得られた複合体から有機物を除去することにより、多孔質シリカが得られる。無機原料としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等のアルコキシシラン、ケイ酸ソーダ、カネマイト(kanemite、NaHSi・3HO)、シリカ、シリカ-金属複合酸化物等が挙げられる。これらの無機原料はシリケート骨格を形成する。
 これらは、単独でまたは2種以上を混合して用いてもよい。鋳型として使用される有機原料は、例えば界面活性剤等が挙げられる。界面活性剤は陽イオン性、陰イオン性、非イオン性のうちのいずれかであってもよい。
Mesoporous silica can be produced, for example, according to the method described in JP-A-2017-23889. Specifically, it is as follows.
First, an inorganic raw material and an organic raw material are mixed and reacted to form an organic-inorganic composite having an inorganic skeleton formed around the organic material as a template. Next, porous silica is obtained by removing the organic matter from the resulting composite. Examples of inorganic raw materials include alkoxysilanes such as tetramethoxysilane, tetraethoxysilane and tetrapropoxysilane, sodium silicate, kanemite (NaHSi 2 O 5.3H 2 O), silica, and silica-metal composite oxides. be done. These inorganic raw materials form a silicate skeleton.
You may use these individually or in mixture of 2 or more types. Organic raw materials used as templates include, for example, surfactants. Surfactants may be cationic, anionic or nonionic.
 無機物と有機物の複合体の形成方法は、例えば、有機原料を溶媒に溶解後、無機原料を添加し、所定のpHに調製した後に、反応混合物を所定の温度に保持して縮重合反応を行う方法が挙げられる。縮重合反応の反応温度は使用する有機原料や無機原料の種類や濃度によって異なるが、通常0から100℃程度が好ましく、より好ましくは35から80℃である。縮重合反応の反応時間は、通常1から24時間程度が好ましい。また、上記の縮重合反応は、静置状態、攪拌状態のいずれで行ってもよく、またそれらを組み合わせて行ってもよい。
 縮重合反応後に得られる複合体から有機原料を除去することによって、多孔質シリカが得られる。有機物と無機物の複合体からの有機物の除去は、400から800℃で焼成する方法、水やアルコール等の溶媒で処理する方法等により行うことができる。
A method for forming a composite of an inorganic substance and an organic substance includes, for example, dissolving an organic raw material in a solvent, adding the inorganic raw material, adjusting the pH to a predetermined value, and then performing a polycondensation reaction while maintaining the reaction mixture at a predetermined temperature. method. The reaction temperature of the polycondensation reaction varies depending on the types and concentrations of the organic raw materials and inorganic raw materials used, but is generally preferably about 0 to 100°C, more preferably 35 to 80°C. The reaction time of the polycondensation reaction is preferably about 1 to 24 hours. The above polycondensation reaction may be carried out either in a stationary state or in a stirring state, or in combination thereof.
Porous silica is obtained by removing the organic raw material from the composite obtained after the polycondensation reaction. Organic matter can be removed from the composite of organic matter and inorganic matter by a method of baking at 400 to 800° C., a method of treatment with a solvent such as water or alcohol, or the like.
 本実施形態のルテニウムを含有する粒子は、ルテニウム金属の粒子、ルテニウムの塩化物やルテニウムの酸化物などルテニウムの化合物の状態で含有する粒子、合金粒子、複合化粒子があげられる。
 合金粒子は、ルテニウムと他の金属からなる2種類以上の合金であり、作製方法は、例えば合金化したい金属の前駆体を還元剤で原子に変えて、原子が自己凝集をして、粒成長する過程を保護剤で抑制して、合金粒子を得る方法が挙げられる。合金粒子は粒径がナノメートルオーダーであるナノ合金粒子が好ましい。
Ruthenium-containing particles of the present embodiment include ruthenium metal particles, particles containing ruthenium in the form of compounds such as ruthenium chloride and ruthenium oxide, alloy particles, and composite particles.
The alloy particles are two or more types of alloys composed of ruthenium and other metals, and are produced by, for example, converting a precursor of the metal to be alloyed into atoms with a reducing agent, and causing the atoms to self-aggregate and grow grains. For example, a method of obtaining alloy particles by suppressing the process with a protective agent. The alloy particles are preferably nano-alloy particles having a particle size on the order of nanometers.
 複合化粒子は、ルテニウムを含むコアシェル構造またはルテニウムと他の金属との共担持などがあげられる。複合化粒子を作製する方法は、例えばルテニウムの塩から水素還元にてルテニウム金属の粒子を得て、その後、ルテニウム金属の粒子の周りに別の金属を同様の方法で担持することで、ルテニウムを含むコアシェル構造を得ることができる。また複合化粒子を多孔質シリカ内で作製してもよい。例えば、多孔質シリカの細孔内に含侵法でルテニウムの塩を担持後、水素還元にてルテニウム金属の粒子を得て、その後、別の金属を同様の方法で多孔質シリカの細孔内に担持して、ルテニウムと他の金属を多孔質シリカの細孔内に共担持することができる。 Composite particles include a core-shell structure containing ruthenium or co-supporting ruthenium and other metals. A method for producing composite particles is, for example, to obtain ruthenium metal particles by hydrogen reduction from a ruthenium salt, and then support another metal around the ruthenium metal particles in a similar manner to obtain ruthenium. A core-shell structure containing Composite particles may also be made in porous silica. For example, after supporting a ruthenium salt in the pores of porous silica by an impregnation method, ruthenium metal particles are obtained by hydrogen reduction, and then another metal is added in the pores of porous silica by a similar method. to co-load ruthenium and other metals within the pores of the porous silica.
 ルテニウムを含有する粒子を前記合金粒子または複合化粒子にすることにより、多種の臭気物質を分解できる能力が向上するだけでなく、臭気物質分解以外のエチレン分解または抗菌等の機能を保有する臭気物質分解剤となる場合がある。
 ルテニウムを含有する粒子の粒径は、1nmから4nmであり、1nmから2nmが好ましい。粒径が小さくなると、ルテニウムを含有する粒子の比表面積が向上し、触媒活性が向上する。
 ルテニウムを含有する粒子の粒径は、多孔質シリカ内の細孔内に担持することで制御するのが好ましい。多孔質シリカ内にルテニウムを含有する粒子を担持することで粒成長による粒径の増大を防ぎ、所定の粒径に制御することができる。また、ルテニウムを含有する粒子を多孔質シリカの細孔内に担持することで、触媒反応において分子ふるい効果を有し、触媒活性や選択性が向上すると考えられる。
 透過電子顕微鏡等の観察により多孔質シリカ内にルテニウム粒子が入っているかを確認することができる。
By using the ruthenium-containing particles as the alloy particles or composite particles, not only the ability to decompose various odorants is improved, but also odorants possessing functions other than decomposing odorants such as decomposition of ethylene or antibacterial properties. May act as a decomposing agent.
The particles containing ruthenium have a particle size of 1 nm to 4 nm, preferably 1 nm to 2 nm. As the particle size becomes smaller, the specific surface area of the ruthenium-containing particles increases and the catalytic activity improves.
The particle size of the ruthenium-containing particles is preferably controlled by supporting them within the pores of the porous silica. By supporting particles containing ruthenium in the porous silica, it is possible to prevent an increase in particle size due to particle growth and control the particle size to a predetermined value. In addition, it is believed that supporting particles containing ruthenium in the pores of porous silica has a molecular sieving effect in the catalytic reaction and improves catalytic activity and selectivity.
Observation with a transmission electron microscope or the like can confirm whether or not the ruthenium particles are contained in the porous silica.
 前記他の金属としては白金、パラジウム、ロジウム、イリジウム、金、銀、銅、レ二ウム、ニッケル、コバルト、鉄、マンガン、タングステン、モリブデン、クロム、バナジウムが挙げられる。 The other metals include platinum, palladium, rhodium, iridium, gold, silver, copper, rhenium, nickel, cobalt, iron, manganese, tungsten, molybdenum, chromium, and vanadium.
 本発明の臭気物質分解剤は、前記多孔質シリカにルテニウムを含有する粒子が担持されており、ルテニウムの担持量は多孔質シリカとルテニウムの合計量を100質量%として、0.1から10質量%である。担持量は触媒性能の観点から、0.1質量%以上が好ましく、製造コストの観点から、5質量%以下が好ましい。 In the odorant decomposing agent of the present invention, particles containing ruthenium are supported on the porous silica, and the amount of ruthenium supported is 0.1 to 10% by mass, where the total amount of the porous silica and ruthenium is 100% by mass. %. The supported amount is preferably 0.1% by mass or more from the viewpoint of catalyst performance, and preferably 5% by mass or less from the viewpoint of production cost.
 本実施形態において臭気物質分解剤の分解対象となる臭気物質は、通常、炭素および水素以外の原子を含む分子であり、比較的低濃度で人間の臭覚閾値に達する化合物である。このような臭気物質としては、硫黄化合物、窒素化合物、アルデヒド、炭化水素、低級脂肪酸等があげられる。これら化合物の中でも一般に臭気の原因と言われる窒素化合物、硫黄化合物に対して本発明の臭気物質分解剤を好適に用いることができる。 In the present embodiment, the odorant to be decomposed by the odorant decomposing agent is usually a molecule containing atoms other than carbon and hydrogen, and is a compound that reaches the human olfactory threshold at a relatively low concentration. Such odorous substances include sulfur compounds, nitrogen compounds, aldehydes, hydrocarbons, lower fatty acids and the like. Among these compounds, the odorant decomposing agent of the present invention can be suitably used for nitrogen compounds and sulfur compounds which are generally said to cause odors.
