[go: up one dir, main page]

WO2022210863A1 - Antigen peptide expressed in human bladder cancer stem cells - Google Patents

Antigen peptide expressed in human bladder cancer stem cells Download PDF

Info

Publication number
WO2022210863A1
WO2022210863A1 PCT/JP2022/015919 JP2022015919W WO2022210863A1 WO 2022210863 A1 WO2022210863 A1 WO 2022210863A1 JP 2022015919 W JP2022015919 W JP 2022015919W WO 2022210863 A1 WO2022210863 A1 WO 2022210863A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
cells
antigen
present
cell
Prior art date
Application number
PCT/JP2022/015919
Other languages
French (fr)
Japanese (ja)
Inventor
良彦 廣橋
俊彦 鳥越
Original Assignee
北海道公立大学法人 札幌医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北海道公立大学法人 札幌医科大学 filed Critical 北海道公立大学法人 札幌医科大学
Publication of WO2022210863A1 publication Critical patent/WO2022210863A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K40/00Cellular immunotherapy
    • A61K40/10Cellular immunotherapy characterised by the cell type used
    • A61K40/11T-cells, e.g. tumour infiltrating lymphocytes [TIL] or regulatory T [Treg] cells; Lymphokine-activated killer [LAK] cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K40/00Cellular immunotherapy
    • A61K40/40Cellular immunotherapy characterised by antigens that are targeted or presented by cells of the immune system
    • A61K40/41Vertebrate antigens
    • A61K40/42Cancer antigens
    • A61K40/4202Receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention is useful as a detection agent for detecting treatment-resistant bladder cancer stem cells using a gene specifically expressed in bladder cancer stem cells, and as an agent for the prevention and/or treatment of treatment-resistant bladder cancer,
  • the present invention relates to tumor antigen peptides derived from said gene and uses thereof.
  • Adjuvant therapies such as chemotherapy and radiotherapy play an important role in bladder cancer treatment.
  • chemotherapy and radiotherapy play an important role in bladder cancer treatment.
  • the therapeutic effects of chemotherapy and radiotherapy are limited, and recurrence occurs after treatment in many cases. This is because treatment-resistant cancer stem cells exist, and an effective therapeutic method for bladder cancer stem cells has been sought.
  • ICI immune checkpoint inhibitor
  • CTL cytotoxic T cells
  • an antigenic peptide that can be expressed in bladder cancer stem cells and recognized by CTL has not yet been reported.
  • Patent Document 1 describes a tumor antigen peptide having cytotoxic T cell inducing activity derived from proteins encoded by Or7c1 and Dnajb8 genes.
  • Patent Document 2 describes a tumor antigen peptide that is derived from the ASB4 protein and has cytotoxic T cell-inducing activity and that is presented specifically to cancer stem cells.
  • Patent Document 3 discloses tumor antigen peptides derived from PVT1, SUV39H2, ZNF724P, SNRNP40 and DYRK4 proteins and exhibiting high binding to HLA-A24.
  • References 1 to 3 do not teach tumor antigen peptides that are expressed in bladder cancer stem cells and can be recognized by CTL.
  • An object of the present invention is to provide a detection agent for specifically detecting bladder cancer stem cells, a tumor antigen peptide specifically presented to bladder cancer stem cells, and treatment-resistant bladder cancer containing this as an active ingredient. It is an object of the present invention to provide pharmaceutical compositions useful for prevention and/or treatment, methods for screening such tumor antigen peptides, and the like.
  • ALDH high isolated cells with high aldehyde dehydrogenase activity from human bladder cancer cell line UM-UC-3, and isolated ALDH high cells. Surprisingly, it was found that the ALDH high clone cells exhibited a high content of cancer stem cells even after being cultured in vitro for one month or longer.
  • the present inventors used ALDH low clone cells as a comparison group as a non-cancer stem cell model, performed HLA ligandome analysis, and analyzed ALDH high clone cells and ALDH low clone cells.
  • gene expression analysis was performed by the CAGE method, it was found that ALDH high clone cells highly expressed the GRIK2 and Claspin genes and at the same time expressed antigen peptides encoded by the GRIK2 and Claspin proteins. was completed.
  • the present invention relates to: [1] A tumor antigen peptide or a motif substitute thereof, which consists of 8 to 14 consecutive amino acids in the amino acid sequence of a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin and has HLA binding properties. [2] The tumor antigen peptide of [1], wherein the HLA is HLA-A02, or a motif-substituted product thereof.
  • the second amino acid from the N-terminus is leucine, isoleucine or methionine, and/or the C-terminal amino acid is valine, leucine or isoleucine, or in the peptide, the second amino acid from the N-terminus is The tumor antigen peptide of [1] or [2], wherein the peptide is substituted with leucine, isoleucine or methionine and/or the C-terminal amino acid is substituted with valine, leucine or isoleucine.
  • [4] The tumor antigen peptide of [1] to [3] represented by SEQ ID NO:1 or SEQ ID NO:2.
  • [5] A polyepitope peptide in which a plurality of epitope peptides are linked, the polyepitope peptide comprising at least one tumor antigen peptide of [1] to [4] as the epitope peptide.
  • [6] A polynucleotide encoding at least one of the tumor antigen peptides of [1] to [4] or the polyepitope peptide of [5].
  • [10] The following (a) to (e): (a) the antigenic peptide of [1] to [4] or the polyepitope peptide of [5], (b) the polynucleotide of [6]; (c) the expression vector of [7], (d) a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin, a polynucleotide encoding the protein, or a partial peptide of the protein including the antigen peptide represented by SEQ ID NO: 1 or 2, or the polynucleotide an expression vector comprising (e) A cytotoxic T cell inducer containing, as an active ingredient, any one of antigen-presenting cells that present the antigenic peptides of [1] to [4] as antigens.
  • A the tumor antigen peptide of [1] to [4] or the polyepitope peptide of [5]
  • B a polynucleotide encoding at least one of the peptides and/or polyepitopic peptides of (A); or
  • C A method for inducing cytotoxic T cells, which comprises contacting peripheral blood lymphocytes in vitro with antigen-presenting cells that present the antigenic peptides of [1] to [4] as antigens.
  • [12] The following (a) to (e): (a) the antigenic peptide of [1] to [4] or the polyepitope peptide of [5], (b) the polynucleotide of [6]; (c) the expression vector of [7], (d) a protein selected from the group consisting of GRIK2 and Claspin, a polynucleotide encoding the protein or a partial peptide of the protein including the antigen peptide represented by SEQ ID NO: 1 or 2, or an expression vector comprising the polynucleotide; (e) A pharmaceutical composition comprising, as an active ingredient, any one of cytotoxic T cells that specifically kill antigen-presenting cells that present the antigenic peptides of [1] to [4] as antigens.
  • [13] The pharmaceutical composition of [12], comprising the antigen peptide of [1] to [4] and/or the polyepitope peptide of [5] as an active ingredient.
  • An HLA multimer comprising the antigenic peptides of [1] to [4] and HLA.
  • a diagnostic agent comprising the HLA multimer of [18].
  • a chimeric antigen receptor that recognizes a complex of the antigen peptides of [1] to [4] and HLA.
  • An artificial CTL comprising a T-cell receptor that recognizes the complex of the antigenic peptide of [1]-[4] and HLA.
  • a bispecific antibody that specifically recognizes a complex of the antigen peptide of [1] to [4] and HLA and a lymphocyte surface antigen.
  • a tumor cell detection agent comprising a detection agent for detecting an expression product of a gene selected from the group consisting of GRIK2 and Claspin.
  • An siRNA comprising an antisense region complementary to a gene selected from the group consisting of GRIK2 and Claspin and a sense region at least partially complementary to the antisense region.
  • a pharmaceutical composition comprising the antisense oligonucleotide of [32] and/or the siRNA of [33], and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition of [34] which is a prophylactic and/or therapeutic agent for treatment-resistant bladder cancer.
  • a clone cell established from a cell population of human bladder cancer cell line UM-UC-3 containing cells with high aldehyde dehydrogenase enzyme activity (ALDH high ).
  • a clone cell established from a cell population of human bladder cancer cell line UM-UC-3 containing cells with low aldehyde dehydrogenase enzyme activity (ALDH low ).
  • a tumor antigen peptide useful as an inducer of CTLs that specifically attack bladder cancer stem cells and a medicament containing the same as an active ingredient useful for the prevention and/or treatment of treatment-resistant bladder cancer Compositions and the like are provided.
  • FIG. 1 shows cells with high aldehyde dehydrogenase enzymatic activity (ALDH high ) and cells with low aldehyde dehydrogenase enzymatic activity (ALDH low ) for human bladder cancer cell line UM-UC-3 by the ALDEFLUOR method based on aldehyde dehydrogenase enzymatic activity. ) are separated.
  • FIG. 2 shows that clonal cells established from ALDH high cells indeed exhibited high ALDH enzymatic activity.
  • the DEAB(+) group is a negative control.
  • ALDH high cells exhibit high brightness in the x-axis direction.
  • FIG. 3 shows that clonal cells established from ALDH low cells indeed exhibited low ALDH enzymatic activity.
  • FIG. 4 shows the sphere formation rate (left side) of H clone cells (H-10), L clone cells (L-3) and wild type UM-UC-3 (WT), and the predicted presence of cancer stem cells rate (right).
  • FIG. 5 shows in vivo tumor growth curves of H clone cells (H-10) and L clone cells (L-3). The vertical axis indicates tumor volume (mm 3 ), and the horizontal axis indicates days (weeks) after tumor cell implantation.
  • FIG. 6 shows the sensitivity of H clone cells (H-10) and L clone cells (L-3) to cisplatin (CDDP). The vertical axis indicates cell viability, and the horizontal axis indicates the concentration of cisplatin.
  • FIG. 7 shows the resistance of H clone cells (H-10) and L clone cells (L-3) to radiotherapy. The vertical axis indicates cell viability, and the horizontal axis indicates absorbed dose (Gy).
  • FIG. 8 The left diagram of FIG. 8 is a schematic diagram of HLA of human bladder cancer cell line UM-UC-3.
  • the central figure in FIG. 8 shows that each cell lysate was reacted with an anti-HLA-A*02:01-specific antibody, immunoprecipitated using protein-A Sepharose beads, and HLA-A*02:01 molecules were collected. It is a schematic diagram of a procedure.
  • the right figure in FIG. 8 shows the results of amino acid sequence analysis by mass spectrometry analysis, and the amino acid length (horizontal axis) and the number of peptides (horizontal axis) of peptides analyzed from H-10 cells, L-3 cells, and wild type strains. vertical axis).
  • FIG. 9 shows the procedure for analyzing the amino acid sequences of 9-mer peptides among the peptides recovered from H-10 cells, L-3 cells, and wild type.
  • the antigen peptide LMYDAVHVV (SEQ ID NO: 1) encoded by the GRIK2 gene product and the antigen peptide SLLNQPKAV encoded by the Claspin gene product were identified from the peptide-encoding gene expression information. (SEQ ID NO: 2) was selected.
  • FIG. 10 shows the results of GRIK2 peptide-induced cytotoxic T cell (CTL) induction experiments using peripheral blood mononuclear cells.
  • T2A24 cells were used as target cells.
  • the graph on the left is the GRIK2 peptide (-) negative control, and the graph on the right shows the group in which the GRIK2 peptide was developed in T2A24 cells.
  • the Y-axis of the graph indicates the number of IFN ⁇ spots.
  • FIG. 11 shows the results of GRIK2 peptide tetramer-specific staining.
  • Figure 12 shows the results of the IFN ⁇ ELISPOT method of the obtained GRIK2 peptide-specific 9G23 clone.
  • the graph on the left is the GRIK2 peptide (-) negative control, and the graph on the right shows the group in which the GRIK2 peptide was developed in T2A24 cells.
  • the Y-axis of the graph indicates the number of IFN ⁇ spots.
  • FIG. 13 shows the results of specific staining of the 9G23 clone reanalyzed with GRIK2 tetramer.
  • FIG. 14 shows reactivity between GRIK2 peptide-specific CTL clones and GRIK2 overexpressing strains. The left and right graphs are negative controls using cells that do not express the GRIK2 peptide, respectively, and the middle graph shows the group using cells that overexpress the GRIK2 peptide. The Y-axis of the graph indicates the number of IFN ⁇ spots.
  • FIG. 15 shows the reactivity of GRIK2 peptide-specific CTL clones with H-10 cells.
  • the three graphs from the far right are negative controls using cells that do not express the GRIK2 peptide, and the leftmost graph shows the group using H-10 cells that express the GRIK2 peptide.
  • the Y-axis of the graph indicates the number of IFN ⁇ spots.
  • Figure 16 shows a schematic and results of an in vitro therapeutic model using GRIK2 peptide-specific CTL clones.
  • FIG. 17 shows the effect of combining GRIK2 peptide-specific CTL clones with the anticancer drug cisplatin (CDDP) or irradiation.
  • CDDP anticancer drug cisplatin
  • the vertical axis of the graph on the left indicates cell viability, and the horizontal axis indicates the concentration of cisplatin.
  • FIG. 18 shows the results of the IFN ⁇ ELISPOT method for the obtained Claspin peptide-specific cy3 clones.
  • the left side is the negative control of Claspin peptide (-), and the right side shows the group in which T2A24 cells were expanded with Claspin peptide.
  • FIG. 19 shows the results of specific staining of cy3 clones reanalyzed using Claspin tetramers.
  • epitope peptide means a peptide that binds to MHC (HLA in humans), is presented as an antigen on the cell surface, and has antigenicity (that can be recognized by T cells).
  • the epitope peptide includes the CTL epitope peptide, which is an epitope peptide that binds to MHC class I and is antigen-presented and is recognized by CD8-positive T cells, and the CTL epitope peptide, which is an epitope peptide that binds to MHC class II and is antigen-presented and is recognized by CD4-positive T cells. Included are helper epitope peptides, which are epitope peptides that are
  • tumor antigen peptides peptides derived from proteins that are specifically or excessively expressed in tumor cells are particularly referred to as tumor antigen peptides.
  • Antigen presentation refers to a phenomenon in which intracellular peptides bind to MHC and this MHC/antigen peptide complex is localized on the cell surface.
  • antigens presented on the cell surface are known to activate cell-mediated immunity and humoral immunity after being recognized by T cells, etc.
  • Tumor antigen peptides of the MHC class are used for immunotherapy because they activate sexual immunity, are recognized by T-cell receptors of naive T-cells, and induce naive T-cells into CTLs having cytotoxic activity.
  • Peptides that bind I and are antigen-presented are preferred.
  • binding motif Many of the peptides that bind to MHC are known to have certain characteristics. In the context of the present invention, this feature is referred to as a "binding motif". It is known in the art what MHC binds to peptides with what binding motifs. For example, the binding motif of HLA-A02, one of human MHC, has leucine, isoleucine or methionine as the second amino acid from the N-terminus, and valine, leucine or isoleucine as the C-terminal amino acid.
  • the term "motif substitution” refers to a peptide having a binding motif in which the binding motif is substituted with another binding motif.
  • the motif-substituted product also exhibits the same effect as the peptide before substitution.
  • tumor includes benign and malignant tumors (cancer, malignant neoplasm). Cancer includes hematopoietic tumors, epithelial malignancies (carcinoma) and non-epithelial malignancies (sarcoma). In the present invention, cancer particularly refers to bladder cancer that is resistant to chemotherapy, radiation therapy, and the like.
  • cancer stem cells refers to cells present in cancer tissue that exhibit stem cell-like properties, and are considered to be causative cells involved in the development, recurrence and metastasis of cancer. cells that are Since "cancer stem cells” generally exist in only a small amount in cancer tissue, it is difficult to distinguish them from other cells. Examples include the SP fractionation method.
  • Cancer stem cells are known to have high aldehyde dehydrogenase (ALDH) enzymatic activity.
  • ALDEFLUOR method based on aldehyde dehydrogenase enzyme activity.
  • ALDH high cells are known to differentiate into ALDH low cells in in vitro culture, and are unsuitable for stable analysis. Therefore, in the present invention, in order to establish stable ALDH high cells, human bladder cancer cell line UM-UC-3 was used to prepare single cell clones from ALDH high cells.
  • clone cells established from ALDH high cells actually exhibited high ALDH enzyme activity
  • clone cells established from ALDH low cells actually exhibited low ALDH enzyme activity.
  • ALDH high clones (H clones) and ALDH low clones (L clones) of the present invention exhibit stable traits in in vitro culture for one month or more.
  • the natural peptides of the present invention were isolated/identified by using the following method, which can isolate/identify the natural peptides that are actually antigen-presented on the cell surface of such clones.
  • natural peptide refers to a peptide that is actually presented as an antigen on the cell surface.
  • Natural antigenic peptide refers to a natural peptide whose antigenicity has been confirmed.
  • the method for isolating/identifying natural peptides used in the present invention includes the steps of lysing cancer stem cells presenting natural peptides and isolating complexes of MHC and natural peptides from the lysate. , separating the isolated complex into MHC molecules and natural peptides to isolate the natural peptides, and identifying the isolated natural peptides.
  • the isolation of the MHC-natural peptide complex was carried out by extracting the peptide/MHC complex by immunoprecipitation using a specific antibody against MHC. Any method may be used as long as it can isolate the complex with the peptide.
  • an antibody against HLA class I such as an anti-HLA-A02 antibody, was used as a suitable anti-MHC antibody, but any antibody that can specifically recognize a complex of MHC and a natural peptide can be used. Antibodies may also be used.
  • peptide isolation was performed using a weak acid as the step of separating the complex into MHC molecules and natural peptides, but any method that can separate MHC and natural peptides may be used. good.
  • sequences of the isolated natural peptides were analyzed using HLA ligandome analysis by mass spectrometry, and natural peptides actually presented as antigens on the cell surface were identified. Any method that allows identification may be used for identification.
  • HLA ligandome analysis using mass spectrometry requires a large number of cells, ie, 10 9 cells. Since cancer stem cells account for only about 1% of all cancer cells, this method is seemingly inefficient and unsuitable for analysis of cancer stem cells. However, in the present invention, this disadvantage is overcome by using the bladder cancer cell line UM-UC-3 to generate single cell clones from ALDH high cells.
  • the present inventors analyzed natural antigen peptides presented as antigens in the human bladder cancer cell line UM-UC-3. As a result, 848 types of peptides for ALDH high clones (H clones), 1832 types of peptides for ALDH low clones (L clones), and 1073 types for wild-type peptides were found to be present as antigen-presented 9-amino acid natural peptides in cancer cells. A class of peptides was identified. Of the 848 peptides for H clones, 123 peptides were H clone-specific peptides that were not common to L and wild-type clones.
  • peptides specific to the H clone genes that are expressed in bladder cancer and have low expression in major normal organs were selected from the gene expression information.
  • a peptide derived from the GRIK2 protein (SEQ ID NO: 1) and a peptide derived from the Claspin protein (SEQ ID NO: 2) were identified as natural antigen peptides presented as antigens in the human bladder cancer cell line UM-UC-3. was done.
  • GRIK2 belongs to the ion channel type kainate type glutamate receptor and is expressed in the central nerve. In the central nervous system, GRIK2 protein bound to glutamic acid released as a neurotransmitter is activated and excites nerve cells.
  • Claspin was identified as a protein that binds to the CHK1 molecule, localizes to DNA replication forks, and promotes DNA synthesis.
  • Gene expression product of the present invention when simply referred to as a gene name such as "GRIK2" and “Claspin", unless otherwise specified, known nucleic acid sequences represented by the gene name Although it typically represents a cDNA or mRNA sequence, it is not limited to this as long as a person skilled in the art can recognize it as the sequence of the gene. Examples include the following genes represented by the following sequences. GRIK2: GenBank Accession No. NM_021956.5 Claspin: GenBank Accession No. NM_022111.4 Therefore, the mRNA as the gene expression product of the present invention may be expressed simply by the description of the gene name.
  • protein when added to a gene name, such as "GRIK2 protein", it means the protein encoded by the gene, its isoforms, and its homologues.
  • isoforms include splicing variants, variants such as SNPs based on individual differences, and the like. Specifically, (1) a protein consisting of an amino acid sequence having 90% or more, preferably 95% or more, more preferably 98% or more homology with the protein encoded by the gene, (2) the gene Substitution or deletion of one or more, preferably 1 to several, more preferably 1 to 10, 1 to 5, 1 to 3, 1 or 2 amino acids in the amino acid sequence of the encoded protein , proteins consisting of added or inserted amino acid sequences.
  • a preferred protein as the gene expression product of the present invention is a protein comprising an amino acid sequence encoded by the gene (nucleic acid sequence) described above, or a protein in which 1 to 3, preferably 1 or 2 amino acids are substituted. Proteins consisting of amino acid sequences can be mentioned. More preferably, a protein consisting of an amino acid sequence encoded by the gene (nucleic acid sequence) described above can be mentioned.
  • the peptide of the present invention is a partial peptide of a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin, and preferably binds to MHC, particularly HLA.
  • MHC particularly HLA
  • HLA includes peptides that are presented by MHC, especially HLA, more preferably peptides that are presented by MHC, especially HLA, and are capable of inducing CTLs.
  • HLA HLA class I
  • HLA-A02 HLA-A02.
  • the peptides of the present invention may undergo treatments such as processing before binding to MHC, and peptides that generate epitope peptides as a result of these treatments are also included in the peptides of the present invention. Therefore, the amino acid length of the peptide of the present invention is not particularly limited as long as the sequence contains the amino acid sequence of the epitope peptide. However, it is preferable that the peptide of the present invention itself is an epitope peptide, and therefore the amino acid length is preferably about 8 to 14 amino acids, more preferably about 8 to 11 amino acids, and particularly preferably about 9 to about 11 amino acids. 9 amino acids are most preferred.
  • the epitope peptide that binds to human MHC class I, HLA class I is about 8-14 amino acids long, preferably about 9-11 amino acids long, and may have an HLA-specific binding motif in its sequence.
  • a peptide that binds to HLA-A02 has a binding motif in which the second amino acid from the N-terminus is leucine, isoleucine, or methionine, and/or the C-terminal amino acid is valine, leucine, or isoleucine.
  • Peptides that bind A24 have binding motifs in which the penultimate N-terminal amino acid is tyrosine, phenylalanine, methionine or tryptophan and/or the C-terminal amino acid is leucine, isoleucine or phenylalanine.
  • the peptide of the present invention is a partial peptide of a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin, and consists of 8 to 14 consecutive amino acids in the amino acid sequence of the protein.
  • the second amino acid from the N-terminus is leucine, isoleucine or methionine
  • the C-terminal amino acid is valine, leucine or isoleucine, more preferably the epitope peptide itself.
  • an epitope peptide consisting of the amino acid sequence represented by either SEQ ID NO: 1 or SEQ ID NO: 2 is particularly preferred.
  • the second amino acid from the N-terminus is leucine, isoleucine or methionine, and/or the C-terminal amino acid is substituted with valine, leucine or isoleucine.
  • It includes an epitope peptide, more preferably the epitope peptide itself.
  • particularly preferred is a peptide consisting of the amino acid sequence represented by either SEQ ID NO: 1 or SEQ ID NO: 2, wherein the second amino acid from the N-terminus is substituted with leucine, isoleucine or methionine, and/or C It is an epitope peptide in which the terminal amino acid is replaced with valine, leucine or isoleucine.
  • the peptides of the invention may be modified at their N-terminus and/or C-terminus. Specific examples of such modifications include N-alkanoylation (eg, acetylation), N-alkylation (eg, methylation), C-terminal alkyl esters (eg, ethyl esters), and C-terminal amides (eg, carboxamides). are mentioned. Synthesis of the peptide of the present invention can be carried out according to known methods used in ordinary peptide chemistry. Such known methods include literature (Peptide Synthesis, Interscience, New York, 1966; The Proteins, Vol.
  • the peptide of the present invention is subjected to the CTL induction method described below, an assay using a human model animal (International Publication No. 02/47474, Int J. Cancer: 100, 565-570 (2002)), etc. activity can be confirmed.
  • the peptides of the present invention further include peptides (polyepitope peptides) in which multiple epitope peptides containing at least one of the peptides of the present invention are linked. Therefore, polyepitope peptides having CTL-inducing activity can also be exemplified as specific examples of the peptides of the present invention.
  • the polyepitope peptide of the present invention is (i) a peptide in which the peptide of the present invention (epitope peptide) and any one or more CTL epitope peptides other than the peptide of the present invention are linked directly or via an appropriate spacer; (ii) a peptide in which the peptide of the present invention and any one or two or more helper epitope peptides are linked directly or via an appropriate spacer, or (iii) a peptide obtained by linking the polyepitope peptide according to (i) above with one or more helper epitope peptides directly or via an appropriate spacer, which is processed in antigen-presenting cells,
  • the resulting epitope peptides can be defined as peptides that are presented to antigen-presenting cells and lead to CTL-inducing activity.
  • the CTL epitope peptide other than the peptide of the present invention in (i) is not particularly limited.
  • the spacer is not particularly limited as long as it does not adversely affect processing in antigen-presenting cells, and is preferably a linker linked to each epitope peptide via a peptide bond, such as a peptide linked with several amino acids. Examples include linkers and linkers having amino groups and carboxyl groups at both ends.
  • glycine linkers and PEG (polyethylene glycol) linkers
  • examples of glycine linkers include polyglycine (for example, a peptide consisting of 6 glycines; Cancer Sci, vol.103, p150-153), and PEG linkers. These include linkers derived from compounds having amino and carboxy groups at both ends of PEG (eg, H 2 N—(CH 2 ) 2—(OCH 2 CH 2 ) 3 —COOH; Angew. Chem. Int. Ed. 2008, 47, 7551-7556).
  • One or more of the epitope peptides of the present invention may be selected from the polyepitope peptides of the present invention. That is, a plurality of identical epitope peptides may be linked, or a plurality of different epitope peptides may be linked. Of course, even when two or more epitope peptides are selected, one or two or more of the selected epitope peptides may be linked. For epitope peptides other than the peptide of the present invention, multiple types and/or multiple epitope peptides may be similarly linked.
  • the polyepitope peptide of the present invention may be one in which 2 to 12 epitope peptides are linked, preferably 2, 3, 4, 5, 6, 7, 8 or 9.
  • the epitope peptide linked to the peptide of the present invention is a helper epitope peptide
  • the helper epitope peptide to be used includes, for example, hepatitis B virus-derived HBV c128-140 and tetanus toxin-derived TT947-967.
  • the length of the helper epitope peptide is about 13 to 30 amino acids, preferably about 13 to 17 amino acids.
  • Such a peptide (polyepitope peptide) in which multiple epitope peptides are linked can also be produced by a general peptide synthesis method as described above. It can also be produced using conventional DNA synthesis and genetic engineering techniques based on the sequence information of a polynucleotide encoding a polyepitope peptide in which multiple epitope peptides are linked. That is, the polynucleotide is inserted into a well-known expression vector, the resulting recombinant expression vector is used to transform a host cell, the resulting transformant is cultured, and multiple epitopes of interest are ligated from the culture. It can be produced by recovering the polyepitope peptide.
  • a polyepitope peptide in which a plurality of epitope peptides produced as described above are linked is subjected to the above-mentioned in vitro assay, International Publication No. WO 02/47474 and Int J. Cancer: 100, 565-570 (2002) (these The CTL-inducing activity can be confirmed by subjecting it to the in vivo assay using a human model animal described in the literature, which is incorporated herein by reference.
  • the peptides (including polyepitope peptides) of the present invention are useful for the prevention and/or treatment of treatment-resistant bladder cancer, and can be used as active ingredients of pharmaceutical compositions. .
  • the peptides of the present invention may be for the prevention and/or treatment of treatment-resistant bladder cancer. Furthermore, the invention relates to the use of the peptides of the invention for the manufacture of a medicament for the prevention and/or treatment of treatment-resistant bladder cancer.
  • polynucleotide of the present invention includes a polynucleotide encoding at least one of the peptides of the present invention.
  • Polynucleotides of the present invention may be cDNA, mRNA, cRNA, or synthetic DNA. In addition, it may be in either single-stranded or double-stranded form.
  • a partial peptide of a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin which is a MHC-peptide binding prediction program BIMAS (http http://www-bimas.cit.nih.gov/molbio/hla_bind/), SYFPEITHI (http://www.syfpeithi.de/) and IEDB (MHC-I processing predictions; http://www.iedb.org /), etc., and polynucleotides comprising a nucleotide sequence encoding an amino acid sequence predicted to have binding properties.
  • BIMAS http://www-bimas.cit.nih.gov/molbio/hla_bind/
  • SYFPEITHI http://www.syfpeithi.de/
  • IEDB MHC-I processing predictions; http://www.iedb.org /
  • a polynucleotide consisting of a nucleotide sequence encoding the amino acid sequences set forth in SEQ ID NOs: 1 and 2, and any two or more peptides selected from SEQ ID NOs: 1 and 2, or SEQ ID NO: 1 and 2, and a polynucleotide comprising a nucleotide sequence encoding a polyepitope peptide linked with a helper epitope so that it can be expressed, respectively.
  • the polynucleotides of the present invention can be in either single-stranded or double-stranded form.
  • a recombinant expression vector for expressing the peptide of the present invention can be constructed by inserting the polynucleotide of the present invention into an expression vector. That is, the polynucleotide of the present invention also includes a recombinant expression vector produced by inserting the double-stranded polynucleotide of the present invention into an expression vector.
  • the polynucleotide of the present invention is useful for prevention and/or treatment of treatment-resistant bladder cancer, and can be used as an active ingredient of a pharmaceutical composition.
  • the polynucleotide of the present invention may be for prevention and/or treatment of treatment-resistant bladder cancer. Furthermore, the invention relates to the use of the polynucleotide of the invention for the manufacture of a medicament for the prevention and/or treatment of treatment-resistant bladder cancer.
  • expression vectors can be used in the present invention depending on the host, purpose, etc., and can be appropriately selected by those skilled in the art.
  • expression vectors that can be used in the present invention include plasmids, phage vectors, virus vectors and the like.
  • vectors include plasmid vectors such as pUC118, pUC119, pBR322 and pCR3, and phage vectors such as ⁇ ZAPII and ⁇ gt11.
  • vectors include pYES2, pYEUra3 and the like. Examples include pAcSGHisNT-A when the host is an insect cell.
  • plasmid vectors such as pCEP4, pKCR, pCDM8, pGL2, pcDNA3.1, pRc/RSV and pRc/CMV, and viral vectors such as retroviral vectors, adenoviral vectors and adeno-associated viral vectors is mentioned.
  • the vector may appropriately have factors such as an expression-inducible promoter, a signal sequence-encoding gene, a selection marker gene, a terminator, and the like. Also, to facilitate isolation and purification, a sequence expressed as a fusion protein with thioredoxin, a His tag, or GST (glutathione S-transferase) may be added.
  • a GST fusion protein vector such as pGEX4T having an appropriate promoter (lac, tac, trc, trp, CMV, SV40 early promoter, etc.) that functions in the host cell, or a vector having a tag sequence such as Myc or His (pcDNA3.1/Myc-His, etc.), a vector (pET32a) that expresses a fusion protein with thioredoxin and a His tag, and the like can be used.
  • the present invention includes a composition for gene transfer containing the expression vector.
  • any cell may be used as long as it does not impair the functions of the polypeptide of the present invention, and examples thereof include E. coli, yeast, insect cells and animal cells.
  • Escherichia coli include HB101 strain, C600 strain, JM109 strain, DH5 ⁇ strain, and AD494 (DE3) strain of E. coli K-12 strain.
  • yeast include Saccharomyces cerevisiae.
  • Animal cells include L929 cells, BALB/c3T3 cells, C127 cells, CHO cells, COS cells, Vero cells, HeLa cells, 293-EBNA cells and the like.
  • Insect cells include sf9 and the like.
  • a conventional introduction method suitable for the host cell may be used. Specific examples include a calcium phosphate method, a DEAE-dextran method, an electroporation method, and a method using lipids for gene introduction (Lipofectamine, Lipofectin; Gibco-BRL). After the introduction, by culturing in a normal medium containing a selection marker, transformed cells into which the expression vector has been introduced can be selected.
  • the peptide of the present invention can be produced by continuing to culture the transformed cells obtained as described above under suitable conditions.
  • the resulting peptide can be further isolated and purified by common biochemical purification means.
  • purification means include salting out, ion exchange chromatography, adsorption chromatography, affinity chromatography, gel filtration chromatography and the like.
  • purification means include salting out, ion exchange chromatography, adsorption chromatography, affinity chromatography, gel filtration chromatography and the like.
  • purification means include salting out, ion exchange chromatography, adsorption chromatography, affinity chromatography, gel filtration chromatography and the like.
  • a polynucleotide encoding the peptide of the present invention may be in the form of DNA or RNA.
  • polynucleotides of the present invention can be easily produced using conventional methods known in the art based on the amino acid sequence information of the peptide of the present invention and the sequence information of the DNA encoded thereby. Specifically, it can be produced by ordinary DNA synthesis, amplification by PCR, or the like.
  • a polynucleotide encoding the peptide of the present invention includes a polynucleotide encoding the epitope peptide.
  • the peptide of the present invention has CTL inducing activity and can serve as a CTL inducer as a tumor antigen peptide. Further, as described above, the present inventors determined that a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin is a tumor antigen, and that a peptide derived from the protein binds to an HLA class I antigen on the surface of tumor cells. It was found for the first time that a complex is formed with the cell surface and is transported to the cell surface for antigen presentation. Therefore, the protein itself encoded by a gene selected from the group consisting of GRIK2 and Claspin can also be a CTL inducer.
  • peripheral blood lymphocytes are isolated from HLA-A02 antigen-positive humans and stimulated in vitro by adding the peptide of the present invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin.
  • CTLs that specifically recognize HLA-A02 antigen-positive cells pulsed with the peptide can be induced (J. Immunol., 154, p2257, 1995).
  • the presence or absence of CTL induction can be confirmed, for example, by measuring the amount of various cytokines (eg, IFN- ⁇ ) produced by CTLs in response to antigen peptide-presenting cells, for example, by ELISA or the like. can.
  • CTL clones can also be established by the methods described in Int. J. Cancer, 39, 390-396, 1987, N. Eng. J. Med, 333, 1038-1044, 1995 and the like.
  • CTLs induced by a peptide of the invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin are induced by a peptide of the invention and/or another gene selected from the group consisting of GRIK2 and Claspin It has a toxic effect on cells that present epitope peptides derived from the protein encoded by as an antigen and the ability to produce lymphokines.
  • the peptide of the present invention is a tumor antigen peptide as described above, and the protein encoded by the gene selected from the group consisting of GRIK2 and Claspin is intracellularly degraded to produce the tumor antigen peptide. It can exert an antitumor effect, preferably an anticancer effect.
  • the peptide of the present invention and/or the protein encoded by the gene selected from the group consisting of GRIK2 and Claspin, and the CTL induced thereby can be used as pharmaceuticals and pharmaceutical compositions for the prevention and/or treatment of cancer.
  • HLA antigens preferably HLA, of antigen-presenting cells - A02 antigen is presented with the peptide of the present invention and / or an epitope peptide derived from a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin, and specifically the complex of the HLA antigen and the presented peptide CTLs that recognize can proliferate and destroy cancer cells, thereby preventing and/or treating cancer.
  • the CTL inducer containing, as an active ingredient, the peptide of the present invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin is preferably used in HLA-A02 antigen-positive subjects, It can be used for subjects suffering from GRIK2 or Claspin positive cancer.
  • GRIK2- or Claspin-positive cancers include cancers (tumors) such as resistant bladder cancer, and the CTL inducer of the present invention is used for the prevention and/or treatment of these cancers. can do.
  • prevention of cancer includes not only the prevention of patients from contracting cancer, but also the prevention of recurrence in patients who have had their primary tumor removed by surgery, cancer treatment such as surgery, radiation therapy, or drug therapy. including prevention of metastasis of tumors that could not be completely removed by
  • treatment includes not only cure and improvement of symptoms to shrink cancer, but also progression to suppress cancer cell growth, tumor expansion, or metastasis of cancer cells from the primary focus. prevention, etc.
  • a CTL inducer containing, as an active ingredient, the peptide of the present invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin is HLA-A02, which is affected by GRIK2- or Claspin-positive cancer, for example. It is especially effective for positive cancer patients. Specifically, for example, it can be used for prevention or treatment of cancer (tumor) such as resistant bladder cancer. Therefore, the present invention also includes a pharmaceutical composition containing, as an active ingredient, the peptide of the present invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin.
  • Such a pharmaceutical composition is preferably a composition for prevention and/or treatment of treatment-resistant bladder cancer, ie, an agent for prevention and/or treatment of treatment-resistant bladder cancer.
  • the pharmaceutical composition of the present invention can prevent and/or prevent cancer by inducing CTLs specific to cancer cells (preferably cancer stem cells), that is, by activating cancer cell-specific cellular immunity.
  • cancer cells preferably cancer stem cells
  • it is a vaccine for the prevention and/or treatment of cancer, since it is for treatment.
  • the cancer preventive and/or therapeutic vaccine is an mRNA vaccine
  • the pharmaceutical composition of the present invention can use pseudouridine instead of uridine to suppress inflammatory reactions.
  • a pharmaceutical composition containing the peptide of the present invention as an active ingredient may contain a single CTL epitope (the peptide of the present invention) as an active ingredient, or may be linked to other peptides (CTL epitope or helper epitope). It may contain a polyepitope peptide as an active ingredient. In recent years, it has been shown that a polyepitope peptide in which multiple CTL epitopes (antigen peptides) are linked has an efficient CTL-inducing activity in vivo.
  • the polyepitope peptides When administered in the form of such polyepitope peptides, the polyepitope peptides are taken up into antigen-presenting cells, and then individual antigen peptides produced by intracellular degradation bind to HLA antigens to form complexes. Then, the complex is displayed at high density on the surface of antigen-presenting cells, and CTL specific to this complex efficiently proliferate in the body to destroy cancer cells. In this way cancer treatment or prevention is facilitated.
  • a pharmaceutical composition containing, as an active ingredient, the peptide of the present invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin is pharmaceutically acceptable so as to effectively establish cell-mediated immunity. It can be administered in admixture or in combination with a carrier such as a suitable adjuvant.
  • adjuvants known in the art such as those described in literature (e.g., Clin Infect Dis.: S266-70, 2000) can be applied.
  • coli heat-labile toxin pertussis toxin and muramyl dipeptide (MDP) as cell types
  • oil Freund's incomplete adjuvant MF59 and SAF as emulsion type (emulsion formulation)
  • Immunostimulatory complexes ISCOMs
  • liposomes biodegradable microspheres and saponin as polymer nanoparticle type
  • Synthetic types include nonionic block copolymers, Muramyl peptide analogues, polyphosphazenes and synthetic polynucleotides, Cytokine types include IFN- ⁇ , IL-2 and IL-12. be able to.
  • the dosage form of the CTL inducer/pharmaceutical composition containing, as active ingredients, the peptide of the present invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin is not particularly limited.
  • Emulsions emulsion formulations
  • polymeric nanoparticles emulsion formulations
  • liposome formulations emulsion formulations
  • Administration methods include any known administration methods such as intradermal administration, subcutaneous administration, intramuscular administration, and intravenous administration.
  • the dose of the peptide of the present invention in the formulation can be appropriately adjusted depending on the disease to be treated, the patient's age, body weight, etc., and is usually 0.0001 mg to 1000 mg, preferably 0.001 mg to 1000 mg, more preferably 0.001 mg to 1000 mg.
  • the dose is 0.1 mg to 10 mg, and is preferably administered once every several days to several months.
  • Techniques for making the peptide of the present invention actually act as a drug include an in vivo method in which the peptide is directly introduced into the body, as well as certain cells collected from humans and the peptide of the present invention acting outside the body.
  • CTL inducer/pharmaceutical composition containing the polynucleotide of the present invention as an active ingredient
  • Cells expressing the polynucleotide of the present invention and/or a polynucleotide encoding a protein selected from the group consisting of GRIK2 and Claspin , the peptide of the present invention and/or other epitope peptides derived from a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin as antigens.
  • polynucleotides of the present invention and/or polynucleotides encoding proteins selected from the group consisting of GRIK2 and Claspin can also be inducers of CTLs.
  • the induced CTL are anti-tumor through cytotoxicity and lymphokine production, similar to CTL induced by the peptide of the present invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin. It can exert an action, preferably an anticancer action.
  • the polynucleotide of the present invention and/or a polynucleotide encoding a protein selected from the group consisting of GRIK2 and Claspin is used as an active ingredient of a drug or pharmaceutical composition for treating or preventing treatment-resistant bladder cancer. be able to.
  • a CTL inducer containing, as an active ingredient, a polynucleotide encoding a protein selected from the group consisting of the polynucleotide of the present invention and/or GRIK2 and Claspin is, for example, the polynucleotide of the present invention and/or GRIK2 and Claspin
  • Treatment-resistant bladder cancer can be treated and/or prevented by administering to a cancer patient and expressing a polynucleotide encoding a protein selected from the group consisting of.
  • tumor antigens are expressed in antigen-presenting cells. Peptides are highly expressed. Thereafter, the resulting tumor antigen peptide binds to an HLA antigen such as HLA-A02 antigen to form a complex, and the complex is presented at high density on the surface of antigen-presenting cells, thereby generating cancer-specific CTL. It multiplies efficiently in the body and destroys cancer cells. Treatment or prevention of cancer is achieved as described above.
  • compositions comprising a polynucleotide of the invention and/or a polynucleotide encoding a protein selected from the group consisting of GRIK2 and Claspin are therefore also encompassed by the invention.
  • a pharmaceutical composition is preferably a composition for cancer prevention and/or treatment, ie, a cancer prevention and/or treatment agent.
  • the pharmaceutical composition of the present invention can prevent and/or prevent cancer by inducing CTLs specific to cancer cells (preferably cancer stem cells), that is, by activating cancer cell-specific cellular immunity.
  • it is a vaccine for the prevention and/or treatment of cancer, since it is for treatment.
  • the CTL inducer/pharmaceutical composition containing the polynucleotide of the present invention as an active ingredient can be preferably used for subjects who are HLA-A02 antigen-positive and have GRIK2 and Claspin-positive cancer.
  • GRIK2- and Claspin-positive cancers include cancers (tumors) such as resistant bladder cancer, and the CTL inducer of the present invention can be used for the prevention or treatment of these cancers. can be done.
  • Methods for administering and introducing into cells the polynucleotide of the present invention and/or a polynucleotide encoding a protein selected from the group consisting of GRIK2 protein and Claspin protein include methods using viral vectors and other methods (Nikkei Science, April 1994, pp. 20-45, Gekkan Yakuji, 36(1), 23-48 (1994), Jikken Igaku Supplement, 12(15), (1994), and references cited therein. incorporated herein by reference) can be applied.
  • a vector comprising the polynucleotide of the present invention and/or a polynucleotide encoding a protein selected from the group consisting of GRIK2 protein and Claspin protein is contained as an active ingredient.
  • the DNA of the present invention is introduced by incorporating it into a DNA virus or RNA virus such as retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia virus, pox virus, polio virus, and Simbis virus. method.
  • a DNA virus or RNA virus such as retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia virus, pox virus, polio virus, and Simbis virus.
  • retroviruses, adenoviruses, adeno-associated viruses, vaccinia viruses and the like are particularly preferred.
  • Other methods include direct intramuscular administration of an expression plasmid (DNA vaccine method), liposome method, lipofectin method, microinjection method, calcium phosphate method, electroporation method, and the like, particularly DNA vaccine method and liposome method. method is preferred.
  • In vivo methods are more preferred.
  • an appropriate administration route according to the disease to be treated, symptoms, etc. and the administration form can be appropriately selected and administered.
  • it can be administered in an injectable form intravenously, arterially, subcutaneously, intradermally, intramuscularly, and the like.
  • an in vivo method for example, it can be in the form of a liquid formulation or the like, but it is generally an injection containing the polynucleotide of the present invention, which is an active ingredient.
  • An acceptable carrier may be added.
  • liposomes or membrane-fusion liposomes (Sendai virus (HVJ)-liposomes, etc.) containing the polynucleotide of the present invention may be in the form of liposome preparations such as suspensions, freezing agents, and centrifugation-concentrating freezing agents. can.
  • the content of the polynucleotide of the present invention in the preparation can be appropriately adjusted according to the disease to be treated, the patient's age, body weight, etc. Generally, the content of the polynucleotide is 0.0001 mg to 100 mg, preferably 0.001 mg to 100 mg. 001 mg to 10 mg of the polynucleotide of the invention is preferably administered once every few days to several months. A person skilled in the art can appropriately select suitable cells, vectors, administration methods, dosage forms and dosages.
  • a polynucleotide encoding a polyepitope peptide in which a plurality of CTL epitopes (tumor antigen peptides) are linked, or a polynucleotide encoding a polyepitope peptide in which a CTL epitope and a helper epitope are linked has been found to be effective in vivo. has been shown to have CTL-inducing activity.
  • cancer cells avoid elimination by the immune system by shielding against attacks by immune cells. It has become clear that it uses a mechanism called "immune checkpoint" that Therefore, by suppressing the functions of immune checkpoints in cancer cells, the attack by immune cells can be made effective. Since the pharmaceutical composition of the present invention exhibits an antitumor effect by inducing tumor-specific immune cells, it exhibits a higher therapeutic effect by suppressing immune checkpoint functions as well. be able to. Therefore, in one preferred aspect, the pharmaceutical composition of the present invention is used together with an immune checkpoint inhibitor.
  • agent A and another agent B when a certain agent A and another agent B are “used together” or “used in combination”, it means that while agent A is exerting its effect, agent B is in a state of exerting its effect. . Therefore, the agent B may be administered simultaneously with the administration of the agent A, or the agent B may be administered at a certain interval after the administration of the agent A. In addition, agent A and agent B may have the same dosage form, or may have different dosage forms. Furthermore, agent A and agent B may be mixed into one composition as long as agent A or agent B does not lose its effect.
  • immune checkpoint inhibitor Any agent known as an immune checkpoint inhibitor can be used as the immune checkpoint inhibitor in this embodiment, as long as it does not inhibit the ability of the composition of the present invention to induce CTL.
  • Known immune checkpoint inhibitors include, but are not limited to, anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-TIM-3 antibody, anti-LAG- 3 antibody, anti-B7-H3 antibody, anti-B7-H4 antibody, anti-B7-H5 antibody, anti-TIGIT antibody and the like.
  • Antigen-presenting cells of the present invention can be used in vitro, for example, as follows. That is, antigen-presenting cells that present the antigenic peptide of the present invention as an antigen can be prepared by contacting in vitro either the peptide or polynucleotide of the present invention with a cell capable of presenting an antigen. Accordingly, one aspect of the present invention provides an antigen-presenting cell that presents a complex of the HLA-A02 antigen and the peptide of the present invention on the cell surface, and a method for producing the same. As mentioned above, the peptides and polynucleotides of the invention can be used to prevent and/or treat cancer.
