WO2022226835A1 - 视频数据处理装置及方法、显示系统 - Google Patents
视频数据处理装置及方法、显示系统 Download PDFInfo
- Publication number
- WO2022226835A1 WO2022226835A1 PCT/CN2021/090542 CN2021090542W WO2022226835A1 WO 2022226835 A1 WO2022226835 A1 WO 2022226835A1 CN 2021090542 W CN2021090542 W CN 2021090542W WO 2022226835 A1 WO2022226835 A1 WO 2022226835A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image quality
- quality adjustment
- module
- adjustment parameter
- video data
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 112
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000004044 response Effects 0.000 claims abstract description 33
- 230000005540 biological transmission Effects 0.000 claims abstract description 29
- 230000000630 rising effect Effects 0.000 claims description 16
- 238000012795 verification Methods 0.000 claims description 11
- 239000000872 buffer Substances 0.000 claims description 8
- 238000003672 processing method Methods 0.000 claims description 7
- 230000001934 delay Effects 0.000 claims description 3
- 230000003111 delayed effect Effects 0.000 claims description 3
- 208000011580 syndromic disease Diseases 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 16
- 238000001514 detection method Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/14—Digital output to display device ; Cooperation and interconnection of the display device with other functional units
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/04—Synchronising
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/64—Circuits for processing colour signals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30168—Image quality inspection
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0693—Calibration of display systems
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/02—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
- G09G5/06—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed using colour palettes, e.g. look-up tables
Definitions
- the present disclosure relates to the field of display technology, and in particular, to a video data processing device, a video data processing method, and a display system.
- the terminal device adjusts the image according to an instruction input by the user. For example, the color gamut of the image is adjusted according to the user's color gamut switching instruction; or, the color of the image is adjusted according to the user's color adjustment instruction.
- the present disclosure aims to solve at least one of the technical problems existing in the prior art, and proposes a video data processing apparatus and method, and a display system.
- a video data processing device comprising: a first acquisition module, a second acquisition module, a storage module and a processing module, wherein,
- the first acquisition module is configured to, in response to the received image quality adjustment parameter, determine whether the image quality adjustment parameter satisfies a preset condition, and when the image quality adjustment parameter satisfies the preset condition, convert the image quality adjustment parameter to the image quality adjustment parameter. sending adjustment parameters to the storage module;
- the storage module is configured to cache the image quality adjustment parameters, and in response to the control of the frame synchronization signal, send the image quality adjustment parameters to the processing module;
- the second acquisition module is configured to acquire original video data, and send the original video data to the processing module in response to a valid data strobe signal; wherein, the transmission time period of the image quality adjustment parameter is the same as that of the image quality adjustment parameter.
- the transmission time periods of the original video data do not overlap;
- the processing module is configured to perform data processing on the original video data according to the image quality adjustment parameters to generate target video data.
- the first obtaining module includes: a receiving sub-module and a checking sub-module, wherein,
- the receiving sub-module is configured to receive the image quality adjustment parameter sent by the system chip
- the verification sub-module is configured to determine whether the image quality adjustment parameter satisfies the preset condition, and when the image quality adjustment parameter satisfies the preset condition, control the receiving sub-module to send the image quality adjustment parameter to the The storage module; when the image quality adjustment parameter does not meet a preset condition, sending a data request signal to the system chip, so that the system chip re-sends the image quality adjustment parameter.
- the image quality adjustment parameter is serial data
- the serial data includes: a first keyword, at least one valid data, a second keyword, and a check value in order;
- the verification value is obtained after performing the first operation on the first keyword, the second keyword and the valid data between them;
- the syndrome sub-module is specifically configured to adjust the first keyword, the second keyword, the valid data between the first keyword and the second keyword in the received image quality adjustment parameters, and Perform a second operation on the check value, and compare the result of the second operation with the target value, and when the result of the second operation is equal to the target value, determine that the image quality adjustment parameter satisfies a preset condition; Otherwise, it is determined that the image quality adjustment parameter does not meet the preset condition.
- the first operation includes an exclusive-OR operation and the second operation includes an exclusive-OR operation.
- the first obtaining module receives the image quality adjustment parameter in a first clock domain
- the device further includes: a timing generation module configured to generate the frame synchronization signal and the valid data strobe signal in a second clock domain; wherein the start time of the valid state of the frame synchronization signal is the same as the valid state start time of the frame synchronization signal. There is a preset time interval between the valid state start moments of the data strobe signal, and the clock frequency of the second clock domain is greater than the clock frequency of the first clock domain;
- the storage module is specifically configured to cache the image quality adjustment parameters, and send the image quality adjustment parameters to the The processing module, wherein the clock frequency of the third clock domain is greater than the clock frequency of the second clock domain.
- the storage module includes: a pulse generator and a first memory; wherein,
- the first memory is configured to store the image quality adjustment parameter
- the pulse generator is configured to generate a pulse signal in a third clock domain, where the pulse signal is used to control the first memory to output the image quality adjustment parameter to the processing module; wherein the pulse signal
- the frequency of the pulse signal is the same as the frequency of the frame synchronization signal, and the rising edge time of the pulse signal is the same as the start time of the effective state of the frame synchronization signal.
- the pulse generator includes: a first generating unit and a second generating unit, wherein,
- the first generating unit is configured to delay the frame synchronization signal by a first time to obtain a delayed signal; wherein, the first time is a single clock pulse width of the third clock domain;
- the second generating unit is configured to, after inverting the delay signal, perform an AND operation with the frame synchronization signal to obtain the pulse signal.
- the second acquisition module includes: a receiver, a write memory controller, and a read memory controller;
- the receiver is configured to receive the original video data in a fourth clock domain
- the write memory controller is configured to write the original video data into the second memory in a fifth clock domain
- the read memory controller is configured to read raw video data in the second memory in the fifth clock domain and send the raw video data to the processing in the second clock domain module.
- Embodiments of the present disclosure further provide a display system, including: a display module, a system chip, and the above-mentioned video data processing device,
- the system chip is configured to, in response to the image quality adjustment instruction, output corresponding image quality adjustment parameters
- the display module is configured to display in response to the target video data output by the display driving device.