 窒素化合物は、アンモニア、トリメチルアミン、エチルアミン、トリエチルアミン、エチレンジアミンがあげられる。なかでもアンモニアまたはトリメチルアミンに対して、本発明の臭気物質分解剤を好適に用いることができ、アンモニアに対して本発明の臭気物質分解剤をより好適に用いることができる。 Nitrogen compounds include ammonia, trimethylamine, ethylamine, triethylamine, and ethylenediamine. Among them, the odorant decomposing agent of the present invention can be preferably used for ammonia or trimethylamine, and the odorant decomposing agent of the present invention can be used more preferably for ammonia.
 硫黄化合物は、メチルメルカプタン、硫化水素、ジメチルスルフィド、ジメチルジスルフィド、硫化メチルがあげられる。なかでもメチルメルカプタンまたは硫化水素に対して、本発明の臭気物質分解剤を好適に用いることができ、メチルメルカプタンに対して本実施形態の臭気物質分解剤をより好適に用いることができる。 Sulfur compounds include methyl mercaptan, hydrogen sulfide, dimethyl sulfide, dimethyl disulfide, and methyl sulfide. Among them, the odorant decomposing agent of the present invention can be preferably used for methyl mercaptan or hydrogen sulfide, and the odorant decomposing agent of the present embodiment can be more preferably used for methyl mercaptan.
 前記窒素化合物または硫黄化合物はともに、肉、魚、卵の腐敗の過程で発生する場合があり、生ごみの臭気の主成分は、硫黄化合物並びに窒素化合物と考えられている。また、家畜の糞尿や人間の排泄物にも硫黄化合物並びに窒素化合物が含まれている。これらの臭気化合物が人間の臭覚閾値以上の濃度で空気中に含まれると人間は臭気を感じることになる。
 本実施形態の前記臭気物質分解剤をこれら臭気物質と接触させることで、臭気物質を別の無臭の化合物や臭気の少ない化合物に変換することができ、臭気物質の濃度が低減して、消臭効果を得ることができる。
Both nitrogen and sulfur compounds may be generated during the spoilage process of meat, fish and eggs, and sulfur compounds as well as nitrogen compounds are believed to be the main components of garbage odor. Livestock manure and human waste also contain sulfur compounds and nitrogen compounds. When these odorous compounds are contained in the air at a concentration equal to or higher than the olfactory threshold of humans, humans sense odors.
By bringing the odorant decomposing agent of the present embodiment into contact with these odorants, the odorant can be converted into another odorless compound or less odorous compound, the concentration of the odorant is reduced, and the deodorant is deodorized. effect can be obtained.
 本実施形態の臭気物質分解剤を備える臭気物質分解用物品は、前記臭気物質分解剤を粉末状、ペレット状、またはフィルム状としたものや、本発明の臭気物質分解剤を他の成形物に設置または封入したものである。
 臭気物質分解剤が粉末状またはペレット状の場合、フィルムおよび不織布の包装体または箱状の成形体中に、これらの粉末状またはペレット状の臭気物質分解剤を充填して臭気物質分解用物品として用いてもよい。
Articles for decomposing odorous substances comprising the odorant decomposing agent of the present embodiment are those in which the odorant decomposing agent is in the form of powder, pellets, or films, and other moldings containing the odorant decomposing agent of the present invention. Installed or enclosed.
When the odorant decomposing agent is in the form of powder or pellets, the powdery or pelletized odorant decomposing agent is filled in a film or non-woven fabric package or a box-like molding to produce an odorant decomposing article. may be used.
 臭気物質分解剤を備える物品として、本実施形態の臭気物質分解剤を液状物質に分散させて基材に塗布して使用することもできる。基材としては、その形状は、例えば、フィルム状、シート状、柱状、ハニカム状等の形状や不織布状、織布状、紙状、フェルト状が例示でき、塗布する表面は平滑であっても、凸凹であってもよい。その材質は金属、樹脂、木材、紙、繊維、天然皮革、合成皮革等が例示できる。 As an article equipped with an odorant decomposing agent, the odorant decomposing agent of the present embodiment can be dispersed in a liquid substance and applied to a substrate for use. Examples of the shape of the substrate include film, sheet, columnar, honeycomb, nonwoven fabric, woven fabric, paper, and felt. , may be uneven. Examples of the material include metal, resin, wood, paper, fiber, natural leather, and synthetic leather.
 基材としては臭気物質分解の効率の観点から、表面積が大きい基材が好ましく、取り扱いの観点からハニカム状の基材、不織布または紙が好ましい。ここでいうハニカム状とは、広義の意味であり、正六角形に限らず、立体図形を間断なく並べた三次元空間充填形状のものであって連通孔を有するものであり、孔の形状は円形や三角形、四角形、五角形、六角形等の多角形が例示できる。孔の形状は全て同じであっても、これら形状の2以上を有するものであっても良い。 From the viewpoint of the efficiency of odorant decomposition, the base material is preferably a base material with a large surface area, and from the viewpoint of handling, a honeycomb-shaped base material, nonwoven fabric, or paper is preferable. The term "honeycomb" as used herein is used in a broad sense, and is not limited to regular hexagons. and polygons such as triangles, quadrilaterals, pentagons, and hexagons. The holes may all have the same shape, or may have two or more of these shapes.
 ハニカム状の基材としてはセラミックハニカムやペーパーハニカムが例示できる。セラミックハニカムの成分は、コージェライト、炭化珪素、窒化珪素、アルミナ、ムライト、アルミニウムチタネート、チタニアおよびジルコニアからなる群から選ばれる成分からなるものが好ましい。 Examples of honeycomb-shaped substrates include ceramic honeycombs and paper honeycombs. The component of the ceramic honeycomb preferably consists of a component selected from the group consisting of cordierite, silicon carbide, silicon nitride, alumina, mullite, aluminum titanate, titania and zirconia.
 ペーパーハニカムは、クラフト紙、Kライナー紙、強化中芯原紙、耐水中芯原紙、水酸化アルミ紙等からなる群から選ばれる紙からなるものが好ましい。またこれら紙の中でも絶縁性を有する紙が好ましく、不燃性または難燃性を有するものが好ましい。 The paper honeycomb is preferably made of paper selected from the group consisting of kraft paper, K-liner paper, reinforced core base paper, water-resistant core base paper, aluminum hydroxide paper, and the like. Among these papers, insulating papers are preferred, and nonflammable or flame-retardant papers are preferred.
 セラミックハニカムは上記成分を押出し成型により所定の形状に成型することで製造することができる。また、ペーパーハニカムは上記の紙を平板状、波形状、円柱状、蜂巣状等に連続成型して積層することで製造することが出来る。これらを用途・環境に合わせて適宜選択し使用する。耐熱性の観点からはセラミックハニカムが好ましく、軽量性の観点からはペーパーハニカムが好ましい。 A ceramic honeycomb can be manufactured by extruding the above components into a predetermined shape. The paper honeycomb can be produced by continuously forming and laminating the above paper into a flat plate shape, a corrugated shape, a cylindrical shape, a honeycomb shape, or the like. These are appropriately selected and used according to the purpose and environment. A ceramic honeycomb is preferable from the viewpoint of heat resistance, and a paper honeycomb is preferable from the viewpoint of lightness.
 不織布は、アラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリオレフィン繊維、レーヨン繊維、低密度ポリエチレン樹脂、エチレン酢酸ビニル樹脂、共重合ポリアミド樹脂、共重合ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリエステル/モダアクリル樹脂等の繊維からなるものであり、耐熱性の観点からアラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリエステル/モダアクリル樹脂が好ましく、難燃性や外気からの洗浄処理性に富んでいるという観点から、ポリエステル/モダアクリル樹脂がさらに好ましい。 Non-woven fabrics include aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyethylene fiber, polypropylene fiber, polyolefin fiber, rayon fiber, low density polyethylene resin, ethylene vinyl acetate resin, copolymerized polyamide resin, copolymerized It is made of fibers such as polyester resin, polyphenylene sulfide resin, polyester/modacrylic resin, etc. From the viewpoint of heat resistance, aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyester/modacrylic resin is preferable. A polyester/modacrylic resin is more preferable from the viewpoint of being rich in flame retardancy and washability from the outside air.
 紙は、和紙、洋紙、板紙(ボール紙)、包装用紙(包装紙や封筒)、包装材料、食品包装用材料等の紙が例示でき、防水や耐水性に富んでいるという観点から包装材料が、また、油や脂質への耐性や難燃性に富んでいるという観点から食品包装用材料が好ましい。 Examples of paper include Japanese paper, Western paper, paperboard (cardboard), wrapping paper (wrapping paper and envelopes), packaging materials, and food packaging materials. Also, food packaging materials are preferable from the viewpoint of being highly resistant to oil and lipids and flame retardant.
 本実施形態の臭気物質分解用物品を使用する場合、後述する臭気物質分解方法と同様、酸素の存在下で0℃から50℃の温度で臭気の発生源の近傍に置くのが好ましい。臭気の発生源から発生した臭気物質を含む気体と酸素が本発明の臭気物質分解剤と接触するように、臭気物質を含む気体の流れを制御するのが好ましい。
 臭気物質分解用物品の使用は閉鎖系でも開放系でもよい。
 本実施形態の臭気物質分解用物品の使用方法としては、例えば、キッチン、トイレ、冷蔵庫のような比較的空間容積が小さい閉鎖系の場合は、臭気物質である硫黄化合物または窒素化合物を多く含むガスの発生源の近傍に置いて使用するのが好ましい。例えば、キッチンの排水溝、ゴミ箱に捨てた生ごみ等の臭気の発生源の近傍に置くことで、臭気物質を分解することができる。排水溝の中に直接入れたり、生ごみに直接接触させたりしてもよい。臭気の発生源と臭気物質分解剤の距離は近い方が、臭気物質分解効率の観点で好ましい。家庭用キッチンなどの空間容積が比較的大きな閉鎖系の場合は、室内が臭気で満たされており、空間内に臭気発生源が2つ以上あったり臭気の発生源が特定できなかったりすることがある。このような場合はファン等により気流を発生させて、気流の流路に臭気物質分解剤を設置し、臭気物質を分解してもよい。気流により臭気物質の分解効率を高めることができる。また、エアコン、空気清浄機などに臭気物質分解剤を塗布したフィルターを設置することで、臭気物質と臭気物質分解剤がフィルター上で接触するため、臭気物質の分解効率を高めるという観点で最適である。畜産工場、食品工場、ゴミ処理設備などの室内の臭気物質を室外に排出する開放系の場合は、吸引口または排気口にフィルターまたはハニカム構造の基材に塗布した臭気物質分解剤を設置することで、室内の臭気物質が、臭気の少ない化合物に変換されて、室外に排出される。
