WO2022210828A1 - Antenna device - Google Patents
Antenna device Download PDFInfo
- Publication number
- WO2022210828A1 WO2022210828A1 PCT/JP2022/015806 JP2022015806W WO2022210828A1 WO 2022210828 A1 WO2022210828 A1 WO 2022210828A1 JP 2022015806 W JP2022015806 W JP 2022015806W WO 2022210828 A1 WO2022210828 A1 WO 2022210828A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- antenna element
- circuit board
- feeding point
- meandering
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/08—Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting antenna units or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
Definitions
- the present invention relates to an antenna device in which a plurality of monopole antennas are arranged side by side.
- an ETC antenna and a GPS antenna are arranged in the center of a common housing, and a pair of TEL antennas (monopole antennas) are arranged on both left and right sides of them.
- TEL antennas monopole antennas
- MIMO Multiple Input Multiple Output
- the pair of TEL antennas as described above, it is desirable that the distance between the antenna elements can be made as small as possible.
- a plurality of antennas are installed side by side, it is necessary to ensure wideband isolation between them.
- Patent Documents 2 and 3 a technique of adjusting the isolation by interposing a circuit or an element near the feeding point between the antenna elements.
- Patent Document 4 A technique has been proposed in which the mutual influence is reduced by bringing the ends of the elements close to each other for capacitive coupling.
- Patent Document 4 there is also a method of ensuring isolation by arranging adjacent antenna elements so as to be orthogonal.
- Patent Documents 2 to 4 generally tend to have a limited frequency band in which good impedance characteristics (radiation efficiency) and good isolation are compatible.
- arranging adjacent antenna elements orthogonally leads to restrictions on equipment configuration, and there is a problem that it is difficult to meet the demand for miniaturization of the antenna device.
- the present invention has been made in view of such problems, and one of its objects is to provide an antenna device in which a plurality of monopole antennas are arranged side by side, and to achieve wideband performance without degrading isolation in a specific frequency band. To provide a technology capable of ensuring good characteristics for
- An aspect of the present invention is an antenna device.
- This antenna device includes a circuit board having a ground area, a first antenna element having a base end connected to a first feeding point provided on the circuit board and forming a first monopole antenna, and a first antenna element provided on the circuit board.
- a second antenna element having a base end connected to the second feeding point and forming a second monopole antenna; a connecting portion connecting a tip portion of the first antenna element and a tip portion of the second antenna element; Prepare.
- an antenna device in which a plurality of monopole antennas are arranged side by side, good characteristics can be secured in a wide band without degrading isolation in a specific frequency band.
- FIG. 8 is a plan view showing the configuration of an antenna unit according to a second embodiment
- FIG. 11 is a plan view showing the configuration of an antenna unit according to a modification
- It is a figure showing the relationship between the line width of a meandering structure, and a frequency characteristic.
- FIG. 11 is a perspective view showing the configuration of an antenna unit according to a third embodiment; FIG.
- FIG. 11 is a plan view showing the configuration of an antenna unit according to a modification;
- FIG. 11 is a plan view showing the configuration of an antenna unit according to another modified example;
- Analyzes and results of effects of the first embodiment are shown.
- Analyzes and results of effects of the first embodiment are shown.
- the analysis and the result regarding the effect of 2nd Embodiment are shown.
- FIG. 21 is a plan view showing the configuration of an antenna unit according to modification 6;
- FIG. 12 is a diagram showing an effect of the configuration of modification 6;
- a vehicle antenna device (hereinafter simply referred to as "antenna device") in which two monopole antennas are arranged side by side will be exemplified.
- the monopole antenna illustrated here is a TEL antenna.
- the two antenna elements are connected to each other at the ends opposite their feed points. The details will be described below.
- FIG. 1 is a perspective view showing the outline of the antenna device according to the first embodiment.
- the positional relationship of the antenna device may be expressed in the front/rear, up/down, and left/right directions with reference to the mounted state of the vehicle.
- the antenna device 1 includes an antenna unit 10 including a plurality of antennas.
- the antenna unit 10 is housed in a case (not shown).
- This case includes a lower case on which the antenna unit 10 is placed, and an upper case attached to the lower case so as to cover the antenna unit 10 from above.
- Both the upper case and the lower case are made of radio wave transparent resin.
- the antenna unit 10 is configured by mounting a single GPS antenna 14 and a pair of TEL antennas 16 a and 16 b on a circuit board 12 .
- TEL antenna 16 the TEL antennas 16a and 16b will simply be referred to as "TEL antenna 16" unless otherwise distinguished.
- the circuit board 12 has a ground area, which will be described later, and functions as a ground plane.
- the GPS antenna 14 is a patch antenna for GPS.
- TEL antennas 16a and 16b are monopole antennas for telephones and include antenna elements 18a and 18b, respectively.
- Antenna element 18a functions as a "first antenna element” and forms a first monopole antenna.
- Antenna element 18b functions as a "second antenna element” and forms a second monopole antenna.
- the antenna elements 18a and 18b are simply referred to as “antenna element 18" unless otherwise distinguished.
- the antenna elements 18 a and 18 b are arranged symmetrically with respect to the circuit board 12 .
- the tip portions of the antenna element 18a and the antenna element 18b are connected to each other by a connecting portion 20 in order to improve isolation (details will be described later).
- a connector 22 having a feeding port for each antenna projects from the lower surface of the front end portion of the circuit board 12 .
- the antenna device 1 is mounted inside an instrument panel of a vehicle (not shown) or the like.
- FIG. 2 is a plan view showing the configuration of the antenna unit.
- FIG. 2A shows the configuration of this embodiment
- FIG. 2B shows the configuration of a comparative example.
- the circuit board 12 is a printed wiring board having a polygonal shape in plan view, and has a stepped shape in which the width of the front half is larger than the width of the rear half.
- the circuit board 12 has a symmetrical shape with respect to the centerline L.
- the antenna unit 10 has a symmetrical shape with respect to the center line L as a whole.
- a ground area 24 is provided on the surface of the circuit board 12 .
- a ground area 24 is common to the pair of TEL antennas 16 .
- a GPS antenna 14 is arranged in the narrow area of the rear half of the circuit board 12 .
- the GPS antenna 14 is a dielectric patch antenna, and is configured by arranging a radiation electrode 28 on the surface of a dielectric layer 26 .
- the radiation electrode 28 is provided parallel to the upper surface of the circuit board 12 .
- a feeding point is provided on the radiation electrode 28 .
- An insertion hole is provided through the dielectric layer 26, and a feed pin for connecting a feed line provided on the back surface of the circuit board 12 and a feed point is inserted therethrough.
- a one-point feeding type circularly polarized patch antenna is adopted as the GPS antenna 14, but a two-point feeding type patch antenna may be used. Since a known patch antenna is adopted for the GPS antenna 14, detailed description thereof will be omitted.
- Feeding points P1 and P2 are provided at both left and right ends of the large region of the front half of the circuit board 12, and the base ends of the antenna elements 18a and 18b are connected.
- the feeding point P1 functions as a "first feeding point” and the feeding point P2 functions as a "second feeding point”.
- a pair of TEL antennas 16 are arranged on both left and right sides of the GPS antenna 14 .
- a pair of antenna elements 18 has a symmetrical structure with respect to the center line L. As shown in FIG.
- the antenna element 18 is a conductor plate having an elongated rectangular (belt-shaped) main body 30 , and one end of the main body 30 extends inward (center line L side) to form a wide base end portion 32 . An inner end portion of the base end portion 32 is bent upward at a right angle to form a power supply portion 34 .
- a feeding portion of the antenna element 18a is connected to the feeding point P1, and a feeding portion 34 of the antenna element 18b is connected to the feeding point P2. In this embodiment, these connections are made by soldering.
- a tip portion 36 of the antenna element 18a and a tip portion 36 of the antenna element 18b are integrally connected via the connecting portion 20.
- the connecting portion 20 is a conductor plate having a width approximately equal to that of the main body 30, and is connected perpendicularly to the antenna elements 18a and 18b.
- the antenna element 18a includes a base end portion 32 (corresponding to a “first base end portion”) connected to the circuit board 12 and a main body 30 (“ corresponding to the "first extension”).
- the antenna element 18b includes a base end portion 32 (corresponding to a “second base end portion”) connected to the circuit board 12 and a body 30 (“second base end portion”) extending rearward from the circuit board 12 from the base end portion 32 (“second base end portion”). (corresponding to "extension”).
- the connecting portion 20 connects the tip portion 36 of the antenna element 18 a and the tip portion 36 of the antenna element 18 b in the horizontal direction of the circuit board 12 .
- the antenna elements 18a and 18b and the connection portion 20 are formed integrally by punching out a conductor plate into a square frame shape with one side open and bending the open end. .
- the antenna elements 18a and 18b may be formed separately and the connecting portion 20 may be joined by welding or the like.
- Each feed point P1, P2 is connected to a feed line mounted on the circuit board 12.
- a feed line for each antenna is provided as a microstrip line on the back surface of the circuit board 12 and connected to each feed port of the connector 22 .
- Three cables connected to the vehicle-mounted device are connected to the connector 22 (see FIG. 1). These cables are all coaxial cables and are connected to the feeder lines of the GPS antenna 14 and the pair of TEL antennas 16 via connectors 22 .
- the inner conductor of the coaxial cable for the TEL antenna 16 is connected via connector 22 to the feed points (P1, P2) and the outer conductor is connected via connector 22 to the ground area 24 .
- the antenna elements 18a, 18b are connected to the circuit board 12 at their respective base ends 32, while their respective bodies 30 extend outwardly from the circuit board 12. Thereby, the spacing between the antenna element 18a and the antenna element 18b is properly adjusted.
- the circuit is formed in the area surrounded by the antenna elements 18a and 18b and the connection portion 20 in plan view (inside the outline of these projection areas).
- a substrate 12 can be accommodated.
- the circuit board 12 has a width that fits between the antenna element 18a and the antenna element 18b, and has a size that fits in the area described above.
- the distance between the antenna element 18a and the antenna element 18b is set to such an extent that substantially no capacitive coupling occurs between them.
- the GPS antenna 14 is separated from both antenna elements 18a and 18b so as not to overlap the projected planes of the antenna elements 18a and 18b in plan view.
- the antenna unit 110 according to the comparative example differs from the present embodiment in that it does not have a connecting portion for connecting the pair of antenna elements 18a and 18b.
- the presence or absence of this connecting portion 20 affects the isolation of the left and right TEL antennas 16 . The results of analysis performed to verify this will be described below.
- FIG. 3 is a diagram showing the result of analyzing the frequency characteristics of the TEL antenna 16.
- FIG. 3A shows analysis results of isolation (dB), and
- FIG. 3B shows analysis results of radiation efficiency (dB).
- the solid line indicates the characteristics of this embodiment, and the dashed line indicates the characteristics of the comparative example.
- the horizontal axis of each figure indicates frequency.
- the comparative example fails to secure 10 dB in the frequency range of 1200 MHz or less, whereas the present embodiment secures 10 dB in the entire frequency range including 1200 MHz or less.
- both the present embodiment and the comparative example are good in the frequency range of 1600 MHz or higher.
- the frequency region below 1600 MHz significant improvement is seen in this embodiment. According to this embodiment, it can be seen that not only the isolation but also the radiation efficiency is improved in the range of 800 MHz to 1200 MHz.
- the low frequency band Good characteristics (radiation efficiency) can be ensured in a wide band without degrading isolation in .
- FIG. 4 is a plan view showing the configuration of an antenna unit according to the second embodiment.
- the connecting portion 220 has an electrical length increasing structure for increasing the electrical length.
- This "electrical length increasing structure” includes a meandering structure having a plurality of folded portions 222 in the extending direction of the connecting portion 220, and the antenna characteristics are adjusted by setting the line width w1 and meandering width w2 of the meandering structure. It functions as an antenna characteristic adjustment structure.
- the length along the extending direction of the connecting portion 220 (the length along the meandering shape) is the same as that of the connecting portion 20 in which both tip portions 36 of the antenna elements 18a and 18b are linearly connected as in the first embodiment. Greater than length.
- the line width w1 is set to 5 mm
- the meandering width w2 is set to 20 mm.
- FIG. 5 is a plan view showing the configuration of an antenna unit according to a modification.
- FIG. 5A shows Modification 1
- FIG. 5B shows Modification 2.
- FIG. Modification 1 changes the line width w1 without changing the meandering width w2 of the meandering structure as compared with the second embodiment (FIG. 5A).
- the meandering width w2 is changed without changing the line width w1 of the meandering structure compared to the second embodiment (FIG. 5(B)).
- the antenna unit 214 has a connecting portion 232 having a meandering structure.
- the antenna characteristics can be adjusted by appropriately setting the line width w1 and meandering width w2 of the meandering structure. Analysis results for verifying this are shown below.
- FIG. 6 is a diagram showing the relationship between the line width of the meandering structure and the frequency characteristics.
- FIG. 6A shows analysis results of isolation (dB), and
- FIG. 6B shows analysis results of radiation efficiency (dB).
- the solid line indicates the characteristics of the first embodiment that does not employ the meandering structure, and the others indicate the characteristics of the second embodiment that has the meandering structure and its modifications.
- the meandering width w2 is constant at 20 mm.
- the line width w1 indicates a case of 5 mm (corresponding to the second embodiment)
- the dashed line indicates a case of 3 mm
- the one-dot chain line indicates a case of 2 mm (corresponding to the first modification).
- the horizontal axis of each figure indicates frequency.
- both isolation and radiation efficiency can be significantly improved in the low frequency range of 1000 MHz or less. Isolation of 10 dB or more can be secured even in the frequency range of 1700 to 6000 MHz, and radiation efficiency is as good as in the case without the meander structure. In any frequency region, there is a slight difference in isolation depending on the line width w1.
- FIG. 7 is a diagram showing the relationship between the meandering width of the meandering structure and the frequency characteristics.
- FIG. 7A shows analysis results of isolation (dB)
- FIG. 7B shows analysis results of radiation efficiency (dB).
- the line width w1 is constant at 5 mm.
