WO2022226896A1 - 光学系统、摄像模组及电子设备 - Google Patents
光学系统、摄像模组及电子设备 Download PDFInfo
- Publication number
- WO2022226896A1 WO2022226896A1 PCT/CN2021/090997 CN2021090997W WO2022226896A1 WO 2022226896 A1 WO2022226896 A1 WO 2022226896A1 CN 2021090997 W CN2021090997 W CN 2021090997W WO 2022226896 A1 WO2022226896 A1 WO 2022226896A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical system
- optical axis
- object side
- image side
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/64—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
Definitions
- the invention relates to the technical field of photography and imaging, in particular to an optical system, a camera module and an electronic device.
- a multi-lens design is generally used to improve the imaging quality.
- various problems in the optical system gradually appear.
- the system size increases due to the increase of the number of lenses.
- an optical system a camera module, and an electronic device are provided.
- An optical system comprising in sequence from the object side to the image side along the optical axis:
- the first lens with positive refractive power the object side of the first lens is convex at the near optical axis, and the image side is concave at the near optical axis;
- the second lens with negative refractive power the object side of the second lens is convex at the near optical axis, and the image side is concave at the near optical axis;
- the image side of the sixth lens is concave at the near optical axis
- the seventh lens with positive refractive power the object side of the seventh lens is convex at the near optical axis, the object side and the image side of the seventh lens are both aspherical, and at least one of the surfaces is inflection;
- the eighth lens with negative refractive power the image side of the eighth lens is concave at the near optical axis, the object side and the image side of the eighth lens are both aspherical, and at least one of the surfaces has inflection;
- optical system also satisfies the relation:
- f678 is the combined focal length of the sixth lens, the seventh lens and the eighth lens, and f6 is the effective focal length of the sixth lens.
- a camera module includes an image sensor and the above-mentioned optical system, wherein the image sensor is arranged on the image side of the optical system.
- An electronic device includes a fixing member and the above-mentioned camera module, wherein the camera module is arranged on the fixing member.
- FIG. 1 is a schematic structural diagram of an optical system provided by a first embodiment of the present application.
- FIG. 2 includes longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the first embodiment
- FIG. 3 is a schematic structural diagram of an optical system provided by a second embodiment of the present application.
- FIG. 4 includes longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the second embodiment
- FIG. 5 is a schematic structural diagram of an optical system provided by a third embodiment of the present application.
- FIG. 7 is a schematic structural diagram of an optical system provided by a fourth embodiment of the present application.
- FIG. 8 includes longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the fourth embodiment
- FIG. 9 is a schematic structural diagram of an optical system provided by a fifth embodiment of the present application.
- FIG. 10 includes longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the fifth embodiment
- FIG. 11 is a schematic structural diagram of an optical system provided by a sixth embodiment of the present application.
- FIG. 13 is a schematic structural diagram of an optical system provided by a seventh embodiment of the present application.
- 15 is a schematic diagram of a camera module provided by an embodiment of the application.
- FIG. 16 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
- an embodiment of the present application provides an optical system 10 having an eight-lens structure.
- the optical system 10 includes a first lens L1 , a second lens L2 , a third lens L1 , a second lens L2 , and a third lens along the optical axis 101 from the object side to the image side in sequence.
- the first lens L1 has positive refractive power
- the second lens L2 has negative refractive power
- the sixth lens L6 has negative refractive power
- the seventh lens L7 has positive refractive power
- the eighth lens L8 has negative refractive power.
- the optical axes of the lenses in the optical system 10 are on the same straight line, and the straight line is the optical axis 101 of the optical system 10 .
- Each lens in the optical system 10 can be assembled in a lens barrel to form an imaging lens.
- the first lens L1 has an object side S1 and an image side S2
- the second lens L2 has an object side S3 and an image side S4
- the third lens L3 has an object side S5 and an image side S6
- the fourth lens L4 has an object side S7 and an image side S8
- the fifth lens L5 has an object side S9 and an image side S10
- the sixth lens L6 has an object side S11 and an image side S12
- the seventh lens L7 has an object side S13 and an image side S14
- the eighth lens L8 has an object side S15 and an image side S14.
- the side S16 Like the side S16.
- the optical system 10 also has an imaging surface S17 , which is located on the image side of the eighth lens L8 , and the on-axis object point can converge on the imaging surface S17 after being adjusted by each lens of the optical system 10 .
- the imaging surface S17 of the optical system 10 coincides with the photosensitive surface of the image sensor.
- the imaging surface S17 can also be regarded as the photosensitive surface of the image sensor.
- the object side S1 of the first lens L1 is convex at the near optical axis
- the image side S2 is concave at the near optical axis
- the object side S3 of the second lens L2 is convex at the near optical axis
- the image side S4 is concave at the near optical axis
- the image side S12 of the sixth lens L6 is concave at the near optical axis
- the object side S13 of the seventh lens L7 is convex at the near optical axis, while the seventh lens L7
- Both the object side surface S13 and the image side surface S14 are aspherical surfaces, and at least one of the object side surface S13 and the image side surface S14 is inflected
- the image side surface S16 of the eighth lens L8 is concave at the near optical axis
- the Both the object side surface S15 and the image side surface S16 are aspherical surfaces, and at least one of the object side surface S15 and the image side surface S16 has a
- the lens surface has a certain surface shape near the optical axis, that is, the lens surface has this surface shape near the optical axis 101, and the lens surface is radially close to the area at the maximum effective aperture. It can have the same surface type or the opposite surface type. When there are two opposite surface types on the same lens surface, it can be said that the surface has a recurve.
- the first lens L1 by making the first lens L1 have a positive refractive power and satisfy the above-mentioned surface design, it will be beneficial to make the image-side focal position of the first lens L1 closer to the object side, thereby facilitating the compression of the optical system 10 .
- the second lens L2 by making the second lens L2 have a negative refractive power and a surface configuration similar to that of the first lens L1, the first lens L1 can be reasonably matched to reasonably reduce the light in each field of view after passing through the first lens L1.
- the optical system 10 further satisfies the relationship: 2.5 ⁇ f678/f6 ⁇ 8.5; f678 is the sixth lens L6, the seventh lens L7 and the eighth lens L8 The combined focal length of , f6 is the effective focal length of the sixth lens L6.
- the optical system 10 When the optical system 10 further satisfies this relationship, a reasonable configuration can be obtained between the combined focal length of the sixth lens L6, the seventh lens L7, and the eighth lens L8, which are the optical system 10 closest to the image side, and the effective focal length of the sixth lens L6 , which can help to slow down the deflection angle of the light in the fringe field of view, reduce the sensitivity of the incident light to the sixth lens L6 to the eighth lens L8, so that the aberration generated by the object lens can be reasonably corrected, and the imaging of the optical system 10 can be improved.
- the refractive power of the sixth lens L6 can be reasonably configured, it is not only conducive to compressing the length of the optical system 10, but also reduces the refractive power burden of the sixth lens L6 and reduces the molding difficulty of the sixth lens L6.
- the workability of the sixth lens L6 is improved.
- the relationship satisfied by the optical system 10 may specifically be 2.7, 2.85, 2.94, 3.18, 3.3, 4.6, 5.9, 6.7, 7.5, 7.8 or 8.0.
- the optical system 10 in some embodiments satisfies the relationship: -10.69mm ⁇ f6 ⁇ -7.572mm.
- the combined refractive power of the sixth lens L6 to the eighth lens L8 can be better matched, so as to further reduce the light rays of the edge field of view when they pass through the rear mirror group in the optical system 10.
- the deflection angle reduces the sensitivity of the incident light to the rear mirror group, which is conducive to further correcting the aberration of the system.
- the optical system 10 also satisfies at least one of the following relationships and related aperture settings, and can have corresponding technical effects when any relationship is satisfied:
- ImgH may also be referred to as the maximum imaging circle radius of the optical system 10, and in some embodiments, when the optical system 10 is assembled with the image sensor, half of the diagonal length of the rectangular effective pixel area on the image sensor is equal to or approximately equal to the ImgH numerical value. Satisfying this relationship not only helps the optical system 10 to obtain a larger image plane, but also helps the optical system 10 to obtain a compact structure, so that the imaging characteristics of miniaturization, large image plane, and high pixel can be taken into account.
- the relationship satisfied by the optical system 10 may specifically be 3, 3.15, 3.26, 3.3, 3.35, 3.45, 3.49, 3.57, 3.63 or 3.70, and the numerical unit is mm. Further, when the optical system 10 with the above refractive power and surface design satisfies FNO ⁇ 1.85, it can ensure that the optical system 10 can still obtain sufficient luminous flux in a darker weather environment, thereby ensuring higher imaging quality. In some embodiments, the FNO satisfied by the optical system 10 may specifically be 1.5, 1.53, 1.56, 1.6, 1.64, 1.68, 1.73, 1.77 or 1.82.
- TTL is the distance from the object side S1 of the first lens L1 to the imaging surface S17 of the optical system 10 on the optical axis 101
- ImgH is half of the image height corresponding to the maximum angle of view of the optical system 10 .
- TTL is the distance from the object side S1 of the first lens L1 to the imaging surface S17 of the optical system 10 on the optical axis 101 , that is, the total optical length of the optical system 10 .
- f345 is the combined focal length of the third lens L3, the fourth lens L4 and the fifth lens L5, and f12 is the combined focal length of the first lens L1 and the second lens L2.
- the lens group formed by the first lens L1 and the second lens L2 provides an excessively large positive refractive power, which increases the sensitivity of the optical system 10 and is not conducive to realizing the miniaturization and large image surface characteristics of the system.
- the total positive refractive power provided by the lens group formed by the third lens L3 to the fifth lens L5 will be too large, which will easily overcorrect the aberration generated by the object lens and increase the Correction burden for large image square lenses.
- the f345/f12 relationship satisfied by the optical system 10 may specifically be 7.2, 7.8, 8.5, 9.3, 9.9, 10.6, 11.0, 11.7, 12.6 or 13.2.
- f1 is the effective focal length of the first lens L1
- f2 is the effective focal length of the second lens L2
- r12 is the image side S2 of the first lens L1 on the optical axis 101 is the radius of curvature
- r22 is the radius of curvature of the image side S4 of the second lens L2 at the optical axis 101 .
- the relationship satisfied by the optical system 10 may specifically be 1.8, 1.95, 2.07, 2.15, 2.24, 2.37, 2.43 or 2.5.
- ct37/et37 ⁇ 1.4; ct37 is the sum of the thicknesses of the third lens L3 to the seventh lens L7 on the optical axis 101, and et37 is the maximum effective aperture on the object side of the third lens L3 to the seventh lens L7 The sum of the distances from the position to the maximum effective aperture of the image side in the direction of the optical axis.
- the central thickness and edge thickness of each lens are reasonably configured, which is conducive to the uniform size distribution of each lens, ensuring that Post-lens assembly stabilization.
- the relationship satisfied by the optical system 10 may specifically be 1.25, 1.28, 1.3, 1.32 or 1.35.
- f is the effective focal length of the optical system 10
- sd11 is half of the maximum effective aperture of the object side S1 of the first lens L1
- sd82 is the maximum effective aperture of the image side S16 of the eighth lens L8 half of the effective caliber.
- the relationship satisfied by the optical system 10 may specifically be 2.1, 2.14, 2.19, 2.26, 2.3, 2.35, 2.4 or 2.43.
- r62 is the curvature radius of the image side S12 of the sixth lens L6 at the optical axis 101
- r71 is the object side S13 of the seventh lens L7
- the curvature radius at the optical axis 101, sag62 is the sag of the image side S12 of the sixth lens L6 at the maximum effective aperture, and sag71 is the sag of the object side S13 of the seventh lens L7 at the maximum effective aperture.
- the relationship satisfied by the optical system 10 may specifically be 5.9, 6.0, 6.3, 6.7, 6.9 or 7.1.
- ct23 is the distance from the image side S4 of the second lens L2 to the object side S5 of the third lens L3 on the optical axis 101
- ct78 is the image side S14 of the seventh lens L7 to the eighth lens L8 The distance of the object side surface S15 on the optical axis 101.
- the gap between the second lens L2 and the third lens L3 and the gap between the seventh lens L7 and the eighth lens L8 can be reasonably constrained, thereby improving the processing and assembling feasibility of the optical system 10, and at the same time. It is also beneficial to shorten the total length of the system and improve the imaging quality of the central field of view.
- the relationship satisfied by the optical system 10 may specifically be 2, 2.04, 2.09, 2.15, 2.23, 2.27 or 2.3.
- sag72 is the sag of the image side S14 of the seventh lens L7 at the maximum effective aperture
- sag81 is the sag of the object side S15 of the eighth lens L8 at the maximum effective aperture.
- the sag, et78 is the distance from the maximum effective aperture of the image side S14 of the seventh lens L7 to the maximum effective aperture of the object side S15 of the eighth lens L8 in the direction of the optical axis.
- the relationship satisfied by the optical system 10 may specifically be 0.80, 0.87, 0.96, 1.07, 1.14, 1.23, 1.34, 1.45 or 1.52.
- the optical system 10 includes a vignetting stop disposed between the second lens L2 and the third lens L3, sds is the maximum effective aperture of the vignetting stop, and sd31 is the third The maximum effective aperture of the object side S5 of the lens L3, and sd81 is the maximum effective aperture of the object side S15 of the eighth lens L8.
- sd81-sd31 is expressed as the step difference from the third lens L3 to the eighth lens L8.
- the aperture of the vignetting stop located between the second lens L2 and the third lens L3 and the configuration of the step difference are reasonable, so that the edge The light of the field of view can reach the eighth lens L8 and further reach the imaging surface S17 with a reasonable propagation angle after passing through the vignetting diaphragm.
- the above design is not only conducive to increasing the size of the image surface of the optical system 10 and shortening the total length, but also It is beneficial to increase the aperture, increase the luminous flux, and improve the imaging quality of the optical system 10 in a darker environment; in addition, it is also beneficial to control the aperture difference between the lenses, avoid excessive changes in the apertures of adjacent lenses, and reduce the design pressure of the lens barrel.
- the relationship satisfied by the optical system 10 may specifically be 0.55, 0.59, 0.63, 0.67, 0.70 or 0.72.
- zh78 is the maximum distance from the image side S14 of the seventh lens L7 to the object side S15 of the eighth lens L8 in the optical axis direction
- zb78 is the image side S14 of the seventh lens L7 to the eighth lens
- the eighth lens L8 it is beneficial to make the eighth lens L8 have enough distortion to match the seventh lens L7 to correct the system aberration, Promote the marginal light to have a smaller deflection angle when passing through the seventh lens L7 and the eighth lens L8, thereby improving the imaging quality; on the other hand, sufficient air gap can be left between the seventh lens L7 and the eighth lens L8 , in order to meet the requirements of forming assembly.
- the relationship satisfied by the optical system 10 may specifically be 9.7, 9.9, 10.3, 10.7, 11.3 or 11.7.
- zh67 is the maximum distance from the image side S12 of the sixth lens L6 to the object side S13 of the seventh lens L7 in the optical axis direction
- zb67 is the image side S12 of the sixth lens L6 to the seventh lens
- the side S12 is adapted to the surface shape of the object side S13 of the seventh lens L7 to promote the aberration balance of the optical system, improve the resolution of the system, and also help to reduce the generation of ghost images and stray light; on the other hand, it is also beneficial to Shorten the total length of the system to avoid the occurrence of poor assembly caused by too close the distance between the lenses.
- the relationship satisfied by the optical system 10 may specifically be 4.46, 4.53, 4.77, 5.00, 5.24, 5.38 or 5.42.
- jd22 is the maximum acute angle formed by the tangent plane of each position of the image side S4 of the second lens L2 and the plane perpendicular to the optical axis, and the optical system 10 includes a Vignetting stop with third lens L3.
- the image side S4 of the second lens L2 is an adjacent optical surface located on the object side of the vignetting diaphragm. The incident light is highly sensitive to the surface shape of this surface. Controlling the above ratio within a reasonable range can effectively control the surface of this surface.
- the relationship satisfied by the optical system 10 may specifically be 0.652, 0.655, 0.658 or 0.664.
- jd31 is the maximum acute angle formed by the tangent plane of each position of the object side surface S5 of the third lens L3 and the plane perpendicular to the optical axis, and the optical system 10 includes the second lens L2 Vignetting stop with third lens L3.
- the object side S5 of the third lens L3 is the adjacent optical surface located on the image side of the vignetting diaphragm.