- the present disclosure also provides a video data processing method applied to a video data processing device, wherein the video data processing device includes: a first acquisition module, a second acquisition module, a storage module and a processing module, and the method includes:
- the first acquisition module determines whether the image quality adjustment parameter satisfies the preset condition, and when the image quality adjustment parameter satisfies the preset condition, sends the image quality adjustment parameter to the storage module;
- the storage module buffers the image quality adjustment parameters, and sends the image quality adjustment parameters to the processing module in response to the control of the frame synchronization signal;
- the second acquisition module acquires original video data, and sends the original video data to the processing module in response to a valid data gating signal; wherein, the transmission time period of the picture quality adjustment parameter is the same as the original video data.
- the data transmission time periods do not overlap;
- the processing module performs data processing on the original video data according to the image quality adjustment parameter to generate target video data.
- the first obtaining module includes: a receiving sub-module and a checking sub-module,
- the first acquisition module determines whether the image quality adjustment parameter satisfies the preset condition, and when the image quality adjustment parameter satisfies the preset condition, sends the image quality adjustment parameter To the storage module, it specifically includes:
- the receiving sub-module receives the picture quality adjustment parameters sent by the system chip
- the verification sub-module determines whether the image quality adjustment parameter satisfies the preset condition, and when the image quality adjustment parameter satisfies the preset condition, controls the receiving sub-module to output the image quality adjustment parameter to the storage module; when the image quality adjustment parameter does not meet the preset condition, send a data request signal to the system chip, so that the system chip re-sends the image quality adjustment parameter.
- the image quality adjustment parameter is serial data
- the serial data includes: a first keyword, at least one valid data, a second keyword, and a check value in order;
- the verification value is obtained after performing the first operation on the first keyword, the second keyword and the valid data between them;
- the check sub-module determines whether the image quality adjustment parameter satisfies a preset condition, and specifically includes:
- the verification sub-module performs the first keyword, the second keyword, the valid data between the first keyword and the second keyword, and the check value in the received image quality adjustment parameters. Two operations are performed, and the result of the second operation is compared with the target value. When the result of the second operation is equal to the target value, it is determined that the image quality adjustment parameter satisfies the preset condition; otherwise, it is determined that the The image quality adjustment parameters do not meet the preset conditions.
- the first operation includes an exclusive-OR operation and the second operation includes an exclusive-OR operation.
- the first obtaining module receives the image quality adjustment parameter in a first clock domain; the apparatus further includes: a timing generation module;
- both the frame synchronization signal and the valid data strobe signal are generated by the timing generation module in the second clock domain, and the start time of the valid state of the frame synchronization signal and the valid data strobe signal are There is a preset time interval between the starting moments of the valid state, and the clock frequency of the second clock domain is greater than the clock frequency of the first clock domain;
- the storage module buffers the image quality adjustment parameters, and sends the image quality adjustment parameters to the processing module in the third clock domain from the starting moment of the valid state of the frame synchronization signal, wherein , the clock frequency of the third clock domain is greater than the clock frequency of the second clock domain.
- the storage module includes: a pulse generator and a first memory
- the storage module buffers the image quality adjustment parameters, and sends the image quality adjustment parameters to the processing module in the third clock domain from the start time of the valid state of the frame synchronization signal, which specifically includes:
- the first memory stores the image quality adjustment parameter
- the pulse generator generates a pulse signal in the third clock domain, and the pulse signal is used to control the first memory to output the image quality adjustment parameter to the processing module; wherein the frequency of the pulse signal is the same as the frequency of the pulse signal.
- the frequency of the frame synchronization signal is the same, and the rising edge time of the pulse signal is the same as the start time of the effective state of the frame synchronization signal.
- the pulse generator generates a pulse signal in the third clock domain, which specifically includes:
- the pulse generator delays the frame synchronization signal by a first time to obtain a delay signal; after inverting the delay signal, performs AND operation with the frame synchronization signal to obtain the pulse signal; wherein, the The first time is a single clock pulse width of the third clock domain.
- the second acquisition module includes: a receiver, a write memory controller, and a read memory controller;
- the receiver receives the original video data in a fourth clock domain
- the write memory controller writes the original video data into the second memory in a fifth clock domain
- the read memory controller reads the original video data in the second memory under the fifth clock domain, and sends the original video data to the processing module under the second clock domain.
- FIG. 1 is a schematic diagram of a video data processing apparatus provided in some embodiments of the present disclosure.
- FIG. 2 is a schematic diagram of a video data processing apparatus provided in other embodiments of the present disclosure.
- FIG. 3 is a schematic diagram of the composition of image quality adjustment parameters provided in some embodiments of the present disclosure.
- FIG. 4 is a waveform diagram of some signals provided in some embodiments of the present disclosure.
- FIG. 5 is a schematic diagram of a video data processing method provided in some embodiments of the present disclosure.
- FIG. 6 is a schematic diagram of an optional manner of step S10 provided in some embodiments of the present disclosure.
- FIG. 7 is a schematic diagram of a display system provided in some embodiments of the present disclosure.
- FIG. 8 is a schematic diagram of a display process of a display system provided in some embodiments of the present disclosure.
- the terminal device can use 3D LUT (Look Up Table, lookup table) technology to adjust the color gamut of the image to be adjusted. Specifically, according to the original pixel value of each pixel in the image to be adjusted, the target pixel value of each pixel is obtained according to the data in the lookup table, and then the adjusted image is displayed according to the target pixel value of each pixel .
- 3D LUT Look Up Table, lookup table
- gamut adjustment parameters i.e., data in 3D LUTs
- the heterogeneous system includes a system chip and an FPGA (Field-Programmable Gate Array, Field Programmable Gate Array). Set the interface) to output the color gamut adjustment parameters to the FPGA.
- FPGA Field-Programmable Gate Array, Field Programmable Gate Array
- Set the interface to output the color gamut adjustment parameters to the FPGA.
- the amount of data for the color gamut adjustment parameters is large, and the transmission of the parameters takes several frames, and the color gamut adjustment parameters will be dynamically updated, which may cause the pixels in some areas of the same frame image to be adjusted according to the original color gamut.
- the pixel value is adjusted according to the parameters, while the pixels in another part of the area are adjusted according to the updated color gamut adjustment parameters, resulting in inconsistent display effects in different areas in the same frame image.
- FIG. 1 is a schematic diagram of a video data processing apparatus provided in some embodiments of the present disclosure.