- the solid line indicates 20 mm (corresponding to the second embodiment)
- the dotted line indicates 30 mm
- the dashed line indicates 35 mm
- the one-dot chain line indicates 40 mm (corresponding to Modification 2).
- the horizontal axis of each figure indicates frequency.
- the isolation and radiation efficiency can also be adjusted by adjusting the meandering width w2 of the meander structure.
- the meandering width w2 In any frequency range, there is a slight difference in isolation depending on the meandering width w2. It can be seen that in the frequency region of 1200 MHz or less, the isolation decreases as the meandering width w2 increases. If the meandering width w2 is 35 mm or more, it becomes impossible to ensure isolation of 10 dB or more.
- the balance between isolation and radiation efficiency can be adjusted for a pair of monopole antennas, and the frequency characteristics can be improved. It was confirmed that In other words, depending on the balance between the line width and meandering width, the characteristics may be lower than those without the meander structure (first embodiment) in a specific frequency range. Therefore, it is preferable to adjust these according to the specifications (frequency band) of the monopole antenna. Regarding this embodiment, it was found that by setting the line width w1 to 2 mm or more and 5 mm or less and the meandering width w2 to 20 mm or more and 35 mm or less, the isolation can be improved particularly in the low frequency region.
- FIG. 8 is a perspective view showing the configuration of an antenna unit according to the third embodiment.
- Antenna unit 310 of the present embodiment has a connection portion 320 that is slightly different in structure from connection portion 220 of the second embodiment.
- the connecting portion 320 has stepped portions 322 at both ends so as to be maintained at a higher position than the main body 30 (the first extending portion and the second extending portion) of the antenna element 18 . Thereby, the cable connected to the vehicle-mounted device can be passed downward through the connection portion 320 and connected to the connector 22 .
- the height of the stepped portion 322 is set to 10 mm or more.
- FIG. 9 is a plan view showing the configuration of an antenna unit according to a modification.
- the antenna unit 410 of Modification 3 includes a circuit board 412 that is larger than that of the above embodiment.
- the circuit board 412 is a printed wiring board having a rectangular shape in plan view, and the antenna element 418a (first antenna element), the antenna element 418b (second antenna element), and the connection portion 20 are arranged on the outer edge of the circuit board 412 in plan view. are arranged along.
- the antenna elements 418a and 418b and the connecting portion 20 each have an elongated rectangular shape, are positioned above the circuit board 412, and constitute a U-shaped element unit 420 in plan view.
- the element unit 420 extends parallel to the top surface of the circuit board 412 .
- a base end portion 432 of each antenna element does not have a wide shape as in the above embodiment.
- the inner end portion of the base end portion 432 is bent downward at right angles to form the power supply portion 34 .
- a lower end of the power feeding portion 34 is connected to the power feeding points (P1, P2).
- the area surrounded by the antenna elements 418a and 418b and the connecting portion 20 is sufficiently large, so that a patch antenna or the like other than the GPS antenna 14 can be arranged.
- Antenna elements such as patch antennas are arranged to avoid circuit components such as chips on the circuit board 412 . According to this modified example, the degree of freedom in design, such as circuit layout utilizing the extra space, is increased.
- circuit board 412 is configured to be slightly larger than the element unit 420 in plan view, and its outer edge is positioned outside the element unit 420 .
- the circuit board 412 may be configured to be smaller than the element unit 420 in plan view, and its outer edge may be positioned inside the element unit 420 .
- the circuit board 412 may be sized such that its outer edge is positioned within the projection plane of the element unit 420 . In either case, the antenna elements 418a and 418b and the connection portion 20 are arranged along the outer edge of the circuit board 412 in plan view.
- the antenna element and the connecting portion of the TEL antenna are configured by a conductor plate as in the above embodiment, but in other modifications, the upper surface of the circuit board 412 ( surface), bottom surface (rear surface), or a wiring pattern mounted in a layer structure.
- the wiring pattern forming the antenna element and connection portion of the monopole antenna may be arranged along the outer edge of the circuit board 412 .
- FIG. 10 is a plan view showing the configuration of an antenna unit according to another modification.
- FIG. 10A shows Modification 4
- FIG. 10B shows Modification 5.
- FIG. 10A shows Modification 4
- FIG. 10B shows Modification 5.
- FIG. 10A shows Modification 4
- FIG. 10B shows Modification 5.
- the frequency characteristics of the TEL antenna (monopole antenna) are adjusted by configuring the antenna element to have a tapered shape in plan view.
- the antenna element 518 has a tapered shape in which the width gradually decreases from the base end portion 532 side toward the tip end portion 36 in the front-rear direction (FIG. 10(A)).
- Antenna element 518 also has a tapered shape in which the width decreases in the left-right direction as it approaches feeding point P1.
- the antenna element 618 has a tapered shape in which the width gradually increases from the base end portion 632 side toward the tip end portion 36 in the front-rear direction (FIG. 10(B)).
- the antenna element 618 has a tapered shape whose width decreases as it approaches the feeding point P1.
- the antenna element by configuring the antenna element so that the width becomes smaller as it approaches the feeding point (P1, P2), it is possible to improve the antenna performance in a high frequency band, for example.
- antenna performance can be improved in a specific frequency band.
- a tapered shape is exemplified as a specific shape of the antenna element, but a stepped shape or other shape may be used as long as the width of the antenna element gradually decreases toward the feeding point. Further, depending on the frequency band to be improved, the width of the antenna element may be gradually increased. Further, as in the above embodiment, the width of the antenna element may be gradually decreased or increased only in the vicinity of the feeding point.
- FIGS. 11 and 12 show the analysis and results of the effects of the first embodiment.
- FIG. 11A shows an analysis model of the first embodiment
- FIG. 11B shows an analysis model of a comparative example.
- the configuration of the antenna unit 10 according to the first embodiment has already been described.
- the antenna unit 112 according to the comparative example has a structure in which left and right antenna elements 118a and 118b are separated by providing a slit in the center of the connecting portion 20 of the first embodiment.
- the antenna element 118a functions as a "first antenna element”
- the antenna element 118b functions as a "second antenna element”.
- the gap G between the tips of the antenna elements 118a and 118b is 1 mm.
- FIG. 12 is a diagram showing analysis results of frequency characteristics.
- FIG. 12A shows analysis results of isolation (dB), and
- FIG. 12B shows analysis results of radiation efficiency (dB).
- the solid line indicates the characteristics of the first embodiment, and the dashed line indicates the characteristics of the comparative example.
- the horizontal axis of each figure indicates frequency.
- the first embodiment provides better isolation and radiation efficiency than the comparative example.
- almost no difference between the two is recognized in the high frequency region. This point is as described in the explanation of the first embodiment.
- the influence on the other antenna element was verified by calculating the current distribution when the current was excited only at the feeding point of one of the first and second antenna elements. Specifically, the feeding point P2 (second feeding point) of the antenna element 118b is in an excited state, and the feeding point P1 (first feeding point) of the antenna element 118a is in a non-excited state.
- the current amplitude near the other feeding point P1 becomes small, that is, the current waveform can be a node.
- the isolation was good.
- the current amplitude near the feeding point P1 was large, that is, the current waveform had an antinode, and as a result, good isolation could not be obtained. This result matches the analysis result of FIG.
- one feeding point P2 is excited and the other feeding point P1 is de-excited, but the same applies when the excited states are exchanged. If the frequencies are the same, the current waveform (the positional relationship between the antinode and the node) at the feed point on the non-excited side will be the same.
- the waveform of the current excited at the feeding point P1 becomes a node near the feeding point P2, and the waveform of the current excited at the feeding point P2 becomes a node at the feeding point P1.
- the lengths of the antenna element 18a, the antenna element 18b, and the connection portion 20 are set so as to form a node in the vicinity of .
- FIG. 13 shows an analysis and its results regarding the effects of the second embodiment.
- FIG. 13A shows analysis results of isolation (dB)
- FIG. 13B shows analysis results of radiation efficiency (dB).
- the solid line indicates the characteristics of the second embodiment (more specifically, the modified example 1 of FIG. 5A), and the dashed line indicates the characteristics of the comparative example.
- the horizontal axis of each figure indicates frequency.
- the antenna unit 212 according to the second embodiment has already been described.
- the antenna unit according to the comparative example has a structure in which a slit is provided in the center of the connecting portion 230 of the modified example 1 to separate the left and right antenna elements.
- One of the antenna elements functions as a "first antenna element” and the other antenna element functions as a "second antenna element”.
- the gap between the tips of the left and right antenna elements is 1 mm.
- the second embodiment (Modification 1) provides better results than the comparative example in terms of isolation and radiation efficiency.
- the influence on the other antenna element was verified by calculating the current distribution when the current was excited only at the feeding point of one of the first and second antenna elements.
- the current waveform near the other feeding point P1 can be used as a node. ration was found to be good.
- the comparative example it was found that the current waveform near the feeding point P1 has an antinode and good isolation cannot be obtained. This result matches the analysis result of FIG.
- the waveform of the current excited at the feeding point P1 becomes a node near the feeding point P2, and the current excited at the feeding point P2 becomes a node.
- the lengths of the antenna element 18a, the antenna element 18b, and the connection portion 230 are set so that the waveform has a node near the feeding point P1.
- FIGS. 11 to 13 show an example of analysis results for a specific form, similar results can be obtained for other forms. That is, the connecting portion has a meandering structure and has various forms with different line widths and meandering widths, a form in which the end of the connecting part has a rounded R shape, and a form in which the connecting part is inclined from the end toward the center. (A form forming an acute or obtuse angle with respect to the left and right antenna elements, a form approaching or separating from the patch antenna from the ends toward the center). Other forms are also applicable.
- the waveform of the current excited at the first feeding point becomes a node near the second feeding point
- the waveform of the current excited at the second feeding point becomes a node near the first feeding point. Isolation and radiation efficiency can be improved if the lengths of the first antenna element, the second antenna element, and the connecting portion are set.
- FIG. 14 is a plan view showing the configuration of an antenna unit according to modification 6.
- a metal plate 710 is added to the antenna unit 10 of the first embodiment.
- the metal plate 710 is a sheet metal component provided to face the side of the circuit board 12 opposite to the patch antenna (GPS antenna 14).
- the metal plate 710 has a symmetrical structure with respect to the center line L in plan view, and is arranged in a region surrounded by the antenna element 18a, the antenna element 18b, and the connection portion 20.
- the metal plate 710 may be arranged at the same height position as the antenna elements 18a and 18b. With such a configuration, it is possible to improve the gain characteristics and axial ratio characteristics of the patch antenna.
- FIG. 15 is a diagram showing the effect of the configuration of Modification 6.
- FIG. 15A shows elevation angle-average gain characteristics (frequency: 1575 MHz)
- FIG. 15B shows frequency-zenith gain characteristics
- FIG. 15C shows frequency-zenith axial ratio characteristics.
- the solid line indicates the characteristics of Modification 6
- the dashed line indicates the characteristics of Comparative Example.
- the horizontal axis of each figure indicates frequency.
- the comparative example referred to here has a configuration without the metal plate 710 and corresponds to the first embodiment.
- the zenith axial ratio is an index indicating the roundness of the received radio wave when the patch antenna receives the radio wave in the GNSS frequency band from an artificial satellite, in other words, the degree of distortion.
- the average gain characteristic is improved regardless of how the elevation angle of the GNSS antenna (GPS antenna 14) is set (FIG. 15(A)). Also, it can be seen that the zenith gain characteristic and the zenith axial ratio characteristic are improved in the vicinity of the frequency region corresponding to the GNSS frequency band (FIGS. 15(B) and 15(C)).
- a member made of conductive resin or another conductive material may be provided as the “conductive member” instead of the metal plate 710 .
- the antenna element 18 and the connecting portion 20 were integrally formed by punching out a single conductor plate, and the width and thickness of the connecting portion 20 were made equal to the main body 30 of the antenna element 18.
- at least one of the width and thickness of the connecting portion 20 may be different from that of the main body 30 .
- the antenna element and the connecting portion may be separately molded and joined, and in that case, materials with different thicknesses may be used for both.
- the width and thickness of the connecting portion 20 may be changed in the extending direction. You may change the shape of the connection part 20 into shapes other than a planar view rectangle.
- the antenna element 18 extends toward the rear of the circuit board 12
- it may be configured to extend toward the front of the circuit board 12 .
- it may be configured to extend forward and backward of the circuit board 12 .
- the "front-to-back direction of the circuit board" can include both the front and rear of the circuit board.
- the configuration is shown in which the entire area from one end to the other end of the connecting portion has a meandering structure.
- a periodic rectangular wave shape is exemplified as the meander structure.
- the meandering structure may be provided partially, for example, limited to the central region, limited to the vicinity of the ends, or arranged at predetermined intervals, rather than the entire connecting portion.
- the meandering structure may have a curvilinear wave shape, or may have no periodicity. The thickness may be partially varied along the meandering shape.
- the electrical length is increased by forming the connecting portion 220 from the same metal as the antenna element 18 and forming a meandering structure (electrical length increasing structure) is shown.
- the electrical length may be adjusted by forming the connecting portion from a metal different from that of the antenna element without integrally molding the connecting portion and the antenna element.
- the electrical length may be adjusted by configuring the connecting portion by connecting a metal plate and a circuit element such as a chip inductor.
- an electrical length reduction structure may be employed in which the electrical length is made shorter than when the first antenna element and the second antenna element are linearly connected. That is, the connection portion may have an "electrical length adjustment structure" that makes the electrical length different from that in the case where the first antenna element and the second antenna element are linearly connected.
- the elements of the GPS antenna 14 are positioned higher than the elements of the TEL antenna 16, but the elements of the GPS antenna 14 may be positioned lower than the elements of the TEL antenna 16. In that case, the feeding portion 34 may be bent downward at the base end portion 32 of the antenna element 18 and connected to the circuit board 12 from above.
- the GPS antenna 14 was exemplified as the patch antenna provided on the circuit board 12, but instead of this, a patch antenna compatible with GLONASS (Global Navigation Satellite System) and other GNSS (Global Navigation Satellite Systems) is provided. good too.
- a patch antenna capable of receiving satellite radio such as SiriusXM, may be provided.