  • the antigen-presenting cells of this embodiment or the method for producing the same preferably utilize isolated cells derived from cancer patients. Specifically, by contacting in vitro either the peptide or polynucleotide of the present invention with an isolated cell having antigen-presenting ability derived from a cancer patient, HLA-A02 is present on the cell surface of the cell. Antigen-presenting cells that present the complex of the antigen and the peptide of the present invention are produced.
  • cells having antigen-presenting ability are not particularly limited as long as they express MHC capable of presenting the peptide of the present invention, preferably HLA, more preferably HLA-A02 antigen on the cell surface.
  • MHC capable of presenting the peptide of the present invention preferably HLA, more preferably HLA-A02 antigen on the cell surface.
  • professional antigen-presenting cells are preferred, and dendritic cells, which are said to have particularly high antigen-presenting ability, are more preferred.
  • the substance added to prepare the antigen-presenting cells of the present invention from the cells capable of presenting antigens may be either the peptide or the polynucleotide of the present invention.
  • the antigen-presenting cells of the present invention can be obtained, for example, by isolating cells having antigen-presenting ability from cancer patients, pulsing the cells with the peptide of the present invention in vitro, and obtaining the HLA-A02 antigen and the peptide of the present invention. It is obtained by presenting a complex (Cancer Immunol. Immunother., 46:82, 1998, J. Immunol., 158, p1796, 1997, Cancer Res., 59, p1184, 1999).
  • dendritic cells for example, lymphocytes are separated from the peripheral blood of cancer patients by the Ficoll method, then non-adherent cells are removed, and the adherent cells are cultured in the presence of GM-CSF and IL-4 to produce dendritic cells.
  • the antigen-presenting cells of the present invention can be prepared by inducing dendritic cells, culturing and pulsing the dendritic cells with the peptide of the present invention, and the like.
  • the polynucleotide may be in the form of DNA or RNA.
  • DNA refer to Cancer Res., 56: p5672, 1996 and J. Immunol., 161: p5607, 1998 (these documents constitute a part of the present application by reference).
  • RNA J. Exp. Med., 184: p465, 1996 (this document constitutes a part of the present application by reference) can be referred to.
  • the antigen-presenting cells can be used as a CTL inducer and/or an active ingredient of a pharmaceutical composition.
  • the CTL inducer and/or pharmaceutical composition containing the antigen-presenting cells as an active ingredient contains physiological saline, phosphate-buffered saline (PBS), medium, etc. in order to stably maintain the antigen-presenting cells. preferably included.
  • Administration methods include intravenous administration, subcutaneous administration, and intradermal administration.
  • CTL inducer and/or pharmaceutical composition containing such antigen-presenting cells as an active ingredient By returning a CTL inducer and/or pharmaceutical composition containing such antigen-presenting cells as an active ingredient to the patient's body, the body of a patient suffering from GRIK2- or Claspin-positive cancer, CTLs specific to cancer cells that present the peptide of the present invention as antigens are efficiently induced, and as a result, GRIK2- or Claspin-positive cancers that present the peptide of the present invention as antigens can be prevented and/or treated.
  • Cytotoxic T cells (CTL) of the present invention Peptides and polynucleotides of the invention can be utilized in vitro, for example, as follows. That is, CTLs can be induced by contacting peripheral blood lymphocytes in vitro with either the peptide or polynucleotide of the present invention. Accordingly, one aspect of the present invention provides CTLs that specifically damage cells that present the peptide of the present invention as antigens, and methods for inducing the same. As mentioned above, the peptides and polynucleotides of the invention can be used to prevent and/or treat cancer. Therefore, peripheral blood lymphocytes derived from cancer patients are preferably used in the CTLs of this embodiment and the method for inducing them. Specifically, by contacting in vitro either the peptide or polynucleotide of the present invention with peripheral blood lymphocytes derived from a cancer patient, the peptide of the present invention is specifically damaged by antigen-presenting cells. induce CTLs;
  • melanoma for example, adoptive immunotherapy, in which a large amount of the patient's own tumor-infiltrating T cells are cultured outside the body and returned to the patient, has been shown to have therapeutic effects (J.Natl.Cancer.Inst., 86: 1159, 1994).
  • metastasis was suppressed by stimulating splenocytes with the tumor antigen peptide TRP-2 in vitro to proliferate CTL specific to the tumor antigen peptide, and administering the CTL to melanoma-transplanted mice.
  • J. Exp. Med., 185:453, 1997 J. Exp. Med.
  • the CTL can be used as an active ingredient of a cancer therapeutic or preventive agent.
  • the therapeutic or prophylactic agent preferably contains physiological saline, phosphate-buffered saline (PBS), medium, etc., in order to stably maintain CTLs.
  • Administration methods include intravenous administration, subcutaneous administration, and intradermal administration.
  • the CTL of the present invention can exert cytotoxic activity by targeting the complex of the peptide of the present invention and HLA, which is presented as an antigen to tumor cells. That is, the T cell receptor (TCR) of the CTL of the present invention recognizes the complex of the peptide of the present invention and HLA.
  • TCR T cell receptor
  • a TCR gene that recognizes a specific peptide-HLA complex expressed in CTL has been cloned, and the TCR gene has been introduced into CD8 + T cells collected from cancer patients to artificially produce CTL, and a large amount of Adoptive immunotherapy has been devised in which cells are cultured for 10 days and then transferred back into the patient (eg, Ochi et al., Blood.
  • the term "artificial CTL” means a CTL produced by introducing a gene encoding a TCR that recognizes a complex of a peptide and HLA into T cells as described above. Similar to the natural CTL described above, it can be used for the treatment of cancer. Therefore, such artificial CTLs are also included in the CTLs of the present invention.
  • the TCR that recognizes the complex of the peptide of the present invention and HLA, which is introduced into the artificial CTL may be appropriately modified in order to increase the binding affinity and cytotoxic activity for the complex. .
  • artificial CTL also includes CTLs produced by appropriately genetically modifying a gene encoding a TCR that recognizes the complex of the peptide of the present invention and HLA, and then introducing the gene into patient-derived T cells. be done. Methods known in the art can be used to generate artificial CTLs.
  • the present invention also relates to tumor-specific CTL detection agents comprising the peptides of the present invention.
  • the tumor-specific CTL detection agent of the present invention comprises HLA multimers (monomers, dimers, tetramers, pentamers and dextramers) containing the peptide of the present invention and HLA-A02.
  • HLA tetramer refers to a tetramer obtained by biotinylating a complex (HLA monomer) in which HLA ⁇ chain and ⁇ 2 microglobulin are associated with a peptide (epitope peptide) and binding to avidin ( Science 279: 2103-2106 (1998), Science 274: 94-96 (1996)).
  • HLA tetramers containing various antigenic peptides are commercially available (for example, from Medical and Biological Laboratories, Inc.), and HLA tetramers containing the peptide of the present invention and HLA-A02 can be easily produced. can.
  • HLA dimers and HLA pentamers are also based on similar principles, in which the HLA monomers are dimerized and pentamerized, respectively. Therefore, HLA multimers containing a peptide of the invention and HLA-A02 are also an aspect of the invention.
  • an HLA tetramer containing a peptide consisting of the amino acid sequence of either SEQ ID NO: 1 or 2 and HLA-A02 can be mentioned.
  • the HLA tetramer is preferably fluorescently labeled so that bound CTLs can be easily selected or detected by known detection means such as flow cytometry and fluorescence microscopy.
  • detection means such as flow cytometry and fluorescence microscopy.
  • Specific examples include HLA tetramers labeled with phycoerythrin (PE), fluorescein isothiocyanate (FITC), peridinin chlorophyll protein (PerCP), and the like.
  • HLA-A02 ⁇ -chain expression vector and a ⁇ 2-microglobulin expression vector are introduced into Escherichia coli or mammalian cells capable of expressing proteins and expressed.
  • E. coli eg, BL21
  • the obtained monomeric HLA-A02 and the peptide of the present invention are mixed to form a soluble HLA-peptide complex.
  • sequence of the C-terminal region of the ⁇ chain of HLA-A02 in the HLA-peptide complex is biotinylated with BirA enzyme.
  • HLA tetramers can be prepared by mixing this biotinylated HLA-peptide complex and fluorescently labeled avidin at a molar ratio of 4:1. In each of the steps described above, it is preferable to perform protein purification by gel filtration or the like.
  • the present inventors discovered for the first time that a gene selected from the group consisting of GRIK2 and Claspin is a tumor antigen highly expressed in bladder cancer stem cells. That is, the present inventors have determined that GRIK2 and Claspin are genes that are highly expressed in bladder cancer stem cells, although their expression is not observed in bladder cancer-derived non-cancer stem cells or normal somatic cells. became clear for the first time. Based on these findings, it was found that genes selected from the group consisting of GRIK2 and Claspin can be used as markers for identifying bladder cancer stem cells. Accordingly, in one aspect, the present invention relates to a bladder cancer stem cell detection agent comprising a detection agent for detecting an expression product of a gene selected from the group consisting of GRIK2 and Claspin.
  • GRIK2 and the like means the GRIK2 gene and the like unless otherwise specified. It is preferably a human gene, but may be a homolog thereof.
  • expression of a gene refers to a series of biological reactions originating from transcription of the gene
  • expression product refers to, for example, mRNA and endogenous polypeptides produced by this series of biological reactions.
  • a molecule that An endogenous polypeptide that is the expression product of a gene is preferably the protein ultimately produced by expression of the gene.
  • the "agent for detecting gene expression products” means an agent for qualitatively and/or quantitatively detecting a gene expression product selected from the group consisting of GRIK2 and Claspin.
  • Cancer stem cell detection agents of the present invention include detection agents for detecting expression products of genes selected from the group consisting of GRIK2 and Claspin.
  • an expression product of a gene selected from the group consisting of GRIK2 and Claspin is detected in the detection target, it can be determined that the detection target has cancer stem cells, that is, cancer stem cells have been detected.
  • the agent for detecting cancer stem cells of the present invention can be used both in vivo and in vitro. Used in vitro. In this case, the detection of cancer stem cells in the cell population derived from the biological sample to be detected means that the cancer stem cells are also detected in the individual organism from which the biological sample to be examined was collected, i.e., the organism It means that the individual has cancer stem cells.
  • the present invention also includes a method for detecting cancer stem cells in a test subject using the agent for detecting cancer stem cells of the present invention.
  • the organism to be tested may be any organism that can have a tumor in the bladder, for example, but preferably humans and non-human mammals (e.g., mice, rats, guinea pigs, hamsters, etc.) rodents, primates such as chimpanzees, artiodactyls such as cattle, goats and sheep, perissodactyla such as horses, rabbits, dogs, cats, etc.), and more preferably human individuals.
  • non-human mammals e.g., mice, rats, guinea pigs, hamsters, etc.
  • rodents e.g., primates such as chimpanzees, artiodactyls such as cattle, goats and sheep, perissodactyla such as horses, rabbits, dogs, cats, etc.
  • primates such as chimpanze
  • the cell population to be detected can be a cell population derived from any biological sample obtained from the test subject, but is preferably a cell population derived from a biological sample obtained from a human, More preferably, it has been confirmed that genes selected from the group consisting of GRIK2 and Claspin are hardly expressed in tissue cells, bladder and tissues other than bladder, heart, brain, placenta, lung, liver, skeletal muscle, A cell population containing cells derived from one or more biological samples selected from the group consisting of kidney, pancreas, spleen, thymus, prostate, testis, ovary, small intestine, large intestine and blood.
  • the agent for detecting the expression product of a gene selected from the group consisting of GRIK2 and Claspin which is included in the agent for detecting cancer stem cells of the present invention, can vary depending on the expression product to be detected, and can be appropriately optimized by those skilled in the art. can choose something.
  • the expression product is mRNA
  • any mRNA detection method known in the art can be used, including, but not limited to, RT-PCR, in situ high Bridization method, Northern blotting method, real-time RT-PCR, and the like can be mentioned.
  • RT-PCR method is preferable because of its high detection sensitivity, simplicity of experimental procedures, and the like.
  • the expression product is an endogenous polypeptide (preferably GRIK2 protein and/or Claspin protein)
  • examples include, but are not limited to, Western blotting, immunohistochemical staining, and the like.
  • the detection agent for the gene expression product selected from the group consisting of GRIK2 and Claspin to be used can vary depending on the expression product to be detected and the detection method to be employed, and those skilled in the art can appropriately select the optimum one.
  • a specific antibody preferably a monoclonal antibody
  • Claspin protein when detecting an endogenous polypeptide
  • examples include, but are not limited to, probes and/or primers having a nucleotide sequence complementary to a portion of the nucleotide sequence of .
  • the expression product to be detected may be a single expression product or a combination of multiple expression products.
  • the peptide of the present invention is presented as a CTL epitope peptide by cancer cells, particularly cancer stem cells.
  • the peptide of the present invention can be used as a tumor marker by using an antibody that recognizes the peptide of the present invention or a complex of the peptide and MHC.
  • Such antibodies include, for example, an antibody (preferably a monoclonal antibody) that specifically recognizes the peptide of the present invention, a complex of the peptide of the present invention and HLA, preferably a complex that recognizes HLA-A02.
  • the present invention also relates to antibodies, in particular monoclonal antibodies and T-cell antigen receptor-like antibodies, which recognize the peptides of the present invention or complexes of said peptides and MHC.
  • the "TCR-like antibody” is a TCR-like binding force (antigen recognition ability) to a complex (pMHC) of a fragmented antigen-derived peptide and a major histocompatibility complex (MHC) molecule. is a molecule having For example, as reported by Eur J Immunol. It can recognize presenting cancer cells, dendritic cells presenting tumor antigen peptides on MHC class I by phagocytosing cancer cells, and the like.
  • the TCR-like antibody can be prepared by the method described in Eur J Immunol. 2004;34:2919-29.
  • complex-specific antibodies can be obtained by immunizing animals such as mice with MHC and peptide complexes. It is also possible to obtain a complex-specific antibody using a phage display method.
  • the present invention therefore also relates to a tumor detection agent comprising the above TCR-like antibody.
  • the peptide of the present invention is similarly presented to antigen-presenting cells, particularly professional antigen-presenting cells such as dendritic cells. It is also useful for detection of cells and the like.
  • the term "antibody” refers not only to immunoglobulin molecules, but also to functional antibodies such as Fab, Fab', F(ab')2, Fv, scFv, dsFv, Diabody and sc(Fv)2. Fragments are also included. Multimers (eg, dimers, trimers, tetramers, polymers) of these functional fragments are also included in the antibodies of the present invention.
  • the peptide of the present invention is presented as a CTL epitope peptide by cancer cells, particularly cancer stem cells.
  • a TCR-like antibody that recognizes the complex of can bind to said complex present on the cell surface in a subject.
  • the Fc region of the antibody binds to the Fc receptor of effector cells such as macrophages and NK cells, and the effector cells attack tumor cells
  • ADCC Antibody-dependent cellular cytotoxicity
  • the resulting activity can treat tumors. Therefore, the above TCR-like antibody is also useful for cancer prevention and/or treatment. Therefore, the present invention also relates to preventive and/or therapeutic agents for cancer comprising the TCR-like antibody of the present invention.
  • bispecific antibodies have also been developed in which the two antigen-binding sites are modified to bind to different antigens.
  • a bispecific antibody that recognizes a cancer cell surface antigen such as an MHC-antigen peptide complex at one antigen-binding site and a lymphocyte surface antigen such as CD3 at the other antigen-binding site is a cancer cell It becomes possible to bind and accumulate cells having lymphocyte surface antigens such as CTLs and effector cells in the vicinity of the cells. Lymphocytes confined to the vicinity of cancer cells not only exhibit anti-tumor activity such as ADCC activity themselves, but also act as anti-tumor cells by secreting cytokines to activate naive immune cells around cancer cells. It can attack cancer cells by exerting its standard effect.
  • the present invention also includes bispecific antibodies that specifically recognize the peptide of the present invention and/or a complex of the peptide and HLA, and a lymphocyte surface antigen.
  • the specifically recognized lymphocyte surface antigen is not particularly limited as long as it is an antigen specifically expressed on the surface of lymphocytes, but preferably includes CD3, CD16, CD64 and the like.
  • CD3 is a cell surface antigen that is involved in inducing the cytotoxic activity of CTL, and when an antibody binds to CD3, CTL can be activated in an HLA-unrestricted manner without recognizing HLA-cancer antigen complexes. It is preferable because it can be expected to exhibit strong cytotoxic activity.
  • a chimeric antigen receptor which is a part of a tumor antigen-specific monoclonal antibody that has been genetically modified, has been introduced into patient-derived T cells, and the genetically modified T cells have been amplified in vitro.
  • a new immune cell therapy method has been devised that is cultured and then infused into patients (Nat Rev Immunol. 2012;12:269-81). Specifically, after activating T cells by culturing peripheral blood mononuclear cells collected from patients in the presence of anti-CD3 antibody and IL-2, etc.
  • Genetically modified T cells are generated by introducing a gene encoding CAR into T cells using a transforming vector.
  • chimeric antigen receptor refers to a single-chain antibody (scFv) in which the light chain and heavy chain of the antibody variable region of an antibody that recognizes molecules present on the cell surface of cancer cells are linked in series. It is a chimeric protein molecule designed to have the CD3 ⁇ chain on the C-terminal side among the molecules that constitute the T cell receptor (TCR)/CD3 complex on the terminal side.
  • TCR T cell receptor
  • One or more co-stimulatory molecules may be incorporated between the scFv and the ⁇ chain to enhance T cell activation.
  • a CAR can be produced using the TCR-like antibody of this embodiment (including antibody molecules or fragments thereof that can be designed from the TCR-like antibody) as the scFv.
  • CAR which recognizes a complex of a peptide derived from a tumor antigen and MHC, phagocytizes cancer cells presenting a tumor antigen peptide that can be targeted by CTL, and the tumor antigen peptide on MHC class I.
  • the CAR-introduced genetically modified T cells can recognize presenting dendritic cells and the like, the CAR-introduced genetically modified T cells can be used as a preventive and/or therapeutic agent for cancer specific to the tumor antigen, similar to artificial CTL. Useful. Therefore, the present invention also relates to preventive and/or therapeutic agents for cancer, comprising gene-modified T cells or artificial CTLs introduced with CAR that recognize the complex of the peptide derived from the tumor antigen of the present invention and MHC. .
  • Tumor detection method (examination method, diagnosis method)
  • the present invention provides a tumor detection method (examination method, diagnosis method) using the above-described CTL detection agent, cancer stem cell detection agent, or tumor detection agent of the present invention.
  • the detection method (diagnosis method) of the present invention using the CTL detection agent of the present invention typically, blood of a subject is collected, or a part of a test tissue suspected of having a tumor is collected by biopsy or the like.
  • GRIK2- or Claspin-positive GRIK2- or Claspin-positive diseases such as bladder cancer are detected and measured by the CTL detection agent of the present invention by detecting and measuring the amount of CTLs that recognize the complex of the GRIK2- or Claspin-derived tumor antigen peptide and HLA antigen contained in the It detects, examines, or diagnoses the presence or absence or degree of cancer (tumor).
  • the detection method (examination method, diagnosis method) of the present invention using the agent for detecting cancer stem cells of the present invention typically involves collecting the blood of a subject, or biopsying a portion of a tissue suspected of having a tumor. and the amount of GRIK2 or Claspin expression product contained therein is detected and measured by the agent for detecting cancer stem cells of the present invention, thereby detecting the incidence of GRIK2 or Claspin positive cancer (tumor) such as bladder cancer. It detects, examines or diagnoses the presence or absence or degree of
  • the detection method (examination method, diagnosis method) of the present invention using the tumor-detecting agent of the present invention typically involves collecting the blood of a subject, or collecting a part of a test tissue suspected of having a tumor by biopsy or the like.
  • the amount of cells presenting a complex of GRIK2 or Claspin-derived tumor antigen peptide and HLA antigen contained therein is detected and measured by the tumor-detecting agent of the present invention, thereby detecting GRIK2 or GRIK2 such as bladder cancer or It detects, examines, or diagnoses the presence or absence or degree of Claspin-positive cancer (tumor).
  • the detection (testing, diagnosing) method of the present invention detects (testing, diagnosing) the presence or absence or degree of improvement of a tumor when a therapeutic agent is administered to improve the tumor, for example, in a patient with a tumor.
  • the detection (examination, diagnosis) method of the present invention includes selection of patients to be treated to whom the drug containing the peptide or polynucleotide of the present invention as an active ingredient can be effectively applied, prediction and determination of the therapeutic effect and prognosis of the drug, and the like. also available.
  • a tumor antigen peptide that can be actually targeted by CTL induced in vivo by administering a cancer vaccine containing the peptide of the present invention as an active ingredient is used. It is possible to detect presenting cancer cells.
  • a specific embodiment of the detection (examination) method of the present invention using the CTL detection agent of the present invention comprises the following steps (a) and (b), and optionally (c): (a) contacting a biological sample obtained from a subject with the CTL detection agent of the present invention; (b) measuring the amount of CTLs in the biological sample that recognize a complex of a tumor antigen peptide derived from GRIK2 or Claspin and an HLA antigen, using the amount of cells to which the CTL detection agent binds as an index; (c) A step of judging the presence of cancer based on the result of (b).
  • a specific embodiment of the diagnostic method of the present invention using the CTL detection agent of the present invention includes steps (a), (b) and (c) above.
  • a specific embodiment of the detection (examination) method of the present invention using the cancer stem cell detection agent of the present invention comprises the following steps (d) and (e), and optionally (f): (d) contacting a biological sample obtained from a subject with the agent for detecting cancer stem cells of the present invention; (e) measuring the amount of GRIK2 or Claspin expression product in said biological sample; (f) A step of judging the presence of cancer based on the result of (e).
  • a specific embodiment of the diagnostic method of the present invention using the agent for detecting cancer stem cells of the present invention includes the steps (d), (e) and (f) above.
  • Embodiments of the method for detecting cancer stem cells using the agent for detecting cancer stem cells of the present invention include steps (d) and (e) above, and the following step (f′) instead of (f): (f') A step of determining the presence or absence of cancer stem cells in the biological sample based on the result of (e).
  • the biological sample used here includes a sample prepared from a subject's biological tissue (tissue suspected to contain cancer cells, surrounding tissue, blood, etc.). Specifically, a sample containing tissue cells collected from the tissue can be used.
  • a specific embodiment of the detection (examination) method of the present invention using the cancer stem cell detection agent of the present invention comprises the following steps (g) and (h), and optionally (i): (g) contacting a biological sample obtained from a subject with the tumor-detecting agent of the present invention; (h) measuring the amount of cells presenting a complex of a GRIK2- or Claspin-derived tumor antigen peptide and an HLA antigen in the biological sample, using the amount of cells bound to the tumor-detecting agent as an index; (i) A step of judging the presence of cancer based on the result of (h).
  • a specific embodiment of the diagnostic method of the present invention using the tumor detecting agent of the present invention comprises steps (g), (h) and (i) above.
  • the biological sample used here includes a sample prepared from a subject's biological tissue (a tissue suspected of containing cancer cells and its surrounding tissue, blood, etc.). Specifically, a sample containing tissue cells collected from the tissue can be used.
  • One embodiment of the detection method (test method, diagnostic method) of the present invention using the CTL detection agent of the present invention is performed by detecting the peptide-specific CTL of the present invention in a biological sample and measuring the amount thereof. .
  • test method, diagnostic method is performed by detecting the peptide-specific CTL of the present invention in a biological sample and measuring the amount thereof.
  • 4 amounts of complexes of fluorescently labeled HLA antigens and peptides of the present invention HLA tetramers are prepared and used to quantify antigen peptide-specific CTLs in peripheral blood lymphocytes of patients suspected of having cancer using a flow cytometer.
  • Prediction, judgment, judgment or diagnosis of the presence or absence of a tumor is, for example, by measuring the amount of the peptide-specific CTL of the present invention or the amount of cells presenting the peptide of the present invention in the blood of a subject or a test tissue suspected of having a tumor. It can be done by In this case, GRIK2 or Claspin gene expression level, peptide level or CTL level of the present invention, etc., in a normal corresponding tissue may be used as a reference value, and the reference value is compared with the level in the sample obtained from the subject, This can be done by determining the difference between the two.
  • the comparison of the levels between the test tissue of the subject and the corresponding normal tissue can be carried out by performing measurements in parallel on the biological sample of the subject and the biological sample of the normal subject. If not performed in parallel, the peptide-specific CTL of the present invention obtained by measurement under uniform measurement conditions using multiple (at least 2, preferably 3 or more, more preferably 5 or more) normal tissues or the average or statistical mean value of the amount of cells presenting the peptide of the present invention can be used for comparison as the normal person's value, ie, the reference value.
  • Determination of whether a subject is suffering from cancer is, for example, the amount of the peptide-specific CTL of the present invention in the subject's tissue, or the amount of cells presenting the peptide of the present invention is higher than those of a normal person. For example, it can be measured by using a ratio of 2 times or more, preferably 3 times or more, as an index. It is also possible to determine whether or not CTL are actually induced by measuring the amount of peptide-specific CTL of the present invention in subjects administered with the peptide or polynucleotide of the present invention. .
  • the amount of the peptide-specific CTL of the present invention in the tissue of the subject is, for example, 2-fold or more, preferably 3-fold or more, as compared to the level of those in normal subjects.
  • Treatment with nucleotides can be determined to be effective.
  • the present invention also provides a method for preventing and/or treating cancer in a subject, comprising the peptide, polynucleotide, CTL, antigen-presenting cell, and TCR-like antibody of the present invention. , artificial CTL, and genetically modified T cells, to a subject in need thereof.
  • a “subject” in the present invention may be any organism as long as it can be affected by cancer. primates such as teeth and chimpanzees; artiodactyls such as cows, goats and sheep; perissodactyla such as horses; rabbits, dogs and cats), and more preferably human individuals. In the present invention, the subject may be healthy or suffer from some disease.
  • the subject means a subject who has or is at risk of being affected.
  • the subject is HLA-A02 positive.
  • the subject has or is at risk of having a GRIK2 or Claspin positive cancer.
  • the subject is HLA-A02 positive and has or is at risk of having a GRIK2 or Claspin positive cancer.
  • Peptides, polynucleotides, CTLs, antigen-presenting cells, TCR-like antibodies, artificial CTLs, and genetically modified T cells of the invention for use in the prophylactic/therapeutic methods of the invention include any described herein.
  • An effective amount in the present invention is, for example, an amount that reduces symptoms of cancer or delays or stops the progression thereof, preferably an amount that suppresses or cures cancer. Also, an amount that does not cause adverse effects that exceed the benefits of administration is preferred. Such an amount can be appropriately determined by in vitro tests using cultured cells or the like, or tests using model animals such as mice and rats, and such test methods are well known to those skilled in the art.
  • the specific dose of the active ingredient depends on various conditions related to the subject requiring it, such as severity of symptoms, general health condition of the subject, age, weight, sex of the subject, diet, timing and frequency of administration, It can be determined in consideration of concomitant drugs, responsiveness to treatment, dosage form, compliance to treatment, and the like.
  • the peptide of the present invention is usually 0.0001 mg to 1000 mg, preferably 0.001 mg to 1000 mg, more preferably 0.1 mg to 10 mg.
  • a single dose is preferred.
  • the polynucleotide of the present invention it is usually 0.0001 mg to 100 mg, preferably 0.001 mg to 10 mg, and is preferably administered once every several days to several months.
  • the dose is usually 0.0001 mg to 2000 mg, preferably 0.001 mg to 2000 mg, and is preferably administered once every 1 to 4 weeks.
  • the genetically modified T cells or artificial CTLs of the present invention it is usually 1 ⁇ 10 4 to 1 ⁇ 10 8 , preferably 1 ⁇ 10 5 to 1 ⁇ 10 7 , and is administered once every 1 day to 4 weeks. preferably.
  • any known appropriate administration method such as intradermal administration, subcutaneous administration, intramuscular administration, and intravenous administration can be used.
  • certain cells were collected from humans and the peptides and polynucleotides of the present invention were used to induce CTLs and antigen-presenting cells in vitro. An ex vivo method can also be used to later put these cells back into the body.
  • One aspect of the prophylactic/therapeutic method of the present invention further comprises a step of selecting an HLA-A02-positive subject as a prophylactic/therapeutic target before the administering step.
  • This aspect of the invention may further comprise determining the HLA type of the subject prior to the selecting step. Determining a subject's HLA type can be done by any known technique.
  • one aspect of the preventive/therapeutic method of the present invention further comprises the step of selecting a subject having GRIK2- or Claspin-positive cancer as a preventive/therapeutic target before the administering step.
  • This aspect of the invention may further comprise detecting GRIK2 or Claspin positive cancers in the subject prior to the selecting step.
  • the tumor detection method described in ⁇ 11> above can be used to detect GRIK2- or Claspin-positive cancer in a subject.
  • One aspect of the preventive/therapeutic method of the present invention further comprises the step of selecting a subject who is HLA-A02 positive and has GRIK2 or Claspin-positive cancer as a preventive/therapeutic target before the administering step. include.
  • This aspect of the invention may further comprise, prior to the selecting step, determining the HLA type of the subject and detecting GRIK2 or Claspin positive cancer in the subject.
  • the expression level of the GRIK2 or Claspin expression product in the detection target is determined by the cancer stem cells in the detection target. is considered to be positively correlated with the amount of Therefore, by comparing the expression level of the GRIK2 or Claspin expression product before and after administration of the candidate compound of the cancer therapeutic drug to the detection target, it is possible to determine whether the administered candidate compound is a cancer therapeutic drug targeting cancer stem cells. useful or not.
  • the screening method of the present invention comprises the following steps (I), (II) and optionally (III): (I) measuring the detected amount A of the expression product of the GRIK2 or Claspin gene in a subject before administering a candidate compound for a cancer therapeutic drug to the subject; (II) after administering the candidate compound to the subject cell population, measuring the detected amount B of the expression product of the gene in the subject; and (III) comparing the detected amounts A and B, and detecting the If the amount A is significantly greater than B, determining that the candidate compound is a cancer therapeutic drug candidate characterized by targeting cancer stem cells.
  • a particular embodiment of the screening method of the present invention comprises steps (I) to (III) above.
  • the steps (I) and (II) of measuring the amount to be detected include steps (d) and (e) in the detection (examination, diagnosis) method described above, respectively.
  • the present invention relates to a gene expression suppressor that suppresses the expression of a gene selected from the group consisting of GRIK2 and Claspin.
  • Methods for selectively suppressing the expression of specific genes in cells are not particularly limited, and examples thereof include antisense RNA method, RNA interference (RNAi) method, CRISPR-Cas method, ZFN method, TALEN method and the like.
  • RNAi RNA interference
  • the antisense RNA method and the RNAi method are preferable, and the RNAi method is more preferable, from the viewpoint of bioavailability and low off-target effect.
  • the gene expression inhibitor is an antisense oligonucleotide against a gene selected from the group consisting of GRIK2 and Claspin.
  • the term "antisense oligonucleotide" against a certain gene means an oligonucleotide capable of suppressing the expression of the gene by hybridizing to mRNA, which is the expression product of the gene.
  • mRNA which is the expression product of the gene.
  • Such oligonucleotides are typically oligonucleotides having a sequence complementary to a portion of the mRNA sequence of the gene.
  • complementary means that a nucleic acid can form a hydrogen bond with another nucleic acid sequence
  • a specific "sequence complementary to (a portion of) a sequence” refers to a nucleotide having that sequence. It means a sequence having complementarity to the extent that it can hybridize with in the intracellular environment. Thus, not all of the sequences need be complementary (ie perfectly complementary).
  • the antisense oligonucleotides of the present invention typically have a length of about 15-30 nucleotides.
  • modifications known in the art may be applied for purposes such as improving in vivo stability and expression-suppressing activity and reducing off-target effects.
  • the gene expression inhibitor is siRNA against a gene selected from the group consisting of GRIK2 and Claspin.
  • siRNA against a certain gene means a double-stranded structural RNA that can inhibit the expression of the gene, the double-stranded structural RNA has a sense region and an antisense region, The sense region is complementary to the sequence of the mRNA for a particular gene, and the sense region is complementary to the sequence of the antisense region.
  • Each sense region and antisense region of the siRNA of the present invention has a length of about 15-30 nucleotides, preferably about 19-27 nucleotides.
  • the sense region and the antisense region may form a double-stranded structure with two strands, the sense strand and the antisense strand, respectively.
  • the sense region and the antisense region may be linked to form one nucleotide chain, in which case the single-stranded RNA is folded into a hairpin to form a double-stranded sense region and an antisense region. to form a structure.
  • siRNA of the present invention can appropriately apply these known modifications and alterations for improving the function as siRNA.
  • the polynucleotides can be easily synthesized by methods known in the art, such as commercially available DNA synthesizers.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising the antisense oligonucleotide and/or the siRNA.
  • Other ingredients that can be contained in the pharmaceutical composition of this embodiment include, for example, pharmaceutically acceptable carriers, diluents, excipients, etc., and pharmaceutically acceptable carriers are particularly preferred.
  • Pharmaceutically acceptable carriers include, but are not limited to, liposomes, hydrophilic polymers, and the like.
  • the pharmaceutical composition containing the polynucleotide of this embodiment can be used as a preventive and/or therapeutic agent for cancer.
  • the present invention also relates to a method for preventing and/or treating cancer, comprising suppressing the expression of a gene selected from the group consisting of GRIK2 and Claspin.
  • the active ingredient to be administered is a gene expression inhibitor that suppresses the expression of a gene selected from the group consisting of GRIK2 and Claspin, preferably suppresses the expression of a gene selected from the group consisting of GRIK2 and Claspin. It can be carried out according to the method described in ⁇ 12> above, except that it is an antisense oligonucleotide or siRNA.
  • the above method is a method for preventing and/or treating cancer, comprising the step of administering an effective amount of a gene expression inhibitor selected from the group consisting of GRIK2 and Claspin to a subject in need thereof.
  • a gene expression inhibitor selected from the group consisting of GRIK2 and Claspin to a subject in need thereof.
  • the subject may be healthy or afflicted with any disease, but typically is afflicted with cancer or, where cancer prevention and/or treatment is contemplated, It means a subject who is at risk of being affected.
  • the subject has or is at risk of having a GRIK2- or Claspin-positive cancer.
  • one aspect of the preventive/therapeutic method of the present invention may further include a step of selecting a subject with GRIK2- or Claspin-positive cancer as a preventive/therapeutic target before the administering step.
  • a method for detecting GRIK2- or Claspin-positive cancer in the subject ⁇ 11> above can be used.
  • An effective amount in this aspect is, for example, an amount that reduces symptoms of cancer or delays or stops the progression thereof, preferably an amount that suppresses or cures cancer. Also, an amount that does not cause adverse effects that exceed the benefits of administration is preferred. Such an amount can be appropriately determined by in vitro tests using cultured cells or the like, or tests using model animals such as mice and rats, and such test methods are well known to those skilled in the art.
  • the specific dose of the active ingredient depends on various conditions related to the subject requiring it, such as severity of symptoms, general health condition of the subject, age, weight, sex of the subject, diet, timing and frequency of administration, It can be determined in consideration of concomitant drugs, responsiveness to treatment, dosage form, compliance to treatment, and the like.
  • Example 1 Isolation of Cells with High Aldehyde Dehydrogenase Activity from Bladder Cancer Cell Line UM-UC-3 Cancer stem cells are known to have high aldehyde dehydrogenase (ALDH) enzymatic activity. Therefore, cells with high aldehyde dehydrogenase enzymatic activity (ALDH high ) and cells with low aldehyde dehydrogenase enzymatic activity (ALDH low ) were separated by the ALDEFLUOR method based on aldehyde dehydrogenase enzymatic activity ( FIG. 1 ). The cell line used was the bladder cancer cell line UM-UC-3. 2007 Nov;1(5):555-67.
  • ALDEFLUOR method aldehyde dehydrogenase enzymatic activity
  • ALDH high cells are known to differentiate into ALDH low cells in in vitro culture, and are unsuitable for stable analysis. Single cell clones were generated from high cells. As a result, clone cells (H-1, H-6, H-10) established from ALDH high cells exhibited high ALDH enzymatic activity (Fig. 2), and clone cells (L- 1, L-3, L-8) showed low ALDH enzymatic activity (Fig. 3).
  • ALDH high clones H clones
  • ALDH low clones L clones
  • H-10 clones with high ALDH enzyme activity and high tumorigenicity in vivo were used as representative H clone cells, and L-10 cells with low ALDH enzyme activity and low tumorigenicity in vivo were used. 3 clones were used as representative L clone cells.
  • Example 2 Confirmation of carcinogenicity (sphere formation) of ALDH high clone (H clone)
  • H clone ALDH high clone
  • Sphere formation was confirmed as follows. 1.0 to 10 3 H clone cells (H-10), L clone cells (L-3) and wild type (WT) were seeded in a 96-well plate to confirm sphere formation. As a result, H-10 cells showed sphere formation in 7 out of 24 wells in the group in which 1 cell/well was seeded, whereas L-3 cells did not form spheres in 24 wells ( Figure 4).
  • the abundance rate of stem cells was calculated by calculation (ELDA method, https://pubmed.ncbi.nlm.nih.gov/19567251/).
  • ELDA method https://pubmed.ncbi.nlm.nih.gov/19567251/.
  • H-10 cells it was found that stem cells were present in 1 out of 7.56 cells.
  • the ratio of the wild type was 1 out of 49.07 cells and the ratio of L-3 cells was 1 out of 67.32 cells (Fig. 4). Therefore, it was confirmed that the ALDH high clone (H clone) has high carcinogenicity.
  • Example 3 Confirmation of carcinogenicity (tumorigenicity in immunodeficient mice) of ALDH high clones (H clones) Sphere formation is an in vitro tumorigenicity evaluation method. H-10 cells and L-3 cells were transplanted into deficient mice, and their tumorigenic potential was examined. Immunodeficient mice (nude mice) were implanted with 1000 H-10 clone cells and L-3 cells and tumor growth curves were drawn. As a result, the H-10 clone cells showed higher tumorigenicity than the L-3 cells, and no tumorigenesis was observed in the L-3 cells (Fig. 5).
  • Example 4 Confirmation of carcinogenicity (treatment resistance to anticancer drugs) of ALDH high clones (H clones) Cancer stem cells exhibit resistance to anticancer drugs. Therefore, sensitivity to cisplatin (CDDP), a key drug for bladder cancer, was examined. After H-10 cells and L-3 cells were cultured in the presence of CDDP adjusted to each concentration for 2 days, the cell viability was examined by the WST-8 method. As a result, H-10 cells showed resistance to CDDP compared to L-3 cells (Fig. 6).
  • CDDP cisplatin
  • Example 5 Confirmation of carcinogenicity (treatment resistance to radiotherapy) of ALDH high clones (H clones) Whether or not ALDH high clones (H clones) are cancer stem cells was confirmed as follows. Cancer stem cells are resistant to radiotherapy. Therefore, H-10 cells and L-3 cells were exposed to each dose of radiation and cultured for 2 days, and cell viability was examined by the WST-8 method. As a result, H-10 cells showed resistance to radiation compared with L-3 cells (Fig. 7).
  • H-10 cells show higher sphere formation (Example 2), higher tumorigenicity (Example 3), and anti-tumor activity than L-3 cells. It was suggested that cancer stem cells were enriched in H-10 cells because they exhibited cancer drug resistance (Example 4) and radiotherapy resistance (Example 5). For bladder cancer, no cancer stem cell model that can be stably cultured in vitro has been reported other than H-10 cells.
  • Example 6 Search for antigenic peptides expressed in bladder cancer stem cells
  • the HLA of UM-UC-3 cells is A*02:01/A*33:03, B*07:02/B*14:02, C*07:02/C*08:02 (Fig. 8 ). Since HLA-A*02:01 is a frequent HLA allele, we decided to focus on HLA-A*02:01. 10 9 H-10 cells, L-3 cells, and wild-type cells were each cultured to prepare a cell lysate.
  • the cell lysate was reacted with an anti-HLA-A*02:01 specific antibody, immunoprecipitated using protein-A Sepharose beads, and HLA-A*02:01 molecules were recovered.
  • the collected antigen peptides presented on the HLA-A*02:01 molecules were extracted with an acidic buffer, and the amino acid sequences were analyzed by mass spectrometry analysis.
  • a summary of the amino acid lengths of peptides analyzed from H-10 cells, L-3 cells, and wild type is shown in FIG. As shown in FIG. 8, peptides with a length of 9 amino acids were most abundant in both H-10 cells, L-3 cells and wild type.
  • Example 7 Sequence analysis of 9-amino acid long peptides Among peptides recovered from H-10 cells, L-3 cells, and wild-type strains, the amino acid sequences of 9-mer peptides were analyzed. As a result, it was found that the 2nd amino acid of the peptide was leucine (L), and the 9th C-terminal amino acid was valine (V) and leucine (L) (Fig. 9). This result matched the HLA-A2 subtype binding motif (https://pubmed.ncbi.nlm.nih.gov/8254189/), indicating that the HLA-A*02:01 binding peptide analysis was functional. shown.
  • a Venn diagram was constructed using antigenic peptides identified from H-10 cells, L-3 cells, and wild-type cells (Fig. 9). As a result, 123 peptides were found to be specifically extracted from H-10 cells. Of the 123 peptides, from the peptide-encoding gene expression information, 2 of the 123 antigen peptides (LMYDAVHVV (SEQ ID NO: 1) and SLLNQPKAV (SEQ ID NO: 2) specifically expressed in H-10 clone cells )) were determined to be suitable immunotherapeutic targets.
  • LYDAVHVV SEQ ID NO: 1
  • SLLNQPKAV SEQ ID NO: 2 of the 123 antigen peptides
  • Example 8 Antigenicity Test of GRIK2 Peptide
  • CTL cytotoxic T cell
  • GRIK2 peptide was added to peripheral blood mononuclear cells (PBMC) collected from HLA-A*02:01 positive donors in the presence of interleukin-2 (IL-2) and cultured.
  • PBMC peripheral blood mononuclear cells
  • IFN ⁇ interferon ⁇
  • Example 9 Generation of GRIK2 Peptide-Specific CTL Clones
  • PBMC were stained with PE-labeled HLA-A*02:01+GRIK2 peptide complex tetramer.
  • GRIK2 peptide tetramer-specific staining was observed in about 0.099% of the cells (Fig. 11), and the same cells were isolated and single cell clones were generated.
  • the obtained GRIK2 peptide-specific 9G23 clone showed high reactivity in the GRIK2 peptide-added group (right panel) by the IFN ⁇ ELISPOT method (FIG. 12).
  • the 9G23 clone was also reanalyzed using the GRIK2 tetramer. As a result, the 9G23 clone showed a high tetramer staining rate (Fig. 13), indicating that it was a GRIK2 peptide-specific CTL clone.
  • Example 10 Functional analysis of GRIK2 peptide-specific CTL clones
  • the GRIK2 gene was overexpressed in wild-type UM-UC-3 cells. rice field.
  • a retroviral vector (pMXs-puro) was used for overexpression.
  • the GRIK2 peptide-specific CTL clones showed high reactivity to the GRIK2 overexpressing strain (center graph in FIG. 14).
  • GRIK2 peptide-specific CTL clones showed high response to H-10 cells compared to L-3 cells and wild type.
  • Example 11 In Vitro Treatment Model Using GRIK2 Peptide-Specific CTL Clones
  • H-10 cells and L-3 cells were mixed at a ratio of 1:9.
  • a group treated with CTL clone 9G23 (CTL+) and a group not treated with CTL clone 9G23 (CTL-) were each cultured for 2 days. After 2 days, the percentage of ALDH high cells was 10.9% for CTL ⁇ and 1.16% for CTL+.
  • a schematic and results of the in vitro therapeutic model are shown in FIG. Therefore, it was shown that ALDH high cells (cancer stem cells) decreased in the group (CTL+) treated with CTL clone 9G23.
  • Example 12 Combined Effects of GRIK2 Peptide- Specific CTL Clones and Other Therapies
  • CDDP anticancer drug cisplatin
  • a group treated with CTL clone 9G23 (CTL+) and a group not treated with CTL clone 9G23 (CTL-) were cultured for 2 days in the presence of CDDP adjusted to each concentration, and cell viability was examined by the WST-8 method.
  • CTL+ CTL clone 9G23
  • CTL- non-acting group
  • CDDP anticancer drug cisplatin
  • Fig. 17 Immunotherapy using the CTL clone 9G23 of the present invention targets cancer stem cells, and anticancer agents and radiotherapy target non-cancer stem cells, and further effects were obtained by the combination of these.
  • Example 13 Generation of Claspin Peptide-Specific CTL Clones
  • Claspin peptide-specific CTL clones were generated. PBMCs were stained with PE-labeled HLA-A*02:01+Claspin peptide complex tetramer. As a result, a high percentage of Claspin peptide tetramer-specific staining was observed (not shown), and the same cells were isolated and single cell clones were generated. The resulting Claspin peptide-specific yc3 clones showed high reactivity in the Claspin peptide-added group (right panel) in the IFN ⁇ ELISPOT method (Fig. 12).
  • the yc3 clone was also reanalyzed using the Claspin tetramer. As a result, the yc3 clone showed a high tetramer staining rate (Fig. 13), indicating that it was a Claspin peptide-specific CTL clone.
  • the present invention by identifying GRIK2- and Claspin-derived natural peptides that are actually presented as antigens to bladder cancer stem cells, CTLs induced by peptide vaccines can reliably kill cancer cells, and highly effective cancer vaccines can be developed. It contributes to development.
  • the identified bladder cancer stem cell-specific natural peptides it was possible to identify that GRIK2 and Claspin are specifically expressed in cancer stem cells, so GRIK2 and Claspin are used as markers to identify bladder cancer stem cells. becomes possible.
  • the natural antigen peptide derived from the same gene is useful as a preventive and/or therapeutic agent for cancer, which is highly effective even in a small amount.
  • the present invention also provides GRIK2-derived tumor antigen peptides and the like having CTL-inducing activity.
  • the peptide of the present invention is useful as a prophylactic and/or therapeutic agent for treatment-resistant bladder cancer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The purpose of the present invention is to provide, inter alia: a detection agent for specifically detecting bladder cancer stem cells; a tumor antigen peptide that is specifically presented by bladder cancer stem cells; a drug composition that contains the aforementioned tumor antigen peptide as an active ingredient, and that is useful for preventing and/or treating treatment-resistant bladder cancer; and a method for screening such a tumor antigen peptide. Provided is a tumor antigen peptide, or a motif substitution product thereof, that has HLA connectivity and that is formed from 8-14 consecutive amino acids in the amino acid sequence of a protein coded by a gene selected from the group consisting of GRIK2 and Claspin.