- the relationship satisfied by the optical system 10 may specifically be 0.43, 0.45, 0.46, 0.48 or 0.50.
- the numerical reference wavelength of effective focal length and combined focal length in the above relational conditions is 555nm.
- the description of effective focal length, combined focal length and refractive power at least refers to the value of the corresponding lens or lens group at the near optical axis.
- the above relational conditions and the technical effects brought about are aimed at the optical system 10 that satisfies the above-mentioned lens design (number of lenses, configuration of refractive power, configuration of surface shape, etc.).
- the lens design of the aforementioned optical system 10 cannot be guaranteed, it will be difficult to ensure that the optical system 10 can still have corresponding technical effects when these relational expressions are satisfied, and may even lead to obvious deterioration of imaging performance.
- At least one lens of the optical system 10 has an aspherical surface.
- the lens is said to have an aspherical surface.
- the object side surface and the image side surface of each lens can be designed as aspherical surfaces.
- the aspherical design can help the optical system 10 to more effectively eliminate aberrations and improve imaging quality.
- at least one lens of the optical system 10 may have a spherical surface shape, and the design of the spherical surface shape can reduce the manufacturing difficulty and manufacturing cost of the lens.
- the design of the surfaces of each lens in the optical system 10 may be a combination of aspherical and spherical surfaces.
- Z is the distance from the corresponding point on the aspheric surface to the tangent plane of the surface at the optical axis
- r is the distance from the corresponding point on the aspheric surface to the optical axis
- c is the curvature of the aspheric surface at the optical axis
- k is the cone coefficient
- Ai is the coefficient of the high-order term corresponding to the i-th-order high-order term in the aspheric surface formula.
- At least one lens in the optical system 10 is made of plastic (PC, Plastic), and the plastic material may be polycarbonate, gum, or the like.
- the material of at least one lens in the optical system 10 is glass (GL, Glass).
- lenses of different materials can be provided in the optical system 10, that is, a design combining glass lenses and plastic lenses can be used, but the specific configuration relationship can be based on actual conditions. It is determined according to the needs, and it is not exhaustive here.
- the optical system 10 includes an aperture stop STO1 , a first lens L1 with positive refractive power, and a second lens L2 with negative refractive power in sequence from the object side to the image side along the optical axis 101 , vignetting stop STO2, third lens L3 with positive refractive power, fourth lens L4 with negative refractive power, fifth lens L5 with negative refractive power, sixth lens L6 with negative refractive power, positive refractive power
- the seventh lens L7 having a strong refractive power and the eighth lens L8 having a negative refractive power, and the lens surfaces of the optical system 10 are as follows:
- the object side S1 of the first lens L1 is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 is concave near the maximum effective aperture, and the image side S2 is convex near the maximum effective aperture. .
- the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 is convex near the maximum effective aperture, and the image side S4 is concave near the maximum effective aperture .
- the object side S5 of the third lens L3 is convex at the near optical axis, and the image side S6 is convex at the near optical axis; the object side S5 is concave near the maximum effective aperture, and the image side S6 is convex near the maximum effective aperture .
- the object side S7 of the fourth lens L4 is convex at the near optical axis, and the image side S8 is concave at the near optical axis; the object side S7 is convex near the maximum effective aperture, and the image side S8 is concave near the maximum effective aperture. .
- the object side S9 of the fifth lens L5 is concave at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S9 is concave near the maximum effective aperture, and the image side S10 is concave near the maximum effective aperture. .
- the object side S11 of the sixth lens L6 is convex at the near optical axis, and the image side S12 is concave at the near optical axis; the object side S11 is convex near the maximum effective aperture, and the image side S12 is convex near the maximum effective aperture. .
- the object side S13 of the seventh lens L7 is convex at the near optical axis, and the image side S14 is concave at the near optical axis; the object side S13 is concave near the maximum effective aperture, and the image side S14 is concave near the maximum effective aperture. .
- the object side S15 of the eighth lens L8 is concave at the near optical axis, and the image side S16 is concave at the near optical axis; the object side S15 is concave near the maximum effective aperture, and the image side S16 is convex near the maximum effective aperture. .
- the respective lens parameters of the optical system 10 in the first embodiment are shown in Table 1 below.
- the elements from the object side to the image side of the optical system 10 are arranged in order from top to bottom in Table 1.
- the infrared cut filter 110 can be used as a part of the optical system 10 or removed from the optical system 10, but after the infrared cut filter 110 is removed, the optical total length TTL of the optical system 10 should remain unchanged.
- the Y radius in Table 1 is the curvature radius of the corresponding surface of the lens at the optical axis 101 .
- the surface with the surface number S1 represents the object side of the first lens L1
- the surface with the surface number S2 represents the image side of the first lens L1
- the first value of each lens in the "thickness" parameter column The absolute value is the thickness of the lens on the optical axis 101
- the absolute value of the second value is the distance on the optical axis 101 from the image side of the lens to the next optical surface (object side or diaphragm surface of the latter lens) on the optical axis 101
- the thickness parameter of the diaphragm represents the distance from the diaphragm surface to the object side of the adjacent lens on the image side on the optical axis 101 .
- the reference wavelength of refractive index and Abbe number of each lens in the table is 587.6nm
- the reference wavelength of focal length (effective focal length) is 555nm
- the numerical units of Y radius, thickness, focal length (effective focal length) are all millimeters (mm) .
- the parameter data and the lens surface structure used in the calculation of the relational expressions in the following embodiments are subject to the data in the lens parameter table in the corresponding embodiments.
- the effective focal length f of the optical system 10 in the first embodiment is 6.126mm
- the aperture number FNO is 1.59
- the maximum field angle FOV is 82.767°
- the total optical length TTL is 7.59mm.
- Table 2 presents the aspheric coefficients of the corresponding lens surfaces in Table 1, where K is the conic coefficient and Ai is the coefficient corresponding to the i-th higher-order term in the aspheric surface type formula.
- the optical system 10 satisfies the following relationships:
- the space can be reasonably configured, which can help to slow down the deflection angle of the light at the edge of the field of view, reduce the sensitivity of the incident light to the sixth lens L6 to the eighth lens L8, so as to reasonably correct the aberration generated by the object lens, improve the The imaging quality of the optical system 10; in addition, because the refractive power of the sixth lens L6 can be reasonably configured, it is not only beneficial to compress the length of the optical system 10, but also reduces the refractive power burden of the sixth lens L6, reducing the sixth lens.
- the molding difficulty of L6 improves the workability of the sixth lens L6.
- ImgH/FNO 3.464mm; when this relationship is satisfied, it is not only beneficial for the optical system 10 to obtain a larger image plane, but also for the optical system 10 to obtain a compact structure, so that the imaging of miniaturization, large image plane and high pixel can be taken into account characteristic.
- TTL/ImgH 1.377; when this relationship is satisfied, on the one hand, it is beneficial to reduce the total length of the optical system 10 and reduce the sensitivity; Match a higher pixel image sensor to capture sharper details.
- ct37/et37 1.23; when this relationship is satisfied, it is beneficial to shorten the total length of the system and realize a compact structure between the third lens L3 and the seventh lens L7, and the central thickness and edge thickness of each lens are reasonably configured, which is beneficial to each lens.
- the size distribution of the lens is uniform to ensure the stability of the later lens assembly.
- f/(sd82-sd11) 2.439; when this relationship is satisfied, the aperture difference between the first lens L1 and the eighth lens L8 can be reasonably constrained, so that the optical system 10 can obtain a larger image surface, and it is also beneficial to shorten the system Overall length, while realizing a small head design.
- ct78/ct23 1.860; when this relationship is satisfied, the gap between the second lens L2 and the third lens L3 and the gap between the seventh lens L7 and the eighth lens L8 can be reasonably constrained, thereby improving the optical system 10.
- the feasibility of processing and assembly is also conducive to shortening the total length of the system and improving the imaging quality of the central field of view.
- edge light has a smaller deflection angle when passing through the two optical surfaces, so as to facilitate the smooth transition of the edge light from the field of view to the image surface, suppress the vignetting phenomenon at the edge of the image surface, and improve the resolution of the optical system 10 .
- sds/(sd81-sd31) 0.633; sd81-sd31 is expressed as the step difference from the third lens L3 to the eighth lens L8, when this relationship is satisfied, the vignetting stop STO2 located between the second lens L2 and the third lens L3
- the configuration of the aperture and the step difference is reasonable, so that the light of the fringe field of view can reach the eighth lens L8 and further reach the imaging surface S17 with a reasonable propagation angle after passing through the vignetting diaphragm STO2.
- the above design is not only conducive to increasing the optical system. The size of the image surface of 10 and the overall length are shortened.
- the aperture it is beneficial to increase the aperture, increase the luminous flux, and improve the imaging quality of the optical system 10 in a darker environment.
- zh78/zb78 10.387; when this relationship is satisfied, the degree of curvature between the seventh lens L7 and the eighth lens L8 can be reasonably controlled, on the one hand, it is beneficial to make the eighth lens L8 have sufficient distortion to match the seventh lens L7 To correct the system aberration, make the marginal light have a smaller deflection angle when passing through the seventh lens L7 and the eighth lens L8, thereby improving the imaging quality; on the other hand, it can make the gap between the seventh lens L7 and the eighth lens L8 Leave enough air gap to meet the requirements of forming assembly.
- the image side S12 of the sixth lens L6 is adapted to the surface shape of the object side S13 of the seventh lens L7, so as to promote the aberration balance of the optical system, improve the resolution of the system, and also help reduce ghost images and stray light generation; On the other hand, it is also beneficial to shorten the total length of the system and avoid the occurrence of poor assembly caused by too close the distance between the lenses.
- the image side S4 of the second lens L2 is the adjacent optical surface located on the object side of the vignetting stop STO2, and the incident light is highly sensitive to the surface shape of the surface, and the above ratio is controlled at Within a reasonable range, the surface complexity of the surface can be effectively controlled, the sensitivity can be reduced, the imaging quality of the optical system 10 can be improved, and at the same time, the difficulty of forming and processing the second transparent sheet can be reduced, and the yield can be improved.
- the object side S5 of the third lens L3 is the adjacent optical surface located on the image side of the vignetting stop STO2, the light is deflected on this surface, and the light of the central field of view and the edge of the field of view is in space Therefore, by satisfying this relationship condition, the maximum inclination angle of the object side S5 of the third lens L3 is reduced, and the complexity of the surface shape is reduced, which is beneficial to The overall yield and imaging quality of the optical system 10 are improved, and the difficulty of forming the lens is also reduced.
- FIG. 2 includes a longitudinal spherical aberration map, an astigmatism map, and a distortion map of the optical system 10 in the first embodiment, wherein the reference wavelength of the astigmatism map and the distortion map are both 555 nm, and for the following embodiments
- the astigmatism map and the distortion map are the same as the astigmatism map and the distortion map, and the ordinates of the astigmatism map and the distortion map are represented like the height IMG HT, and the unit is mm.
- Longitudinal Spherical Aberration shows the degree of defocusing of light of different wavelengths after passing through the lens.
- the ordinate of the longitudinal spherical aberration map represents the normalized pupil coordinate (Normalized Pupil Coordinator) from the pupil center to the pupil edge, and the abscissa represents the distance from the imaging plane to the intersection of the light and the optical axis (unit is mm). It can be seen from the longitudinal spherical aberration diagram that in the first embodiment, the degree of deviation of the convergence focus of each wavelength of light tends to be consistent, and the maximum focus deviation of each reference wavelength is controlled within ⁇ 0.05mm. Color halo is effectively suppressed.
- the 2 also includes a field curvature astigmatism diagram (Astigmatic Field Curves) of the optical system 10, wherein the S curve represents the sagittal field curvature at 555 nm, and the T curve represents the meridional field curvature at 555 nm.
- the field curvature of the optical system is small, the maximum field curvature is controlled within ⁇ 0.025mm, the curvature of the image plane is effectively suppressed, and the sagittal field curvature and meridional field curvature in each field of view tend to be consistent.
- the astigmatism of each field of view is better controlled, so it can be seen that the optical system 10 has a clear image from the center to the edge of the field of view.
- the distortion diagram it can be seen that the maximum distortion of the optical system 10 is controlled within 2.5%, so it can be seen that the degree of distortion of the imaging screen is well controlled.
- the optical system 10 includes an aperture stop STO1 , a first lens L1 with positive refractive power, and a second lens L2 with negative refractive power in sequence from the object side to the image side along the optical axis 101 , vignetting stop STO2, third lens L3 with positive refractive power, fourth lens L4 with negative refractive power, fifth lens L5 with positive refractive power, sixth lens L6 with negative refractive power, positive refractive power
- the seventh lens L7 having a strong refractive power and the eighth lens L8 having a negative refractive power, and the lens surfaces of the optical system 10 are as follows:
- the object side S1 of the first lens L1 is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 is concave near the maximum effective aperture, and the image side S2 is convex near the maximum effective aperture. .
- the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 is convex near the maximum effective aperture, and the image side S4 is concave near the maximum effective aperture .
- the object side S5 of the third lens L3 is concave at the near optical axis, and the image side S6 is convex at the near optical axis; the object side S5 is concave near the maximum effective aperture, and the image side S6 is convex near the maximum effective aperture .
- the object side S7 of the fourth lens L4 is concave at the near optical axis, and the image side S8 is concave at the near optical axis; the object side S7 is convex near the maximum effective aperture, and the image side S8 is concave near the maximum effective aperture. .
- the object side S9 of the fifth lens L5 is concave at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S9 is concave near the maximum effective aperture, and the image side S10 is concave near the maximum effective aperture. .
- the object side S11 of the sixth lens L6 is convex at the near optical axis, and the image side S12 is concave at the near optical axis; the object side S11 is convex near the maximum effective aperture, and the image side S12 is convex near the maximum effective aperture. .
- the object side S13 of the seventh lens L7 is convex at the near optical axis, and the image side S14 is convex at the near optical axis; the object side S13 is concave near the maximum effective aperture, and the image side S14 is concave near the maximum effective aperture. .
- the object side S15 of the eighth lens L8 is concave at the near optical axis, and the image side S16 is concave at the near optical axis; the object side S15 is concave near the maximum effective aperture, and the image side S16 is convex near the maximum effective aperture. .
- the lens parameters of the optical system 10 in this embodiment are given in Table 3 and Table 4, and the definitions of the names and parameters of each element can be obtained from the first embodiment, which will not be repeated here.
- optical system 10 in this embodiment satisfies the following relationship:
- the optical system 10 of this embodiment can have a clear image.
- the optical system 10 sequentially includes an aperture stop STO1 , a first lens L1 with positive refractive power, and a second lens L2 with negative refractive power from the object side to the image side along the optical axis 101 , vignetting stop STO2, third lens L3 with positive refractive power, fourth lens L4 with negative refractive power, fifth lens L5 with positive refractive power, sixth lens L6 with negative refractive power, positive refractive power
- the seventh lens L7 having a strong refractive power and the eighth lens L8 having a negative refractive power, and the lens surfaces of the optical system 10 are as follows:
- the object side S1 of the first lens L1 is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 is concave near the maximum effective aperture, and the image side S2 is convex near the maximum effective aperture. .
- the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 is convex near the maximum effective aperture, and the image side S4 is concave near the maximum effective aperture .
- the object side S5 of the third lens L3 is concave at the near optical axis, and the image side S6 is convex at the near optical axis; the object side S5 is concave near the maximum effective aperture, and the image side S6 is convex near the maximum effective aperture .
- the object side S7 of the fourth lens L4 is concave at the near optical axis, and the image side S8 is concave at the near optical axis; the object side S7 is convex near the maximum effective aperture, and the image side S8 is concave near the maximum effective aperture. .
- the object side S9 of the fifth lens L5 is convex at the near optical axis, and the image side S10 is concave at the near optical axis; the object side S9 is convex near the maximum effective aperture, and the image side S10 is concave near the maximum effective aperture. .
- the object side S11 of the sixth lens L6 is concave at the near optical axis, and the image side S12 is concave at the near optical axis; the object side S11 is convex near the maximum effective aperture, and the image side S12 is concave near the maximum effective aperture. .
- the object side S13 of the seventh lens L7 is convex at the near optical axis, and the image side S14 is concave at the near optical axis; the object side S13 is concave near the maximum effective aperture, and the image side S14 is concave near the maximum effective aperture. .