- a patch antenna for ETC or VICS may be provided.
- the circuit board 12 when there is room in the area surrounded by the first antenna element, the second antenna element, and the connecting portion in a plan view, the circuit board 12 can be enlarged in the front-rear direction so that a plurality of patch antennas can be formed. may be arranged in the front and rear. Also in that case, the circuit board 12 is accommodated in the area surrounded by the first antenna element, the second antenna element, and the connecting portion (inside the outline of these projected areas).
- the antenna element of the ETC antenna may be inclined with respect to the circuit board 12 from the viewpoint of directivity. In such a case, it is preferable to arrange the ETC antenna in front of the other patch antennas.
- the antenna element is made of metal in the above embodiment, it may be made of conductive resin or other conductive material.
- inverted L antennas are illustrated as two monopole antennas, but inverted F antennas may be used. Also, a rod-shaped monopole antenna or a tapered monopole antenna may be used.
- the connecting portion 20 has a rectangular shape similar to that of the first embodiment. It goes without saying that this is also a good thing.
- the antenna device is installed inside the instrument panel, but it may be installed at other positions on the vehicle body. Further, the antenna device is not limited to a vehicle, and may be an antenna device installed in a ship or other means of transportation.
- the two monopole antennas arranged adjacently (arranged in parallel) are TEL antennas, but other antennas compatible with MIMO may be used. Further, in the above embodiment, the two monopole antennas extend in the front-rear direction parallel to the circuit board, but they may extend perpendicularly to the circuit board. Also in that case, the circuit board may have a width that fits between the first antenna element and the second antenna element.
- Antenna device 10 Antenna unit, 12 Circuit board, 14 GPS antenna, 16 TEL antenna, 18 Antenna element, 20 Connection part, 22 Connector, 24 Ground area, 32 Base part, 34 Feeding part, 36 Tip part, 110 Antenna unit, 212 antenna unit, 214 antenna unit, 220 connection part, 222 folded part, 230 connection part, 232 connection part, 310 antenna unit, 320 connection part, 322 step part, 410 antenna unit, 412 circuit board, 420 element unit, 432 base end, 518 antenna element, 532 base end, 618 antenna element, 632 base end, P1 feeding point, P2 feeding point.
Landscapes
- Details Of Aerials (AREA)
Abstract
An antenna device 1 comprises: a circuit board 12 having a ground region; a first antenna element 18a that has the base end-side connected to a first power feed point provided to the circuit board 12 and that forms a first monopole antenna; a second antenna element 18b that has the base end-side connected to a second power feed point provided to the circuit board 12 and that forms a second monopole antenna; and a connection part 20 connecting the distal end part of the first antenna element 18a and the distal end part of the second antenna element 18b.
Description
本発明は、複数のモノポールアンテナが並設されるアンテナ装置に関する。
The present invention relates to an antenna device in which a plurality of monopole antennas are arranged side by side.
車両の高機能化および高性能化に伴い、共通の筐体に複数のアンテナを収容したアンテナ装置が普及している(特許文献1参照)。位置情報を提供するGPS(Global Positioning System)、ITS(Intelligent Transport Systems)を実現するためのETC(Electronic Toll Collection System)やVICS(Vehicle Information and Communication System)などの各用途に対応したアンテナが車両に標準装備されつつある。それら複数のアンテナが一つの筐体に収容される。なお、ETCおよびVICSは登録商標であるが、以下の説明においてはその表記を省略する。
With the increasing sophistication and performance of vehicles, antenna devices in which multiple antennas are housed in a common housing are becoming popular (see Patent Document 1). GPS (Global Positioning System) that provides location information, ETC (Electronic Toll Collection System) and VICS (Vehicle Information and Communication System) for realizing ITS (Intelligent Transport Systems) It is being standard equipment. The plurality of antennas are accommodated in one housing. Although ETC and VICS are registered trademarks, their descriptions are omitted in the following description.
特許文献1に記載のアンテナ装置では、共通の筐体の中央にETCアンテナとGPSアンテナが配置され、それらの左右両側に一対のTELアンテナ(モノポールアンテナ)が配置されている。複数のTELアンテナを設けることで、MIMO(Multiple Input Multiple Output)にも対応し易くなる。MIMOは、複数の送受信アンテナを用いて信号を空間多重伝送する技術であり、通信データの伝送速度および品質の向上を実現できる。
In the antenna device described in Patent Document 1, an ETC antenna and a GPS antenna are arranged in the center of a common housing, and a pair of TEL antennas (monopole antennas) are arranged on both left and right sides of them. By providing multiple TEL antennas, it becomes easier to support MIMO (Multiple Input Multiple Output). MIMO is a technique for spatially multiplexing signals using a plurality of transmitting and receiving antennas, and can improve the transmission speed and quality of communication data.
ところで、車両の高機能化に伴って車載機器の数も増大するため、アンテナ装置をできるだけ小型化して省スペースを実現することが求められる。上述のような一対のTELアンテナについても、アンテナエレメントの間隔を可能な限り小さくできるのが望ましい。一方、複数のアンテナを並設する場合、両者間で広帯域にアイソレーションを確保する必要がある。
By the way, since the number of in-vehicle devices increases as vehicles become more sophisticated, it is necessary to reduce the size of the antenna device as much as possible to save space. As for the pair of TEL antennas as described above, it is desirable that the distance between the antenna elements can be made as small as possible. On the other hand, when a plurality of antennas are installed side by side, it is necessary to ensure wideband isolation between them.
従来、このように2つのアンテナのアイソレーションを確保するために、アンテナエレメント間の給電点付近に回路や素子等を介在させることでアイソレーションを調整する技術(特許文献2,3参照)、アンテナエレメントの先端同士を近接させて容量結合させることで互いの影響を軽減する技術(特許文献4参照)などが提案されていた。これ以外にも、隣接するアンテナエレメントを直交するように配置することでアイソレーションを確保する手法もある。
Conventionally, in order to secure the isolation of two antennas in this way, a technique of adjusting the isolation by interposing a circuit or an element near the feeding point between the antenna elements (see Patent Documents 2 and 3), A technique has been proposed in which the mutual influence is reduced by bringing the ends of the elements close to each other for capacitive coupling (see Patent Document 4). In addition to this, there is also a method of ensuring isolation by arranging adjacent antenna elements so as to be orthogonal.
しかしながら、特許文献2~4に記載の技術は一般に、良好なインピーダンス特性(放射効率)と、良好なアイソレーションとを両立している周波数帯域が限定的となる傾向にある。一方、隣接するアンテナエレメントを直交配置させることは機器構成上の制約につながり、アンテナ装置の小型化の要請に応え難いといった問題があった。
However, the techniques described in Patent Documents 2 to 4 generally tend to have a limited frequency band in which good impedance characteristics (radiation efficiency) and good isolation are compatible. On the other hand, arranging adjacent antenna elements orthogonally leads to restrictions on equipment configuration, and there is a problem that it is difficult to meet the demand for miniaturization of the antenna device.
本発明はこのような課題に鑑みてなされたものであり、その目的の1つは、複数のモノポールアンテナが並設されるアンテナ装置において、特定の周波数帯域のアイソレーションを劣化させずに広帯域に良好な特性を確保可能な技術を提供することにある。
The present invention has been made in view of such problems, and one of its objects is to provide an antenna device in which a plurality of monopole antennas are arranged side by side, and to achieve wideband performance without degrading isolation in a specific frequency band. To provide a technology capable of ensuring good characteristics for
本発明のある態様はアンテナ装置である。このアンテナ装置は、グラウンド領域を有する回路基板と、回路基板に設けられた第1給電点に基端側が接続され、第1のモノポールアンテナを形成する第1アンテナエレメントと、回路基板に設けられた第2給電点に基端側が接続され、第2のモノポールアンテナを形成する第2アンテナエレメントと、第1アンテナエレメントの先端部と第2アンテナエレメントの先端部とを接続する接続部と、を備える。
An aspect of the present invention is an antenna device. This antenna device includes a circuit board having a ground area, a first antenna element having a base end connected to a first feeding point provided on the circuit board and forming a first monopole antenna, and a first antenna element provided on the circuit board. a second antenna element having a base end connected to the second feeding point and forming a second monopole antenna; a connecting portion connecting a tip portion of the first antenna element and a tip portion of the second antenna element; Prepare.
本発明によれば、複数のモノポールアンテナが並設されるアンテナ装置において、特定の周波数帯域のアイソレーションを劣化させずに広帯域に良好な特性を確保できる。
According to the present invention, in an antenna device in which a plurality of monopole antennas are arranged side by side, good characteristics can be secured in a wide band without degrading isolation in a specific frequency band.
以下、本発明の実施形態を、図面を参照して詳細に説明する。なお、以下の実施形態およびその変形例について、ほぼ同一の構成要素については同一の符号を付し、その説明を適宜省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, about the following embodiment and its modification, the same code|symbol is attached|subjected about the substantially same component, and the description is abbreviate|omitted suitably.
以下の実施形態では、2つのモノポールアンテナが並設された車両用アンテナ装置(以下、単に「アンテナ装置」という)を例示する。ここで例示されるモノポールアンテナはTELアンテナである。2つのモノポールアンテナのアイソレーションを広帯域に確保するために、2つのアンテナエレメントが、それぞれの給電点とは反対側の端部で互いに接続される。以下、その詳細について説明する。
In the following embodiments, a vehicle antenna device (hereinafter simply referred to as "antenna device") in which two monopole antennas are arranged side by side will be exemplified. The monopole antenna illustrated here is a TEL antenna. In order to ensure broadband isolation of the two monopole antennas, the two antenna elements are connected to each other at the ends opposite their feed points. The details will be described below.
[第1実施形態]
図1は、第1実施形態に係るアンテナ装置の概要を表す斜視図である。なお、以下の説明では便宜上、アンテナ装置における位置関係について、車両搭載状態を基準に前後、上下、左右方向を表現することがある。 [First Embodiment]
FIG. 1 is a perspective view showing the outline of the antenna device according to the first embodiment. In the following description, for the sake of convenience, the positional relationship of the antenna device may be expressed in the front/rear, up/down, and left/right directions with reference to the mounted state of the vehicle.
図1は、第1実施形態に係るアンテナ装置の概要を表す斜視図である。なお、以下の説明では便宜上、アンテナ装置における位置関係について、車両搭載状態を基準に前後、上下、左右方向を表現することがある。 [First Embodiment]
FIG. 1 is a perspective view showing the outline of the antenna device according to the first embodiment. In the following description, for the sake of convenience, the positional relationship of the antenna device may be expressed in the front/rear, up/down, and left/right directions with reference to the mounted state of the vehicle.
アンテナ装置1は、複数のアンテナを含むアンテナユニット10を備える。アンテナユニット10は、図示略のケースに収容される。このケースは、アンテナユニット10を載置させる下ケースと、アンテナユニット10を上方から覆うように下ケースに取り付けられる上ケースを備える。上ケースおよび下ケースともに電波透過性の樹脂からなる。
The antenna device 1 includes an antenna unit 10 including a plurality of antennas. The antenna unit 10 is housed in a case (not shown). This case includes a lower case on which the antenna unit 10 is placed, and an upper case attached to the lower case so as to cover the antenna unit 10 from above. Both the upper case and the lower case are made of radio wave transparent resin.
アンテナユニット10は、回路基板12に単一のGPSアンテナ14および一対のTELアンテナ16a,16bを搭載して構成される。以下、TELアンテナ16a,16bを特に区別しない場合には、単に「TELアンテナ16」と称す。回路基板12は、後述のグラウンド領域を有し、地板として機能する。
The antenna unit 10 is configured by mounting a single GPS antenna 14 and a pair of TEL antennas 16 a and 16 b on a circuit board 12 . Hereinafter, the TEL antennas 16a and 16b will simply be referred to as "TEL antenna 16" unless otherwise distinguished. The circuit board 12 has a ground area, which will be described later, and functions as a ground plane.
GPSアンテナ14は、GPS用のパッチアンテナである。TELアンテナ16a,16bは電話用のモノポールアンテナであり、それぞれアンテナエレメント18a,18bを含む。アンテナエレメント18aは「第1アンテナエレメント」として機能し、第1のモノポールアンテナを形成する。アンテナエレメント18bは「第2アンテナエレメント」として機能し、第2のモノポールアンテナを形成する。以下、アンテナエレメント18a,18bを特に区別しない場合には、単に「アンテナエレメント18」と称す。アンテナエレメント18a,18bは、回路基板12に対して左右対称に配設されている。
The GPS antenna 14 is a patch antenna for GPS. TEL antennas 16a and 16b are monopole antennas for telephones and include antenna elements 18a and 18b, respectively. Antenna element 18a functions as a "first antenna element" and forms a first monopole antenna. Antenna element 18b functions as a "second antenna element" and forms a second monopole antenna. Hereinafter, the antenna elements 18a and 18b are simply referred to as "antenna element 18" unless otherwise distinguished. The antenna elements 18 a and 18 b are arranged symmetrically with respect to the circuit board 12 .
このように複数のTELアンテナ16を設けることで、MIMOに対応できる。アンテナエレメント18aとアンテナエレメント18bは、アイソレーションを向上させるため、互いの先端部が接続部20によって接続されている(詳細後述)。回路基板12の前端部下面には、各アンテナの給電ポートを有するコネクタ22が突設されている。アンテナ装置1は、図示しない車両のインストルメントパネル内等に取り付けられる。
By providing a plurality of TEL antennas 16 in this manner, MIMO can be supported. The tip portions of the antenna element 18a and the antenna element 18b are connected to each other by a connecting portion 20 in order to improve isolation (details will be described later). A connector 22 having a feeding port for each antenna projects from the lower surface of the front end portion of the circuit board 12 . The antenna device 1 is mounted inside an instrument panel of a vehicle (not shown) or the like.