Description

ヒト膀胱がん幹細胞に発現する抗原ペプチドAntigenic peptides expressed in human bladder cancer stem cells

 本発明は、膀胱がん幹細胞に特異的に発現する遺伝子を利用した治療抵抗性膀胱がん幹細胞を検出するための検出剤、治療抵抗性膀胱がんの予防および/または治療剤として有用な、該遺伝子由来の腫瘍抗原ペプチドおよびそれらの利用に関する。 The present invention is useful as a detection agent for detecting treatment-resistant bladder cancer stem cells using a gene specifically expressed in bladder cancer stem cells, and as an agent for the prevention and/or treatment of treatment-resistant bladder cancer, The present invention relates to tumor antigen peptides derived from said gene and uses thereof.

 膀胱がん治療においては、化学療法や放射線療法といった補助療法が重要な役割を担っている。しかしながら、化学療法や放射線療法の治療効果は限定的であり、多くの症例では治療後再発を来す。これは、治療抵抗性がん幹細胞が存在するからであり、膀胱がん幹細胞に対する有効な治療法が求められていた。 Adjuvant therapies such as chemotherapy and radiotherapy play an important role in bladder cancer treatment. However, the therapeutic effects of chemotherapy and radiotherapy are limited, and recurrence occurs after treatment in many cases. This is because treatment-resistant cancer stem cells exist, and an effective therapeutic method for bladder cancer stem cells has been sought.

 免疫チェックポイント阻害剤(ICI)が膀胱がんでも承認され、膀胱がんの第4の治療法として期待されている。免疫療法のエフェクター細胞は細胞障害性T細胞(CTL)であり、免疫療法を成功させるにはCTLが認識する抗原ペプチドが存在することが必須となる。しかしながら、膀胱がん幹細胞に発現しCTLが認識出来る抗原ペプチドはまだ報告されていない。 An immune checkpoint inhibitor (ICI) has also been approved for bladder cancer, and is expected to be the fourth treatment for bladder cancer. Effector cells for immunotherapy are cytotoxic T cells (CTL), and the presence of antigenic peptides recognized by CTL is essential for successful immunotherapy. However, an antigenic peptide that can be expressed in bladder cancer stem cells and recognized by CTL has not yet been reported.

 特許文献1では、Or7c1およびDnajb8遺伝子によってコードされるタンパク質に由来する、細胞傷害性T細胞誘導活性を有する、腫瘍抗原ペプチドについて記載されている。
 特許文献2では、ASB4タンパク質に由来する、細胞傷害性T細胞誘導活性を有する、がん幹細胞特異的に提示される腫瘍抗原ペプチドについて記載されている。
 特許文献3では、PVT1、SUV39H2、ZNF724P、SNRNP40およびDYRK4タンパク質に由来する、HLA-A24との高い結合性を示す、腫瘍抗原ペプチドについて開示されている。
 しかしながら、引用文献1~3においては、膀胱がん幹細胞に発現しCTLが認識できる腫瘍抗原ペプチドについては教示されていない。
Patent Document 1 describes a tumor antigen peptide having cytotoxic T cell inducing activity derived from proteins encoded by Or7c1 and Dnajb8 genes.
Patent Document 2 describes a tumor antigen peptide that is derived from the ASB4 protein and has cytotoxic T cell-inducing activity and that is presented specifically to cancer stem cells.
Patent Document 3 discloses tumor antigen peptides derived from PVT1, SUV39H2, ZNF724P, SNRNP40 and DYRK4 proteins and exhibiting high binding to HLA-A24.
However, References 1 to 3 do not teach tumor antigen peptides that are expressed in bladder cancer stem cells and can be recognized by CTL.

国際公開第2010/050190号WO2010/050190 国際公開第2016/093243号WO2016/093243 国際公開第2017/115798号WO2017/115798

 本発明の目的は、膀胱がん幹細胞を特異的に検出するための検出剤、膀胱がん幹細胞に特異的に提示される腫瘍抗原ペプチド、これを有効成分として含有する治療抵抗性膀胱がんの予防および/または治療に有用な医薬組成物、およびかかる腫瘍抗原ペプチドをスクリーニングする方法等を提供することにある。 An object of the present invention is to provide a detection agent for specifically detecting bladder cancer stem cells, a tumor antigen peptide specifically presented to bladder cancer stem cells, and treatment-resistant bladder cancer containing this as an active ingredient. It is an object of the present invention to provide pharmaceutical compositions useful for prevention and/or treatment, methods for screening such tumor antigen peptides, and the like.

 上記課題を解決するために、本発明者らは、鋭意研究を続け、ヒト膀胱がん細胞株UM-UC-3から、アルデヒドデヒドロゲナーゼ活性が高い細胞(ALDHhigh)細胞を分離し、ALDHhigh細胞から複数のクローン細胞を作製したところ、驚くべきことに、ALDHhighクローン細胞は、in vitroでの1カ月以上の培養を経てもなお高い癌幹細胞含有率を示することを見出した。 In order to solve the above problems, the present inventors continued intensive research, isolated cells with high aldehyde dehydrogenase activity (ALDH high ) from human bladder cancer cell line UM-UC-3, and isolated ALDH high cells. Surprisingly, it was found that the ALDH high clone cells exhibited a high content of cancer stem cells even after being cultured in vitro for one month or longer.

 そして、さらに研究を続ける中で、本発明者らは、ALDHlowクローン細胞を非がん幹細胞モデルとしての比較対象群とし、HLAリガンドーム解析を行い、そして、ALDHhighクローン細胞およびALDHlowクローン細胞の遺伝子発現解析をCAGE法にて行ったところ、ALDHhighクローン細胞には GRIK2およびClaspin遺伝子の発現が高いと同時に、GRIK2およびClaspinタンパク質によってコードされる抗原ペプチドが発現していることを見出し、本発明を完成するに至った。 In further research, the present inventors used ALDH low clone cells as a comparison group as a non-cancer stem cell model, performed HLA ligandome analysis, and analyzed ALDH high clone cells and ALDH low clone cells. When gene expression analysis was performed by the CAGE method, it was found that ALDH high clone cells highly expressed the GRIK2 and Claspin genes and at the same time expressed antigen peptides encoded by the GRIK2 and Claspin proteins. was completed.

 すなわち、本発明は、下記に掲げるものに関する:
[1]GRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質のアミノ酸配列中の連続する8~14アミノ酸からなり、HLA結合性を有する、腫瘍抗原ペプチドまたはそのモチーフ置換体。
[2]HLAが、HLA-A02である、[1]の腫瘍抗原ペプチドまたはそのモチーフ置換体。
[3]N末端から2番目のアミノ酸がロイシン、イソロイシンもしくはメチオニンであり、および/または、C末端のアミノ酸がバリン、ロイシンもしくはイソロイシンであるか、または該ペプチドにおいて、N末端から2番目のアミノ酸がロイシン、イソロイシンもしくはメチオニンに置換されており、および/または、C末端のアミノ酸がバリン、ロイシンもしくはイソロイシンに置換されているペプチドである、[1]または[2]の腫瘍抗原ペプチド。
That is, the present invention relates to:
[1] A tumor antigen peptide or a motif substitute thereof, which consists of 8 to 14 consecutive amino acids in the amino acid sequence of a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin and has HLA binding properties.
[2] The tumor antigen peptide of [1], wherein the HLA is HLA-A02, or a motif-substituted product thereof.
[3] The second amino acid from the N-terminus is leucine, isoleucine or methionine, and/or the C-terminal amino acid is valine, leucine or isoleucine, or in the peptide, the second amino acid from the N-terminus is The tumor antigen peptide of [1] or [2], wherein the peptide is substituted with leucine, isoleucine or methionine and/or the C-terminal amino acid is substituted with valine, leucine or isoleucine.

[4]配列番号1または配列番号2で表される、[1]~[3]の腫瘍抗原ペプチド。
[5]複数のエピトープペプチドが連結されたポリエピトープペプチドであって、該エピトープペプチドとして、[1]~[4]の腫瘍抗原ペプチドを少なくとも1つ含む、前記ポリエピトープペプチド。
[6][1]~[4]の腫瘍抗原ペプチドまたは[5]のポリエピトープペプチドの少なくとも1つをコードするポリヌクレオチド。
[4] The tumor antigen peptide of [1] to [3] represented by SEQ ID NO:1 or SEQ ID NO:2.
[5] A polyepitope peptide in which a plurality of epitope peptides are linked, the polyepitope peptide comprising at least one tumor antigen peptide of [1] to [4] as the epitope peptide.
[6] A polynucleotide encoding at least one of the tumor antigen peptides of [1] to [4] or the polyepitope peptide of [5].

[7][6]のポリヌクレオチドを含む、発現ベクター。
[8][7]の発現ベクターを含む、遺伝子導入用組成物。
[9](A)[1]~[4]の腫瘍抗原ペプチドもしくは[5]のポリエピトープペプチド、または、
 (B)前記(A)のペプチドおよび/もしくはポリエピトープペプチドの少なくとも1つをコードするポリヌクレオチドと、抗原提示能を有する細胞とを、in vitroで接触させることを含む、抗原提示細胞の製造方法。
[7] An expression vector comprising the polynucleotide of [6].
[8] A composition for gene introduction, comprising the expression vector of [7].
[9] (A) the tumor antigen peptide of [1] to [4] or the polyepitope peptide of [5], or
(B) A method for producing an antigen-presenting cell, comprising contacting, in vitro, a polynucleotide encoding at least one of the peptide and/or polyepitope peptide of (A) with a cell capable of presenting an antigen. .

[10]以下の(a)~(e):
 (a)[1]~[4]の抗原ペプチドまたは[5]のポリエピトープペプチド、
 (b)[6]のポリヌクレオチド、
 (c)[7]の発現ベクター、
 (d)GRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質、該タンパク質または配列番号1もしくは2で表される抗原ペプチドを含む該タンパク質の部分ペプチドをコードするポリヌクレオチドまたは該ポリヌクレオチドを含む発現ベクター、
 (e)[1]~[4]の抗原ペプチドを抗原として提示する抗原提示細胞
のいずれかを有効成分として含有する、細胞傷害性T細胞の誘導剤。
[10] The following (a) to (e):
(a) the antigenic peptide of [1] to [4] or the polyepitope peptide of [5],
(b) the polynucleotide of [6];
(c) the expression vector of [7],
(d) a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin, a polynucleotide encoding the protein, or a partial peptide of the protein including the antigen peptide represented by SEQ ID NO: 1 or 2, or the polynucleotide an expression vector comprising
(e) A cytotoxic T cell inducer containing, as an active ingredient, any one of antigen-presenting cells that present the antigenic peptides of [1] to [4] as antigens.

[11](A)[1]~[4]の腫瘍抗原ペプチドもしくは[5]のポリエピトープペプチド、
 (B)前記(A)のペプチドおよび/もしくはポリエピトープペプチドの少なくとも1つをコードするポリヌクレオチド、または、
 (C)[1]~[4]の抗原ペプチドを抗原として提示する抗原提示細胞と、末梢血リンパ球とを、in vitroで接触させることを含む、細胞障害性T細胞の誘導方法。
[11] (A) the tumor antigen peptide of [1] to [4] or the polyepitope peptide of [5],
(B) a polynucleotide encoding at least one of the peptides and/or polyepitopic peptides of (A); or
(C) A method for inducing cytotoxic T cells, which comprises contacting peripheral blood lymphocytes in vitro with antigen-presenting cells that present the antigenic peptides of [1] to [4] as antigens.

[12]以下の(a)~(e):
 (a)[1]~[4]の抗原ペプチドまたは[5]のポリエピトープペプチド、
 (b)[6]のポリヌクレオチド、
 (c)[7]の発現ベクター、
 (d)GRIK2およびClaspinからなる群から選択されるタンパク質、該タンパク質または配列番号1もしくは2で表される抗原ペプチドを含む該タンパク質の部分ペプチドをコードするポリヌクレオチドまたは該ポリヌクレオチドを含む発現ベクター、
 (e)[1]~[4]の抗原ペプチドを抗原として提示する抗原提示細胞を特異的に傷害する細胞傷害性T細胞
のいずれかを有効成分として含む、医薬組成物。
[12] The following (a) to (e):
(a) the antigenic peptide of [1] to [4] or the polyepitope peptide of [5],
(b) the polynucleotide of [6];
(c) the expression vector of [7],
(d) a protein selected from the group consisting of GRIK2 and Claspin, a polynucleotide encoding the protein or a partial peptide of the protein including the antigen peptide represented by SEQ ID NO: 1 or 2, or an expression vector comprising the polynucleotide;
(e) A pharmaceutical composition comprising, as an active ingredient, any one of cytotoxic T cells that specifically kill antigen-presenting cells that present the antigenic peptides of [1] to [4] as antigens.

[13][1]~[4]の抗原ペプチド、および/または[5]のポリエピトープペプチドを有効成分として含む、[12]の医薬組成物。
[14]アジュバントをさらに含む、[12]または[13]の医薬組成物。
[15]治療抵抗性膀胱がんの予防および/または治療剤である、[12]~[14]の医薬組成物。
[16]治療抵抗性膀胱がんの予防および/または治療用ワクチンである、[12]~[15]の医薬組成物。
[13] The pharmaceutical composition of [12], comprising the antigen peptide of [1] to [4] and/or the polyepitope peptide of [5] as an active ingredient.
[14] The pharmaceutical composition of [12] or [13], further comprising an adjuvant.
[15] The pharmaceutical composition of [12]-[14], which is a prophylactic and/or therapeutic agent for treatment-resistant bladder cancer.
[16] The pharmaceutical composition of [12] to [15], which is a preventive and/or therapeutic vaccine for treatment-resistant bladder cancer.

[17]免疫チェックポイント阻害剤とともに用いられる、[12]~[16]の医薬組成物。
[18][1]~[4]の抗原ペプチドとHLAとを含む、HLAマルチマー。
[19][18]のHLAマルチマーを含む、診断薬。
[20][1]~[4]の抗原ペプチドとHLAとの複合体を認識する、T細胞受容体様抗体。
[21][20]のT細胞受容体様抗体を含有する腫瘍検出剤。
[17] The pharmaceutical composition of [12]-[16], which is used together with an immune checkpoint inhibitor.
[18] An HLA multimer comprising the antigenic peptides of [1] to [4] and HLA.
[19] A diagnostic agent comprising the HLA multimer of [18].
[20] A T-cell receptor-like antibody that recognizes a complex of the antigen peptide of [1] to [4] and HLA.
[21] A tumor-detecting agent containing the T-cell receptor-like antibody of [20].

[22][1]~[4]の抗原ペプチドとHLAとの複合体を認識する、キメラ抗原受容体。
[23][1]~[4]の抗原ペプチドとHLAとの複合体を認識するT細胞受容体を含む、人工CTL。
[24][1]~[4]の抗原ペプチドとHLAとの複合体と、リンパ球表面抗原とを特異的に認識する、二重特異性抗体。
[25]GRIK2およびClaspinからなる群から選択される遺伝子の発現産物を検出するための検出剤を含む、腫瘍細胞検出剤。
[22] A chimeric antigen receptor that recognizes a complex of the antigen peptides of [1] to [4] and HLA.
[23] An artificial CTL comprising a T-cell receptor that recognizes the complex of the antigenic peptide of [1]-[4] and HLA.
[24] A bispecific antibody that specifically recognizes a complex of the antigen peptide of [1] to [4] and HLA and a lymphocyte surface antigen.
[25] A tumor cell detection agent comprising a detection agent for detecting an expression product of a gene selected from the group consisting of GRIK2 and Claspin.

[26]膀胱の生体試料に由来する細胞を含む細胞集団において腫瘍細胞を検出するための、[25]の腫瘍細胞検出剤。
[27]遺伝子の発現産物が、mRNAおよび/または内在性ポリペプチドである、[25]または[26]の腫瘍細胞検出剤。
[28]遺伝子の発現産物がmRNAであり、前記遺伝子に相補的な塩基配列を有するプローブおよび/またはプライマーを含む、[25]~[27]の腫瘍細胞検出剤。
[29]遺伝子の発現産物が内在性ポリペプチドであり、該内在性ポリペプチドと特異的に反応する検出物質を含む、[25]~[28]の腫瘍細胞検出剤。
[26] The tumor cell-detecting agent of [25], for detecting tumor cells in a cell population containing cells derived from a bladder biological sample.
[27] The agent for detecting tumor cells of [25] or [26], wherein the gene expression product is mRNA and/or an endogenous polypeptide.
[28] The agent for detecting tumor cells of [25] to [27], wherein the expression product of the gene is mRNA and contains a probe and/or primer having a nucleotide sequence complementary to the gene.
[29] The agent for detecting tumor cells of [25] to [28], wherein the expression product of the gene is an endogenous polypeptide, and a detection substance that specifically reacts with the endogenous polypeptide is included.

[30]検出物質が、抗体である、[29]の腫瘍細胞検出剤。
[31][12]~[17]の医薬組成物を用いたがんの処置方法が有効な治療対象患者を選択するための診断薬であって、[18]のHLAマルチマー、[20]のT細胞受容体様抗体および/または[25]~[30]の腫瘍細胞検出剤を含む、前記診断薬。
[32]GRIK2およびClaspinからなる群から選択される遺伝子に対するアンチセンスオリゴヌクレオチド。
[33]GRIK2およびClaspinからなる群から選択される遺伝子に対して相補的なアンチセンス領域および該アンチセンス領域に少なくとも部分的に相補的なセンス領域を含む、siRNA。
[30] The tumor cell detection agent of [29], wherein the detection substance is an antibody.
[31] A diagnostic agent for selecting a patient to be treated for whom a cancer treatment method using the pharmaceutical composition of [12] to [17] is effective, comprising the HLA multimer of [18], Said diagnostic agent comprising a T-cell receptor-like antibody and/or a tumor cell detection agent of [25]-[30].
[32] An antisense oligonucleotide against a gene selected from the group consisting of GRIK2 and Claspin.
[33] An siRNA comprising an antisense region complementary to a gene selected from the group consisting of GRIK2 and Claspin and a sense region at least partially complementary to the antisense region.

[34][32]のアンチセンスオリゴヌクレオチドおよび/または[33]のsiRNA、ならびに薬学的に許容可能な担体を含む、医薬組成物。
[35]治療抵抗性膀胱がんの予防および/または治療剤である、[34]の医薬組成物。
[36]アルデヒドデヒドロゲナーゼ酵素活性が高い細胞(ALDHhigh)を含むヒト膀胱がん細胞株UM-UC-3の細胞集団から樹立されたクローン細胞。
[37]アルデヒドデヒドロゲナーゼ酵素活性が低い細胞(ALDHlow)を含むヒト膀胱がん細胞株UM-UC-3の細胞集団から樹立されたクローン細胞。
[38]ヒト膀胱がん細胞株UM-UC-3の細胞集団が、ALDEFLUOR法にて分離されている、[36]または[37]のクローン細胞。
[39]CD3ζ鎖をさらに含む、[22]のキメラ抗原受容体。
[40]共刺激分子をさらに含む、[39]のキメラ抗原受容体。
[41][22]、[39]、および[40]のいずれかのキメラ抗原受容体が導入されている、遺伝子改変T細胞。
[42][1]~[4]のペプチドとHLAとの複合体を細胞表面に提示する樹状細胞。
[43]膀胱がんの予後の予測のために使用される、[25]~[30]の腫瘍細胞検出剤。
[34] A pharmaceutical composition comprising the antisense oligonucleotide of [32] and/or the siRNA of [33], and a pharmaceutically acceptable carrier.
[35] The pharmaceutical composition of [34], which is a prophylactic and/or therapeutic agent for treatment-resistant bladder cancer.
[36] A clone cell established from a cell population of human bladder cancer cell line UM-UC-3 containing cells with high aldehyde dehydrogenase enzyme activity (ALDH high ).
[37] A clone cell established from a cell population of human bladder cancer cell line UM-UC-3 containing cells with low aldehyde dehydrogenase enzyme activity (ALDH low ).
[38] The clone cell of [36] or [37], wherein the cell population of human bladder cancer cell line UM-UC-3 is separated by the ALDEFLUOR method.
[39] The chimeric antigen receptor of [22], further comprising a CD3ζ chain.
[40] The chimeric antigen receptor of [39], further comprising a co-stimulatory molecule.
[41] A genetically modified T cell into which the chimeric antigen receptor of any of [22], [39], and [40] has been introduced.
[42] A dendritic cell that presents a complex of the peptides of [1] to [4] and HLA on the cell surface.
[43] The agent for detecting tumor cells of [25]-[30], which is used for predicting the prognosis of bladder cancer.

 本発明により、膀胱がん幹細胞を特異的に攻撃するCTLの誘導剤として有用な腫瘍抗原ペプチド、および、これを有効成分として含有する治療抵抗性膀胱がんの予防および/または治療に有用な医薬組成物等が提供される。 According to the present invention, a tumor antigen peptide useful as an inducer of CTLs that specifically attack bladder cancer stem cells, and a medicament containing the same as an active ingredient useful for the prevention and/or treatment of treatment-resistant bladder cancer Compositions and the like are provided.

図1は、アルデヒドデヒドロゲナーゼ酵素活性に基づくALDEFLUOR法にて、ヒト膀胱がん細胞株UM-UC-3について、アルデヒドデヒドロゲナーゼ酵素活性が高い細胞(ALDHhigh)およびアルデヒドデヒドロゲナーゼ酵素活性が低い細胞(ALDHlow)を分離した結果を示す。Figure 1 shows cells with high aldehyde dehydrogenase enzymatic activity (ALDH high ) and cells with low aldehyde dehydrogenase enzymatic activity (ALDH low ) for human bladder cancer cell line UM-UC-3 by the ALDEFLUOR method based on aldehyde dehydrogenase enzymatic activity. ) are separated. 図2は、ALDHhigh細胞から樹立されたクローン細胞が、実際に高いALDH酵素活性を示したことを示す。DEAB(+)群は陰性コントロールである。DEAB(-)群にて、ALDHhigh細胞は、x軸方向に高い輝度を示す。FIG. 2 shows that clonal cells established from ALDH high cells indeed exhibited high ALDH enzymatic activity. The DEAB(+) group is a negative control. In the DEAB(-) group, ALDH high cells exhibit high brightness in the x-axis direction. 図3は、ALDHlow細胞から樹立されたクローン細胞は、実際に低いALDH酵素活性を示したことを示す。FIG. 3 shows that clonal cells established from ALDH low cells indeed exhibited low ALDH enzymatic activity.

図4は、Hクローン細胞(H-10)、Lクローン細胞(L-3)および野生株UM-UC-3(WT)のスフェア形成率(左側)、ならびに、予測されるがん幹細胞の存在率(右側)を示す。Figure 4 shows the sphere formation rate (left side) of H clone cells (H-10), L clone cells (L-3) and wild type UM-UC-3 (WT), and the predicted presence of cancer stem cells rate (right). 図5は、Hクローン細胞(H-10)およびLクローン細胞(L-3)のin vivoにおける腫瘍増殖曲線を示す。縦軸は、腫瘍体積(mm)を示し、横軸は、腫瘍細胞移植後の日数(週)を示す。FIG. 5 shows in vivo tumor growth curves of H clone cells (H-10) and L clone cells (L-3). The vertical axis indicates tumor volume (mm 3 ), and the horizontal axis indicates days (weeks) after tumor cell implantation. 図6は、シスプラチン(CDDP)に対するHクローン細胞(H-10)およびLクローン細胞(L-3)の感受性を示す。縦軸は、細胞生存率を示し、横軸は、シスプラチンの濃度を示す。FIG. 6 shows the sensitivity of H clone cells (H-10) and L clone cells (L-3) to cisplatin (CDDP). The vertical axis indicates cell viability, and the horizontal axis indicates the concentration of cisplatin. 図7は、放射線療法に対するHクローン細胞(H-10)およびLクローン細胞(L-3)の抵抗性を示す。縦軸は、細胞生存率を示し、横軸は、吸収線量(Gy)を示す。FIG. 7 shows the resistance of H clone cells (H-10) and L clone cells (L-3) to radiotherapy. The vertical axis indicates cell viability, and the horizontal axis indicates absorbed dose (Gy).

図8の左図は、ヒト膀胱がん細胞株UM-UC-3のHLAの模式図である。図8の中央図は、各細胞溶解液に抗HLA-A*02:01特異的抗体を反応させ、protein-A Sepharoseビーズを用いて免疫沈降し、HLA-A*02:01分子を回収した手順の模式図である。図8の右図は、マススペクトロメトリー解析にてアミノ酸配列を解析した結果を示し、H-10細胞、L-3細胞、野生株から解析されたペプチドのアミノ酸長(横軸)およびペプチド数(縦軸)を示す。The left diagram of FIG. 8 is a schematic diagram of HLA of human bladder cancer cell line UM-UC-3. The central figure in FIG. 8 shows that each cell lysate was reacted with an anti-HLA-A*02:01-specific antibody, immunoprecipitated using protein-A Sepharose beads, and HLA-A*02:01 molecules were collected. It is a schematic diagram of a procedure. The right figure in FIG. 8 shows the results of amino acid sequence analysis by mass spectrometry analysis, and the amino acid length (horizontal axis) and the number of peptides (horizontal axis) of peptides analyzed from H-10 cells, L-3 cells, and wild type strains. vertical axis). 図9は、H-10細胞、L-3細胞、野生株から回収されたペプチドのうち、9-merペプチドのアミノ酸配列の解析手順を示す。H-10細胞に特異的な123個のペプチドのうち、ペプチドをコードする遺伝子発現情報から、GRIK2遺伝子産物にコードされる抗原ペプチドLMYDAVHVV(配列番号1)およびClaspin遺伝子産物にコードされる抗原ペプチドSLLNQPKAV(配列番号2)を選択した。FIG. 9 shows the procedure for analyzing the amino acid sequences of 9-mer peptides among the peptides recovered from H-10 cells, L-3 cells, and wild type. Among the 123 peptides specific to H-10 cells, the antigen peptide LMYDAVHVV (SEQ ID NO: 1) encoded by the GRIK2 gene product and the antigen peptide SLLNQPKAV encoded by the Claspin gene product were identified from the peptide-encoding gene expression information. (SEQ ID NO: 2) was selected.

図10は、GRIK2ペプチドによる、末梢血単核球を用いた細胞傷害性T細胞(CTL)誘導実験の結果を示す。標的細胞はT2A24細胞を使用した。左側のグラフは、GRIK2ペプチド(-)の陰性コントロールであり、右側のグラフは、T2A24細胞にGRIK2ペプチドを展開した群を示す。グラフのY軸は、IFNγスポット数を示す。FIG. 10 shows the results of GRIK2 peptide-induced cytotoxic T cell (CTL) induction experiments using peripheral blood mononuclear cells. T2A24 cells were used as target cells. The graph on the left is the GRIK2 peptide (-) negative control, and the graph on the right shows the group in which the GRIK2 peptide was developed in T2A24 cells. The Y-axis of the graph indicates the number of IFNγ spots. 図11は、GRIK2ペプチドテトラマー特異的染色の結果を示す。FIG. 11 shows the results of GRIK2 peptide tetramer-specific staining. 図12は、得られたGRIK2ペプチド特異的9G23クローンのIFNγ ELISPOT法の結果を示す。左側のグラフは、GRIK2ペプチド(-)の陰性コントロールであり、右側のグラフは、T2A24細胞にGRIK2ペプチドを展開した群を示す。グラフのY軸は、IFNγスポット数を示す。Figure 12 shows the results of the IFNγ ELISPOT method of the obtained GRIK2 peptide-specific 9G23 clone. The graph on the left is the GRIK2 peptide (-) negative control, and the graph on the right shows the group in which the GRIK2 peptide was developed in T2A24 cells. The Y-axis of the graph indicates the number of IFNγ spots.

図13は、9G23クローンをGRIK2テトラマーを用いて再解析した特異的染色の結果を示す。FIG. 13 shows the results of specific staining of the 9G23 clone reanalyzed with GRIK2 tetramer. 図14は、GRIK2ペプチド特異的CTLクローンとGRIK2過剰発現株との反応性を示す。左側および右側のグラフは、それぞれGRIK2ペプチドを発現しない細胞を使用する陰性コントロールであり、中央のグラフは、GRIK2ペプチドを過剰発現する細胞を使用した群を示す。グラフのY軸は、IFNγスポット数を示す。FIG. 14 shows reactivity between GRIK2 peptide-specific CTL clones and GRIK2 overexpressing strains. The left and right graphs are negative controls using cells that do not express the GRIK2 peptide, respectively, and the middle graph shows the group using cells that overexpress the GRIK2 peptide. The Y-axis of the graph indicates the number of IFNγ spots. 図15は、GRIK2ペプチド特異的CTLクローンとH-10細胞との反応性を示す。右端から3つのグラフは、それぞれGRIK2ペプチドを発現しない細胞を使用する陰性コントロールであり、左端のグラフは、GRIK2ペプチドを発現するH-10細胞を使用した群を示す。グラフのY軸は、IFNγスポット数を示す。FIG. 15 shows the reactivity of GRIK2 peptide-specific CTL clones with H-10 cells. The three graphs from the far right are negative controls using cells that do not express the GRIK2 peptide, and the leftmost graph shows the group using H-10 cells that express the GRIK2 peptide. The Y-axis of the graph indicates the number of IFNγ spots. 図16は、GRIK2ペプチド特異的CTLクローンを用いるインビトロ治療モデルの概略および結果を示す。Figure 16 shows a schematic and results of an in vitro therapeutic model using GRIK2 peptide-specific CTL clones. 図17は、GRIK2ペプチド特異的CTLクローンと抗がん剤シスプラチン(CDDP)または放射線照射との併用効果を示す。左側のグラフの縦軸は、細胞生存率を示し、横軸は、シスプラチンの濃度を示す。右側のグラフの縦軸は、細胞生存率を示し、横軸は、吸収線量(Gy)を示す。FIG. 17 shows the effect of combining GRIK2 peptide-specific CTL clones with the anticancer drug cisplatin (CDDP) or irradiation. The vertical axis of the graph on the left indicates cell viability, and the horizontal axis indicates the concentration of cisplatin. The vertical axis of the graph on the right indicates cell viability, and the horizontal axis indicates absorbed dose (Gy). 図18は、得られたClaspinペプチド特異的cy3クローンのIFNγ ELISPOT法の結果を示す。左側は、Claspinペプチド(-)の陰性コントロールであり、右側は、T2A24細胞にClaspinペプチドを展開した群を示す。FIG. 18 shows the results of the IFNγ ELISPOT method for the obtained Claspin peptide-specific cy3 clones. The left side is the negative control of Claspin peptide (-), and the right side shows the group in which T2A24 cells were expanded with Claspin peptide. 図19は、cy3クローンをClaspinテトラマーを用いて再解析した特異的染色の結果を示す。FIG. 19 shows the results of specific staining of cy3 clones reanalyzed using Claspin tetramers.