- the object side S15 of the eighth lens L8 is convex at the near optical axis, and the image side S16 is concave at the near optical axis; the object side S15 is concave near the maximum effective aperture, and the image side S16 is convex near the maximum effective aperture. .
- optical system 10 in this embodiment satisfies the following relationship:
- the optical system 10 of this embodiment can have a clear image.
- the optical system 10 sequentially includes an aperture stop STO1 , a first lens L1 with positive refractive power, and a second lens L2 with negative refractive power from the object side to the image side along the optical axis 101 , vignetting stop STO2, third lens L3 with negative refractive power, fourth lens L4 with positive refractive power, fifth lens L5 with negative refractive power, sixth lens L6 with negative refractive power, positive refractive power
- the seventh lens L7 with power and the eighth lens L8 with negative refractive power, and the surface shapes of the lenses of the optical system 10 are as follows:
- the object side S1 of the first lens L1 is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 is concave near the maximum effective aperture, and the image side S2 is convex near the maximum effective aperture. .
- the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 is convex near the maximum effective aperture, and the image side S4 is concave near the maximum effective aperture .
- the object side S5 of the third lens L3 is concave at the near optical axis, and the image side S6 is concave at the near optical axis; the object side S5 is concave near the maximum effective aperture, and the image side S6 is convex near the maximum effective aperture .
- the object side S7 of the fourth lens L4 is convex at the near optical axis, and the image side S8 is concave at the near optical axis; the object side S7 is convex near the maximum effective aperture, and the image side S8 is concave near the maximum effective aperture. .
- the object side S9 of the fifth lens L5 is convex at the near optical axis, and the image side S10 is concave at the near optical axis; the object side S9 is convex near the maximum effective aperture, and the image side S10 is concave near the maximum effective aperture. .
- the object side S11 of the sixth lens L6 is convex at the near optical axis, and the image side S12 is concave at the near optical axis; the object side S11 is convex near the maximum effective aperture, and the image side S12 is concave near the maximum effective aperture. .
- the object side S13 of the seventh lens L7 is convex at the near optical axis, and the image side S14 is concave at the near optical axis; the object side S13 is concave near the maximum effective aperture, and the image side S14 is convex near the maximum effective aperture. .
- the object side S15 of the eighth lens L8 is concave at the near optical axis, and the image side S16 is concave at the near optical axis; the object side S15 is concave near the maximum effective aperture, and the image side S16 is convex near the maximum effective aperture. .
- optical system 10 in this embodiment satisfies the following relationship:
- the optical system 10 of this embodiment can have a clear image.
- the optical system 10 includes an aperture stop STO1 , a first lens L1 with positive refractive power, and a second lens L2 with negative refractive power in sequence from the object side to the image side along the optical axis 101 , vignetting stop STO2, third lens L3 with positive refractive power, fourth lens L4 with negative refractive power, fifth lens L5 with negative refractive power, sixth lens L6 with negative refractive power, positive refractive power
- the seventh lens L7 with power and the eighth lens L8 with negative refractive power, and the surface shapes of the lenses of the optical system 10 are as follows:
- the object side S1 of the first lens L1 is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 is concave near the maximum effective aperture, and the image side S2 is convex near the maximum effective aperture. .
- the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 is convex near the maximum effective aperture, and the image side S4 is concave near the maximum effective aperture .
- the object side S5 of the third lens L3 is convex at the near optical axis, and the image side S6 is convex at the near optical axis; the object side S5 is concave near the maximum effective aperture, and the image side S6 is convex near the maximum effective aperture .
- the object side S7 of the fourth lens L4 is concave at the near optical axis, and the image side S8 is convex at the near optical axis; the object side S7 is convex near the maximum effective aperture, and the image side S8 is concave near the maximum effective aperture. .
- the object side S9 of the fifth lens L5 is concave at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S9 is convex near the maximum effective aperture, and the image side S10 is concave near the maximum effective aperture. .
- the object side S11 of the sixth lens L6 is concave at the near optical axis, and the image side S12 is concave at the near optical axis; the object side S11 is convex near the maximum effective aperture, and the image side S12 is concave near the maximum effective aperture. .
- the object side S13 of the seventh lens L7 is convex at the near optical axis, and the image side S14 is concave at the near optical axis; the object side S13 is concave near the maximum effective aperture, and the image side S14 is convex near the maximum effective aperture. .
- the object side S15 of the eighth lens L8 is concave at the near optical axis, and the image side S16 is concave at the near optical axis; the object side S15 is concave near the maximum effective aperture, and the image side S16 is convex near the maximum effective aperture. .
- optical system 10 in this embodiment satisfies the following relationship:
- the longitudinal spherical aberration, field curvature, astigmatism and distortion of the optical system 10 are well controlled, and the focus shift at each reference wavelength is controlled within ⁇ 0.05mm.
- the meridional field curvature and sagittal field curvature in each field of view are controlled within ⁇ 0.025mm, the curvature of the image plane is effectively suppressed, and the astigmatism is well adjusted, and the maximum distortion is also controlled within 2.5%. It can be judged that the optical system 10 of this embodiment can have a clear image.
- the optical system 10 sequentially includes an aperture stop STO1 , a first lens L1 with positive refractive power, and a second lens L2 with negative refractive power from the object side to the image side along the optical axis 101 , vignetting stop STO2, third lens L3 with positive refractive power, fourth lens L4 with negative refractive power, fifth lens L5 with negative refractive power, sixth lens L6 with negative refractive power, positive refractive power
- the seventh lens L7 with power and the eighth lens L8 with negative refractive power, and the surface shapes of the lenses of the optical system 10 are as follows:
- the object side S1 of the first lens L1 is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 is convex near the maximum effective aperture, and the image side S2 is convex near the maximum effective aperture. .
- the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 is convex near the maximum effective aperture, and the image side S4 is concave near the maximum effective aperture .
- the object side S5 of the third lens L3 is convex at the near optical axis, and the image side S6 is convex at the near optical axis; the object side S5 is concave near the maximum effective aperture, and the image side S6 is convex near the maximum effective aperture .
- the object side S7 of the fourth lens L4 is concave at the near optical axis, and the image side S8 is convex at the near optical axis; the object side S7 is convex near the maximum effective aperture, and the image side S8 is concave near the maximum effective aperture. .
- the object side S9 of the fifth lens L5 is concave at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S9 is convex near the maximum effective aperture, and the image side S10 is concave near the maximum effective aperture. .
- the object side S11 of the sixth lens L6 is concave at the near optical axis, and the image side S12 is concave at the near optical axis; the object side S11 is convex near the maximum effective aperture, and the image side S12 is concave near the maximum effective aperture. .
- the object side S13 of the seventh lens L7 is convex at the near optical axis, and the image side S14 is concave at the near optical axis; the object side S13 is concave near the maximum effective aperture, and the image side S14 is convex near the maximum effective aperture. .
- the object side S15 of the eighth lens L8 is concave at the near optical axis, and the image side S16 is concave at the near optical axis; the object side S15 is concave near the maximum effective aperture, and the image side S16 is convex near the maximum effective aperture. .
- optical system 10 in this embodiment satisfies the following relationship:
- the optical system 10 of this embodiment can have a clear image.
- the optical system 10 sequentially includes an aperture stop STO1 , a first lens L1 with positive refractive power, and a second lens L2 with negative refractive power from the object side to the image side along the optical axis 101 , vignetting stop STO2, third lens L3 with positive refractive power, fourth lens L4 with negative refractive power, fifth lens L5 with negative refractive power, sixth lens L6 with negative refractive power, positive refractive power
- the seventh lens L7 with power and the eighth lens L8 with negative refractive power, and the surface shapes of the lenses of the optical system 10 are as follows:
- the object side S1 of the first lens L1 is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 is concave near the maximum effective aperture, and the image side S2 is convex near the maximum effective aperture. .
- the object side S3 of the second lens L2 is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 is convex near the maximum effective aperture, and the image side S4 is concave near the maximum effective aperture .
- the object side S5 of the third lens L3 is convex at the near optical axis, and the image side S6 is convex at the near optical axis; the object side S5 is concave near the maximum effective aperture, and the image side S6 is concave near the maximum effective aperture .
- the object side S7 of the fourth lens L4 is convex at the near optical axis, and the image side S8 is concave at the near optical axis; the object side S7 is convex near the maximum effective aperture, and the image side S8 is concave near the maximum effective aperture. .
- the object side S9 of the fifth lens L5 is concave at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S9 is convex near the maximum effective aperture, and the image side S10 is convex near the maximum effective aperture. .
- the object side S11 of the sixth lens L6 is convex at the near optical axis, and the image side S12 is concave at the near optical axis; the object side S11 is convex near the maximum effective aperture, and the image side S12 is concave near the maximum effective aperture. .
- the object side S13 of the seventh lens L7 is convex at the near optical axis, and the image side S14 is convex at the near optical axis; the object side S13 is concave near the maximum effective aperture, and the image side S14 is convex near the maximum effective aperture. .
- the object side S15 of the eighth lens L8 is concave at the near optical axis, and the image side S16 is concave at the near optical axis; the object side S15 is concave near the maximum effective aperture, and the image side S16 is convex near the maximum effective aperture. .
- the lens parameters of the optical system 10 in this embodiment are given in Table 13 and Table 14, and the definitions of the names and parameters of each element can be obtained from the first embodiment, which will not be repeated here.
- optical system 10 in this embodiment satisfies the following relationship:
- the optical system 10 of this embodiment can have a clear image.
- the optical system 10 provided by the above-mentioned embodiments can maintain a good imaging quality while realizing the miniaturized design of the structure.
- an embodiment of the present application further provides a camera module 20 .
- the camera module 20 includes an optical system 10 and an image sensor 210 .
- the image sensor 210 is disposed on the image side of the optical system 10 , and the two can be fixed by a bracket. .
- the image sensor 210 may be a CCD sensor (Charge Coupled Device, charge coupled device) or a CMOS sensor (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor).
- the imaging surface S17 of the optical system 10 overlaps the photosensitive surface of the image sensor 210 .
- the electronic device 30 includes a fixing member 310 , and the camera module 20 is mounted on the fixing member 310 , and the fixing member 310 may be a display screen, a circuit board, a middle frame, a back cover and other components.
- the electronic device 30 can be, but is not limited to, a smart phone, a smart watch, a smart glasses, an e-book reader, a tablet computer, a biometric device (such as a fingerprint recognition device or a pupil recognition device, etc.), a PDA (Personal Digital Assistant, personal digital assistant) Wait.
- the electronic device 30 can be assembled with the above-mentioned camera module 20 in a smaller space, so that the thickness of the device can be reduced Compression is achieved while maintaining good camera performance.
- the "electronic device” used in the embodiments of the present invention may include, but is not limited to, be configured to be connected via wired lines (eg, via a public switched telephone network (PSTN), digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (eg, for cellular networks, wireless local area networks (WLAN), such as digital video broadcast broadcasting handheld, DVB-H) network digital television network, satellite network, AM-FM (amplitude modulation-frequency modulation, AM-FM) broadcast transmitter, and/or another communication terminal) wireless interface to receive/transmit communication signals device of.
- PSTN public switched telephone network
- DSL digital subscriber line
- DSL digital cable, direct cable connection, and/or another data connection/network
- WLAN wireless local area networks
- AM-FM amplitude modulation-frequency modulation, AM-FM
- wireless communication terminals Electronic devices arranged to communicate over a wireless interface may be referred to as “wireless communication terminals", “wireless terminals” and/or “mobile terminals”.
- mobile terminals include, but are not limited to, satellite or cellular telephones; personal communication system (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communication capabilities; may include radio telephones, pagers, Internet/ Personal digital assistants (PDAs) with intranet access, web browsers, memo pads, calendars, and/or global positioning system (GPS) receivers; and conventional laptops and/or palmtops A receiver or other electronic device including a radiotelephone transceiver.
- PCS personal communication system
- PDAs Internet/ Personal digital assistants
- GPS global positioning system
- first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
- plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
- the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
- installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
- a first feature "on” or “under” a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch.