図2は、アンテナユニットの構成を表す平面図である。図2(A)は本実施形態の構成を示し、図2(B)は比較例の構成を示す。
図2(A)に示すように、回路基板12は、平面視多角形状のプリント配線基板であり、その前半部の幅が後半部の幅よりも大きい段付形状を有する。回路基板12は、中心線Lに対して対称な形状を有する。アンテナユニット10は、全体として中心線Lに対して対称な形状を有する。回路基板12の表面にグラウンド領域24が設けられている。グラウンド領域24は、一対のTELアンテナ16に共通のものである。 FIG. 2 is a plan view showing the configuration of the antenna unit. FIG. 2A shows the configuration of this embodiment, and FIG. 2B shows the configuration of a comparative example.
As shown in FIG. 2A, thecircuit board 12 is a printed wiring board having a polygonal shape in plan view, and has a stepped shape in which the width of the front half is larger than the width of the rear half. The circuit board 12 has a symmetrical shape with respect to the centerline L. As shown in FIG. The antenna unit 10 has a symmetrical shape with respect to the center line L as a whole. A ground area 24 is provided on the surface of the circuit board 12 . A ground area 24 is common to the pair of TEL antennas 16 .
図2(A)に示すように、回路基板12は、平面視多角形状のプリント配線基板であり、その前半部の幅が後半部の幅よりも大きい段付形状を有する。回路基板12は、中心線Lに対して対称な形状を有する。アンテナユニット10は、全体として中心線Lに対して対称な形状を有する。回路基板12の表面にグラウンド領域24が設けられている。グラウンド領域24は、一対のTELアンテナ16に共通のものである。 FIG. 2 is a plan view showing the configuration of the antenna unit. FIG. 2A shows the configuration of this embodiment, and FIG. 2B shows the configuration of a comparative example.
As shown in FIG. 2A, the
回路基板12の後半部小幅領域にGPSアンテナ14が配設されている。GPSアンテナ14は、誘電体型パッチアンテナであり、誘電体層26の表面に放射電極28を配置して構成される。その放射電極28は、回路基板12の上面と平行に設けられている。放射電極28には給電点が設けられる。誘電体層26を貫通する挿通孔が設けられ、回路基板12の裏面に設けられた給電ラインと給電点とをつなぐ給電ピンが挿通されている。本実施形態では、GPSアンテナ14として一点給電型の円偏波パッチアンテナを採用するが、二点給電型のパッチアンテナとしてもよい。なお、GPSアンテナ14については公知のパッチアンテナが採用されるため、その詳細な説明は省略する。
A GPS antenna 14 is arranged in the narrow area of the rear half of the circuit board 12 . The GPS antenna 14 is a dielectric patch antenna, and is configured by arranging a radiation electrode 28 on the surface of a dielectric layer 26 . The radiation electrode 28 is provided parallel to the upper surface of the circuit board 12 . A feeding point is provided on the radiation electrode 28 . An insertion hole is provided through the dielectric layer 26, and a feed pin for connecting a feed line provided on the back surface of the circuit board 12 and a feed point is inserted therethrough. In this embodiment, a one-point feeding type circularly polarized patch antenna is adopted as the GPS antenna 14, but a two-point feeding type patch antenna may be used. Since a known patch antenna is adopted for the GPS antenna 14, detailed description thereof will be omitted.
回路基板12の前半部大幅領域の左右両端部に給電点P1,P2が設けられ、アンテナエレメント18a,18bのそれぞれの基端部が接続されている。給電点P1が「第1給電点」として機能し、給電点P2が「第2給電点」として機能する。一対のTELアンテナ16は、GPSアンテナ14を挟んで左右両サイドに配置されている。一対のアンテナエレメント18は、中心線Lに対して対称な構造を有する。
Feeding points P1 and P2 are provided at both left and right ends of the large region of the front half of the circuit board 12, and the base ends of the antenna elements 18a and 18b are connected. The feeding point P1 functions as a "first feeding point" and the feeding point P2 functions as a "second feeding point". A pair of TEL antennas 16 are arranged on both left and right sides of the GPS antenna 14 . A pair of antenna elements 18 has a symmetrical structure with respect to the center line L. As shown in FIG.
アンテナエレメント18は、細長い長方形状(帯状)の本体30を有する導体板であり、本体30の一端が内側(中心線L側)に延出して幅広の基端部32を構成する。基端部32の内側端部が上方に直角に折り曲げられて給電部34を構成している。アンテナエレメント18aの給電部が給電点P1に接続され、アンテナエレメント18bの給電部34が給電点P2に接続されている。本実施形態において、これらの接続は半田付けによりなされる。アンテナエレメント18aの先端部36とアンテナエレメント18bの先端部36が接続部20を介して一体に接続されている。接続部20は、本体30と同程度の幅を有する導体板であり、アンテナエレメント18a,18bに対して直角方向に接続されている。
The antenna element 18 is a conductor plate having an elongated rectangular (belt-shaped) main body 30 , and one end of the main body 30 extends inward (center line L side) to form a wide base end portion 32 . An inner end portion of the base end portion 32 is bent upward at a right angle to form a power supply portion 34 . A feeding portion of the antenna element 18a is connected to the feeding point P1, and a feeding portion 34 of the antenna element 18b is connected to the feeding point P2. In this embodiment, these connections are made by soldering. A tip portion 36 of the antenna element 18a and a tip portion 36 of the antenna element 18b are integrally connected via the connecting portion 20. As shown in FIG. The connecting portion 20 is a conductor plate having a width approximately equal to that of the main body 30, and is connected perpendicularly to the antenna elements 18a and 18b.
すなわち、アンテナエレメント18aは、回路基板12に接続される基端部32(「第1基端部」に対応する)と、基端部32から回路基板12の後方に延出する本体30(「第1延在部」に対応する)を有する。アンテナエレメント18bは、回路基板12に接続される基端部32(「第2基端部」に対応する)と、基端部32から回路基板12の後方に延出する本体30(「第2延在部」に対応する)を有する。接続部20は、アンテナエレメント18aの先端部36とアンテナエレメント18bの先端部36とを、回路基板12の左右方向に接続している。
That is, the antenna element 18a includes a base end portion 32 (corresponding to a “first base end portion”) connected to the circuit board 12 and a main body 30 (“ corresponding to the "first extension"). The antenna element 18b includes a base end portion 32 (corresponding to a “second base end portion”) connected to the circuit board 12 and a body 30 (“second base end portion”) extending rearward from the circuit board 12 from the base end portion 32 (“second base end portion”). (corresponding to "extension"). The connecting portion 20 connects the tip portion 36 of the antenna element 18 a and the tip portion 36 of the antenna element 18 b in the horizontal direction of the circuit board 12 .
なお、アンテナユニット10の作製に際しては、導体板を一辺が開放された正方形枠形状に打ち抜き、その開放端を曲げ成形することで、アンテナエレメント18a,18bおよび接続部20を一体に成形している。変形例においては、アンテナエレメント18a,18bを個別に成形し、接続部20を溶接等により接合してもよい。
When manufacturing the antenna unit 10, the antenna elements 18a and 18b and the connection portion 20 are formed integrally by punching out a conductor plate into a square frame shape with one side open and bending the open end. . In a modified example, the antenna elements 18a and 18b may be formed separately and the connecting portion 20 may be joined by welding or the like.
各給電点P1,P2は、回路基板12に実装された給電ラインに接続される。各アンテナの給電ラインは、回路基板12の裏面にマイクロストリップラインとして設けられ、コネクタ22の各給電ポートに接続されている。
Each feed point P1, P2 is connected to a feed line mounted on the circuit board 12. A feed line for each antenna is provided as a microstrip line on the back surface of the circuit board 12 and connected to each feed port of the connector 22 .
図示しない車載器につながる3本のケーブルが、コネクタ22(図1参照)に接続される。これらのケーブルは、いずれも同軸ケーブルからなり、コネクタ22を介してGPSアンテナ14および一対のTELアンテナ16のそれぞれの給電ラインと接続される。TELアンテナ16用の同軸ケーブルの内部導体がコネクタ22を介して給電点(P1,P2)に接続され、外部導体がコネクタ22を介してグラウンド領域24に接続される。
Three cables connected to the vehicle-mounted device (not shown) are connected to the connector 22 (see FIG. 1). These cables are all coaxial cables and are connected to the feeder lines of the GPS antenna 14 and the pair of TEL antennas 16 via connectors 22 . The inner conductor of the coaxial cable for the TEL antenna 16 is connected via connector 22 to the feed points (P1, P2) and the outer conductor is connected via connector 22 to the ground area 24 .
本実施形態では図示のように、アンテナエレメント18a,18bがそれぞれの基端部32において回路基板12に接続される一方、それぞれの本体30が回路基板12から外側に延出している。それにより、アンテナエレメント18aとアンテナエレメント18bとの間隔を適正に調整している。
In this embodiment, as shown, the antenna elements 18a, 18b are connected to the circuit board 12 at their respective base ends 32, while their respective bodies 30 extend outwardly from the circuit board 12. Thereby, the spacing between the antenna element 18a and the antenna element 18b is properly adjusted.
左右に並設されるアンテナエレメント18a,18bの間隔を適度に設定することで、平面視においてアンテナエレメント18a,18bと接続部20とに囲まれる領域(これらの投影領域の輪郭の内側)に回路基板12を収めることができる。言い換えれば、回路基板12がアンテナエレメント18aとアンテナエレメント18bとの間に収まる幅を有し、上記領域に収まる大きさを有する。アンテナエレメント18aとアンテナエレメント18bとの間隔は、両者間に実質的に容量結合を生じない程度とされている。GPSアンテナ14は、平面視において、アンテナエレメント18a,18bの投影面とオーバラップしないよう両アンテナエレメントと離隔している。
By appropriately setting the interval between the antenna elements 18a and 18b arranged in parallel on the left and right sides, the circuit is formed in the area surrounded by the antenna elements 18a and 18b and the connection portion 20 in plan view (inside the outline of these projection areas). A substrate 12 can be accommodated. In other words, the circuit board 12 has a width that fits between the antenna element 18a and the antenna element 18b, and has a size that fits in the area described above. The distance between the antenna element 18a and the antenna element 18b is set to such an extent that substantially no capacitive coupling occurs between them. The GPS antenna 14 is separated from both antenna elements 18a and 18b so as not to overlap the projected planes of the antenna elements 18a and 18b in plan view.
図2(B)に示すように、比較例に係るアンテナユニット110は、一対のアンテナエレメント18a,18bを接続する接続部を有しない点で本実施形態と異なる。この接続部20の有無が左右のTELアンテナ16のアイソレーションに影響を与える。以下、これを検証するために行った解析結果について説明する。
As shown in FIG. 2(B), the antenna unit 110 according to the comparative example differs from the present embodiment in that it does not have a connecting portion for connecting the pair of antenna elements 18a and 18b. The presence or absence of this connecting portion 20 affects the isolation of the left and right TEL antennas 16 . The results of analysis performed to verify this will be described below.
図3は、TELアンテナ16の周波数特性を解析した結果を表す図である。図3(A)はアイソレーション(dB)の解析結果を示し、図3(B)は放射効率(dB)の解析結果を示す。各図において実線が本実施形態の特性を示し、破線が比較例の特性を示す。各図の横軸は周波数を示す。
FIG. 3 is a diagram showing the result of analyzing the frequency characteristics of the TEL antenna 16. FIG. FIG. 3A shows analysis results of isolation (dB), and FIG. 3B shows analysis results of radiation efficiency (dB). In each figure, the solid line indicates the characteristics of this embodiment, and the dashed line indicates the characteristics of the comparative example. The horizontal axis of each figure indicates frequency.
アイソレーションについては一般に、絶対値で10dB以上を確保できれば良好とされる。この点、比較例では1200MHz以下の周波数領域において10dBを確保できていないのに対し、本実施形態では1200MHz以下を含む図示の全周波数領域にわたって10dBを確保できている。
Regarding isolation, it is generally considered good if an absolute value of 10 dB or more can be secured. In this regard, the comparative example fails to secure 10 dB in the frequency range of 1200 MHz or less, whereas the present embodiment secures 10 dB in the entire frequency range including 1200 MHz or less.
一方、放射効率については、数値が大きいほど良好とされる。この点、1600MHz以上の周波数領域においては、本実施形態と比較例ともに良好となっている。一方、1600MHzよりも低い周波数領域では、本実施形態において顕著な改善がみられる。本実施形態によれば、800MHz以上1200MHz以下の領域において、アイソレーションのみならず放射効率も改善されることが分かる。
On the other hand, regarding radiation efficiency, the higher the number, the better. In this regard, both the present embodiment and the comparative example are good in the frequency range of 1600 MHz or higher. On the other hand, in the frequency region below 1600 MHz, significant improvement is seen in this embodiment. According to this embodiment, it can be seen that not only the isolation but also the radiation efficiency is improved in the range of 800 MHz to 1200 MHz.
以上に説明したように、本実施形態によれば、隣接配置される2つのモノポールアンテナについて、アンテナエレメントの先端部(給電点とは反対側)を物理的に接続することで、低い周波数帯域においてアイソレーションを劣化させずに、広帯域に良好な特性(放射効率)を確保できる。2つのモノポールアンテナ間(より詳細には、2つのアンテナエレメントと接続部に囲まれる領域)に回路基板12を配置することで、スペースを有効活用することもできる。
As described above, according to the present embodiment, for two monopole antennas arranged adjacently, by physically connecting the tips of the antenna elements (on the side opposite to the feed point), the low frequency band Good characteristics (radiation efficiency) can be ensured in a wide band without degrading isolation in . By arranging the circuit board 12 between the two monopole antennas (more specifically, the area surrounded by the two antenna elements and the connecting portion), it is possible to effectively utilize the space.
[第2実施形態]
図4は、第2実施形態に係るアンテナユニットの構成を表す平面図である。
本実施形態のアンテナユニット210では、接続部220が電気長を増大させる電気長増大構造を有する。この「電気長増大構造」は、接続部220の延在方向に複数の折り返し部222を有するミアンダ構造を含み、そのミアンダ構造の線幅w1と蛇行幅w2の設定によりアンテナ特性が調整された「アンテナ特性調整構造」として機能する。接続部220の延在方向に沿った長さ(ミアンダ形状に沿った長さ)は、第1実施形態のようにアンテナエレメント18a,18bの両先端部36を直線状に接続した接続部20の長さよりも大きい。本実施形態では線幅w1=5mm、蛇行幅w2=20mmに設定している。 [Second embodiment]
FIG. 4 is a plan view showing the configuration of an antenna unit according to the second embodiment.