 以下、本発明について詳細に説明する。
 本発明において「エピトープペプチド」とは、MHC(ヒトにおいてはHLA)と結合して、細胞表面に抗原提示され、かつ抗原性を有する(T細胞に認識され得る)ペプチドを意味する。エピトープペプチドには、MHCクラスIと結合して抗原提示され、CD8陽性T細胞に認識されるエピトープペプチドであるCTLエピトープペプチド、およびMHCクラスIIと結合して抗原提示され、CD4陽性T細胞に認識されるエピトープペプチドであるヘルパーエピトープペプチドが含まれる。
The present invention will be described in detail below.
In the present invention, "epitope peptide" means a peptide that binds to MHC (HLA in humans), is presented as an antigen on the cell surface, and has antigenicity (that can be recognized by T cells). The epitope peptide includes the CTL epitope peptide, which is an epitope peptide that binds to MHC class I and is antigen-presented and is recognized by CD8-positive T cells, and the CTL epitope peptide, which is an epitope peptide that binds to MHC class II and is antigen-presented and is recognized by CD4-positive T cells. Included are helper epitope peptides, which are epitope peptides that are

 エピトープペプチドのうち、腫瘍細胞において特異的にあるいは過剰に発現しているタンパク質由来のペプチドを、特に腫瘍抗原ペプチドという。抗原提示とは、細胞内に存在するペプチドがMHCと結合し、このMHC/抗原ペプチド複合体が細胞表面に局在化する現象をいう。上述のとおり、細胞表面に提示された抗原はT細胞などにより認識された後、細胞性免疫や液性免疫を活性化することが知られており、MHCクラスIに提示された抗原は、細胞性免疫を活性化するとともに、ナイーブT細胞のT細胞受容体に認識され、ナイーブT細胞を、細胞傷害活性を有するCTLへと誘導するため、免疫療法に用いられる腫瘍抗原ペプチドとしては、MHCクラスIと結合し、抗原提示されるペプチドが好ましい。 Among epitope peptides, peptides derived from proteins that are specifically or excessively expressed in tumor cells are particularly referred to as tumor antigen peptides. Antigen presentation refers to a phenomenon in which intracellular peptides bind to MHC and this MHC/antigen peptide complex is localized on the cell surface. As described above, antigens presented on the cell surface are known to activate cell-mediated immunity and humoral immunity after being recognized by T cells, etc. Tumor antigen peptides of the MHC class are used for immunotherapy because they activate sexual immunity, are recognized by T-cell receptors of naive T-cells, and induce naive T-cells into CTLs having cytotoxic activity. Peptides that bind I and are antigen-presented are preferred.

 MHCと結合するペプチドの多くは、一定の特徴を有していることが知られている。本発明においては、この特徴を「結合モチーフ」という。いかなるMHCがいかなる結合モチーフを有するペプチドと結合するかは、当該技術分野において知られている。例えば、ヒトMHCの一種であるHLA-A02の結合モチーフは、N末端から2番目のアミノ酸がロイシン、イソロイシンもしくはメチオニンであり、かつC末端のアミノ酸がバリン、ロイシンもしくはイソロイシンである。 Many of the peptides that bind to MHC are known to have certain characteristics. In the context of the present invention, this feature is referred to as a "binding motif". It is known in the art what MHC binds to peptides with what binding motifs. For example, the binding motif of HLA-A02, one of human MHC, has leucine, isoleucine or methionine as the second amino acid from the N-terminus, and valine, leucine or isoleucine as the C-terminal amino acid.

 本明細書において「モチーフ置換体」とは、ある結合モチーフを有するペプチドにおいて、当該結合モチーフを別の結合モチーフに置換したものをいう。当業者であれば、本発明においてモチーフ置換体も置換前のペプチドと同等の効果を奏することを当然に理解するものである。 As used herein, the term "motif substitution" refers to a peptide having a binding motif in which the binding motif is substituted with another binding motif. A person skilled in the art will naturally understand that in the present invention, the motif-substituted product also exhibits the same effect as the peptide before substitution.

 本発明において、「腫瘍(tumor)」は、良性腫瘍および悪性腫瘍(がん、悪性新生物)を含む。がん(cancer)は、造血器の腫瘍、上皮性の悪性腫瘍(癌、carcinoma)と非上皮性の悪性腫瘍(肉腫、sarcoma)とを含む。本発明において、がんは、特に、化学療法や放射線療法などに抵抗性の膀胱がんを指す。
 本発明において「がん幹細胞」とは、がん組織中に存在する細胞のうち、幹細胞様の性質を示す細胞のことをいい、がんの発生、再発および転移に関わる原因細胞であると考えられている細胞である。一般的に「がん幹細胞」はがん組織中に僅かしか存在しないため、他の細胞と区別することが困難であるが、当該技術分野においてはがん幹細胞を単離/濃縮する方法は知られており、例えばSP分画法などが挙げられる。
In the present invention, "tumor" includes benign and malignant tumors (cancer, malignant neoplasm). Cancer includes hematopoietic tumors, epithelial malignancies (carcinoma) and non-epithelial malignancies (sarcoma). In the present invention, cancer particularly refers to bladder cancer that is resistant to chemotherapy, radiation therapy, and the like.
In the present invention, the term “cancer stem cells” refers to cells present in cancer tissue that exhibit stem cell-like properties, and are considered to be causative cells involved in the development, recurrence and metastasis of cancer. cells that are Since "cancer stem cells" generally exist in only a small amount in cancer tissue, it is difficult to distinguish them from other cells. Examples include the SP fractionation method.

 がん幹細胞は、アルデヒドデヒドロゲナーゼ(ALDH)酵素活性が高いことが知られている。本発明においては、アルデヒドデヒドロゲナーゼ酵素活性に基づくALDEFLUOR法にて、アルデヒドデヒドロゲナーゼ酵素活性が高い細胞(ALDHhigh)およびアルデヒドデヒドロゲナーゼ酵素活性が低い細胞(ALDHlow)を分離した。ALDHhigh細胞は、in vitro培養にて、ALDHlow細胞に分化することが知られており、安定した解析には不向きである。そこで、本発明においては、安定したALDHhigh細胞を樹立するために、ヒト膀胱がん細胞株UM-UC-3を使用して、ALDHhigh細胞から単細胞クローンを作製した。 Cancer stem cells are known to have high aldehyde dehydrogenase (ALDH) enzymatic activity. In the present invention, cells with high aldehyde dehydrogenase enzyme activity (ALDH high ) and cells with low aldehyde dehydrogenase enzyme activity (ALDH low ) were separated by the ALDEFLUOR method based on aldehyde dehydrogenase enzyme activity. ALDH high cells are known to differentiate into ALDH low cells in in vitro culture, and are unsuitable for stable analysis. Therefore, in the present invention, in order to establish stable ALDH high cells, human bladder cancer cell line UM-UC-3 was used to prepare single cell clones from ALDH high cells.

 本発明において、ALDHhigh細胞から樹立されたクローン細胞は、実際に高いALDH酵素活性を示し、ALDHlow細胞から樹立されたクローン細胞は、実際に低いALDH酵素活性を示した。本発明のALDHhighクローン(Hクローン)およびALDHlowクローン(Lクローン)は、1カ月以上in vitro培養にて安定した形質を示す。 In the present invention, clone cells established from ALDH high cells actually exhibited high ALDH enzyme activity, and clone cells established from ALDH low cells actually exhibited low ALDH enzyme activity. ALDH high clones (H clones) and ALDH low clones (L clones) of the present invention exhibit stable traits in in vitro culture for one month or more.

 本発明では、かかるクローンの細胞表面に実際に抗原提示されているナチュラルペプチドを単離/同定することができる下記の方法を用いることによって、本発明のナチュラルペプチドを単離/同定した。なお、本発明において、「ナチュラルペプチド」は、実際に細胞表面に抗原提示されているペプチドのことをいう。また「ナチュラル抗原ペプチド」は、ナチュラルペプチドのうち抗原性が確認できたものをいう。このナチュラル抗原ペプチドをがん細胞から単離し、配列およびその由来を決定することにより、CTLを用いたがんの標的治療に有用な知見を得ることが可能である。 In the present invention, the natural peptides of the present invention were isolated/identified by using the following method, which can isolate/identify the natural peptides that are actually antigen-presented on the cell surface of such clones. In the present invention, "natural peptide" refers to a peptide that is actually presented as an antigen on the cell surface. "Natural antigenic peptide" refers to a natural peptide whose antigenicity has been confirmed. By isolating this natural antigen peptide from cancer cells and determining its sequence and origin, it is possible to obtain useful knowledge for targeted cancer therapy using CTL.

 本発明で用いたナチュラルペプチドの単離/同定方法には、ナチュラルペプチドを提示しているがん幹細胞を溶解し、その溶解物(ライセート)からMHCとナチュラルペプチドとの複合体を単離する工程、単離した複合体をMHC分子とナチュラルペプチドに分離してナチュラルペプチドを単離する工程、単離したナチュラルペプチドを同定する工程が含まれる。 The method for isolating/identifying natural peptides used in the present invention includes the steps of lysing cancer stem cells presenting natural peptides and isolating complexes of MHC and natural peptides from the lysate. , separating the isolated complex into MHC molecules and natural peptides to isolate the natural peptides, and identifying the isolated natural peptides.

 下記実施例においては、MHCとナチュラルペプチドとの複合体の単離には、MHCに対する特異抗体を用いた免疫沈降法によるペプチド/MHC複合体の抽出法を採用したが、ライセートと、MHCとナチュラルペプチドとの複合体とを単離することができる方法であればいかなる方法を用いてもよい。
 下記実施例においては、適切な抗MHC抗体として、抗HLA-A02抗体などの、HLAクラスIに対する抗体を使用したが、MHCとナチュラルペプチドとの複合体を特異的に認識できる抗体であればいかなる抗体を用いてもよい。
In the following examples, the isolation of the MHC-natural peptide complex was carried out by extracting the peptide/MHC complex by immunoprecipitation using a specific antibody against MHC. Any method may be used as long as it can isolate the complex with the peptide.
In the examples below, an antibody against HLA class I, such as an anti-HLA-A02 antibody, was used as a suitable anti-MHC antibody, but any antibody that can specifically recognize a complex of MHC and a natural peptide can be used. Antibodies may also be used.

 下記実施例においては、複合体をMHC分子とナチュラルペプチドとに分離する工程として弱酸を用いたペプチド単離を行ったが、MHCとナチュラルペプチドとを分離できる方法であればいかなる方法を用いてもよい。
 さらに下記実施例においては、上記単離ナチュラルペプチドの配列を、マススペクトロメトリーによるHLAリガンドーム解析を用いて解析し、実際に細胞表面に抗原提示されているナチュラルペプチドを同定したが、ペプチドの配列を同定可能な方法であれば、いかなる方法を用いて同定してもよい。
 なお、マススペクトロメトリーを用いたHLAリガンドーム解析は10個という大量の細胞数を必要とする。がん幹細胞は、がん細胞全体の1%前後と、非常に割合が少ないため、この手法は、一見すると非効率的であり、がん幹細胞の解析に不向きである。しかしながら、本発明においては、膀胱がん細胞株UM-UC-3を使用して、ALDHhigh細胞から単細胞クローンを作製することによって、かかる不利益は解消される。
In the following examples, peptide isolation was performed using a weak acid as the step of separating the complex into MHC molecules and natural peptides, but any method that can separate MHC and natural peptides may be used. good.
Furthermore, in the following examples, the sequences of the isolated natural peptides were analyzed using HLA ligandome analysis by mass spectrometry, and natural peptides actually presented as antigens on the cell surface were identified. Any method that allows identification may be used for identification.
HLA ligandome analysis using mass spectrometry requires a large number of cells, ie, 10 9 cells. Since cancer stem cells account for only about 1% of all cancer cells, this method is seemingly inefficient and unsuitable for analysis of cancer stem cells. However, in the present invention, this disadvantage is overcome by using the bladder cancer cell line UM-UC-3 to generate single cell clones from ALDH high cells.

 本発明者らは、上記ヒト膀胱がん細胞株UM-UC-3において抗原提示されているナチュラル抗原ペプチドを解析した。その結果、がん細胞において抗原提示されている9アミノ酸長のナチュラルペプチドとして、ALDHhighクローン(Hクローン)について848種類のペプチド、ALDHlowクローン(Lクローン)について1832種のペプチド、野生型について1073種類のペプチドが同定された。
 Hクローンについての848種類のペプチドのうち123種類のペプチドが、Lクローンと野生型クローンと共通しない、Hクローンに特異的なペプチドであった。Hクローンに特異的な123種類のペプチドについて、遺伝子発現情報から、膀胱がんで発現し、主要正常臓器での発現が低い遺伝子を選択した。その結果、ヒト膀胱がん細胞株UM-UC-3において抗原提示されているナチュラル抗原ペプチドとして、GRIK2タンパク質に由来するペプチド(配列番号1)およびClaspinタンパク質に由来するペプチド(配列番号2)が同定された。
The present inventors analyzed natural antigen peptides presented as antigens in the human bladder cancer cell line UM-UC-3. As a result, 848 types of peptides for ALDH high clones (H clones), 1832 types of peptides for ALDH low clones (L clones), and 1073 types for wild-type peptides were found to be present as antigen-presented 9-amino acid natural peptides in cancer cells. A class of peptides was identified.
Of the 848 peptides for H clones, 123 peptides were H clone-specific peptides that were not common to L and wild-type clones. For 123 types of peptides specific to the H clone, genes that are expressed in bladder cancer and have low expression in major normal organs were selected from the gene expression information. As a result, a peptide derived from the GRIK2 protein (SEQ ID NO: 1) and a peptide derived from the Claspin protein (SEQ ID NO: 2) were identified as natural antigen peptides presented as antigens in the human bladder cancer cell line UM-UC-3. was done.

 GRIK2は、イオンチャンネル型カイニン酸型グルタミン酸受容体に属し、中枢神経に発現する。中枢神経において、神経伝達分子として放出されたグルタミン酸と結合したGRIK2タンパクが活性化し、神経細胞を興奮させる。 GRIK2 belongs to the ion channel type kainate type glutamate receptor and is expressed in the central nerve. In the central nervous system, GRIK2 protein bound to glutamic acid released as a neurotransmitter is activated and excites nerve cells.

 Claspinは、CHK1分子と結合するタンパクとして同定され、DNA複製フォークに局在し、DNA合成を促進する。 Claspin was identified as a protein that binds to the CHK1 molecule, localizes to DNA replication forks, and promotes DNA synthesis.

<1>本発明の遺伝子発現産物
 本発明において、例えば「GRIK2」および「Claspin」など、単に遺伝子名で表記している場合、別段の記載のない限り当該遺伝子名で表される公知の核酸配列を有する遺伝子を意味し、典型的にはcDNAまたはmRNA配列を表すが、当業者が当該遺伝子の配列として認識し得る限りこれに限定されず、たとえば、本発明における好ましい遺伝子およびその核酸配列の例としては、下記の配列で表される下記の遺伝子が挙げられる。
GRIK2:GenBank Accession No. NM_021956.5 
Claspin:GenBank Accession No. NM_022111.4 
 したがって本発明の遺伝子発現産物としてのmRNAを、単に遺伝子名の記載により表す場合がある。
<1> Gene expression product of the present invention In the present invention, when simply referred to as a gene name such as "GRIK2" and "Claspin", unless otherwise specified, known nucleic acid sequences represented by the gene name Although it typically represents a cDNA or mRNA sequence, it is not limited to this as long as a person skilled in the art can recognize it as the sequence of the gene. Examples include the following genes represented by the following sequences.
GRIK2: GenBank Accession No. NM_021956.5
Claspin: GenBank Accession No. NM_022111.4
Therefore, the mRNA as the gene expression product of the present invention may be expressed simply by the description of the gene name.

 本発明において、「GRIK2タンパク質」など、遺伝子名に「タンパク質」と付記して表す場合、当該遺伝子によりコードされるタンパク質、そのアイソフォーム、およびそのホモログのことを意味する。当該アイソフォームとしては、例えばスプライシングバリアント、個体差に基づくSNP等のバリアント等が挙げられる。具体的には、(1)当該遺伝子によりコードされるタンパク質において、90%以上、好ましくは95%以上、さらに好ましくは98%以上の相同性を有するアミノ酸配列からなるタンパク質、(2)当該遺伝子によりコードされるタンパク質のアミノ酸配列において、1または複数、好ましくは1~数個、さらに好ましくは、1~10個、1~5個、1~3個、1もしくは2個のアミノ酸が置換、欠失、付加または挿入されたアミノ酸配列からなるタンパク質が挙げられる。 In the present invention, when "protein" is added to a gene name, such as "GRIK2 protein", it means the protein encoded by the gene, its isoforms, and its homologues. Examples of such isoforms include splicing variants, variants such as SNPs based on individual differences, and the like. Specifically, (1) a protein consisting of an amino acid sequence having 90% or more, preferably 95% or more, more preferably 98% or more homology with the protein encoded by the gene, (2) the gene Substitution or deletion of one or more, preferably 1 to several, more preferably 1 to 10, 1 to 5, 1 to 3, 1 or 2 amino acids in the amino acid sequence of the encoded protein , proteins consisting of added or inserted amino acid sequences.

 本発明の遺伝子発現産物として好ましいタンパク質は、上述の遺伝子(核酸配列)によりコードされるアミノ酸配列を含むタンパク質、または前記タンパク質において、1~3個、好ましくは1もしくは2個のアミノ酸が置換されたアミノ酸配列からなるタンパク質を挙げることができる。さらに好ましくは上述の遺伝子(核酸配列)によりコードされるアミノ酸配列からなるタンパク質を挙げることができる。 A preferred protein as the gene expression product of the present invention is a protein comprising an amino acid sequence encoded by the gene (nucleic acid sequence) described above, or a protein in which 1 to 3, preferably 1 or 2 amino acids are substituted. Proteins consisting of amino acid sequences can be mentioned. More preferably, a protein consisting of an amino acid sequence encoded by the gene (nucleic acid sequence) described above can be mentioned.

<2>本発明のペプチド
 本発明のペプチドは、一態様において、GRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質の部分ペプチドであって、MHC、特にHLAと結合するペプチド、好ましくはMHC、特にHLAにより抗原提示されるペプチド、さらに好ましくはMHC、特にHLAにより抗原提示されてCTLを誘導可能なペプチドを含む。HLAにはいくつかの型が存在するが、本発明のペプチドは、好ましくはHLAクラスIに結合可能であり、より好ましくはHLA-A02に結合可能である。本発明のペプチドは、MHCに結合する前にプロセシングなどの処理を経てもよく、それらの処理の結果エピトープペプチドを生成するようなペプチドも本発明のペプチドに含まれる。したがって、本発明のペプチドは、エピトープペプチドのアミノ酸配列を含む配列であれば、アミノ酸長は特に限定されない。しかしながら、本発明のペプチドそのものがエピトープペプチドであることが好ましく、したがってアミノ酸長は約8~14アミノ酸程度が好ましく、約8~11アミノ酸程度がより好ましく、約9~約11アミノ酸程度が特に好ましい、9アミノ酸が最も好ましい。
<2> Peptide of the present invention In one aspect, the peptide of the present invention is a partial peptide of a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin, and preferably binds to MHC, particularly HLA. includes peptides that are presented by MHC, especially HLA, more preferably peptides that are presented by MHC, especially HLA, and are capable of inducing CTLs. Although there are several types of HLA, the peptide of the present invention can preferably bind to HLA class I, more preferably HLA-A02. The peptides of the present invention may undergo treatments such as processing before binding to MHC, and peptides that generate epitope peptides as a result of these treatments are also included in the peptides of the present invention. Therefore, the amino acid length of the peptide of the present invention is not particularly limited as long as the sequence contains the amino acid sequence of the epitope peptide. However, it is preferable that the peptide of the present invention itself is an epitope peptide, and therefore the amino acid length is preferably about 8 to 14 amino acids, more preferably about 8 to 11 amino acids, and particularly preferably about 9 to about 11 amino acids. 9 amino acids are most preferred.

 ヒトのMHCクラスIであるHLAクラスIと結合するエピトープペプチドは、約8~14アミノ酸長、好ましくは約9~11アミノ酸長であり、その配列中に結合するHLA特有の結合モチーフを有することが知られている。例えばHLA-A02と結合するペプチドは、N末端から2番目のアミノ酸がロイシン、イソロイシンもしくはメチオニンであり、および/またはC末端のアミノ酸がバリン、ロイシンもしくはイソロイシンであるという結合モチーフを有し、HLA-A24と結合するペプチドは、N末端から2番目のアミノ酸がチロシン、フェニルアラニン、メチオニンもしくはトリプトファンであり、および/またはC末端のアミノ酸がロイシン、イソロイシンもしくはフェニルアラニンであるという結合モチーフを有する。 The epitope peptide that binds to human MHC class I, HLA class I, is about 8-14 amino acids long, preferably about 9-11 amino acids long, and may have an HLA-specific binding motif in its sequence. Are known. For example, a peptide that binds to HLA-A02 has a binding motif in which the second amino acid from the N-terminus is leucine, isoleucine, or methionine, and/or the C-terminal amino acid is valine, leucine, or isoleucine. Peptides that bind A24 have binding motifs in which the penultimate N-terminal amino acid is tyrosine, phenylalanine, methionine or tryptophan and/or the C-terminal amino acid is leucine, isoleucine or phenylalanine.

 したがって本発明のペプチドは、好ましい一態様において、GRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質の部分ペプチドであって、該タンパク質のアミノ酸配列中の連続する8~14アミノ酸からなり、N末端から2番目のアミノ酸がロイシン、イソロイシンもしくはメチオニンであり、および/またはC末端のアミノ酸がバリン、ロイシンもしくはイソロイシンであるペプチドであるエピトープペプチドを含み、より好ましくは該エピトープペプチドそのものである。中でも特に好ましいのは、配列番号1または配列番号2のいずれかで表されるアミノ酸配列からなるエピトープペプチドである。 Therefore, in a preferred embodiment, the peptide of the present invention is a partial peptide of a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin, and consists of 8 to 14 consecutive amino acids in the amino acid sequence of the protein. , the second amino acid from the N-terminus is leucine, isoleucine or methionine, and/or the C-terminal amino acid is valine, leucine or isoleucine, more preferably the epitope peptide itself. Among them, an epitope peptide consisting of the amino acid sequence represented by either SEQ ID NO: 1 or SEQ ID NO: 2 is particularly preferred.

 また、別の好ましい一態様において、前記部分ペプチドにおいて、N末端から2番目のアミノ酸がロイシン、イソロイシンもしくはメチオニンであり、および/またはC末端のアミノ酸がバリン、ロイシンもしくはイソロイシンに置換されているペプチドであるエピトープペプチドを含み、より好ましくは該エピトープペプチドそのものである。中でも特に好ましいのは、配列番号1または配列番号2のいずれかで表されるアミノ酸配列からなるペプチドにおいて、N末端から2番目のアミノ酸がロイシン、イソロイシンもしくはメチオニンに置換されており、および/またはC末端のアミノ酸がバリン、ロイシンもしくはイソロイシンで置換されているエピトープペプチドである。 In another preferred embodiment, in the partial peptide, the second amino acid from the N-terminus is leucine, isoleucine or methionine, and/or the C-terminal amino acid is substituted with valine, leucine or isoleucine. It includes an epitope peptide, more preferably the epitope peptide itself. Among them, particularly preferred is a peptide consisting of the amino acid sequence represented by either SEQ ID NO: 1 or SEQ ID NO: 2, wherein the second amino acid from the N-terminus is substituted with leucine, isoleucine or methionine, and/or C It is an epitope peptide in which the terminal amino acid is replaced with valine, leucine or isoleucine.

 本発明のペプチドは、そのN末端および/またはC末端が修飾されていてもよい。当該修飾として具体的には、N-アルカノイル化(例えば、アセチル化)、N-アルキル化(例えば、メチル化)、C末端アルキルエステル(例えば、エチルエステル)、およびC末端アミド(例えばカルボキサミド)等が挙げられる。
 本発明のペプチドの合成については、通常のペプチド化学において用いられる既知の方法に準じて行うことができる。かかる既知の方法としては文献(Peptide Synthesis,Interscience,New York,1966; The Proteins,Vol 2,Academic Press Inc.,New York,1976;ペプチド合成,丸善(株),1975;ペプチド合成の基礎と実験、丸善(株),1985;医薬品の開発 続 第14巻・ペプチド合成,広川書店,1991、これらの文献は引用により本願の一部を構成する)などに記載されている方法が挙げられる。
The peptides of the invention may be modified at their N-terminus and/or C-terminus. Specific examples of such modifications include N-alkanoylation (eg, acetylation), N-alkylation (eg, methylation), C-terminal alkyl esters (eg, ethyl esters), and C-terminal amides (eg, carboxamides). are mentioned.
Synthesis of the peptide of the present invention can be carried out according to known methods used in ordinary peptide chemistry. Such known methods include literature (Peptide Synthesis, Interscience, New York, 1966; The Proteins, Vol. 2, Academic Press Inc., New York, 1976; Peptide Synthesis, Maruzen Co., Ltd., 1975; , Maruzen Co., Ltd., 1985; Drug Development, Vol. 14, Peptide Synthesis, Hirokawa Shoten, 1991, all of which are incorporated herein by reference).

 本発明のペプチドは、後述するCTL誘導方法や、ヒトモデル動物を用いたアッセイ(国際公開第02/47474号公報、Int J. Cancer:100,565-570 (2002))等に供することにより、in vivoでの活性を確認することができる。 The peptide of the present invention is subjected to the CTL induction method described below, an assay using a human model animal (International Publication No. 02/47474, Int J. Cancer: 100, 565-570 (2002)), etc. activity can be confirmed.

 本発明のペプチドには、さらに、前記本発明のペプチドを少なくとも1つ含む複数のエピトープペプチドを連結したペプチド(ポリエピトープペプチド)も含まれる。したがって、該ポリエピトープペプチドであって、CTL誘導活性を有するペプチドも、本発明のペプチドの具体例として例示することができる。
 本発明のポリエピトープペプチドは、具体的には、
 (i)本発明のペプチド(エピトープペプチド)および任意の本発明のペプチド以外の1または2以上のCTLエピトープペプチドを直接、または適宜スペーサーを介して連結したペプチド、
 (ii)本発明のペプチドおよび任意の1または2以上のヘルパーエピトープペプチドを直接、または適宜スペーサーを介して連結したペプチド、若しくは、
 (iii)上記(i)に記載のポリエピトープペプチドに、さらに1または2以上ヘルパーエピトープペプチドを、直接、または適宜スペーサーを介して連結したペプチド
であって、抗原提示細胞内にてプロセッシングを受け、生じたエピトープペプチドが抗原提示細胞に提示され、CTL誘導活性を導くペプチドとして定義され得る。
The peptides of the present invention further include peptides (polyepitope peptides) in which multiple epitope peptides containing at least one of the peptides of the present invention are linked. Therefore, polyepitope peptides having CTL-inducing activity can also be exemplified as specific examples of the peptides of the present invention.
Specifically, the polyepitope peptide of the present invention is
(i) a peptide in which the peptide of the present invention (epitope peptide) and any one or more CTL epitope peptides other than the peptide of the present invention are linked directly or via an appropriate spacer;
(ii) a peptide in which the peptide of the present invention and any one or two or more helper epitope peptides are linked directly or via an appropriate spacer, or
(iii) a peptide obtained by linking the polyepitope peptide according to (i) above with one or more helper epitope peptides directly or via an appropriate spacer, which is processed in antigen-presenting cells, The resulting epitope peptides can be defined as peptides that are presented to antigen-presenting cells and lead to CTL-inducing activity.

 ここで、(i)における本発明のペプチド以外のCTLエピトープペプチドとしては特に限定はないが、具体的には、例えばヒトASB4由来のエピトープペプチド、ヒトOR7C1、ヒトDNAJB8由来のエピトープペプチド(例えば、国際公開第2010/050190号に記載されたペプチド)、ヒトFAM83B由来のエピトープペプチド(国際出願第PCT/JP2014/076625号)などが挙げられる。
 スペーサーとしては、抗原提示細胞内におけるプロセッシングに悪影響を及ぼさないものであれば特に限定されず、好ましくはそれぞれのエピトープペプチドとペプチド結合で連結されるリンカーであり、例えばいくつかのアミノ酸が連結したペプチドリンカーや、両端にアミノ基およびカルボキシル基を有するリンカーなどが挙げられる。具体的にはグリシンリンカーやPEG(ポリエチレングリコール)リンカーなどが挙げられ、グリシンリンカーとしてはポリグリシン(例えばグリシン6個からなるペプチド;Cancer Sci, vol.103, p150-153)が挙げられ、PEGリンカーとしては、PEGの両端にアミノ基およびカルボキシ基を有する化合物由来のリンカーが挙げられる(例えば、HN-(CH)2-(OCHCH-COOH;Angew. Chem. Int. Ed. 2008, 47, 7551-7556)。
Here, the CTL epitope peptide other than the peptide of the present invention in (i) is not particularly limited. (Peptides described in Publication No. 2010/050190), epitope peptides derived from human FAM83B (International Application No. PCT/JP2014/076625), and the like.
The spacer is not particularly limited as long as it does not adversely affect processing in antigen-presenting cells, and is preferably a linker linked to each epitope peptide via a peptide bond, such as a peptide linked with several amino acids. Examples include linkers and linkers having amino groups and carboxyl groups at both ends. Specific examples include glycine linkers and PEG (polyethylene glycol) linkers, and examples of glycine linkers include polyglycine (for example, a peptide consisting of 6 glycines; Cancer Sci, vol.103, p150-153), and PEG linkers. These include linkers derived from compounds having amino and carboxy groups at both ends of PEG (eg, H 2 N—(CH 2 ) 2—(OCH 2 CH 2 ) 3 —COOH; Angew. Chem. Int. Ed. 2008, 47, 7551-7556).

 本発明のポリエピトープペプチドに含まれる本発明のエピトープペプチドは、1種または2種以上が選択されてよい。すなわち、同一のエピトープペプチドが複数個連結されていてもよいし、複数の異なるエピトープペプチドが連結されたものであってもよい。当然ながら、2種以上のエピトープペプチドが選択される場合であっても、選択されたエピトープペプチドのうちの1種または2種以上が複数個連結されてもよい。本発明のペプチド以外のエピトープペプチドについても、同様に複数種および/または複数個のエピトープペプチドが連結されてよい。本発明のポリエピトープペプチドは、2~12個のエピトープペプチドが連結されたものであってよく、好ましくは2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個のエピトープペプチドが連結されており、最も好ましくは2個のエピトープペプチドが連結されている。
 ここで、本発明のペプチドに連結させるエピトープペプチドがヘルパーエピトープペプチドの場合、用いられるヘルパーエピトープペプチドとしては、例えばB型肝炎ウイルス由来のHBVc128-140や破傷風毒素由来のTT947-967などが挙げられる。また当該ヘルパーエピトープペプチドの長さとしては、13~30アミノ酸程度、好ましくは13~17アミノ酸程度を挙げることができる。
One or more of the epitope peptides of the present invention may be selected from the polyepitope peptides of the present invention. That is, a plurality of identical epitope peptides may be linked, or a plurality of different epitope peptides may be linked. Of course, even when two or more epitope peptides are selected, one or two or more of the selected epitope peptides may be linked. For epitope peptides other than the peptide of the present invention, multiple types and/or multiple epitope peptides may be similarly linked. The polyepitope peptide of the present invention may be one in which 2 to 12 epitope peptides are linked, preferably 2, 3, 4, 5, 6, 7, 8 or 9. , 10, 11, 12 epitope peptides are linked, most preferably 2 epitope peptides are linked.
Here, when the epitope peptide linked to the peptide of the present invention is a helper epitope peptide, the helper epitope peptide to be used includes, for example, hepatitis B virus-derived HBV c128-140 and tetanus toxin-derived TT947-967. The length of the helper epitope peptide is about 13 to 30 amino acids, preferably about 13 to 17 amino acids.

 このような複数のエピトープペプチドを連結させたペプチド(ポリエピトープペプチド)もまた、前述のように一般的なペプチド合成法によって製造することができる。またこれら複数のエピトープペプチドを連結させたポリエピトープペプチドをコードするポリヌクレオチドの配列情報に基づいて、通常のDNA合成および遺伝子工学的手法を用いて製造することもできる。
 すなわち、当該ポリヌクレオチドを周知の発現ベクターに挿入し、得られた組換え発現ベクターで宿主細胞を形質転換して作製された形質転換体を培養し、培養物より目的の複数のエピトープを連結させたポリエピトープペプチドを回収することにより製造することができる。これらの手法は、前述のように文献(Molecular Cloning, T.Maniatis et al., CSH Laboratory(1983)、DNA Cloning, DM.Glover, IRL PRESS(1985))に記載の方法などに準じて行うことができる。
Such a peptide (polyepitope peptide) in which multiple epitope peptides are linked can also be produced by a general peptide synthesis method as described above. It can also be produced using conventional DNA synthesis and genetic engineering techniques based on the sequence information of a polynucleotide encoding a polyepitope peptide in which multiple epitope peptides are linked.
That is, the polynucleotide is inserted into a well-known expression vector, the resulting recombinant expression vector is used to transform a host cell, the resulting transformant is cultured, and multiple epitopes of interest are ligated from the culture. It can be produced by recovering the polyepitope peptide. These techniques should be carried out according to the methods described in the literature (Molecular Cloning, T.Maniatis et al., CSH Laboratory (1983), DNA Cloning, DM.Glover, IRL PRESS (1985)) as described above. can be done.

 以上のようにして製造された複数のエピトープペプチドを連結させたポリエピトープペプチドを、前述のin vitroアッセイや、国際公開第02/47474号およびInt J. Cancer:100,565-570 (2002)(これらの文献は引用により本願の一部を構成する)に記述のヒトモデル動物を用いたin vivoアッセイに供すること等によりCTL誘導活性を確認することができる。
 本発明のペプチド(ポリエピトープペプチドを含む)は、本明細書に記載のとおり、治療抵抗性膀胱がんの予防および/または治療などに有用であり、医薬組成物の有効成分とすることができる。また、本発明のペプチドは、治療抵抗性膀胱がんの予防および/または治療のためのものであってもよい。さらに、本発明は、治療抵抗性膀胱がんの予防および/または治療のための医薬の製造への本発明のペプチドの使用にも関する。
A polyepitope peptide in which a plurality of epitope peptides produced as described above are linked is subjected to the above-mentioned in vitro assay, International Publication No. WO 02/47474 and Int J. Cancer: 100, 565-570 (2002) (these The CTL-inducing activity can be confirmed by subjecting it to the in vivo assay using a human model animal described in the literature, which is incorporated herein by reference.
As described herein, the peptides (including polyepitope peptides) of the present invention are useful for the prevention and/or treatment of treatment-resistant bladder cancer, and can be used as active ingredients of pharmaceutical compositions. . Also, the peptides of the present invention may be for the prevention and/or treatment of treatment-resistant bladder cancer. Furthermore, the invention relates to the use of the peptides of the invention for the manufacture of a medicament for the prevention and/or treatment of treatment-resistant bladder cancer.

<3>本発明のポリヌクレオチド
 本発明のポリヌクレオチドは、前記本発明のペプチドを少なくとも1つコードするポリヌクレオチドを含む。本発明のポリヌクレオチドは、cDNAやmRNA、cRNA、または合成DNAのいずれであってもよい。また1本鎖、2本鎖のいずれの形態であってもよい。具体的には、これに限定するものではないが例えば、GRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質の部分ペプチドであって、MHCとペプチドの結合予測プログラムであるBIMAS(http://www-bimas.cit.nih.gov/molbio/hla_bind/)、SYFPEITHI(http://www.syfpeithi.de/)およびIEDB(MHC-I processing predictions;http://www.iedb.org/)などを用いて結合性を有することが予測されたアミノ酸配列をコードするヌクレオチド配列からなるポリヌクレオチドなどが挙げられる。別の具体的な態様としては、配列番号1および2に記載のアミノ酸配列をコードするヌクレオチド配列からなるポリヌクレオチド、および配列番号1および2から選択される任意の2以上のペプチド、または配列番号1および2から選択されるペプチドおよびヘルパーエピトープを連結させたポリエピトープペプチドを、それぞれ発現可能なようにコードするヌクレオチド配列からなるポリヌクレオチドなどが挙げられる。
<3> Polynucleotide of the Present Invention The polynucleotide of the present invention includes a polynucleotide encoding at least one of the peptides of the present invention. Polynucleotides of the present invention may be cDNA, mRNA, cRNA, or synthetic DNA. In addition, it may be in either single-stranded or double-stranded form. Specifically, but not limited to, for example, a partial peptide of a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin, which is a MHC-peptide binding prediction program BIMAS (http http://www-bimas.cit.nih.gov/molbio/hla_bind/), SYFPEITHI (http://www.syfpeithi.de/) and IEDB (MHC-I processing predictions; http://www.iedb.org /), etc., and polynucleotides comprising a nucleotide sequence encoding an amino acid sequence predicted to have binding properties. In another specific embodiment, a polynucleotide consisting of a nucleotide sequence encoding the amino acid sequences set forth in SEQ ID NOs: 1 and 2, and any two or more peptides selected from SEQ ID NOs: 1 and 2, or SEQ ID NO: 1 and 2, and a polynucleotide comprising a nucleotide sequence encoding a polyepitope peptide linked with a helper epitope so that it can be expressed, respectively.

 本発明のポリヌクレオチドは、1本鎖および2本鎖のいずれの形態もとることができる。本発明のポリヌクレオチドが2本鎖の場合、前記本発明のポリヌクレオチドを発現ベクターに挿入することにより、本発明のペプチドを発現するための組換え発現ベクターを作製することができる。すなわち本発明のポリヌクレオチドの範疇には、本発明の2本鎖型ポリヌクレオチドを発現ベクターに挿入して作製された組換え発現ベクターも含まれる。
 本発明のポリヌクレオチドは、本明細書に記載のとおり、治療抵抗性膀胱がんの予防および/または治療などに有用であり、医薬組成物の有効成分とすることができる。また、本発明のポリヌクレオチドは、治療抵抗性膀胱がんの予防および/または治療のためのものであってもよい。さらに、本発明は、治療抵抗性膀胱がんの予防および/または治療のための医薬の製造への本発明のポリヌクレオチドの使用にも関する。
The polynucleotides of the present invention can be in either single-stranded or double-stranded form. When the polynucleotide of the present invention is double-stranded, a recombinant expression vector for expressing the peptide of the present invention can be constructed by inserting the polynucleotide of the present invention into an expression vector. That is, the polynucleotide of the present invention also includes a recombinant expression vector produced by inserting the double-stranded polynucleotide of the present invention into an expression vector.
As described herein, the polynucleotide of the present invention is useful for prevention and/or treatment of treatment-resistant bladder cancer, and can be used as an active ingredient of a pharmaceutical composition. Also, the polynucleotide of the present invention may be for prevention and/or treatment of treatment-resistant bladder cancer. Furthermore, the invention relates to the use of the polynucleotide of the invention for the manufacture of a medicament for the prevention and/or treatment of treatment-resistant bladder cancer.