- the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
- the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种光学系统(10),包括:具有正屈折力的第一透镜(L1),其物侧面(S1)于近光轴处为凸面,像侧面(S2)于近光轴处为凹面;具有负屈折力的第二透镜(L2),其物侧面(S3)于近光轴处为凸面,像侧面(S4)于近光轴处为凹面;第三透镜(L3);第四透镜(L4);第五透镜(L5);具有负屈折力的第六透镜(L6),其像侧面(S12)于近光轴处为凹面;具有正屈折力的第七透镜(L7),其物侧面(S13)于近光轴处为凸面;具有负屈折力的第八透镜(L8),其像侧面(S16)于近光轴处为凹面;光学系统(10)满足:2.5<f678/f6<8.5。
Description
本发明涉及摄影成像技术领域,特别是涉及一种光学系统、摄像模组及电子设备。
随着智能手机、智能手表、平板电脑等电子设备在消费市场的快速普及,电子设备中的摄像性能也受到了市场的重点关注,例如各知名企业对新产品的发布亮点大多围绕着设备的摄像性能展开。
为了提高设备的摄像性能,一般采用多片透镜设计以改善成像质量。但随着透镜数量的增加,光学系统中的各类问题也逐渐出现,例如透镜数量增多所带来的系统尺寸增大,同时也容易使部分透镜的屈折力设计不良而导致敏感度增大,进而引起成像质量不稳定。因此,如何通过合理设计光学系统以兼顾小型化并提高成像质量对于业界而言无疑是巨大的挑战和机遇。
发明内容
根据本申请的各种实施例,提供一种光学系统、摄像模组及电子设备。
一种光学系统,沿光轴由物侧至像侧依次包括:
具有正屈折力的第一透镜,所述第一透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
具有负屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
具有屈折力的第三透镜;
具有屈折力的第四透镜;
具有屈折力的第五透镜;
具有负屈折力的第六透镜,所述第六透镜的像侧面于近光轴处为凹面;
具有正屈折力的第七透镜,所述第七透镜的物侧面于近光轴处为凸面,所述第七透镜的物侧面和像侧面皆为非球面,且其中至少一个面存在反曲;
具有负屈折力的第八透镜,所述第八透镜的像侧面于近光轴处为凹面,所述第八透镜的物侧面和像侧面皆为非球面,且其中至少一个面存在反曲;
所述光学系统还满足关系:
2.5<f678/f6<8.5;
f678为所述第六透镜、所述第七透镜和所述第八透镜的组合焦距,f6为所述第六透镜的有效焦距。
一种摄像模组,包括图像传感器及上述的光学系统,所述图像传感器设于所述光学系统的像侧。
一种电子设备,包括固定件及上述摄像模组,所述摄像模组设于所述固定件。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例提供的光学系统的结构示意图;
图2包括第一实施例中光学系统的纵向球差图、像散图和畸变图;
图3为本申请第二实施例提供的光学系统的结构示意图;
图4包括第二实施例中光学系统的纵向球差图、像散图和畸变图;
图5为本申请第三实施例提供的光学系统的结构示意图;
图6包括第三实施例中光学系统的纵向球差图、像散图和畸变图;
图7为本申请第四实施例提供的光学系统的结构示意图;
图8包括第四实施例中光学系统的纵向球差图、像散图和畸变图;
图9为本申请第五实施例提供的光学系统的结构示意图;
图10包括第五实施例中光学系统的纵向球差图、像散图和畸变图;
图11为本申请第六实施例提供的光学系统的结构示意图;
图12包括第六实施例中光学系统的纵向球差图、像散图和畸变图;
图13为本申请第七实施例提供的光学系统的结构示意图;
图14包括第七实施例中光学系统的纵向球差图、像散图和畸变图;
图15为本申请一实施例提供的摄像模组的示意图;
图16为本申请一实施例提供的电子设备的结构示意图。
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
参考图1,本申请的实施例提供了一种具有八片透镜结构的光学系统10,光学系统10沿光轴101由物侧至像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7及第八透镜L8。其中第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第六透镜L6具有负屈折力,第七透镜L7具有正屈折力,第八透镜L8具有负屈折力。光学系统10中各透镜的光轴处于同一直线上,该直线即为光学系统10的光轴101。光学系统10中各透镜可装配于镜筒中以形成摄像镜头。
第一透镜L1具有物侧面S1和像侧面S2,第二透镜L2具有物侧面S3和像侧面S4,第三透镜L3具有物侧面S5和像侧面S6,第四透镜L4具有物侧面S7和像侧面S8,第五透镜L5具有物侧面S9及像侧面S10,第六透镜L6具有物侧面S11及像侧面S12,第七透镜L7具有物侧面S13及像侧面S14,第八透镜L8具有物侧面S15及像侧面S16。另外,光学系统10还具有成像面S17,成像面S17位于第八透镜L8的像侧,轴上物点经光学系统10的各透镜调节后能够会聚于成像面S17。一般地,光学系统10的成像面S17与图像传感器的感光面重合。为方便理解,在光学系统10与图像传感器装配后,也可将成像面S17视为图像传感器的感光面。
在本申请的实施例中,第一透镜L1的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第二透镜L2的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;第六透镜L6的像侧面S12于近光轴处为凹面;第七透镜L7的物侧面S13于近光轴处为凸面,同时第七透镜L7的物侧面S13和像侧面S14皆为非球面,且物侧面S13和像侧面S14中至少一者存在反曲;第八透镜L8的像侧面S16于近光轴处为凹面,同时第八透镜L8的物侧面S15和像侧面S16皆为非球面,且物侧面S15和像侧面S16中至少一者存在反曲。应注意的是,当描述透镜表面于近光轴处具有某种面型时,即该透镜表面于光轴101附近具有该种面型,而该透镜表面沿径向靠近最大有效口径处的区域可以拥有与之相同的面型或相反的面型,当同一透镜表面存在相反的两种面型时,即可称该面存在反曲。
在上述光学系统10中,通过使第一透镜L1具有正屈折力并满足上述面型设计,将有利于使第一透镜L1的像方焦点位置更靠近物侧,从而有利于压缩光学系统10的长度;而通过使第二透镜L2具有负屈折力并拥有与第一透镜L1相似的面型配置,从而能够合理地配合第一透镜L1,以合理降低各视场的光线在经过第一透镜L1和第二透镜L2的各光学面时的入射角,使入射光线在经过第一透镜L1和第二透镜L2时能够实现较为平缓过渡,进而有效避免产生较大的像差,减少像方透镜对校正像差的负担,提高像方透镜的设计自由度;通过设置第三透镜L3、第四透镜L4和第五透镜L5,使由第二透镜L2出射的光线能够经过足够多的光学面依次调节,即拥有足够长的调节空间,从而有利于抑制入射光线在光学系统10中的偏折程度;进一步地,通过第六透镜L6、第七透镜L7及第八透镜L8的依次交替的屈折力以及面型设计,将能够最终调节即将会聚于成像面S17上的光线,进一步抑制由大角度入射的光 线在到达成像面S17前的偏折程度,从而可有效抑制场曲、像散、畸变等轴外像差。
进一步地,在拥有上述数量、屈折力及面型设计的基础上,光学系统10还进一步满足关系:2.5<f678/f6<8.5;f678为第六透镜L6、第七透镜L7和第八透镜L8的组合焦距,f6为第六透镜L6的有效焦距。当光学系统10进一步满足该关系时,作为光学系统10最靠近像侧的第六透镜L6、第七透镜L7和第八透镜L8的组合焦距与第六透镜L6的有效焦距之间能够得到合理配置,从而可利于减缓边缘视场的光线的偏转角,降低入射光线对第六透镜L6至第八透镜L8的敏感度,从而可合理矫正物方透镜所产生的像差,提高光学系统10的成像质量;另外,由于第六透镜L6的屈折力强度能够得到合理配置,不仅有利于压缩光学系统10的长度,同时也可降低第六透镜L6的屈折力负担,降低第六透镜L6的成型难度,提高第六透镜L6的可加工性。在一些实施例中,光学系统10所满足的该关系具体可以为2.7、2.85、2.94、3.18、3.3、4.6、5.9、6.7、7.5、7.8或8.0。
进一步地,一些实施例中的光学系统10满足关系:-10.69mm≤f6≤-7.572mm。通过进一步限制第六透镜L6的屈折力强度,可以更好地搭配第六透镜L6至第八透镜L8的组合屈折力,以进一步减缓边缘视场的光线在经过光学系统10中的后镜组时的偏转角,降低入射光线对后镜组的敏感度,从而有利于进一步矫正系统的像差。
此外,在一些实施例中,光学系统10还满足以下至少一条关系及相关光阑设置,且当满足任一关系时均可拥有相应的技术效果:
ImgH/FNO>2.9mm;ImgH为光学系统10的最大视场角所对应的像高的一半,FNO为光学系统10的光圈数。ImgH也可称为光学系统10的最大成像圆半径,且在一些实施例中,当光学系统10与图像传感器装配时,图像传感器上矩形有效像素区域对角线长度的一半等于或近似等于ImgH的数值。满足该关系时,不仅有利于光学系统10获得较大像面,同时还有利于光学系统10获得紧凑的结构,从而可以兼顾小型化、大像面、高像素的成像特性。在一些实施例中,光学系统10所满足的该关系具体可以为3、3.15、3.26、3.3、3.35、3.45、3.49、3.57、3.63或3.70,数值单位为mm。进一步地,当拥有以上屈折力及面型设计的光学系统10满足FNO<1.85时,则可以确保光学系统10在较昏暗的天气环境下依然能获得足够的光通量,从而保证较高的成像品质。在一些实施例中,光学系统10所满足的FNO具体可以为1.5、1.53、1.56、1.6、1.64、1.68、1.73、1.77或1.82。
TTL/ImgH<1.4;TTL为第一透镜L1的物侧面S1至光学系统10的成像面S17于光轴101上的距离,ImgH为光学系统10的最大视场角所对应的像高的一半。满足该关系时,一方面有利于降低光学系统10的总长度,降低感度;另一方面,还可使光学系统10在满足小型化设计的同时兼顾大像面特性,以匹配更高像素的图像传感器以拍摄出更清晰的细节。在一些实施例中,光学系统10所满足的该关系具体可以为1.28、1.3、1.33、1.35、1.37或1.39。
6.99mm≤TTL≤7.7mm;TTL为第一透镜L1的物侧面S1至光学系统10的成像面S17于光轴101上的距离,即光学系统10的光学总长。满足该关系时,可在光学系统10在拥有上述良好成像质量的同时,确保光学系统10的光学总长被控制在较小的范围内,从而实现小型化设计。
5<f345/f12<15及f12>0;f345为第三透镜L3、第四透镜L4和第五透镜L5的组合焦距,f12为第一透镜L1和第二透镜L2的组合焦距。满足该关系时,将有利于改善光学系统10的场曲和畸变像差,平衡光学系统10的像差,以使光学系统10获得良好的成像品质。当高于关系式上限时,第三透镜L3至第五透镜L5所构成的透镜组整体提供的总正屈折力过小,不足以平衡前后透镜产生的像差,最终使得成像质量降低,同时第一透镜L1和第二透镜L2所构成的透镜组提供过大的正屈折力,导致光学系统10的敏感性增加,不利于实现系统小型化和大像面特性。当低于关系式下限时,则又会导致第三透镜L3至第五透镜L5所构成的透镜组整体提供的总正屈折力过大,容易对物方透镜产生的像差过度矫正,同时增大像方透镜的矫正负担。在一些实施例中,光学系统10所满足的f345/f12关系具体可以为7.2、7.8、8.5、9.3、9.9、10.6、11.0、11.7、12.6或13.2。
1.5<(f1+|f2|)/(r12+r22)<3;f1为第一透镜L1的有效焦距,f2为第二透镜L2的有效焦距,r12为第一透镜L1的像侧面S2于光轴101处为曲率半径,r22为第二透镜L2的像侧面S4于光轴101处的曲率半径。满足该关系时,可合理约束第一透镜L1和第二透镜L2的形状和屈折力贡献量,一方 面有利于防止透镜面型过于弯曲,从而提高像差平衡的能力,另一方面也有利于缩短系统总长和实现大光圈特性。在一些实施例中,光学系统10所满足的该关系具体可以为1.8、1.95、2.07、2.15、2.24、2.37、2.43或2.5。
ct37/et37<1.4;ct37为第三透镜L3至第七透镜L7中各透镜于光轴101上的厚度之和,et37为第三透镜L3至第七透镜L7中各透镜于物侧面最大有效口径处至像侧面最大有效口径处于光轴方向上的距离之和。满足该关系时,有利于缩短系统总长,实现第三透镜L3到第七透镜L7之间的紧凑型结构,同时各透镜的中心厚度与边缘厚度配置合理,有利于各透镜的尺寸分布均匀,保证后期镜头组装稳定性。当高于关系式上限时,第三透镜L3至第七透镜L7的各透镜中心厚度与边缘厚度之和差异过大,易增加系统的敏感度,且使得组装稳定性也会降低,进而无法保证良好的成像质量。在一些实施例中,光学系统10所满足的该关系具体可以为1.25、1.28、1.3、1.32或1.35。
2.0<f/(sd82-sd11)<2.5;f为光学系统10的有效焦距,sd11为第一透镜L1的物侧面S1的最大有效口径的一半,sd82为第八透镜L8的像侧面S16的最大有效口径的一半。满足该关系时,第一透镜L1和第八透镜L8的口径差异能够得到合理约束,使得光学系统10能够获得更大的像面,另外也有利于缩短系统总长,同时实现小头部设计。当低于关系式下限时,第一透镜L1与第八透镜L8的口径差异过大,从而边缘视场的光线从第八透镜L8出射时相较光轴的偏转角增大,容易导致边缘视场所对应的成像区域的相对照度不够,成像时易出现边缘暗角;而当高于上限时,不利于缩短系统总长和扩大像面,同时也会导致视场角过小。在一些实施例中,光学系统10所满足的该关系具体可以为2.1、2.14、2.19、2.26、2.3、2.35、2.4或2.43。
5.5<(r62+r71)/(|sag62|+|sag71|)<7.5;r62为第六透镜L6的像侧面S12于光轴101处的曲率半径,r71为第七透镜L7的物侧面S13于光轴101处的曲率半径,sag62为第六透镜L6的像侧面S12于最大有效口径处的矢高,sag71为第七透镜L7的物侧面S13于最大有效口径处的矢高。满足该关系时,有利于约束第六透镜L6的像侧面S12和第七透镜L7的物侧面S13的形状,使得两个光学面之间的中心面型与边缘面型之间能够得到合理匹配,从而有利于平衡系统慧差,提高两片透镜的加工成型的工艺性,提升光学系统10的成像质量。当低于关系式下限时,两片透镜的形状过于弯曲,加工可行性降低,且易于引入杂光,增加鬼像产生的风险;当高于关系式上限时,两个光学面的边缘弯曲程度不足,不利于边缘视场光线的平缓过渡,导致整体光学系统10的像差矫正能力减弱。在一些实施例中,光学系统10所满足的该关系具体可以为5.9、6.0、6.3、6.7、6.9或7.1。
1.7<ct78/ct23<2.0;ct23为第二透镜L2的像侧面S4至第三透镜L3的物侧面S5于光轴101上的距离,ct78为第七透镜L7的像侧面S14至第八透镜L8的物侧面S15于光轴101上的距离。满足该关系时,可将第二透镜L2与第三透镜L3之间的间隙以及第七透镜L7与第八透镜L8之间的间隙实现合理约束,从而提升光学系统10的加工组装可行性,同时也有利于缩短系统总长,提升中心视场的成像质量。在一些实施例中,光学系统10所满足的该关系具体可以为2、2.04、2.09、2.15、2.23、2.27或2.3。
0.6<(|sag81|-|sag72|)/et78<1.6;sag72为第七透镜L7的像侧面S14于最大有效口径处的矢高,sag81为第八透镜L8的物侧面S15于最大有效口径处的矢高,et78为第七透镜L7的像侧面S14最大有效口径处至第八透镜L8的物侧面S15最大有效口径处于光轴方向上的距离。满足该关系时,有利于控制第七透镜L7的像侧面S14和第八透镜L8的物侧面S15的矢高以及两者之间的间隙,进而使边缘光线在经过两个光学面时具有较小的偏转角,以利于边缘视场光线平缓过渡到像面,同时抑制像面边缘的暗角现象,提高光学系统10的解像力。在一些实施例中,光学系统10所满足的该关系具体可以为0.80、0.87、0.96、1.07、1.14、1.23、1.34、1.45或1.52。
0.5<sds/(sd81-sd31)<0.8;光学系统10包括设于第二透镜L2与第三透镜L3之间的渐晕光阑,sds为渐晕光阑的最大有效口径,sd31为第三透镜L3的物侧面S5的最大有效口径,sd81为第八透镜L8的物侧面S15的最大有效口径。sd81-sd31表示为第三透镜L3至第八透镜L8的段差,满足该关系时,位于第二透镜L2与第三透镜L3之间的渐晕光阑的孔径与该段差的配置合理,使边缘视场的光线在经过渐晕光阑之后能够以合理的传播角度到达第八透镜L8并进一步到达成像面S17,上述设计不仅 有利于增大光学系统10的像面大小并缩短总长,另外还有利于增大光圈,增加光通量,提升光学系统10在较阴暗环境下的成像质量;另外还有利于控制透镜之间的口径差值,避免相邻透镜口径变化过大,降低镜筒设计压力。在一些实施例中,光学系统10所满足的该关系具体可以为0.55、0.59、0.63、0.67、0.70或0.72。
9.5<zh78/zb78<12.2;zh78为第七透镜L7的像侧面S14至第八透镜L8的物侧面S15于光轴方向上的最大距离,zb78为第七透镜L7的像侧面S14至第八透镜L8的物侧面S15于光轴方向上的最短距离。满足该关系时,第七透镜L7与第八透镜L8之间的弯曲程度能够得到合理控制,一方面有利于使第八透镜L8具有足够的与第七透镜L7匹配扭曲度来矫正系统像差,促使边缘光线在经过第七透镜L7和第八透镜L8时具有较小的偏转角,进而提高成像质量;另一方面又能够使第七透镜L7与第八透镜L8之间留有足够的空气间隙,以达到成型组装的要求。在一些实施例中,光学系统10所满足的该关系具体可以为9.7、9.9、10.3、10.7、11.3或11.7。
4.2<zh67/zb67<7.5;zh67为第六透镜L6的像侧面S12至第七透镜L7的物侧面S13于光轴方向上的最大距离,zb67为第六透镜L6的像侧面S12至第七透镜L7的物侧面S13于光轴方向上的最短距离。满足该关系时,可使第六透镜L6与第七透镜L7之间的间隙分配合理,最大间隙与最小间隙的差异不会过大也不会过小,一方面能够使第六透镜L6的像侧面S12与第七透镜L7的物侧面S13的面型适配,以促进光学系统的像差平衡,提高系统的解像力,同时也有利于减少鬼像和杂光的产生;另一方面也有利于缩短系统总长,避免透镜之间距离太近引起组装不良的发生。在一些实施例中,光学系统10所满足的该关系具体可以为4.46、4.53、4.77、5.00、5.24、5.38或5.42。
0.64<|jd22|/45°<0.67;jd22为第二透镜L2的像侧面S4各位置的切面与垂直光轴的平面所成的最大锐角夹角,且光学系统10包括设于第二透镜L2与第三透镜L3之间的渐晕光阑。第二透镜L2的像侧面S4为位于渐晕光阑物方的相邻光学面,入射光线对该面的面型敏感度较高,将上述比值控制在合理范围内可以有效控制该面的面型复杂度,降低敏感度,提升光学系统10的成像品质,同时也能降低第二透片的成型加工难度,提升良率。在一些实施例中,光学系统10所满足的该关系具体可以为0.652、0.655、0.658或0.664。
0.41<|jd31|/45°<0.51;jd31为第三透镜L3的物侧面S5各位置的切面与垂直光轴的平面所成的最大锐角夹角,且光学系统10包括设于第二透镜L2与第三透镜L3之间的渐晕光阑。第三透镜L3的物侧面S5为位于渐晕光阑像方的相邻光学面,光线在该面发生偏转,中心视场和边缘视场的光线在空间中开始分离,因此入射光线对该面的敏感度也会较高,因此通过满足该关系条件,降低第三透镜L3的物侧面S5的最大倾角,降低该面面型的复杂度,从而有利于提升光学系统10的整体良率和成像质量,另外也降低透镜的成型难度。在一些实施例中,光学系统10所满足的该关系具体可以为0.43、0.45、0.46、0.48或0.50。
对于上述相应关系式条件中涉及sag62、sag71、sag72、sag81的矢高参数,应说明的是,当描述某一透镜表面于最大有效口径处的矢高时,即表示该透镜表面与光轴101的交点至该面最大有效口径位置于平行光轴101方向的距离。当透镜表面于最大有效口径处的矢高数值为负时,则表示该面最大有效口径位置相较该面与光轴101相交处更靠近物侧,反之则更靠近像侧。
以上各关系式条件中的有效焦距、组合焦距的数值参考波长为555nm,有效焦距、组合焦距及屈折力的描述至少是指相应透镜或透镜组于近光轴处的数值。且以上各关系式条件及其所带来的技术效果针对的是满足上述透镜设计(透镜数量、屈折力配置、面型配置等)的光学系统10。在无法确保拥有前述光学系统10的透镜设计时,将难以确保光学系统10在满足这些关系式时依然能够拥有相应的技术效果,甚至可能会导致摄像性能发生明显劣化。