In theantenna unit 210 of this embodiment, the connecting portion 220 has an electrical length increasing structure for increasing the electrical length. This "electrical length increasing structure" includes a meandering structure having a plurality of folded portions 222 in the extending direction of the connecting portion 220, and the antenna characteristics are adjusted by setting the line width w1 and meandering width w2 of the meandering structure. It functions as an antenna characteristic adjustment structure. The length along the extending direction of the connecting portion 220 (the length along the meandering shape) is the same as that of the connecting portion 20 in which both tip portions 36 of the antenna elements 18a and 18b are linearly connected as in the first embodiment. Greater than length. In this embodiment, the line width w1 is set to 5 mm, and the meandering width w2 is set to 20 mm.
図4は、第2実施形態に係るアンテナユニットの構成を表す平面図である。
本実施形態のアンテナユニット210では、接続部220が電気長を増大させる電気長増大構造を有する。この「電気長増大構造」は、接続部220の延在方向に複数の折り返し部222を有するミアンダ構造を含み、そのミアンダ構造の線幅w1と蛇行幅w2の設定によりアンテナ特性が調整された「アンテナ特性調整構造」として機能する。接続部220の延在方向に沿った長さ(ミアンダ形状に沿った長さ)は、第1実施形態のようにアンテナエレメント18a,18bの両先端部36を直線状に接続した接続部20の長さよりも大きい。本実施形態では線幅w1=5mm、蛇行幅w2=20mmに設定している。 [Second embodiment]
FIG. 4 is a plan view showing the configuration of an antenna unit according to the second embodiment.
In the
図5は、変形例に係るアンテナユニットの構成を表す平面図である。図5(A)は変形例1を示し、図5(B)は変形例2を示す。
変形例1は、第2実施形態と比較してミアンダ構造の蛇行幅w2は変えずに線幅w1を変更するものである(図5(A))。アンテナユニット212は、ミアンダ構造を有する接続部230を備える。図示の例では、ミアンダ構造について線幅w1=2mm、蛇行幅w2=20mmに設定されている。 FIG. 5 is a plan view showing the configuration of an antenna unit according to a modification. FIG. 5A showsModification 1, and FIG. 5B shows Modification 2. FIG.
Modification 1 changes the line width w1 without changing the meandering width w2 of the meandering structure as compared with the second embodiment (FIG. 5A). Antenna unit 212 includes a connecting portion 230 having a meandering structure. In the illustrated example, the line width w1=2 mm and the meandering width w2=20 mm are set for the meandering structure.
変形例1は、第2実施形態と比較してミアンダ構造の蛇行幅w2は変えずに線幅w1を変更するものである(図5(A))。アンテナユニット212は、ミアンダ構造を有する接続部230を備える。図示の例では、ミアンダ構造について線幅w1=2mm、蛇行幅w2=20mmに設定されている。 FIG. 5 is a plan view showing the configuration of an antenna unit according to a modification. FIG. 5A shows
一方、変形例2は、第2実施形態と比較してミアンダ構造の線幅w1は変えずに蛇行幅w2を変えるものである(図5(B))。アンテナユニット214は、ミアンダ構造を有する接続部232を備える。図示の例では、ミアンダ構造について線幅w1=5mm、蛇行幅w2=40mmに設定されている。以上のように、ミアンダ構造の線幅w1と蛇行幅w2を適宜設定することで、アンテナ特性を調整できる。以下、これを検証するための解析結果を示す。
On the other hand, in modification 2, the meandering width w2 is changed without changing the line width w1 of the meandering structure compared to the second embodiment (FIG. 5(B)). The antenna unit 214 has a connecting portion 232 having a meandering structure. In the illustrated example, the line width w1=5 mm and the meandering width w2=40 mm are set for the meandering structure. As described above, the antenna characteristics can be adjusted by appropriately setting the line width w1 and meandering width w2 of the meandering structure. Analysis results for verifying this are shown below.
図6は、ミアンダ構造の線幅と周波数特性との関係を表す図である。図6(A)はアイソレーション(dB)の解析結果を示し、図6(B)は放射効率(dB)の解析結果を示す。各図において実線がミアンダ構造を採用しない第1実施形態の特性を示し、それ以外がミアンダ構造を有する第2実施形態およびその変形例の特性を示す。蛇行幅w2は20mmで一定とする。線幅w1に関し、点線が5mm(第2実施形態に対応)、破線が3mm、一点鎖線が2mm(変形例1に対応)の場合をそれぞれ示す。各図の横軸は周波数を示す。
FIG. 6 is a diagram showing the relationship between the line width of the meandering structure and the frequency characteristics. FIG. 6A shows analysis results of isolation (dB), and FIG. 6B shows analysis results of radiation efficiency (dB). In each figure, the solid line indicates the characteristics of the first embodiment that does not employ the meandering structure, and the others indicate the characteristics of the second embodiment that has the meandering structure and its modifications. The meandering width w2 is constant at 20 mm. Regarding the line width w1, the dotted line indicates a case of 5 mm (corresponding to the second embodiment), the dashed line indicates a case of 3 mm, and the one-dot chain line indicates a case of 2 mm (corresponding to the first modification). The horizontal axis of each figure indicates frequency.
本解析結果によれば、ミアンダ構造を採用することで、1000MHz以下の低周波領域においてアイソレーションおよび放射効率ともに顕著に改善できる。1700~6000MHzの周波数領域においてもアイソレーションを10dB以上に確保でき、放射効率についてもミアンダ構造なしの場合と同程度に良い結果が得られている。いずれの周波数領域においても、線幅w1によってアイソレーションに多少の差がみられる。
According to this analysis result, by adopting the meander structure, both isolation and radiation efficiency can be significantly improved in the low frequency range of 1000 MHz or less. Isolation of 10 dB or more can be secured even in the frequency range of 1700 to 6000 MHz, and radiation efficiency is as good as in the case without the meander structure. In any frequency region, there is a slight difference in isolation depending on the line width w1.
図7は、ミアンダ構造の蛇行幅と周波数特性との関係を表す図である。図7(A)はアイソレーション(dB)の解析結果を示し、図7(B)は放射効率(dB)の解析結果を示す。線幅w1は5mmで一定とする。各図の蛇行幅w2に関し、実線が20mm(第2実施形態に対応)、点線が30mm、破線が35mm、一点鎖線が40mm(変形例2に対応)の場合をそれぞれ示す。各図の横軸は周波数を示す。
FIG. 7 is a diagram showing the relationship between the meandering width of the meandering structure and the frequency characteristics. FIG. 7A shows analysis results of isolation (dB), and FIG. 7B shows analysis results of radiation efficiency (dB). The line width w1 is constant at 5 mm. Regarding the meandering width w2 in each figure, the solid line indicates 20 mm (corresponding to the second embodiment), the dotted line indicates 30 mm, the dashed line indicates 35 mm, and the one-dot chain line indicates 40 mm (corresponding to Modification 2). The horizontal axis of each figure indicates frequency.
本解析結果より、ミアンダ構造の蛇行幅w2の調整によってもアイソレーションおよび放射効率の調整ができることが分かる。いずれの周波数領域においても、蛇行幅w2によってアイソレーションに多少の差がみられる。1200MHz以下の周波数領域においては、蛇行幅w2が大きくなるほどアイソレーションが低下することが分かる。蛇行幅w2を35mm以上とすると、アイソレーションを10dB以上に確保できなくなっている。
From this analysis result, it can be seen that the isolation and radiation efficiency can also be adjusted by adjusting the meandering width w2 of the meander structure. In any frequency range, there is a slight difference in isolation depending on the meandering width w2. It can be seen that in the frequency region of 1200 MHz or less, the isolation decreases as the meandering width w2 increases. If the meandering width w2 is 35 mm or more, it becomes impossible to ensure isolation of 10 dB or more.
本実施形態によれば、接続部にミアンダ構造を採用してその線幅および蛇行幅を調整することで、一対のモノポールアンテナについてアイソレーションと放射効率のバランスを調整でき、その周波数特性の改善を図れることを確認できた。言い換えれば、線幅および蛇行幅のバランスによっては、特定の周波数領域においてミアンダ構造なし(第1実施形態)よりも特性が低下することもある。このため、モノポールアンテナの仕様(周波数帯)に応じてこれらを調整するのが好ましい。本実施形態に関しては、線幅w1を2mm以上5mm以下、蛇行幅w2を20mm以上35mm以下に設定することで、特に低周波領域においてアイソレーションの改善を図れることが分かった。
According to the present embodiment, by adopting a meandering structure in the connection portion and adjusting the line width and meandering width, the balance between isolation and radiation efficiency can be adjusted for a pair of monopole antennas, and the frequency characteristics can be improved. It was confirmed that In other words, depending on the balance between the line width and meandering width, the characteristics may be lower than those without the meander structure (first embodiment) in a specific frequency range. Therefore, it is preferable to adjust these according to the specifications (frequency band) of the monopole antenna. Regarding this embodiment, it was found that by setting the line width w1 to 2 mm or more and 5 mm or less and the meandering width w2 to 20 mm or more and 35 mm or less, the isolation can be improved particularly in the low frequency region.
[第3実施形態]
図8は、第3実施形態に係るアンテナユニットの構成を表す斜視図である。
本実施形態のアンテナユニット310は、接続部320の構造が第2実施形態の接続部220と若干異なる。接続部320は、アンテナエレメント18の本体30(第1延在部,第2延在部)よりも高位置に維持されるよう、両端に段差部322を有する。それにより、車載器につながるケーブルを接続部320に下方に通してコネクタ22に接続できる。 [Third Embodiment]
FIG. 8 is a perspective view showing the configuration of an antenna unit according to the third embodiment.
Antenna unit 310 of the present embodiment has a connection portion 320 that is slightly different in structure from connection portion 220 of the second embodiment. The connecting portion 320 has stepped portions 322 at both ends so as to be maintained at a higher position than the main body 30 (the first extending portion and the second extending portion) of the antenna element 18 . Thereby, the cable connected to the vehicle-mounted device can be passed downward through the connection portion 320 and connected to the connector 22 .
図8は、第3実施形態に係るアンテナユニットの構成を表す斜視図である。
本実施形態のアンテナユニット310は、接続部320の構造が第2実施形態の接続部220と若干異なる。接続部320は、アンテナエレメント18の本体30(第1延在部,第2延在部)よりも高位置に維持されるよう、両端に段差部322を有する。それにより、車載器につながるケーブルを接続部320に下方に通してコネクタ22に接続できる。 [Third Embodiment]
FIG. 8 is a perspective view showing the configuration of an antenna unit according to the third embodiment.
本実施形態によれば、ケーブルの引き回しについて設計自由度を高めることができる。その場合、接続部320とケーブルとの間には十分な隙間が形成されるようにし、アンテナ性能の劣化を防止する。なお、本実施形態では、段差部322の高さを10mm以上としている。
According to this embodiment, it is possible to increase the degree of freedom in designing cable routing. In that case, a sufficient gap should be formed between the connecting portion 320 and the cable to prevent deterioration of the antenna performance. In addition, in this embodiment, the height of the stepped portion 322 is set to 10 mm or more.
以上、本発明の好適な実施形態について説明したが、本発明はその特定の実施形態に限定されるものではなく、本発明の技術思想の範囲内で種々の変形が可能であることはいうまでもない。
Although the preferred embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to those specific embodiments, and that various modifications are possible within the scope of the technical idea of the present invention. Nor.
[変形例]
図9は、変形例に係るアンテナユニットの構成を表す平面図である。
変形例3のアンテナユニット410は、上記実施形態と比較して大きな回路基板412を備える。回路基板412は、平面視長方形状のプリント配線基板であり、アンテナエレメント418a(第1アンテナエレメント)、アンテナエレメント418b(第2アンテナエレメント)および接続部20が、平面視において回路基板412の外縁に沿うように配置されている。 [Modification]
FIG. 9 is a plan view showing the configuration of an antenna unit according to a modification.
Theantenna unit 410 of Modification 3 includes a circuit board 412 that is larger than that of the above embodiment. The circuit board 412 is a printed wiring board having a rectangular shape in plan view, and the antenna element 418a (first antenna element), the antenna element 418b (second antenna element), and the connection portion 20 are arranged on the outer edge of the circuit board 412 in plan view. are arranged along.
図9は、変形例に係るアンテナユニットの構成を表す平面図である。
変形例3のアンテナユニット410は、上記実施形態と比較して大きな回路基板412を備える。回路基板412は、平面視長方形状のプリント配線基板であり、アンテナエレメント418a(第1アンテナエレメント)、アンテナエレメント418b(第2アンテナエレメント)および接続部20が、平面視において回路基板412の外縁に沿うように配置されている。 [Modification]
FIG. 9 is a plan view showing the configuration of an antenna unit according to a modification.
The
アンテナエレメント418a,418bおよび接続部20は、それぞれ細長い長方形状をなし、回路基板412の上方に位置して平面視U字状のエレメントユニット420を構成している。エレメントユニット420は、回路基板412の上面と平行に延在している。各アンテナエレメントの基端部432は、上記実施形態のような幅広形状は有していない。基端部432の内側端部が下方に直角に折り曲げられて給電部34を構成している。給電部34の下端が給電点(P1,P2)に接続されている。
The antenna elements 418a and 418b and the connecting portion 20 each have an elongated rectangular shape, are positioned above the circuit board 412, and constitute a U-shaped element unit 420 in plan view. The element unit 420 extends parallel to the top surface of the circuit board 412 . A base end portion 432 of each antenna element does not have a wide shape as in the above embodiment. The inner end portion of the base end portion 432 is bent downward at right angles to form the power supply portion 34 . A lower end of the power feeding portion 34 is connected to the power feeding points (P1, P2).