 本発明で用いる発現ベクターは、用いる宿主や目的等に応じて様々なものを用いることができ、当業者であれば適宜選択することができる。本発明で用い得る発現ベクターとしては、例えばプラスミド、ファージベクター、ウイルスベクター等が挙げられる。例えば、宿主が大腸菌の場合、ベクターとしては、pUC118、pUC119、pBR322、pCR3等のプラスミドベクター、λZAPII、λgt11などのファージベクターが挙げられる。宿主が酵母の場合、ベクターとしては、pYES2、pYEUra3などが挙げられる。宿主が昆虫細胞の場合には、pAcSGHisNT-Aなどが挙げられる。宿主が動物細胞の場合には、pCEP4、pKCR、pCDM8、pGL2、pcDNA3.1、pRc/RSV、pRc/CMVなどのプラスミドベクターや、レトロウイルスベクター、アデノウイルスベクター、アデノ関連ウイルスベクターなどのウイルスベクターが挙げられる。 Various expression vectors can be used in the present invention depending on the host, purpose, etc., and can be appropriately selected by those skilled in the art. Examples of expression vectors that can be used in the present invention include plasmids, phage vectors, virus vectors and the like. For example, when the host is Escherichia coli, vectors include plasmid vectors such as pUC118, pUC119, pBR322 and pCR3, and phage vectors such as λZAPII and λgt11. When the host is yeast, vectors include pYES2, pYEUra3 and the like. Examples include pAcSGHisNT-A when the host is an insect cell. When the host is an animal cell, plasmid vectors such as pCEP4, pKCR, pCDM8, pGL2, pcDNA3.1, pRc/RSV and pRc/CMV, and viral vectors such as retroviral vectors, adenoviral vectors and adeno-associated viral vectors is mentioned.

 前記ベクターは、発現誘導可能なプロモーター、シグナル配列をコードする遺伝子、選択用マーカー遺伝子、ターミネーターなどの因子を適宜有していてもよい。また、単離精製が容易になるように、チオレドキシン、Hisタグ、あるいはGST(グルタチオンS-トランスフェラーゼ)等との融合タンパク質として発現する配列が付加されていてもよい。この場合、宿主細胞内で機能する適切なプロモーター(lac、tac、trc、trp、CMV、SV40初期プロモーターなど)を有するGST融合タンパク質ベクター(pGEX4Tなど)や、Myc、Hisなどのタグ配列を有するベクター(pcDNA3.1/Myc-Hisなど)、さらにはチオレドキシンおよびHisタグとの融合タンパク質を発現するベクター(pET32a)などを用いることができる。 The vector may appropriately have factors such as an expression-inducible promoter, a signal sequence-encoding gene, a selection marker gene, a terminator, and the like. Also, to facilitate isolation and purification, a sequence expressed as a fusion protein with thioredoxin, a His tag, or GST (glutathione S-transferase) may be added. In this case, a GST fusion protein vector (such as pGEX4T) having an appropriate promoter (lac, tac, trc, trp, CMV, SV40 early promoter, etc.) that functions in the host cell, or a vector having a tag sequence such as Myc or His (pcDNA3.1/Myc-His, etc.), a vector (pET32a) that expresses a fusion protein with thioredoxin and a His tag, and the like can be used.

 前記で作製された発現ベクターで宿主を形質転換することにより、当該発現ベクターを含有する形質転換細胞を作製することができる。したがって、本発明には、前記発現ベクターを含む遺伝子導入用組成物が包含される。
 形質転換に用いられる宿主としては、本発明のポリペプチドが有する機能を損なわない限りいかなる細胞を用いてもよく、例えば大腸菌、酵母、昆虫細胞、動物細胞などが挙げられる。大腸菌としては、E.coli K-12系統のHB101株、C600株、JM109株、DH5α株、AD494(DE3)株などが挙げられる。また酵母としては、Saccharomyces cerevisiaeなどが挙げられる。動物細胞としては、L929細胞、BALB/c3T3細胞、C127細胞、CHO細胞、COS細胞、Vero細胞、HeLa細胞、293-EBNA細胞などが挙げられる。昆虫細胞としてはsf9などが挙げられる。
 宿主細胞への発現ベクターの導入方法としては、前記宿主細胞に適合した通常の導入方法を用いればよい。具体的にはリン酸カルシウム法、DEAE-デキストラン法、エレクトロポレーション法、遺伝子導入用リピッド(Lipofectamine、Lipofectin; Gibco-BRL社)を用いる方法などが挙げられる。導入後、選択マーカーを含む通常の培地にて培養することにより、前記発現ベクターが宿主細胞中に導入された形質転換細胞を選択することができる。
By transforming a host with the expression vector prepared above, a transformed cell containing the expression vector can be prepared. Therefore, the present invention includes a composition for gene transfer containing the expression vector.
As a host used for transformation, any cell may be used as long as it does not impair the functions of the polypeptide of the present invention, and examples thereof include E. coli, yeast, insect cells and animal cells. Examples of Escherichia coli include HB101 strain, C600 strain, JM109 strain, DH5α strain, and AD494 (DE3) strain of E. coli K-12 strain. Examples of yeast include Saccharomyces cerevisiae. Animal cells include L929 cells, BALB/c3T3 cells, C127 cells, CHO cells, COS cells, Vero cells, HeLa cells, 293-EBNA cells and the like. Insect cells include sf9 and the like.
As a method for introducing the expression vector into the host cell, a conventional introduction method suitable for the host cell may be used. Specific examples include a calcium phosphate method, a DEAE-dextran method, an electroporation method, and a method using lipids for gene introduction (Lipofectamine, Lipofectin; Gibco-BRL). After the introduction, by culturing in a normal medium containing a selection marker, transformed cells into which the expression vector has been introduced can be selected.

 以上のようにして得られた形質転換細胞を好適な条件下で培養し続けることにより、本発明のペプチドを製造することができる。得られたペプチドは、一般的な生化学的精製手段により、さらに単離・精製することができる。ここで精製手段としては、塩析、イオン交換クロマトグラフィー、吸着クロマトグラフィー、アフィニティークロマトグラフィー、ゲルろ過クロマトグラフィー等が挙げられる。また本発明のペプチドを、前述のチオレドキシンやHisタグ、GST等との融合タンパク質として発現させた場合は、これら融合タンパク質やタグの性質を利用した精製法により単離・精製することができる。
 本発明のペプチドをコードするポリヌクレオチドは、DNAの形態であってもRNAの形態であっても良い。これら本発明のポリヌクレオチドは、本発明のペプチドのアミノ酸配列情報およびそれによりコードされるDNAの配列情報に基づき、当該技術分野において知られた通常の方法を用いて容易に製造することができる。具体的には、通常のDNA合成やPCRによる増幅などによって、製造することができる。
 本発明のペプチドをコードするポリヌクレオチドは、前記エピトープペプチドをコードするポリヌクレオチドを包含する。
The peptide of the present invention can be produced by continuing to culture the transformed cells obtained as described above under suitable conditions. The resulting peptide can be further isolated and purified by common biochemical purification means. Examples of purification means include salting out, ion exchange chromatography, adsorption chromatography, affinity chromatography, gel filtration chromatography and the like. When the peptide of the present invention is expressed as a fusion protein with the aforementioned thioredoxin, His tag, GST or the like, it can be isolated and purified by a purification method utilizing the properties of these fusion proteins or tags.
A polynucleotide encoding the peptide of the present invention may be in the form of DNA or RNA. These polynucleotides of the present invention can be easily produced using conventional methods known in the art based on the amino acid sequence information of the peptide of the present invention and the sequence information of the DNA encoded thereby. Specifically, it can be produced by ordinary DNA synthesis, amplification by PCR, or the like.
A polynucleotide encoding the peptide of the present invention includes a polynucleotide encoding the epitope peptide.

<4>本発明のペプチドを有効成分とするCTL誘導剤/医薬組成物
 本発明のペプチドはCTL誘導活性を有し、腫瘍抗原ペプチドとして、CTL誘導剤となり得る。また上述のとおり、本発明者らによりGRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質が腫瘍抗原であること、該タンパク質由来のペプチドが腫瘍細胞表面にHLAクラスI抗原と結合して複合体を形成し、細胞表面に運ばれて抗原提示されていることが初めて見出された。したがって、GRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質そのものもまたCTL誘導剤となり得る。
<4> CTL Inducer/Pharmaceutical Composition Containing the Peptide of the Present Invention as an Active Ingredient The peptide of the present invention has CTL inducing activity and can serve as a CTL inducer as a tumor antigen peptide. Further, as described above, the present inventors determined that a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin is a tumor antigen, and that a peptide derived from the protein binds to an HLA class I antigen on the surface of tumor cells. It was found for the first time that a complex is formed with the cell surface and is transported to the cell surface for antigen presentation. Therefore, the protein itself encoded by a gene selected from the group consisting of GRIK2 and Claspin can also be a CTL inducer.

 すなわち、HLA-A02抗原が陽性のヒトから末梢血リンパ球を単離し、in vitroで本発明のペプチドならびに/またはGRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質を添加して刺激することにより、該ペプチドをパルスしたHLA-A02抗原陽性細胞を特異的に認識するCTLを誘導することができる(J.Immunol.,154,p2257,1995)。ここでCTLの誘導の有無は、例えば、抗原ペプチド提示細胞に反応してCTLが産生する種々のサイトカイン(例えばIFN-γ)の量を、例えばELISA法などによって測定することにより、確認することができる。また51Crで標識した抗原ペプチド提示細胞に対するCTLの傷害性を測定する方法(51Crリリースアッセイ、Int.J.Cancer,58:p317,1994)によっても確認することができる。
 また、Int. J. Cancer, 39, 390-396, 1987、N. Eng. J. Med, 333, 1038-1044, 1995等に記載の方法により、CTLクローンを樹立することもできる。
That is, peripheral blood lymphocytes are isolated from HLA-A02 antigen-positive humans and stimulated in vitro by adding the peptide of the present invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin. CTLs that specifically recognize HLA-A02 antigen-positive cells pulsed with the peptide can be induced (J. Immunol., 154, p2257, 1995). Here, the presence or absence of CTL induction can be confirmed, for example, by measuring the amount of various cytokines (eg, IFN-γ) produced by CTLs in response to antigen peptide-presenting cells, for example, by ELISA or the like. can. It can also be confirmed by a method of measuring CTL toxicity against 51 Cr-labeled antigen peptide-presenting cells ( 51 Cr release assay, Int. J. Cancer, 58: p317, 1994).
CTL clones can also be established by the methods described in Int. J. Cancer, 39, 390-396, 1987, N. Eng. J. Med, 333, 1038-1044, 1995 and the like.

 本発明のペプチドならびに/またはGRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質によって誘導されたCTLは、本発明のペプチドならびに/または他のGRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質由来のエピトープペプチドを抗原として提示する細胞に対する傷害作用やリンフォカインの産生能を有する。本発明のペプチドは上述のとおり腫瘍抗原ペプチドであり、またGRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質は細胞内で分解されて腫瘍抗原ペプチドを生じるため、それら機能を介して抗腫瘍作用、好ましくは抗がん作用を発揮することができる。したがって本発明のペプチドならびに/またはGRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質、ならびにそれにより誘導されたCTLは、がんの予防および/または治療のための医薬や医薬組成物の有効成分とすることができる。
 本発明のペプチドならびに/またはGRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質を有効成分として含有するCTL誘導剤をがん患者に投与すると、抗原提示細胞のHLA抗原、好ましくはHLA-A02抗原に本発明のペプチドならびに/またはGRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質由来のエピトープペプチドが提示され、HLA抗原と提示されたペプチドとの複合体を特異的に認識するCTLが増殖してがん細胞を破壊することができ、その結果、がんを予防および/または治療することができる。したがって、本発明のペプチドならびに/またはGRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質を有効成分とするCTLの誘導剤は、好ましくは、HLA-A02抗原陽性の対象であって、GRIK2またはClaspin陽性のがんに罹患している対象に対して使用することができる。GRIK2またはClaspin陽性のがんとしては、例えば抵抗性膀胱がん等のがん(腫瘍)などが挙げられ、本発明のCTL誘導剤は、これらのがんの予防および/または治療のために使用することができる。
CTLs induced by a peptide of the invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin are induced by a peptide of the invention and/or another gene selected from the group consisting of GRIK2 and Claspin It has a toxic effect on cells that present epitope peptides derived from the protein encoded by as an antigen and the ability to produce lymphokines. The peptide of the present invention is a tumor antigen peptide as described above, and the protein encoded by the gene selected from the group consisting of GRIK2 and Claspin is intracellularly degraded to produce the tumor antigen peptide. It can exert an antitumor effect, preferably an anticancer effect. Therefore, the peptide of the present invention and/or the protein encoded by the gene selected from the group consisting of GRIK2 and Claspin, and the CTL induced thereby can be used as pharmaceuticals and pharmaceutical compositions for the prevention and/or treatment of cancer. can be used as an active ingredient of
When a CTL inducer containing, as an active ingredient, the peptide of the present invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin is administered to a cancer patient, HLA antigens, preferably HLA, of antigen-presenting cells - A02 antigen is presented with the peptide of the present invention and / or an epitope peptide derived from a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin, and specifically the complex of the HLA antigen and the presented peptide CTLs that recognize can proliferate and destroy cancer cells, thereby preventing and/or treating cancer. Therefore, the CTL inducer containing, as an active ingredient, the peptide of the present invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin is preferably used in HLA-A02 antigen-positive subjects, It can be used for subjects suffering from GRIK2 or Claspin positive cancer. Examples of GRIK2- or Claspin-positive cancers include cancers (tumors) such as resistant bladder cancer, and the CTL inducer of the present invention is used for the prevention and/or treatment of these cancers. can do.

 ここでがんの「予防」には、患者のがんへの罹患の予防だけでなく、手術により原発巣の腫瘍を切除した患者における再発予防、手術、放射線療法もしくは薬物療法等のがん治療により完全に除去できなかった腫瘍の転移防止等が含まれる。また、がんの「治療」には、がんを縮小させるがんの治癒・症状改善のみでなく、がん細胞の増殖、腫瘍の拡大もしくは原発巣からのがん細胞の転移を抑制する進行防止等が含まれる。 Here, “prevention” of cancer includes not only the prevention of patients from contracting cancer, but also the prevention of recurrence in patients who have had their primary tumor removed by surgery, cancer treatment such as surgery, radiation therapy, or drug therapy. including prevention of metastasis of tumors that could not be completely removed by In addition, "treatment" of cancer includes not only cure and improvement of symptoms to shrink cancer, but also progression to suppress cancer cell growth, tumor expansion, or metastasis of cancer cells from the primary focus. prevention, etc.

 本発明のペプチドならびに/またはGRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質を有効成分とするCTL誘導剤は、例えばGRIK2またはClaspin陽性のがんに罹患している、HLA-A02陽性のがん患者に対して特に有効である。具体的には、例えば、抵抗性膀胱がん等のがん(腫瘍)の予防または治療のために使用することができる。したがって、本発明のペプチドならびに/またはGRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質を有効成分として含む医薬組成物もまた、本発明に包含される。かかる医薬組成物は、好ましくは治療抵抗性膀胱がんの予防および/または治療用の組成物、すなわち治療抵抗性膀胱がんの予防および/または治療剤である。また、本発明の医薬組成物は、がん細胞(好ましくはがん幹細胞)に特異的なCTLを誘導、すなわちがん細胞特異的な細胞性免疫を活性化することによりがんを予防および/または治療するものであるため、好ましくはがんの予防および/または治療用ワクチンである。本発明の医薬組成物は、がんの予防および/または治療用ワクチンがmRNAワクチンである場合、ウリジンの代わりにシュードウリジンを使用して、炎症反応を抑えることができる。 A CTL inducer containing, as an active ingredient, the peptide of the present invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin is HLA-A02, which is affected by GRIK2- or Claspin-positive cancer, for example. It is especially effective for positive cancer patients. Specifically, for example, it can be used for prevention or treatment of cancer (tumor) such as resistant bladder cancer. Therefore, the present invention also includes a pharmaceutical composition containing, as an active ingredient, the peptide of the present invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin. Such a pharmaceutical composition is preferably a composition for prevention and/or treatment of treatment-resistant bladder cancer, ie, an agent for prevention and/or treatment of treatment-resistant bladder cancer. In addition, the pharmaceutical composition of the present invention can prevent and/or prevent cancer by inducing CTLs specific to cancer cells (preferably cancer stem cells), that is, by activating cancer cell-specific cellular immunity. Alternatively, it is a vaccine for the prevention and/or treatment of cancer, since it is for treatment. When the cancer preventive and/or therapeutic vaccine is an mRNA vaccine, the pharmaceutical composition of the present invention can use pseudouridine instead of uridine to suppress inflammatory reactions.

 本発明のペプチドを有効成分とする医薬組成物は、単一のCTLエピトープ(本発明のペプチド)を有効成分とするものであっても、また他のペプチド(CTLエピトープやヘルパーエピトープ)と連結したポリエピトープペプチドを有効成分とするものであってもよい。近年、複数のCTLエピトープ(抗原ペプチド)を連結したポリエピトープペプチドが、in vivoで効率的にCTL誘導活性を有することが示されている。例えばJournal of Immunology 1998, 161: 3186-3194(本文献は引用により本願の一部を構成する)には、がん抗原タンパク質PSA由来のHLA-A2、-A3、-A11、-B53拘束性CTLエピトープ(抗原ペプチド)を連結した約30merのポリエピトープペプチドが、in vivoでそれぞれのCTLエピトープに特異的なCTLを誘導したことが記載されている。またCTLエピトープとヘルパーエピトープとを連結させたポリエピトープペプチドにより、効率的にCTLが誘導されることも示されている。このようなポリエピトープペプチドの形態で投与した場合、ポリエピトープペプチドが抗原提示細胞内に取り込まれ、その後、細胞内分解を受けて生じた個々の抗原ペプチドがHLA抗原と結合して複合体を形成し、該複合体が抗原提示細胞表面に高密度に提示され、この複合体に特異的なCTLが体内で効率的に増殖し、がん細胞を破壊する。このようにしてがんの治療または予防が促進される。 A pharmaceutical composition containing the peptide of the present invention as an active ingredient may contain a single CTL epitope (the peptide of the present invention) as an active ingredient, or may be linked to other peptides (CTL epitope or helper epitope). It may contain a polyepitope peptide as an active ingredient. In recent years, it has been shown that a polyepitope peptide in which multiple CTL epitopes (antigen peptides) are linked has an efficient CTL-inducing activity in vivo. For example, Journal of Immunology 1998, 161: 3186-3194 (this document is incorporated herein by reference) describes HLA-A2, -A3, -A11, -B53-restricted CTLs derived from the cancer antigen protein PSA. It has been described that about 30-mer polyepitope peptides linked with epitopes (antigen peptides) induced CTLs specific to each CTL epitope in vivo. It has also been shown that CTLs are efficiently induced by a polyepitope peptide in which a CTL epitope and a helper epitope are linked. When administered in the form of such polyepitope peptides, the polyepitope peptides are taken up into antigen-presenting cells, and then individual antigen peptides produced by intracellular degradation bind to HLA antigens to form complexes. Then, the complex is displayed at high density on the surface of antigen-presenting cells, and CTL specific to this complex efficiently proliferate in the body to destroy cancer cells. In this way cancer treatment or prevention is facilitated.

 本発明のペプチドならびに/またはGRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質を有効成分とする医薬組成物は、細胞性免疫が効果的に成立するように、医薬として許容されるキャリアー、例えば適当なアジュバントと混合して投与、または併用して投与することができる。 A pharmaceutical composition containing, as an active ingredient, the peptide of the present invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin is pharmaceutically acceptable so as to effectively establish cell-mediated immunity. It can be administered in admixture or in combination with a carrier such as a suitable adjuvant.

 アジュバントとしては、文献(例えば、Clin Infect Dis.:S266-70, 2000)に記載のものなど、当該技術分野において既知のアジュバントが適用可能であり、具体的には、例えば、ゲルタイプとして水酸化アルミニウム、リン酸アルミニウムおよびリン酸カルシウムなど、菌体タイプとしてCpG、モノホスホリルリピドA(monophosphoryl lipid A;MPL)、コレラ毒素、大腸菌易熱性毒素、百日咳毒素およびムラミルジペプチド(Muramyl dipeptide;MDP)など、油乳濁液タイプ(エマルション製剤)としてフロイント不完全アジュバント、MF59およびSAFなど、高分子ナノ粒子タイプとして免疫刺激複合体(Immunostimulatory complex;ISCOMs)、リポソーム、生分解性マイクロスフェア(Biodegradable microsphere)およびサポニン由来のQS-21など、合成タイプとして非イオン性ブロックコポリマー、ムラミルペプチドアナログ(Muramyl peptide analogue)、ポリホスファゼンおよび合成ポリヌクレオチドなど、サイトカインタイプとしてIFN-γ、IL-2およびIL-12などを挙げることができる。
 また、本発明のペプチドならびに/またはGRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質を有効成分とするCTL誘導剤/医薬組成物の剤形としては、特に限定はないが、油乳濁液(エマルション製剤)、高分子ナノ粒子、リポソーム製剤、直径数μmのビーズに結合させた粒子状の製剤、リピッドを結合させた製剤、マイクロスフェア製剤、マイクロカプセル製剤などが挙げられる。
As the adjuvant, adjuvants known in the art such as those described in literature (e.g., Clin Infect Dis.: S266-70, 2000) can be applied. Aluminum, aluminum phosphate and calcium phosphate, CpG, monophosphoryl lipid A (MPL), cholera toxin, E. coli heat-labile toxin, pertussis toxin and muramyl dipeptide (MDP) as cell types, oil Freund's incomplete adjuvant, MF59 and SAF as emulsion type (emulsion formulation), Immunostimulatory complexes (ISCOMs), liposomes, biodegradable microspheres and saponin as polymer nanoparticle type Synthetic types include nonionic block copolymers, Muramyl peptide analogues, polyphosphazenes and synthetic polynucleotides, Cytokine types include IFN-γ, IL-2 and IL-12. be able to.
In addition, the dosage form of the CTL inducer/pharmaceutical composition containing, as active ingredients, the peptide of the present invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin is not particularly limited. Emulsions (emulsion formulations), polymeric nanoparticles, liposome formulations, particulate formulations bound to beads with a diameter of several μm, formulations bound to lipids, microsphere formulations, microcapsule formulations, and the like can be mentioned.

 投与方法としては、皮内投与、皮下投与、筋肉内投与、静脈内投与などの既知の任意の投与方法が挙げられる。製剤中の本発明のペプチドの投与量は、治療目的の疾患、患者の年齢、体重等により適宜調整することができるが、通常0.0001mg~1000mg、好ましくは0.001mg~1000mg、より好ましくは0.1mg~10mgであり、これを数日ないし数月に1回投与するのが好ましい。
 本発明のペプチドを実際に医薬として作用させる手法としては、当該ペプチドを直接体内に導入するin vivo法の他に、ヒトからある種の細胞を採集し体外で本発明のペプチドを作用させ、その細胞を体内に戻すex vivo法があり(日経サイエンス,1994年4月号,20-45頁、月刊薬事,36(1),23-48(1994)、実験医学増刊,12(15),(1994)、およびこれらの引用文献等、これらの文献は引用により本願の一部を構成する)、当業者であれば、かかる手法に適切な細胞、投与方法、投与形態および投与量を選択することができる。
Administration methods include any known administration methods such as intradermal administration, subcutaneous administration, intramuscular administration, and intravenous administration. The dose of the peptide of the present invention in the formulation can be appropriately adjusted depending on the disease to be treated, the patient's age, body weight, etc., and is usually 0.0001 mg to 1000 mg, preferably 0.001 mg to 1000 mg, more preferably 0.001 mg to 1000 mg. The dose is 0.1 mg to 10 mg, and is preferably administered once every several days to several months.
Techniques for making the peptide of the present invention actually act as a drug include an in vivo method in which the peptide is directly introduced into the body, as well as certain cells collected from humans and the peptide of the present invention acting outside the body. There is an ex vivo method for returning cells to the body (Nikkei Science, April 1994, pp. 20-45, Monthly Pharmaceutical Affairs, 36 (1), 23-48 (1994), Experimental Medicine Special Edition, 12 (15), ( 1994), and references therein and others, which are incorporated herein by reference), the skilled artisan will be able to select appropriate cells, modes of administration, dosage forms and dosages for such procedures. can be done.

<5>本発明のポリヌクレオチドを有効成分とするCTL誘導剤/医薬組成物
 本発明のポリヌクレオチドならびに/またはGRIK2およびClaspinからなる群から選択されるタンパク質をコードするポリヌクレオチドを発現させた細胞は、本発明のペプチドならびに/またはGRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質由来の他のエピトープペプチドを抗原として提示し得る細胞となるため、T細胞受容体を介してT細胞に認識されるという特徴を有する。したがって、本発明のポリヌクレオチドならびに/またはGRIK2およびClaspinからなる群から選択されるタンパク質をコードするポリヌクレオチドもまたCTLの誘導剤となり得る。誘導されたCTLは、本発明のペプチドならびに/またはGRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質によって誘導されたCTLと同様に、細胞傷害作用やリンフォカインの産生を介して抗腫瘍作用、好ましくは抗がん作用を発揮することができる。したがって本発明のポリヌクレオチドならびに/またはGRIK2およびClaspinからなる群から選択されるタンパク質をコードするポリヌクレオチドは、治療抵抗性膀胱がんの治療または予防のための医薬や医薬組成物の有効成分とすることができる。本発明のポリヌクレオチドならびに/またはGRIK2およびClaspinからなる群から選択されるタンパク質をコードするポリヌクレオチドを有効成分として含有するCTLの誘導剤は、例えば、本発明のポリヌクレオチドならびに/またはGRIK2およびClaspinからなる群から選択されるタンパク質をコードするポリヌクレオチドをがん患者に投与し発現させることで、治療抵抗性膀胱がんを治療および/または予防し得るものである。
<5> CTL inducer/pharmaceutical composition containing the polynucleotide of the present invention as an active ingredient Cells expressing the polynucleotide of the present invention and/or a polynucleotide encoding a protein selected from the group consisting of GRIK2 and Claspin , the peptide of the present invention and/or other epitope peptides derived from a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin as antigens. It has the feature of being recognized by Accordingly, polynucleotides of the present invention and/or polynucleotides encoding proteins selected from the group consisting of GRIK2 and Claspin can also be inducers of CTLs. The induced CTL are anti-tumor through cytotoxicity and lymphokine production, similar to CTL induced by the peptide of the present invention and/or a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin. It can exert an action, preferably an anticancer action. Therefore, the polynucleotide of the present invention and/or a polynucleotide encoding a protein selected from the group consisting of GRIK2 and Claspin is used as an active ingredient of a drug or pharmaceutical composition for treating or preventing treatment-resistant bladder cancer. be able to. A CTL inducer containing, as an active ingredient, a polynucleotide encoding a protein selected from the group consisting of the polynucleotide of the present invention and/or GRIK2 and Claspin is, for example, the polynucleotide of the present invention and/or GRIK2 and Claspin Treatment-resistant bladder cancer can be treated and/or prevented by administering to a cancer patient and expressing a polynucleotide encoding a protein selected from the group consisting of.

 例えば発現ベクターに組み込まれた本発明のポリヌクレオチドならびに/またはGRIK2およびClaspinからなる群から選択されるタンパク質をコードするポリヌクレオチドを以下の方法によりがん患者に投与すると、抗原提示細胞内で腫瘍抗原ペプチドが高発現する。その後、生じた腫瘍抗原ペプチドがHLA-A02抗原などのHLA抗原と結合して複合体を形成し、該複合体が抗原提示細胞表面に高密度に提示されることにより、がん特異的CTLが体内で効率的に増殖し、がん細胞を破壊する。以上のようにして、がんの治療または予防が達成される。したがって、本発明のポリヌクレオチドならびに/またはGRIK2およびClaspinからなる群から選択されるタンパク質をコードするポリヌクレオチドを含む医薬組成物もまた、本発明に包含される。かかる医薬組成物は、好ましくはがんの予防および/または治療用の組成物、すなわちがんの予防および/または治療剤である。また、本発明の医薬組成物は、がん細胞(好ましくはがん幹細胞)に特異的なCTLを誘導、すなわちがん細胞特異的な細胞性免疫を活性化することによりがんを予防および/または治療するものであるため、好ましくはがんの予防および/または治療用ワクチンである。 For example, when the polynucleotide of the present invention incorporated into an expression vector and/or a polynucleotide encoding a protein selected from the group consisting of GRIK2 and Claspin is administered to a cancer patient by the following method, tumor antigens are expressed in antigen-presenting cells. Peptides are highly expressed. Thereafter, the resulting tumor antigen peptide binds to an HLA antigen such as HLA-A02 antigen to form a complex, and the complex is presented at high density on the surface of antigen-presenting cells, thereby generating cancer-specific CTL. It multiplies efficiently in the body and destroys cancer cells. Treatment or prevention of cancer is achieved as described above. Pharmaceutical compositions comprising a polynucleotide of the invention and/or a polynucleotide encoding a protein selected from the group consisting of GRIK2 and Claspin are therefore also encompassed by the invention. Such a pharmaceutical composition is preferably a composition for cancer prevention and/or treatment, ie, a cancer prevention and/or treatment agent. In addition, the pharmaceutical composition of the present invention can prevent and/or prevent cancer by inducing CTLs specific to cancer cells (preferably cancer stem cells), that is, by activating cancer cell-specific cellular immunity. Alternatively, it is a vaccine for the prevention and/or treatment of cancer, since it is for treatment.

 本発明のポリヌクレオチドを有効成分とするCTL誘導剤/医薬組成物は、好ましくはHLA-A02抗原陽性の対象であって、GRIK2およびClaspin陽性のがんに罹患した対象に対して使用することができる。GRIK2およびClaspin陽性のがんとしては、例えば抵抗性膀胱がん等のがん(腫瘍)などが挙げられ、本発明のCTL誘導剤は、これらのがんの予防または治療のために使用することができる。
 本発明のポリヌクレオチドならびに/またはGRIK2タンパク質およびClaspinタンパク質からなる群から選択されるタンパク質をコードするポリヌクレオチドを投与し細胞内に導入する方法としては、ウイルスベクターによる方法およびその他の方法(日経サイエンス,1994年4月号,20-45頁,月刊薬事,36(1),23-48(1994)、実験医学増刊,12(15),(1994)、およびこれらの引用文献等、これらの文献は引用により本願の一部を構成する)のいずれの方法も適用することができる。したがって、本発明の医薬組成物の一態様において、本発明のポリヌクレオチドならびに/またはGRIK2タンパク質およびClaspinタンパク質からなる群から選択されるタンパク質をコードするポリヌクレオチドを含むベクターが有効成分として含有される。
The CTL inducer/pharmaceutical composition containing the polynucleotide of the present invention as an active ingredient can be preferably used for subjects who are HLA-A02 antigen-positive and have GRIK2 and Claspin-positive cancer. can. Examples of GRIK2- and Claspin-positive cancers include cancers (tumors) such as resistant bladder cancer, and the CTL inducer of the present invention can be used for the prevention or treatment of these cancers. can be done.
Methods for administering and introducing into cells the polynucleotide of the present invention and/or a polynucleotide encoding a protein selected from the group consisting of GRIK2 protein and Claspin protein include methods using viral vectors and other methods (Nikkei Science, April 1994, pp. 20-45, Gekkan Yakuji, 36(1), 23-48 (1994), Jikken Igaku Supplement, 12(15), (1994), and references cited therein. incorporated herein by reference) can be applied. Therefore, in one aspect of the pharmaceutical composition of the present invention, a vector comprising the polynucleotide of the present invention and/or a polynucleotide encoding a protein selected from the group consisting of GRIK2 protein and Claspin protein is contained as an active ingredient.

 ウイルスベクターによる方法としては、例えばレトロウイルス、アデノウイルス、アデノ関連ウイルス、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シンビスウイルス等のDNAウイルスまたはRNAウイルスに本発明のDNAを組み込んで導入する方法が挙げられる。この中で、レトロウイルス、アデノウイルス、アデノ関連ウイルス、ワクシニアウイルス等を用いた方法が特に好ましい。
 その他の方法としては、発現プラスミドを直接筋肉内に投与する方法(DNAワクチン法)、リポソーム法、リポフェクチン法、マイクロインジェクション法、リン酸カルシウム法、エレクトロポレーション法等が挙げられ、特にDNAワクチン法、リポソーム法が好ましい。
As a method using a viral vector, for example, the DNA of the present invention is introduced by incorporating it into a DNA virus or RNA virus such as retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia virus, pox virus, polio virus, and Simbis virus. method. Among these, methods using retroviruses, adenoviruses, adeno-associated viruses, vaccinia viruses and the like are particularly preferred.
Other methods include direct intramuscular administration of an expression plasmid (DNA vaccine method), liposome method, lipofectin method, microinjection method, calcium phosphate method, electroporation method, and the like, particularly DNA vaccine method and liposome method. method is preferred.

 本発明のポリヌクレオチドならびに/またはGRIK2タンパク質およびClaspinタンパク質からなる群から選択されるタンパク質をコードするポリヌクレオチドを実際に医薬として作用させるには、当該ポリヌクレオチドを直接体内に導入するin vivo法、およびヒトからある種の細胞を採集し体外で本発明のポリヌクレオチドを該細胞に導入しその細胞を体内に戻すex vivo法がある(日経サイエンス,1994年4月号,20-45頁,月刊薬事,36(1),23-48(1994)、実験医学増刊,12(15),(1994)、およびこれらの引用文献等、これらの文献は引用により本願の一部を構成する)。in vivo法がより好ましい。
 本発明のポリヌクレオチドならびに/またはGRIK2タンパク質およびClaspinタンパク質からなる群から選択されるタンパク質をコードするポリヌクレオチドをin vivo法により投与する場合は、治療目的の疾患、症状等に応じた適当な投与経路および投与形態を適宜選択して投与し得る。例えば、静脈、動脈、皮下、皮内、筋肉内等に注射可能な形態で投与することができる。in vivo法により投与する場合は、例えば、液剤等の製剤形態をとり得るが、一般的には有効成分である本発明のポリヌクレオチドを含有する注射剤等とされ、必要に応じて、医薬上許容されるキャリアー(担体)を加えてもよい。また、本発明のポリヌクレオチドを含有するリポソームまたは膜融合リポソーム(センダイウイルス(HVJ)-リポソーム等)においては、懸濁剤、凍結剤、遠心分離濃縮凍結剤等のリポソーム製剤の形態とすることができる。
In order to make the polynucleotide of the present invention and/or a polynucleotide encoding a protein selected from the group consisting of GRIK2 protein and Claspin protein actually act as a medicine, an in vivo method of directly introducing the polynucleotide into the body, and There is an ex vivo method in which certain cells are collected from humans, the polynucleotide of the present invention is introduced into the cells outside the body, and the cells are returned to the body (Nikkei Science, April 1994, pp. 20-45, Monthly Pharmaceutical Affairs). , 36(1), 23-48 (1994), Experimental Medicine Extra, 12(15), (1994), and references cited therein, which are incorporated herein by reference). In vivo methods are more preferred.
When administering the polynucleotide of the present invention and/or a polynucleotide encoding a protein selected from the group consisting of GRIK2 protein and Claspin protein by an in vivo method, an appropriate administration route according to the disease to be treated, symptoms, etc. and the administration form can be appropriately selected and administered. For example, it can be administered in an injectable form intravenously, arterially, subcutaneously, intradermally, intramuscularly, and the like. When administered by an in vivo method, for example, it can be in the form of a liquid formulation or the like, but it is generally an injection containing the polynucleotide of the present invention, which is an active ingredient. An acceptable carrier may be added. In addition, liposomes or membrane-fusion liposomes (Sendai virus (HVJ)-liposomes, etc.) containing the polynucleotide of the present invention may be in the form of liposome preparations such as suspensions, freezing agents, and centrifugation-concentrating freezing agents. can.

 製剤中の本発明のポリヌクレオチドの含量は、治療目的の疾患、患者の年齢、体重等により適宜調整することができるが、通常、ポリヌクレオチドの含量として、0.0001mg~100mg、好ましくは0.001mg~10mgの本発明のポリヌクレオチドを、数日ないし数月に1回投与するのが好ましい。
 当業者であれば、好適な細胞、ベクター、投与方法、投与形態および投与量を適宜選択することが可能である。
The content of the polynucleotide of the present invention in the preparation can be appropriately adjusted according to the disease to be treated, the patient's age, body weight, etc. Generally, the content of the polynucleotide is 0.0001 mg to 100 mg, preferably 0.001 mg to 100 mg. 001 mg to 10 mg of the polynucleotide of the invention is preferably administered once every few days to several months.
A person skilled in the art can appropriately select suitable cells, vectors, administration methods, dosage forms and dosages.

 また近年、複数のCTLエピトープ(腫瘍抗原ペプチド)を連結したポリエピトープペプチドをコードするポリヌクレオチド、あるいはCTLエピトープとヘルパーエピトープとを連結させたポリエピトープペプチドをコードするポリヌクレオチドが、in vivoで効率的にCTL誘導活性を有することが示されている。例えばJournal of Immunology 1999, 162: 3915-3925(本文献は引用により本願の一部を構成する)には、HBV由来HLA-A2拘束性抗原ペプチド6種類、HLA-A11拘束性抗原ペプチド3種類、およびヘルパーエピトープを連結したエピトープペプチドをコードするDNA(ミニジーン)が、in vivoでそれぞれのエピトープに対するCTLを効果的に誘導したことが記載されている。
 したがって、本発明のペプチドをコードするポリヌクレオチドを1種または2種以上連結させることにより、また場合によっては他のペプチドをコードするポリヌクレオチドも連結させることにより作製されたポリヌクレオチドを、適当な発現ベクターに組み込むことにより、CTLの誘導剤の有効成分とすることができる。このようなCTLの誘導剤も、前記と同様の投与方法および投与形態をとることができる。
Moreover, in recent years, a polynucleotide encoding a polyepitope peptide in which a plurality of CTL epitopes (tumor antigen peptides) are linked, or a polynucleotide encoding a polyepitope peptide in which a CTL epitope and a helper epitope are linked has been found to be effective in vivo. has been shown to have CTL-inducing activity. For example, Journal of Immunology 1999, 162: 3915-3925 (this document is incorporated herein by reference) describes six HBV-derived HLA-A2-restricted antigenic peptides, three HLA-A11-restricted antigenic peptides, and a DNA (minigene) encoding an epitope peptide linked with a helper epitope effectively induced CTL against each epitope in vivo.
Thus, polynucleotides produced by ligating one or more polynucleotides encoding the peptides of the present invention, and optionally also polynucleotides encoding other peptides, can be appropriately expressed. By incorporating it into a vector, it can be used as an active ingredient of a CTL inducer. Such a CTL inducer can also be administered in the same administration method and administration form as described above.

 また近年、がん細胞が免疫細胞による攻撃を遮蔽することにより、免疫系による排除を回避していること、かかる遮蔽は、もともと自己に対する過剰な免疫反応や正常組織に対する障害を抑えるために備わっている「免疫チェックポイント」と呼ばれるメカニズムを利用していることなどがわかってきた。したがって、がん細胞において免疫チェックポイントの機能を抑制することにより、免疫細胞による攻撃を効果的なものとすることができる。本発明の医薬組成物は、腫瘍特異的な免疫細胞を誘導することにより抗腫瘍効果を発揮するものであるため、免疫チェックポイントの機能を併せて抑制することにより、より高い治療効果を発揮することができる。したがって好ましい一態様において、本発明の医薬組成物は、免疫チェックポイント阻害剤とともに用いられる。 In recent years, it has also been found that cancer cells avoid elimination by the immune system by shielding against attacks by immune cells. It has become clear that it uses a mechanism called "immune checkpoint" that Therefore, by suppressing the functions of immune checkpoints in cancer cells, the attack by immune cells can be made effective. Since the pharmaceutical composition of the present invention exhibits an antitumor effect by inducing tumor-specific immune cells, it exhibits a higher therapeutic effect by suppressing immune checkpoint functions as well. be able to. Therefore, in one preferred aspect, the pharmaceutical composition of the present invention is used together with an immune checkpoint inhibitor.

 本発明において、ある剤Aと別の剤Bとを「ともに用いる」または「併用する」という場合、剤Aが効果を発揮している間に剤Bが効果を発揮する状態にすることをいう。したがって、剤Aの投与と同時に剤Bを投与してもよいし、剤Aの投与後一定の間隔を空けて剤Bを投与してもよい。また、剤Aと剤Bとは同一の投与形態であってもよいし、異なる投与形態であってもよい。さらに、剤Aまたは剤Bがその効果を喪失してしまわない限り、剤Aと剤Bとを混合して一つの組成物としてもよい。 In the present invention, when a certain agent A and another agent B are “used together” or “used in combination”, it means that while agent A is exerting its effect, agent B is in a state of exerting its effect. . Therefore, the agent B may be administered simultaneously with the administration of the agent A, or the agent B may be administered at a certain interval after the administration of the agent A. In addition, agent A and agent B may have the same dosage form, or may have different dosage forms. Furthermore, agent A and agent B may be mixed into one composition as long as agent A or agent B does not lose its effect.

 本態様における免疫チェックポイント阻害剤としては、本発明の組成物のCTLを誘導する能力を阻害しない限り、免疫チェックポイント阻害剤として公知である任意の剤を用いることができる。免疫チェックポイント阻害剤として知られたものとしては、これに限定するものではないが、例えば抗PD-1抗体、抗PD-L1抗体、抗CTLA-4抗体、抗TIM-3抗体、抗LAG-3抗体、抗B7-H3抗体、抗B7-H4抗体、抗B7-H5抗体、抗TIGIT抗体などが挙げられる。 Any agent known as an immune checkpoint inhibitor can be used as the immune checkpoint inhibitor in this embodiment, as long as it does not inhibit the ability of the composition of the present invention to induce CTL. Known immune checkpoint inhibitors include, but are not limited to, anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-TIM-3 antibody, anti-LAG- 3 antibody, anti-B7-H3 antibody, anti-B7-H4 antibody, anti-B7-H5 antibody, anti-TIGIT antibody and the like.