在一些实施例中,光学系统10的至少一个透镜具有非球面面型,当透镜的至少一侧透镜表面(物侧面或像侧面)为非球面时,即可称该透镜具有非球面面型。在一个实施例中,可以将各透镜的物侧面及像侧面均设计为非球面。非球面设计能够帮助光学系统10更为有效地消除像差,改善成像品质。在一些实施例中,光学系统10的至少一个透镜可具有球面面型,球面面型的设计可降低透镜的制备难度,降低制备成本。在一些实施例中,为了兼顾制备成本、制备难度、成像品质、组装难度等因素, 光学系统10中的各透镜表面的设计可由非球面及球面面型搭配而成。
非球面的面型计算可参考非球面公式:
其中,Z为非球面上相应点到该面于光轴处的切平面的距离,r为非球面上相应点到光轴的距离,c为非球面于光轴处的曲率,k为圆锥系数,Ai为非球面面型公式中与第i阶高次项相对应的高次项系数。
对于透镜材料方面,在一些实施例中,光学系统10中至少一个透镜的材质为塑料(PC,Plastic),塑料材质可以为聚碳酸酯、树胶等。在一些实施例中,光学系统10中至少一个透镜的材质为玻璃(GL,Glass)。在一些实施例中,为了兼顾制备成本、制备难度、成像品质等因素,光学系统10中可设置不同材质的透镜,即可采用玻璃透镜及塑料透镜相结合的设计,但具体配置关系可根据实际需求而确定,此处不加以穷举。
以下通过更具体的实施例以对本申请中光学系统10的结构配置及成像质量进行说明:
第一实施例
参考图1,在第一实施例中,光学系统10沿光轴101由物侧至像侧依次包括孔径光阑STO1、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、渐晕光阑STO2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有正屈折力的第七透镜L7以及具有负屈折力的第八透镜L8,且光学系统10的各透镜面型如下:
第一透镜L1的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;物侧面S1于近最大有效口径处为凹面,像侧面S2于近最大有效口径处为凸面。
第二透镜L2的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;物侧面S3于近最大有效口径处为凸面,像侧面S4于近最大有效口径处为凹面。
第三透镜L3的物侧面S5于近光轴处为凸面,像侧面S6于近光轴处为凸面;物侧面S5于近最大有效口径处为凹面,像侧面S6于近最大有效口径处为凸面。
第四透镜L4的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凹面;物侧面S7于近最大有效口径处为凸面,像侧面S8于近最大有效口径处为凹面。
第五透镜L5的物侧面S9于近光轴处为凹面,像侧面S10于近光轴处为凸面;物侧面S9于近最大有效口径处为凹面,像侧面S10于近最大有效口径处为凹面。
第六透镜L6的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凹面;物侧面S11于近最大有效口径处为凸面,像侧面S12于近最大有效口径处为凸面。
第七透镜L7的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;物侧面S13于近最大有效口径处为凹面,像侧面S14于近最大有效口径处为凹面。
第八透镜L8的物侧面S15于近光轴处为凹面,像侧面S16于近光轴处为凹面;物侧面S15于近最大有效口径处为凹面,像侧面S16于近最大有效口径处为凸面。
第一实施例中光学系统10的各透镜参数由以下表1所展现。由光学系统10的物侧至像侧的各元件依次按照表1从上至下的顺序排列。红外截止滤光片110可作为光学系统10的一部分,也可从光学系统10中去除,但当去除红外截止滤光片110后,光学系统10的光学总长TTL应保持不变。表1中Y半径为透镜相应表面于光轴101处的曲率半径。表1中面序号为S1的表面代表第一透镜L1的物侧面,面序号为S2的表面代表第一透镜L1的像侧面,而每一透镜于“厚度”参数列中的第一个数值的绝对值为该透镜于光轴101上的厚度,第二个数值的绝对值为该透镜的像侧面至后一光学面(后一透镜的物侧面或光阑面)于光轴101上的距离,其中光阑的厚度参数表示光阑面至像方相邻透镜的物侧面于光轴101上的距离。表格中各透镜的折射率、阿贝数的参考波长均为587.6nm,焦距(有效焦距)的参考波长为555nm,且Y半径、厚度、焦距(有效焦距)的数值单位均为毫米(mm)。另外,以下各实施 例中用于关系式计算的参数数据和透镜面型结构以相应实施例中的透镜参数表格中的数据为准。
表1
由表1可知,第一实施例中的光学系统10的有效焦距f为6.126mm,光圈数FNO为1.59,最大视场角FOV为82.767°,光学总长TTL为7.59mm。另外,以下表2展现了表1中相应透镜表面的非球面系数,其中K为圆锥系数,Ai为非球面面型公式中与第i阶高次项相对应的系数。
表2
面序号 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 |
K | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 1.800E+01 |
A4 | -4.211E-04 | -2.286E-02 | -3.686E-02 | -1.712E-02 | -3.938E-03 | 3.445E-02 | 9.829E-03 | -1.489E-02 |
A6 | 3.039E-03 | 8.110E-03 | 9.111E-03 | 1.417E-03 | -7.982E-03 | -8.313E-02 | -4.815E-02 | -3.502E-03 |
A8 | -4.210E-03 | 1.805E-03 | 1.190E-02 | 1.361E-02 | 5.281E-03 | 8.915E-02 | 2.079E-02 | -1.515E-03 |
A10 | 3.699E-03 | -4.167E-03 | -1.610E-02 | -1.514E-02 | -7.352E-03 | -8.196E-02 | 7.947E-03 | 3.116E-03 |
A12 | -1.976E-03 | 2.661E-03 | 1.093E-02 | 9.045E-03 | 6.129E-03 | 5.263E-02 | -2.343E-02 | -1.991E-03 |
A14 | 6.451E-04 | -9.959E-04 | -4.657E-03 | -3.009E-03 | -2.960E-03 | -2.141E-02 | 1.926E-02 | 7.455E-04 |
A16 | -1.254E-04 | 2.236E-04 | 1.241E-03 | 4.796E-04 | 7.807E-04 | 5.289E-03 | -7.935E-03 | -1.899E-04 |
A18 | 1.324E-05 | -2.752E-05 | -1.869E-04 | -5.970E-06 | -8.720E-05 | -7.386E-04 | 1.637E-03 | 2.978E-05 |
A20 | -6.460E-07 | 1.402E-06 | 1.218E-05 | -4.357E-06 | 0.000E+00 | 4.589E-05 | -1.338E-04 | -1.849E-06 |
面序号 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | S16 |
K | 0.000E+00 | 3.431E+00 | 1.239E+01 | -4.879E+00 | -1.000E+00 | 0.000E+00 | 0.000E+00 | -7.645E-01 |
A4 | -1.453E-02 | -1.448E-02 | -5.561E-03 | -1.202E-01 | -7.822E-02 | 6.491E-02 | -5.656E-02 | -7.198E-02 |
A6 | -9.683E-04 | 3.403E-03 | 2.406E-02 | 8.224E-02 | 4.047E-02 | -3.672E-02 | 1.125E-02 | 1.835E-02 |
A8 | -2.471E-03 | -1.112E-02 | -2.436E-02 | -3.918E-02 | -2.343E-02 | 9.899E-03 | -2.397E-03 | -4.033E-03 |
A10 | 6.000E-03 | 9.111E-03 | 1.245E-02 | 1.277E-02 | 8.860E-03 | -1.733E-03 | 5.990E-04 | 6.255E-04 |
A12 | -3.737E-03 | -3.481E-03 | -4.076E-03 | -2.920E-03 | -2.248E-03 | 1.743E-04 | -9.540E-05 | -6.372E-05 |
A14 | 1.058E-03 | 6.630E-04 | 8.630E-04 | 4.539E-04 | 3.668E-04 | -5.441E-06 | 8.753E-06 | 4.142E-06 |
A16 | -1.419E-04 | -4.330E-05 | -1.142E-04 | -4.462E-05 | -3.600E-05 | -6.182E-07 | -4.603E-07 | -1.654E-07 |
A18 | 7.665E-06 | -3.502E-06 | 8.577E-06 | 2.466E-06 | 1.920E-06 | 6.225E-08 | 1.300E-08 | 3.703E-09 |
A20 | -8.522E-08 | 4.660E-07 | -2.777E-07 | -5.798E-08 | -4.267E-08 | -1.639E-09 | -1.535E-10 | -3.562E-11 |
在第一实施例中,光学系统10满足以下各关系:
f678/f6=3.069;当光学系统10满足该关系时,作为光学系统10最靠近像侧的第六透镜L6、第七透镜L7和第八透镜L8的组合焦距与第六透镜L6的有效焦距之间能够得到合理配置,从而可利于减缓边缘视场的光线的偏转角,降低入射光线对第六透镜L6至第八透镜L8的敏感度,从而可合理矫正物方透镜所产生的像差,提高光学系统10的成像质量;另外,由于第六透镜L6的屈折力强度能够得到合理配置,不仅有利于压缩光学系统10的长度,同时也可降低第六透镜L6的屈折力负担,降低第六透镜L6的成型难度,提高第六透镜L6的可加工性。
ImgH/FNO=3.464mm;满足该关系时,不仅有利于光学系统10获得较大像面,同时还有利于光学系统10获得紧凑的结构,从而可以兼顾小型化、大像面、高像素的成像特性。
TTL/ImgH=1.377;满足该关系时,一方面有利于降低光学系统10的总长度,降低感度;另一方面,还可使光学系统10在满足小型化设计的同时兼顾大像面特性,以匹配更高像素的图像传感器以拍摄出更清晰的细节。
f345/f12=11.986及f12=7.964mm;满足该关系时,将有利于改善光学系统10的场曲和畸变像差,平衡光学系统10的像差,以使光学系统10获得良好的成像品质。
(f1+|f2|)/(r12+r22)=2.133;满足该关系时,可合理约束第一透镜L1和第二透镜L2的形状和屈折力贡献量,一方面有利于防止透镜面型过于弯曲,从而提高像差平衡的能力,另一方面也有利于缩短系统总长和实现大光圈特性。
ct37/et37=1.23;满足该关系时,有利于缩短系统总长,实现第三透镜L3到第七透镜L7之间的紧凑型结构,同时各透镜的中心厚度与边缘厚度配置合理,有利于各透镜的尺寸分布均匀,保证后期镜头组装稳定性。
f/(sd82-sd11)=2.439;满足该关系时,第一透镜L1和第八透镜L8的口径差异能够得到合理约束,使得光学系统10能够获得更大的像面,另外也有利于缩短系统总长,同时实现小头部设计。
(r62+r71)/(|sag62|+|sag71|)=6.771;满足该关系时,有利于约束第六透镜L6的像侧面S12和第七透镜L7的物侧面S13的形状,使得两个光学面之间的中心面型与边缘面型之间能够得到合理匹配,从而有利于平衡系统慧差,提高两片透镜的加工成型的工艺性,提升光学系统10的成像质量。
ct78/ct23=1.860;满足该关系时,可将第二透镜L2与第三透镜L3之间的间隙以及第七透镜L7与第八透镜L8之间的间隙实现合理约束,从而提升光学系统10的加工组装可行性,同时也有利于缩短系统总长,提升中心视场的成像质量。
(|sag81|-|sag72|)/et78=0.854;满足该关系时,有利于控制第七透镜L7的像侧面S14和第八透镜L8的物侧面S15的矢高以及两者之间的间隙,进而使边缘光线在经过两个光学面时具有较小的偏转角,以利于边缘视场光线平缓过渡到像面,同时抑制像面边缘的暗角现象,提高光学系统10的解像力。
sds/(sd81-sd31)=0.633;sd81-sd31表示为第三透镜L3至第八透镜L8的段差,满足该关系时,位于第二透镜L2与第三透镜L3之间的渐晕光阑STO2的孔径与该段差的配置合理,使边缘视场的光线在经过渐晕光阑STO2之后能够以合理的传播角度到达第八透镜L8并进一步到达成像面S17,上述设计不仅有利于增大光学系统10的像面大小并缩短总长,另外还有利于增大光圈,增加光通量,提升光学系统10在较阴暗环境下的成像质量;另外还有利于控制透镜之间的口径差值,避免相邻透镜口径变化 过大,降低镜筒设计压力。
zh78/zb78=10.387;满足该关系时,第七透镜L7与第八透镜L8之间的弯曲程度能够得到合理控制,一方面有利于使第八透镜L8具有足够的与第七透镜L7匹配扭曲度来矫正系统像差,促使边缘光线在经过第七透镜L7和第八透镜L8时具有较小的偏转角,进而提高成像质量;另一方面又能够使第七透镜L7与第八透镜L8之间留有足够的空气间隙,以达到成型组装的要求。
zh67/zb67=4.622;满足该关系时,可使第六透镜L6与第七透镜L7之间的间隙分配合理,最大间隙与最小间隙的差异不会过大也不会过小,一方面能够使第六透镜L6的像侧面S12与第七透镜L7的物侧面S13的面型适配,以促进光学系统的像差平衡,提高系统的解像力,同时也有利于减少鬼像和杂光的产生;另一方面也有利于缩短系统总长,避免透镜之间距离太近引起组装不良的发生。
|jd22|/45°=0.657;第二透镜L2的像侧面S4为位于渐晕光阑STO2物方的相邻光学面,入射光线对该面的面型敏感度较高,将上述比值控制在合理范围内可以有效控制该面的面型复杂度,降低敏感度,提升光学系统10的成像品质,同时也能降低第二透片的成型加工难度,提升良率。
|jd31|/45°=0.434;第三透镜L3的物侧面S5为位于渐晕光阑STO2像方的相邻光学面,光线在该面发生偏转,中心视场和边缘视场的光线在空间中开始分离,因此入射光线对该面的敏感度也会较高,因此通过满足该关系条件,降低第三透镜L3的物侧面S5的最大倾角,降低该面面型的复杂度,从而有利于提升光学系统10的整体良率和成像质量,另外也降低透镜的成型难度。
进一步参考图2,图2包括了第一实施例中光学系统10的纵向球差图、像散图和畸变图,其中像散图和畸变图的参考波长均为555nm,且对于以下各实施例的像散图和畸变图一样,另外像散图和畸变图的纵坐标表征像高IMG HT,单位为mm。纵向球面像差图(Longitudinal Spherical Aberration)展现了不同波长的光线经由镜头后的焦点偏离程度。纵向球面像差图的纵坐标表示归一化的由光瞳中心至光瞳边缘的光瞳坐标(Normalized Pupil Coordinator),横坐标表示成像面到光线与光轴交点的距离(单位为mm)。由纵向球面像差图可知,第一实施例中的各波长光线的汇聚焦点偏离程度趋于一致,各参考波长的最大焦点偏移均被控制在±0.05mm以内,成像画面中的弥散斑或色晕得到有效抑制。图2还包括光学系统10的场曲像散图(Astigmatic Field Curves),其中S曲线代表555nm下的弧矢场曲,T曲线代表555nm下的子午场曲。由图中可知,光学系统的场曲较小,最大场曲被控制在±0.025mm以内,像面弯曲程度得到有效抑制,且各视场下的弧矢场曲及子午场曲趋于一致,各视场的像散得到较佳的控制,因此可知光学系统10的视场中心至边缘均拥有清晰的成像。另外根据畸变图可知,光学系统10的最大畸变被控制在2.5%以内,从而可知成像画面的畸变程度得到了优良的控制。
第二实施例
参考图3,在第二实施例中,光学系统10沿光轴101由物侧至像侧依次包括孔径光阑STO1、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、渐晕光阑STO2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有正屈折力的第七透镜L7以及具有负屈折力的第八透镜L8,且光学系统10的各透镜面型如下:
第一透镜L1的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;物侧面S1于近最大有效口径处为凹面,像侧面S2于近最大有效口径处为凸面。
第二透镜L2的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;物侧面S3于近最大有效口径处为凸面,像侧面S4于近最大有效口径处为凹面。
第三透镜L3的物侧面S5于近光轴处为凹面,像侧面S6于近光轴处为凸面;物侧面S5于近最大有效口径处为凹面,像侧面S6于近最大有效口径处为凸面。
第四透镜L4的物侧面S7于近光轴处为凹面,像侧面S8于近光轴处为凹面;物侧面S7于近最大有效口径处为凸面,像侧面S8于近最大有效口径处为凹面。
第五透镜L5的物侧面S9于近光轴处为凹面,像侧面S10于近光轴处为凸面;物侧面S9于近最大有效口径处为凹面,像侧面S10于近最大有效口径处为凹面。
第六透镜L6的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凹面;物侧面S11于近最 大有效口径处为凸面,像侧面S12于近最大有效口径处为凸面。
第七透镜L7的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凸面;物侧面S13于近最大有效口径处为凹面,像侧面S14于近最大有效口径处为凹面。
第八透镜L8的物侧面S15于近光轴处为凹面,像侧面S16于近光轴处为凹面;物侧面S15于近最大有效口径处为凹面,像侧面S16于近最大有效口径处为凸面。
该实施例中光学系统10的各透镜参数由表3和表4给出,其中各元件名称和参数的定义可由第一实施例中得出,此处不加以赘述。
表3
表4
面序号 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 |
K | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 1.800E+01 |
A4 | -3.444E-04 | -2.388E-02 | -3.879E-02 | -1.818E-02 | -5.608E-03 | 3.250E-02 | 1.219E-02 | -1.171E-02 |
A6 | 3.432E-03 | 9.415E-03 | 1.120E-02 | 2.650E-03 | -5.393E-03 | -8.143E-02 | -5.680E-02 | -1.209E-02 |
A8 | -4.846E-03 | 2.639E-03 | 1.184E-02 | 1.275E-02 | 2.020E-03 | 8.803E-02 | 3.606E-02 | 1.030E-02 |
A10 | 4.423E-03 | -6.322E-03 | -1.781E-02 | -1.465E-02 | -3.629E-03 | -8.042E-02 | -1.061E-02 | -8.083E-03 |
A12 | -2.501E-03 | 4.385E-03 | 1.260E-02 | 8.426E-03 | 3.452E-03 | 5.278E-02 | -7.425E-03 | 4.959E-03 |
A14 | 8.870E-04 | -1.750E-03 | -5.469E-03 | -2.350E-03 | -1.780E-03 | -2.249E-02 | 1.045E-02 | -2.000E-03 |
A16 | -1.928E-04 | 4.159E-04 | 1.467E-03 | 1.162E-04 | 4.917E-04 | 5.903E-03 | -5.074E-03 | 4.833E-04 |