回路基板412の上面において、アンテナエレメント418a,418bと接続部20とに囲まれる領域(エレメントユニット420の投影領域の内側)が十分に大きいため、GPSアンテナ14とは別のパッチアンテナ等を配置できる余裕スペースがある。パッチアンテナ等のアンテナエレメントは、回路基板412上のチップ等の回路構成部品を避けるように配置される。本変形例によれば、上記余裕スペースを活用した回路配置などの設計自由度が高められる。
On the upper surface of the circuit board 412, the area surrounded by the antenna elements 418a and 418b and the connecting portion 20 (inside the projected area of the element unit 420) is sufficiently large, so that a patch antenna or the like other than the GPS antenna 14 can be arranged. There is extra space. Antenna elements such as patch antennas are arranged to avoid circuit components such as chips on the circuit board 412 . According to this modified example, the degree of freedom in design, such as circuit layout utilizing the extra space, is increased.
なお、本変形例では、回路基板412を平面視においてエレメントユニット420よりもやや大きく構成し、その外縁がエレメントユニット420の外側に位置する例を示した。他の変形例では、回路基板412を平面視においてエレメントユニット420よりも小さく構成し、その外縁がエレメントユニット420の内側に位置するようにしてもよい。あるいは、回路基板412を、その外縁がエレメントユニット420の投影面内に位置するような大きさで構成してもよい。いずれにおいても、アンテナエレメント418a,418bおよび接続部20が、平面視において回路基板412の外縁に沿うように配置されることとなる。
In addition, in this modified example, an example is shown in which the circuit board 412 is configured to be slightly larger than the element unit 420 in plan view, and its outer edge is positioned outside the element unit 420 . In another modification, the circuit board 412 may be configured to be smaller than the element unit 420 in plan view, and its outer edge may be positioned inside the element unit 420 . Alternatively, the circuit board 412 may be sized such that its outer edge is positioned within the projection plane of the element unit 420 . In either case, the antenna elements 418a and 418b and the connection portion 20 are arranged along the outer edge of the circuit board 412 in plan view.
また、本変形例では、TELアンテナ(モノポールアンテナ)のアンテナエレメントおよび接続部を、上記実施形態と同様に導体板にて構成しているが、他の変形例においては回路基板412の上面(表面)、下面(裏面)あるいは層構造内に実装した配線パターンにより構成してもよい。すなわち、モノポールアンテナのアンテナエレメントおよび接続部を構成する配線パターンを、回路基板412の外縁に沿うように配設してもよい。
In addition, in this modification, the antenna element and the connecting portion of the TEL antenna (monopole antenna) are configured by a conductor plate as in the above embodiment, but in other modifications, the upper surface of the circuit board 412 ( surface), bottom surface (rear surface), or a wiring pattern mounted in a layer structure. In other words, the wiring pattern forming the antenna element and connection portion of the monopole antenna may be arranged along the outer edge of the circuit board 412 .
図10は、他の変形例に係るアンテナユニットの構成を表す平面図である。図10(A)は変形例4を示し、図10(B)は変形例5を示す。
これらの変形例では、アンテナエレメントを平面視テーパ形状を有するように構成することで、TELアンテナ(モノポールアンテナ)の周波数特性を調整している。 FIG. 10 is a plan view showing the configuration of an antenna unit according to another modification. FIG. 10A showsModification 4, and FIG. 10B shows Modification 5. FIG.
In these modified examples, the frequency characteristics of the TEL antenna (monopole antenna) are adjusted by configuring the antenna element to have a tapered shape in plan view.
これらの変形例では、アンテナエレメントを平面視テーパ形状を有するように構成することで、TELアンテナ(モノポールアンテナ)の周波数特性を調整している。 FIG. 10 is a plan view showing the configuration of an antenna unit according to another modification. FIG. 10A shows
In these modified examples, the frequency characteristics of the TEL antenna (monopole antenna) are adjusted by configuring the antenna element to have a tapered shape in plan view.
すなわち、変形例4では、アンテナエレメント518が、その前後方向に関して基端部532の側から先端部36に向けて徐々に幅が小さくなるテーパ形状を有する(図10(A))。アンテナエレメント518は、また、左右方向に関して給電点P1に近づくほど幅が小さくなるテーパ形状を有する。
That is, in Modification 4, the antenna element 518 has a tapered shape in which the width gradually decreases from the base end portion 532 side toward the tip end portion 36 in the front-rear direction (FIG. 10(A)). Antenna element 518 also has a tapered shape in which the width decreases in the left-right direction as it approaches feeding point P1.
一方、変形例5では、アンテナエレメント618が、その前後方向に関して基端部632の側から先端部36に向けて徐々に幅が大きくなるテーパ形状を有する(図10(B))。言い換えれば、アンテナエレメント618は、給電点P1に近づくほど幅が小さくなるテーパ形状を有する。
On the other hand, in Modification 5, the antenna element 618 has a tapered shape in which the width gradually increases from the base end portion 632 side toward the tip end portion 36 in the front-rear direction (FIG. 10(B)). In other words, the antenna element 618 has a tapered shape whose width decreases as it approaches the feeding point P1.
このように、アンテナエレメントを給電点(P1,P2)に近づくほど小幅となるように構成することで、例えば高い周波数帯域のアンテナ性能を改善できる可能性がある。テーパ形状のテーパ角度を調整することにより、特定の周波数帯でアンテナ性能を改善することができる。
In this way, by configuring the antenna element so that the width becomes smaller as it approaches the feeding point (P1, P2), it is possible to improve the antenna performance in a high frequency band, for example. By adjusting the taper angle of the tapered shape, antenna performance can be improved in a specific frequency band.
なお、本変形例では、アンテナエレメントの具体的形状としてテーパ形状を例示したが、給電点に向けてアンテナエレメントの幅を漸減させる構成であれば、段付形状その他の形状であってもよい。また、改善対象とする周波数帯によっては、アンテナエレメントの幅を漸増させる構成としてもよい。また、上記実施形態のように、給電点の近傍に限定してアンテナエレメントの幅を漸減又は漸増させる構成としてもよい。
In this modified example, a tapered shape is exemplified as a specific shape of the antenna element, but a stepped shape or other shape may be used as long as the width of the antenna element gradually decreases toward the feeding point. Further, depending on the frequency band to be improved, the width of the antenna element may be gradually increased. Further, as in the above embodiment, the width of the antenna element may be gradually decreased or increased only in the vicinity of the feeding point.
図11および図12は、第1実施形態の作用効果に関する解析およびその結果を示す。
図11(A)は第1実施形態の解析モデルを示し、図11(B)は比較例の解析モデルを示す。第1実施形態に係るアンテナユニット10の構成は既に説明したとおりである。一方、比較例に係るアンテナユニット112は、第1実施形態の接続部20の中央にスリットを設けることで左右のアンテナエレメント118a,118bに分断した構造を有する。アンテナエレメント118aが「第1アンテナエレメント」として機能し、アンテナエレメント118bが「第2アンテナエレメント」として機能する。この比較例では、アンテナエレメント118a,118bの先端間のギャップGを1mmとしている。 FIGS. 11 and 12 show the analysis and results of the effects of the first embodiment.
FIG. 11A shows an analysis model of the first embodiment, and FIG. 11B shows an analysis model of a comparative example. The configuration of theantenna unit 10 according to the first embodiment has already been described. On the other hand, the antenna unit 112 according to the comparative example has a structure in which left and right antenna elements 118a and 118b are separated by providing a slit in the center of the connecting portion 20 of the first embodiment. The antenna element 118a functions as a "first antenna element", and the antenna element 118b functions as a "second antenna element". In this comparative example, the gap G between the tips of the antenna elements 118a and 118b is 1 mm.
図11(A)は第1実施形態の解析モデルを示し、図11(B)は比較例の解析モデルを示す。第1実施形態に係るアンテナユニット10の構成は既に説明したとおりである。一方、比較例に係るアンテナユニット112は、第1実施形態の接続部20の中央にスリットを設けることで左右のアンテナエレメント118a,118bに分断した構造を有する。アンテナエレメント118aが「第1アンテナエレメント」として機能し、アンテナエレメント118bが「第2アンテナエレメント」として機能する。この比較例では、アンテナエレメント118a,118bの先端間のギャップGを1mmとしている。 FIGS. 11 and 12 show the analysis and results of the effects of the first embodiment.
FIG. 11A shows an analysis model of the first embodiment, and FIG. 11B shows an analysis model of a comparative example. The configuration of the
図12は、周波数特性の解析結果を表す図である。図12(A)はアイソレーション(dB)の解析結果を示し、図12(B)は放射効率(dB)の解析結果を示す。各図において実線が第1実施形態の特性を示し、破線が比較例の特性を示す。各図の横軸は周波数を示す。
FIG. 12 is a diagram showing analysis results of frequency characteristics. FIG. 12A shows analysis results of isolation (dB), and FIG. 12B shows analysis results of radiation efficiency (dB). In each figure, the solid line indicates the characteristics of the first embodiment, and the dashed line indicates the characteristics of the comparative example. The horizontal axis of each figure indicates frequency.
本解析によれば、1200MHz以下(特に800MHz以上1200MHz以下)の低い周波数領域において、アイソレーションおよび放射効率について第1実施形態のほうが比較例よりも良好な結果が得られている。一方、高い周波数領域においては、両者の差異はほとんど認められない。この点は、第1実施形態の説明でも述べたとおりである。
According to this analysis, in the low frequency range of 1200 MHz or less (especially 800 MHz or more and 1200 MHz or less), the first embodiment provides better isolation and radiation efficiency than the comparative example. On the other hand, almost no difference between the two is recognized in the high frequency region. This point is as described in the explanation of the first embodiment.
図示略の別の解析では、第1アンテナエレメントおよび第2アンテナエレメントの一方の給電点のみに電流を励起したときの電流分布を算出することで、他方のアンテナエレメントに与える影響を検証した。具体的には、アンテナエレメント118bの給電点P2(第2給電点)を励起状態とし、アンテナエレメント118aの給電点P1(第1給電点)を非励起状態とした。
In another analysis (not shown), the influence on the other antenna element was verified by calculating the current distribution when the current was excited only at the feeding point of one of the first and second antenna elements. Specifically, the feeding point P2 (second feeding point) of the antenna element 118b is in an excited state, and the feeding point P1 (first feeding point) of the antenna element 118a is in a non-excited state.
この解析によれば、周波数を900MHzとして一方の給電点P2に電流を励起した場合、第1実施形態では他方の給電点P1付近の電流振幅が小さくなり、つまり電流波形を節とすることができ、その結果、アイソレーションが良好となることが分かった。一方、比較例では給電点P1付近の電流振幅が大きくなり、つまり電流波形が腹となり、その結果、良好なアイソレーションが得られないことが分かった。この結果は図12の解析結果と整合する。
According to this analysis, when a current is excited at one feeding point P2 with a frequency of 900 MHz, in the first embodiment, the current amplitude near the other feeding point P1 becomes small, that is, the current waveform can be a node. , and as a result, it was found that the isolation was good. On the other hand, in the comparative example, it was found that the current amplitude near the feeding point P1 was large, that is, the current waveform had an antinode, and as a result, good isolation could not be obtained. This result matches the analysis result of FIG.
なお、本解析では一方の給電点P2を励起、他方の給電点P1を非励起としたが、励起状態を入れ替えた場合も同様である。同じ周波数であれば、非励起側の給電点における電流波形(腹と節の位置関係)は同様となる。
In this analysis, one feeding point P2 is excited and the other feeding point P1 is de-excited, but the same applies when the excited states are exchanged. If the frequencies are the same, the current waveform (the positional relationship between the antinode and the node) at the feed point on the non-excited side will be the same.
言い換えれば、第1実施形態では、低い周波数領域について、給電点P1にて励起された電流の波形が給電点P2の付近において節となり、給電点P2にて励起された電流の波形が給電点P1の付近において節となるよう、アンテナエレメント18a、アンテナエレメント18bおよび接続部20のそれぞれの長さが設定されている。
In other words, in the first embodiment, in the low frequency region, the waveform of the current excited at the feeding point P1 becomes a node near the feeding point P2, and the waveform of the current excited at the feeding point P2 becomes a node at the feeding point P1. The lengths of the antenna element 18a, the antenna element 18b, and the connection portion 20 are set so as to form a node in the vicinity of .
図13は、第2実施形態の作用効果に関する解析およびその結果を示す。図13(A)はアイソレーション(dB)の解析結果を示し、図13(B)は放射効率(dB)の解析結果を示す。各図において実線が第2実施形態(詳細には図5(A)の変形例1)の特性を示し、破線が比較例の特性を示す。各図の横軸は周波数を示す。
FIG. 13 shows an analysis and its results regarding the effects of the second embodiment. FIG. 13A shows analysis results of isolation (dB), and FIG. 13B shows analysis results of radiation efficiency (dB). In each figure, the solid line indicates the characteristics of the second embodiment (more specifically, the modified example 1 of FIG. 5A), and the dashed line indicates the characteristics of the comparative example. The horizontal axis of each figure indicates frequency.
第2実施形態(変形例1)に係るアンテナユニット212の構成は既に説明したとおりである。一方、比較例に係るアンテナユニットは、変形例1の接続部230の中央にスリットを設けることで左右のアンテナエレメントに分断した構造を有する。その一方のアンテナエレメントが「第1アンテナエレメント」として機能し、他方のアンテナエレメントが「第2アンテナエレメント」として機能する。この比較例でも左右のアンテナエレメントの先端間のギャップを1mmとしている。
The configuration of the antenna unit 212 according to the second embodiment (modification 1) has already been described. On the other hand, the antenna unit according to the comparative example has a structure in which a slit is provided in the center of the connecting portion 230 of the modified example 1 to separate the left and right antenna elements. One of the antenna elements functions as a "first antenna element" and the other antenna element functions as a "second antenna element". Also in this comparative example, the gap between the tips of the left and right antenna elements is 1 mm.
本解析によれば、1200MHz以下(特に800MHz以上1200MHz以下)の周波数領域において、アイソレーションおよび放射効率について第2実施形態(変形例1)のほうが比較例よりも良好な結果が得られている。
According to this analysis, in the frequency range of 1200 MHz or less (especially 800 MHz or more and 1200 MHz or less), the second embodiment (Modification 1) provides better results than the comparative example in terms of isolation and radiation efficiency.