- the video data processing apparatus 100 may be integrated in an FPGA.
- the video data processing apparatus 100 includes: a first obtaining module 110 , a second obtaining module 120 , a storage module 130 and a processing module 140 .
- the first obtaining module 110 is configured to, in response to the received image quality adjustment parameters, determine whether the image quality adjustment parameters satisfy a preset condition, and when the image quality adjustment parameters satisfy the preset conditions, adjust the image quality The parameters are sent to the storage module 130 .
- the image quality adjustment parameters may be sent by the system chip to the video processing apparatus.
- the system chip generates image quality adjustment parameters when receiving an image quality adjustment instruction input by the user.
- the image quality adjustment instruction may be a color gamut adjustment instruction, a Gama adjustment instruction, or the like.
- the image quality adjustment parameters may be: parameters corresponding to the Gama adjustment instruction, and parameters corresponding to the color gamut adjustment instruction.
- the color gamut adjustment instruction may further include: a first color gamut adjustment instruction for adjusting the picture color gamut to a first color gamut, and a second color gamut for adjusting the picture color gamut to a second color gamut Adjustment instructions, third color gamut adjustment instructions for adjusting the screen color gamut to the third color gamut, etc.
- the color gamut adjustment parameters output by the system chip may also be different.
- the first acquisition module 110 may receive the image quality adjustment parameters sent by the system chip through the SPI interface.
- the SPI interface can transmit image quality adjustment parameters in the first clock domain (ie, the SPI clock domain).
- the first clock domain is used to generate a first reference signal, and the first reference signal is a clock signal; the SPI interface responds to a rising edge (or falling edge, or a high-level state, or a low-level state of the first reference signal) ) to perform data transmission, therefore, the data transmission rate in the first clock domain is related to the clock frequency of the first reference signal.
- the storage module 130 is configured to store the image quality adjustment parameters, and in response to the control of the frame synchronization signal, send the image quality adjustment parameters to the processing module 140 .
- the frame synchronization signal may be generated in the local clock domain, and the period of the frame synchronization signal is the display period of each frame of the video in the video.
- the active state is the high state.
- the second acquisition module 120 is configured to acquire original video data, and in response to the valid data strobe signal, transmit the original video data to the processing module 140; wherein, the original video data can be sent to the video data processing apparatus 100 by the video source, and the valid data
- the preset time interval is the frame blanking phase of each frame image display period.
- the transmission time period of the image quality adjustment parameter does not overlap with the transmission time period of the original video data.
- the picture quality adjustment parameters may be transmitted to the processing module 140 in the local clock domain, or the picture quality adjustment parameters may be transmitted to the processing module 140 in the high-speed clock domain with a higher clock frequency.
- the processing module 140 is configured to perform data processing on the original video data according to the image quality adjustment parameters to generate target video data.
- the target video data can be sent to the display module through the sending module 160 for the display module to display according to the target video data.
- the sending module 160 may use the V-BY-ONE standard to send data.
- the time at which the processing module 140 receives the image quality adjustment parameters is different from that of the original video data. After the processing module 140 receives the image quality adjustment parameters, it can store the image quality adjustment parameters and use the image quality adjustment parameters. The parameters process the subsequently received original video data. In some time periods, the processing module 140 may not receive the image quality adjustment parameters, but only receive the original video data including multiple frames of image data. In this case, the processing module 140 may use the currently stored image quality adjustment parameters to pair raw video data for processing.
- the image quality adjustment parameter is a parameter required when using 3D-LUT to perform color gamut adjustment, and the processing module 140 may specifically perform three-dimensional interpolation processing on the original video data according to the image quality adjustment parameter.
- the storage module 130 first buffers the received image quality adjustment parameters, and then, under the control of the frame synchronization signal, Send the image quality adjustment parameters to the processing module 140; and the second acquisition module 120 sends the original video data to the processing module 140 under the control of the valid data strobe signal, and the transmission time period of the image quality adjustment parameters is the same as the original video data.
- the transmission time periods of the video data do not overlap, so that when the processing module 140 processes the same frame of video image, it is processed based on the same image quality adjustment parameters, thereby ensuring that the display effects of different regions in the same frame of video image are consistent. .
- FIG. 2 is a schematic diagram of a video data processing apparatus provided in other embodiments of the present disclosure.
- the first acquisition module 110 includes: a receiving sub-module 112 and a syndrome sub-module 113.
- the receiving sub-module 112 is configured to receive the image quality adjustment parameters sent by the system chip.
- the image quality adjustment parameters are serial data
- FIG. 3 is a schematic diagram of the composition of the image quality adjustment parameters.
- the image quality adjustment parameters are arranged in order: the first keyword HEAD, at least one valid data DATA0 ⁇ DATAn, the second keyword END and the check value CRC.
- the check value CRC is generated by the system chip, and the check value CRC is obtained by performing the first operation on the first keyword HEAD, the second keyword END and the valid data DATA0 to DATAn therebetween.
- the receiving sub-module 112 may specifically include: a first detection unit 112a and a second detection unit 112b, the first detection unit 112a is used to detect the first keyword in the serial data, and the second detection unit 112b is used to detect the serial For the second keyword in the data, after the receiving sub-module 112 detects the first keyword and the second keyword, it can further determine the valid data between the first keyword and the second keyword, and the data after the second keyword. Check code.
- the overall bit width of the image quality adjustment parameter can be set to 32 bits; the bit width of the valid data can be set to 30 bits, and The upper two bits of the valid data are filled with 0, and the upper two bits of the first keyword and the upper two bits of the second keyword are selected from "01", "10", and "11” respectively.
- the first keyword is a 32-bit hexadecimal number: FFFF_FFFF_FFFF; the second keyword is a 32-bit hexadecimal number: 7FFF_FFFF_FFFF_FFFF.
- the first operation includes an exclusive OR operation.
- the verification sub-module 113 is configured to determine whether the image quality adjustment parameter satisfies the preset condition, and when the image quality adjustment parameter satisfies the preset condition, controls the receiving sub-module 112 to output the image quality adjustment parameter to the storage module 130; When the parameters do not meet the preset conditions, a data request signal is sent to the SoC 300, so that the SoC 300 resends the image quality adjustment parameters.