A18 | 2.359E-05 | -5.434E-05 | -2.212E-04 | 9.364E-05 | -5.746E-05 | -8.807E-04 | 1.140E-03 | -6.318E-05 |
A20 | -1.320E-06 | 2.975E-06 | 1.439E-05 | -1.526E-05 | 0.000E+00 | 5.819E-05 | -9.826E-05 | 3.605E-06 |
面序号 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | S16 |
K | 0.000E+00 | 3.431E+00 | -3.010E-01 | -5.747E+00 | -1.000E+00 | 0.000E+00 | 0.000E+00 | -7.679E-01 |
A4 | -1.132E-02 | -8.230E-03 | 3.460E-03 | -1.092E-01 | -7.635E-02 | 6.304E-02 | -5.113E-02 | -6.893E-02 |
A6 | -1.123E-02 | -9.550E-03 | 1.260E-02 | 7.145E-02 | 3.672E-02 | -3.620E-02 | 4.695E-03 | 1.560E-02 |
A8 | 1.231E-02 | 2.773E-03 | -1.618E-02 | -3.338E-02 | -2.027E-02 | 1.021E-02 | 2.055E-05 | -3.026E-03 |
A10 | -6.341E-03 | 6.976E-05 | 8.405E-03 | 1.050E-02 | 7.609E-03 | -1.850E-03 | 1.499E-04 | 4.368E-04 |
A12 | 2.504E-03 | 2.892E-04 | -2.696E-03 | -2.302E-03 | -1.943E-03 | 1.872E-04 | -4.693E-05 | -4.299E-05 |
A14 | -9.073E-04 | -3.403E-04 | 5.571E-04 | 3.450E-04 | 3.179E-04 | -5.364E-06 | 5.596E-06 | 2.750E-06 |
A16 | 2.430E-04 | 1.184E-04 | -7.248E-05 | -3.303E-05 | -3.113E-05 | -7.511E-07 | -3.390E-07 | -1.091E-07 |
A18 | -3.602E-05 | -1.766E-05 | 5.410E-06 | 1.790E-06 | 1.649E-06 | 7.289E-08 | 1.050E-08 | 2.436E-09 |
A20 | 2.133E-06 | 9.746E-07 | -1.752E-07 | -4.141E-08 | -3.634E-08 | -1.915E-09 | -1.329E-10 | -2.345E-11 |
该实施例中的光学系统10满足以下关系:
f678/f6 | 3.343 | f/(sd82-sd11) | 2.361 |
ImgH/FNO(mm) | 3.444 | (r62+r71)/(|sag62|+|sag71|) | 6.643 |
TTL/ImgH | 1.376 | ct78/ct23 | 1.754 |
f345/f12 | 10.999 | (|sag81|-|sag72|)/et78 | 0.984 |
(f1+|f2|)/(r12+r22) | 2.376 | sds/(sd81-sd31) | 0.647 |
ct37/et37 | 1.304 | zh78/zb78 | 10.186 |
zh67/zb67 | 4.578 | |jd22|/45° | 0.657 |
|jd31|/45° | 0.428 |
由图4中的各像差图可知,光学系统10的纵向球差、场曲、像散、畸变均得到良好的控制,其中各参考波长下的焦点偏移均被控制在±0.05mm以内,同时各视场下的子午场曲和弧矢场曲均被控制在±0.025mm以内,像面弯曲程度受到有效抑制,且像散得到优良的调节,最大畸变也被控制在2.5%以内,因此可判断该实施例的光学系统10可拥有清晰成像。
第三实施例
参考图5,在第三实施例中,光学系统10沿光轴101由物侧至像侧依次包括孔径光阑STO1、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、渐晕光阑STO2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有正屈折力的第七透镜L7以及具有负屈折力的第八透镜L8,且光学系统10的各透镜面型如下:
第一透镜L1的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;物侧面S1于近最大有效口径处为凹面,像侧面S2于近最大有效口径处为凸面。
第二透镜L2的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;物侧面S3于近最大有效口径处为凸面,像侧面S4于近最大有效口径处为凹面。
第三透镜L3的物侧面S5于近光轴处为凹面,像侧面S6于近光轴处为凸面;物侧面S5于近最大有效口径处为凹面,像侧面S6于近最大有效口径处为凸面。
第四透镜L4的物侧面S7于近光轴处为凹面,像侧面S8于近光轴处为凹面;物侧面S7于近最大有效口径处为凸面,像侧面S8于近最大有效口径处为凹面。
第五透镜L5的物侧面S9于近光轴处为凸面,像侧面S10于近光轴处为凹面;物侧面S9于近最大有效口径处为凸面,像侧面S10于近最大有效口径处为凹面。
第六透镜L6的物侧面S11于近光轴处为凹面,像侧面S12于近光轴处为凹面;物侧面S11于近最大有效口径处为凸面,像侧面S12于近最大有效口径处为凹面。
第七透镜L7的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;物侧面S13于近最大有效口径处为凹面,像侧面S14于近最大有效口径处为凹面。
第八透镜L8的物侧面S15于近光轴处为凸面,像侧面S16于近光轴处为凹面;物侧面S15于近最大有效口径处为凹面,像侧面S16于近最大有效口径处为凸面。
该实施例中光学系统10的各透镜参数由表5和表6给出,其中各元件名称和参数的定义可由第一实施例中得出,此处不加以赘述。
表5
表6
面序号 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 |
K | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 1.281E+01 |
A4 | -3.670E-04 | -2.477E-02 | -4.097E-02 | -2.004E-02 | -6.220E-03 | 4.541E-02 | 2.685E-02 | -8.403E-03 |
A6 | 3.616E-03 | 1.233E-02 | 1.488E-02 | 4.756E-03 | -8.837E-03 | -1.462E-01 | -1.225E-01 | -3.047E-02 |
A8 | -5.678E-03 | 9.710E-04 | 1.119E-02 | 1.325E-02 | 1.077E-02 | 2.124E-01 | 1.594E-01 | 4.037E-02 |
A10 | 5.662E-03 | -6.909E-03 | -2.147E-02 | -1.892E-02 | -1.485E-02 | -2.192E-01 | -1.438E-01 | -3.529E-02 |
A12 | -3.509E-03 | 5.808E-03 | 1.744E-02 | 1.377E-02 | 1.209E-02 | 1.511E-01 | 8.356E-02 | 1.993E-02 |
A14 | 1.369E-03 | -2.676E-03 | -8.518E-03 | -5.799E-03 | -5.742E-03 | -6.705E-02 | -2.930E-02 | -7.160E-03 |
A16 | -3.283E-04 | 7.277E-04 | 2.549E-03 | 1.353E-03 | 1.484E-03 | 1.835E-02 | 5.604E-03 | 1.576E-03 |
A18 | 4.423E-05 | -1.090E-04 | -4.275E-04 | -1.361E-04 | -1.616E-04 | -2.824E-03 | -4.554E-04 | -1.926E-04 |
A20 | -2.629E-06 | 6.926E-06 | 3.080E-05 | 1.464E-06 | 0.000E+00 | 1.876E-04 | 2.806E-06 | 1.018E-05 |
面序号 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | S16 |
K | 0.000E+00 | -1.657E+01 | -6.647E+00 | -6.624E+00 | -1.000E+00 | 0.000E+00 | 0.000E+00 | -7.873E-01 |
A4 | -1.055E-02 | -1.104E-02 | 4.754E-03 | -1.150E-01 | -7.703E-02 | 7.269E-02 | -5.767E-02 | -7.664E-02 |
A6 | -1.647E-02 | -5.938E-03 | 1.330E-02 | 7.690E-02 | 3.903E-02 | -4.304E-02 | 3.780E-03 | 1.739E-02 |
A8 | 1.821E-02 | -1.497E-03 | -1.919E-02 | -3.970E-02 | -2.333E-02 | 1.255E-02 | 1.465E-03 | -3.330E-03 |
A10 | -9.443E-03 | 4.477E-03 | 1.110E-02 | 1.447E-02 | 9.015E-03 | -2.388E-03 | -2.987E-04 | 4.716E-04 |
A12 | 2.665E-03 | -2.628E-03 | -3.873E-03 | -3.643E-03 | -2.274E-03 | 2.844E-04 | 2.367E-05 | -4.541E-05 |
A14 | -3.899E-04 | 7.735E-04 | 8.399E-04 | 6.052E-04 | 3.634E-04 | -1.869E-05 | -8.258E-07 | 2.829E-06 |
A16 | 2.617E-05 | -1.215E-04 | -1.112E-04 | -6.204E-05 | -3.485E-05 | 4.538E-07 | 2.923E-09 | -1.086E-07 |
A18 | -6.694E-07 | 9.538E-06 | 8.275E-06 | 3.519E-06 | 1.822E-06 | 1.173E-08 | 5.829E-10 | 2.333E-09 |
A20 | 2.153E-08 | -2.881E-07 | -2.651E-07 | -8.401E-08 | -3.984E-08 | -6.190E-10 | -1.153E-11 | -2.148E-11 |
该实施例中的光学系统10满足以下关系:
f678/f6 | 3.313 | f/(sd82-sd11) | 2.285 |
ImgH/FNO(mm) | 3.380 | (r62+r71)/(|sag62|+|sag71|) | 6.910 |
TTL/ImgH | 1.368 | ct78/ct23 | 1.719 |
f345/f12 | 8.813 | (|sag81|-|sag72|)/et78 | 0.782 |
(f1+|f2|)/(r12+r22) | 2.104 | sds/(sd81-sd31) | 0.605 |
ct37/et37 | 1.248 | zh78/zb78 | 10.647 |
zh67/zb67 | 7.477 | |jd22|/45° | 0.658 |
|jd31|/45° | 0.424 |
由图6中的各像差图可知,光学系统10的纵向球差、场曲、像散、畸变均得到良好的控制,其中各参考波长下的焦点偏移均被控制在±0.05mm以内,同时各视场下的子午场曲和弧矢场曲均被控制在±0.025mm以内,像面弯曲程度受到有效抑制,且像散得到优良的调节,最大畸变也被控制在2.5%以内,因此可判断该实施例的光学系统10可拥有清晰成像。
第四实施例
参考图7,在第四实施例中,光学系统10沿光轴101由物侧至像侧依次包括孔径光阑STO1、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、渐晕光阑STO2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有正屈折力的第七透镜L7以及具有负屈折力的第八透镜L8,且光学系统10的各透镜面型如下:
第一透镜L1的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;物侧面S1于近最大有效口径处为凹面,像侧面S2于近最大有效口径处为凸面。
第二透镜L2的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;物侧面S3于近最大有效口径处为凸面,像侧面S4于近最大有效口径处为凹面。
第三透镜L3的物侧面S5于近光轴处为凹面,像侧面S6于近光轴处为凹面;物侧面S5于近最大有效口径处为凹面,像侧面S6于近最大有效口径处为凸面。
第四透镜L4的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凹面;物侧面S7于近最大有效口径处为凸面,像侧面S8于近最大有效口径处为凹面。
第五透镜L5的物侧面S9于近光轴处为凸面,像侧面S10于近光轴处为凹面;物侧面S9于近最大有效口径处为凸面,像侧面S10于近最大有效口径处为凹面。
第六透镜L6的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凹面;物侧面S11于近最大有效口径处为凸面,像侧面S12于近最大有效口径处为凹面。
第七透镜L7的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;物侧面S13于近最 大有效口径处为凹面,像侧面S14于近最大有效口径处为凸面。
第八透镜L8的物侧面S15于近光轴处为凹面,像侧面S16于近光轴处为凹面;物侧面S15于近最大有效口径处为凹面,像侧面S16于近最大有效口径处为凸面。
该实施例中光学系统10的各透镜参数由表7和表8给出,其中各元件名称和参数的定义可由第一实施例中得出,此处不加以赘述。
表7
表8
面序号 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 |
K | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 1.800E+01 |
A4 | -3.220E-04 | -2.167E-02 | -4.097E-02 | -2.165E-02 | -4.692E-03 | 1.085E-02 | 3.908E-03 | 3.122E-03 |
A6 | 3.395E-03 | 9.947E-03 | 1.607E-02 | 5.433E-03 | -7.560E-03 | -1.021E-01 | -1.022E-01 | -5.435E-02 |
A8 | -5.193E-03 | 6.794E-04 | 6.496E-03 | 1.485E-02 | 1.030E-02 | 1.831E-01 | 1.691E-01 | 7.984E-02 |
A10 | 5.071E-03 | -5.057E-03 | -1.461E-02 | -2.177E-02 | -1.517E-02 | -2.146E-01 | -1.817E-01 | -7.314E-02 |
A12 | -3.091E-03 | 4.169E-03 | 1.191E-02 | 1.658E-02 | 1.299E-02 | 1.595E-01 | 1.213E-01 | 4.207E-02 |
A14 | 1.193E-03 | -1.903E-03 | -5.818E-03 | -7.533E-03 | -6.447E-03 | -7.435E-02 | -4.965E-02 | -1.518E-02 |
A16 | -2.857E-04 | 5.150E-04 | 1.757E-03 | 2.003E-03 | 1.716E-03 | 2.107E-02 | 1.201E-02 | 3.317E-03 |
A18 | 3.892E-05 | -7.704E-05 | -2.991E-04 | -2.699E-04 | -1.901E-04 | -3.330E-03 | -1.567E-03 | -3.987E-04 |
A20 | -2.381E-06 | 4.886E-06 | 2.197E-05 | 1.271E-05 | 0.000E+00 | 2.256E-04 | 8.463E-05 | 2.026E-05 |
面序号 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | S16 |
K | 0.000E+00 | 3.431E+00 | -5.594E+00 | -6.182E+00 | -1.000E+00 | 0.000E+00 | 0.000E+00 | -7.316E-01 |
A4 | 5.949E-03 | 8.054E-03 | 7.518E-03 | -1.058E-01 | -6.882E-02 | 5.811E-02 | -5.203E-02 | -6.615E-02 |
A6 | -5.390E-02 | -3.870E-02 | 3.110E-03 | 6.774E-02 | 3.306E-02 | -3.025E-02 | 4.096E-03 | 1.426E-02 |
A8 | 6.138E-02 | 2.831E-02 | -9.656E-03 | -3.439E-02 | -1.871E-02 | 7.016E-03 | 6.796E-04 | -2.687E-03 |
A10 | -3.898E-02 | -1.229E-02 | 5.988E-03 | 1.243E-02 | 6.870E-03 | -8.753E-04 | -6.318E-05 | 3.829E-04 |
A12 | 1.590E-02 | 3.563E-03 | -2.064E-03 | -3.080E-03 | -1.651E-03 | 1.154E-05 | -1.119E-05 | -3.734E-05 |
A14 | -4.315E-03 | -7.322E-04 | 4.229E-04 | 4.988E-04 | 2.515E-04 | 1.333E-05 | 2.132E-06 | 2.358E-06 |
A16 | 7.587E-04 | 1.090E-04 | -5.175E-05 | -4.954E-05 | -2.299E-05 | -1.881E-06 | -1.433E-07 | -9.174E-08 |
A18 | -7.780E-05 | -1.043E-05 | 3.554E-06 | 2.714E-06 | 1.144E-06 | 1.074E-07 | 4.508E-09 | 2.000E-09 |
A20 | 3.492E-06 | 4.550E-07 | -1.061E-07 | -6.248E-08 | -2.380E-08 | -2.296E-09 | -5.586E-11 | -1.872E-11 |
该实施例中的光学系统10满足以下关系:
f678/f6 | 3.502 | f/(sd82-sd11) | 2.343 |
ImgH/FNO(mm) | 3.339 | (r62+r71)/(|sag62|+|sag71|) | 7.277 |
TTL/ImgH | 1.377 | ct78/ct23 | 1.791 |
f345/f12 | 13.499 | (|sag81|-|sag72|)/et78 | 1.286 |
(f1+|f2|)/(r12+r22) | 1.750 | sds/(sd81-sd31) | 0.617 |
ct37/et37 | 1.292 | zh78/zb78 | 10.281 |