図示略の別の解析では、第1アンテナエレメントおよび第2アンテナエレメントの一方の給電点のみに電流を励起したときの電流分布を算出することで、他方のアンテナエレメントに与える影響を検証した。この解析によれば、周波数を900MHzとして一方の給電点P2に電流を励起した場合、第2実施形態(変形例1)では他方の給電点P1付近の電流波形を節とすることができ、アイソレーションが良好となることが分かった。一方、比較例では給電点P1付近の電流波形が腹となり、良好なアイソレーションが得られないことが分かった。この結果は図13の解析結果と整合する。
In another analysis (not shown), the influence on the other antenna element was verified by calculating the current distribution when the current was excited only at the feeding point of one of the first and second antenna elements. According to this analysis, when a current is excited at one feeding point P2 with a frequency of 900 MHz, in the second embodiment (modification 1), the current waveform near the other feeding point P1 can be used as a node. ration was found to be good. On the other hand, in the comparative example, it was found that the current waveform near the feeding point P1 has an antinode and good isolation cannot be obtained. This result matches the analysis result of FIG.
言い換えれば、第2実施形態(変形例1)では、低い周波数領域について、給電点P1にて励起された電流の波形が給電点P2の付近において節となり、給電点P2にて励起された電流の波形が給電点P1の付近において節となるよう、アンテナエレメント18a、アンテナエレメント18bおよび接続部230のそれぞれの長さが設定されている。
In other words, in the second embodiment (Modification 1), in the low frequency region, the waveform of the current excited at the feeding point P1 becomes a node near the feeding point P2, and the current excited at the feeding point P2 becomes a node. The lengths of the antenna element 18a, the antenna element 18b, and the connection portion 230 are set so that the waveform has a node near the feeding point P1.
なお、図11~図13には特定の形態における解析結果の一例を示したが、これ以外の形態についても同様の結果を得ることができる。すなわち、接続部がミアンダ構造であり線幅や蛇行幅が異なる様々な形態、接続部の端部が丸みをおびたR形状となった形態、接続部が端部から中央に向けて傾斜する形態(左右のアンテナエレメントに対して鋭角又は鈍角をなす形態、端部から中央に向けてパッチアンテナに近接する又パッチアンテナから離間する形態)その他の形態にもあてはまる。
Although FIGS. 11 to 13 show an example of analysis results for a specific form, similar results can be obtained for other forms. That is, the connecting portion has a meandering structure and has various forms with different line widths and meandering widths, a form in which the end of the connecting part has a rounded R shape, and a form in which the connecting part is inclined from the end toward the center. (A form forming an acute or obtuse angle with respect to the left and right antenna elements, a form approaching or separating from the patch antenna from the ends toward the center). Other forms are also applicable.
つまり、第1給電点にて励起された電流の波形が第2給電点の付近において節となり、第2給電点にて励起された電流の波形が第1給電点の付近において節となるよう、第1アンテナエレメント、第2アンテナエレメントおよび接続部のそれぞれの長さが設定されていれば、アイソレーションおよび放射効率を改善できる。
That is, the waveform of the current excited at the first feeding point becomes a node near the second feeding point, and the waveform of the current excited at the second feeding point becomes a node near the first feeding point. Isolation and radiation efficiency can be improved if the lengths of the first antenna element, the second antenna element, and the connecting portion are set.
図14は、変形例6に係るアンテナユニットの構成を表す平面図である。
本変形例では、第1実施形態のアンテナユニット10に対し、金属板710を追加する。金属板710は、回路基板12のパッチアンテナ(GPSアンテナ14)とは反対側面と対向するように設けられた板金部品である。 14 is a plan view showing the configuration of an antenna unit according tomodification 6. FIG.
In this modification, ametal plate 710 is added to the antenna unit 10 of the first embodiment. The metal plate 710 is a sheet metal component provided to face the side of the circuit board 12 opposite to the patch antenna (GPS antenna 14).
本変形例では、第1実施形態のアンテナユニット10に対し、金属板710を追加する。金属板710は、回路基板12のパッチアンテナ(GPSアンテナ14)とは反対側面と対向するように設けられた板金部品である。 14 is a plan view showing the configuration of an antenna unit according to
In this modification, a
金属板710は、平面視において中心線Lに対して対称な構造を有し、アンテナエレメント18aとアンテナエレメント18bと接続部20とに囲まれる領域内に配置される。金属板710は、アンテナエレメント18a,18bと同じ高さ位置に配置されてもよい。このような構成により、パッチアンテナの利得特性や軸比特性を向上させることができる。
The metal plate 710 has a symmetrical structure with respect to the center line L in plan view, and is arranged in a region surrounded by the antenna element 18a, the antenna element 18b, and the connection portion 20. The metal plate 710 may be arranged at the same height position as the antenna elements 18a and 18b. With such a configuration, it is possible to improve the gain characteristics and axial ratio characteristics of the patch antenna.
図15は、変形例6の構成による効果を表す図である。図15(A)は仰角-平均利得特性(周波数:1575MHz)を示し、図15(B)は周波数-天頂利得特性を示し、図15(C)は周波数-天頂軸比特性を示す。各図において実線が変形例6の特性を示し、破線が比較例の特性を示す。各図の横軸は周波数を示す。なお、ここでいう比較例は、金属板710を有しない構成であり、第1実施形態に対応する。天頂軸比は、パッチアンテナが人工衛星からGNSS周波数帯の電波を受信したときの受信電波の真円度、いいかえれば、歪みの少なさを示す指標である。
FIG. 15 is a diagram showing the effect of the configuration of Modification 6. FIG. 15A shows elevation angle-average gain characteristics (frequency: 1575 MHz), FIG. 15B shows frequency-zenith gain characteristics, and FIG. 15C shows frequency-zenith axial ratio characteristics. In each figure, the solid line indicates the characteristics of Modification 6, and the dashed line indicates the characteristics of Comparative Example. The horizontal axis of each figure indicates frequency. Note that the comparative example referred to here has a configuration without the metal plate 710 and corresponds to the first embodiment. The zenith axial ratio is an index indicating the roundness of the received radio wave when the patch antenna receives the radio wave in the GNSS frequency band from an artificial satellite, in other words, the degree of distortion.
本変形例によれば、金属板710を追加したことにより、GNSSアンテナ(GPSアンテナ14)の仰角を如何様に設定しても平均利得特性が向上することが分かる(図15(A))。また、GNSS周波数帯に対応する周波数領域付近において天頂利得特性および天頂軸比特性が向上することが分かる(図15(B),(C))。
なお、他の変形例では、「導電部材」として、金属板710に代えて導電樹脂その他の導電性材料からなる部材を設けてもよい。 According to this modified example, by adding themetal plate 710, the average gain characteristic is improved regardless of how the elevation angle of the GNSS antenna (GPS antenna 14) is set (FIG. 15(A)). Also, it can be seen that the zenith gain characteristic and the zenith axial ratio characteristic are improved in the vicinity of the frequency region corresponding to the GNSS frequency band (FIGS. 15(B) and 15(C)).
In another modification, a member made of conductive resin or another conductive material may be provided as the “conductive member” instead of themetal plate 710 .
なお、他の変形例では、「導電部材」として、金属板710に代えて導電樹脂その他の導電性材料からなる部材を設けてもよい。 According to this modified example, by adding the
In another modification, a member made of conductive resin or another conductive material may be provided as the “conductive member” instead of the
上記第1実施形態では、単一の導体板を打ち抜いてアンテナエレメント18および接続部20を一体成形し、接続部20の幅や厚みをアンテナエレメント18の本体30と同等とする例を示した。変形例においては、接続部20の幅および厚みの少なくとも一方を本体30のそれと異ならせてもよい。アンテナエレメントおよび接続部を個別に成形して接合してもよく、その場合、両者の素材として厚みの異なるものを採用してもよい。また、接続部20の幅や厚みをその延在方向に変化させてもよい。接続部20の形状を平面視長方形以外の形状に変更してもよい。
In the above-described first embodiment, an example was shown in which the antenna element 18 and the connecting portion 20 were integrally formed by punching out a single conductor plate, and the width and thickness of the connecting portion 20 were made equal to the main body 30 of the antenna element 18. In a modified example, at least one of the width and thickness of the connecting portion 20 may be different from that of the main body 30 . The antenna element and the connecting portion may be separately molded and joined, and in that case, materials with different thicknesses may be used for both. Also, the width and thickness of the connecting portion 20 may be changed in the extending direction. You may change the shape of the connection part 20 into shapes other than a planar view rectangle.
上記実施形態では、アンテナエレメント18が回路基板12の後方に向けて延在する構成を示したが、回路基板12の前方に向けて延在する構成としてもよい。あるいは、回路基板12の前方および後方に延在する構成としてもよい。「回路基板の前後方向」は、回路基板の前方および後方の双方を含みうる。
Although the configuration in which the antenna element 18 extends toward the rear of the circuit board 12 is shown in the above embodiment, it may be configured to extend toward the front of the circuit board 12 . Alternatively, it may be configured to extend forward and backward of the circuit board 12 . The "front-to-back direction of the circuit board" can include both the front and rear of the circuit board.
上記第2実施形態および変形例では、接続部の一端から他端にかけた全域をミアンダ構造とする構成を示した。また、そのミアンダ構造として周期的な矩形波状のものを例示した。他の変形例においては、ミアンダ構造を接続部の全域ではなく、例えば中央領域に限定する、端部近傍に限定する、あるいは所定の間隔で配置するなど、部分的に設けてもよい。また、ミアンダ構造が曲線波形状のものであってもよいし、周期性を有しないものであってもよい。ミアンダ形状に沿って厚みを部分的に異ならせてもよい。
In the above-described second embodiment and modified example, the configuration is shown in which the entire area from one end to the other end of the connecting portion has a meandering structure. Also, a periodic rectangular wave shape is exemplified as the meander structure. In other modifications, the meandering structure may be provided partially, for example, limited to the central region, limited to the vicinity of the ends, or arranged at predetermined intervals, rather than the entire connecting portion. Moreover, the meandering structure may have a curvilinear wave shape, or may have no periodicity. The thickness may be partially varied along the meandering shape.
上記第2実施形態では、接続部220をアンテナエレメント18と同種の金属にて構成し、さらにミアンダ構造とすることで電気長を増大させる例を示した(電気長増大構造)。変形例においては、接続部とアンテナエレメントとを一体成形することなく、接続部をアンテナエレメントとは異種の金属にて構成することで電気長を調整してもよい。あるいは、接続部を金属板とチップインダクタ等の回路素子とを連結して構成することで電気長を調整してもよい。逆に、接続部について、第1アンテナエレメントと第2アンテナエレメントとを直線状に接続した場合よりも電気長を短くする電気長縮小構造を採用してもよい。すなわち、接続部が、第1アンテナエレメントと第2アンテナエレメントとを直線状に接続した場合と電気長を異ならせる「電気長調整構造」を有してもよい。
In the above-described second embodiment, an example in which the electrical length is increased by forming the connecting portion 220 from the same metal as the antenna element 18 and forming a meandering structure (electrical length increasing structure) is shown. In a modification, the electrical length may be adjusted by forming the connecting portion from a metal different from that of the antenna element without integrally molding the connecting portion and the antenna element. Alternatively, the electrical length may be adjusted by configuring the connecting portion by connecting a metal plate and a circuit element such as a chip inductor. Conversely, for the connection portion, an electrical length reduction structure may be employed in which the electrical length is made shorter than when the first antenna element and the second antenna element are linearly connected. That is, the connection portion may have an "electrical length adjustment structure" that makes the electrical length different from that in the case where the first antenna element and the second antenna element are linearly connected.
上記実施形態では、GPSアンテナ14のエレメントをTELアンテナ16のエレメントよりも高位置としたが、GPSアンテナ14のエレメントをTELアンテナ16のエレメントよりも低位置としてもよい。その場合、アンテナエレメント18の基端部32において給電部34を下方に折り曲げ、回路基板12に対して上方から接続してもよい。
In the above embodiment, the elements of the GPS antenna 14 are positioned higher than the elements of the TEL antenna 16, but the elements of the GPS antenna 14 may be positioned lower than the elements of the TEL antenna 16. In that case, the feeding portion 34 may be bent downward at the base end portion 32 of the antenna element 18 and connected to the circuit board 12 from above.
上記実施形態では、回路基板12に設けるパッチアンテナとして、GPSアンテナ14を例示したが、これに代えてGLONASS(Global Navigation Satellite System)その他のGNSS(Global Navigation Satellite Systems)に対応したパッチアンテナを設けてもよい。あるいは、SiriusXMなどの衛星ラジオを受信可能なパッチアンテナを設けてもよい。ETCやVICS用のパッチアンテナを設けてもよい。
In the above embodiment, the GPS antenna 14 was exemplified as the patch antenna provided on the circuit board 12, but instead of this, a patch antenna compatible with GLONASS (Global Navigation Satellite System) and other GNSS (Global Navigation Satellite Systems) is provided. good too. Alternatively, a patch antenna capable of receiving satellite radio, such as SiriusXM, may be provided. A patch antenna for ETC or VICS may be provided.
図2に示したように、平面視において第1アンテナエレメントと第2アンテナエレメントと接続部とに囲まれる領域に余裕がある場合、回路基板12を前後方向に大きくすることにより、複数のパッチアンテナを前後に配設してもよい。その場合も、第1アンテナエレメントと第2アンテナエレメントと接続部とに囲まれる領域(これらの投影領域の輪郭の内側)に回路基板12を収めるようにする。
As shown in FIG. 2, when there is room in the area surrounded by the first antenna element, the second antenna element, and the connecting portion in a plan view, the circuit board 12 can be enlarged in the front-rear direction so that a plurality of patch antennas can be formed. may be arranged in the front and rear. Also in that case, the circuit board 12 is accommodated in the area surrounded by the first antenna element, the second antenna element, and the connecting portion (inside the outline of these projected areas).