- the check sub-module 113 is specifically configured to, in the received image quality adjustment parameters, the first keyword, the second keyword, the valid data between the first keyword and the second keyword, and the calibration parameters.
- the second operation is performed on the test value, and the result of the second operation is compared with the target value.
- the result of the second operation is equal to the target value, it is determined that the image quality adjustment parameter meets the preset condition; otherwise, it is determined that the image quality adjustment parameter is not
- a data request signal is sent to the SoC 300 to request the SoC 300 to resend the image quality adjustment data.
- the second operation includes an exclusive OR operation.
- the result of the second operation is recorded as CRC', then:
- the first operation is an XOR operation
- the video data processing apparatus 100 further includes a timing generation module 150, and the timing generation module 150 is configured to generate frames in a second clock domain (ie, the local clock domain above) Sync signal and valid data strobe signal.
- a second clock domain ie, the local clock domain above
- Sync signal and valid data strobe signal There is a preset time interval between the start time of the valid state of the frame synchronization signal and the start time of the valid state of the valid data strobe signal, and the clock frequency of the second clock domain is greater than the clock frequency of the first clock domain.
- the start time of the valid state of the frame synchronization signal may be the rising edge of the frame synchronization signal, and the preset time interval between the start time of the valid state of the frame synchronization signal and the start time of the valid state of the valid data strobe signal is , the frame blanking phase in a frame image display cycle.
- the second clock domain is used to generate a second reference signal, and the second reference signal is a clock signal.
- the timing generation module 150 can generate a frame synchronization signal and a valid data strobe signal according to the second reference signal; the sending module 160 can also The target video data is sent to the display module according to the second reference signal.
- the second reference signal is generated by a local crystal oscillator.
- the frame synchronization signal when the local crystal oscillator generates the rising edge (or falling edge) of the mth second reference signal, the frame synchronization signal is on the rising edge; when the local crystal oscillator generates the nth When the two reference signals are on the rising edge (or falling edge), the frame synchronization signal is on the falling edge, m>n, and both m and n are integers.
- Timing parameter name Numerical value HTT (period of horizontal sync signal) 2200 (unit: 1VCLK) HAC (effective display time in one line) 1920 (unit: 1VCLK) HFP (front shoulder of horizontal sync signal) 88 (unit: 1VCLK) HSW (pulse width of horizontal sync signal) 44 (unit: 1VCLK) HBP (back shoulder of horizontal sync signal) 148 (unit: 1VCLK) VTT (period of frame sync signal) 1125 (unit: 1Line) VAC (effective display time in display cycle) 1080 (unit: 1Line) VFP (front shoulder of frame sync signal) 4 (unit: 1Line) VSW (width of frame sync signal) 5 (unit: 1Line) VBP (back shoulder of frame sync signal) 36 (unit: 1Line)
- the storage module 130 sends the image quality adjustment parameters to the processing module 140 in the third clock domain from the start time of the valid state of the frame synchronization signal, wherein the third clock domain is used to generate the third reference signal, and the third clock domain is used to generate the third reference signal.
- the three reference signals are clock signals; in the third clock domain, the storage module 130 can perform data transmission in response to a rising edge (or falling edge, or a high-level state, or a low-level state) of the third reference signal, so , the data transmission rate in the third clock domain is related to the clock frequency of the third reference signal.
- the clock frequency of the third clock domain is greater than the clock frequency of the second clock domain. For example, the clock frequency of the third clock domain is twice that of the second clock domain.
- the picture quality adjustment parameters are sent in the third clock domain, so as to ensure that the transmission of the picture quality adjustment parameters is completed in the frame blanking stage.
- the starting moment of the valid state of the frame synchronization signal may be the rising edge moment, and because in the actual circuit design, it is difficult for the storage module 130 to directly detect the edge of the signal. Therefore, in practical applications, the third clock domain can be Next, a pulse signal is generated according to the frame synchronization signal, and image quality adjustment parameters are sent under the control of the pulse signal.
- the storage module 130 includes: a pulse generator 132 and a first memory 131, and the first memory 131 may be RAM (random access memory, RAM).
- the pulse generator 132 is configured to generate a pulse signal in the third clock domain, and the pulse signal is used to control the first memory 131 to output the image quality adjustment parameter to the processing module 140 .
- DE is a valid data strobe signal.
- the frequency of the pulse signal SOF is the same as that of the frame synchronization signal VS, the rising edge time of the pulse signal SOF is the same as the start time of the effective state of the frame synchronization signal VS; the clock frequency of the third clock domain is greater than that of the second clock domain.
- the pulse generator 132 includes: a first generating unit and a second generating unit.
- the first generating unit is configured to delay the frame synchronization signal VS by a first time T1 to obtain a delayed signal VS_DLY (as shown in FIG. 4 ); wherein, the first time T1 is a single clock pulse width of the third clock domain.
- the second generating unit is configured to perform AND operation with the frame synchronization signal VS after inverting the delay signal VS_DLY to obtain the pulse signal SOF.
- the frame synchronization signal VS and the delay signal VS_DLY are both signals that switch between the high-level state and the low-level state; inverting the signal is the high-level state and the low-level state of the signal. exchange.
- the pulse signal is obtained by ANDing the two signals, that is, in the stage when both signals are in the high level state, the pulse signal SOF is in the high level state; and in other stages, the pulse signal SOF is in the low level state.
- the second acquisition module 120 includes a receiver 121 , a write memory controller 122 and a read memory controller 123 .
- the receiver 121 is configured to receive original video data in the fourth clock domain, the receiver 121 receives the original video data through an SDI (serial digital interface, serial digital) interface, and converts the received serial data into parallel video data.
- SDI serial digital interface, serial digital
- the fourth clock domain is the clock domain of the video source, the fourth clock domain is used to generate a fourth reference signal, the fourth reference signal is a clock signal, and the video source responds to the rising edge (or falling edge of the fourth reference signal) , or a high-level state, or a low-level state) to perform data transmission, therefore, the data transmission rate in the fourth clock domain is related to the clock frequency of the fourth reference signal.
- the write memory controller 122 is configured to write raw video data to the second memory 200 in the fifth clock domain.
- the second memory 200 is a DDR (Double Data Rate, double rate) memory
- the fifth clock domain is a read and write clock domain of the DDR.