When using the article for decomposing an odorous substance of the present embodiment, it is preferably placed in the vicinity of the odor generating source at a temperature of 0° C. to 50° C. in the presence of oxygen, as in the method for decomposing an odorous substance described below. It is preferable to control the flow of the odorant-containing gas so that the odorant-containing gas and oxygen generated from the odor source come into contact with the odorant-decomposing agent of the present invention.
The use of the odorant decomposing article can be in closed or open systems.
As a method for using the article for decomposing odorous substances of the present embodiment, for example, in the case of a closed system with a relatively small space volume such as a kitchen, a toilet, or a refrigerator, gas containing a large amount of sulfur compounds or nitrogen compounds, which are odorous substances, can be used. It is preferable to use it by placing it near the source of the For example, the odorant can be decomposed by placing it in the vicinity of the source of odor, such as a kitchen drain or kitchen garbage thrown away in a trash can. It can be put directly into the drain or brought into direct contact with garbage. The closer the distance between the odor generating source and the odorant decomposing agent is, the better from the viewpoint of odorant decomposing efficiency. In the case of a closed system with a relatively large space volume, such as a home kitchen, the room is filled with odor, and there may be two or more odor sources in the space, or the odor source may not be identified. be. In such a case, an airflow may be generated by a fan or the like, and an odorant decomposing agent may be placed in the flow path of the airflow to decompose the odorant. The airflow can increase the efficiency of decomposing odorants. In addition, by installing a filter coated with an odorant decomposing agent in air conditioners, air purifiers, etc., the odorant and the odorant decomposing agent come into contact with each other on the filter, making it ideal for increasing the efficiency of decomposing odorous substances. be. In the case of an open system such as a livestock factory, a food factory, or a waste disposal facility, where odorous substances are discharged to the outside, install a filter or an odorant decomposing agent applied to a base material of honeycomb structure at the suction port or exhaust port. , the odorous substances in the room are converted into less odorous compounds and discharged outdoors.
 本発明の臭気物質分解方法は、酸素存在下で、0℃から50℃以下の雰囲気で、臭気物質分解剤と臭気物質を接触させることにより臭気物質を分解する。通常の触媒では、0℃から50℃以下の雰囲気においては、高い分解能力を持たないが、本発明の臭気物質分解剤は、0℃から50℃以下の雰囲気でも臭気物質の分解性能を有しており、少量の外部からのエネルギーで臭気物質の分解を行うことができる。温度は0℃から30℃が好ましい。 The odorant decomposition method of the present invention decomposes an odorant by contacting the odorant decomposing agent with the odorant in an atmosphere of 0°C to 50°C or less in the presence of oxygen. Ordinary catalysts do not have high decomposition ability in an atmosphere of 0°C to 50°C or less, but the odorant decomposing agent of the present invention has decomposition performance of odorants even in an atmosphere of 0°C to 50°C or less. It is possible to decompose odorants with a small amount of external energy. The temperature is preferably 0°C to 30°C.
 本実施形態において、臭気物質分解剤が酸素存在下で、臭気物質と接触することにより、臭気物質が臭気の低い物質に変換されることにより、臭気低減効果を示す。臭気物質の分解の詳細は不明であるが、例えば、以下のような反応が本実施形態において臭気物質分解剤により起こっていると考えられる。 In the present embodiment, the odorant decomposing agent contacts the odorant in the presence of oxygen, thereby converting the odorant into a less odorous substance, thereby exhibiting an odor reducing effect. Although the details of the decomposition of the odorant are unknown, it is believed that the following reactions are caused by the odorant decomposing agent in the present embodiment, for example.
 例えば、メチルメルカプタンの分解は、下記のような反応が推定される。
(推定されるメチルメルカプタンの酸化反応)
 2CHSH+7O → 2HSO+2CO+2H
 CHSH+3O → SO+CO+2H
 2CHSH+3O → 2HS+2CO+2H
 2CHSH+3/2O → (CHS+SO+H
 2CHSH+1/2O → (CH+H
For example, the decomposition of methyl mercaptan is presumed to be as follows.
(Assumed oxidation reaction of methyl mercaptan)
2CH3SH + 7O22H2SO4 + 2CO2 + 2H2O
CH3SH +3O2→SO2 + CO2 + 2H2O
2CH3SH + 3O22H2S + 2CO2 + 2H2O
2CH3SH+ 3 / 2O2 →( CH3 )2S + SO2 + H2O
2CH3SH + 1/ 2O2 →( CH3 ) 2S2 + H2O
 例えば、アンモニアの分解は、下記のような反応が推定される。
(推定されるアンモニアの酸化反応)
 2NH+3/2O → N+3H
 2NH+2O → NO+3H
 4NH+5O → 4NO+6H
 4NH+7O → 4NO+6H
For example, the decomposition of ammonia is presumed to have the following reactions.
(Assumed oxidation reaction of ammonia)
2NH3 + 3 / 2O2N2 + 3H2O
2NH3 + 2O2 → N2O + 3H2O
4NH3 + 5O2 → 4NO + 6H2O
4NH3 + 7O2 → 4NO2 + 6H2O
 前記反応式の左式に記載のメチルメルカプタンおよびアンモニアは、濃度が低くても人間の臭覚閾値に達する化合物であるが、酸素と反応して反応式の右式に示された化合物に分解される。反応式の右式に示された生成化合物は、比較的高濃度で人間の臭覚閾値に達する化合物であり、その結果、臭気が感じられにくくなると思われる。また、前記反応式に限らず、他の中間物質を経由し、結果として比較的高濃度で人間の臭覚閾値に達する化合物となる場合もある。
 存在する酸素の濃度は、臭気物質に対して前記反応式の化学量論量があればよく、臭気物質に対して2倍から4倍あればよく、3倍から4倍が好ましい。
 酸素は他の気体と共存しているのが、安全性の観点から好ましく、窒素、ヘリウムまたはアルゴン等の不活性ガスと共存しているのが好ましい。
 酸素が他の気体と共存している場合、酸素の濃度は1体積%以上21体積%以下が好ましく、15体積%以上21体積%以下がより好ましい。
 本実施形態の臭気物質分解方法は、空気の存在下で行うのが好ましい。
Methyl mercaptan and ammonia described in the left formula of the above reaction formula are compounds that reach the human olfactory threshold even at low concentrations, but they react with oxygen and decompose into the compounds shown in the right formula of the reaction formula. . The product compound shown in the right-hand side of the reaction formula is a compound that reaches the olfactory threshold of humans at a relatively high concentration, and as a result, it is thought that the odor becomes less perceptible. In addition to the above reaction formula, there are cases in which a compound reaches the human olfactory threshold at a relatively high concentration as a result of passing through other intermediate substances.
The concentration of oxygen present may be the stoichiometric amount of the above reaction formula with respect to the odorant, and may be from 2 to 4 times, preferably from 3 to 4 times, the odorant.
Oxygen coexistence with other gases is preferable from the viewpoint of safety, and coexistence with an inert gas such as nitrogen, helium or argon is preferable.
When oxygen coexists with other gases, the oxygen concentration is preferably 1% by volume or more and 21% by volume or less, more preferably 15% by volume or more and 21% by volume or less.
The odorant decomposition method of the present embodiment is preferably carried out in the presence of air.
 本実施形態において、臭気物質分解剤または臭気物質分解用物品は、酸素の存在下、トイレ、ゴミ箱、キッチンなど臭気が発生する場所に、例えば、ペレット形状の触媒を、通気性を有するプラスチック容器に搭載して置くことで、臭気物質を分解除去し、臭気を低減させることができる。壁紙、カーテン、シートなどに臭気物質分解剤を塗布して使用することも可能である。また、室内のエアコン並びに生ごみ置き場の排気システムのフィルターに本実施形態の臭気物質分解剤または臭気物質分解用物品を塗布することで、空間内の臭気物質が臭気物質分解剤と接触することにより、効率的に臭気を低減させることも可能である。従来の生ごみ処理装置の排気システムに、例えばハニカム状とした本発明の臭気物質分解剤を設置することで、臭気物質分解剤を加熱することなく、臭気物質を低減させることができる。 In this embodiment, the odorant decomposing agent or odorant decomposing article is placed in a place where odor is generated, such as a toilet, a trash can, or a kitchen, in the presence of oxygen. For example, a pellet-shaped catalyst is placed in a breathable plastic container. By placing it on board, it is possible to decompose and remove odorous substances and reduce odors. It is also possible to apply the odorant decomposing agent to wallpaper, curtains, sheets and the like. Further, by applying the odorant decomposing agent or articles for decomposing odorous substances of the present embodiment to the filters of the exhaust system of the indoor air conditioner and garbage storage area, the odorous substances in the space come into contact with the odorant decomposing agent. , it is also possible to reduce the odor efficiently. By installing the honeycomb-shaped odorant decomposing agent of the present invention, for example, in the exhaust system of a conventional garbage disposal apparatus, odorous substances can be reduced without heating the odorant decomposing agent.