<6>本発明の抗原提示細胞
 前記した本発明のペプチドおよびポリヌクレオチドは、例えば、以下のようにin vitroで利用することができる。すなわち本発明のペプチドおよびポリヌクレオチドのいずれかと抗原提示能を有する細胞とをin vitroで接触させることにより、本発明の抗原ペプチドを抗原として提示する抗原提示細胞を作製することができる。したがって本発明の一態様において、細胞表面にHLA-A02抗原と本発明のペプチドとの複合体を提示させた抗原提示細胞、およびその製造方法を提供するものである。上述のとおり、本発明のペプチドおよびポリヌクレオチドはがんを予防および/または治療するために利用することが可能である。したがって本態様の抗原提示細胞またはその製造方法は、好ましくはがん患者由来の単離された細胞を利用するものである。具体的には、がん患者由来の単離された抗原提示能を有する細胞と、本発明のペプチドまたはポリヌクレオチドのいずれかをin vitroで接触させることにより、当該細胞の細胞表面にHLA-A02抗原と本発明のペプチドとの複合体を提示させた抗原提示細胞を製造する。
<6> Antigen-presenting cells of the present invention The peptides and polynucleotides of the present invention described above can be used in vitro, for example, as follows. That is, antigen-presenting cells that present the antigenic peptide of the present invention as an antigen can be prepared by contacting in vitro either the peptide or polynucleotide of the present invention with a cell capable of presenting an antigen. Accordingly, one aspect of the present invention provides an antigen-presenting cell that presents a complex of the HLA-A02 antigen and the peptide of the present invention on the cell surface, and a method for producing the same. As mentioned above, the peptides and polynucleotides of the invention can be used to prevent and/or treat cancer. Therefore, the antigen-presenting cells of this embodiment or the method for producing the same preferably utilize isolated cells derived from cancer patients. Specifically, by contacting in vitro either the peptide or polynucleotide of the present invention with an isolated cell having antigen-presenting ability derived from a cancer patient, HLA-A02 is present on the cell surface of the cell. Antigen-presenting cells that present the complex of the antigen and the peptide of the present invention are produced.

 ここで「抗原提示能を有する細胞」とは、本発明のペプチドを提示することの可能なMHC、好ましくはHLA、より好ましくはHLA-A02抗原を細胞表面に発現する細胞であれば特に限定されないが、これらのうち、プロフェッショナル抗原提示細胞が好ましく、特に抗原提示能が高いとされる樹状細胞がより好ましい。
 また、前記抗原提示能を有する細胞から本発明の抗原提示細胞を調製するために添加される物質としては、本発明のペプチドまたはポリヌクレオチドのいずれであってもよい。
 本発明の抗原提示細胞は、例えば、がん患者から抗原提示能を有する細胞を単離し、該細胞に本発明のペプチドをin vitroでパルスして、HLA-A02抗原と本発明のペプチドとの複合体を提示させることにより得られる(Cancer Immunol. Immunother., 46:82, 1998、J. Immunol., 158, p1796, 1997、Cancer Res., 59, p1184, 1999)。樹状細胞を用いる場合は、例えば、がん患者の末梢血からフィコール法によりリンパ球を分離し、その後非付着細胞を除き、付着細胞をGM-CSFおよびIL-4存在下で培養して樹状細胞を誘導し、当該樹状細胞を本発明のペプチドと共に培養してパルスすることなどにより、本発明の抗原提示細胞を調製することができる。
Here, "cells having antigen-presenting ability" are not particularly limited as long as they express MHC capable of presenting the peptide of the present invention, preferably HLA, more preferably HLA-A02 antigen on the cell surface. However, among these, professional antigen-presenting cells are preferred, and dendritic cells, which are said to have particularly high antigen-presenting ability, are more preferred.
Moreover, the substance added to prepare the antigen-presenting cells of the present invention from the cells capable of presenting antigens may be either the peptide or the polynucleotide of the present invention.
The antigen-presenting cells of the present invention can be obtained, for example, by isolating cells having antigen-presenting ability from cancer patients, pulsing the cells with the peptide of the present invention in vitro, and obtaining the HLA-A02 antigen and the peptide of the present invention. It is obtained by presenting a complex (Cancer Immunol. Immunother., 46:82, 1998, J. Immunol., 158, p1796, 1997, Cancer Res., 59, p1184, 1999). When using dendritic cells, for example, lymphocytes are separated from the peripheral blood of cancer patients by the Ficoll method, then non-adherent cells are removed, and the adherent cells are cultured in the presence of GM-CSF and IL-4 to produce dendritic cells. The antigen-presenting cells of the present invention can be prepared by inducing dendritic cells, culturing and pulsing the dendritic cells with the peptide of the present invention, and the like.

 また、前記抗原提示能を有する細胞に本発明のポリヌクレオチドを導入することにより本発明の抗原提示細胞を調製する場合は、当該ポリヌクレオチドは、DNAの形態であっても、RNAの形態であってもよい。具体的には、DNAの場合はCancer Res.,56:p5672,1996やJ.Immunol.,161: p5607,1998(これらの文献は引用により本願の一部を構成する)などを参考にして行うことができ、またRNAの場合はJ.Exp.Med., 184: p465,1996(本文献は引用により本願の一部を構成する)などを参考にして行うことができる。 When the antigen-presenting cell of the present invention is prepared by introducing the polynucleotide of the present invention into the cell capable of presenting an antigen, the polynucleotide may be in the form of DNA or RNA. may Specifically, in the case of DNA, refer to Cancer Res., 56: p5672, 1996 and J. Immunol., 161: p5607, 1998 (these documents constitute a part of the present application by reference). In the case of RNA, J. Exp. Med., 184: p465, 1996 (this document constitutes a part of the present application by reference) can be referred to.

 前記抗原提示細胞はCTLの誘導剤および/または医薬組成物の有効成分とすることができる。当該抗原提示細胞を有効成分として含有するCTLの誘導剤および/または医薬組成物は、抗原提示細胞を安定に維持するために、生理食塩水、リン酸緩衝生理食塩水(PBS)、培地等を含むことが好ましい。投与方法としては、静脈内投与、皮下投与、皮内投与などが挙げられる。このような抗原提示細胞を有効成分として含有してなるCTLの誘導剤および/または医薬組成物を患者の体内に戻すことにより、GRIK2またはClaspin陽性のがんに罹患している患者の体内で、本発明のペプチドを抗原提示するがん細胞に特異的なCTLが効率良く誘導され、結果として本発明のペプチドを抗原提示するGRIK2またはClaspin陽性のがんを予防および/または治療することができる。 The antigen-presenting cells can be used as a CTL inducer and/or an active ingredient of a pharmaceutical composition. The CTL inducer and/or pharmaceutical composition containing the antigen-presenting cells as an active ingredient contains physiological saline, phosphate-buffered saline (PBS), medium, etc. in order to stably maintain the antigen-presenting cells. preferably included. Administration methods include intravenous administration, subcutaneous administration, and intradermal administration. By returning a CTL inducer and/or pharmaceutical composition containing such antigen-presenting cells as an active ingredient to the patient's body, the body of a patient suffering from GRIK2- or Claspin-positive cancer, CTLs specific to cancer cells that present the peptide of the present invention as antigens are efficiently induced, and as a result, GRIK2- or Claspin-positive cancers that present the peptide of the present invention as antigens can be prevented and/or treated.

<7>本発明の細胞傷害性T細胞(CTL)
 本発明のペプチドおよびポリヌクレオチドは、例えば以下のようにin vitroで利用することができる。すなわち本発明のペプチドおよびポリヌクレオチドのいずれかと末梢血リンパ球とをin vitroで接触させることにより、CTLを誘導することができる。したがって本発明の一態様において、本発明のペプチドを抗原提示する細胞を特異的に傷害するCTLおよびその誘導方法を提供するものである。上述のとおり、本発明のペプチドおよびポリヌクレオチドはがんを予防および/または治療するために利用することが可能である。したがって本態様のCTLおよびその誘導方法には、好ましくは癌患者由来の末梢血リンパ球を利用するものである。具体的には、がん患者由来の末梢血リンパ球と、本発明のペプチドまたはポリヌクレオチドのいずれかをin vitroで接触させることにより、本発明のペプチドを抗原提示する細胞を特異的に傷害するCTLを誘導する。
<7> Cytotoxic T cells (CTL) of the present invention
Peptides and polynucleotides of the invention can be utilized in vitro, for example, as follows. That is, CTLs can be induced by contacting peripheral blood lymphocytes in vitro with either the peptide or polynucleotide of the present invention. Accordingly, one aspect of the present invention provides CTLs that specifically damage cells that present the peptide of the present invention as antigens, and methods for inducing the same. As mentioned above, the peptides and polynucleotides of the invention can be used to prevent and/or treat cancer. Therefore, peripheral blood lymphocytes derived from cancer patients are preferably used in the CTLs of this embodiment and the method for inducing them. Specifically, by contacting in vitro either the peptide or polynucleotide of the present invention with peripheral blood lymphocytes derived from a cancer patient, the peptide of the present invention is specifically damaged by antigen-presenting cells. induce CTLs;

 例えばメラノーマにおいては、患者本人の腫瘍内浸潤T細胞を体外で大量に培養して、これを患者に戻す養子免疫療法に治療効果が認められている(J.Natl.Cancer.Inst.,86:1159,1994)。またマウスのメラノーマにおいては、脾細胞をin vitroで腫瘍抗原ペプチドTRP-2により刺激し、腫瘍抗原ペプチドに特異的なCTLを増殖させ、該CTLをメラノーマ移植マウスに投与することにより転移抑制が認められている(J.Exp.Med.,185:453,1997)。これは、抗原提示細胞のMHCと腫瘍抗原ペプチドとの複合体を特異的に認識するCTLをin vitroで増殖させた結果に基づくものである。したがって、本発明のペプチドまたはポリヌクレオチドを用いて、in vitroで患者末梢血リンパ球を刺激して腫瘍特異的CTLを増やした後、このCTLを患者に戻す治療法は有用であると考えられる。 For melanoma, for example, adoptive immunotherapy, in which a large amount of the patient's own tumor-infiltrating T cells are cultured outside the body and returned to the patient, has been shown to have therapeutic effects (J.Natl.Cancer.Inst., 86: 1159, 1994). In mouse melanoma, metastasis was suppressed by stimulating splenocytes with the tumor antigen peptide TRP-2 in vitro to proliferate CTL specific to the tumor antigen peptide, and administering the CTL to melanoma-transplanted mice. (J. Exp. Med., 185:453, 1997). This is based on the results of in vitro proliferation of CTLs that specifically recognize complexes of MHC of antigen-presenting cells and tumor antigen peptides. Therefore, it is believed that therapeutic methods in which the peptides or polynucleotides of the present invention are used to stimulate patient peripheral blood lymphocytes in vitro to increase tumor-specific CTLs, and then these CTLs are returned to the patient.

 当該CTLは、がんの治療剤または予防剤の有効成分とすることができる。該治療剤または予防剤は、CTLを安定に維持するために、生理食塩水、リン酸緩衝生理食塩水(PBS)、培地等を含むことが好ましい。投与方法としては、静脈内投与、皮下投与、皮内投与などが挙げられる。このようなCTLを有効成分として含有してなるがんの治療または予防剤を患者の体内に戻すことにより、本発明のGRIK2またはClaspin陽性のがんに罹患した患者の体内でCTLによるがん細胞の傷害作用が促進され、がん細胞を破壊することにより、がんを治療することができる。 The CTL can be used as an active ingredient of a cancer therapeutic or preventive agent. The therapeutic or prophylactic agent preferably contains physiological saline, phosphate-buffered saline (PBS), medium, etc., in order to stably maintain CTLs. Administration methods include intravenous administration, subcutaneous administration, and intradermal administration. By returning such a cancer therapeutic or preventive agent containing CTL as an active ingredient to the patient's body, cancer cells by CTL in the body of a patient suffering from GRIK2- or Claspin-positive cancer of the present invention. can treat cancer by promoting the cytotoxic effects of and destroying cancer cells.

 本発明のCTLは、腫瘍細胞に抗原提示されている本発明のペプチドとHLAとの複合体を標的として細胞傷害活性を発揮することができる。すなわち本発明のCTLのT細胞受容体(TCR)は、本発明のペプチドとHLAとの複合体を認識するものである。近年、CTLに発現する特定のペプチド-HLA複合体を認識するTCR遺伝子をクローニングし、当該TCR遺伝子をがん患者より採取したCD8T細胞に遺伝子導入して人工的にCTLを作製し、大量に培養した後、患者体内に戻す養子免疫療法が考案されている(例えばOchi et al., Blood. 2011 Aug 11;118(6):1495-503など)。本発明において、「人工CTL」という場合、前述のようにペプチドとHLAとの複合体を認識するTCRをコードする遺伝子を、T細胞に遺伝子導入して作製されたCTLを意味し、これもまた上述の天然のCTLと同様にがんの治療に用いることができるものである。したがってかかる人工CTLもまた、本発明のCTLに包含される。かかる態様において、人工CTLに遺伝子導入される、本発明のペプチドとHLAとの複合体を認識するTCRは、該複合体に対する結合親和性や細胞傷害活性を上げるために、適宜改変されてもよい。したがって、「人工CTL」には、本発明のペプチドとHLAとの複合体を認識するTCRをコードする遺伝子を、適宜遺伝子改変したのち患者由来のT細胞に遺伝子導入して作製されたCTLも包含される。人工CTLの作製には、当該技術分野において知られた方法を用いることができる。 The CTL of the present invention can exert cytotoxic activity by targeting the complex of the peptide of the present invention and HLA, which is presented as an antigen to tumor cells. That is, the T cell receptor (TCR) of the CTL of the present invention recognizes the complex of the peptide of the present invention and HLA. In recent years, a TCR gene that recognizes a specific peptide-HLA complex expressed in CTL has been cloned, and the TCR gene has been introduced into CD8 + T cells collected from cancer patients to artificially produce CTL, and a large amount of Adoptive immunotherapy has been devised in which cells are cultured for 10 days and then transferred back into the patient (eg, Ochi et al., Blood. 2011 Aug 11;118(6):1495-503). In the present invention, the term "artificial CTL" means a CTL produced by introducing a gene encoding a TCR that recognizes a complex of a peptide and HLA into T cells as described above. Similar to the natural CTL described above, it can be used for the treatment of cancer. Therefore, such artificial CTLs are also included in the CTLs of the present invention. In this embodiment, the TCR that recognizes the complex of the peptide of the present invention and HLA, which is introduced into the artificial CTL, may be appropriately modified in order to increase the binding affinity and cytotoxic activity for the complex. . Therefore, "artificial CTL" also includes CTLs produced by appropriately genetically modifying a gene encoding a TCR that recognizes the complex of the peptide of the present invention and HLA, and then introducing the gene into patient-derived T cells. be done. Methods known in the art can be used to generate artificial CTLs.

<8>本発明のペプチドを用いた腫瘍特異的CTL検出剤
 本発明のペプチドは、腫瘍特異的CTLに認識され得るため、腫瘍特異的CTL検出剤の成分として有用である。したがって、本発明はまた、本発明のペプチドを含む、腫瘍特異的CTL検出剤に関する。一態様において、本発明の腫瘍特異的CTL検出剤は、本発明のペプチドとHLA-A02とを含有するHLAマルチマー(モノマー、ダイマー、テトラマー、ペンタマーおよびデキストラマー)を含む。
<8> Agent for Detecting Tumor-Specific CTL Using the Peptide of the Present Invention The peptide of the present invention is useful as a component of an agent for detecting tumor-specific CTL because it can be recognized by tumor-specific CTL. Accordingly, the present invention also relates to tumor-specific CTL detection agents comprising the peptides of the present invention. In one aspect, the tumor-specific CTL detection agent of the present invention comprises HLA multimers (monomers, dimers, tetramers, pentamers and dextramers) containing the peptide of the present invention and HLA-A02.

 例えば、HLAテトラマーとは、HLAのα鎖とβ2ミクログロブリンをペプチド(エピトープペプチド)と会合させた複合体(HLAモノマー)をビオチン化し、アビジンに結合させることにより4量体化したものを指す(Science 279: 2103-2106(1998)、Science 274: 94-96 (1996))。現在では種々の抗原ペプチドを含有するHLAテトラマーが市販されており(例えば(株)医学生物学研究所より)、本発明のペプチドとHLA-A02とを含有するHLAテトラマーを容易に作製することができる。また、HLAダイマーおよびHLAペンタマーも同様な原理に基づいており、これらにおいては、それぞれ、前記HLAモノマーが2量体化および5量体化されている。したがって、本発明のペプチドとHLA-A02とを含有するHLAマルチマーもまた、本発明の一態様である。 For example, HLA tetramer refers to a tetramer obtained by biotinylating a complex (HLA monomer) in which HLA α chain and β2 microglobulin are associated with a peptide (epitope peptide) and binding to avidin ( Science 279: 2103-2106 (1998), Science 274: 94-96 (1996)). At present, HLA tetramers containing various antigenic peptides are commercially available (for example, from Medical and Biological Laboratories, Inc.), and HLA tetramers containing the peptide of the present invention and HLA-A02 can be easily produced. can. HLA dimers and HLA pentamers are also based on similar principles, in which the HLA monomers are dimerized and pentamerized, respectively. Therefore, HLA multimers containing a peptide of the invention and HLA-A02 are also an aspect of the invention.

 具体的には、例えば配列番号1または2のいずれかに記載のアミノ酸配列からなるペプチドとHLA-A02とを含有するHLAテトラマーが挙げられる。当該HLAテトラマーは、フローサイトメトリー、蛍光顕微鏡等の既知の検出手段により結合したCTLを容易に選別または検出することができるように蛍光標識されていることが好ましい。具体的には、例えばフィコエリスリン(PE)、フルオレセインイソチオシアネート(FITC)、ペリジニンクロロフィルプロテイン(PerCP)などにより標識されたHLAテトラマーが挙げられる。 Specifically, for example, an HLA tetramer containing a peptide consisting of the amino acid sequence of either SEQ ID NO: 1 or 2 and HLA-A02 can be mentioned. The HLA tetramer is preferably fluorescently labeled so that bound CTLs can be easily selected or detected by known detection means such as flow cytometry and fluorescence microscopy. Specific examples include HLA tetramers labeled with phycoerythrin (PE), fluorescein isothiocyanate (FITC), peridinin chlorophyll protein (PerCP), and the like.

 HLAテトラマーの製法例としては、例えば、Science 279: 2103-2106(1998)、Science 274: 94-96 (1996)などの文献に記載のものが挙げられ、簡単に述べると以下のようになる。
 まずタンパク質を発現可能な大腸菌や哺乳動物細胞に、HLA-A02のα鎖発現ベクターおよびβ2ミクログロブリン発現ベクターを導入し発現させる。ここでは大腸菌(例えばBL21)を用いることが好ましい。得られた単量体HLA-A02と本発明のペプチドとを混合し、可溶性のHLA-ペプチド複合体を形成させる。次にHLA-ペプチド複合体におけるHLA-A02のα鎖のC末端部位の配列をBirA酵素によりビオチン化する。このビオチン化されたHLA-ペプチド複合体と蛍光標識されたアビジンとを4:1のモル比で混合することにより、HLAテトラマーを調製することができる。なお、前記各ステップにおいて、ゲルろ過等によるタンパク精製を行うことが好ましい。
Examples of methods for producing HLA tetramers include those described in literatures such as Science 279: 2103-2106 (1998) and Science 274: 94-96 (1996), which are briefly described below.
First, an HLA-A02 α-chain expression vector and a β2-microglobulin expression vector are introduced into Escherichia coli or mammalian cells capable of expressing proteins and expressed. E. coli (eg, BL21) is preferably used here. The obtained monomeric HLA-A02 and the peptide of the present invention are mixed to form a soluble HLA-peptide complex. Next, the sequence of the C-terminal region of the α chain of HLA-A02 in the HLA-peptide complex is biotinylated with BirA enzyme. HLA tetramers can be prepared by mixing this biotinylated HLA-peptide complex and fluorescently labeled avidin at a molar ratio of 4:1. In each of the steps described above, it is preferable to perform protein purification by gel filtration or the like.

<9>がん幹細胞検出剤
 上述のとおり、本発明者らはGRIK2およびClaspinからなる群から選択される遺伝子が膀胱がん幹細胞において高発現している腫瘍抗原であることを初めて見出した。すなわち本発明者らにより、GRIK2およびClaspinは、膀胱がん由来の非がん幹細胞や、通常の体細胞においては発現が見られないが、膀胱がん幹細胞においては高発現している遺伝子であることが初めて明らかとなった。かかる知見からGRIK2およびClaspinからなる群から選択される遺伝子は、膀胱がん幹細胞を識別するためのマーカーとして利用可能であることが見出された。したがって本発明は一側面において、GRIK2およびClaspinからなる群から選択される遺伝子の発現産物を検出するための検出剤を含む、膀胱がん幹細胞検出剤に関する。
<9> Agent for Detecting Cancer Stem Cells As described above, the present inventors discovered for the first time that a gene selected from the group consisting of GRIK2 and Claspin is a tumor antigen highly expressed in bladder cancer stem cells. That is, the present inventors have determined that GRIK2 and Claspin are genes that are highly expressed in bladder cancer stem cells, although their expression is not observed in bladder cancer-derived non-cancer stem cells or normal somatic cells. became clear for the first time. Based on these findings, it was found that genes selected from the group consisting of GRIK2 and Claspin can be used as markers for identifying bladder cancer stem cells. Accordingly, in one aspect, the present invention relates to a bladder cancer stem cell detection agent comprising a detection agent for detecting an expression product of a gene selected from the group consisting of GRIK2 and Claspin.

 本発明において、単にGRIK2などという場合、別段の記載のない限りGRIK2遺伝子などを意味する。好ましくはヒトの遺伝子であるが、そのホモログであってもよい。
 本発明において「遺伝子の発現」とは、該遺伝子の転写を起点とする一連の生体反応をいい、「発現産物」とは、例えばmRNAや内在性ポリペプチドなど、この一連の生体反応によって生成される分子をいう。遺伝子の発現産物である内在性ポリペプチドは、好ましくは当該遺伝子の発現により最終的に産生されるタンパク質である。
 本発明において「遺伝子の発現産物の検出剤」とは、GRIK2およびClaspinからなる群から選択される遺伝子の発現産物を、定性的および/または定量的に検出するための剤を意味する。
In the present invention, simply referring to GRIK2 and the like means the GRIK2 gene and the like unless otherwise specified. It is preferably a human gene, but may be a homolog thereof.
In the present invention, "expression of a gene" refers to a series of biological reactions originating from transcription of the gene, and "expression product" refers to, for example, mRNA and endogenous polypeptides produced by this series of biological reactions. A molecule that An endogenous polypeptide that is the expression product of a gene is preferably the protein ultimately produced by expression of the gene.
In the present invention, the "agent for detecting gene expression products" means an agent for qualitatively and/or quantitatively detecting a gene expression product selected from the group consisting of GRIK2 and Claspin.

 本発明のがん幹細胞検出剤は、GRIK2およびClaspinからなる群から選択される遺伝子の発現産物を検出するための検出剤を含む。検出対象においてGRIK2およびClaspinからなる群から選択される遺伝子の発現産物が検出された場合、検出対象ががん幹細胞を有する、すなわちがん幹細胞が検出されたと決定できる。本発明のがん幹細胞検出剤は、in vivoでもin vitroでも用いることが可能であるが、好ましくは生物個体(検査対象)から採取された生体試料由来の細胞集団(検出対象)に対してin vitroで用いる。この場合、検出対象である生体試料由来の細胞集団においてがん幹細胞が検出されたことは、すなわち検査対象である生体試料が採取された生物個体においてもがん幹細胞が検出された、すなわち該生物個体ががん幹細胞を有することを意味する。したがって、後述するように、本発明のがん幹細胞検出剤を使用して、検査対象においてがん幹細胞を検出する方法も本発明に包含される。
 検査対象である生物個体は、例えば膀胱において腫瘍を有し得る生物個体であればいかなる生物個体であってもよいが、好ましくはヒトおよび非ヒト哺乳動物(例えば、マウス、ラット、モルモット、ハムスターなどの齧歯類、チンパンジーなどの霊長類、ウシ、ヤギ、ヒツジなどの偶蹄目、ウマなどの奇蹄目、ウサギ、イヌ、ネコなど)の個体であり、より好ましくはヒトの個体である。
 検出対象の細胞集団は、上記検査対象から得られた任意の生体試料由来の細胞集団に対して用いることが可能であるが、好ましくはヒトから得られた生体試料に由来する細胞集団であり、より好ましくは組織の細胞においてGRIK2およびClaspinからなる群から選択される遺伝子がほとんど発現していないことが確認されている膀胱および膀胱以外の組織、心臓、脳、胎盤、肺、肝臓、骨格筋、腎臓、膵臓、脾臓、胸腺、前立腺、精巣、卵巣、小腸、大腸および血液からなる群から選択される1または2以上の生体試料に由来する細胞を含む細胞集団である。
Cancer stem cell detection agents of the present invention include detection agents for detecting expression products of genes selected from the group consisting of GRIK2 and Claspin. When an expression product of a gene selected from the group consisting of GRIK2 and Claspin is detected in the detection target, it can be determined that the detection target has cancer stem cells, that is, cancer stem cells have been detected. The agent for detecting cancer stem cells of the present invention can be used both in vivo and in vitro. Used in vitro. In this case, the detection of cancer stem cells in the cell population derived from the biological sample to be detected means that the cancer stem cells are also detected in the individual organism from which the biological sample to be examined was collected, i.e., the organism It means that the individual has cancer stem cells. Therefore, as will be described later, the present invention also includes a method for detecting cancer stem cells in a test subject using the agent for detecting cancer stem cells of the present invention.
The organism to be tested may be any organism that can have a tumor in the bladder, for example, but preferably humans and non-human mammals (e.g., mice, rats, guinea pigs, hamsters, etc.) rodents, primates such as chimpanzees, artiodactyls such as cattle, goats and sheep, perissodactyla such as horses, rabbits, dogs, cats, etc.), and more preferably human individuals.
The cell population to be detected can be a cell population derived from any biological sample obtained from the test subject, but is preferably a cell population derived from a biological sample obtained from a human, More preferably, it has been confirmed that genes selected from the group consisting of GRIK2 and Claspin are hardly expressed in tissue cells, bladder and tissues other than bladder, heart, brain, placenta, lung, liver, skeletal muscle, A cell population containing cells derived from one or more biological samples selected from the group consisting of kidney, pancreas, spleen, thymus, prostate, testis, ovary, small intestine, large intestine and blood.

 本発明のがん幹細胞検出剤に含まれる、GRIK2およびClaspinからなる群から選択される遺伝子の発現産物の検出剤は、検出する発現産物に依拠して変化し得、当業者であれば適宜最適なものを選択し得る。具体的には、例えば発現産物がmRNAである場合、当該技術分野において公知である任意のmRNA検出法を用いることができ、これに限定するものではないが、例えばRT-PCR法、in situハイブリダイゼーション法、ノーザンブロッティング法、リアルタイムRT-PCRなどが挙げられ、中でも検出感度の高さ、実験手技の簡便さなどから、RT-PCR法が好ましい。例えば発現産物が内在性ポリペプチド(好ましくはGRIK2タンパク質および/またはClaspinタンパク質)である場合は、これに限定するものではないが、例えばウェスタンブロッティング法、免役組織染色法などが挙げられる。用いるGRIK2およびClaspinからなる群から選択される遺伝子の発現産物の検出剤は、検出する発現産物や採用する検出法に依存して変化し得、当業者は適宜最適なものを選択し得る。 The agent for detecting the expression product of a gene selected from the group consisting of GRIK2 and Claspin, which is included in the agent for detecting cancer stem cells of the present invention, can vary depending on the expression product to be detected, and can be appropriately optimized by those skilled in the art. can choose something. Specifically, for example, when the expression product is mRNA, any mRNA detection method known in the art can be used, including, but not limited to, RT-PCR, in situ high Bridization method, Northern blotting method, real-time RT-PCR, and the like can be mentioned. Among them, RT-PCR method is preferable because of its high detection sensitivity, simplicity of experimental procedures, and the like. For example, when the expression product is an endogenous polypeptide (preferably GRIK2 protein and/or Claspin protein), examples include, but are not limited to, Western blotting, immunohistochemical staining, and the like. The detection agent for the gene expression product selected from the group consisting of GRIK2 and Claspin to be used can vary depending on the expression product to be detected and the detection method to be employed, and those skilled in the art can appropriately select the optimum one.

 具体的には、例えば内在性ポリペプチドを検出する場合はGRIK2タンパク質および/またはClaspinタンパク質に対する特異抗体(好ましくはモノクローナル抗体)など、mRNAを検出する場合はGRIK2およびClaspinからなる群から選択される遺伝子の塩基配列の一部に相補的な塩基配列を有するプローブおよび/またはプライマーなどが挙げられるが、これに限定するものではない。また検出する発現産物は、単一の発現産物であっても複数の発現産物を組み合わせて用いてもよい。 Specifically, for example, a specific antibody (preferably a monoclonal antibody) against GRIK2 protein and/or Claspin protein when detecting an endogenous polypeptide, or a gene selected from the group consisting of GRIK2 and Claspin when detecting mRNA Examples include, but are not limited to, probes and/or primers having a nucleotide sequence complementary to a portion of the nucleotide sequence of . The expression product to be detected may be a single expression product or a combination of multiple expression products.

<10>本発明のペプチドを認識する抗体
 上述のとおり本発明のペプチドは、がん細胞、特にがん幹細胞によりCTLエピトープペプチドとして抗原提示される。この際、MHCと複合体を形成して細胞表面に提示されるため、本発明のペプチドや該ペプチドとMHCとの複合体を認識する抗体を用いることで、本発明のペプチドを腫瘍マーカーとして利用できる。このような抗体としては、例えば、本発明のペプチドを特異的に認識する抗体(好ましくはモノクローナル抗体)や、本発明のペプチドとHLAとの複合体、好ましくはHLA-A02との複合体を認識するTCR(T細胞抗原受容体)様抗体などが挙げられる。したがって、本発明はまた、本発明のペプチドや該ペプチドとMHCとの複合体を認識する抗体、とくにモノクローナル抗体やT細胞抗原受容体様抗体にも関する。
 本発明において「TCR様抗体」は、断片化された抗原由来のペプチドと主要組織適合性抗原複合体(MHC)分子との複合体(pMHC)に対してTCR様の結合力(抗原認識能)を有する分子である。例えば、Eur J Immunol. 2004;34:2919-29等で報告されているように、腫瘍抗原由来のペプチドとMHCとの複合体を認識するTCR様抗体は、CTLが標的とし得る腫瘍抗原ペプチドを提示しているがん細胞、がん細胞を貪食してMHCクラスI上に腫瘍抗原ペプチドを提示している樹状細胞などを認識することができる。
<10> Antibody that recognizes the peptide of the present invention As described above, the peptide of the present invention is presented as a CTL epitope peptide by cancer cells, particularly cancer stem cells. At this time, since a complex with MHC is formed and presented on the cell surface, the peptide of the present invention can be used as a tumor marker by using an antibody that recognizes the peptide of the present invention or a complex of the peptide and MHC. can. Such antibodies include, for example, an antibody (preferably a monoclonal antibody) that specifically recognizes the peptide of the present invention, a complex of the peptide of the present invention and HLA, preferably a complex that recognizes HLA-A02. and TCR (T-cell antigen receptor)-like antibodies. Accordingly, the present invention also relates to antibodies, in particular monoclonal antibodies and T-cell antigen receptor-like antibodies, which recognize the peptides of the present invention or complexes of said peptides and MHC.
In the present invention, the "TCR-like antibody" is a TCR-like binding force (antigen recognition ability) to a complex (pMHC) of a fragmented antigen-derived peptide and a major histocompatibility complex (MHC) molecule. is a molecule having For example, as reported by Eur J Immunol. It can recognize presenting cancer cells, dendritic cells presenting tumor antigen peptides on MHC class I by phagocytosing cancer cells, and the like.

 前記TCR様抗体は、Eur J Immunol. 2004;34:2919-29等で記載されている方法で作製することができる。例えば、MHCとペプチド複合体をマウス等の動物に免疫することにより複合体特異的な抗体を取得できる。また、ファージディスプレイ法を利用して複合体特異的抗体を取得することも可能である。 The TCR-like antibody can be prepared by the method described in Eur J Immunol. 2004;34:2919-29. For example, complex-specific antibodies can be obtained by immunizing animals such as mice with MHC and peptide complexes. It is also possible to obtain a complex-specific antibody using a phage display method.

 上述のとおり、本発明のペプチドおよび/または該ペプチドを提示するMHC複合体を認識することにより、本発明のペプチドを含む該MHC複合体を細胞表面に提示する腫瘍細胞を検出することが可能である。したがって本発明は、上記TCR様抗体を含む腫瘍検出剤にも関する。また本発明のペプチドは、腫瘍細胞の他、抗原提示細胞、特に樹状細胞などのプロフェッショナル抗原提示細胞にも同様に提示されるため、上記TCR様抗体は、本発明のペプチドを提示する抗原提示細胞等の検出にも有用である。
 なお、本発明において「抗体」といった場合、免疫グロブリン分子だけでなく、Fab、Fab’、F(ab’)2、Fv、scFv、dsFv、Diabodyおよびsc(Fv)2などの、抗体の機能的断片も含まれる。また、これら機能的断片の多量体(例えば、ダイマー、トリマー、テトラマー、ポリマー)も、本発明の抗体に含まれる。
As described above, by recognizing the peptide of the present invention and/or the MHC complex presenting the peptide, it is possible to detect tumor cells presenting the MHC complex containing the peptide of the present invention on the cell surface. be. The present invention therefore also relates to a tumor detection agent comprising the above TCR-like antibody. In addition to tumor cells, the peptide of the present invention is similarly presented to antigen-presenting cells, particularly professional antigen-presenting cells such as dendritic cells. It is also useful for detection of cells and the like.
In the present invention, the term "antibody" refers not only to immunoglobulin molecules, but also to functional antibodies such as Fab, Fab', F(ab')2, Fv, scFv, dsFv, Diabody and sc(Fv)2. Fragments are also included. Multimers (eg, dimers, trimers, tetramers, polymers) of these functional fragments are also included in the antibodies of the present invention.

 また上述のとおり本発明のペプチドは、がん細胞、特にがん幹細胞によりCTLエピトープペプチドとして提示されるため、本発明のペプチドおよび/または該ペプチドとHLAとの複合体、好ましくはHLA-A02との複合体を認識するTCR様抗体は、対象において細胞表面に存在する前記複合体と結合することができる。TCR様抗体が腫瘍細胞表面に結合すると、該抗体のFc部位にマクロファージやNK細胞などのエフェクター細胞のFc受容体が結合し、該エフェクター細胞が腫瘍細胞を攻撃する抗体依存性細胞傷害(ADCC)活性が生じることで腫瘍を処置することができる。したがって上記TCR様抗体は、がんの予防および/または治療にも有用である。したがって、本発明はまた、本発明のTCR様抗体を含む、がんの予防および/または治療剤にも関する。 As described above, the peptide of the present invention is presented as a CTL epitope peptide by cancer cells, particularly cancer stem cells. A TCR-like antibody that recognizes the complex of can bind to said complex present on the cell surface in a subject. When the TCR-like antibody binds to the tumor cell surface, the Fc region of the antibody binds to the Fc receptor of effector cells such as macrophages and NK cells, and the effector cells attack tumor cells Antibody-dependent cellular cytotoxicity (ADCC) The resulting activity can treat tumors. Therefore, the above TCR-like antibody is also useful for cancer prevention and/or treatment. Therefore, the present invention also relates to preventive and/or therapeutic agents for cancer comprising the TCR-like antibody of the present invention.

 また近年では、2つの抗原結合部位がそれぞれ異なる抗原と結合するように改変した二重特異性抗体が開発されている。一方の抗原結合部位でMHC-抗原ペプチド複合体などのがん細胞表面抗原を認識し、もう一方の抗原結合部位でCD3などのリンパ球表面抗原を認識する二重特異性抗体は、がん細胞の近傍にCTLやエフェクター細胞などのリンパ球表面抗原を有する細胞を拘束、集積化することが可能となる。がん細胞近傍に拘束されたリンパ球は、自身がADCC活性などの抗腫瘍活性を示すだけでなく、サイトカインなどの分泌によりがん細胞周辺のナイーブな免疫細胞を抗腫瘍性に活性化するバイスタンダーな効果を発揮することでがん細胞を攻撃することができる。 In recent years, bispecific antibodies have also been developed in which the two antigen-binding sites are modified to bind to different antigens. A bispecific antibody that recognizes a cancer cell surface antigen such as an MHC-antigen peptide complex at one antigen-binding site and a lymphocyte surface antigen such as CD3 at the other antigen-binding site is a cancer cell It becomes possible to bind and accumulate cells having lymphocyte surface antigens such as CTLs and effector cells in the vicinity of the cells. Lymphocytes confined to the vicinity of cancer cells not only exhibit anti-tumor activity such as ADCC activity themselves, but also act as anti-tumor cells by secreting cytokines to activate naive immune cells around cancer cells. It can attack cancer cells by exerting its standard effect.

 したがって本発明は、本発明のペプチドおよび/または該ペプチドとHLAとの複合体と、リンパ球表面抗原とを特異的に認識する二重特異性抗体も包含する。特異的に認識されるリンパ球表面抗原は、リンパ球の表面に特異的に発現している抗原であれば特に限定されないが、好ましくはCD3、CD16、CD64などが挙げられる。特にCD3はCTLの細胞傷害活性の誘導に関与している細胞表面抗原であり、CD3に抗体が結合するとHLA-がん抗原複合体を認識せずにHLA非拘束的にCTLが活性化でき、強力な細胞傷害活性を発揮することが期待できるため好ましい。 Therefore, the present invention also includes bispecific antibodies that specifically recognize the peptide of the present invention and/or a complex of the peptide and HLA, and a lymphocyte surface antigen. The specifically recognized lymphocyte surface antigen is not particularly limited as long as it is an antigen specifically expressed on the surface of lymphocytes, but preferably includes CD3, CD16, CD64 and the like. In particular, CD3 is a cell surface antigen that is involved in inducing the cytotoxic activity of CTL, and when an antibody binds to CD3, CTL can be activated in an HLA-unrestricted manner without recognizing HLA-cancer antigen complexes. It is preferable because it can be expected to exhibit strong cytotoxic activity.

 さらに、近年、腫瘍抗原に特異的なモノクローナル抗体の一部に遺伝子操作を加えて改変したキメラ抗原受容体(CAR)を患者由来のT細胞に遺伝子導入し、この遺伝子改変T細胞を体外で増幅培養した後に患者に輸注するという新たな免疫細胞治療法が考案されている(Nat Rev Immunol. 2012;12:269-81)。具体的には、患者から採取された末梢血単核球を抗CD3抗体とIL-2等の存在下で培養することによりT細胞を活性化したのち、レトロウイルスベクターまたはレンチウイルスベクターなどの形質転換用ベクターを用いてCARをコードする遺伝子をT細胞に導入することにより、遺伝子改変T細胞を作製する。
 本発明において、「キメラ抗原受容体」は、がん細胞の細胞表面に存在する分子を認識する抗体の抗体可変領域の軽鎖と重鎖を直列に結合させた単鎖抗体(scFv)をN末端側に、T細胞受容体(TCR)/CD3複合体を構成する分子のうちCD3ζ鎖をC末端側に持つように設計されたキメラタンパク分子である。このキメラ抗原受容体は、scFv領域で特定の抗原を認識すると、CD3ζ鎖を介してT細胞の活性化が生じる。T細胞の活性化を増強するために、scFvとζ鎖の間に1または2以上の共刺激分子(例えばCD28、4-1BB、ICOSなど)を組み込んでもよい。本発明においては、scFvとして、本態様のTCR様抗体(TCR様抗体から設計され得る抗体分子またはその断片を含む)を用いてCARを作製することができる。腫瘍抗原由来のペプチドとMHCとの複合体を認識するCARは、CTLが標的とし得る腫瘍抗原ペプチドを提示しているがん細胞、がん細胞を貪食してMHCクラスI上に腫瘍抗原ペプチドを提示している樹状細胞などを認識することができるため、前記CARを導入した遺伝子改変T細胞は、人工CTLと同様に、前記腫瘍抗原に特異的ながんの予防および/または治療剤として有用である。したがって、本発明はまた、本発明の腫瘍抗原由来のペプチドとMHCとの複合体を認識するCARを導入した遺伝子改変T細胞または人工CTLを含む、がんの予防および/または治療剤にも関する。
Furthermore, in recent years, a chimeric antigen receptor (CAR), which is a part of a tumor antigen-specific monoclonal antibody that has been genetically modified, has been introduced into patient-derived T cells, and the genetically modified T cells have been amplified in vitro. A new immune cell therapy method has been devised that is cultured and then infused into patients (Nat Rev Immunol. 2012;12:269-81). Specifically, after activating T cells by culturing peripheral blood mononuclear cells collected from patients in the presence of anti-CD3 antibody and IL-2, etc. Genetically modified T cells are generated by introducing a gene encoding CAR into T cells using a transforming vector.
In the present invention, the term “chimeric antigen receptor” refers to a single-chain antibody (scFv) in which the light chain and heavy chain of the antibody variable region of an antibody that recognizes molecules present on the cell surface of cancer cells are linked in series. It is a chimeric protein molecule designed to have the CD3ζ chain on the C-terminal side among the molecules that constitute the T cell receptor (TCR)/CD3 complex on the terminal side. When this chimeric antigen receptor recognizes a specific antigen in its scFv region, it activates T cells via the CD3ζ chain. One or more co-stimulatory molecules (eg, CD28, 4-1BB, ICOS, etc.) may be incorporated between the scFv and the ζ chain to enhance T cell activation. In the present invention, a CAR can be produced using the TCR-like antibody of this embodiment (including antibody molecules or fragments thereof that can be designed from the TCR-like antibody) as the scFv. CAR, which recognizes a complex of a peptide derived from a tumor antigen and MHC, phagocytizes cancer cells presenting a tumor antigen peptide that can be targeted by CTL, and the tumor antigen peptide on MHC class I. Since the CAR-introduced genetically modified T cells can recognize presenting dendritic cells and the like, the CAR-introduced genetically modified T cells can be used as a preventive and/or therapeutic agent for cancer specific to the tumor antigen, similar to artificial CTL. Useful. Therefore, the present invention also relates to preventive and/or therapeutic agents for cancer, comprising gene-modified T cells or artificial CTLs introduced with CAR that recognize the complex of the peptide derived from the tumor antigen of the present invention and MHC. .