なお、複数のパッチアンテナにETCアンテナを含める場合、指向性の観点からそのETCアンテナのアンテナエレメントを回路基板12に対して傾斜させることがある。そのような場合には、ETCアンテナを他のパッチアンテナよりも前方に配置するのが好ましい。
When an ETC antenna is included in a plurality of patch antennas, the antenna element of the ETC antenna may be inclined with respect to the circuit board 12 from the viewpoint of directivity. In such a case, it is preferable to arrange the ETC antenna in front of the other patch antennas.
上記実施形態では、アンテナエレメントを金属からなるものとしたが、導電樹脂その他の導電性材料からなるものとしてもよい。
Although the antenna element is made of metal in the above embodiment, it may be made of conductive resin or other conductive material.
上記実施形態では、2つのモノポールアンテナとして、いわゆる逆Lアンテナを例示したが、逆Fアンテナとしてもよい。また、棒状のモノポールアンテナやテーパ状のモノポールアンテナとしてもよい。
In the above embodiment, so-called inverted L antennas are illustrated as two monopole antennas, but inverted F antennas may be used. Also, a rod-shaped monopole antenna or a tapered monopole antenna may be used.
上記変形例3~5では、接続部20の形状として第1実施形態と同様の長方形状のものを例示したが、第2実施形態およびその変形例のようにミアンダ構造(電気長調整構造)としてもよいことは言うまでもない。
In Modifications 3 to 5, the connecting portion 20 has a rectangular shape similar to that of the first embodiment. It goes without saying that this is also a good thing.
上記実施形態では、アンテナ装置をインストルメントパネル内に設置するものとして説明したが、車体のその他の位置に設置してもよい。また、車両用に限らず、船舶その他の移動手段に設置されるアンテナ装置としてもよい。
In the above embodiment, the antenna device is installed inside the instrument panel, but it may be installed at other positions on the vehicle body. Further, the antenna device is not limited to a vehicle, and may be an antenna device installed in a ship or other means of transportation.
上記実施形態では、隣接配置(並設)される2つのモノポールアンテナをTELアンテナとしたが、MIMOに対応する他のアンテナとしてもよい。また、上記実施形態では、2つのモノポールアンテナを回路基板に平行な前後方向に延在させる構成を例示したが、回路基板に対して垂直に延在させてもよい。その場合も、回路基板が、第1アンテナエレメントと第2アンテナエレメントとの間に収まる幅を有するものとしてよい。
In the above embodiment, the two monopole antennas arranged adjacently (arranged in parallel) are TEL antennas, but other antennas compatible with MIMO may be used. Further, in the above embodiment, the two monopole antennas extend in the front-rear direction parallel to the circuit board, but they may extend perpendicularly to the circuit board. Also in that case, the circuit board may have a width that fits between the first antenna element and the second antenna element.
なお、本発明は上記実施形態や変形例に限定されるものではなく、要旨を逸脱しない範囲で構成要素を変形して具体化することができる。上記実施形態や変形例に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成してもよい。また、上記実施形態や変形例に示される全構成要素からいくつかの構成要素を削除してもよい。
It should be noted that the present invention is not limited to the above embodiments and modifications, and can be embodied by modifying the constituent elements without departing from the scope of the invention. Various inventions may be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments and modifications. Also, some constituent elements may be deleted from all the constituent elements shown in the above embodiments and modifications.
1 アンテナ装置、10 アンテナユニット、12 回路基板、14 GPSアンテナ、16 TELアンテナ、18 アンテナエレメント、20 接続部、22 コネクタ、24 グラウンド領域、32 基端部、34 給電部、36 先端部、110 アンテナユニット、212 アンテナユニット、214 アンテナユニット、220 接続部、222 折り返し部、230 接続部、232 接続部、310 アンテナユニット、320 接続部、322 段差部、410 アンテナユニット、412 回路基板、420 エレメントユニット、432 基端部、518 アンテナエレメント、532 基端部、618 アンテナエレメント、632 基端部、P1 給電点、P2 給電点。
1 Antenna device, 10 Antenna unit, 12 Circuit board, 14 GPS antenna, 16 TEL antenna, 18 Antenna element, 20 Connection part, 22 Connector, 24 Ground area, 32 Base part, 34 Feeding part, 36 Tip part, 110 Antenna unit, 212 antenna unit, 214 antenna unit, 220 connection part, 222 folded part, 230 connection part, 232 connection part, 310 antenna unit, 320 connection part, 322 step part, 410 antenna unit, 412 circuit board, 420 element unit, 432 base end, 518 antenna element, 532 base end, 618 antenna element, 632 base end, P1 feeding point, P2 feeding point.
Claims (13)
- グラウンド領域を有する回路基板と、
前記回路基板に設けられた第1給電点に基端側が接続され、第1のモノポールアンテナを形成する第1アンテナエレメントと、
前記回路基板に設けられた第2給電点に基端側が接続され、第2のモノポールアンテナを形成する第2アンテナエレメントと、
前記第1アンテナエレメントの先端部と前記第2アンテナエレメントの先端部とを接続する接続部と、
を備えることを特徴とするアンテナ装置。 a circuit board having a ground area;
a first antenna element having a proximal end connected to a first feeding point provided on the circuit board and forming a first monopole antenna;
a second antenna element having a proximal end connected to a second feeding point provided on the circuit board and forming a second monopole antenna;
a connecting portion that connects the tip portion of the first antenna element and the tip portion of the second antenna element;
An antenna device comprising: - 前記第1アンテナエレメントは、前記第1給電点に接続された第1基端部と、前記第1基端部から前記回路基板の前後方向に延出する第1延在部とを有し、
前記第2アンテナエレメントは、前記第2給電点に接続された第2基端部と、前記第2基端部から前記回路基板の前後方向に延出する第2延在部とを有し、
前記接続部が、前記第1延在部と前記第2延在部とを各基端部とは反対側において前記回路基板の左右方向に接続することを特徴とする請求項1に記載のアンテナ装置。 The first antenna element has a first base end portion connected to the first feeding point, and a first extension portion extending from the first base end portion in the front-rear direction of the circuit board,
The second antenna element has a second base end connected to the second feeding point, and a second extension extending from the second base end in the front-rear direction of the circuit board,
2. The antenna according to claim 1, wherein the connecting portion connects the first extending portion and the second extending portion in the left-right direction of the circuit board on the side opposite to each base end portion. Device. - 前記回路基板が、前記第1アンテナエレメントと前記第2アンテナエレメントとの間に収まる幅を有することを特徴とする請求項1又は2に記載のアンテナ装置。 3. The antenna device according to claim 1, wherein the circuit board has a width that fits between the first antenna element and the second antenna element.
- 前記回路基板が、平面視において、前記第1アンテナエレメントと前記第2アンテナエレメントと前記接続部とに囲まれる領域に収まる大きさを有することを特徴とする請求項1~3のいずれかに記載のアンテナ装置。 4. The circuit board according to any one of claims 1 to 3, wherein the circuit board has a size that fits within an area surrounded by the first antenna element, the second antenna element, and the connecting portion in plan view. antenna device.
- 前記回路基板にパッチアンテナが設けられていることを特徴とする請求項4に記載のアンテナ装置。 The antenna device according to claim 4, wherein the circuit board is provided with a patch antenna.
- 前記第1アンテナエレメントおよび前記第2アンテナエレメントが、それぞれ前記回路基板の外縁に沿うように配置されていることを特徴とする請求項1~5のいずれかに記載のアンテナ装置。 The antenna device according to any one of claims 1 to 5, wherein the first antenna element and the second antenna element are arranged along the outer edge of the circuit board.
- 前記接続部は、前記第1アンテナエレメントと前記第2アンテナエレメントとを直線状に接続した場合と電気長を異ならせる電気長調整構造を有することを特徴とする請求項1~6のいずれかに記載のアンテナ装置。 7. The connection portion according to claim 1, wherein the connection portion has an electrical length adjustment structure that makes the electrical length different from that in the case where the first antenna element and the second antenna element are linearly connected. An antenna device as described.
- 前記接続部は、電気長を増大させる電気長増大構造を有することを特徴とする請求項1~7のいずれかに記載のアンテナ装置。 The antenna device according to any one of claims 1 to 7, wherein the connecting portion has an electrical length increasing structure for increasing the electrical length.
- 前記電気長増大構造が、前記接続部の延在方向に複数の折り返し部を有するミアンダ構造を含むことを特徴とする請求項8に記載のアンテナ装置。 The antenna device according to claim 8, wherein the electrical length increasing structure includes a meandering structure having a plurality of folded portions in the extending direction of the connection portion.
- 前記ミアンダ構造の線幅と蛇行幅の設定によりアンテナ特性が調整されたアンテナ特性調整構造を備えることを特徴とする請求項9に記載のアンテナ装置。 The antenna device according to claim 9, comprising an antenna characteristic adjustment structure in which antenna characteristics are adjusted by setting the line width and meandering width of the meandering structure.
- 前記ミアンダ構造について、前記線幅が2mm以上5mm以下、前記蛇行幅が20mm以上35mm以下に設定されていることを特徴とする請求項10に記載のアンテナ装置。 11. The antenna device according to claim 10, wherein the meandering structure has a line width of 2 mm or more and 5 mm or less and a meandering width of 20 mm or more and 35 mm or less.
- 前記第1給電点にて励起された電流の波形が前記第2給電点の付近において節となり、前記第2給電点にて励起された電流の波形が前記第1給電点の付近において節となるよう、前記第1アンテナエレメント、前記第2アンテナエレメントおよび前記接続部のそれぞれの長さが設定されていることを特徴とする請求項1~11のいずれかに記載のアンテナ装置。 The waveform of the current excited at the first feeding point becomes a node near the second feeding point, and the waveform of the current excited at the second feeding point becomes a node near the first feeding point. The antenna device according to any one of claims 1 to 11, wherein the lengths of the first antenna element, the second antenna element, and the connection portion are set as follows.
- 前記回路基板の前記パッチアンテナとは反対側面と対向するように設けられた導電部材をさらに備え、
前記導電部材は、平面視において、前記第1アンテナエレメントと前記第2アンテナエレメントと前記接続部とに囲まれる領域内に配置されることを特徴とする請求項5に記載のアンテナ装置。 further comprising a conductive member provided to face a side surface of the circuit board opposite to the patch antenna;
6. The antenna device according to claim 5, wherein the conductive member is arranged in a region surrounded by the first antenna element, the second antenna element, and the connecting portion in plan view.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-059963 | 2021-03-31 | ||
JP2021059963 | 2021-03-31 | ||
JP2022053869A JP2022159131A (en) | 2021-03-31 | 2022-03-29 | antenna device |
JP2022-053869 | 2022-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022210828A1 true WO2022210828A1 (en) | 2022-10-06 |
Family
ID=83456491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/015806 WO2022210828A1 (en) | 2021-03-31 | 2022-03-30 | Antenna device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022210828A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008199588A (en) * | 2007-01-19 | 2008-08-28 | Matsushita Electric Ind Co Ltd | Array antenna apparatus and wireless communications apparatus |
WO2011145324A1 (en) * | 2010-05-17 | 2011-11-24 | パナソニック株式会社 | Antenna device and portable wireless terminal equipped with same |
US20150061962A1 (en) * | 2013-09-05 | 2015-03-05 | Quanta Computer Inc. | Antenna module |
JP2015061098A (en) * | 2013-09-17 | 2015-03-30 | アルプス電気株式会社 | Antenna device |
JP2016527797A (en) * | 2013-07-19 | 2016-09-08 | ノキア テクノロジーズ オーユー | Wireless communication apparatus and method |
WO2018110671A1 (en) * | 2016-12-16 | 2018-06-21 | 株式会社ヨコオ | Antenna device |
-
2022
- 2022-03-30 WO PCT/JP2022/015806 patent/WO2022210828A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008199588A (en) * | 2007-01-19 | 2008-08-28 | Matsushita Electric Ind Co Ltd | Array antenna apparatus and wireless communications apparatus |
WO2011145324A1 (en) * | 2010-05-17 | 2011-11-24 | パナソニック株式会社 | Antenna device and portable wireless terminal equipped with same |
JP2016527797A (en) * | 2013-07-19 | 2016-09-08 | ノキア テクノロジーズ オーユー | Wireless communication apparatus and method |
US20150061962A1 (en) * | 2013-09-05 | 2015-03-05 | Quanta Computer Inc. | Antenna module |
JP2015061098A (en) * | 2013-09-17 | 2015-03-30 | アルプス電気株式会社 | Antenna device |
WO2018110671A1 (en) * | 2016-12-16 | 2018-06-21 | 株式会社ヨコオ | Antenna device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100833432B1 (en) | Planar antenna | |
US7528791B2 (en) | Antenna structure having a feed element formed on an opposite surface of a substrate from a ground portion and a radiating element | |
US7501992B2 (en) | Planar antenna | |
JP3980172B2 (en) | Broadband antenna | |
JP4169696B2 (en) | High bandwidth multiband antenna | |
CN110574230B (en) | Vehicle-mounted antenna device | |
JPH10261914A (en) | Antenna device | |
CN113745811A (en) | Antenna device | |
JP2008092311A (en) | Multiple frequency sharing antenna | |
WO2022210828A1 (en) | Antenna device | |
JP2011066767A (en) | Multi-frequency shared antenna | |
JP2007124630A (en) | Planar antenna and window glass sheet for automobile | |
KR20050075966A (en) | Omnidirectional antenna | |
US6618015B2 (en) | Antenna for use with radio device | |
JP2022159131A (en) | antenna device | |
JP5837452B2 (en) | Antenna device | |
US20240030624A1 (en) | Antenna device | |
JP7611922B2 (en) | Vehicle-mounted antenna device | |
US11978970B2 (en) | Antenna device | |
US7358900B2 (en) | Symmetric-slot monopole antenna | |
US7064722B1 (en) | Dual polarized broadband tapered slot antenna | |
KR102049876B1 (en) | Omni-directional pcb antenna | |
CN116783781A (en) | patch antenna | |
CN117083767A (en) | Antenna device | |
CN218160806U (en) | Patch antenna and antenna device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22781039 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22781039 Country of ref document: EP Kind code of ref document: A1 |