 以上、本発明の臭気物質分解剤、臭気物質分解用物品および臭気物質分解方法を説明したが、本実施形態は、上述した実施形態の構成に限定されない。
 例えば、本発明の臭気物質分解剤または臭気物質分解用物品の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてもよい。また本発明の臭気物質分解方法は、上記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてもよい。
Although the odorant decomposing agent, the odorant decomposing article, and the odorant decomposing method of the present invention have been described above, the present embodiment is not limited to the configuration of the embodiment described above.
For example, in the configuration of the odorant decomposing agent or odorant decomposing article of the present invention, any other configuration may be added or replaced with any configuration that exhibits similar functions. In addition, the odorant decomposition method of the present invention may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action.
 以下、実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例および比較例における臭気物質の分解の評価を行った。 The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. Decomposition of odorants was evaluated in Examples and Comparative Examples.
(実施例1)
(ルテニウムが担持された臭気物質分解剤の合成)
 粉末状のメソポーラスシリカ(太陽化学製、TMPS-4R)とアルミナの混練物を押し出し成型機で直径約1.5mm、長さ約4mmのペレット状に成型した。成型したペレットを80℃で24時間乾燥後、500から600℃で1時間焼成して、メソポーラスシリカペレットを得た。前記メソポーラスシリカペレット1gを50mLの水に懸濁させ、ルテニウム粒子の担持量が1質量%になるように塩化ルテニウム水溶液を滴下し、その溶液を室温にて一晩放置した。その後、懸濁液を、エバポレータを用いてオイル温度約70℃にて加熱し、かつ減圧(3kPa)下において、溶媒を揮発させることで懸濁液を濃縮した後、終夜で乾燥した。その後、窒素ガスを500mL/minで流通させながら、100℃から200℃の温度となるように窒素ガス雰囲気下で前記メソポーラスシリカを2時間加熱した。その後、水素ガス雰囲気下において前記メソポーラスシリカを100℃から350℃で還元処理した。これにより、前記メソポーラスシリカにルテニウム粒子を担持したルテニウム担持量が1質量%である臭気物質分解剤1を得た。
(Example 1)
(Synthesis of odorant decomposing agent supporting ruthenium)
A kneaded product of powdery mesoporous silica (TMPS-4R, manufactured by Taiyo Kagaku Co., Ltd.) and alumina was formed into pellets having a diameter of about 1.5 mm and a length of about 4 mm using an extruder. After drying the molded pellets at 80° C. for 24 hours, they were calcined at 500 to 600° C. for 1 hour to obtain mesoporous silica pellets. 1 g of the mesoporous silica pellets was suspended in 50 mL of water, an aqueous ruthenium chloride solution was added dropwise so that the supported amount of ruthenium particles was 1% by mass, and the solution was allowed to stand overnight at room temperature. The suspension was then heated using an evaporator at an oil temperature of about 70° C. and under reduced pressure (3 kPa) to evaporate the solvent, concentrating the suspension and then drying overnight. After that, the mesoporous silica was heated in a nitrogen gas atmosphere for 2 hours at a temperature of 100° C. to 200° C. while flowing nitrogen gas at 500 mL/min. Thereafter, the mesoporous silica was subjected to reduction treatment at 100° C. to 350° C. in a hydrogen gas atmosphere. As a result, an odorant decomposing agent 1 was obtained in which ruthenium particles were supported on the mesoporous silica and the amount of ruthenium supported was 1% by mass.
(比較例1)
(白金が担持された臭気物質分解剤の合成)
 実施例1において、塩化ルテニウムの代わりに塩化白金酸を用いた以外は同様にして白金担持量が1質量%の臭気物質分解剤2を得た。
(Comparative example 1)
(Synthesis of platinum-supported odorant decomposing agent)
An odorant decomposing agent 2 having a supported platinum amount of 1% by mass was obtained in the same manner as in Example 1, except that chloroplatinic acid was used instead of ruthenium chloride.
(比較例2)
(メソポーラスシリカペレットの合成)
 実施例1で得たメソポーラスシリカペレットを臭気物質分解剤3とした。
(Comparative example 2)
(Synthesis of mesoporous silica pellets)
The mesoporous silica pellets obtained in Example 1 were used as odorant decomposing agent 3 .
(BET比表面積)
 実施例1並びに比較例1および2の臭気物質分解剤のBET比表面積を比表面積/細孔分布測定装置(BELSORP-miniII、マイクロトラック・ベル株式会社製)を用いて窒素吸脱着測定より得られた吸着等温線を用いてBET法により測定した。測定した結果を表1に示した。
(BET specific surface area)
The BET specific surface areas of the odorant decomposing agents of Example 1 and Comparative Examples 1 and 2 were obtained by nitrogen adsorption/desorption measurement using a specific surface area/pore size distribution measuring device (BELSORP-miniII, manufactured by Microtrack Bell Co., Ltd.). It was measured by the BET method using the adsorption isotherm. Table 1 shows the measured results.
(ピーク細孔径)
 実施例1並びに比較例1および2の臭気物質分解剤のピーク細孔径は比表面積/細孔分布測定装置(BELSORP-miniII、マイクロトラック・ベル株式会社製)を用いてBJH法により測定した。測定した結果を表1に示した。また、実施例1のBJHプロットを図4に示した。図4の結果、3.28nmをピークトップとしたシャープなピークが確認されており、平均細孔径が1nmから50nmの範囲内にあると考えられる。
(Peak pore size)
The peak pore diameters of the odorant decomposing agents of Example 1 and Comparative Examples 1 and 2 were measured by the BJH method using a specific surface area/pore size distribution measuring device (BELSORP-miniII, manufactured by Microtrack Bell Co., Ltd.). Table 1 shows the measured results. Also, the BJH plot of Example 1 is shown in FIG. As a result of FIG. 4, a sharp peak with a peak top of 3.28 nm is confirmed, and the average pore diameter is considered to be in the range of 1 nm to 50 nm.
(細孔容積)
 実施例1並びに比較例1および2の臭気物質分解剤の細孔容積を比表面積/細孔分布測定装置(BELSORP-miniII、マイクロトラック・ベル株式会社製)を用いてαプロット法により測定した。測定した結果を表1に示した。
(pore volume)
The pore volumes of the odorant decomposing agents of Example 1 and Comparative Examples 1 and 2 were measured by the α S plot method using a specific surface area/pore size distribution measuring device (BELSORP-miniII, manufactured by Microtrack Bell Co., Ltd.). . Table 1 shows the measured results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 臭気物質分解剤1について、TEM観察による1次粒子の平均粒子径の測定を行った。800,000倍の倍率のTEM観察により担体のメソポーラスシリカ内の金属1次粒子101個の粒径を測定したときの平均値を算出した結果、平均粒子径は1.72nmであった。 For the odorant decomposing agent 1, the average particle size of the primary particles was measured by TEM observation. The average particle diameter of 101 metal primary particles in the mesoporous silica carrier was measured by TEM observation at a magnification of 800,000, and the average particle diameter was 1.72 nm.
 また、STEM観察により臭気物質分解剤1を撮影した。結果を図3に示した。図3において縞状に見えている部分が多孔質シリカの細孔であり、丸状の黒点に見えている部分がルテニウム粒子であり、ルテニウム粒子が多孔質シリカの細孔内に沿って担持されていること分かる。 In addition, the odorant decomposing agent 1 was photographed by STEM observation. The results are shown in FIG. In FIG. 3, the striped portions are the pores of the porous silica, and the portions that appear as round black dots are the ruthenium particles, and the ruthenium particles are supported along the pores of the porous silica. I know that
(アンモニア分解評価)
[例1]
 図1に示した固定床流通式反応装置を作製し、臭気物質分解剤1のアンモニア分解評価を固定床流通式により行った。前処理として、臭気物質分解剤1を50mg秤量し、加熱装置を用いて大気雰囲気において150℃で2時間加熱した後、反応管5に臭気物質分解剤1を充填した。反応管は加熱せず、常温雰囲気で、予め調整したアンモニア濃度が100ppm、酸素濃度が20体積%、残部がヘリウムであるアンモニアを含むヘリウムガスをガスリザーバー1から15.3mL/minの流量で流通させ、臭気物質分解剤1を通過した後のアンモニアを含むヘリウムガス中のアンモニアの濃度を検知管6(ガステック製)で測定した。アンモニアの出口濃度を測定した結果を表2に示した。なお、検知管の検出下限値は、0.5ppmであり、表2中の除去率は下記式1により算定した。算定した結果を表2に示した。
(式1)
 アンモニア除去率(%)=(ガスリザーバー1のアンモニア濃度-検知管6で測定したアンモニア濃度)÷ガスリザーバー1のアンモニア濃度×100
(Ammonia decomposition evaluation)
[Example 1]
A fixed-bed flow-type reactor shown in FIG. 1 was prepared, and the ammonia decomposition evaluation of the odorant decomposing agent 1 was performed by the fixed-bed flow-type. As a pretreatment, 50 mg of the odorant decomposing agent 1 was weighed and heated at 150° C. for 2 hours in an air atmosphere using a heating device, and then the reaction tube 5 was filled with the odorant decomposing agent 1 . The reaction tube is not heated, and in a normal temperature atmosphere, a pre-adjusted ammonia-containing helium gas having an ammonia concentration of 100 ppm, an oxygen concentration of 20% by volume, and the balance being helium is circulated from the gas reservoir 1 at a flow rate of 15.3 mL/min. The concentration of ammonia in the ammonia-containing helium gas after passing through the odorant decomposing agent 1 was measured with a detector tube 6 (manufactured by GASTEC). Table 2 shows the results of measuring the outlet concentration of ammonia. The detection lower limit of the detector tube is 0.5 ppm, and the removal rate in Table 2 was calculated by the following formula 1. Table 2 shows the calculated results.