- the read memory controller 123 is configured to, when the valid data strobe signal reaches a valid state, read the original video data in the memory in the fifth clock domain, and send the original video data to the processing module 140 in the second clock domain .
- the fifth clock domain is used to generate a fifth reference signal
- the fifth reference signal is a clock signal
- the write memory controller 122 responds to the rising edge (or falling edge, or high level state, or low state) of the fifth reference signal level state) to write data into the second memory
- the read memory controller 123 performs data reading in response to the rising edge (or falling edge, or high level state, or low level state) of the fifth reference signal. Therefore, the data read rate and the data write rate in the fifth clock domain are related to the clock frequency of the fifth reference signal.
- the original video data of the video source is transmitted to the receiver 121 in the fourth clock domain, and the original video data received by the processing module 140 is transmitted in the second clock domain, the original video data is transmitted by the video source In the process to the processing module 140, the transmission across the clock domain needs to be performed.
- the transmission across the clock domain needs to be performed.
- the video data processing apparatus 100 may further include a switching module configured to, when the receiver 121 does not receive the original video data, acquire pre-stored preset image data from the second memory 200 or other locations, and output to the processing module 140, or directly to the display module through the sending module 160, so that when the video data processing device 100 does not receive video data, the display module can still display a preset image, which is used to prompt the user There is currently no video data input.
- a switching module configured to, when the receiver 121 does not receive the original video data, acquire pre-stored preset image data from the second memory 200 or other locations, and output to the processing module 140, or directly to the display module through the sending module 160, so that when the video data processing device 100 does not receive video data, the display module can still display a preset image, which is used to prompt the user There is currently no video data input.
- FIG. 5 is a schematic diagram of a video data processing method provided in some embodiments of the present disclosure, and the video data processing method is applied to the above video data processing apparatus 100 . 2 and 5, the video data processing method includes:
- the first acquisition module 110 determines whether the image quality adjustment parameter satisfies the preset condition in response to the received image quality adjustment parameter, and sends the image quality adjustment parameter to the storage module 130 when the image quality adjustment parameter satisfies the preset condition.
- the image quality adjustment parameter is sent by the system chip to the first acquisition module 110, and the first acquisition module 110 transmits it to the first acquisition module 110 in the first clock domain.
- the system chip sends the image quality adjustment parameter to the first acquisition module 110 through the SPI interface, and the first clock domain is the SPI clock domain.
- the storage module 130 buffers the image quality adjustment parameters, and sends the image quality adjustment parameters to the processing module 140 in response to the control of the frame synchronization signal.
- the second acquisition module 120 acquires the original video data, and transmits the original video data to the processing module 140 in response to the valid data gating signal; wherein, the transmission time period of the image quality adjustment parameter is not the same as the transmission time period of the original video data. overlap.
- the frame synchronization signal and the valid data strobe signal are generated by the timing generation module 150 in the second clock domain; wherein the start time of the valid state of the frame synchronization signal and the start of the valid state of the valid data strobe signal There is a preset time interval between the instants, and the clock frequency of the second clock domain is greater than the clock frequency of the first clock domain.
- the processing module 140 performs data processing on the original video data according to the image quality adjustment parameters to generate target video data.
- step S30 is independent of the processes of steps S10 to S20.
- FIG. 6 is a schematic diagram of an optional manner of step S10 provided in some embodiments of the present disclosure. As shown in FIG. 6 , in some embodiments, step S10 specifically includes:
- the receiving sub-module 112 receives the image quality adjustment parameter sent by the system chip.
- the verification sub-module 113 determines whether the image quality adjustment parameter satisfies the preset condition, and when the image quality adjustment parameter satisfies the preset condition, controls the receiving sub-module 112 to output the image quality adjustment parameter to the storage module 130; When the preset condition is not met, a data request signal is sent to the SoC 300, so that the SoC 300 resends the image quality adjustment parameters.
- the image quality adjustment parameter is serial data
- the serial data includes: a first keyword, at least one valid data, a second keyword and a check value in order; wherein, the check value is the first keyword , the second keyword and the valid data between them are obtained after the first operation.
- step S12 specifically includes: the verification sub-module 113 compares the first keyword, the second keyword, the valid data between the first keyword and the second keyword in the received image quality adjustment parameters, and The second operation is performed on the check value, and the result of the second operation is compared with the target value. When the result of the second operation is equal to the target value, it is determined that the image quality adjustment parameter satisfies the preset condition; otherwise, it is determined that the image quality adjustment parameter is not meet the preset conditions.
- both the first operation and the second operation may be an exclusive OR operation.
- step S20 specifically includes: S20a, the storage module 130 sends the image quality adjustment parameter to the processing module 140 in a third clock domain starting from the start time of the valid state of the frame synchronization signal, wherein the third clock The clock frequency of the domain is greater than the clock frequency of the second clock domain.
- the storage module 130 specifically includes: a pulse generator 132 and a first memory 131 .
- step S20a specifically includes: the first memory 131 stores the image quality adjustment parameters; the pulse generator 132 generates a pulse signal in the third clock domain, and the pulse signal is used to control the first memory 131 to output the image quality adjustment parameters to Processing module 140; wherein, the frequency of the pulse signal is the same as the frequency of the frame synchronization signal, and the rising edge time of the pulse signal is the same as the start time of the valid state of the frame synchronization signal; the clock frequency of the third clock domain is greater than the clock of the second clock domain frequency.
- the pulse generator 132 generates a pulse signal in the third clock domain, which specifically includes: the pulse generator 132 delays the frame synchronization signal by a first time to obtain a delay signal; and operation to obtain the pulse signal; wherein, the first time is a single clock pulse width of the third clock domain.
- step S30 specifically includes: the receiver 121 receives the original video data in the fourth clock domain; the write memory controller 122 writes the original video data into the second memory 200 in the fifth clock domain; read the memory control The controller 123 reads the original video data in the memory under the fifth clock domain, and sends the original video data to the processing module 140 under the second clock domain.
- FIG. 7 is a schematic diagram of a display system provided in some embodiments of the present disclosure, and the display system may be a terminal device such as a monitor system, a computer, and a smart phone. As shown in FIG. 7 , the display system includes: a display module 400 , a system chip 300 and the above-mentioned video data processing apparatus 100 .