zh67/zb67 | 4.354 | |jd22|/45° | 0.660 |
|jd31|/45° | 0.432 |
由图8中的各像差图可知,光学系统10的纵向球差、场曲、像散、畸变均得到良好的控制,其中各参考波长下的焦点偏移均被控制在±0.05mm以内,同时各视场下的子午场曲和弧矢场曲均被控制在±0.025mm以内,像面弯曲程度受到有效抑制,且像散得到优良的调节,最大畸变也被控制在2.5%以内,因此可判断该实施例的光学系统10可拥有清晰成像。
第五实施例
参考图9,在第五实施例中,光学系统10沿光轴101由物侧至像侧依次包括孔径光阑STO1、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、渐晕光阑STO2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有正屈折力的第七透镜L7以及具有负屈折力的第八透镜L8,且光学系统10的各透镜面型如下:
第一透镜L1的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;物侧面S1于近最大有效口径处为凹面,像侧面S2于近最大有效口径处为凸面。
第二透镜L2的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;物侧面S3于近最大有效口径处为凸面,像侧面S4于近最大有效口径处为凹面。
第三透镜L3的物侧面S5于近光轴处为凸面,像侧面S6于近光轴处为凸面;物侧面S5于近最大有效口径处为凹面,像侧面S6于近最大有效口径处为凸面。
第四透镜L4的物侧面S7于近光轴处为凹面,像侧面S8于近光轴处为凸面;物侧面S7于近最大有效口径处为凸面,像侧面S8于近最大有效口径处为凹面。
第五透镜L5的物侧面S9于近光轴处为凹面,像侧面S10于近光轴处为凸面;物侧面S9于近最大有效口径处为凸面,像侧面S10于近最大有效口径处为凹面。
第六透镜L6的物侧面S11于近光轴处为凹面,像侧面S12于近光轴处为凹面;物侧面S11于近最大有效口径处为凸面,像侧面S12于近最大有效口径处为凹面。
第七透镜L7的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;物侧面S13于近最大有效口径处为凹面,像侧面S14于近最大有效口径处为凸面。
第八透镜L8的物侧面S15于近光轴处为凹面,像侧面S16于近光轴处为凹面;物侧面S15于近最大有效口径处为凹面,像侧面S16于近最大有效口径处为凸面。
该实施例中光学系统10的各透镜参数由表9和表10给出,其中各元件名称和参数的定义可由第一实施例中得出,此处不加以赘述。
表9
表10
面序号 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 |
K | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | -2.000E+00 |
A4 | -1.415E-03 | -2.703E-02 | -4.631E-02 | -2.126E-02 | -1.193E-02 | 2.911E-02 | 2.192E-02 | 4.128E-03 |
A6 | 8.716E-03 | 5.501E-03 | 1.975E-02 | 6.474E-03 | -1.385E-03 | -1.886E-01 | -1.884E-01 | -9.503E-02 |
A8 | -1.633E-02 | 1.635E-02 | 1.469E-03 | 1.755E-02 | -6.719E-03 | 4.254E-01 | 4.153E-01 | 1.838E-01 |
A10 | 1.985E-02 | -2.662E-02 | -1.042E-03 | -2.451E-02 | 7.711E-03 | -6.348E-01 | -5.972E-01 | -2.164E-01 |
A12 | -1.528E-02 | 2.214E-02 | -5.867E-03 | 1.712E-02 | -6.399E-03 | 5.844E-01 | 5.234E-01 | 1.567E-01 |
A14 | 7.503E-03 | -1.129E-02 | 7.013E-03 | -6.263E-03 | 3.122E-03 | -3.299E-01 | -2.779E-01 | -7.071E-02 |
A16 | -2.281E-03 | 3.460E-03 | -3.575E-03 | 8.076E-04 | -8.497E-04 | 1.115E-01 | 8.723E-02 | 1.948E-02 |
A18 | 3.917E-04 | -5.778E-04 | 9.081E-04 | 1.647E-04 | 1.022E-04 | -2.078E-02 | -1.488E-02 | -2.999E-03 |
A20 | -2.948E-05 | 3.976E-05 | -9.317E-05 | -4.108E-05 | 0.000E+00 | 1.646E-03 | 1.064E-03 | 1.987E-04 |
面序号 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | S16 |
K | 0.000E+00 | -1.657E+01 | 1.313E+01 | -6.161E+00 | -1.000E+00 | 0.000E+00 | 0.000E+00 | -7.306E-01 |
A4 | 5.023E-03 | 4.608E-03 | 1.331E-02 | -1.488E-01 | -1.078E-01 | 7.383E-02 | -7.529E-02 | -9.128E-02 |
A6 | -1.108E-01 | -6.684E-02 | -1.245E-02 | 9.821E-02 | 5.519E-02 | -5.016E-02 | 2.062E-02 | 2.830E-02 |
A8 | 1.644E-01 | 6.941E-02 | 5.291E-03 | -4.754E-02 | -3.087E-02 | 1.760E-02 | -4.800E-03 | -7.020E-03 |
A10 | -1.335E-01 | -4.016E-02 | -2.560E-03 | 1.678E-02 | 1.214E-02 | -4.287E-03 | 1.034E-03 | 1.193E-03 |
A12 | 6.522E-02 | 1.383E-02 | 8.805E-04 | -4.369E-03 | -3.335E-03 | 6.686E-04 | -1.506E-04 | -1.324E-04 |
A14 | -1.924E-02 | -2.612E-03 | -2.260E-04 | 7.921E-04 | 5.978E-04 | -6.067E-05 | 1.337E-05 | 9.378E-06 |
A16 | 3.365E-03 | 2.223E-04 | 3.948E-05 | -9.099E-05 | -6.448E-05 | 2.810E-06 | -6.992E-07 | -4.082E-07 |
A18 | -3.245E-04 | -1.244E-06 | -3.771E-06 | 5.829E-06 | 3.767E-06 | -4.301E-08 | 1.990E-08 | 9.958E-09 |
A20 | 1.347E-05 | -6.384E-07 | 1.437E-07 | -1.573E-07 | -9.137E-08 | -5.182E-10 | -2.386E-10 | -1.043E-10 |
该实施例中的光学系统10满足以下关系:
f678/f6 | 2.775 | f/(sd82-sd11) | 2.204 |
ImgH/FNO(mm) | 3.232 | (r62+r71)/(|sag62|+|sag71|) | 5.854 |
TTL/ImgH | 1.275 | ct78/ct23 | 1.985 |
f345/f12 | 6.985 | (|sag81|-|sag72|)/et78 | 1.094 |
(f1+|f2|)/(r12+r22) | 2.826 | sds/(sd81-sd31) | 0.573 |
ct37/et37 | 1.263 | zh78/zb78 | 9.546 |
zh67/zb67 | 4.768 | |jd22|/45° | 0.649 |
|jd31|/45° | 0.425 |
由图10中的各像差图可知,光学系统10的纵向球差、场曲、像散、畸变均得到良好的控制,其中各参考波长下的焦点偏移均被控制在±0.05mm以内,同时各视场下的子午场曲和弧矢场曲均被控制在±0.025mm以内,像面弯曲程度受到有效抑制,且像散得到优良的调节,最大畸变也被控制在2.5%以内,因此可判断该实施例的光学系统10可拥有清晰成像。
第六实施例
参考图11,在第六实施例中,光学系统10沿光轴101由物侧至像侧依次包括孔径光阑STO1、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、渐晕光阑STO2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有正屈折力的第七透镜L7以及具有负屈折力的第八透镜L8,且光学系统10的各透镜面型如下:
第一透镜L1的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;物侧面S1于近最大有效口径处为凸面,像侧面S2于近最大有效口径处为凸面。
第二透镜L2的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;物侧面S3于近最大有效口径处为凸面,像侧面S4于近最大有效口径处为凹面。
第三透镜L3的物侧面S5于近光轴处为凸面,像侧面S6于近光轴处为凸面;物侧面S5于近最大有效口径处为凹面,像侧面S6于近最大有效口径处为凸面。
第四透镜L4的物侧面S7于近光轴处为凹面,像侧面S8于近光轴处为凸面;物侧面S7于近最大有效口径处为凸面,像侧面S8于近最大有效口径处为凹面。
第五透镜L5的物侧面S9于近光轴处为凹面,像侧面S10于近光轴处为凸面;物侧面S9于近最大有效口径处为凸面,像侧面S10于近最大有效口径处为凹面。
第六透镜L6的物侧面S11于近光轴处为凹面,像侧面S12于近光轴处为凹面;物侧面S11于近最大有效口径处为凸面,像侧面S12于近最大有效口径处为凹面。
第七透镜L7的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;物侧面S13于近最大有效口径处为凹面,像侧面S14于近最大有效口径处为凸面。
第八透镜L8的物侧面S15于近光轴处为凹面,像侧面S16于近光轴处为凹面;物侧面S15于近最大有效口径处为凹面,像侧面S16于近最大有效口径处为凸面。
该实施例中光学系统10的各透镜参数由表11和表12给出,其中各元件名称和参数的定义可由第一实施例中得出,此处不加以赘述。
表11
表12
面序号 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 |
K | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | -2.000E+00 |
A4 | 1.027E-04 | -2.947E-02 | -4.910E-02 | -2.298E-02 | -1.221E-02 | 2.676E-02 | 2.726E-02 | 1.321E-02 |
A6 | 5.557E-03 | 1.273E-02 | 2.319E-02 | 9.319E-03 | -4.837E-03 | -1.749E-01 | -2.021E-01 | -1.245E-01 |
A8 | -1.154E-02 | 9.312E-03 | 6.329E-03 | 1.979E-02 | 1.368E-03 | 3.615E-01 | 4.049E-01 | 2.261E-01 |
A10 | 1.621E-02 | -2.539E-02 | -1.949E-02 | -3.887E-02 | -4.771E-03 | -5.184E-01 | -5.529E-01 | -2.573E-01 |
A12 | -1.443E-02 | 2.682E-02 | 1.832E-02 | 4.140E-02 | 5.616E-03 | 4.787E-01 | 4.806E-01 | 1.850E-01 |
A14 | 8.231E-03 | -1.685E-02 | -1.038E-02 | -2.765E-02 | -3.996E-03 | -2.774E-01 | -2.588E-01 | -8.416E-02 |
A16 | -2.926E-03 | 6.347E-03 | 3.686E-03 | 1.146E-02 | 1.475E-03 | 9.729E-02 | 8.300E-02 | 2.350E-02 |
A18 | 5.893E-04 | -1.314E-03 | -7.272E-04 | -2.633E-03 | -2.173E-04 | -1.889E-02 | -1.443E-02 | -3.674E-03 |
A20 | -5.200E-05 | 1.142E-04 | 5.976E-05 | 2.606E-04 | 0.000E+00 | 1.560E-03 | 1.040E-03 | 2.466E-04 |
面序号 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | S16 |
K | 0.000E+00 | -1.657E+01 | -6.647E+00 | -5.960E+00 | -1.000E+00 | 0.000E+00 | 0.000E+00 | -7.309E-01 |
A4 | 7.760E-03 | 2.257E-03 | 1.455E-02 | -1.465E-01 | -1.036E-01 | 8.195E-02 | -6.821E-02 | -8.844E-02 |
A6 | -1.274E-01 | -7.047E-02 | -1.399E-02 | 9.691E-02 | 5.029E-02 | -5.916E-02 | 1.296E-02 | 2.543E-02 |
A8 | 1.954E-01 | 7.652E-02 | 5.162E-03 | -4.699E-02 | -2.832E-02 | 2.193E-02 | -1.484E-03 | -6.031E-03 |
A10 | -1.666E-01 | -4.571E-02 | -1.984E-03 | 1.646E-02 | 1.135E-02 | -5.492E-03 | 2.765E-04 | 1.007E-03 |
A12 | 8.719E-02 | 1.622E-02 | 5.729E-04 | -4.223E-03 | -3.157E-03 | 8.835E-04 | -4.881E-05 | -1.112E-04 |
A14 | -2.821E-02 | -3.151E-03 | -1.447E-04 | 7.535E-04 | 5.668E-04 | -8.591E-05 | 5.018E-06 | 7.842E-06 |
A16 | 5.553E-03 | 2.758E-04 | 2.822E-05 | -8.531E-05 | -6.085E-05 | 4.695E-06 | -2.864E-07 | -3.393E-07 |
A18 | -6.170E-04 | -1.549E-06 | -3.018E-06 | 5.395E-06 | 3.527E-06 | -1.234E-07 | 8.583E-09 | 8.208E-09 |
A20 | 2.997E-05 | -8.449E-07 | 1.257E-07 | -1.437E-07 | -8.478E-08 | 9.549E-10 | -1.062E-10 | -8.504E-11 |
该实施例中的光学系统10满足以下关系:
f678/f6 | 2.609 | f/(sd82-sd11) | 2.080 |
ImgH/FNO(mm) | 2.986 | (r62+r71)/(|sag62|+|sag71|) | 6.045 |
TTL/ImgH | 1.269 | ct78/ct23 | 1.938 |
f345/f12 | 7.067 | (|sag81|-|sag72|)/et78 | 1.097 |
(f1+|f2|)/(r12+r22) | 2.525 | sds/(sd81-sd31) | 0.530 |
ct37/et37 | 1.256 | zh78/zb78 | 10.582 |
zh67/zb67 | 4.923 | |jd22|/45° | 0.657 |
|jd31|/45° | 0.432 |
由图12中的各像差图可知,光学系统10的纵向球差、场曲、像散、畸变均得到良好的控制,其中各参考波长下的焦点偏移均被控制在±0.05mm以内,同时各视场下的子午场曲和弧矢场曲均被控制在±0.025mm以内,像面弯曲程度受到有效抑制,且像散得到优良的调节,最大畸变也被控制在2.5%以内,因此可判断该实施例的光学系统10可拥有清晰成像。
第七实施例
参考图13,在第七实施例中,光学系统10沿光轴101由物侧至像侧依次包括孔径光阑STO1、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、渐晕光阑STO2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有正屈折力的第七透镜L7以及具有负屈折力的第八透镜L8,且光学系统10的各透镜面型如下:
第一透镜L1的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;物侧面S1于近最大有效口径处为凹面,像侧面S2于近最大有效口径处为凸面。
第二透镜L2的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;物侧面S3于近最大有效口径处为凸面,像侧面S4于近最大有效口径处为凹面。
第三透镜L3的物侧面S5于近光轴处为凸面,像侧面S6于近光轴处为凸面;物侧面S5于近最大有效口径处为凹面,像侧面S6于近最大有效口径处为凹面。
第四透镜L4的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凹面;物侧面S7于近最大有效口径处为凸面,像侧面S8于近最大有效口径处为凹面。
第五透镜L5的物侧面S9于近光轴处为凹面,像侧面S10于近光轴处为凸面;物侧面S9于近最大有效口径处为凸面,像侧面S10于近最大有效口径处为凸面。
第六透镜L6的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凹面;物侧面S11于近最大有效口径处为凸面,像侧面S12于近最大有效口径处为凹面。
第七透镜L7的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凸面;物侧面S13于近最大有效口径处为凹面,像侧面S14于近最大有效口径处为凸面。
第八透镜L8的物侧面S15于近光轴处为凹面,像侧面S16于近光轴处为凹面;物侧面S15于近最大有效口径处为凹面,像侧面S16于近最大有效口径处为凸面。
该实施例中光学系统10的各透镜参数由表13和表14给出,其中各元件名称和参数的定义可由第一实施例中得出,此处不加以赘述。
表13
表14
面序号 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 |
K | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 1.800E+01 |
A4 | -3.287E-04 | -1.758E-02 | -3.851E-02 | -2.471E-02 | -9.033E-03 | 2.080E-02 | 7.684E-03 | -8.315E-03 |
A6 | 2.609E-03 | 8.015E-03 | 1.400E-02 | 7.821E-03 | -1.911E-03 | -8.659E-02 | -6.823E-02 | -1.826E-02 |
A8 | -3.245E-03 | -1.953E-03 | 4.679E-04 | 4.134E-03 | -3.111E-04 | 1.188E-01 | 7.963E-02 | 2.141E-02 |