(Formula 1)
Ammonia removal rate (%) = (ammonia concentration in gas reservoir 1 - ammonia concentration measured with detector tube 6) / ammonia concentration in gas reservoir 1 x 100
[例2および3]
 例1において、臭気物質分解剤1を臭気物質分解剤2または3に変更した以外は例1と同様にして、アンモニア分解評価を行った。結果を表2に示した。
[Examples 2 and 3]
Evaluation of ammonia decomposition was carried out in the same manner as in Example 1, except that the odorant decomposing agent 1 was changed to the odorant decomposing agent 2 or 3. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、比較例1の臭気物質分解剤2は18時間で除去率は2%、比較例2の臭気物質分解剤3は17時間で除去率は0%となったが、実施例1の臭気物質分解剤1は、18時間経過しても除去率が80%程度を維持した。 From Table 2, the removal rate of the odorant decomposing agent 2 of Comparative Example 1 was 2% after 18 hours, and the removal rate of the odorant decomposing agent 3 of Comparative Example 2 was 0% after 17 hours. The odorant decomposing agent 1 maintained a removal rate of about 80% even after 18 hours.
(アンモニア分解耐久試験)
[例4]
 例1と同じ固定床流通式反応装置を用いて、臭気物質分解剤1を長時間アンモニアに暴露した後のアンモニア分解試験を固定床流通式により行った。前処理として、臭気物質分解剤1を50mg秤量し、加熱装置を用いて大気雰囲気において150℃で2時間加熱した後、臭気物質分解剤1を反応管5に充填した。反応管は加熱せず、常温雰囲気で、予め調整したアンモニアの濃度が1000ppm、残部がヘリウムであるアンモニアを含むヘリウムガスをガスリザーバー1から15.3mL/minの流量で46時間流通させた。その後、アンモニアを含むヘリウムガスの組成をアンモニア100ppm酸素20体積%、残部をヘリウムに変更して、ガスリザーバー1から同じ量でアンモニアを含むヘリウムガスを流通させ、臭気物質分解剤1を通過した後のアンモニアを含むヘリウムガス中のアンモニアの濃度を検知管6(ガステック製)で測定した。アンモニアの出口濃度を測定した結果を表3に示した。なお、検知管の検出下限値は、0.5ppmであり、表3中の除去率は、例1に記載の(式1)により算定した。算定した結果を表3に示した。
(Ammonia decomposition durability test)
[Example 4]
Using the same fixed-bed flow reactor as in Example 1, an ammonia decomposition test was conducted by a fixed-bed flow system after the odorant decomposing agent 1 was exposed to ammonia for a long period of time. As a pretreatment, 50 mg of the odorant decomposing agent 1 was weighed and heated at 150° C. for 2 hours in an air atmosphere using a heating device. The reaction tube was not heated, and in a normal temperature atmosphere, a previously adjusted ammonia-containing helium gas having an ammonia concentration of 1000 ppm and the balance being helium was passed through the gas reservoir 1 at a flow rate of 15.3 mL/min for 46 hours. After that, the composition of the helium gas containing ammonia is changed to 100 ppm oxygen 20% by volume of ammonia and the balance is helium. was measured with a detector tube 6 (manufactured by Gastec). Table 3 shows the results of measuring the outlet concentration of ammonia. The detection lower limit of the detector tube is 0.5 ppm, and the removal rate in Table 3 was calculated by the formula (1) described in Example 1. Table 3 shows the calculated results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように臭気物質分解剤1は、46時間継続的に1000ppmのアンモニアを暴露したにもかかわらず、その後もアンモニアの除去率が80%以上を維持した。 As is clear from Table 3, the odorant decomposing agent 1 maintained an ammonia removal rate of 80% or more even after continuous exposure to 1000 ppm of ammonia for 46 hours.
(メチルメルカプタン分解試験1)
[例5]
 例1と同じ固定床流通式反応装置を用いて、臭気物質分解剤1のメチルメルカプタン分解評価を固定床流通式により行った。前処理として、臭気物質分解剤1を50mg秤量し、加熱装置を用いて大気雰囲気において150℃で2時間加熱した後、反応管5に臭気物質分解剤1を充填した。反応管は加熱せず、常温雰囲気で、予め調整したメチルメルカプタン濃度が14ppm、酸素濃度が20体積%、残部がヘリウムであるメチルメルカプタンを含むヘリウムガスを15.3mL/minの流量でガスリザーバー1から流通させ、臭気物質分解剤1を通過した後のメチルメルカプタンを含むヘリウムガス中のメチルメルカプタンの濃度を検知管6(ガステック製)で測定した。メチルメルカプタンの出口濃度を測定した結果を表4に示した。なお、検知管の検出下限値は、0.25ppmであり、表4中の除去率は下記式2により算定した。算定した結果を表4に示した。
(式2)
 メチルメルカプタン除去率(%)=(ガスリザーバー1のメチルメルカプタン濃度-検知管6で測定したメチルメルカプタン濃度)÷ガスリザーバー1のメチルメルカプタン濃度×100
(Methyl mercaptan decomposition test 1)
[Example 5]
Using the same fixed-bed flow reactor as in Example 1, evaluation of methyl mercaptan decomposition of odorant decomposing agent 1 was performed by a fixed-bed flow system. As a pretreatment, 50 mg of the odorant decomposing agent 1 was weighed and heated at 150° C. for 2 hours in an air atmosphere using a heating device, and then the reaction tube 5 was filled with the odorant decomposing agent 1 . The reaction tube is not heated, and in a normal temperature atmosphere, helium gas containing methyl mercaptan, which has a methyl mercaptan concentration of 14 ppm, an oxygen concentration of 20 vol%, and the balance is helium, is supplied to gas reservoir 1 at a flow rate of 15.3 mL / min. The concentration of methyl mercaptan in the helium gas containing methyl mercaptan after passing through the odorant decomposing agent 1 was measured with a detector tube 6 (manufactured by Gastech). Table 4 shows the results of measuring the outlet concentration of methyl mercaptan. The detection lower limit of the detector tube is 0.25 ppm, and the removal rate in Table 4 was calculated by Equation 2 below. Table 4 shows the calculated results.
(Formula 2)
Methyl mercaptan removal rate (%) = (methyl mercaptan concentration in gas reservoir 1 - methyl mercaptan concentration measured with detector tube 6) / methyl mercaptan concentration in gas reservoir 1 x 100
[例6]
 例5において、臭気物質分解剤1を臭気物質分解剤2に変更した以外は例5と同様にして、メチルメルカプタン分解評価を行った。結果を表4に示した。
[Example 6]
Methyl mercaptan decomposition evaluation was performed in the same manner as in Example 5 except that the odorant decomposing agent 1 was changed to the odorant decomposing agent 2 in Example 5. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 比較例1の臭気物質分解剤2は、11時間で除去率が7.1%という低い水準になるが、実施例1の臭気物質分解剤1は、15時間以降も除去率が40%以上を維持した。 The odorant decomposing agent 2 of Comparative Example 1 had a low removal rate of 7.1% after 11 hours, but the odorant decomposing agent 1 of Example 1 had a removal rate of 40% or more even after 15 hours. maintained.
(メチルメルカプタン分解試験2)
[例7]
 図2に示した固定床流通式反応装置を作製し、臭気物質分解剤1のメチルメルカプタン分解評価および生成物の評価を固定床流通式により行った。前処理として、臭気物質分解剤1を50mg秤量し、加熱装置を用いて真空条件下において80℃で30分加熱して、さらに120℃で60分加熱した後、反応管5に臭気物質分解剤1を充填した。反応管は加熱せず、常温雰囲気で、予め調整したメチルメルカプタン濃度が20ppm、酸素濃度が20体積%、残部が窒素であるメチルメルカプタンを含む窒素ガスを100mL/minの流量でガスリザーバー1から流通させ、臭気物質分解剤1を通過した後のメチルメルカプタンを含む窒素ガス中のメチルメルカプタン並びにメチルメルカプタンと酸素が反応して発生する生成物として予想される硫化水素、二酸化硫黄、ジメチルスルフィドおよびジメチルジスルフィドの濃度をGC-FPD(GC-2014、株式会社 島津製作所製)で測定した。各物質を測定した結果を表5に示した。なお、GC-FPDの検出下限値は、0.1ppmである。
(Methyl mercaptan decomposition test 2)
[Example 7]
A fixed-bed flow-type reactor shown in FIG. 2 was prepared, and evaluation of decomposition of methyl mercaptan of the odorant decomposing agent 1 and evaluation of the product were carried out by the fixed-bed flow-type. As a pretreatment, 50 mg of the odorant decomposing agent 1 was weighed and heated at 80° C. for 30 minutes under vacuum conditions using a heating device, and further heated at 120° C. for 60 minutes. 1 was filled. The reaction tube is not heated, and nitrogen gas containing methyl mercaptan, which has been adjusted in advance and has a methyl mercaptan concentration of 20 ppm, an oxygen concentration of 20% by volume, and the balance being nitrogen, is circulated from the gas reservoir 1 at a flow rate of 100 mL/min in a room temperature atmosphere. and hydrogen sulfide, sulfur dioxide, dimethyl sulfide and dimethyl disulfide expected as products generated by the reaction of methyl mercaptan in the nitrogen gas containing methyl mercaptan after passing through the odorant decomposing agent 1 and methyl mercaptan and oxygen. was measured by GC-FPD (GC-2014, manufactured by Shimadzu Corporation). Table 5 shows the results of measuring each substance. The lower detection limit for GC-FPD is 0.1 ppm.
[例8]
 例7において、臭気物質分解剤1を臭気物質分解剤3に変更した以外は例7と同様にして、メチルメルカプタン分解評価および生成物の評価を行った。測定結果を表5に示した。
[Example 8]