- the system chip 300 is configured to, in response to the image quality adjustment instruction, output corresponding image quality adjustment parameters.
- the display module 400 is configured to display in response to the target video data output by the video data processing apparatus 100 .
- the display module 400 includes a display panel and a driving circuit, and the driving circuit is configured to provide a driving signal for the display panel according to target video data, so as to control the display panel to display.
- FIG. 8 is a schematic diagram of a display process of a display system provided in some embodiments of the present disclosure. As shown in FIG. 8 , the display process includes:
- step S1a the system chip 300 sends the image quality adjustment parameter to the video data processing apparatus 100 .
- step S1b After receiving the image quality adjustment parameters, the first obtaining module 110 of the video data processing apparatus 100 determines whether the image quality adjustment parameters satisfy the preset conditions, and if so, proceeds to step S1c; otherwise, sends a data request instruction to the system chip 300 , so that step S1a is performed again.
- S1c Output the image quality adjustment parameters to the storage module 130, so that the storage module 130 caches the image quality adjustment parameters.
- the storage module 130 sends the buffered image quality adjustment parameters to the processing module 140.
- the processing module 140 updates the parameters originally stored therein according to the received image quality adjustment parameters.
- the video source sends the original video data to the video data processing apparatus 100, so that the video data processing module 140 executes steps S2a to S3.
- the write memory controller 122 of the video data processing module 140 writes the received original video data to the second memory.
- the read memory controller 123 of the video data processing module 140 reads the original video data from the second memory.
- the read memory controller 123 sends the original video data to the processing module 140 in response to the valid data strobe signal.
- the image quality adjustment parameters currently stored by the processing module 140 process the original video data to obtain target video data.
- the display module displays according to the target video data.
- the "currently stored image quality adjustment parameter" in step S3 is the image quality adjustment parameter sent by the SoC according to the image quality adjustment instruction; when the SoC does not receive the image quality adjustment instruction
- the processing module 140 keeps the stored image quality adjustment parameters unchanged. At this time, the video source can still send the original video data. At this time, the processing module 140 can process according to the image quality adjustment parameters that have not been updated. .
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- Controls And Circuits For Display Device (AREA)
Abstract
Description
时序参数名称 | 数值 |
HTT(行同步信号的周期) | 2200(单位:1VCLK) |
HAC(一行中的有效显示时间) | 1920(单位:1VCLK) |
HFP(行同步信号的前肩) | 88(单位:1VCLK) |
HSW(行同步信号的脉宽) | 44(单位:1VCLK) |
HBP(行同步信号的后肩) | 148(单位:1VCLK) |
VTT(帧同步信号的周期) | 1125(单位:1Line) |
VAC(显示周期中的有效显示时间) | 1080(单位:1Line) |
VFP(帧同步信号的前肩) | 4(单位:1Line) |
VSW(帧同步信号的宽度) | 5(单位:1Line) |
VBP(帧同步信号的后肩) | 36(单位:1Line) |
Claims (17)
- 一种视频数据处理装置,包括:第一获取模块、第二获取模块、存储模块和处理模块,其中,所述第一获取模块配置为,响应于接收到的画质调整参数,判断所述画质调整参数是否满足预设条件,当所述画质调整参数满足预设条件时,将所述画质调整参数发送至所述存储模块;所述存储模块配置为,对所述画质调整参数进行缓存,并响应于帧同步信号的控制,将所述画质调整参数发送至所述处理模块;所述第二获取模块配置为,获取原始视频数据,并响应于有效数据选通信号,将所述原始视频数据发送至所述处理模块;其中,所述画质调整参数的传输时间段与所述原始视频数据的传输时间段无交叠;所述处理模块配置为,根据所述画质调整参数对所述原始视频数据进行数据处理,生成目标视频数据。
- 根据权利要求1所述的装置,其中,所述第一获取模块包括:接收子模块和校验子模块,其中,所述接收子模块配置为,接收系统芯片所发送的所述画质调整参数;所述校验子模块配置为,判断所述画质调整参数是否满足预设条件,当所述画质调整参数满足预设条件时,控制所述接收子模块将所述画质调整参数发送至所述存储模块;当所述画质调整参数不满足预设条件时,向所述系统芯片发送数据请求信号,以使所述系统芯片重新发送画质调整参数。
- 根据权利要求1或2所述的装置,其中,所述画质调整参数为串行数据,该串行数据包括依次排列的:第一关键字、至少一个有效 数据、第二关键字和校验值;其中,所述校验值是对所述第一关键字、所述第二关键字以及二者之间的有效数据进行第一运算后得到的;所述校验子模块具体被配置为,对接收到的画质调整参数中第一关键字、第二关键字、所述第一关键字与所述第二关键字之间的有效数据、以及校验值进行第二运算,并将所述第二运算的结果与目标值对比,当所述第二运算的结果与所述目标值相等时,确定所述画质调整参数满足预设条件;否则,确定所述画质调整参数不满足预设条件。
- 根据权利要求3所述的装置,其中,所述第一运算包括异或运算,所述第二运算包括异或运算。
- 根据权利要求1至4中任意一项所述的装置,其中,所述第一获取模块在第一时钟域下接收所述画质调整参数;所述装置还包括:时序产生模块,配置为在第二时钟域下产生所述帧同步信号和所述有效数据选通信号;其中,所述帧同步信号的有效状态起始时刻与所述有效数据选通信号的有效状态起始时刻之间具有预设时间间隔,所述第二时钟域的时钟频率大于所述第一时钟域的时钟频率;其中,所述存储模块具体配置为,对所述画质调整参数进行缓存,并从帧同步信号的有效状态起始时刻开始,在第三时钟域下将所述画质调整参数发送至所述处理模块,其中,所述第三时钟域的时钟频率大于所述第二时钟域的时钟频率。
- 根据权利要求5所述的装置,其中,所述存储模块包括:脉冲生成器和第一存储器;其中,所述第一存储器配置为,存储所述画质调整参数;所述脉冲生成器配置为,在第三时钟域下生成脉冲信号,所述脉冲信号用于控制所述第一存储器将所述画质调整参数输出至所述处理模块;其中,所述脉冲信号的频率与所述帧同步信号的频率相同,所述脉冲信号的上升沿时刻与所述帧同步信号的有效状态起始时刻相同。
- 根据权利要求5所述的装置,其中,所述脉冲生成器包括:第一生成单元和第二生成单元,其中,所述第一生成单元配置为,将所述帧同步信号延迟第一时间,以获得延迟信号;其中,所述第一时间为所述第三时钟域的单时钟脉冲宽度;所述第二生成单元配置为,将所述延迟信号取反后,与所述帧同步信号进行与操作,得到所述脉冲信号。
- 根据权利要求5所述的装置,其中,所述第二获取模块包括:接收器、写内存控制器和读内存控制器;所述接收器配置为,在第四时钟域下接收所述原始视频数据;所述写内存控制器配置为,在第五时钟域下将所述原始视频数据写入第二存储器;所述读内存控制器配置为,在所述第五时钟域下读取所述第二存储器中的原始视频数据,并在所述第二时钟域下将所述原始视频数据发送至所述处理模块。
- 一种显示系统,包括:显示模组、系统芯片和权利要求1至8中任意一项所述的视频数据处理装置,所述系统芯片配置为,响应于画质调整指令,输出相应的画质调整参数;所述显示模组配置为,响应于所述显示驱动装置输出的目标视频数据进行显示。
- 一种应用于视频数据处理装置的视频数据处理方法,其中,所述视频数据处理装置包括:第一获取模块、第二获取模块、存储模块和处理模块,所述方法包括:所述第一获取模块响应于接收到的画质调整参数,判断所述画质调整参数是否满足预设条件,当所述画质调整参数满足预设条件时,将所述画质调整参数发送至所述存储模块;所述存储模块对所述画质调整参数进行缓存,并响应于帧同步信号的控制,将所述画质调整参数发送至所述处理模块;所述第二获取模块获取原始视频数据,并响应于有效数据选通信号,将所述原始视频数据发送至所述处理模块;其中,所述画质调整参数的传输时间段与所述原始视频数据的传输时间段无交叠;所述处理模块根据所述画质调整参数对所述原始视频数据进行数据处理,生成目标视频数据。
- 根据权利要求10所述的方法,其中,所述第一获取模块包括:接收子模块和校验子模块,所述第一获取模块响应于接收到的画质调整参数,判断所述画质调整参数是否满足预设条件,当所述画质调整参数满足预设条件时,将所述画质调整参数发送至所述存储模块,具体包括:所述接收子模块接收系统芯片所发送的画质调整参数;所述校验子模块判断所述画质调整参数是否满足预设条件,当所述画质调整参数满足预设条件时,控制所述接收子模块将所述画质调整参数输出至所述存储模块;当所述画质调整参数不满足预设条件时, 向所述系统芯片发送数据请求信号,以使所述系统芯片重新发送画质调整参数。
- 根据权利要求11所述的方法,其中,所述画质调整参数为串行数据,该串行数据包括依次排列的:第一关键字、至少一个有效数据、第二关键字和校验值;其中,所述校验值是对所述第一关键字、所述第二关键字以及二者之间的有效数据进行第一运算后得到的;所述校验子模块判断所述画质调整参数是否满足预设条件,具体包括:所述校验子模块对接收到的画质调整参数中第一关键字、第二关键字、所述第一关键字与所述第二关键字之间的有效数据、以及校验值进行第二运算,并将所述第二运算的结果与目标值对比,当所述第二运算的结果与所述目标值相等时,确定所述画质调整参数满足预设条件;否则,确定所述画质调整参数不满足预设条件。
- 根据权利要求12所述的方法,其中,所述第一运算包括异或运算,所述第二运算包括异或运算。
- 根据权利要求10至13中任意一项所述的方法,其中,所述第一获取模块在第一时钟域下接收所述画质调整参数;所述装置还包括:时序产生模块;其中,所述帧同步信号和所述有效数据选通信号均由所述时序产生模块在第二时钟域下产生,所述帧同步信号的有效状态起始时刻与所述有效数据选通信号的有效状态起始时刻之间具有预设时间间隔,所述第二时钟域的时钟频率大于所述第一时钟域的时钟频率;其中,所述存储模块对所述画质调整参数进行缓存,并从帧同步 信号的有效状态起始时刻开始,在第三时钟域下将所述画质调整参数发送至所述处理模块,其中,所述第三时钟域的时钟频率大于所述第二时钟域的时钟频率。
- 根据权利要求14所述的方法,其中,所述存储模块包括:脉冲生成器和第一存储器;所述存储模块对所述画质调整参数进行缓存,并从帧同步信号的有效状态起始时刻开始,在第三时钟域下将所述画质调整参数发送至所述处理模块,具体包括:所述第一存储器存储所述画质调整参数;所述脉冲生成器在第三时钟域下生成脉冲信号,所述脉冲信号用于控制所述第一存储器将所述画质调整参数输出至所述处理模块;其中,所述脉冲信号的频率与所述帧同步信号的频率相同,所述脉冲信号的上升沿时刻与所述帧同步信号的有效状态起始时刻相同。
- 根据权利要求15所述的方法,其中,所述脉冲生成器在第三时钟域下生成脉冲信号,具体包括:所述脉冲生成器将所述帧同步信号延迟第一时间,以获得延迟信号;并将所述延迟信号取反后,与所述帧同步信号进行与操作,得到所述脉冲信号;其中,所述第一时间为所述第三时钟域的单时钟脉冲宽度。
- 根据权利要求10至13中任意一项所述的方法,其中,所述第二获取模块包括:接收器、写内存控制器和读内存控制器;所述接收器在第四时钟域下接收所述原始视频数据;所述写内存控制器在第五时钟域下将所述原始视频数据写入第二 存储器;所述读内存控制器在所述第五时钟域下读取所述第二存储器中的原始视频数据,并在所述第二时钟域下将所述原始视频数据发送至所述处理模块。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/638,266 US12045965B2 (en) | 2021-04-28 | 2021-04-28 | Device and method for processing video data, and display system |
CN202180000961.0A CN115606171A (zh) | 2021-04-28 | 2021-04-28 | 视频数据处理装置及方法、显示系统 |
PCT/CN2021/090542 WO2022226835A1 (zh) | 2021-04-28 | 2021-04-28 | 视频数据处理装置及方法、显示系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/090542 WO2022226835A1 (zh) | 2021-04-28 | 2021-04-28 | 视频数据处理装置及方法、显示系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022226835A1 true WO2022226835A1 (zh) | 2022-11-03 |
Family
ID=83847672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/090542 WO2022226835A1 (zh) | 2021-04-28 | 2021-04-28 | 视频数据处理装置及方法、显示系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12045965B2 (zh) |
CN (1) | CN115606171A (zh) |
WO (1) | WO2022226835A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116721740A (zh) * | 2023-05-12 | 2023-09-08 | 天津御锦人工智能医疗科技有限公司 | 一种智能医疗显示系统 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118283228A (zh) * | 2024-04-08 | 2024-07-02 | 锐泰微(北京)电子科技有限公司 | 图像处理装置、图像处理装置的测试方法及图像处理系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1744722A (zh) * | 2004-09-02 | 2006-03-08 | 上海乐金广电电子有限公司 | 数字画质调节装置及其方法 |