<11>腫瘍の検出方法(検査方法、診断方法)
 本発明は、前述した本発明のCTL検出剤、あるいはがん幹細胞検出剤または腫瘍検出剤を利用した腫瘍の検出方法(検査方法、診断方法)を提供するものである。
 本発明のCTL検出剤を用いる本発明の検出方法(診断方法)は、典型的には、被験者の血液を採取するか、若しくは腫瘍が疑われる被験組織の一部をバイオプシ等で採取し、そこに含まれるGRIK2またはClaspin由来の腫瘍抗原ペプチドとHLA抗原との複合体を認識するCTLの量を、本発明のCTL検出剤によって検出・測定することにより、膀胱がん等のGRIK2またはClaspin陽性のがん(腫瘍)の罹患の有無またはその程度を検出、検査または診断するものである。
<11> Tumor detection method (examination method, diagnosis method)
The present invention provides a tumor detection method (examination method, diagnosis method) using the above-described CTL detection agent, cancer stem cell detection agent, or tumor detection agent of the present invention.
In the detection method (diagnosis method) of the present invention using the CTL detection agent of the present invention, typically, blood of a subject is collected, or a part of a test tissue suspected of having a tumor is collected by biopsy or the like. GRIK2- or Claspin-positive GRIK2- or Claspin-positive diseases such as bladder cancer are detected and measured by the CTL detection agent of the present invention by detecting and measuring the amount of CTLs that recognize the complex of the GRIK2- or Claspin-derived tumor antigen peptide and HLA antigen contained in the It detects, examines, or diagnoses the presence or absence or degree of cancer (tumor).

 本発明のがん幹細胞検出剤を用いる本発明の検出方法(検査方法、診断方法)は、典型的には、被験者の血液を採取するか、もしくは腫瘍が疑われる被験組織の一部をバイオプシ等で採取し、そこに含まれるGRIK2またはClaspin発現産物の量を、本発明のがん幹細胞検出剤によって検出・測定することにより、膀胱がん等のGRIK2またはClaspin陽性のがん(腫瘍)の罹患の有無またはその程度を検出、検査または診断するものである。
 本発明の腫瘍検出剤を用いる本発明の検出方法(検査方法、診断方法)は、典型的には、被験者の血液を採取するか、もしくは腫瘍が疑われる被験組織の一部をバイオプシ等で採取し、そこに含まれるGRIK2またはClaspin由来の腫瘍抗原ペプチドとHLA抗原との複合体を提示する細胞の量を、本発明の腫瘍検出剤によって検出・測定することにより、膀胱がん等のGRIK2またはClaspin陽性のがん(腫瘍)の罹患の有無またはその程度を検出、検査または診断するものである。
The detection method (examination method, diagnosis method) of the present invention using the agent for detecting cancer stem cells of the present invention typically involves collecting the blood of a subject, or biopsying a portion of a tissue suspected of having a tumor. and the amount of GRIK2 or Claspin expression product contained therein is detected and measured by the agent for detecting cancer stem cells of the present invention, thereby detecting the incidence of GRIK2 or Claspin positive cancer (tumor) such as bladder cancer. It detects, examines or diagnoses the presence or absence or degree of
The detection method (examination method, diagnosis method) of the present invention using the tumor-detecting agent of the present invention typically involves collecting the blood of a subject, or collecting a part of a test tissue suspected of having a tumor by biopsy or the like. Then, the amount of cells presenting a complex of GRIK2 or Claspin-derived tumor antigen peptide and HLA antigen contained therein is detected and measured by the tumor-detecting agent of the present invention, thereby detecting GRIK2 or GRIK2 such as bladder cancer or It detects, examines, or diagnoses the presence or absence or degree of Claspin-positive cancer (tumor).

 本発明の検出(検査、診断)方法は、例えば腫瘍を有する患者において、該腫瘍の改善のために治療薬を投与した場合における、該腫瘍の改善の有無またはその程度を検出(検査、診断)することもできる。さらに本発明の検出(検査、診断)方法は、本発明のペプチドまたはポリヌクレオチドを有効成分とする医薬を有効に適用できる治療対象患者の選択や、当該医薬による治療効果および予後の予測や判定などにも利用できる。また、本発明の腫瘍検出剤を用いる態様においては、本発明のペプチドを有効成分とするがんワクチンを投与することにより患者生体内で誘導されるCTLが実際に標的とし得る、腫瘍抗原ペプチドを提示しているがん細胞を検出することが可能である。 The detection (testing, diagnosing) method of the present invention detects (testing, diagnosing) the presence or absence or degree of improvement of a tumor when a therapeutic agent is administered to improve the tumor, for example, in a patient with a tumor. You can also Furthermore, the detection (examination, diagnosis) method of the present invention includes selection of patients to be treated to whom the drug containing the peptide or polynucleotide of the present invention as an active ingredient can be effectively applied, prediction and determination of the therapeutic effect and prognosis of the drug, and the like. also available. In addition, in the embodiment using the tumor-detecting agent of the present invention, a tumor antigen peptide that can be actually targeted by CTL induced in vivo by administering a cancer vaccine containing the peptide of the present invention as an active ingredient is used. It is possible to detect presenting cancer cells.

 本発明のCTL検出剤を用いる本発明の検出(検査)方法の特定の態様は、次の(a)および(b)、および任意に(c)の工程を含むものである:
 (a)被験者から得られた生体試料と本発明のCTL検出剤とを接触させる工程、
 (b)該生体試料中のGRIK2またはClaspin由来の腫瘍抗原ペプチドとHLA抗原との複合体を認識するCTLの量を、上記CTL検出剤が結合した細胞の量を指標として測定する工程、
 (c)(b)の結果をもとに、がんの罹患を判断する工程。
 本発明のCTL検出剤を用いる本発明の診断方法の特定の態様は、上記(a)、(b)および(c)の工程を含む。
A specific embodiment of the detection (examination) method of the present invention using the CTL detection agent of the present invention comprises the following steps (a) and (b), and optionally (c):
(a) contacting a biological sample obtained from a subject with the CTL detection agent of the present invention;
(b) measuring the amount of CTLs in the biological sample that recognize a complex of a tumor antigen peptide derived from GRIK2 or Claspin and an HLA antigen, using the amount of cells to which the CTL detection agent binds as an index;
(c) A step of judging the presence of cancer based on the result of (b).
A specific embodiment of the diagnostic method of the present invention using the CTL detection agent of the present invention includes steps (a), (b) and (c) above.

 本発明のがん幹細胞検出剤を用いる本発明の検出(検査)方法の特定の態様は、次の(d)および(e)、および任意に(f)の工程を含むものである:
 (d)被験者から得られた生体試料と本発明のがん幹細胞検出剤とを接触させる工程、
 (e)該生体試料中のGRIK2またはClaspin発現産物の量を測定する工程、
 (f)(e)の結果をもとに、がんの罹患を判断する工程。
 本発明のがん幹細胞検出剤を用いる本発明の診断方法の特定の態様は、上記(d)、(e)および(f)の工程を含む。
 本発明のがん幹細胞検出剤を用いるがん幹細胞を検出する方法の態様は、上記(d)、(e)の工程および(f)に代えて下記(f’)の工程を含む:
(f’)(e)の結果をもとに、生体試料中のがん幹細胞の存在または不存在を決定する工程。
 ここで用いられる生体試料としては、被験者の生体組織(がん細胞の存在が疑われる組織およびその周辺組織、または血液など)から調製される試料を挙げることができる。具体的には、該組織から採取された組織細胞を含む試料などを挙げることができる。
A specific embodiment of the detection (examination) method of the present invention using the cancer stem cell detection agent of the present invention comprises the following steps (d) and (e), and optionally (f):
(d) contacting a biological sample obtained from a subject with the agent for detecting cancer stem cells of the present invention;
(e) measuring the amount of GRIK2 or Claspin expression product in said biological sample;
(f) A step of judging the presence of cancer based on the result of (e).
A specific embodiment of the diagnostic method of the present invention using the agent for detecting cancer stem cells of the present invention includes the steps (d), (e) and (f) above.
Embodiments of the method for detecting cancer stem cells using the agent for detecting cancer stem cells of the present invention include steps (d) and (e) above, and the following step (f′) instead of (f):
(f') A step of determining the presence or absence of cancer stem cells in the biological sample based on the result of (e).
The biological sample used here includes a sample prepared from a subject's biological tissue (tissue suspected to contain cancer cells, surrounding tissue, blood, etc.). Specifically, a sample containing tissue cells collected from the tissue can be used.

 本発明のがん幹細胞検出剤を用いる本発明の検出(検査)方法の特定の態様は、次の(g)および(h)、および任意に(i)の工程を含むものである:
 (g)被験者から得られた生体試料と本発明の腫瘍検出剤とを接触させる工程、
 (h)該生体試料中のGRIK2またはClaspin由来の腫瘍抗原ペプチドとHLA抗原との複合体を提示する細胞の量を、上記腫瘍検出剤が結合した細胞の量を指標として測定する工程、
 (i)(h)の結果をもとに、がんの罹患を判断する工程。
 本発明の腫瘍検出剤を用いる本発明の診断方法の特定の態様は、上記(g)、(h)および(i)の工程を含む。
 ここで用いられる生体試料としては、被験者の生体組織(がん細胞の存在が疑われる組織およびその周辺組織、または血液など)から調製される試料を挙げることができる。具体的には、該組織から採取された組織細胞を含む試料などを挙げることができる。
A specific embodiment of the detection (examination) method of the present invention using the cancer stem cell detection agent of the present invention comprises the following steps (g) and (h), and optionally (i):
(g) contacting a biological sample obtained from a subject with the tumor-detecting agent of the present invention;
(h) measuring the amount of cells presenting a complex of a GRIK2- or Claspin-derived tumor antigen peptide and an HLA antigen in the biological sample, using the amount of cells bound to the tumor-detecting agent as an index;
(i) A step of judging the presence of cancer based on the result of (h).
A specific embodiment of the diagnostic method of the present invention using the tumor detecting agent of the present invention comprises steps (g), (h) and (i) above.
The biological sample used here includes a sample prepared from a subject's biological tissue (a tissue suspected of containing cancer cells and its surrounding tissue, blood, etc.). Specifically, a sample containing tissue cells collected from the tissue can be used.

 本発明のCTL検出剤を用いる本発明の検出方法(検査方法、診断方法)の一態様は、生体試料中の本発明のペプチド特異的CTLを検出し、その量を測定することによって実施される。具体的には、文献(Science,274:p94,1996、本文献は引用により本願の一部を構成する)に記載の方法に従って蛍光標識したHLA抗原と本発明のペプチドとの複合体の4量体(HLAテトラマー)を作製し、これを用いてがんが疑われる患者の末梢血リンパ球中の抗原ペプチド特異的CTLをフローサイトメーターにより定量することにより行うことができる。 One embodiment of the detection method (test method, diagnostic method) of the present invention using the CTL detection agent of the present invention is performed by detecting the peptide-specific CTL of the present invention in a biological sample and measuring the amount thereof. . Specifically, according to the method described in the literature (Science, 274: p94, 1996, which is incorporated herein by reference), 4 amounts of complexes of fluorescently labeled HLA antigens and peptides of the present invention HLA tetramers are prepared and used to quantify antigen peptide-specific CTLs in peripheral blood lymphocytes of patients suspected of having cancer using a flow cytometer.

 腫瘍の有無の予測、判定、判断または診断は、例えば、被験者の血液や腫瘍が疑われる被験組織における本発明のペプチド特異的CTLの量、または、本発明のペプチドを提示する細胞の量を測定することにより行うことができる。その際、場合によっては正常な対応組織におけるGRIK2またはClaspin遺伝子発現レベル、本発明のペプチドレベルまたはCTLレベル等を基準値として、該基準値と被験者から得られた試料における前記レベルとを比較し、両者の違いを判定することによって行うことができる。
 ここで被験者の被験組織と正常な対応組織との前記レベルの比較は、被験者の生体試料と正常者の生体試料を対象とした測定を並行して行うことで実施できる。並行して行わない場合は、複数(少なくとも2つ、好ましくは3以上、より好ましくは5以上)の正常な組織を用いて均一な測定条件で測定して得られた本発明のペプチド特異的CTLの量または本発明のペプチドを提示する細胞の量の平均値または統計的中間値を、正常者の値すなわち基準値として、比較に用いることができる。
Prediction, judgment, judgment or diagnosis of the presence or absence of a tumor is, for example, by measuring the amount of the peptide-specific CTL of the present invention or the amount of cells presenting the peptide of the present invention in the blood of a subject or a test tissue suspected of having a tumor. It can be done by In this case, GRIK2 or Claspin gene expression level, peptide level or CTL level of the present invention, etc., in a normal corresponding tissue may be used as a reference value, and the reference value is compared with the level in the sample obtained from the subject, This can be done by determining the difference between the two.
Here, the comparison of the levels between the test tissue of the subject and the corresponding normal tissue can be carried out by performing measurements in parallel on the biological sample of the subject and the biological sample of the normal subject. If not performed in parallel, the peptide-specific CTL of the present invention obtained by measurement under uniform measurement conditions using multiple (at least 2, preferably 3 or more, more preferably 5 or more) normal tissues or the average or statistical mean value of the amount of cells presenting the peptide of the present invention can be used for comparison as the normal person's value, ie, the reference value.

 被験者が、がんに罹患しているかどうかの判断は、例えば該被験者の組織における本発明のペプチド特異的CTLの量、または、本発明のペプチドを提示する細胞が、正常者のそれらのレベルと比較して例えば2倍以上、好ましくは3倍以上多いことを指標として行うことができる。
 また、本発明のペプチドまたはポリヌクレオチドを投与されている被験者において、本発明のペプチド特異的CTLの量を測定することにより、実際にCTLが誘導されているか否かを判定することも可能である。例えば、該被験者の組織における本発明のペプチド特異的CTLの量が、正常者のそれらのレベルと比較して例えば2倍以上、好ましくは3倍以上多いことを指標として、本発明のペプチドまたはポリヌクレオチドによる治療が有効であると判定することができる。
Determination of whether a subject is suffering from cancer is, for example, the amount of the peptide-specific CTL of the present invention in the subject's tissue, or the amount of cells presenting the peptide of the present invention is higher than those of a normal person. For example, it can be measured by using a ratio of 2 times or more, preferably 3 times or more, as an index.
It is also possible to determine whether or not CTL are actually induced by measuring the amount of peptide-specific CTL of the present invention in subjects administered with the peptide or polynucleotide of the present invention. . For example, the amount of the peptide-specific CTL of the present invention in the tissue of the subject is, for example, 2-fold or more, preferably 3-fold or more, as compared to the level of those in normal subjects. Treatment with nucleotides can be determined to be effective.

<12>がんの予防および/または治療方法
 本発明はまた、対象におけるがんを予防および/または治療する方法であって、本発明のペプチド、ポリヌクレオチド、CTL、抗原提示細胞、TCR様抗体、人工CTL、遺伝子改変T細胞からなる群から選択される有効成分の有効量を、それを必要とする対象に投与する工程を含む方法にも関する。
 本発明における「対象」は、がんに罹患し得る生物個体であればいかなる生物個体であってもよいが、好ましくはヒトおよび非ヒト哺乳動物(例えば、マウス、ラット、モルモット、ハムスターなどの齧歯類、チンパンジーなどの霊長類、ウシ、ヤギ、ヒツジなどの偶蹄目、ウマなどの奇蹄目、ウサギ、イヌ、ネコなど)の個体であり、より好ましくはヒトの個体である。本発明において、対象は健常であっても、何らかの疾患に罹患していてもよいものとするが、がんの予防および/または治療が企図される場合には、典型的にはがんに罹患しているか、罹患するリスクを有する対象を意味する。本発明の一態様において、対象はHLA-A02陽性である。本発明の一態様において、対象はGRIK2またはClaspin陽性のがんに罹患しているか、罹患するリスクを有する。本発明の一態様において、対象はHLA-A02陽性であり、かつ、GRIK2またはClaspin陽性のがんに罹患しているか、罹患するリスクを有する。
<12> Method for preventing and/or treating cancer The present invention also provides a method for preventing and/or treating cancer in a subject, comprising the peptide, polynucleotide, CTL, antigen-presenting cell, and TCR-like antibody of the present invention. , artificial CTL, and genetically modified T cells, to a subject in need thereof.
A “subject” in the present invention may be any organism as long as it can be affected by cancer. primates such as teeth and chimpanzees; artiodactyls such as cows, goats and sheep; perissodactyla such as horses; rabbits, dogs and cats), and more preferably human individuals. In the present invention, the subject may be healthy or suffer from some disease. means a subject who has or is at risk of being affected. In one aspect of the invention, the subject is HLA-A02 positive. In one aspect of the invention, the subject has or is at risk of having a GRIK2 or Claspin positive cancer. In one aspect of the invention, the subject is HLA-A02 positive and has or is at risk of having a GRIK2 or Claspin positive cancer.

 本発明の予防/治療方法に用いる本発明のペプチド、ポリヌクレオチド、CTL、抗原提示細胞、TCR様抗体、人工CTL、および遺伝子改変T細胞としては、本明細書に記載の任意のものが挙げられる。本発明における有効量とは、例えば、がんの症状を低減し、またはその進行を遅延もしくは停止する量であり、好ましくは、がんを抑制し、または治癒する量である。また、投与による利益を超える悪影響が生じない量が好ましい。かかる量は、培養細胞などを用いたin vitro試験や、マウス、ラットなどのモデル動物における試験により適宜決定することができ、このような試験法は当業者によく知られている。有効成分の具体的な用量は、それを必要とする対象に関する種々の条件、例えば、症状の重篤度、対象の一般健康状態、年齢、体重、対象の性別、食事、投与の時期および頻度、併用している医薬、治療への反応性、剤形、および治療に対するコンプライアンスなどを考慮して決定され得る。 Peptides, polynucleotides, CTLs, antigen-presenting cells, TCR-like antibodies, artificial CTLs, and genetically modified T cells of the invention for use in the prophylactic/therapeutic methods of the invention include any described herein. . An effective amount in the present invention is, for example, an amount that reduces symptoms of cancer or delays or stops the progression thereof, preferably an amount that suppresses or cures cancer. Also, an amount that does not cause adverse effects that exceed the benefits of administration is preferred. Such an amount can be appropriately determined by in vitro tests using cultured cells or the like, or tests using model animals such as mice and rats, and such test methods are well known to those skilled in the art. The specific dose of the active ingredient depends on various conditions related to the subject requiring it, such as severity of symptoms, general health condition of the subject, age, weight, sex of the subject, diet, timing and frequency of administration, It can be determined in consideration of concomitant drugs, responsiveness to treatment, dosage form, compliance to treatment, and the like.

 具体的な用量としては、例えば、本発明のペプチドの場合、通常0.0001mg~1000mg、好ましくは0.001mg~1000mg、より好ましくは0.1mg~10mgであり、これを数日ないし数月に1回投与するのが好ましい。また、本発明のポリヌクレオチドの場合、通常、0.0001mg~100mg、好ましくは0.001mg~10mgであり、これを数日ないし数月に1回投与するのが好ましい。また、本発明のTCR様抗体の場合、通常、0.0001mg~2000mg、好ましくは0.001mg~2000mgであり、これを1週間~4週間に1回投与するのが好ましい。本発明の遺伝子改変T細胞または人工CTLの場合、通常、1×10~1×10、好ましくは1×10~1×10であり、これを1日~4週間に1回投与するのが好ましい。また、投与方法としては、皮内投与、皮下投与、筋肉内投与、静脈内投与などの既知の任意の適切な投与方法を用いることができる。また、本発明のペプチドやヌクレオチドを直接体内に投与するin vivo法の他、ヒトからある種の細胞を採集し、体外で本発明のペプチドやポリヌクレオチドを用いてCTLや抗原提示細胞を誘導した後、これらの細胞を体内に戻すex vivo法を用いることもできる。 As a specific dose, for example, in the case of the peptide of the present invention, it is usually 0.0001 mg to 1000 mg, preferably 0.001 mg to 1000 mg, more preferably 0.1 mg to 10 mg. A single dose is preferred. In the case of the polynucleotide of the present invention, it is usually 0.0001 mg to 100 mg, preferably 0.001 mg to 10 mg, and is preferably administered once every several days to several months. In the case of the TCR-like antibody of the present invention, the dose is usually 0.0001 mg to 2000 mg, preferably 0.001 mg to 2000 mg, and is preferably administered once every 1 to 4 weeks. In the case of the genetically modified T cells or artificial CTLs of the present invention, it is usually 1×10 4 to 1×10 8 , preferably 1×10 5 to 1×10 7 , and is administered once every 1 day to 4 weeks. preferably. Moreover, as an administration method, any known appropriate administration method such as intradermal administration, subcutaneous administration, intramuscular administration, and intravenous administration can be used. In addition to the in vivo method of directly administering the peptides and nucleotides of the present invention into the body, certain cells were collected from humans and the peptides and polynucleotides of the present invention were used to induce CTLs and antigen-presenting cells in vitro. An ex vivo method can also be used to later put these cells back into the body.

 本発明の予防/治療方法の一態様は、投与する工程の前に、HLA-A02陽性の対象を予防/治療の対象として選択する工程をさらに含む。本発明のこの態様は、上記選択する工程の前に、対象のHLA型を決定する工程をさらに含んでもよい。対象のHLA型の決定は、既知の任意の手法により行うことができる。また、本発明の予防/治療方法の一態様は、投与する工程の前に、GRIK2またはClaspin陽性のがんを有する対象を予防/治療の対象として選択する工程をさらに含む。本発明のこの態様は、上記選択する工程の前に、対象におけるGRIK2またはClaspin陽性のがんを検出する工程をさらに含んでもよい。対象におけるGRIK2またはClaspin陽性のがんの検出は、上記<11>に記載の腫瘍の検出方法を用いることができる。本発明の予防/治療方法の一態様は、投与する工程の前に、HLA-A02陽性であり、かつ、GRIK2またはClaspin陽性のがんを有する対象を予防/治療の対象として選択する工程をさらに含む。本発明のこの態様は、上記選択する工程の前に、対象のHLA型を決定する工程および対象におけるGRIK2またはClaspin陽性のがんを検出する工程をさらに含んでもよい。 One aspect of the prophylactic/therapeutic method of the present invention further comprises a step of selecting an HLA-A02-positive subject as a prophylactic/therapeutic target before the administering step. This aspect of the invention may further comprise determining the HLA type of the subject prior to the selecting step. Determining a subject's HLA type can be done by any known technique. In addition, one aspect of the preventive/therapeutic method of the present invention further comprises the step of selecting a subject having GRIK2- or Claspin-positive cancer as a preventive/therapeutic target before the administering step. This aspect of the invention may further comprise detecting GRIK2 or Claspin positive cancers in the subject prior to the selecting step. The tumor detection method described in <11> above can be used to detect GRIK2- or Claspin-positive cancer in a subject. One aspect of the preventive/therapeutic method of the present invention further comprises the step of selecting a subject who is HLA-A02 positive and has GRIK2 or Claspin-positive cancer as a preventive/therapeutic target before the administering step. include. This aspect of the invention may further comprise, prior to the selecting step, determining the HLA type of the subject and detecting GRIK2 or Claspin positive cancer in the subject.

<13>がん細胞を標的とするがん治療薬のスクリーニング方法
 本発明のがん幹細胞検出剤を用いる態様において、検出対象におけるGRIK2またはClaspin発現産物の発現量は、検出対象中のがん幹細胞の量と正に相関していると考えられる。したがって、検出対象に対してがん治療薬の候補化合物を投与する前後におけるGRIK2またはClaspin発現産物の発現量を比較することで、投与した候補化合物ががん幹細胞を標的とするがん治療薬として有用であるか否かを判定することができる。
<13> Screening method for cancer therapeutic drug targeting cancer cells In the embodiment using the agent for detecting cancer stem cells of the present invention, the expression level of the GRIK2 or Claspin expression product in the detection target is determined by the cancer stem cells in the detection target. is considered to be positively correlated with the amount of Therefore, by comparing the expression level of the GRIK2 or Claspin expression product before and after administration of the candidate compound of the cancer therapeutic drug to the detection target, it is possible to determine whether the administered candidate compound is a cancer therapeutic drug targeting cancer stem cells. useful or not.

 本発明のスクリーニング方法は、以下の工程(I)、(II)および任意に(III)を含むものである:
 (I)がん治療薬の候補化合物を、対象に投与する前に、該対象におけるGRIK2またはClaspin遺伝子の発現産物の検出量Aを測定する工程、
 (II)前記候補化合物を前記対象細胞集団に投与した後に、該対象における前記遺伝子の発現産物の検出量Bを測定する工程、および
 (III)前記検出量AとBとを比較し、該検出量AがBより有意に大きい場合に、前記候補化合物を、がん幹細胞を標的とすることを特徴とするがん治療薬候補であると判定する工程。
 本発明のスクリーニング方法の特定の態様は、上記工程(I)~(III)を含む。ここで工程(I)および(II)の検出量を測定する工程は、それぞれ上記検出(検査、診断)方法における工程(d)および(e)を含む。
The screening method of the present invention comprises the following steps (I), (II) and optionally (III):
(I) measuring the detected amount A of the expression product of the GRIK2 or Claspin gene in a subject before administering a candidate compound for a cancer therapeutic drug to the subject;
(II) after administering the candidate compound to the subject cell population, measuring the detected amount B of the expression product of the gene in the subject; and (III) comparing the detected amounts A and B, and detecting the If the amount A is significantly greater than B, determining that the candidate compound is a cancer therapeutic drug candidate characterized by targeting cancer stem cells.
A particular embodiment of the screening method of the present invention comprises steps (I) to (III) above. Here, the steps (I) and (II) of measuring the amount to be detected include steps (d) and (e) in the detection (examination, diagnosis) method described above, respectively.

<14>遺伝子の発現を抑制するためのポリヌクレオチド
 上述のとおり、GRIK2およびClaspinからなる群から選択される遺伝子は、膀胱がん幹細胞において発現していることが初めて見いだされた。このことは、これらの遺伝子の発現が細胞のがん化に関与していることを示唆し、したがってこれらの遺伝子の発現を抑制することでがんを処置することができると考えられる。
<14> Polynucleotide for Suppressing Gene Expression As described above, it was first found that a gene selected from the group consisting of GRIK2 and Claspin is expressed in bladder cancer stem cells. This suggests that the expression of these genes is involved in the canceration of cells, and therefore it is thought that suppressing the expression of these genes can treat cancer.

 すなわち本発明は一態様において、GRIK2およびClaspinからなる群から選択される遺伝子の発現を抑制する遺伝子発現抑制剤に関する。
 細胞において特定の遺伝子を選択的に発現抑制する方法は特に限定されず、例えばアンチセンスRNA法、RNA干渉(RNAi)法、CRISPR-Cas法、ZFN法、TALEN法などが挙げられる。中でもバイオアベイラビリティやオフターゲット効果の低さ、などの観点から、アンチセンスRNA法およびRNAi法が好ましく、RNAi法がより好ましい。
That is, in one aspect, the present invention relates to a gene expression suppressor that suppresses the expression of a gene selected from the group consisting of GRIK2 and Claspin.
Methods for selectively suppressing the expression of specific genes in cells are not particularly limited, and examples thereof include antisense RNA method, RNA interference (RNAi) method, CRISPR-Cas method, ZFN method, TALEN method and the like. Among them, the antisense RNA method and the RNAi method are preferable, and the RNAi method is more preferable, from the viewpoint of bioavailability and low off-target effect.

 したがって本発明の好ましい一態様において、遺伝子発現抑制剤は、GRIK2およびClaspinからなる群から選択される遺伝子に対するアンチセンスオリゴヌクレオチドである。本発明において、ある遺伝子に対する「アンチセンスオリゴヌクレオチド」とは、当該遺伝子の発現産物であるmRNAに対してハイブリダイズすることにより、当該遺伝子の発現を抑制することができるオリゴヌクレオチドを意味し、これはDNAやRNAなどの任意の核酸であってよい。かかるオリゴヌクレオチドとしては、典型的には、当該遺伝子のmRNAの配列の一部分と相補的な配列を有するオリゴヌクレオチドである。ここで、「相補的」という語は、ある核酸が他の核酸配列と水素結合を形成できることを意味し、特定の「配列(の一部分)と相補的な配列」とは、当該配列を有するヌクレオチドと細胞内環境でハイブリダイズすることができる程度に相補性を有する配列を意味する。したがって配列の全てが相補的(すなわち完全に相補的)である必要はない。 Therefore, in a preferred embodiment of the present invention, the gene expression inhibitor is an antisense oligonucleotide against a gene selected from the group consisting of GRIK2 and Claspin. In the present invention, the term "antisense oligonucleotide" against a certain gene means an oligonucleotide capable of suppressing the expression of the gene by hybridizing to mRNA, which is the expression product of the gene. can be any nucleic acid such as DNA or RNA. Such oligonucleotides are typically oligonucleotides having a sequence complementary to a portion of the mRNA sequence of the gene. Here, the term "complementary" means that a nucleic acid can form a hydrogen bond with another nucleic acid sequence, and a specific "sequence complementary to (a portion of) a sequence" refers to a nucleotide having that sequence. It means a sequence having complementarity to the extent that it can hybridize with in the intracellular environment. Thus, not all of the sequences need be complementary (ie perfectly complementary).

 本発明のアンチセンスオリゴヌクレオチドは、典型的には約15~30ヌクレオチドの長さを有する。また、生体内での安定性や発現抑制活性の向上、オフターゲット効果の低減などの目的のため、当該技術分野において知られた修飾を施されていてよい。 The antisense oligonucleotides of the present invention typically have a length of about 15-30 nucleotides. In addition, modifications known in the art may be applied for purposes such as improving in vivo stability and expression-suppressing activity and reducing off-target effects.

 また本発明の好ましい一態様において、遺伝子発現抑制剤は、GRIK2およびClaspinからなる群から選択される遺伝子に対するsiRNAである。本発明においてある遺伝子に対する「siRNA」とは、当該遺伝子の発現を阻害することができる二本鎖構造RNAを意味し、当該二本鎖構造RNAは、センス領域およびアンチセンス領域を有し、アンチセンス領域は特定遺伝子のmRNAの配列に相補的であり、センス領域はアンチセンス領域の配列に相補的である。本発明のsiRNAの各センス領域およびアンチセンス領域は、約15~30ヌクレオチド程度の長さを有し、好ましくは19~27ヌクレオチド程度の長さを有する。また、センス領域およびアンチセンス領域は、それぞれセンス鎖およびアンチセンス鎖の二本の鎖により二本鎖構造を形成していてもよい。また、センス領域およびアンチセンス領域は、連結されて1つのヌクレオチド鎖を構成していてもよく、この場合一本鎖のRNAがヘアピン状に折りたたまれて、センス領域およびアンチセンス領域が二本鎖構造を形成することになる。 Also, in a preferred embodiment of the present invention, the gene expression inhibitor is siRNA against a gene selected from the group consisting of GRIK2 and Claspin. In the present invention, "siRNA" against a certain gene means a double-stranded structural RNA that can inhibit the expression of the gene, the double-stranded structural RNA has a sense region and an antisense region, The sense region is complementary to the sequence of the mRNA for a particular gene, and the sense region is complementary to the sequence of the antisense region. Each sense region and antisense region of the siRNA of the present invention has a length of about 15-30 nucleotides, preferably about 19-27 nucleotides. Also, the sense region and the antisense region may form a double-stranded structure with two strands, the sense strand and the antisense strand, respectively. Alternatively, the sense region and the antisense region may be linked to form one nucleotide chain, in which case the single-stranded RNA is folded into a hairpin to form a double-stranded sense region and an antisense region. to form a structure.

 当該技術分野において、siRNAの発現抑制効果を向上させたり、バイオアベイラビリティを向上させたり、オフターゲット効果を低減させたりする方法は知られている。本発明のsiRNAは、siRNAとしての機能を向上させるためのこれらの知られた修飾や改変を適宜適用することができる。
 上記ポリヌクレオチドは、当該技術分野において公知の方法、例えば市販のDNA合成装置によって容易に合成することができる。
In the art, methods are known for improving the expression-suppressing effect of siRNA, improving bioavailability, and reducing off-target effects. The siRNA of the present invention can appropriately apply these known modifications and alterations for improving the function as siRNA.
The polynucleotides can be easily synthesized by methods known in the art, such as commercially available DNA synthesizers.

 本発明は別の側面において、上記アンチセンスオリゴヌクレオチドおよび/または上記siRNAを含む医薬組成物を提供する。本態様の医薬組成物に含まれ得る他の成分としては、例えば薬学的に許容可能な担体、希釈剤、賦形剤などが挙げられ、とくに薬学的に許容可能な担体を含むことが好ましい。薬学的に許容可能な担体としては、これに限定するものではないが、例えばリポソーム、親水性ポリマーなどが挙げられる。 In another aspect, the present invention provides a pharmaceutical composition comprising the antisense oligonucleotide and/or the siRNA. Other ingredients that can be contained in the pharmaceutical composition of this embodiment include, for example, pharmaceutically acceptable carriers, diluents, excipients, etc., and pharmaceutically acceptable carriers are particularly preferred. Pharmaceutically acceptable carriers include, but are not limited to, liposomes, hydrophilic polymers, and the like.

 上述のとおり、GRIK2およびClaspinからなる群から選択される遺伝子の発現を抑制することでがんを処置することができるものと考えられる。したがって本態様のポリヌクレオチドを含む上記医薬組成物は、がんの予防および/または治療剤として用いることができる。 As described above, it is believed that cancer can be treated by suppressing the expression of a gene selected from the group consisting of GRIK2 and Claspin. Therefore, the pharmaceutical composition containing the polynucleotide of this embodiment can be used as a preventive and/or therapeutic agent for cancer.

 本発明は別の側面において、上記GRIK2およびClaspinからなる群から選択される遺伝子の発現を抑制することを含む、がんを予防および/または処置する方法にも関する。本方法においては、投与される有効成分がGRIK2およびClaspinからなる群から選択される遺伝子の発現を抑制する遺伝子発現抑制剤、好ましくはGRIK2およびClaspinからなる群から選択される遺伝子の発現を抑制するアンチセンスオリゴヌクレオチドまたはsiRNAであること以外は、上記<12>に記載の方法に準じて実施することができる。 In another aspect, the present invention also relates to a method for preventing and/or treating cancer, comprising suppressing the expression of a gene selected from the group consisting of GRIK2 and Claspin. In this method, the active ingredient to be administered is a gene expression inhibitor that suppresses the expression of a gene selected from the group consisting of GRIK2 and Claspin, preferably suppresses the expression of a gene selected from the group consisting of GRIK2 and Claspin. It can be carried out according to the method described in <12> above, except that it is an antisense oligonucleotide or siRNA.

 すなわち上記方法は、GRIK2およびClaspinからなる群から選択される遺伝子の発現抑制剤の有効量を、それを必要とする対象に投与する工程を含む、がんを予防および/または処置する方法ということができる。対象は健常であっても、何らかの疾患に罹患していてもよいものとするが、がんの予防および/または治療が企図される場合には、典型的にはがんに罹患しているか、罹患するリスクを有する対象を意味する。したがって、対象はGRIK2またはClaspin陽性のがんに罹患しているか、罹患するリスクを有する。 That is, the above method is a method for preventing and/or treating cancer, comprising the step of administering an effective amount of a gene expression inhibitor selected from the group consisting of GRIK2 and Claspin to a subject in need thereof. can be done. The subject may be healthy or afflicted with any disease, but typically is afflicted with cancer or, where cancer prevention and/or treatment is contemplated, It means a subject who is at risk of being affected. Thus, the subject has or is at risk of having a GRIK2- or Claspin-positive cancer.

 また、本発明の予防/治療方法の一態様は、投与する工程の前に、GRIK2またはClaspin陽性のがんを有する対象を予防/治療の対象として選択する工程をさらに含んでよい。対象の選択に際しては、上記<11>の対象においてGRIK2またはClaspin陽性のがんを検出する方法を用い得る。 In addition, one aspect of the preventive/therapeutic method of the present invention may further include a step of selecting a subject with GRIK2- or Claspin-positive cancer as a preventive/therapeutic target before the administering step. When selecting a subject, a method for detecting GRIK2- or Claspin-positive cancer in the subject <11> above can be used.

 本態様における有効量とは、例えば、がんの症状を低減し、またはその進行を遅延もしくは停止する量であり、好ましくは、がんを抑制し、または治癒する量である。また、投与による利益を超える悪影響が生じない量が好ましい。かかる量は、培養細胞などを用いたin vitro試験や、マウス、ラットなどのモデル動物における試験により適宜決定することができ、このような試験法は当業者によく知られている。有効成分の具体的な用量は、それを必要とする対象に関する種々の条件、例えば、症状の重篤度、対象の一般健康状態、年齢、体重、対象の性別、食事、投与の時期および頻度、併用している医薬、治療への反応性、剤形、および治療に対するコンプライアンスなどを考慮して決定され得る。 An effective amount in this aspect is, for example, an amount that reduces symptoms of cancer or delays or stops the progression thereof, preferably an amount that suppresses or cures cancer. Also, an amount that does not cause adverse effects that exceed the benefits of administration is preferred. Such an amount can be appropriately determined by in vitro tests using cultured cells or the like, or tests using model animals such as mice and rats, and such test methods are well known to those skilled in the art. The specific dose of the active ingredient depends on various conditions related to the subject requiring it, such as severity of symptoms, general health condition of the subject, age, weight, sex of the subject, diet, timing and frequency of administration, It can be determined in consideration of concomitant drugs, responsiveness to treatment, dosage form, compliance to treatment, and the like.