Evaluation of decomposition of methyl mercaptan and evaluation of the product were carried out in the same manner as in Example 7, except that odorant decomposing agent 1 was changed to odorant decomposing agent 3. Table 5 shows the measurement results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1の臭気物質分解剤1は24時間後の測定において、ジメチルジスルフィドの発生を確認できたが、比較例2の臭気物質分解剤3は、生成物の確認ができなかった。このことから、臭気物質分解剤1に吸着したメチルメルカプタンが、ジメチルジスルフィドに変換された後、吸着していた臭気物質分解剤1から徐々に脱離したと考えられる。一方、臭気物質分解剤3は、触媒機能を有さないため、ジメチルジスルフィド等の生成物の発生が確認できなかったと推測される。後述する別試験で記載するように、臭気物質分解剤1に吸着している成分を検証したところ、硫酸が吸着されていることが確認されたため、触媒反応により生成した化合物の一部は、臭気物質分解剤1に残存すると考えられる。 In the measurement after 24 hours, the generation of dimethyl disulfide was confirmed for the odorant decomposing agent 1 of Example 1, but the product could not be confirmed for the odorant decomposing agent 3 of Comparative Example 2. From this, it is considered that the methyl mercaptan adsorbed on the odorant decomposing agent 1 was gradually desorbed from the adsorbed odorant decomposing agent 1 after being converted to dimethyl disulfide. On the other hand, since the odorant decomposing agent 3 does not have a catalytic function, it is presumed that generation of products such as dimethyl disulfide could not be confirmed. As will be described later in another test, when the components adsorbed to the odorant decomposing agent 1 were verified, it was confirmed that sulfuric acid was adsorbed. It is considered that it remains in the substance decomposing agent 1 .
(メチルメルカプタン分解性耐久試験)
[例9]
 例1と同じ固定床流通式反応装置を用いて、臭気物質分解剤1を長時間メチルメルカプタンに暴露した後のメチルメルカプタン分解試験および昇温加熱環境下におけるメチルメルカプタン分解試験を固定床流通式により行った。前処理として、臭気物質分解剤1を50mg秤量し、加熱装置を用いて大気雰囲気において150℃で2時間加熱した後、反応管5に臭気物質分解剤1を充填した。次に加速劣化処理として、反応管は加熱せず、常温雰囲気で、予め調整したメチルメルカプタンの濃度が80ppm、酸素濃度が20体積%、残部がヘリウムであるメチルメルカプタンを含むヘリウムガスをガスリザーバー1から12.5mL/minの流量で81時間流通させて加速劣化処理を行った。その後、ガスの組成をメチルメルカプタン14ppm、酸素20体積%、残部をヘリウムに変更して、ガスリザーバー1から同じ流量で流通させた。ガス濃度の切替時を0時間として4時間後および6時間後の臭気物質分解剤1を通過した後のメチルメルカプタンを含むヘリウムガス中のメチルメルカプタンの濃度を検知管6(ガステック製)で測定した。メチルメルカプタンの出口濃度を測定した結果を表6に示した。なお、検知管6の検出下限値は、0.5ppmであり、表6中の除去率は、例5に記載の前記式2により算定した。算定した結果を表6に示した。
(Methyl mercaptan degradability durability test)
[Example 9]
Using the same fixed-bed flow reactor as in Example 1, a methyl mercaptan decomposition test after exposing the odorant decomposing agent 1 to methyl mercaptan for a long period of time and a methyl mercaptan decomposition test under an elevated temperature heating environment were carried out by a fixed-bed flow system. gone. As a pretreatment, 50 mg of the odorant decomposing agent 1 was weighed and heated at 150° C. for 2 hours in an air atmosphere using a heating device, and then the reaction tube 5 was filled with the odorant decomposing agent 1 . Next, as an accelerated deterioration treatment, helium gas containing methyl mercaptan prepared in advance and having a methyl mercaptan concentration of 80 ppm, an oxygen concentration of 20% by volume, and the balance being helium was supplied to the gas reservoir 1 in a room temperature atmosphere without heating the reaction tube. Accelerated deterioration treatment was performed by circulating for 81 hours at a flow rate of 12.5 mL/min. After that, the composition of the gas was changed to 14 ppm of methyl mercaptan, 20% by volume of oxygen, and the remainder to helium, and the gas was passed through the gas reservoir 1 at the same flow rate. Measure the concentration of methyl mercaptan in the helium gas containing methyl mercaptan after passing through the odorant decomposing agent 1 after 4 hours and 6 hours after switching the gas concentration at 0 hours with a detector tube 6 (manufactured by GASTEC). did. Table 6 shows the results of measuring the outlet concentration of methyl mercaptan. The lower limit of detection of the detector tube 6 is 0.5 ppm, and the removal rate in Table 6 was calculated by Equation 2 described in Example 5 above. Table 6 shows the calculated results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6から明らかなように臭気物質分解剤1は、加速劣化処理として、81時間継続的に80ppmのメチルメルカプタンを暴露したにもかかわらず、メチルメルカプタンを含むヘリウムガス濃度の切替から4時間、6時間後のメチルメルカプタンの除去率が28.6%を示した。表5および表6の結果から、臭気物質分解剤1は、触媒反応により、メチルメルカプタンを別の化合物に変換する機能を有することで、分解効果を維持し続けることが明らかになった。 As is clear from Table 6, odorant decomposing agent 1 was continuously exposed to 80 ppm of methyl mercaptan for 81 hours as an accelerated aging treatment. The removal rate of methyl mercaptan after hours showed 28.6%. From the results in Tables 5 and 6, it was clarified that the odorant decomposing agent 1 has the function of converting methyl mercaptan into another compound through a catalytic reaction, thereby maintaining its decomposing effect.
[例10]
(メチルメルカプタン分解生成物の同定試験)
 例1と同じ固定床流通式反応装置を用いて、メチルメルカプタン分解後に分解生成物として、硫酸が臭気物質分解剤1に吸着しているかを検証した。前処理として、臭気物質分解剤1を50mg秤量し、加熱装置を用いて大気雰囲気において150℃で2時間加熱した後、反応管5に臭気物質分解剤1を充填した。次に、この臭気物質分解剤1に常温雰囲気で、予め調整したメチルメルカプタンの濃度が14ppm、酸素濃度が20体積%、残部がヘリウムであるメチルメルカプタンを含むヘリウムガスをガスリザーバー1から12.5mL/minの流量で24時間流通させて、臭気物質分解剤1がメチルメルカプタンを吸着することによるメチルメルカプタン除去挙動への影響が現れなくなる定常状態とする処理を行った。さらに、この臭気物質分解剤1にメチルメルカプタンの濃度が14ppm、酸素濃度が20体積%、残部がヘリウムであるメチルメルカプタンを含むヘリウムガスをガスリザーバー1から12.5mL/minの流量で24時間流通させる処理を行い、定常状態とするための処理と合わせて、合計48時間、測定対象のガスを流通させた。
[Example 10]
(Identification test of methyl mercaptan decomposition products)
Using the same fixed-bed flow reactor as in Example 1, it was verified whether sulfuric acid was adsorbed on the odorant decomposing agent 1 as a decomposition product after decomposition of methyl mercaptan. As a pretreatment, 50 mg of the odorant decomposing agent 1 was weighed and heated at 150° C. for 2 hours in an air atmosphere using a heating device, and then the reaction tube 5 was filled with the odorant decomposing agent 1 . Next, 12.5 mL of helium gas containing methyl mercaptan, which has a methyl mercaptan concentration of 14 ppm, an oxygen concentration of 20% by volume, and the balance being helium, is added to the odorant decomposing agent 1 in a normal temperature atmosphere from the gas reservoir 1. /min for 24 hours to obtain a steady state in which the adsorption of methyl mercaptan by the odorant decomposing agent 1 no longer affects the behavior of removing methyl mercaptan. Furthermore, helium gas containing methyl mercaptan having a methyl mercaptan concentration of 14 ppm, an oxygen concentration of 20% by volume, and the balance being helium was passed through the odorant decomposing agent 1 at a flow rate of 12.5 mL/min for 24 hours from the gas reservoir 1. The gas to be measured was allowed to flow for a total of 48 hours, together with the treatment for establishing a steady state.
 硫酸の定量は、臭気物質分解剤1に純水2.0mLを加えて、2分間超音波処理を行い、30分間放置した。その後、遠心分離を行い、上澄み液を抽出した。この操作を繰り返し、抽出した上澄み液を水酸化ナトリウム水溶液で滴定することで臭気物質分解剤1に付着した硫酸の濃度を求めた。定量の結果、臭気物質分解剤1が除去したメチルメルカプタンの総量に対して0.23%の硫酸が検出された。したがって、臭気物質分解剤1の触媒反応により、メチルメルカプタンは硫酸に変換されることが明らかになった。 For the quantitative determination of sulfuric acid, 2.0 mL of pure water was added to the odorant decomposing agent 1, ultrasonicated for 2 minutes, and left for 30 minutes. After that, centrifugation was performed and the supernatant was extracted. This operation was repeated, and the extracted supernatant was titrated with an aqueous sodium hydroxide solution to determine the concentration of sulfuric acid adhering to the odorant decomposing agent 1 . As a result of quantification, 0.23% sulfuric acid was detected with respect to the total amount of methyl mercaptan removed by the odorant decomposing agent 1. Therefore, it was clarified that the catalytic reaction of the odorant decomposing agent 1 converts methyl mercaptan into sulfuric acid.
産業上の利用分野Industrial field of application
 上記結果から明らかなように、本発明である臭気物質分解剤は、室温でもアンモニア並びにメチルカプタンと反応してこれら物質を分解するため、活性を維持すると考えられる。
 上記の結果から、本発明の臭気物質分解剤は、トイレ、キッチン、ゴミ箱、そのほかの生活空間、並びに生ごみ捨て場、生ごみ処理場、畜産農場で発生する窒素化合物並びに硫黄化合物を含む臭気物質を常温で分解することに好適に用いられる。
As is clear from the above results, the odorant decomposing agent of the present invention reacts with ammonia and methylcaptan to decompose these substances even at room temperature, and is therefore considered to maintain its activity.
From the above results, the odorant decomposing agent of the present invention can be used to remove odorous substances containing nitrogen compounds and sulfur compounds generated in toilets, kitchens, trash cans, other living spaces, garbage disposal sites, garbage disposal sites, and livestock farms. It is suitably used for decomposing at room temperature.
1:ガスリザーバー
2:マスフローコントローラー
3:臭気物質分解剤
4:グラスウール
5:反応管
6:検知管
7:ガスサンプリング口