CN1753076A (zh) * | 2005-11-04 | 2006-03-29 | 友达光电股份有限公司 | 时序控制方法和装置及其应用的液晶显示器 |
CN104954769A (zh) * | 2015-06-15 | 2015-09-30 | 中国科学院自动化研究所 | 一种浸入式超高清视频处理系统及方法 |
US20150296193A1 (en) * | 2012-05-31 | 2015-10-15 | Apple Inc. | Systems and methods for rgb image processing |
CN109194928A (zh) * | 2018-10-20 | 2019-01-11 | 中国航空工业集团公司洛阳电光设备研究所 | 一种任意分辨率Camera link视频转SDI视频的方法及装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2717565A4 (en) * | 2011-04-28 | 2016-04-13 | Panasonic Ip Man Co Ltd | RECORDING MEDIUM, PLAYING DEVICE, RECORDING DEVICE, ENCODING METHOD AND DECOMPOSITION METHOD FOR HIGHER IMAGE QUALITY |
JP6237797B2 (ja) * | 2016-01-05 | 2017-11-29 | ソニー株式会社 | ビデオシステム、ビデオ処理方法、プログラム、およびビデオコンバーター |
KR101753261B1 (ko) * | 2016-03-21 | 2017-07-03 | 박은홍 | 촬영 시스템 및 그 영상품질 동기화 방법 |
CN109587560A (zh) * | 2018-11-27 | 2019-04-05 | Oppo广东移动通信有限公司 | 视频处理方法、装置、电子设备以及存储介质 |
-
2021
- 2021-04-28 WO PCT/CN2021/090542 patent/WO2022226835A1/zh active Application Filing
- 2021-04-28 US US17/638,266 patent/US12045965B2/en active Active
- 2021-04-28 CN CN202180000961.0A patent/CN115606171A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1744722A (zh) * | 2004-09-02 | 2006-03-08 | 上海乐金广电电子有限公司 | 数字画质调节装置及其方法 |
CN1753076A (zh) * | 2005-11-04 | 2006-03-29 | 友达光电股份有限公司 | 时序控制方法和装置及其应用的液晶显示器 |
US20150296193A1 (en) * | 2012-05-31 | 2015-10-15 | Apple Inc. | Systems and methods for rgb image processing |
CN104954769A (zh) * | 2015-06-15 | 2015-09-30 | 中国科学院自动化研究所 | 一种浸入式超高清视频处理系统及方法 |
CN109194928A (zh) * | 2018-10-20 | 2019-01-11 | 中国航空工业集团公司洛阳电光设备研究所 | 一种任意分辨率Camera link视频转SDI视频的方法及装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116721740A (zh) * | 2023-05-12 | 2023-09-08 | 天津御锦人工智能医疗科技有限公司 | 一种智能医疗显示系统 |
Also Published As
Publication number | Publication date |
---|---|
CN115606171A (zh) | 2023-01-13 |
US20240054625A1 (en) | 2024-02-15 |
US12045965B2 (en) | 2024-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10049642B2 (en) | Sending frames using adjustable vertical blanking intervals | |
WO2017114233A1 (zh) | 显示驱动装置及显示驱动方法 | |
US20150294614A1 (en) | Display panel driving method, driving device and display device | |
WO2022226835A1 (zh) | 视频数据处理装置及方法、显示系统 | |
US11574614B2 (en) | Switching method and switching device for display channel, display driving device and display device | |
US20110043493A1 (en) | Method for determining an optimum skew and adjusting a clock phase of a pixel clock signal and data driver utilizing the same | |
CN114257772B (zh) | 数据传输的调整方法、装置、计算机设备及可读存储介质 | |
US9460649B2 (en) | Timing controller for image display and associated control method | |
JP2019532330A (ja) | 駆動制御回路及びその駆動方法、表示装置 | |
US20250006119A1 (en) | Display control chip, display panel, and related device, method, and apparatus | |
KR101957970B1 (ko) | 표시장치와 그 제어 방법 | |
CN113794850A (zh) | 时序修正方法、装置、电子设备及可读存储介质 | |
WO2023010275A1 (zh) | 图像数据传输装置、方法、电子设备、介质和显示系统 | |
CN101459788A (zh) | 一种视频重显率调整的方法及装置 | |
CN106952600B (zh) | 时序控制器及其信号输出方法 | |
US20160210914A1 (en) | Method for transmitting data from timing controller to source driver and associated timing controller and display system | |
CN115237275A (zh) | 数据传输控制方法、系统及触控显示装置 | |
CN104517555A (zh) | 运用于影像显示的时序控制器及其控制方法 | |
JP2601125B2 (ja) | 液晶パネル駆動装置 | |
US20220301468A1 (en) | Control method of display apparatus, display apparatus, and computer-readable storage medium | |
CN114257739B (zh) | 视频数据速率调整方法和装置 | |
CN114173054A (zh) | 多帧频拼接视频源显示控制方法及其系统和led显示系统 | |
WO2021223270A1 (zh) | 显示装置和应用于显示装置的充电控制方法 | |
TW202105982A (zh) | 接收裝置、影像紀錄系統以及降低影像紀錄系統之影像延遲的方法 | |
US11631363B2 (en) | Display driver and operating method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 17638266 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21938320 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 26.03.2024) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21938320 Country of ref document: EP Kind code of ref document: A1 |