A10 | 2.805E-03 | 4.687E-05 | -3.002E-03 | -5.422E-03 | -1.190E-03 | -1.192E-01 | -6.909E-02 | -1.808E-02 |
A12 | -1.528E-03 | 7.534E-05 | 1.582E-03 | 2.794E-03 | 1.117E-03 | 7.800E-02 | 3.695E-02 | 9.694E-03 |
A14 | 5.346E-04 | 9.008E-06 | -4.120E-04 | -7.497E-04 | -5.061E-04 | -3.191E-02 | -1.064E-02 | -3.255E-03 |
A16 | -1.171E-04 | -1.679E-05 | 5.338E-05 | 1.071E-04 | 1.219E-04 | 7.895E-03 | 1.244E-03 | 6.827E-04 |
A18 | 1.481E-05 | 4.388E-06 | -1.572E-06 | -9.181E-06 | -1.242E-05 | -1.091E-03 | 4.767E-05 | -8.262E-05 |
A20 | -8.499E-07 | -3.767E-07 | -1.655E-07 | 1.273E-06 | 0.000E+00 | 6.539E-05 | -1.609E-05 | 4.438E-06 |
面序号 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | S16 |
K | 0.000E+00 | 3.431E+00 | 1.246E+01 | -7.764E+00 | -1.000E+00 | 0.000E+00 | 0.000E+00 | -7.185E-01 |
A4 | -1.402E-02 | -9.707E-03 | 1.700E-02 | -1.113E-01 | -9.135E-02 | 6.188E-02 | -5.611E-02 | -6.735E-02 |
A6 | -7.724E-03 | -1.313E-02 | -2.463E-03 | 7.120E-02 | 4.148E-02 | -4.344E-02 | 1.889E-03 | 1.421E-02 |
A8 | 2.365E-03 | 6.104E-03 | -6.070E-03 | -3.117E-02 | -2.125E-02 | 1.476E-02 | 2.560E-03 | -2.250E-03 |
A10 | 7.590E-03 | -1.587E-03 | 4.031E-03 | 8.884E-03 | 7.902E-03 | -3.205E-03 | -5.418E-04 | 2.640E-04 |
A12 | -8.393E-03 | 4.801E-04 | -1.494E-03 | -1.763E-03 | -2.055E-03 | 4.278E-04 | 4.937E-05 | -2.265E-05 |
A14 | 3.940E-03 | -1.715E-04 | 3.525E-04 | 2.462E-04 | 3.466E-04 | -3.185E-05 | -2.010E-06 | 1.355E-06 |
A16 | -9.569E-04 | 4.166E-05 | -5.137E-05 | -2.264E-05 | -3.524E-05 | 9.784E-07 | 2.781E-09 | -5.294E-08 |
A18 | 1.179E-04 | -5.157E-06 | 4.149E-06 | 1.197E-06 | 1.951E-06 | 1.389E-08 | 2.469E-09 | 1.206E-09 |
A20 | -5.857E-06 | 2.451E-07 | -1.400E-07 | -2.706E-08 | -4.511E-08 | -1.162E-09 | -5.836E-11 | -1.211E-11 |
该实施例中的光学系统10满足以下关系:
f678/f6 | 8.179 | f/(sd82-sd11) | 2.465 |
ImgH/FNO(mm) | 3.720 | (r62+r71)/(|sag62|+|sag71|) | 6.048 |
TTL/ImgH | 1.397 | ct78/ct23 | 1.859 |
f345/f12 | 11.354 | (|sag81|-|sag72|)/et78 | 1.585 |
(f1+|f2|)/(r12+r22) | 2.428 | sds/(sd81-sd31) | 0.749 |
ct37/et37 | 1.373 | zh78/zb78 | 12.152 |
zh67/zb67 | 5.591 | |jd22|/45° | 0.667 |
|jd31|/45° | 0.502 |
由图14中的各像差图可知,光学系统10的纵向球差、场曲、像散、畸变均得到良好的控制,其中各参考波长下的焦点偏移均被控制在±0.05mm以内,同时各视场下的子午场曲和弧矢场曲均被控制在±0.025mm以内,像面弯曲程度受到有效抑制,且像散得到优良的调节,最大畸变也被控制在2.5%以内,因此可判断该实施例的光学系统10可拥有清晰成像。
上述各实施例所提供的光学系统10能够在实现结构小型化设计的同时保持良好的成像质量。
参考图15,本申请的实施例还提供了一种摄像模组20,摄像模组20包括光学系统10及图像传感器210,图像传感器210设置于光学系统10的像侧,两者可通过支架固定。图像传感器210可以为CCD传感器(Charge Coupled Device,电荷耦合器件)或CMOS传感器(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)。一般地,在装配时,光学系统10的成像面S17与图像传感器210的感光表面重叠。通过采用上述光学系统10,摄像模组20能够实现结构小型化设计的同时保持良好的成像质量。
参考图16,本申请的一些实施例还提供了一种电子设备30。电子设备30包括固定件310,摄像模组20安装于固定件310,固定件310可以为显示屏、电路板、中框、后盖等部件。电子设备30可以为但不限于智能手机、智能手表、智能眼镜、电子书阅读器、平板电脑、生物识别设备(如指纹识别设备或瞳孔识别设备等)、PDA(Personal Digital Assistant,个人数字助理)等。由于上述摄像模组20能够在总长得到压缩的同时维持良好的成像质量,从而当采用上述摄像模组20时,电子设备30可用更小的空间装配上述摄像模组20,从而使得设备的厚度能够得到压缩,同时也能保持良好的摄像性能。
本发明实施例中所使用到的“电子设备”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的设备。被设置成通过无线接口通信的电子设备可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子设备。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、 “上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (21)
- 一种光学系统,沿光轴由物侧至像侧依次包括:具有正屈折力的第一透镜,所述第一透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;具有负屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;具有屈折力的第三透镜;具有屈折力的第四透镜;具有屈折力的第五透镜;具有负屈折力的第六透镜,所述第六透镜的像侧面于近光轴处为凹面;具有正屈折力的第七透镜,所述第七透镜的物侧面于近光轴处为凸面,所述第七透镜的物侧面和像侧面皆为非球面,且其中至少一个面存在反曲;具有负屈折力的第八透镜,所述第八透镜的像侧面于近光轴处为凹面,所述第八透镜的物侧面和像侧面皆为非球面,且其中至少一个面存在反曲;所述光学系统还满足关系:2.5<f678/f6<8.5;f678为所述第六透镜、所述第七透镜和所述第八透镜的组合焦距,f6为所述第六透镜的有效焦距。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:2<f/(sd82-sd11)<2.5;f为所述光学系统的有效焦距,sd11为所述第一透镜的物侧面的最大有效口径的一半,sd82为所述第八透镜的像侧面的最大有效口径的一半。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:5<f345/f12<15;f345为所述第三透镜、所述第四透镜和所述第五透镜的组合焦距,f12为所述第一透镜和所述第二透镜的组合焦距。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:5.5<(r62+r71)/(|sag62|+|sag71|)<7.5;r62为所述第六透镜的像侧面于光轴处的曲率半径,r71为所述第七透镜的物侧面于光轴处的曲率半径,sag62为所述第六透镜的像侧面于最大有效口径处的矢高,sag71为所述第七透镜的物侧面于最大有效口径处的矢高。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:ImgH/FNO>2.9mm;ImgH为所述光学系统的最大视场角所对应的像高的一半,FNO为所述光学系统的光圈数。
- 根据权利要求2所述的光学系统,其特征在于,所述光学系统满足关系:FNO<1.85。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:TTL/ImgH<1.4;TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,ImgH为所述光学系统的最大视场角所对应的像高的一半。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:1.5<(f1+|f2|)/(r12+r22)<3;f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距,r12为所述第一透镜的像侧面于光轴处为曲率半径,r22为所述第二透镜的像侧面于光轴处的曲率半径。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:ct37/et37<1.4;ct37为所述第三透镜至所述第七透镜中各透镜于光轴上的厚度之和,et37为所述第三透镜至所述第七透镜中各透镜于物侧面最大有效口径处至像侧面最大有效口径处于光轴方向上的距离之和。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:1.7<ct78/ct23<2.0;ct23为所述第二透镜的像侧面至所述第三透镜的物侧面于光轴上的距离,ct78为所述第七透镜的像侧面至所述第八透镜的物侧面于光轴上的距离。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:0.6<(|sag81|-|sag72|)/et78<1.6;sag72为所述第七透镜的像侧面于最大有效口径处的矢高,sag81为所述第八透镜的物侧面于最大有效口径处的矢高,et78为所述第七透镜的像侧面最大有效口径处至所述第八透镜的物侧面最大有效口径处于光轴方向上的距离。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统包括设于所述第二透镜与所述第三透镜之间的渐晕光阑,且所述光学系统满足关系:0.5<sds/(sd81-sd31)<0.8;sds为所述渐晕光阑的最大有效口径,sd31为所述第三透镜的物侧面的最大有效口径,sd81为所述第八透镜的物侧面的最大有效口径。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:9.5<zh78/zb78<12.2;zh78为所述第七透镜的像侧面至所述第八透镜的物侧面于光轴方向上的最大距离,zb78为所述第七透镜的像侧面至所述第八透镜的物侧面于光轴方向上的最短距离。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:4.2<zh67/zb67<7.5;zh67为所述第六透镜的像侧面至所述第七透镜的物侧面于光轴方向上的最大距离,zb67为所述第六透镜的像侧面至所述第七透镜的物侧面于光轴方向上的最短距离。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统包括设于所述第二透镜与所述第三透镜之间的渐晕光阑,且所述光学系统满足关系:0.64<|jd22|/45°<0.67;jd22为所述第二透镜的像侧面各位置的切面与垂直光轴的平面所成的最大锐角夹角。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统包括设于所述第二透镜与所述第三透镜之间的渐晕光阑,且所述光学系统满足关系:0.41<|jd31|/45°<0.51;jd31为所述第三透镜的物侧面各位置的切面与垂直光轴的平面所成的最大锐角夹角。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统包括孔径光阑,所述孔径光阑设于所述第一透镜的物侧。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统包括渐晕光阑,所述渐晕光阑设于所述第二透镜与所述第三透镜之间。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统中各透镜的物侧面及像侧面均为非球面。
- 一种摄像模组,包括图像传感器及权利要求1至19任意一项所述的光学系统,所述图像传感器设于所述光学系统的像侧。
- 一种电子设备,包括固定件及权利要求20所述的摄像模组,所述摄像模组设于所述固定件。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/090997 WO2022226896A1 (zh) | 2021-04-29 | 2021-04-29 | 光学系统、摄像模组及电子设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/090997 WO2022226896A1 (zh) | 2021-04-29 | 2021-04-29 | 光学系统、摄像模组及电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022226896A1 true WO2022226896A1 (zh) | 2022-11-03 |
Family
ID=83846578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/090997 WO2022226896A1 (zh) | 2021-04-29 | 2021-04-29 | 光学系统、摄像模组及电子设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022226896A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56119109A (en) * | 1980-02-23 | 1981-09-18 | Mamiya Koki Kk | Wide angle zoom lens |
CN107831588A (zh) * | 2017-11-29 | 2018-03-23 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN110456490A (zh) * | 2019-09-20 | 2019-11-15 | 浙江舜宇光学有限公司 | 摄像透镜组 |
US20200064593A1 (en) * | 2018-08-21 | 2020-02-27 | Calin Technology Co., Ltd. | Optical image lens |
CN112083550A (zh) * | 2019-06-12 | 2020-12-15 | 大立光电股份有限公司 | 摄影镜头组、取像装置及电子装置 |
-
2021
- 2021-04-29 WO PCT/CN2021/090997 patent/WO2022226896A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56119109A (en) * | 1980-02-23 | 1981-09-18 | Mamiya Koki Kk | Wide angle zoom lens |
CN107831588A (zh) * | 2017-11-29 | 2018-03-23 | 浙江舜宇光学有限公司 | 光学成像镜头 |
US20200064593A1 (en) * | 2018-08-21 | 2020-02-27 | Calin Technology Co., Ltd. | Optical image lens |
CN112083550A (zh) * | 2019-06-12 | 2020-12-15 | 大立光电股份有限公司 | 摄影镜头组、取像装置及电子装置 |
CN110456490A (zh) * | 2019-09-20 | 2019-11-15 | 浙江舜宇光学有限公司 | 摄像透镜组 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11953756B2 (en) | Optical system, image capturing module and electronic device | |
WO2020073978A1 (zh) | 光学透镜组、取像模组和电子装置 | |
WO2021109127A1 (zh) | 光学系统、摄像模组及电子装置 | |
WO2020258269A1 (zh) | 成像镜头、摄像模组及电子装置 | |
WO2021102943A1 (zh) | 光学系统、摄像模组及电子装置 | |
US20220174193A1 (en) | Optical system, photographing module, and electronic device | |
WO2020078451A1 (zh) | 光学摄像镜头、取像模组和电子装置 | |
CN114114654B (zh) | 光学系统、取像模组及电子设备 | |
WO2020073983A1 (zh) | 光学摄像镜头组、取像模组及电子装置 | |
CN113552696A (zh) | 光学系统、取像模组及电子设备 | |
CN113900225B (zh) | 光学系统、取像模组及电子设备 | |
WO2022160119A1 (zh) | 光学系统、摄像模组及电子设备 | |
WO2022165840A1 (zh) | 光学系统、摄像模组及电子设备 | |
WO2022109820A1 (zh) | 光学系统、摄像模组及电子设备 | |
CN113156612B (zh) | 光学系统、取像模组及电子设备 | |
WO2022160120A1 (zh) | 光学系统、摄像模组及电子设备 | |
WO2022120515A1 (zh) | 光学系统、摄像模组及电子设备 | |
CN114578512A (zh) | 光学系统、摄像模组及电子设备 | |
WO2022120678A1 (zh) | 光学系统、取像模组及电子设备 | |
WO2022147650A1 (zh) | 光学系统、摄像模组及电子设备 | |
WO2022226888A1 (zh) | 光学系统、摄像模组及电子设备 | |
CN114460723B (zh) | 光学系统、摄像模组及电子设备 | |
CN113866943B (zh) | 光学系统、取像模组及电子设备 | |
WO2022178657A1 (zh) | 光学系统、摄像模组及电子设备 | |
WO2022198561A1 (zh) | 光学系统、取像模组及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21938376 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21938376 Country of ref document: EP Kind code of ref document: A1 |