 
1: Gas reservoir 2: Mass flow controller 3: Odor substance decomposing agent 4: Glass wool 5: Reaction tube 6: Detector tube 7: Gas sampling port

Claims (8)

  1.  平均細孔径が1nmから50nm、BET比表面積が300から2000m/gである多孔質シリカに、粒径1から4nmのルテニウムを含有する粒子を担持した臭気物質分解剤。 An odorant decomposing agent comprising porous silica having an average pore diameter of 1 nm to 50 nm and a BET specific surface area of 300 to 2000 m 2 /g supporting ruthenium-containing particles having a particle diameter of 1 to 4 nm.
  2.  前記多孔質シリカが、メソポーラスシリカである請求項1に記載の臭気物質分解剤。 The odorant decomposing agent according to claim 1, wherein the porous silica is mesoporous silica.
  3.  前記ルテニウムの担持量が、0.1から10質量%である請求項1または請求項2に記載の臭気物質分解剤。 The odorant decomposing agent according to claim 1 or claim 2, wherein the amount of ruthenium supported is 0.1 to 10% by mass.
  4.  前記臭気物質分解剤の分解対象となる臭気物質が、硫黄化合物または窒素化合物である請求項1から3のいずれか1項に記載の臭気物質分解剤。 The odorant decomposing agent according to any one of claims 1 to 3, wherein the odorous substance to be decomposed by the odorant decomposing agent is a sulfur compound or a nitrogen compound.
  5.  前記硫黄化合物が、メチルメルカプタンである請求項4に記載の臭気物質分解剤。 The odorant decomposing agent according to claim 4, wherein the sulfur compound is methyl mercaptan.
  6.  前記窒素化合物が、アンモニアである請求項4に記載の臭気物質分解剤。 The odorant decomposing agent according to claim 4, wherein the nitrogen compound is ammonia.
  7.  請求項1から6のいずれか1項に記載の臭気物質分解剤を備える臭気物質分解用物品。 An odorant-decomposing article comprising the odorant-decomposing agent according to any one of claims 1 to 6.
  8.  酸素存在下0℃から50℃以下の雰囲気で、請求項1から6のいずれか1項に記載の臭気物質分解剤と臭気物質を接触させる臭気物質分解方法。

     
    A method for decomposing an odorous substance, comprising contacting the odorant-decomposing agent according to any one of claims 1 to 6 with an odorant in an atmosphere of 0°C to 50°C or less in the presence of oxygen.

PCT/JP2022/008185 2021-04-27 2022-02-28 Decomposer for odorous substance, article including decomposer for odorous substance, and method for decomposing odorous substance using same WO2022230343A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023517096A JPWO2022230343A1 (en) 2021-04-27 2022-02-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-074782 2021-04-27
JP2021074782 2021-04-27

Publications (1)

Publication Number Publication Date
WO2022230343A1 true WO2022230343A1 (en) 2022-11-03

Family

ID=83846966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008185 WO2022230343A1 (en) 2021-04-27 2022-02-28 Decomposer for odorous substance, article including decomposer for odorous substance, and method for decomposing odorous substance using same

Country Status (2)

Country Link
JP (1) JPWO2022230343A1 (en)
WO (1) WO2022230343A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110856A1 (en) * 2015-12-25 2017-06-29 太陽化学株式会社 Ethylene decomposition agent
WO2019027057A1 (en) * 2017-08-04 2019-02-07 国立大学法人北海道大学 Catalyst for oxidative decomposition and use of same
WO2019065504A1 (en) * 2017-09-28 2019-04-04 株式会社フルヤ金属 Decomposing material and decomposition method using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110856A1 (en) * 2015-12-25 2017-06-29 太陽化学株式会社 Ethylene decomposition agent
WO2019027057A1 (en) * 2017-08-04 2019-02-07 国立大学法人北海道大学 Catalyst for oxidative decomposition and use of same
WO2019065504A1 (en) * 2017-09-28 2019-04-04 株式会社フルヤ金属 Decomposing material and decomposition method using same

Also Published As

Publication number Publication date
JPWO2022230343A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
CN102099115B (en) Deodorizing catalyst, deodorizing method using same and method for regenerating the catalyst
CN110368790B (en) Air purification method, system and application for degrading VOCs through catalytic oxidation
JPH06102155B2 (en) Deodorant, deodorant manufacturing method, deodorizing method, deodorizing device, and refrigeration cycle device equipped with this deodorizing device
KR101762718B1 (en) Porous copper-manganese filter media and the preparation of the same
WO2001062307A1 (en) Apparatus for removing chemical substance
JP2002119809A (en) Filter, and air cleaner and air conditioner using the same
WO2022230343A1 (en) Decomposer for odorous substance, article including decomposer for odorous substance, and method for decomposing odorous substance using same
JP3725925B2 (en) Mesh sheet, deodorizing element and deodorizing device
JP2000210534A (en) Photocatalytic deodorizing filter
JPH0975434A (en) Deodorant using photocatalyst
JP2001314491A (en) Air purifying filter
JP4780490B2 (en) Activated carbon filter
JP2008073571A (en) Photocatalyst-supported ceramic foam and method for producing the same
WO2017188138A1 (en) Voc degradation agent
JP7588652B2 (en) Odor removal catalyst and its uses
JP2010058994A (en) Silicate-coated titanium oxide material for decomposing volatile organic compound
WO2021199900A1 (en) Deodorization method and deodorization device
KR100333590B1 (en) Photo Regenerative Deodorant and Deodorizing Method
JPH1033646A (en) Toilet deodorizing catalyst
EP0638320A1 (en) Air cleaning agent and production thereof
KR102557943B1 (en) Physical and Chemical Deodorization System and Method using Gaseous Chlorine Dioxide Adsorption on Silica Gel and UV Irradiation as well as Adsorption-Desorption on-Shifts Process
KR102454332B1 (en) Air purifier
JPH0924272A (en) Self-regeneration type adsorbent
JPH10165808A (en) Improved deodorant
JP2001137661A (en) Method for manufacturing photocatalytic filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023517096

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795266

Country of ref document: EP

Kind code of ref document: A1