 本明細書中で言及する全ての特許、出願および他の出版物は、その全体を参照により本明細書に援用する。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。
All patents, applications and other publications mentioned herein are hereby incorporated by reference in their entirety.
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

例1.膀胱がん細胞株UM-UC-3からのアルデヒドデヒドロゲナーゼ活性が高い細胞の分離
 癌幹細胞は、アルデヒドデヒドロゲナーゼ(ALDH)酵素活性が高いことが知られている。そこで、アルデヒドデヒドロゲナーゼ酵素活性に基づくALDEFLUOR法にて、アルデヒドデヒドロゲナーゼ酵素活性が高い細胞(ALDHhigh)細胞およびアルデヒドデヒドロゲナーゼ酵素活性が低い細胞(ALDHlow)細胞を分離した(図1)。用いた細胞株は、膀胱がん細胞株UM-UC-3であった。
 ALDEFLUOR法については、Cell Stem Cell. 2007 Nov;1(5):555-67. doi: 10.1016/j.stem.2007.08.014.(https://pubmed.ncbi.nlm.nih.gov/18371393/)およびOncotarget. 2017 Apr 25;8(17):28826-28839. doi: 10.18632/oncotarget.16259.(https://pubmed.ncbi.nlm.nih.gov/28418868/)を参照することができる。
 ALDHhigh細胞は、in vitro培養にて、ALDHlow細胞に分化することが知られており、安定した解析には不向きであるため、安定したALDHhigh 細胞を樹立できないかを検討するために、ALDHhigh細胞から単細胞クローンを作製した。
 その結果、ALDHhigh細胞から樹立されたクローン細胞(H-1、H-6、H-10)は、高いALDH酵素活性を示し(図2)、ALDHlow細胞から樹立されたクローン細胞(L-1、L-3、L-8)は、低いALDH酵素活性を示した(図3)。
 驚くべきことに、ALDHhighクローン(Hクローン)、ALDHlowクローン(Lクローン)は、それぞれ、1カ月以上in vitro培養にて安定した形質を示し、膀胱がん細胞株UM-UC-3から樹立されたクローン細胞は、膀胱がん幹細胞解析に適していることが示唆された。一般的にがん幹細胞はin vitroで培養すると分化するにも関わらず、これらのクローンはin vitroで培養してもそれほど分化しないことから、がん幹細胞の状態を保っているという特異的な性質を有すると考えられた。
 そこで、以下の例2~5において、ALDHhighクローン(Hクローン)ががん幹細胞であるかどうかを確認することとした。以下の実験では、ALDH酵素活性が高く、in vivoにおける造腫瘍能も高いH-10クローンを代表的なHクローン細胞として使用し、ALDH酵素活性が低く、in vivoにおける造腫瘍能も低いL-3クローンを代表的なLクローン細胞として使用した。
Example 1. Isolation of Cells with High Aldehyde Dehydrogenase Activity from Bladder Cancer Cell Line UM-UC-3 Cancer stem cells are known to have high aldehyde dehydrogenase (ALDH) enzymatic activity. Therefore, cells with high aldehyde dehydrogenase enzymatic activity (ALDH high ) and cells with low aldehyde dehydrogenase enzymatic activity (ALDH low ) were separated by the ALDEFLUOR method based on aldehyde dehydrogenase enzymatic activity ( FIG. 1 ). The cell line used was the bladder cancer cell line UM-UC-3.
2007 Nov;1(5):555-67. doi: 10.1016/j.stem.2007.08.014.(https://pubmed.ncbi.nlm.nih.gov/18371393/ ) and Oncotarget. 2017 Apr 25;8(17):28826-28839. doi: 10.18632/oncotarget.16259.
ALDH high cells are known to differentiate into ALDH low cells in in vitro culture, and are unsuitable for stable analysis. Single cell clones were generated from high cells.
As a result, clone cells (H-1, H-6, H-10) established from ALDH high cells exhibited high ALDH enzymatic activity (Fig. 2), and clone cells (L- 1, L-3, L-8) showed low ALDH enzymatic activity (Fig. 3).
Surprisingly, ALDH high clones (H clones) and ALDH low clones (L clones) exhibit stable traits in in vitro culture for more than one month, respectively, and were established from bladder cancer cell line UM-UC-3. These cloned cells were suggested to be suitable for bladder cancer stem cell analysis. Although cancer stem cells generally differentiate when cultured in vitro, these clones do not differentiate much even when cultured in vitro, so they have the unique property of maintaining the state of cancer stem cells. was considered to have
Therefore, in Examples 2 to 5 below, it was decided to confirm whether or not ALDH high clones (H clones) are cancer stem cells. In the following experiments, H-10 clones with high ALDH enzyme activity and high tumorigenicity in vivo were used as representative H clone cells, and L-10 cells with low ALDH enzyme activity and low tumorigenicity in vivo were used. 3 clones were used as representative L clone cells.

例2.ALDH high クローン(Hクローン)のがん形成性(スフェア形成)の確認
 in vitroにおける造腫瘍能を評価するために、以下の通り、スフェア形成を確認した。
 96ウェルプレートに1.0~10個のHクローン細胞(H-10)、Lクローン細胞(L-3)および野生株(WT)を播種し、スフェア形成を確認した。その結果、H-10細胞は1個/ウェルを播種したグループにおいて、24ウェル中7ウェルにてスフェア形成を示したのに対し、L-3細胞は24ウェル中でスフェア形成を認めなかった(図4)。スフェア形成率から、幹細胞の存在率を計算(ELDA法、https://pubmed.ncbi.nlm.nih.gov/19567251/)にて計算した。
 その結果、H-10細胞では、7.56個中1個の割合で幹細胞が存在することが判明した。野生株は49.07個中1個、L-3細胞は67.32個中1個の割合であった(図4)。
 従って、ALDHhighクローン(Hクローン)のがん形成性が高いことが確認された。
Example 2. Confirmation of carcinogenicity (sphere formation) of ALDH high clone (H clone) In order to evaluate the in vitro tumorigenicity, sphere formation was confirmed as follows.
1.0 to 10 3 H clone cells (H-10), L clone cells (L-3) and wild type (WT) were seeded in a 96-well plate to confirm sphere formation. As a result, H-10 cells showed sphere formation in 7 out of 24 wells in the group in which 1 cell/well was seeded, whereas L-3 cells did not form spheres in 24 wells ( Figure 4). From the sphere formation rate, the abundance rate of stem cells was calculated by calculation (ELDA method, https://pubmed.ncbi.nlm.nih.gov/19567251/).
As a result, in H-10 cells, it was found that stem cells were present in 1 out of 7.56 cells. The ratio of the wild type was 1 out of 49.07 cells and the ratio of L-3 cells was 1 out of 67.32 cells (Fig. 4).
Therefore, it was confirmed that the ALDH high clone (H clone) has high carcinogenicity.

例3.ALDH high クローン(Hクローン)のがん形成性(免疫不全マウスにおける造腫瘍能)の確認
 スフェア形成は、in vitroにおける造腫瘍能評価法であるため、in vivoにおいて造腫瘍能が高いか、免疫不全マウスにH-10細胞およびL-3細胞を移植し、造腫瘍能を検討した。免疫不全マウス(ヌードマウス)に1000個のH-10クローン細胞およびL-3細胞を移植し、腫瘍増殖曲線を描いた。
 その結果、H-10クローン細胞はL-3細胞と比較して高い造腫瘍能を示し、L-3細胞では腫瘍形成は見られなかった(図5)。
Example 3. Confirmation of carcinogenicity (tumorigenicity in immunodeficient mice) of ALDH high clones (H clones) Sphere formation is an in vitro tumorigenicity evaluation method. H-10 cells and L-3 cells were transplanted into deficient mice, and their tumorigenic potential was examined. Immunodeficient mice (nude mice) were implanted with 1000 H-10 clone cells and L-3 cells and tumor growth curves were drawn.
As a result, the H-10 clone cells showed higher tumorigenicity than the L-3 cells, and no tumorigenesis was observed in the L-3 cells (Fig. 5).

例4.ALDH high クローン(Hクローン)のがん形成性(抗がん剤に対する治療抵抗性)の確認
 癌幹細胞は、抗がん剤に抵抗性を示す。そこで、膀胱癌のキードラッグであるシスプラチン(CDDP)に対する感受性を検討した。H-10細胞およびL-3細胞を、各々の濃度に調整したCDDP存在下で2日培養後、細胞生存率をWST-8法にて検討した。
 その結果、H-10細胞は、L-3細胞と比較してCDDPに対する抵抗性を示した(図6)。
Example 4. Confirmation of carcinogenicity (treatment resistance to anticancer drugs) of ALDH high clones (H clones) Cancer stem cells exhibit resistance to anticancer drugs. Therefore, sensitivity to cisplatin (CDDP), a key drug for bladder cancer, was examined. After H-10 cells and L-3 cells were cultured in the presence of CDDP adjusted to each concentration for 2 days, the cell viability was examined by the WST-8 method.
As a result, H-10 cells showed resistance to CDDP compared to L-3 cells (Fig. 6).

例5.ALDH high クローン(Hクローン)のがん形成性(放射線療法に対する治療抵抗性)の確認
 ALDHhighクローン(Hクローン)ががん幹細胞であるかどうかを、以下の通り確認した。
 癌幹細胞は、放射線療法に抵抗性を示す。そこで、H-10細胞およびL-3細胞に各々の線量の放射線照射2日培養後、細胞生存率をWST-8法にて検討した。
 その結果、H-10細胞は、L-3細胞と比較して放射線に対する抵抗性を示した(図7)。
Example 5. Confirmation of carcinogenicity (treatment resistance to radiotherapy) of ALDH high clones (H clones) Whether or not ALDH high clones (H clones) are cancer stem cells was confirmed as follows.
Cancer stem cells are resistant to radiotherapy. Therefore, H-10 cells and L-3 cells were exposed to each dose of radiation and cultured for 2 days, and cell viability was examined by the WST-8 method.
As a result, H-10 cells showed resistance to radiation compared with L-3 cells (Fig. 7).

 従って、上記の例2~5の結果のとおり、H-10細胞はL-3細胞と比較して、高いスフェア形成を示し(例2)、高い造腫瘍能を示し(例3)、抗がん剤抵抗性を示し(例4)、放射線療法抵抗性を示す(例5)ことから、H-10細胞に癌幹細胞が濃縮されていることが示唆された。
 なお、膀胱がんにおいて、in vitroで安定的に培養できる癌幹細胞モデルは、H-10細胞以外には報告されていない。
Therefore, as shown in the results of Examples 2 to 5 above, H-10 cells show higher sphere formation (Example 2), higher tumorigenicity (Example 3), and anti-tumor activity than L-3 cells. It was suggested that cancer stem cells were enriched in H-10 cells because they exhibited cancer drug resistance (Example 4) and radiotherapy resistance (Example 5).
For bladder cancer, no cancer stem cell model that can be stably cultured in vitro has been reported other than H-10 cells.

例6.膀胱癌幹細胞に発現する抗原ペプチドの探索
 膀胱癌幹細胞に発現する免疫療法標的となりうる抗原ペプチドを、マススペクトロメトリー解析にて網羅的に探索した。
 UM-UC-3細胞のHLAは、A*02:01/A*33:03、B*07:02/B*14:02、C*07:02/C*08:02である(図8)。HLA-A*02:01は頻度が高いHLAアリルであるため、HLA-A*02:01に焦点を当てることとした。
 H-10細胞、L-3細胞、野生型をそれぞれ10個培養し、細胞溶解液を作製した。細胞溶解液に抗HLA-A*02:01特異的抗体を反応させ、protein-A Sepharoseビーズを用いて免疫沈降し、HLA-A*02:01分子を回収した。回収したHLA-A*02:01分子に提示される抗原ペプチドを酸性バッファーにて抽出し、マススペクトロメトリー解析にてアミノ酸配列を解析した。
 H-10細胞、L-3細胞、野生株から解析されたペプチドのアミノ酸長のまとめを図8に示す。図8に示されるとおり、H-10細胞、L-3細胞、野生株はともに、9アミノ酸長のペプチドが最も多かった。
Example 6. Search for antigenic peptides expressed in bladder cancer stem cells We comprehensively searched for antigenic peptides expressed in bladder cancer stem cells that could serve as immunotherapeutic targets by mass spectrometry analysis.
The HLA of UM-UC-3 cells is A*02:01/A*33:03, B*07:02/B*14:02, C*07:02/C*08:02 (Fig. 8 ). Since HLA-A*02:01 is a frequent HLA allele, we decided to focus on HLA-A*02:01.
10 9 H-10 cells, L-3 cells, and wild-type cells were each cultured to prepare a cell lysate. The cell lysate was reacted with an anti-HLA-A*02:01 specific antibody, immunoprecipitated using protein-A Sepharose beads, and HLA-A*02:01 molecules were recovered. The collected antigen peptides presented on the HLA-A*02:01 molecules were extracted with an acidic buffer, and the amino acid sequences were analyzed by mass spectrometry analysis.
A summary of the amino acid lengths of peptides analyzed from H-10 cells, L-3 cells, and wild type is shown in FIG. As shown in FIG. 8, peptides with a length of 9 amino acids were most abundant in both H-10 cells, L-3 cells and wild type.

例7.9アミノ酸長のペプチドの配列解析
 H-10細胞、L-3細胞、野生株から回収されたペプチドの中で、9-merペプチドのアミノ酸配列を解析した。
 その結果、ペプチド2番目のアミノ酸にロイシン(L)が、9番目C末端アミノ酸にバリン(V)、ロイシン(L)が多いことが判明した(図9)。この結果は、HLA-A2サブタイプ結合モチーフに合致し(https://pubmed.ncbi.nlm.nih.gov/8254189/)、HLA-A*02:01結合ペプチド解析が機能していたことが示された。
 H-10細胞、L-3細胞、野生株から同定された抗原ペプチドを用いてベン図を作製した(図9)。その結果、123個のペプチドがH-10細胞から特異的に抽出されたことが判明した。123個のペプチドのうち、ペプチドをコードする遺伝子発現情報から、H-10クローン細胞に特異的に発現する抗原ペプチド123個中2個の抗原ペプチド(LMYDAVHVV(配列番号1)およびSLLNQPKAV(配列番号2))が免疫療法標的に適していると判断した。
Example 7. Sequence analysis of 9-amino acid long peptides Among peptides recovered from H-10 cells, L-3 cells, and wild-type strains, the amino acid sequences of 9-mer peptides were analyzed.
As a result, it was found that the 2nd amino acid of the peptide was leucine (L), and the 9th C-terminal amino acid was valine (V) and leucine (L) (Fig. 9). This result matched the HLA-A2 subtype binding motif (https://pubmed.ncbi.nlm.nih.gov/8254189/), indicating that the HLA-A*02:01 binding peptide analysis was functional. shown.
A Venn diagram was constructed using antigenic peptides identified from H-10 cells, L-3 cells, and wild-type cells (Fig. 9). As a result, 123 peptides were found to be specifically extracted from H-10 cells. Of the 123 peptides, from the peptide-encoding gene expression information, 2 of the 123 antigen peptides (LMYDAVHVV (SEQ ID NO: 1) and SLLNQPKAV (SEQ ID NO: 2) specifically expressed in H-10 clone cells )) were determined to be suitable immunotherapeutic targets.

例8.GRIK2ペプチドの抗原性試験
 GRIK2ペプチドに抗原性があるかを調べるために、末梢血単核球を用いて細胞傷害性T細胞(CTL)誘導実験を行った。
 HLA-A*02:01陽性ドナーから採取した末梢血単核球(PBMC)にインターロイキン-2(IL-2)存在下にてGRIK2ペプチドを添加、培養した。
 その結果、インターフェロンγ(IFNγ)ELISPOT法にて、GRIK2ペプチドに対する高い反応を認めた(図10)。
Example 8. Antigenicity Test of GRIK2 Peptide To investigate whether the GRIK2 peptide has antigenicity, a cytotoxic T cell (CTL) induction experiment was performed using peripheral blood mononuclear cells.
GRIK2 peptide was added to peripheral blood mononuclear cells (PBMC) collected from HLA-A*02:01 positive donors in the presence of interleukin-2 (IL-2) and cultured.
As a result, interferon γ (IFNγ) ELISPOT method confirmed a high response to the GRIK2 peptide (Fig. 10).

例9.GRIK2ペプチド特異的CTLクローンの作製
 GRIK2ペプチド特異的CTLを解析するために、GRIK2ペプチド特異的CTLクローンを作製した。
 PEで標識されたHLA-A*02:01+GRIK2ペプチド複合体テトラマーを用いて、PBMCを染色した。
 その結果、約0.099%の細胞において、GRIK2ペプチドテトラマー特異的染色がみられ(図11)、同細胞を単離し、単細胞クローンを作製した。
 得られたGRIK2ペプチド特異的9G23クローンは、IFNγ ELISPOT法にて、GRIK2ペプチド添加群(右図)において高い反応性を示した(図12)。
 また、9G23クローンをGRIK2テトラマーを用いて再解析した。その結果、9G23クローンは高いテトラマー染色率を示し(図13)、GRIK2ペプチド特異的CTLクローンであることが示された。
Example 9. Generation of GRIK2 Peptide-Specific CTL Clones To analyze GRIK2 peptide-specific CTLs, GRIK2 peptide-specific CTL clones were generated.
PBMC were stained with PE-labeled HLA-A*02:01+GRIK2 peptide complex tetramer.
As a result, GRIK2 peptide tetramer-specific staining was observed in about 0.099% of the cells (Fig. 11), and the same cells were isolated and single cell clones were generated.
The obtained GRIK2 peptide-specific 9G23 clone showed high reactivity in the GRIK2 peptide-added group (right panel) by the IFNγ ELISPOT method (FIG. 12).
The 9G23 clone was also reanalyzed using the GRIK2 tetramer. As a result, the 9G23 clone showed a high tetramer staining rate (Fig. 13), indicating that it was a GRIK2 peptide-specific CTL clone.

例10.GRIK2ペプチド特異的CTLクローンの機能解析
 GRIK2ペプチド特異的CTLクローンが、癌細胞に内在性に発現するGRIK2ペプチドを認識出来るか調べるために、野生株UM-UC-3細胞にGRIK2遺伝子を過剰発現させた。過剰発現には、レトロウイルスベクター(pMXs-puro)を用いた。
 その結果、GRIK2ペプチド特異的CTLクローンはGRIK2過剰発現株に高い反応性を示した(図14の中央のグラフ)。
 さらに、GRIK2ペプチド特異的CTLクローンがH-10細胞に高い反応を示すか、L-3細胞および野生株と比較した。
 その結果、GRIK2ペプチド特異的CTLクローンは、H-10細胞に高い反応性を示すことが判明した(図15の左端のグラフ)。
 これらの結果から、治療抵抗性膀胱がん細胞に発現するGRIK2抗原ペプチドは、免疫療法の治療標的になることが示唆された。
Example 10. Functional analysis of GRIK2 peptide-specific CTL clones To examine whether GRIK2 peptide-specific CTL clones can recognize the GRIK2 peptide endogenously expressed in cancer cells, the GRIK2 gene was overexpressed in wild-type UM-UC-3 cells. rice field. A retroviral vector (pMXs-puro) was used for overexpression.
As a result, the GRIK2 peptide-specific CTL clones showed high reactivity to the GRIK2 overexpressing strain (center graph in FIG. 14).
In addition, GRIK2 peptide-specific CTL clones showed high response to H-10 cells compared to L-3 cells and wild type.
As a result, the GRIK2 peptide-specific CTL clone was found to exhibit high reactivity with H-10 cells (leftmost graph in FIG. 15).
These results suggested that the GRIK2 antigen peptide expressed in treatment-resistant bladder cancer cells could be a therapeutic target for immunotherapy.

例11.GRIK2ペプチド特異的CTLクローンを用いるインビトロ治療モデル
 膀胱がん細胞群の標準モデルとして、H-10細胞とL-3細胞を、1:9の割合で混合した。CTLクローン9G23を作用させた群(CTL+)および作用させない群(CTL-)を、各々2日間培養した。2日後のALDHhigh細胞の割合は、CTL-では10.9%、CTL+では1.16%であった。インビトロ治療モデルの概略および結果を図16に示す。
 したがって、CTLクローン9G23を作用させた群(CTL+)では、ALDHhigh細胞(がん幹細胞)が減少することが示された。
Example 11. In Vitro Treatment Model Using GRIK2 Peptide-Specific CTL Clones As a standard model of bladder cancer cell population, H-10 cells and L-3 cells were mixed at a ratio of 1:9. A group treated with CTL clone 9G23 (CTL+) and a group not treated with CTL clone 9G23 (CTL-) were each cultured for 2 days. After 2 days, the percentage of ALDH high cells was 10.9% for CTL− and 1.16% for CTL+. A schematic and results of the in vitro therapeutic model are shown in FIG.
Therefore, it was shown that ALDH high cells (cancer stem cells) decreased in the group (CTL+) treated with CTL clone 9G23.

例12.GRIK2ペプチド特異的CTLクローンと他療法との併用効果
 GRIK2ペプチド特異的CTLクローンと抗がん剤シスプラチン(CDDP)または放射線照射との併用効果について検討した。
 CTLクローン9G23を作用させた群(CTL+)および作用させない群(CTL-)を、各々の濃度に調整したCDDP存在下で2日培養後、細胞生存率をWST-8法にて検討した。さらに、CTLクローン9G23を作用させた群(CTL+)および作用させない群(CTL-)に、各々の線量の放射線照射2日培養後、細胞生存率をWST-8法にて検討した。
 その結果、CTL+群は、抗がん剤シスプラチン(CDDP)や放射線照射により、さらに細胞生存率が下がることが示された(図17)。
 本発明のCTLクローン9G23を用いる免疫療法は、がん幹細胞を標的とし、抗がん剤や放射線療法は、非がん幹細胞を標的としており、これらの併用により、さらなる効果が得られた。
Example 12. Combined Effects of GRIK2 Peptide- Specific CTL Clones and Other Therapies The effects of combined use of GRIK2 peptide-specific CTL clones with the anticancer drug cisplatin (CDDP) or irradiation were investigated.
A group treated with CTL clone 9G23 (CTL+) and a group not treated with CTL clone 9G23 (CTL-) were cultured for 2 days in the presence of CDDP adjusted to each concentration, and cell viability was examined by the WST-8 method. Furthermore, the cell viability was examined by the WST-8 method after culturing for 2 days after culturing for 2 days after exposure to each dose of CTL clone 9G23 (CTL+) and non-acting group (CTL-).
As a result, it was shown that the cell viability of the CTL+ group was further reduced by the anticancer drug cisplatin (CDDP) and irradiation (Fig. 17).
Immunotherapy using the CTL clone 9G23 of the present invention targets cancer stem cells, and anticancer agents and radiotherapy target non-cancer stem cells, and further effects were obtained by the combination of these.

例13.Claspinペプチド特異的CTLクローンの作製
 Claspinペプチド特異的CTLを解析するために、Claspinペプチド特異的CTLクローンを作製した。
 PEで標識されたHLA-A*02:01+Claspinペプチド複合体テトラマーを用いて、PBMCを染色した。
 その結果、高い割合で、Claspinペプチドテトラマー特異的染色がみられ(図示せず)、同細胞を単離し、単細胞クローンを作製した。
 得られたClaspinペプチド特異的yc3クローンは、IFNγ ELISPOT法にて、Claspinペプチド添加群(右図)において高い反応性を示した(図12)。
 また、yc3クローンをClaspinテトラマーを用いて再解析した。その結果、yc3クローンは高いテトラマー染色率を示し(図13)、Claspinペプチド特異的CTLクローンであることが示された。
Example 13. Generation of Claspin Peptide-Specific CTL Clones To analyze Claspin peptide-specific CTLs, Claspin peptide-specific CTL clones were generated.
PBMCs were stained with PE-labeled HLA-A*02:01+Claspin peptide complex tetramer.
As a result, a high percentage of Claspin peptide tetramer-specific staining was observed (not shown), and the same cells were isolated and single cell clones were generated.
The resulting Claspin peptide-specific yc3 clones showed high reactivity in the Claspin peptide-added group (right panel) in the IFNγ ELISPOT method (Fig. 12).
The yc3 clone was also reanalyzed using the Claspin tetramer. As a result, the yc3 clone showed a high tetramer staining rate (Fig. 13), indicating that it was a Claspin peptide-specific CTL clone.

 本発明は、膀胱がん幹細胞に実際に抗原提示されているGRIK2およびClaspin由来ナチュラルペプチドを同定することで、ペプチドワクチンにより誘導されたCTLが確実に癌細胞を殺傷し、効果の高い癌ワクチンの開発に寄与するものである。また同定された膀胱がん幹細胞特異的ナチュラルペプチドから、がん幹細胞において特異的にGRIK2およびClaspinが発現していることが特定できたことから、GRIK2およびClaspinをマーカーとして膀胱がん幹細胞を特定することが可能となる。さらに同遺伝子由来のナチュラル抗原ペプチドは、少量でも大きな効果を有するがんの予防および/または治療剤として有用である。また、本発明により、CTLの誘導活性を有するGRIK2由来の腫瘍抗原ペプチド等が提供される。本発明のペプチドは、治療抵抗性膀胱がんの予防および/または治療剤として有用である。 In the present invention, by identifying GRIK2- and Claspin-derived natural peptides that are actually presented as antigens to bladder cancer stem cells, CTLs induced by peptide vaccines can reliably kill cancer cells, and highly effective cancer vaccines can be developed. It contributes to development. In addition, from the identified bladder cancer stem cell-specific natural peptides, it was possible to identify that GRIK2 and Claspin are specifically expressed in cancer stem cells, so GRIK2 and Claspin are used as markers to identify bladder cancer stem cells. becomes possible. Furthermore, the natural antigen peptide derived from the same gene is useful as a preventive and/or therapeutic agent for cancer, which is highly effective even in a small amount. The present invention also provides GRIK2-derived tumor antigen peptides and the like having CTL-inducing activity. The peptide of the present invention is useful as a prophylactic and/or therapeutic agent for treatment-resistant bladder cancer.

Claims (43)

 GRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質のアミノ酸配列中の連続する8~14アミノ酸からなり、HLA結合性を有する、腫瘍抗原ペプチドまたはそのモチーフ置換体。 A tumor antigen peptide or a motif substitute thereof, consisting of 8 to 14 consecutive amino acids in the amino acid sequence of a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin, and having HLA binding properties.  HLAが、HLA-A02である、請求項1に記載の腫瘍抗原ペプチドまたはそのモチーフ置換体。 The tumor antigen peptide or its motif substitute according to claim 1, wherein HLA is HLA-A02.  N末端から2番目のアミノ酸がロイシン、イソロイシンもしくはメチオニンであり、および/または、C末端のアミノ酸がバリン、ロイシンもしくはイソロイシンであるか、または該ペプチドにおいて、N末端から2番目のアミノ酸がロイシン、イソロイシンもしくはメチオニンに置換されており、および/または、C末端のアミノ酸がバリン、ロイシンもしくはイソロイシンに置換されているペプチドである、請求項1または2に記載の腫瘍抗原ペプチド。 The second amino acid from the N-terminus is leucine, isoleucine, or methionine, and/or the C-terminal amino acid is valine, leucine, or isoleucine, or in the peptide, the second amino acid from the N-terminus is leucine, isoleucine 3. The tumor antigen peptide according to claim 1 or 2, which is a peptide substituted with methionine, and/or substituted with valine, leucine or isoleucine at the C-terminal amino acid.  配列番号1または配列番号2で表される、請求項1~3のいずれか一項に記載の腫瘍抗原ペプチド。 The tumor antigen peptide according to any one of claims 1 to 3, represented by SEQ ID NO: 1 or SEQ ID NO: 2.  複数のエピトープペプチドが連結されたポリエピトープペプチドであって、該エピトープペプチドとして、請求項1~4のいずれか一項に記載の腫瘍抗原ペプチドを少なくとも1つ含む、前記ポリエピトープペプチド。 A polyepitope peptide in which a plurality of epitope peptides are linked, said polyepitope peptide comprising at least one tumor antigen peptide according to any one of claims 1 to 4 as said epitope peptide.  請求項1~4のいずれか一項に記載の腫瘍抗原ペプチドまたは請求項5に記載のポリエピトープペプチドの少なくとも1つをコードするポリヌクレオチド。 A polynucleotide encoding at least one of the tumor antigen peptide according to any one of claims 1 to 4 or the polyepitope peptide according to claim 5.  請求項6に記載のポリヌクレオチドを含む、発現ベクター。 An expression vector comprising the polynucleotide according to claim 6.  請求項7に記載の発現ベクターを含む、遺伝子導入用組成物。 A composition for gene transfer, comprising the expression vector according to claim 7.  (A)請求項1~4のいずれか一項に記載の腫瘍抗原ペプチドもしくは請求項5に記載のポリエピトープペプチド、または、
 (B)前記(A)のペプチドおよび/もしくはポリエピトープペプチドの少なくとも1つをコードするポリヌクレオチドと、抗原提示能を有する細胞とを、in vitroで接触させることを含む、抗原提示細胞の製造方法。
(A) the tumor antigen peptide according to any one of claims 1 to 4 or the polyepitope peptide according to claim 5, or
(B) A method for producing an antigen-presenting cell, comprising contacting in vitro a polynucleotide encoding at least one of the peptide and/or polyepitope peptide of (A) with a cell having antigen-presenting ability. .
 以下の(a)~(e):
 (a)請求項1~4のいずれか一項に記載の抗原ペプチドまたは請求項5に記載のポリエピトープペプチド、
 (b)請求項6に記載のポリヌクレオチド、
 (c)請求項7に記載の発現ベクター、
 (d)GRIK2およびClaspinからなる群から選択される遺伝子によりコードされるタンパク質、該タンパク質または配列番号1もしくは2で表される抗原ペプチドを含む該タンパク質の部分ペプチドをコードするポリヌクレオチドまたは該ポリヌクレオチドを含む発現ベクター、
 (e)請求項1~4のいずれか一項に記載の抗原ペプチドを抗原として提示する抗原提示細胞
のいずれかを有効成分として含有する、細胞傷害性T細胞の誘導剤。
(a) to (e) below:
(a) the antigenic peptide according to any one of claims 1 to 4 or the polyepitope peptide according to claim 5;
(b) the polynucleotide of claim 6;
(c) the expression vector of claim 7;
(d) a protein encoded by a gene selected from the group consisting of GRIK2 and Claspin, a polynucleotide encoding the protein, or a partial peptide of the protein including the antigen peptide represented by SEQ ID NO: 1 or 2, or the polynucleotide an expression vector comprising
(e) An inducer of cytotoxic T cells, containing as an active ingredient any of antigen-presenting cells that present the antigenic peptide according to any one of claims 1 to 4 as an antigen.
 (A)請求項1~4のいずれか一項に記載の腫瘍抗原ペプチドもしくは請求項5に記載のポリエピトープペプチド、
 (B)前記(A)のペプチドおよび/もしくはポリエピトープペプチドの少なくとも1つをコードするポリヌクレオチド、または、
 (C)請求項1~4のいずれか一項に記載の抗原ペプチドを抗原として提示する抗原提示細胞と、末梢血リンパ球とを、in vitroで接触させることを含む、細胞障害性T細胞の誘導方法。
(A) the tumor antigen peptide according to any one of claims 1 to 4 or the polyepitope peptide according to claim 5;
(B) a polynucleotide encoding at least one of the peptides and/or polyepitopic peptides of (A); or
(C) the production of cytotoxic T cells, comprising contacting peripheral blood lymphocytes in vitro with antigen-presenting cells that present the antigenic peptide of any one of claims 1 to 4 as antigens; induction method.
 以下の(a)~(e):
 (a)請求項1~4のいずれか一項に記載の抗原ペプチドまたは請求項5に記載のポリエピトープペプチド、
 (b)請求項6に記載のポリヌクレオチド、
 (c)請求項7に記載の発現ベクター、
 (d)GRIK2およびClaspinからなる群から選択されるタンパク質、該タンパク質または配列番号1もしくは2で表される抗原ペプチドを含む該タンパク質の部分ペプチドをコードするポリヌクレオチドまたは該ポリヌクレオチドを含む発現ベクター、
 (e)請求項1~4のいずれか一項に記載の抗原ペプチドを抗原として提示する抗原提示細胞を特異的に傷害する細胞傷害性T細胞
のいずれかを有効成分として含む、医薬組成物。
(a) to (e) below:
(a) the antigenic peptide according to any one of claims 1 to 4 or the polyepitope peptide according to claim 5;
(b) the polynucleotide of claim 6;
(c) the expression vector of claim 7;
(d) a protein selected from the group consisting of GRIK2 and Claspin, a polynucleotide encoding the protein or a partial peptide of the protein including the antigen peptide represented by SEQ ID NO: 1 or 2, or an expression vector containing the polynucleotide;
(e) A pharmaceutical composition comprising, as an active ingredient, any one of cytotoxic T cells that specifically injure antigen-presenting cells that present the antigen peptide according to any one of claims 1 to 4 as an antigen.
 請求項1~4のいずれか一項に記載の抗原ペプチド、および/または請求項5に記載のポリエピトープペプチドを有効成分として含む、請求項12に記載の医薬組成物。 The pharmaceutical composition according to claim 12, comprising the antigenic peptide according to any one of claims 1 to 4 and/or the polyepitope peptide according to claim 5 as an active ingredient.  アジュバントをさらに含む、請求項12または13に記載の医薬組成物。 The pharmaceutical composition according to claim 12 or 13, further comprising an adjuvant.  治療抵抗性膀胱がんの予防および/または治療剤である、請求項12~14のいずれか一項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 12 to 14, which is a preventive and/or therapeutic agent for treatment-resistant bladder cancer.  治療抵抗性膀胱がんの予防および/または治療用ワクチンである、請求項12~15のいずれか一項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 12 to 15, which is a preventive and/or therapeutic vaccine for treatment-resistant bladder cancer.  免疫チェックポイント阻害剤とともに用いられる、請求項12~16のいずれか一項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 12 to 16, which is used with an immune checkpoint inhibitor.  請求項1~4のいずれか一項に記載の抗原ペプチドとHLAとを含む、HLAマルチマー。 An HLA multimer comprising the antigenic peptide according to any one of claims 1 to 4 and HLA.  請求項18に記載のHLAマルチマーを含む、診断薬。 A diagnostic agent comprising the HLA multimer according to claim 18.  請求項1~4のいずれか一項に記載の抗原ペプチドとHLAとの複合体を認識する、T細胞受容体様抗体。 A T-cell receptor-like antibody that recognizes the complex of the antigen peptide according to any one of claims 1 to 4 and HLA.  請求項20に記載のT細胞受容体様抗体を含有する腫瘍検出剤。 A tumor-detecting agent containing the T-cell receptor-like antibody according to claim 20.  請求項1~4のいずれか一項に記載の抗原ペプチドとHLAとの複合体を認識する、キメラ抗原受容体。 A chimeric antigen receptor that recognizes a complex of the antigen peptide according to any one of claims 1 to 4 and HLA.  請求項1~4のいずれか一項に記載の抗原ペプチドとHLAとの複合体を認識するT細胞受容体を含む、人工CTL。 An artificial CTL comprising a T-cell receptor that recognizes the complex of the antigen peptide according to any one of claims 1 to 4 and HLA.  請求項1~4のいずれか一項に記載の抗原ペプチドとHLAとの複合体と、リンパ球表面抗原とを特異的に認識する、二重特異性抗体。 A bispecific antibody that specifically recognizes the complex of the antigen peptide according to any one of claims 1 to 4 and HLA and a lymphocyte surface antigen.  GRIK2およびClaspinからなる群から選択される遺伝子の発現産物を検出するための検出剤を含む、腫瘍細胞検出剤。 A tumor cell detection agent comprising a detection agent for detecting an expression product of a gene selected from the group consisting of GRIK2 and Claspin.  膀胱の生体試料に由来する細胞を含む細胞集団において腫瘍細胞を検出するための、請求項25に記載の腫瘍細胞検出剤。 The tumor cell detection agent according to claim 25, for detecting tumor cells in a cell population containing cells derived from a bladder biological sample.  遺伝子の発現産物が、mRNAおよび/または内在性ポリペプチドである、請求項25または26に記載の腫瘍細胞検出剤。 The tumor cell detection agent according to claim 25 or 26, wherein the gene expression product is mRNA and/or endogenous polypeptide.  遺伝子の発現産物がmRNAであり、前記遺伝子に相補的な塩基配列を有するプローブおよび/またはプライマーを含む、請求項25~27のいずれか一項に記載の腫瘍細胞検出剤。 The tumor cell detection agent according to any one of claims 25 to 27, wherein the expression product of the gene is mRNA and contains a probe and/or primer having a nucleotide sequence complementary to the gene.  遺伝子の発現産物が内在性ポリペプチドであり、該内在性ポリペプチドと特異的に反応する検出物質を含む、請求項25~28のいずれか一項に記載の腫瘍細胞検出剤。 The tumor cell detection agent according to any one of claims 25 to 28, wherein the expression product of the gene is an endogenous polypeptide and contains a detection substance that specifically reacts with the endogenous polypeptide.  検出物質が、抗体である、請求項29に記載の腫瘍細胞検出剤。 The tumor cell detection agent according to claim 29, wherein the detection substance is an antibody.  請求項12~17のいずれか一項に記載の医薬組成物を用いたがんの処置方法が有効な治療対象患者を選択するための診断薬であって、請求項18に記載のHLAマルチマー、請求項20に記載のT細胞受容体様抗体および/または請求項25~30のいずれか一項に記載の腫瘍細胞検出剤を含む、前記診断薬。 The HLA multimer of claim 18, which is a diagnostic agent for selecting a patient to be treated for whom a cancer treatment method using the pharmaceutical composition of any one of claims 12 to 17 is effective, Said diagnostic agent comprising the T-cell receptor-like antibody according to claim 20 and/or the tumor cell detection agent according to any one of claims 25-30.  GRIK2およびClaspinからなる群から選択される遺伝子に対するアンチセンスオリゴヌクレオチド。 An antisense oligonucleotide against a gene selected from the group consisting of GRIK2 and Claspin.  GRIK2およびClaspinからなる群から選択される遺伝子に対して相補的なアンチセンス領域および該アンチセンス領域に少なくとも部分的に相補的なセンス領域を含む、siRNA。 An siRNA comprising an antisense region complementary to a gene selected from the group consisting of GRIK2 and Claspin and a sense region at least partially complementary to the antisense region.  請求項32に記載のアンチセンスオリゴヌクレオチドおよび/または請求項33に記載のsiRNA、ならびに薬学的に許容可能な担体を含む、医薬組成物。 A pharmaceutical composition comprising the antisense oligonucleotide of claim 32 and/or the siRNA of claim 33, and a pharmaceutically acceptable carrier.  治療抵抗性膀胱がんの予防および/または治療剤である、請求項34に記載の医薬組成物。 The pharmaceutical composition according to claim 34, which is a preventive and/or therapeutic agent for treatment-resistant bladder cancer.  アルデヒドデヒドロゲナーゼ酵素活性が高い細胞(ALDHhigh)を含むヒト膀胱がん細胞株UM-UC-3の細胞集団から樹立されたクローン細胞。 A clone cell established from a cell population of human bladder cancer cell line UM-UC-3 containing cells with high aldehyde dehydrogenase enzyme activity (ALDH high ).  アルデヒドデヒドロゲナーゼ酵素活性が低い細胞(ALDHlow)を含むヒト膀胱がん細胞株UM-UC-3の細胞集団から樹立されたクローン細胞。 A clone cell established from a cell population of human bladder cancer cell line UM-UC-3 containing cells with low aldehyde dehydrogenase enzyme activity (ALDH low ).  ヒト膀胱がん細胞株UM-UC-3の細胞集団が、ALDEFLUOR法にて分離されている、請求項36または37に記載のクローン細胞。 The clone cell according to claim 36 or 37, wherein the cell population of human bladder cancer cell line UM-UC-3 is separated by the ALDEFLUOR method.  CD3ζ鎖をさらに含む、請求項22に記載のキメラ抗原受容体。 The chimeric antigen receptor according to claim 22, further comprising a CD3ζ chain.  共刺激分子をさらに含む、請求項39に記載のキメラ抗原受容体。 The chimeric antigen receptor of claim 39, further comprising a co-stimulatory molecule.  請求項22、39、および40のいずれか一項に記載のキメラ抗原受容体が導入されている、遺伝子改変T細胞。 A genetically modified T cell into which the chimeric antigen receptor according to any one of claims 22, 39 and 40 has been introduced.  請求項1~4のいずれか一項に記載のペプチドとHLAとの複合体を細胞表面に提示する樹状細胞。 A dendritic cell that presents a complex of the peptide according to any one of claims 1 to 4 and HLA on the cell surface.  膀胱がんの予後の予測のために使用される、請求項25~30のいずれか一項に記載の腫瘍細胞検出剤。 The tumor cell detection agent according to any one of claims 25 to 30, which is used for predicting the prognosis of bladder cancer.
PCT/JP2022/015919 2021-03-30 2022-03-30 Antigen peptide expressed in human bladder cancer stem cells WO2022210863A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021057230 2021-03-30
JP2021-057230 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210863A1 true WO2022210863A1 (en) 2022-10-06

Family

ID=83460058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015919 WO2022210863A1 (en) 2021-03-30 2022-03-30 Antigen peptide expressed in human bladder cancer stem cells

Country Status (1)

Country Link
WO (1) WO2022210863A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017089780A2 (en) * 2015-11-23 2017-06-01 Immunocore Limited Peptides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017089780A2 (en) * 2015-11-23 2017-06-01 Immunocore Limited Peptides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INOUE RYUTA, HIROHASHI YOSHIHIKO, KITAMURA HIROSHI, NISHIDA SACHIYO, MURAI AIKO, TAKAYA AKARI, YAMAMOTO ERI, MATSUKI MASAHIRO, TAN: "GRIK2 has a role in the maintenance of urothelial carcinoma stem-like cells, and its expression is associated with poorer prognosis", ONCOTARGET, vol. 8, no. 17, 25 April 2017 (2017-04-25), pages 28826 - 28839, XP055974119, DOI: 10.18632/oncotarget.16259 *

Similar Documents

Publication Publication Date Title
JP6959597B2 (en) Tumor antigen peptide
JP5281515B2 (en) Tumor antigen protein and use thereof
JP7266834B2 (en) tumor antigen peptide
JP6960179B2 (en) Tumor antigen peptide
US9260499B2 (en) Tumor antigen peptide and use thereof
WO2015005479A1 (en) Tumor antigen peptide
WO2022210863A1 (en) Antigen peptide expressed in human bladder cancer stem cells
TW201200525A (en) MYBL2 peptides and vaccines containing the same
WO2024262558A1 (en) Tumor antigen peptide encoded by human endogenous retrovirus gene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781073

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP