WO2022209759A1 - コア片、リアクトル、コンバータ、及び電力変換装置 - Google Patents
コア片、リアクトル、コンバータ、及び電力変換装置 Download PDFInfo
- Publication number
- WO2022209759A1 WO2022209759A1 PCT/JP2022/010880 JP2022010880W WO2022209759A1 WO 2022209759 A1 WO2022209759 A1 WO 2022209759A1 JP 2022010880 W JP2022010880 W JP 2022010880W WO 2022209759 A1 WO2022209759 A1 WO 2022209759A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- core portion
- length
- core piece
- piece
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title description 10
- 229920005989 resin Polymers 0.000 claims abstract description 68
- 239000011347 resin Substances 0.000 claims abstract description 68
- 239000002131 composite material Substances 0.000 claims abstract description 42
- 239000006247 magnetic powder Substances 0.000 claims abstract description 23
- 238000004804 winding Methods 0.000 claims description 122
- 230000035699 permeability Effects 0.000 claims description 10
- 239000002994 raw material Substances 0.000 description 27
- 239000006249 magnetic particle Substances 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 14
- 238000000576 coating method Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 230000002093 peripheral effect Effects 0.000 description 13
- 239000004020 conductor Substances 0.000 description 12
- 239000000843 powder Substances 0.000 description 10
- 230000004907 flux Effects 0.000 description 8
- 238000009413 insulation Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000005415 magnetization Effects 0.000 description 4
- 239000002923 metal particle Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 230000004323 axial length Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/08—Cores, Yokes, or armatures made from powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F37/00—Fixed inductances not covered by group H01F17/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
- H01F17/045—Fixed inductances of the signal type with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/255—Magnetic cores made from particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
- H01F2003/106—Magnetic circuits using combinations of different magnetic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
- H01F3/14—Constrictions; Gaps, e.g. air-gaps
Definitions
- the present disclosure relates to core pieces, reactors, converters, and power converters.
- This application claims priority based on Japanese Patent Application No. 2021-055052 filed in Japan on March 29, 2021, and incorporates all the descriptions described in the Japanese application.
- the core piece of the present disclosure is a core piece made of a molded body of a composite material in which soft magnetic powder is dispersed in a resin, and includes an end core portion facing an end face of a coil, and the end core portion is the end core portion of the coil. It has a recess provided outside and a gate trace provided at the bottom of the recess, and the end face of the gate trace is located inside the recess.
- the converter of the present disclosure includes the reactor of the present disclosure.
- the power conversion device of the present disclosure includes the converter of the present disclosure.
- FIG. 1 is a perspective view showing the outline of the reactor of Embodiment 1.
- FIG. FIG. 2 is a perspective view showing an outline of an exploded state of the reactor of Embodiment 1.
- FIG. 3 is a top view showing the outline of the reactor of Embodiment 1.
- FIG. 4 is a sectional view taken along line IV-IV of FIG.
- FIG. 5 is a cross-sectional view taken along line VV of FIG.
- FIG. 6 is a top view showing the outline of the reactor of Embodiment 2.
- FIG. FIG. 7 is a top view showing the outline of the reactor of Embodiment 3.
- FIG. FIG. 8 is a perspective view showing the outline of the reactor of Embodiment 4.
- FIG. FIG. FIG. 1 is a perspective view showing the outline of the reactor of Embodiment 1.
- FIG. FIG. 2 is a perspective view showing an outline of an exploded state of the reactor of Embodiment 1.
- FIG. 3 is a top view showing the outline of the reactor of
- FIG. 9 is a perspective view showing an outline of an exploded reactor of Embodiment 4.
- FIG. 10 is a top view showing the outline of the reactor of Embodiment 4.
- FIG. 11 is a cross-sectional view taken along line XI-XI of FIG. 9.
- FIG. 12 is a top view showing the outline of the reactor of Embodiment 5.
- FIG. 13 is a top view showing the outline of the reactor of Embodiment 6.
- FIG. FIG. 14 is a configuration diagram schematically showing a power supply system of a hybrid vehicle.
- FIG. 15 is a circuit diagram showing an outline of an example of a power converter including a converter.
- the reactor described above is manufactured as follows. A raw material for the mold resin portion is poured into the mold in which the assembly is arranged. The raw material is a fluid resin. Let the resin harden. It has been found that in the reactor manufactured in this way, the insulating coating of the coil may be damaged.
- the core piece of the present disclosure can easily suppress damage to the insulation coating of the coil provided in the reactor when constructing the reactor including the molded resin portion.
- the reactor of the present disclosure has excellent productivity.
- the converter of the present disclosure and the power converter of the present disclosure are excellent in productivity.
- a core piece composed of a molded composite material is produced as follows.
- the raw material for the molded composite material is flowed through the gate into the mold.
- the raw material is a fluid material in which soft magnetic powder is dispersed in unsolidified resin.
- the raw material resin is solidified.
- a first molded body is produced in which the main body part having a shape corresponding to the mold and the attachment part having the part corresponding to the gate are connected.
- the appendage may have a portion corresponding to the sprue, and may also have a portion corresponding to the runner.
- An appendix is removed from the first compact. Removal of the attached portion can be performed, for example, by breaking off the attached portion.
- the main body portion from which the attachment portion is removed constitutes the core piece. On the surface of the core piece from which the appendix has been removed, there remains a gate trace of projections or ridges protruding from the surface. Soft magnetic particles may be locally exposed on the end face of the gate scar.
- the reactor is manufactured by pouring the raw material of the mold resin part into the mold in which the combined body of the magnetic core and the coil is arranged.
- the raw material is a fluid resin.
- the raw material flows in the mold from the outside of the assembly toward the inside of the coil.
- the flowing raw material of the mold resin part and the end face of the gate mark come into contact.
- the soft magnetic particles exposed from the end face of the gate marks are likely to fall off.
- the gate marks protrude from the surfaces of the core pieces, the falling soft magnetic particles easily flow into the coil along with the flow of the raw material.
- the flowing soft magnetic particles rub against the windings that make up the coil.
- flowing soft magnetic particles are sandwiched between adjacent turns of the coil. When the coil vibrates, the sandwiched soft magnetic particles rub against the winding. Such rubbing between the soft magnetic particles and the winding may damage the insulation coating of the winding.
- a core piece according to an aspect of the present disclosure is a core piece made of a molded body of a composite material in which soft magnetic powder is dispersed in a resin, and includes an end core portion facing an end face of a coil, The end core portion has a recess provided outside the coil and a gate trace provided at the bottom of the recess, and the end face of the gate trace is located inside the recess.
- the above-mentioned core piece easily suppresses damage to the insulation coating of the coil provided in the reactor when constructing the reactor including the molded resin portion. Even if the soft magnetic particles exposed from the end surface of the gate mark fall off due to the contact between the flowing raw material of the mold resin portion and the end surface of the gate mark, the fallen soft magnetic particles can be removed because the end surface of the gate mark is located inside the recess. Particles can accumulate at the bottom of the recess. Therefore, the falling soft magnetic particles are suppressed from flowing into the coil along with the flow of the raw material of the mold resin portion. Therefore, rubbing between the soft magnetic particles and the coil is suppressed.
- the end core portion has an inner surface facing the end surface of the coil and an outer surface provided on the side opposite to the inner surface, and the recess and the gate marks are , may be provided on the outer surface.
- the gate traces provided on the outer surface of the end core portion are likely to come into contact with the flowing raw material of the mold resin portion. Therefore, the soft magnetic particles are likely to drop off from the end face of the gate mark.
- the core piece is provided with gate traces on the outer surface where the soft magnetic material is likely to fall off, since the end face of the gate traces is located inside the concave portion, the fallen soft magnetic particles can be trapped inside the coil. Difficult to flow.
- the core piece has a middle core portion having a portion that is arranged inside the coil, and at least a part of the recess and the gate mark is formed on the outer surface. It may be provided in a first region, and the first region may be a region of the outer surface corresponding to the middle core portion.
- the magnetic flux flows from the middle core part to both ends of the end core part.
- the magnetic flux flows from both ends of the end core so as to be concentrated in the middle core portion.
- the first region is for points where magnetic flux diverges or converges. Therefore, even if the core piece is provided with the concave portion, the reduction in the magnetic path area is suppressed because the portion where at least part of the concave portion is provided is the first region.
- the above core pieces are even more excellent in productivity.
- the length of the gate mark corresponds to the length of the gate in the manufacturing process of the core piece. That is, in the process of manufacturing the core piece, the raw material for the molded body of the composite material is supplied into the mold through a gate having a length that spans the entire width direction of the outer surface. Therefore, it is easy to spread the raw material of the molded body of the composite material sufficiently in the mold. Therefore, it is easy to manufacture the core piece.
- the shape of the core piece is U-shaped or J-shaped, and the core piece has a portion arranged inside the first winding portion of the coil. and a second middle core portion having a portion disposed inside the second winding portion of the coil, wherein at least a portion of the recess and the gate marks are formed on the outer surface of the It may be provided in a first region, and the first region may be a region of the outer surface corresponding between the first middle core portion and the second middle core portion.
- the above core piece has excellent productivity. This is because the core pieces are easy to manufacture because the raw material for the molded composite material can be sufficiently distributed in the mold during the manufacturing process.
- a reactor according to an aspect of the present disclosure is a reactor that includes a coil and a magnetic core, and includes a mold resin portion that covers at least a portion of the magnetic core, and the magnetic core is from (1) above.
- the reactor has excellent productivity by including core pieces that easily suppress damage to the insulation coating of the coil during the manufacturing process.
- the magnetic core is a combination of a first core piece and a second core piece, and at least one of the first core piece and the second core piece is the core piece. There may be.
- the above reactor is excellent in manufacturing workability because the magnetic core can be constructed by combining the first core portion and the second core portion.
- the relative magnetic permeability of the core piece may be 5 or more and 50 or less.
- a converter according to an aspect of the present disclosure includes the reactor of any one of (6) to (8) above.
- the above converter is equipped with the above reactor, so it has excellent productivity.
- a power converter according to one aspect of the present disclosure includes the converter of (9) above.
- the power conversion device has excellent productivity because it includes the converter.
- FIG. A reactor 1 includes a coil 2 , a magnetic core 3 and a molded resin portion 4 .
- the mold resin portion 4 covers at least part of the magnetic core 3 .
- One of the features of the reactor 1 of this embodiment is that the magnetic core 3 has specific core pieces. Each configuration will be described in detail below.
- the mold resin portion 4 is indicated by a chain double-dashed line for convenience of explanation.
- the molded resin portion 4 is omitted and the coil 2 is indicated by a chain double-dashed line.
- the fact that the mold resin portion 4 is indicated by a chain double-dashed line also applies to FIG.
- the fact that the molded resin portion 4 is omitted and the coil 2 is indicated by a two-dot chain line are the same as those shown in FIGS. The same applies to FIGS.
- the coil 2 has one hollow winding portion 21 as shown in FIGS. 1 and 2 in this embodiment.
- the number of winding portions 21 may be one as in this embodiment, or two as in Embodiment 4 described later with reference to FIGS. 8 and 9 .
- the reactor 1 of the present embodiment has one winding portion 21, so compared to the reactor 1 of Embodiment 4 in which two winding portions are arranged in parallel in a direction orthogonal to the axial direction of the winding portion. In the case where the wound portion has the same cross-sectional area and the same number of turns, the length along the second direction D2, which will be described later, can be shortened.
- the shape of the winding portion 21 may be a rectangular tube shape or a cylindrical shape. Rectangles include squares.
- the shape of the winding part 21 of this embodiment is a rectangular tube shape, as shown in FIG. That is, the end face shape of the winding portion 21 is a rectangular frame shape. Since the shape of the winding portion 21 is a rectangular cylinder, it is easier to increase the contact area between the winding portion 21 and the installation target as compared with the case where the winding portion 21 is cylindrical with the same cross-sectional area. Therefore, the reactor 1 easily dissipates heat to the installation target via the winding portion 21 . Moreover, the winding part 21 can be stably and easily installed on the installation target. The corners of the winding portion 21 are rounded.
- the winding part 21 of this embodiment is configured by spirally winding a single winding without a joint.
- a known winding can be used for the winding.
- a coated rectangular wire is used for the winding of this embodiment.
- the conductor wire of the coated rectangular wire is composed of a copper rectangular wire.
- the insulating coating of the coated rectangular wire is made of enamel.
- the wound portion 21 is formed of an edgewise coil obtained by edgewise winding a coated rectangular wire.
- a first end portion 21a and a second end portion 21b of the winding portion 21 are respectively extended to the outer peripheral side of the winding portion 21 at one end and the other end in the axial direction of the winding portion 21 in this embodiment.
- the first end portion 21a and the second end portion 21b of the wound portion 21 have their insulating coating stripped off to expose the conductor wires.
- the exposed conductor wire is drawn out of the mold resin portion 4, which will be described later, and is connected to a terminal member. Illustration of the terminal member is omitted.
- An external device is connected to the coil 2 through this terminal member. Illustration of the external device is omitted.
- the external device is, for example, a power source that supplies power to the coil 2 .
- the configuration of the magnetic core 3 can be appropriately selected according to the number of winding portions 21 of the coil 2 .
- the magnetic core 3 of this embodiment has a middle core portion 31, a first side core portion 321 and a second side core portion 322, and a first end core portion 33f and a second end core portion 33s.
- the direction along the axial direction of the winding portion 21 is the first direction D1
- the parallel direction of the middle core portion 31, the first side core portion 321, and the second side core portion 322 is the second direction D2
- the first direction D1. and the second direction D2 is the third direction D3.
- Middle core portion 31 has a portion disposed inside winding portion 21 .
- the shape of the middle core portion 31 is, for example, a shape corresponding to the inner peripheral shape of the winding portion 21 .
- the shape of the middle core portion 31 is a quadrangular prism as shown in FIG.
- the corners of the middle core portion 31 may be rounded along the inner peripheral surface of the corners of the winding portion 21 .
- the length of the middle core portion 31 along the first direction D1 is substantially the same as the length of the winding portion 21 along the axial direction, as shown in FIG.
- the length of the middle core portion 31 along the first direction D1 is the length L1f of the first middle core portion 31f along the first direction D1 and the length L1s of the second middle core portion 31s along the first direction D1, which will be described later. is the total length of (L1f+L1s).
- the length of the middle core portion 31 along the first direction D1 does not include the length Lg of the gap portion 3g along the first direction D1, which will be described later. The same meaning applies to other core portions and the length of the core portion.
- the length of the middle core portion 31 along the first direction D1 is longer than the length of the first side core portion 321 along the first direction D1 and the length of the second side core portion 322 along the first direction D1.
- the length of the first side core portion 321 along the first direction D1 is the length L21f of the first side core portion 321f along the first direction D1 and the length of the first side core portion 321s along the first direction D1, which will be described later. is the total length (L21f+L21s) of the length L21s.
- the length of the middle core portion 31 along the first direction D1 is the length of the first side core portion 321 along the first direction D1 and the length of the second side core portion 322 along the first direction D1. may be equivalent to
- the middle core portion 31 may be composed of, for example, two core portions, a first middle core portion 31f and a second middle core portion 31s, as in this embodiment. Although not shown, the middle core portion 31 may be composed of one first middle core portion 31f.
- the length (L21f+L21s) of the first side core portion 321 and the length (L22f+L22s) of the second side core portion 322 are longer than the length along the axial direction of the winding portion 21, as shown in FIG.
- the length of the first side core portion 321 along the first direction D1 and the length of the second side core portion 322 along the first direction D1 may be equal to the length of the winding portion 21 along the axial direction. .
- the first side core portion 321 may be composed of two core portions, a first side core portion 321f and a first side core portion 321s, as in this embodiment.
- the first side core portion 321 may be composed of one first side core portion 321f as in the third embodiment.
- the second side core portion 322 may be composed of, for example, two core portions, a second side core portion 322f and a second side core portion 322s, as in this embodiment.
- the second side core portion 322 may be composed of one second side core portion 322f as in the third embodiment.
- the total cross-sectional area of the first side core portion 321 and the cross-sectional area of the second side core portion 322 is the same as the cross-sectional area of the middle core portion 31 .
- the middle core portion 31, the first side core portion 321, and the second side core portion 322 have the same length along the third direction D3. That is, the sum of the length of the first side core portion 321 along the second direction D2 and the length of the second side core portion 322 along the second direction D2 is equal to the length of the middle core portion 31 along the second direction D2. Equivalent to.
- the length of the first side core portion 321 along the second direction D2 and the length of the second side core portion 322 along the second direction D2 are half the length of the middle core portion 31 along the second direction D2. is.
- the first end core portion 33f faces the first end surface of the winding portion 21 .
- the second end core portion 33 s faces the second end surface of the winding portion 21 . Facing means that the inner surface 33i of the first end core portion 33f and the first end surface of the winding portion 21 face each other. Also, it means that the inner surface of the second end core portion 33s and the second end surface of the winding portion 21 face each other.
- the shape of the first end core portion 33f and the shape of the second end core portion 33s are thin prismatic shapes, as shown in FIGS.
- the magnetic core 3 is a combination of a first core piece 3f and a second core piece 3s.
- Various combinations of the first core piece 3f and the second core piece 3s can be made by appropriately selecting the shapes of the first core piece 3f and the second core piece 3s.
- the shape of the first core piece 3f and the shape of the second core piece 3s may be symmetrical as in this embodiment, or may be mutually asymmetrical as in the second embodiment. Symmetric means identical in shape and size. Asymmetric means different shapes.
- the first core piece 3f and the second core piece 3s are divided in the first direction D1 as shown in FIG. 3 in this embodiment.
- the combination of the first core piece 3f and the second core piece 3s is EE type. Combinations different from this embodiment will be described later. Since the reactor 1 can be constructed by combining the first core piece 3f and the second core piece 3s with respect to the winding portion 21 along the axial direction of the winding portion 21, the manufacturing workability is excellent.
- a gap portion 3g which will be described later, may be provided, or the gap portion 3g may not be provided.
- the E-shaped first core piece 3f of this embodiment has a first middle core portion 31f, a first side core portion 321f, a second side core portion 322f, and a first end core portion 33f.
- the first middle core portion 31 f forms part of the middle core portion 31 .
- the first side core portion 321f constitutes a part of the first side core portion 321.
- the second side core portion 322f constitutes a part of the second side core portion 322.
- the first core piece 3f is a molded body in which a first middle core portion 31f, a first side core portion 321f, a second side core portion 322f, and a first end core portion 33f are integrated.
- the first end core portion 33f has an inner surface 33i and an outer surface 33o.
- the inner surface 33i of the first end core portion 33f faces the first end surface of the winding portion 21 as described above.
- the outer surface 33o of the first end core portion 33f is a surface provided on the side opposite to the inner surface 33i in the first direction D1.
- the outer peripheral surfaces of the first middle core portion 31f, the first side core portion 321f, and the second side core portion 322f are connected to the inner surface 33i of the first end core portion 33f.
- the first side core portion 321f and the second side core portion 322f are provided at both ends of the first end core portion 33f in the second direction D2.
- the first middle core portion 31f is provided in the center of the first end core portion 33f in the second direction D2.
- the second core piece 3s of this embodiment which has an E-shape symmetrical to the first core piece 3f, includes a second middle core portion 31s, a first side core portion 321s, a second side core portion 322s, and a second core portion 322s. and an end core portion 33s.
- the second middle core portion 31 s constitutes the remainder of the middle core portion 31 .
- the first side core portion 321 s constitutes the remainder of the first side core portion 321 .
- the second side core portion 322 s constitutes the remainder of the second side core portion 322 .
- the second core piece 3s is a molded body in which a second middle core portion 31s, a first side core portion 321s, a second side core portion 322s, and a second end core portion 33s are integrated.
- the connection manner and position of each core portion in the second core piece 3s are the same as the connection manner and position of each core portion in the first core piece 3f described above.
- first core piece 3f and the second core piece 3s are in contact with the end surface of the first side core portion 321f and the end surface of the first side core portion 321s, and the end surface of the second side core portion 322f and the second side core portion 322s are in contact with each other. are combined so that the end faces of the A gap is provided between the end surface of the first middle core portion 31f and the end surface of the second middle core portion 31s.
- the length of this interval along the first direction D1 corresponds to the length Lg of the gap portion 3g along the first direction D1.
- the first core piece 3f and the second core piece 3s are provided with a gap between the end surface of the first side core portion 321f and the end surface of the first side core portion 321s. They may be combined so that a gap is provided between the end face and the end face of the second side core portion 322s.
- the length of the middle core portion 31 along the first direction D1 is shorter than the length of the first side core portion 321 along the first direction D1
- the distance between the end face of the first middle core portion 31f and the end face of the second middle core portion 31s There is also an interval between them.
- the distance between the end surface of the first middle core portion 31f and the end surface of the second middle core portion 31s is the distance between the end surface of the first side core portion 321f and the end surface of the first side core portion 321s, and the distance between the end surface of the first side core portion 321f and the end surface of the second side core portion 321s It is larger than the distance between the end surface of the portion 322f and the end surface of the second side core portion 322s.
- the first core piece 3f and the second core piece 3s are preferably combined by a mold resin portion 4, which will be described later.
- the core pieces of the first end core portion 33f and the second end core portion 33s which are made of the molded composite material, have the recesses 34 and gate traces 35 as shown in FIGS.
- all of the first core pieces 3f having the first end core portions 33f and all of the second core pieces 3s having the second end core portions 33s are made of composite material. . That is, in this embodiment, both the first end core portion 33f and the second end core portion 33s have the recess 34 and the gate mark 35.
- FIG. The illustration of the recesses and gate traces of the second end core portion 33s is omitted.
- the recess 34 and the gate marks 35 of the first end core portion 33f are the same as the recesses and gate marks 35 of the second end core portion 33s. The following description will be made on the recess 34 and the gate mark 35 of the first end core portion 33f as representatives.
- the gate marks 35 are projections or ridges formed by removing attachments described later during the manufacturing process of the first core piece 3f.
- the gate mark 35 is provided on the bottom 341 of the recess 34, as shown in FIGS.
- the end surface 351 of the gate mark 35 is positioned inside the recess 34 .
- the fact that the end surface 351 of the gate mark 35 is located inside the recess 34 means that it is located between the imaginary surface surrounded by the outline of the opening of the recess 34 and the bottom 341 of the recess 34 . That is, the height of the gate mark 35 is less than the depth of the recess 34 .
- the height of the gate trace 35 is the length between the bottom 341 of the recess 34 and the end surface 351 of the gate trace 35 .
- the depth of the recess 34 is the length between the bottom 341 of the recess 34 and the opening of the recess 34 .
- the depth of the recess 34 may be 1.05 times or more and 3.0 times or less the height of the gate trace 35 . If the depth of the concave portion 34 is 1.05 times or more the height of the gate mark 35, falling soft magnetic particles are likely to accumulate in the concave portion 34, as will be described later in detail. If the depth of the concave portion 34 is 3.0 times or less the height of the gate mark 35, the attached portion can be easily removed during the manufacturing process.
- the depth of the recess 34 may be 1.1 times or more and 2.0 times or less the height of the gate trace 35 , particularly 1.2 times or more and 1.5 times or less the height of the gate trace 35 . .
- the recess 34 and the gate mark 35 are provided on the outer surface 33o of the first end core portion 33f. At least part of the recess 34 and at least part of the gate trace 35 may be provided in the first region A1 shown in FIG.
- the first area A1 is an area of the outer surface 33o corresponding to the first middle core portion 31f.
- the region corresponding to the first middle core portion 31f is a region surrounded by an imaginary outer peripheral surface obtained by extending the outer peripheral surface of the first middle core portion 31f in the first direction D1.
- the magnetic flux flows from the first middle core portion 31f to both ends of the first end core portion 33f. Alternatively, the magnetic flux flows from both ends of the first end core portion 33f so as to be concentrated in the first middle core portion 31f.
- the first area A1 is the point for the point where the magnetic flux splits or converges. Therefore, even if the concave portion 34 is provided, the reduction in the magnetic path area is suppressed because the portion where at least a part of the concave portion 34 is provided is the first region A1.
- the gate mark 35 may be provided along the second direction D2.
- the length of the gate mark 35 can be appropriately selected according to the shape and size of the first core piece 3f.
- the positions of both ends of the gate trace 35 are either both ends of the first region A1, between both ends of the first region A1 and both ends of the outer surface 33o, or both ends of the outer surface 33o. is doing.
- Both ends of the outer surface 33o in the second direction D2 do not include corners connecting the outer surface 33o and the side surfaces. For example, when the corners are curved surfaces, both ends of the outer surface 33o in the second direction D2 refer to portions of the outer surface 33o connected to the corners.
- the length of the gate marks 35 is the length covering the entire length of the first region A1 in the second direction D2. be.
- the length of the gate trace 35 is equal to the length of the first region A1. The length is greater than the total length in the two directions D2 and less than the total length in the second direction D2 of the outer surface 33o.
- the length of the gate marks 35 is the length of the entire length of the outer surface 33o in the second direction D2.
- the raw material of the composite material molded body is used in the manufacturing process as the first middle core portion 31f, the first side core portion 321f, and the second side core. It is easy to evenly distribute the liquid to the portion 322f.
- the length of the gate marks 35 is the length of the entire length of the outer surface 33o in the second direction D2, it is possible to more effectively spread the raw material of the molded composite material evenly.
- the length of the gate mark 35 is the length of the outer surface 33o over the entire length in the second direction D2.
- the length of the gate marks 35 is the same as the length of the recesses 34 . That is, in this embodiment, as shown in FIG. 5, the end surface 351 of the gate mark 35 is directly connected to the inner wall portion 342 of the recess 34 . Unlike this embodiment, the length of the gate trace 35 may be shorter than the length of the recess 34 . In that case, the end face 351 of the gate trace 35 does not directly connect to the inner wall portion 342 of the recess 34 , and the gate trace 35 has an end connecting the end face 351 and the bottom 341 of the recess 34 .
- the width of the gate mark 35 is shorter than the width of the recess 34.
- the width is the length along the third direction D3. That is, as shown in FIG. 4, the end face 351 of the gate trace 35 is not directly connected to the inner wall portion 342 of the recess 34, and the gate trace 35 has a side wall portion 352 connecting the end face 351 and the bottom portion 341 of the recess 34. Therefore, a space surrounded by the side wall portion 352 of the gate mark 35, the bottom portion 341 of the recess 34, and the inner wall portion 342 of the recess 34 is formed.
- the cross-sectional shape of the gate mark 35 is trapezoidal.
- a cross section is a cross section obtained by cutting the gate mark 35 along a plane perpendicular to the second direction D2. That is, the side wall portion 352 of the gate mark 35 is formed of a slope, and this slope is connected to the bottom portion 341 of the concave portion 34 .
- the cross-sectional shape of the gate mark 35 may be rectangular.
- At least one of the first core piece 3f and the second core piece 3s is made of a molded composite material.
- the molded body of composite material is formed by dispersing soft magnetic powder in resin. A method for manufacturing a composite material compact will be described later.
- the first core piece 3f and the second core piece 3s are made of composite material.
- the first core piece 3f may be composed of a composite material molded body
- the second core piece 3s may be composed of a compacted body.
- the powder compact will be described later.
- the first core piece 3f and the second core piece 3s are made of the same material.
- the first core piece 3f and the second core piece 3s may be made of different materials. Materials different from each other will be described later.
- the soft magnetic particles that make up the soft magnetic powder are soft magnetic metal particles, soft magnetic metal particles coated with an insulating coating on the outer periphery of the soft magnetic metal particles, or soft magnetic non-metal particles.
- Soft magnetic metals are pure iron or iron-based alloys. Iron-based alloys are, for example, Fe—Si alloys or Fe—Ni alloys.
- the insulating coating is, for example, phosphate.
- a soft magnetic non-metal is, for example, ferrite.
- Composite resins are, for example, thermosetting resins and thermoplastic resins.
- Thermosetting resins are, for example, epoxy resins, phenol resins, silicone resins, and urethane resins.
- Thermoplastic resins are, for example, polyphenylene sulfide resins, polyamide resins, liquid crystal polymers, polyimide resins, and fluorine resins.
- Polyamide resins are, for example, nylon 6, nylon 66, and nylon 9T.
- the molded body of the composite material may contain ceramic filler.
- Ceramic fillers are, for example, alumina and silica.
- the content of the soft magnetic powder in the compact of the composite material is, for example, 20% by volume or more and 80% by volume or less.
- the content of the resin in the molded body of the composite material is, for example, 20% by volume or more and 80% by volume or less. These contents are values when the composite material is 100% by volume.
- the content of the soft magnetic powder in the compact of the composite material is considered equivalent to the area ratio of the soft magnetic powder in the cross section of the compact.
- the content of the soft magnetic powder in the compact is determined as follows. A cross section of the compact is observed with an SEM (scanning electron microscope) to obtain an observed image. The magnification of the SEM is 200 times or more and 500 times or less. The number of acquired observation images is set to 10 or more. The total cross-sectional area shall be 0.1 cm 2 or more. One observation image may be acquired for one cross section, or a plurality of observation images may be acquired for one cross section. Image processing is performed on each acquired observation image to extract the contour of the particle. Image processing is, for example, binarization processing. The area ratio of the soft magnetic particles is calculated in each observation image, and the average value of the area ratios is obtained. The average value is regarded as the content of the soft magnetic powder.
- a composite material compact is produced as follows.
- the raw material for the molded composite material is flowed through the gate into the mold.
- the raw material is a fluid material in which soft magnetic powder is dispersed in unsolidified resin.
- the raw material resin is solidified.
- the mold has projections or ridges protruding into the mold at locations corresponding to the perimeter of the gate. This protrusion or ridge forms the recess 34 described above.
- a first molded body is produced in which the main body portion having a shape corresponding to the mold and the attachment portion having the portion corresponding to the gate are connected.
- the appendage may have a portion corresponding to the sprue, and may also have a portion corresponding to the runner.
- the attached portion of the first molded body is removed, leaving only the body portion. Removal of the attached portion can be performed, for example, by breaking off the attached portion. The remaining body portion constitutes the core piece.
- the soft magnetic particles may be locally exposed at the portion where the attached portion of the core piece is removed, that is, at the gate mark 35 .
- the relative magnetic permeability of the first core piece 3f and the second core piece 3s may be 5 or more and 50 or less.
- the relative magnetic permeability of the first core piece 3f may be 5 or more and 45 or less, and particularly 5 or more and 40 or less.
- the relative magnetic permeability is obtained as follows. A ring-shaped measurement sample is cut out from each of the first core piece 3f and the second core piece 3s. Each measurement sample is wound with 300 turns on the primary side and 20 turns on the secondary side.
- the magnetization curve here is a so-called DC magnetization curve.
- the size of the first core piece 3f and the size of the second core piece 3s are the same. The following description will be made on the size of the first core piece 3f as a representative.
- the length L21f of the first middle core portion 31f the length L21f of the first side core portion 321f, and the length L22f of the second side core portion 322f
- at least one length may be different. may be the same.
- the length L21f and the length L22f are the same and longer than the length L1f.
- the length L21f and the length L22f may be the same, and the length L1f may be longer than the length L21f and the length L22f.
- the length of the first end core portion 33f along the second direction D2 is longer than the length of the winding portion 21 along the second direction D2, as shown in FIG.
- the length of the first end core portion 33f along the third direction D3 is shorter than the length of the winding portion 21 along the third direction D3, as shown in FIG.
- the length of the first end core portion 33f along the third direction D3 may be longer than or equal to the length of the winding portion 21 along the third direction D3.
- the gap portion 3g is made of a material having a smaller relative magnetic permeability than the first core piece 3f and the second core piece 3s.
- the gap portion 3g is made up of a part of the mold resin portion 4, which will be described later.
- the gap portion 3g may be an air gap.
- the position where the gap portion 3g is arranged may be inside the winding portion 21 as in the present embodiment.
- the gap portion 3g of this embodiment is provided between the first middle core portion 31f and the second middle core portion 31s.
- the gap portion 3g is provided inside the winding portion 21, the leakage magnetic flux from the gap portion 3g reaches the outside of the winding portion 21 as compared with the case where the gap portion 3g is provided outside the winding portion 21. Since it is hard to leak, loss is hard to increase.
- the mold resin portion 4 covers at least part of the magnetic core 3 .
- the molded resin portion 4 protects the covered portion from the external environment.
- At least a portion of the magnetic core 3 covered with the mold resin portion 4 is, for example, the recess 34 and the gate marks 35 described above.
- the molded resin portion 4 of this embodiment covers the outer circumference of the assembly of the coil 2 and the magnetic core 3 .
- the coil 2 and the magnetic core 3 are integrated by the molded resin portion 4 .
- the mold resin portion 4 of this embodiment is provided between the first middle core portion 31f and the second middle core portion 31s and the coil 2 and between the first middle core portion 31f and the second middle core portion 31s.
- the mold resin portion 4 provided between the first middle core portion 31f and the second middle core portion 31s constitutes the gap portion 3g.
- the resin of the mold resin portion 4 is, for example, the same resin as the resin of the composite material described above.
- the resin of the mold resin portion 4 may contain a ceramic filler, like the composite material.
- the reactor 1 may include at least one of a case, an adhesive layer, and a holding member.
- the case accommodates an assembly of the coil 2 and the magnetic core 3 inside.
- the combined body in the case may be embedded in the sealing resin portion.
- the adhesive layer for example, fixes the assembly to the mounting surface, the assembly to the inner bottom surface of the case, and the case to the mounting surface.
- the holding member is provided between the coil 2 and the magnetic core 3 to ensure insulation between the coil 2 and the magnetic core 3 .
- the reactor 1 of this embodiment includes the first core piece 3f and the second core piece 3s that can easily suppress damage to the insulation coating of the coil 2 during the manufacturing process, it is excellent in productivity.
- the soft magnetic particles exposed from the end face 351 may fall off due to contact between the flowing raw material of the mold resin portion 4 and the end face 351 of the gate mark 35 .
- the end face 351 of the gate mark 35 is located inside the recess 34, the dropped soft magnetic particles can be collected at the bottom 341 of the recess 34, specifically, the side wall 352 of the gate mark 35, the bottom 341 of the recess 34 and the recess. 34 can be stored in the space formed by the inner wall portion 342 of . Therefore, the falling soft magnetic particles are suppressed from flowing into the coil 2 along with the flow of the raw material of the mold resin portion 4 . Therefore, rubbing between the dropped soft magnetic particles and the coil 2 is suppressed.
- a reactor 1 according to the second embodiment will be described with reference to FIG.
- the combination of the first core piece 3f and the second core piece 3s is an EE type.
- the shape of the first core piece 3f and the shape of the second core piece 3s are asymmetric, and the first core piece 3f and the second core piece 3s are made of different materials. It is different from the reactor 1 of the first embodiment in the following points. The following description will focus on the differences from the first embodiment. Descriptions of configurations similar to those of the first embodiment may be omitted.
- the sizes of the first core piece 3f and the second core piece 3s are different from each other. Specifically, there is a portion where the length along the first direction D1 of each core portion of the first core piece 3f differs from the length along the first direction D1 of each core portion of the second core piece 3s.
- the length L1f of the first middle core portion 31f is longer than the length L1s of the second middle core portion 31s.
- the length L21f of the first side core portion 321f is longer than the length L21s of the first side core portion 321s.
- the length L22f of the second side core portion 322f is longer than the length L22s of the second side core portion 322s.
- the length L3s of the second end core portion 33s is shorter than the length L3f of the first end core portion 33f.
- the first core piece 3f and the second core piece 3s of this embodiment are made of different materials.
- the mutually different materials include, of course, the case where the materials of the individual constituent elements of each core portion are different, and also the case where the contents of a plurality of constituent elements are different even if the individual constituent elements are made of the same material.
- the first core piece 3f and the second core piece 3s are composed of a composite material molded body, if at least one of the soft magnetic powder and the resin constituting the composite material is different, or the soft magnetic Even if the materials of the powder and the resin are the same, if the contents of the soft magnetic powder and the resin are different, the materials are assumed to be different from each other.
- the powder compact is formed by compression-molding the soft magnetic powder described above.
- the powder compact can have a higher ratio of the soft magnetic powder in the core portion than the composite material compact. Therefore, it is easy to improve the magnetic properties of the powder compact. Magnetic properties are, for example, saturation magnetic flux density or relative magnetic permeability.
- the powder compact has a smaller amount of resin and a larger amount of soft magnetic powder than a compact made of composite material, and is therefore excellent in heat dissipation.
- the magnetic powder content in the powder compact is, for example, 85% by volume or more and 99.99% by volume or less. This content is a value when the powder compact is 100% by volume.
- the content of the soft magnetic powder in the powder compact is considered equivalent to the area ratio of the soft magnetic powder in the cross section of the compact, like the content of the soft magnetic powder in the composite material compact described above.
- the method for determining the content of the soft magnetic powder in the compact is as described above.
- the first core piece 3f is composed of a composite material compact
- the second core piece 3s is composed of a powder compact.
- the first end core portion 33f has the above-described concave portions and gate traces as in the first embodiment.
- the second end core portion 33s does not have recesses and gate traces.
- the preferred range of the relative magnetic permeability of the first core piece 3f is as described above.
- the relative magnetic permeability of the second core piece 3s may be 100 or more and 500 or less, and particularly 150 or more and 500 or less.
- the reactor 1 of this embodiment can achieve the same effects as those of the first embodiment, and can easily adjust the inductance and heat dissipation without providing a long gap portion 3g having a length Lg.
- the reason is that the first core piece 3f and the second core piece 3s are made of different materials.
- the second core piece 3s is made of a compacted body having a relatively high thermal conductivity, so that it is easy to improve heat dissipation.
- a reactor 1 according to the third embodiment will be described with reference to FIG.
- the reactor 1 of this embodiment is different from the reactor 1 of Embodiment 2 in that the combination of the first core piece 3f and the second core piece 3s is an ET type.
- the following description will focus mainly on the differences from the second embodiment. Descriptions of configurations similar to those of the second embodiment may be omitted.
- the E-shaped first core piece 3f is a molded body in which a first middle core portion 31f, a first side core portion 321, a second side core portion 322, and a first end core portion 33f are integrated.
- the first middle core portion 31 f forms part of the middle core portion 31 .
- the first side core portion 321 is composed of one first side core portion 321f.
- the second side core portion 322 is composed of one second side core portion 322f.
- the first core piece 3f is made of a molded composite material, as in the first embodiment. Although illustration is omitted, the first end core portion 33f has the above-described concave portions and gate traces as in the first embodiment.
- the length L1f of the first middle core portion 31f is shorter than the length L21f of the first side core portion 321f and the length L22f of the second side core portion 322f.
- the length L21f and the length L22f are the same.
- the length L21f and the length L22f in this embodiment are longer than the axial length of the winding portion 21 .
- the length L1f of this embodiment is longer than the length L1s of the second middle core portion 31s, which will be described later. Unlike this embodiment, the length L1f and the length L1s may be the same.
- the T-shaped second core piece 3s is a molded body in which a second middle core portion 31s and a second end core portion 33s are integrated.
- the second middle core portion 31 s constitutes the remainder of the middle core portion 31 .
- 3 s of 2nd core pieces are comprised by the compacting body like Embodiment 2.
- the second end core portion 33s does not have recesses and gate traces, as in the second embodiment.
- the first core piece 3f and the second core piece 3s are combined so that the end surface of the first side core portion 321f and the end surface of the second side core portion 322f are in contact with the inner surface of the second end core portion 33s. . Since this combination satisfies the above length relationship, a gap is provided between the end surface of the first middle core portion 31f and the end surface of the second middle core portion 31s.
- the gap portion 3g is composed of a part of the mold resin portion (not shown).
- the arrangement location of the gap portion 3g is inside the winding portion 21, as in the second embodiment.
- the gap portion 3g is arranged between the end face of the first middle core portion 31f and the end face of the second middle core portion 31s.
- the reactor 1 of this embodiment can achieve the same effects as the reactor 1 of the second embodiment.
- Embodiment 4 The reactor 1 of Embodiment 4 will be described with reference to FIGS. 8 to 11.
- the first winding portion 221 and the second winding portion 222 are arranged in parallel so that their axes are parallel to each other.
- the shape of the first winding portion 221 and the second winding portion 222 is a rectangular tubular shape.
- the reactor 1 of the present embodiment includes the first winding portion 221 and the second winding portion 222, so that compared to the reactor 1 having the single winding portion 21 of the first embodiment, the number of winding portions is reduced. When the same cross-sectional area and the same number of turns are used, the axial lengths of the first winding portion 221 and the second winding portion 222 can be shortened.
- the first winding portion 221 and the second winding portion 222 are configured by spirally winding separate windings. Each winding is as described above.
- the first winding portion 221 and the second winding portion 222 can be electrically connected, for example, as follows.
- the connection member 23 independent of the first winding portion 221 and the second winding portion 222 is connected to the conductor of the windings in the first winding portion 221 and the second winding portion 222 .
- Connect with The connecting member 23 is made of, for example, the same member as the winding.
- the conductors of the windings in the first winding portion 221 and the second winding portion 222 are directly connected.
- connection between the conductors and the connecting member 23 and the connection between the conductors can be performed by welding or pressure welding.
- first winding portion 221 and the second winding portion 222 may be configured by spirally winding a single winding without joints. In that case, the first winding portion 221 and the second winding portion 222 are connected through a connection portion formed by bending a part of the winding in a U shape at one end side of the coil 2 in the axial direction. electrically connected.
- the exposed conductor wires of the first end 21a of the first winding portion 221 and the first end 22a of the second winding portion 222 are connected to the external device described above.
- the second end portion 21b of the first winding portion 221 and the second end portion 22b of the second winding portion 222 are connected to the exposed conductor wires of the connecting member 23 described above.
- the magnetic core 3 of this embodiment has a first middle core portion 311, a second middle core portion 312, and a first end core portion 33f and a second end core portion 33s.
- the direction along the axial direction of the first winding portion 221 is the first direction D1
- the parallel direction of the first middle core portion 311 and the second middle core portion 312 is the second direction D2
- the first direction D1 is defined as a third direction D3.
- First middle core portion 311 has a portion disposed inside first winding portion 221 .
- the second middle core portion 312 has a portion located inside the second winding portion 222 .
- the shapes of the first middle core portion 311 and the second middle core portion 312 are quadrangular prisms.
- the length of the first middle core portion 311 along the first direction D1 and the length of the second middle core portion 312 along the first direction D1 are the same as each other, as shown in FIG.
- the length of the first middle core portion 311 along the first direction D1 and the length of the second middle core portion 312 along the first direction D1 are substantially equal to the length of the first winding portion 221 along the axial direction. is.
- the length Lg of the gap portion 3g along the first direction D1 which will be described later, is Not included.
- the length of the first middle core portion 311 along the first direction D1 is the length L11f of the first middle core portion 311f along the first direction D1 and the length of the first middle core portion 311s along the first direction D1, which will be described later. is the total length (L11f+L11s) of the length L11s.
- the length of the second middle core portion 312 along the first direction D1 is the length L12f of the second middle core portion 312f along the first direction D1 and the length of the second middle core portion 312s along the first direction D1, which will be described later. is the total length (L12f+L12s) of the length L12s.
- the first middle core portion 311 may be composed of two core portions, a first middle core portion 311f and a first middle core portion 311s, as in this embodiment.
- the first middle core portion 311 may be composed of one first middle core portion 311f as in Embodiment 6 described later with reference to FIG.
- the second middle core portion 312 may be composed of two core portions, a second middle core portion 312f and a second middle core portion 312s, as in this embodiment.
- the second middle core portion 312 may be composed of one second middle core portion 312f.
- the first end core portion 33 f faces both the first end of the first winding portion 221 and the first end of the second winding portion 222 .
- the second end core portion 33 s faces both the second end of the first winding portion 221 and the second end of the second winding portion 222 .
- the magnetic core 3 is a combination of a first core piece 3f and a second core piece 3s.
- the combination of the first core piece 3f and the second core piece 3s is UU type.
- the reactor 1 can be constructed by combining the first core piece 3f and the second core piece 3s with respect to the first winding portion 221 and the second winding portion 222 along the first direction D1. Excellent workability.
- the shape of the first core piece 3f and the shape of the second core piece 3s are symmetrical.
- the U-shaped first core piece 3f of this embodiment has a first middle core portion 311f, a second middle core portion 312f, and a first end core portion 33f.
- the first middle core portion 311f constitutes a part of the first middle core portion 311.
- the second middle core portion 312f constitutes a part of the second middle core portion 312.
- the first core piece 3f is a molded body in which a first middle core portion 311f, a second middle core portion 312f, and a first end core portion 33f are integrated.
- the outer peripheral surfaces of the first middle core portion 311f and the second middle core portion 312f are connected to the inner surface 33i of the first end core portion 33f.
- the first middle core portion 311f and the second middle core portion 312f are provided at both ends of the first end core portion 33f in the second direction D2.
- the second core piece 3s of this embodiment which is U-shaped symmetrically with the first core piece 3f, has a first middle core portion 311s, a second middle core portion 312s, and a second end core portion 33s.
- the first middle core portion 311 s constitutes the remainder of the first middle core portion 311 .
- the second middle core portion 312 s constitutes the remainder of the second middle core portion 312 .
- the second core piece 3s is a molded body in which the second middle core portion 312s, the second end core portion 33s, and the first middle core portion 311s are integrated.
- the connection manner and position of each core portion in the second core piece 3s are the same as the connection manner and position of each core portion in the first core piece 3f described above.
- first core piece 3f and the second core piece 3s are spaced apart from the end surface of the first middle core portion 311f and the end surface of the first middle core portion 311s, and the end surface of the second middle core portion 312f. It is combined so that a gap is provided between it and the end face of the second middle core portion 312s.
- the length of each interval along the first direction D1 corresponds to the length Lg of the gap portion 3g along the first direction D1.
- the first core piece 3f and the second core piece 3s are in contact with the end surface of the first middle core portion 311f of the first core piece 3f and the end surface of the first middle core portion 311s of the second core piece 3s.
- the end face of the second middle core portion 312f of the first core piece 3f and the end face of the second middle core portion 312s of the second core piece 3s may be in contact with each other.
- first core piece 3f and the second core piece 3s are made of composite material moldings, as in the first embodiment. 8 and 9, the first end core portion 33f and the second end core portion 33 are provided with the recesses 34 and the gate traces 35, as in the first embodiment.
- the gate mark 35 of this embodiment may be provided so as to overlap the center of the outer surface 33o in the second direction D2. Since the gate mark 35 is provided so as to overlap the center of the second direction D2 of the outer surface 33o, the raw material of the composite material compact is transferred to the first middle core portion 311f and the second middle core portion 312f in the manufacturing process. Easy to distribute evenly. At least part of the gate marks 35 may be provided in the first region A1 shown in FIG.
- the first region A1 is a region of the outer surface 33o of the first end core portion 33f that corresponds between the first middle core portion 311f and the second middle core portion 312f.
- the region corresponding to the above-mentioned interval is the region between the first imaginary outer peripheral surface and the second imaginary outer peripheral surface of the outer surface 33o.
- the first imaginary outer peripheral surface is a surface obtained by extending the outer peripheral surface of the first middle core portion 311f in the first direction D1.
- the second imaginary outer peripheral surface is a surface obtained by extending the outer peripheral surface of the second middle core portion 312s in the first direction D1. If the length of the gate mark 35 is equal to or longer than the length of the entire length of the first region A1, the effect of facilitating even distribution of the raw material of the molded composite material can be further achieved. In this embodiment, the length of the gate marks 35 is the length over the entire length of the first region A1.
- the first core piece 3f and the second core piece 3s have the same size. The following description will be made on the size of the first core piece 3f as a representative.
- the length L11f of the first middle core portion 311f and the length L12f of the second middle core portion 312f are the same.
- the length of the first middle core portion 311f along the second direction D2 and the length of the second middle core portion 312f along the second direction D2 are the same.
- the length of the first middle core portion 311f along the third direction D3 and the length of the second middle core portion 312f along the third direction D3 are the same.
- the gap portion 3g is made up of a part of the mold resin portion (not shown).
- the arrangement location of the gap portion 3g is inside the coil 2 as in the first embodiment. Specifically, there are two locations where the gap portion 3g is arranged.
- the first gap portion 3g is arranged inside the first winding portion 221 between the end face of the first middle core portion 311f and the end face of the first middle core portion 311s.
- the second gap portion 3g is arranged inside the second winding portion 222 between the end face of the second middle core portion 312f and the end face of the second middle core portion 312s.
- the reactor 1 of this embodiment can achieve the same effects as those of the first embodiment.
- Embodiment 5 The reactor 1 of Embodiment 5 will be described with reference to FIG. 12 .
- the combination of the first core piece 3f and the second core piece 3s is a UU type, like the reactor 1 of the fourth embodiment.
- the shape of the first core piece 3f and the shape of the second core piece 3s are asymmetric, and the first core piece 3f and the second core piece 3s are made of different materials.
- the reactor 1 of the fourth embodiment The following description will focus mainly on the differences from the fourth embodiment. Descriptions of configurations similar to those of the fourth embodiment may be omitted.
- the sizes of the first core piece 3f and the second core piece 3s are different from each other. Specifically, there is a portion where the length along the first direction D1 of each core portion of the first core piece 3f differs from the length along the first direction D1 of each core portion of the second core piece 3s.
- the length L11f of the first middle core portion 311f is longer than the length L11s of the first middle core portion 311s.
- the length L12f of the second middle core portion 312f is longer than the length L12s of the second middle core portion 312s.
- the length L11f and the length L12f are the same.
- the length L11s and the length L12s are the same.
- a length L3s along the first direction D1 of the second end core portion 33s is shorter than a length L3f along the first direction D1 of the first end core portion 33f.
- the first core piece 3f is made of a molded composite material.
- the second core piece 3s is made of a compacted body. Although illustration is omitted, the first core piece 3f has the recesses and gate traces described above, as in the fourth embodiment. Unlike the fourth embodiment, the second core piece 3s does not have recesses and gate traces.
- the reactor 1 of this embodiment can achieve the same effects as the reactor 1 of the second embodiment.
- Embodiment 6 The reactor 1 of Embodiment 6 will be described with reference to FIG. 13 .
- the reactor 1 of this embodiment differs from that of the fifth embodiment in that the combination of the first core piece 3f and the second core piece 3s is a JL type.
- the following description will focus on the differences from the fifth embodiment. Descriptions of configurations similar to those of the fifth embodiment may be omitted.
- the J-shaped first core piece 3f is a molded body in which the first middle core portion 311, the second middle core portion 312f, and the first end core portion 33f are integrated.
- the first middle core portion 311 is composed of one first middle core portion 311f.
- the second middle core portion 312f constitutes a part of the second middle core portion 312.
- the length L11f of the first middle core portion 311f is the same as the total length of the length L12f of the second middle core portion 312f and the length L12s of the second middle core portion 312s.
- the first core piece 3f is made of a molded composite material as in the fifth embodiment. Although illustration is omitted, the first end core portion 33f has the recesses and gate traces described above, as in the fifth embodiment.
- the L-shaped second core piece 3s is a molded body in which a second middle core portion 312s and a second end core portion 33s are integrated.
- the second middle core portion 312 s constitutes the remainder of the second middle core portion 312 .
- 3 s of 2nd core pieces are comprised by the compacting body like Embodiment 5.
- the second end core portion 33s does not have recesses and gate traces, as in the fifth embodiment.
- the first core piece 3f and the second core piece 3s are provided with a gap between the end face of the first middle core portion 311f and the end face of the second end core portion 33s, and the end face of the second middle core portion 312f and the second middle core portion 312f. 312s are combined so that a gap is provided between them. Each interval is equal to each other.
- the gap portion 3g is made up of a part of the mold resin portion (not shown).
- the positions where the gap portion 3g is arranged are the outside of the first winding portion 221 and the inside of the second winding portion 222, unlike in the fifth embodiment.
- the first gap portion 3g is arranged between the end face of the first middle core portion 311f and the end face of the second end core portion 33s.
- the second gap portion 3g is arranged between the end face of the second middle core portion 312f and the end face of the second middle core portion 312s.
- the reactor 1 of this embodiment can achieve the same effects as the reactor 1 of the fifth embodiment.
- the vehicle 1200 includes a main battery 1210, a power conversion device 1100, and a motor 1220, as shown in FIG.
- Power converter 1100 is connected to main battery 1210 .
- Motor 1220 is driven by electric power supplied from main battery 1210 and used for running.
- Motor 1220 is typically a three-phase AC motor.
- Motor 1220 drives wheels 1250 during running, and functions as a generator during regeneration.
- vehicle 1200 includes engine 1300 in addition to motor 1220 .
- an inlet is shown as the charging point of vehicle 1200, but it can be provided with a plug.
- the power converter 1100 has a converter 1110 and an inverter 1120 .
- Converter 1110 is connected to main battery 1210 .
- Inverter 1120 performs mutual conversion between direct current and alternating current.
- Inverter 1120 is connected to converter 1110 .
- Converter 1110 shown in this example boosts the input voltage of main battery 1210 from approximately 200 V to 300 V to approximately 400 V to 700 V and supplies power to inverter 1120 when vehicle 1200 is running.
- converter 1110 steps down the input voltage output from motor 1220 via inverter 1120 to a DC voltage suitable for main battery 1210 to charge main battery 1210 .
- the input voltage is a DC voltage.
- Inverter 1120 converts the direct current boosted by converter 1110 into a predetermined alternating current and supplies power to motor 1220 when vehicle 1200 is running, and converts the alternating current output from motor 1220 into direct current during regeneration and outputs the direct current to converter 1110. is doing.
- the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112, and a reactor 1115 as shown in FIG.
- a drive circuit 1112 controls the operation of the switching element 1111 .
- the converter 1110 converts the input voltage by repeating ON/OFF. Conversion of the input voltage means stepping up and down in this case.
- a power device such as a field effect transistor or an insulated gate bipolar transistor is used for the switching element 1111 .
- the reactor 1115 has a function of smoothing the change when the current increases or decreases due to the switching operation by using the property of the coil that prevents the change of the current to flow in the circuit.
- the reactor 1 according to any one of Embodiments 1 to 6 is provided as a reactor 1115 . By providing the reactor 1 with excellent productivity, the productivity of the power conversion device 1100 and the converter 1110 can be expected to be improved.
- the vehicle 1200 includes a power supply device converter 1150 and an auxiliary power supply converter 1160.
- Power supply device converter 1150 is connected to main battery 1210 .
- Auxiliary power supply converter 1160 is connected to sub-battery 1230 and main battery 1210 serving as power sources for auxiliary equipment 1240 .
- Auxiliary equipment power supply converter 1160 converts the high voltage of main battery 1210 to low voltage.
- Converter 1110 typically performs DC-DC conversion.
- the power supply device converter 1150 and the auxiliary power converter 1160 perform AC-DC conversion. Some power supply converters 1150 perform DC-DC conversion.
- a reactor having the same configuration as the reactor 1 of any one of Embodiments 1 to 6, and having its size and shape changed as appropriate, can be used as the reactor of power supply device converter 1150 and auxiliary power converter 1160 . Further, the reactor 1 according to any one of the first to sixth embodiments can be used for a converter that converts input power and that only boosts or only steps down.
- the combination of the first core part and the second core part is EI type, EU type, FF, FL, or TU.
- the combination of the first core part and the second core part is UI type, JJ type, although illustration is omitted. type, LL type.
- the second core portion may be composed of a laminate.
- the laminate is formed by laminating a plurality of magnetic thin plates.
- the magnetic thin plate has an insulating coating.
- the magnetic thin plate is, for example, an electromagnetic steel plate.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
Description
本出願は、2021年03月29日付の日本国出願の特願2021-055052に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
上述のリアクトルは、次のようにして製造される。上記組合体が配置された金型内にモールド樹脂部の原料を流す。原料は、流動性の樹脂である。樹脂を固化させる。このようにして製造されたリアクトルにおいて、コイルの絶縁被覆が損傷するおそれがあることがわかった。
本開示のコア片は、モールド樹脂部を備えるリアクトルを構築する際、リアクトルに備わるコイルの絶縁被覆の損傷を抑制し易い。
本発明者は、モールド樹脂部を備えるリアクトルを構築する際にコイルの絶縁被覆が損傷する原因を調べた。その結果、次の知見を得た。
本開示の実施形態の詳細を、以下に図面を参照しつつ説明する。図中の同一符号は同一名称物を示す。
〔リアクトル〕
図1から図5を参照して、実施形態1のリアクトル1を説明する。リアクトル1は、コイル2と磁性コア3とモールド樹脂部4とを備える。モールド樹脂部4は、磁性コア3の少なくとも一部を覆う。本形態のリアクトル1の特徴の一つは、磁性コア3が特定のコア片を備える点にある。以下、各構成を詳細に説明する。
コイル2は、本形態では図1、図2に示すように、一つの中空の巻回部21を有する。巻回部21の数は、本形態のように一つであってもよいし、図8、図9を参照して後述する実施形態4のように二つであってもよい。本形態のリアクトル1は、巻回部21の数が一つであることで、二つの巻回部を巻回部の軸方向と直交する方向に並列する実施形態4のリアクトル1に比較して、巻回部が同じ断面積で同じターン数とする場合、後述する第二方向D2に沿った長さを短くできる。
磁性コア3の構成は、コイル2の巻回部21の数に応じて適宜選択できる。本形態の磁性コア3は、図1に示すように、ミドルコア部31と、第一サイドコア部321及び第二サイドコア部322と、第一エンドコア部33f及び第二エンドコア部33sとを有する。磁性コア3において、巻回部21の軸方向に沿った方向が第一方向D1、ミドルコア部31と第一サイドコア部321と第二サイドコア部322の並列方向が第二方向D2、第一方向D1と第二方向D2の両方に直交する方向が第三方向D3である。
ミドルコア部31は、巻回部21の内部に配置されている部分を有する。ミドルコア部31の形状は、例えば巻回部21の内周形状に対応した形状である。ミドルコア部31の形状は、本形態では図2に示すように四角柱状である。ミドルコア部31の角部は、巻回部21の角部の内周面に沿うように丸めていてもよい。
第一サイドコア部321と第二サイドコア部322とは、図1に示すように、ミドルコア部31を挟むように互いに向き合って配置されている。第一サイドコア部321と第二サイドコア部322とは、巻回部21の外周に配置されている。第一サイドコア部321の形状と第二サイドコア部322の形状は、同一形状であり、本形態では薄い角柱状である。
第一エンドコア部33fは、巻回部21の第一の端面に臨んでいる。第二エンドコア部33sは、巻回部21の第二の端面に臨んでいる。臨んでいるとは、第一エンドコア部33fの内方面33iと巻回部21の第一の端面とが互いに向き合っていることをいう。また、第二エンドコア部33sの内方面と巻回部21の第二の端面とが互いに向き合っていることをいう。本形態では、第一エンドコア部33fの形状と第二エンドコア部33sの形状は、図1、図2に示すように、薄い角柱状である。
本形態では、磁性コア3は、第一コア片3fと第二コア片3sとを組み合わせた組物である。第一コア片3fと第二コア片3sの組み合わせは、第一コア片3f及び第二コア片3sの形状を適宜選択することで、種々の組み合わせとすることができる。第一コア片3fの形状と第二コア片3sの形状は、本形態のように対称であってもよいし、実施形態2のように互いに非対称であってもよい。対称とは、形状及びサイズが同一であることをいう。非対称とは、形状が異なることをいう。
本形態では、第一エンドコア部33fと第二エンドコア部33sのうち複合材料の成形体で構成されているコア片は、図1、図2に示すような凹部34とゲート痕35とを有する。後述するように、本形態では第一エンドコア部33fを有する第一コア片3fの全てと第二エンドコア部33sを有する第二コア片3sの全てとが、複合材料の成形体で構成されている。即ち、本形態では第一エンドコア部33fと第二エンドコア部33sとはいずれも、凹部34とゲート痕35とを有する。第二エンドコア部33sが有する凹部及びゲート痕の図示は省略している。本形態では、第一エンドコア部33fが有する凹部34及びゲート痕35と、第二エンドコア部33sが有する凹部及びゲート痕とは、同じである。以下の説明は、代表して、第一エンドコア部33fが有する凹部34及びゲート痕35について行う。
第一コア片3fと第二コア片3sの少なくとも一方は、複合材料の成形体で構成されている。複合材料の成形体は、樹脂中に軟磁性粉末が分散されてなる。複合材料の成形体の製造方法は、後述する。上述したように本形態では、第一コア片3fと第二コア片3sとは、複合材料の成形体で構成されている。実施形態2のように、第一コア片3fが複合材料の成形体で構成され、第二コア片3sが、圧粉成形体で構成されていてもよい。圧粉成形体については後述する。本形態では、第一コア片3fと第二コア片3sとは、同じ材質で構成されている。実施形態2のように第一コア片3fと第二コア片3sとは、互いに異なる材質で構成されていてもよい。互いに異なる材質については後述する。
第一コア片3fと第二コア片3sのサイズは同じである。以下の説明は、代表して、第一コア片3fのサイズについて行う。
ギャップ部3gは、第一コア片3f及び第二コア片3sよりも比透磁率が小さい材料からなる部材で構成されている。本形態では、ギャップ部3gは、後述するモールド樹脂部4の一部で構成されている。本形態とは異なり、ギャップ部3gは、エアギャップでもよい。ギャップ部3gの配置箇所は、本形態のように巻回部21の内部であってもよい。本形態のギャップ部3gは、第一ミドルコア部31fと第二ミドルコア部31sとの間に設けられている。ギャップ部3gが巻回部21の内部に設けられていることで、巻回部21の外部に設けられている場合に比較して、ギャップ部3gからの漏れ磁束が巻回部21の外部に漏れ難いため、損失が増加し難い。
モールド樹脂部4は、磁性コア3の少なくとも一部を覆う。モールド樹脂部4は、覆う箇所を外部環境から保護する。モールド樹脂部4で覆われる磁性コア3の少なくとも一部とは、例えば、上述した凹部34及びゲート痕35である。本形態のモールド樹脂部4は、コイル2と磁性コア3との組合体の外周を覆っている。このモールド樹脂部4により、コイル2と磁性コア3とが一体化される。本形態のモールド樹脂部4は、第一ミドルコア部31f及び第二ミドルコア部31sとコイル2との間と、第一ミドルコア部31fと第二ミドルコア部31sとの間とに設けられている。第一ミドルコア部31fと第二ミドルコア部31sとの間に設けられているモールド樹脂部4がギャップ部3gを構成する。モールド樹脂部4の樹脂は、例えば、上述した複合材料の樹脂と同様の樹脂である。モールド樹脂部4の樹脂は、複合材料と同様、セラミックスフィラーを含有していてもよい。
リアクトル1は、図示は省略しているものの、ケース、接着層、及び保持部材の少なくとも一つを備えていてもよい。ケースは、コイル2と磁性コア3との組合体を内部に収納する。ケース内の上記組合体は、封止樹脂部により埋設されていてもよい。接着層は、例えば、上記組合体を載置面、上記組合体をケースの内底面、上記ケースを載置面に固定する。保持部材は、コイル2と磁性コア3との間に設けられ、コイル2と磁性コア3との間の絶縁を確保する。
本形態のリアクトル1は、製造過程におけるコイル2の絶縁被覆の損傷を抑制し易い第一コア片3f及び第二コア片3sを備えるため、生産性に優れる。製造過程において、流動するモールド樹脂部4の原料とゲート痕35の端面351との接触によって端面351から露出する軟磁性粒子が脱落するおそれがある。ゲート痕35の端面351が凹部34の内部に位置していることで、脱落した軟磁性粒子を凹部34の底部341、具体的にはゲート痕35の側壁部352と凹部34の底部341と凹部34の内壁部342とで構成される空間に溜めることができる。そのため、脱落した軟磁性粒子がモールド樹脂部4の原料の流れに伴ってコイル2の内部に流れることが抑制される。よって、脱落した軟磁性粒子とコイル2とが擦れることが抑制される。
〔リアクトル〕
図6を参照して、実施形態2のリアクトル1を説明する。本形態のリアクトル1は、実施形態1のリアクトル1と同様、第一コア片3fと第二コア片3sの組み合わせがE-E型である。本形態のリアクトル1は、第一コア片3fの形状と第二コア片3sの形状とは非対称である点と、第一コア片3fと第二コア片3sとが異なる材質で構成されている点とが、実施形態1のリアクトル1と相違する。以下の説明は、実施形態1との相違点を中心に行う。実施形態1と同様の構成の説明は省略することもある。
(第一コア片・第二コア片)
第一コア片3fと第二コア片3sのサイズは、互いに異なる。具体的には、第一コア片3fの各コア部の第一方向D1に沿った長さと、第二コア片3sの各コア部の第一方向D1に沿った長さとが異なる部分がある。第一ミドルコア部31fの長さL1fは、第二ミドルコア部31sの長さL1sよりも長い。第一サイドコア部321fの長さL21fは、第一サイドコア部321sの長さL21sよりも長い。第二サイドコア部322fの長さL22fは、第二サイドコア部322sの長さL22sよりも長い。第二エンドコア部33sの長さL3sは、第一エンドコア部33fの長さL3fよりも短い。
本形態のリアクトル1は、実施形態1と同様の効果を奏することができる上に、長さLgの長いギャップ部3gを設けることなくインダクタンスと放熱性を調整を行い易い。その理由は、第一コア片3fと第二コア片3sとが異なる材質で構成されているからである。本形態のリアクトル1は、第二コア片3sが熱伝導率の比較的高い圧粉成形体で構成されることで、放熱性を高め易い。
〔リアクトル〕
図7を参照して、実施形態3のリアクトル1を説明する。本形態のリアクトル1は、第一コア片3fと第二コア片3sの組み合わせがE-T型である点が、実施形態2のリアクトル1と相違する。以下の説明は、主に実施形態2との相違点を中心に行う。実施形態2と同様の構成の説明は省略することもある。
(第一コア片)
E字状である第一コア片3fは、第一ミドルコア部31fと第一サイドコア部321と第二サイドコア部322と第一エンドコア部33fとが一体の成形体である。第一ミドルコア部31fは、ミドルコア部31の一部を構成している。第一サイドコア部321は、一つの第一サイドコア部321fで構成されている。第二サイドコア部322は、一つの第二サイドコア部322fで構成されている。第一コア片3fは、実施形態1と同様、複合材料の成形体で構成されている。第一エンドコア部33fは、図示は省略するものの、実施形態1と同様、上述した凹部及びゲート痕を備えている。
T字状である第二コア片3sは、第二ミドルコア部31sと第二エンドコア部33sとが一体の成形体である。第二ミドルコア部31sは、ミドルコア部31の残部を構成している。第二コア片3sは、実施形態2と同様、圧粉成形体で構成されている。第二エンドコア部33sは、実施形態2と同様、凹部及びゲート痕を備えていない。
ギャップ部3gは、実施形態1と同様、図示しないモールド樹脂部の一部で構成されている。ギャップ部3gの配置箇所は、実施形態2と同様、巻回部21の内部である。ギャップ部3gの配置箇所は、第一ミドルコア部31fの端面と第二ミドルコア部31sの端面との間である。
本形態のリアクトル1は、実施形態2のリアクトル1と同様の効果を奏することができる。
〔リアクトル〕
図8から図11を参照して、実施形態4のリアクトル1を説明する。本形態のリアクトル1は、コイル2が第一の巻回部221及び第二の巻回部222を有する点と、第一コア片3fと第二コア片3sの組み合わせがU-U型である点と、が実施形態1のリアクトル1と相違する。以下の説明は、実施形態1との相違点を中心に行う。実施形態1と同様の構成の説明は省略することもある。
第一の巻回部221と第二の巻回部222は、図8、図9に示すように、互いの軸が平行となるように並列している。第一の巻回部221と第二の巻回部222の形状は、矩形筒状である。本形態のリアクトル1は、第一の巻回部221及び第二の巻回部222を有することで、実施形態1の一つの巻回部21を有するリアクトル1に比較して、巻回部を同じ断面積で同じターン数とする場合、第一の巻回部221と第二の巻回部222の軸方向に沿った長さを短くできる。
本形態の磁性コア3は、図8に示すように、第一ミドルコア部311及び第二ミドルコア部312と、第一エンドコア部33f及び第二エンドコア部33sとを有する。磁性コア3において、第一の巻回部221の軸方向に沿った方向を第一方向D1、第一ミドルコア部311と第二ミドルコア部312の並列方向を第二方向D2、第一方向D1と第二方向D2の両方向に直交する方向を第三方向D3とする。
第一ミドルコア部311は、第一の巻回部221の内部に配置されている部分を有する。第二ミドルコア部312は、第二の巻回部222の内部に配置されている部分を有する。第一ミドルコア部311及び第二ミドルコア部312の形状は、四角柱状である。
第一エンドコア部33fは、第一の巻回部221における第一の端部と第二の巻回部222における第一の端部の両方に臨んでいる。第二エンドコア部33sは、第一の巻回部221における第二の端部と第二の巻回部222における第二の端部の両方に臨んでいる。
磁性コア3は、第一コア片3fと第二コア片3sとを組み合わせた組物である。本形態では、第一コア片3fと第二コア片3sの組み合わせは、U-U型である。リアクトル1は、第一コア片3fと第二コア片3sとを第一の巻回部221及び第二の巻回部222に対して第一方向D1に沿って組み合わせることで構築できるため、製造作業性に優れる。本形態では、第一コア片3fの形状と第二コア片3sの形状は、対称である。
本形態のゲート痕35は、外方面33oの第二方向D2の中心に重なるように設けられていてもよい。ゲート痕35が外方面33oの第二方向D2の中心に重なるように設けられていることで、製造過程において、複合材料の成形体の原料を第一ミドルコア部311fと第二ミドルコア部312fとに均等に行き渡らせ易い。ゲート痕35の少なくとも一部は、図11に示す第一領域A1に設けられていてもよい。第一領域A1は、第一エンドコア部33fの外方面33oのうち第一ミドルコア部311fと第二ミドルコア部312fとの間に対応する領域である。上記間に対応する領域とは、外方面33oのうち第一仮想外周面と第二仮想外周面との間の領域である。第一仮想外周面とは、第一ミドルコア部311fの外周面を第一方向D1に延長した面である。第二仮想外周面とは、第二ミドルコア部312sの外周面を第一方向D1に延長した面である。ゲート痕35の長さが第一領域A1の全長にわたる長さ以上であれば、複合材料の成形体の原料を均等に行き渡らせ易いという効果をより一層奏することができる。本形態では、ゲート痕35の長さは、第一領域A1の全長にわたる長さである。
第一コア片3fと第二コア片3sとは、サイズが同じである。以下の説明は、代表して、第一コア片3fのサイズについて行う。第一ミドルコア部311fの長さL11fと第二ミドルコア部312fの長さL12fとは、同一である。第一ミドルコア部311fの第二方向D2に沿った長さと第二ミドルコア部312fの第二方向D2に沿った長さは、同一である。第一ミドルコア部311fの第三方向D3に沿った長さと第二ミドルコア部312fの第三方向D3に沿った長さとは、同一である。
ギャップ部3gは、実施形態1と同様、図示しないモールド樹脂部の一部によって構成されている。ギャップ部3gの配置箇所は、実施形態1と同様、コイル2の内部である。具体的には、ギャップ部3gの配置箇所は、2箇所である。一つ目のギャップ部3gの配置箇所は、第一の巻回部221の内部における第一ミドルコア部311fの端面と第一ミドルコア部311sの端面との間である。二つ目のギャップ部3gの配置箇所は、第二の巻回部222の内部における第二ミドルコア部312fの端面と第二ミドルコア部312sの端面との間である。
本形態のリアクトル1は、実施形態1と同様の効果を奏することができる。
〔リアクトル〕
図12を参照して、実施形態5のリアクトル1を説明する。本形態のリアクトル1は、実施形態4のリアクトル1と同様、第一コア片3fと第二コア片3sの組み合わせがU-U型である。本形態のリアクトル1は、第一コア片3fの形状と第二コア片3sの形状とは非対称である点と、第一コア片3fと第二コア片3sとが異なる材質で構成されている点とが、実施形態4のリアクトル1と相違する。以下の説明は、主に実施形態4との相違点を中心に行う。実施形態4同様の構成の説明は省略することもある。
(第一コア片・第二コア片)
第一コア片3fと第二コア片3sのサイズは、互いに異なる。具体的には、第一コア片3fの各コア部の第一方向D1に沿った長さと、第二コア片3sの各コア部の第一方向D1に沿った長さとが異なる部分がある。第一ミドルコア部311fの長さL11fは、第一ミドルコア部311sの長さL11sよりも長い。第二ミドルコア部312fの長さL12fは、第二ミドルコア部312sの長さL12sよりも長い。長さL11fと長さL12fとは、同一である。長さL11sと長さL12sとは、同一である。第二エンドコア部33sの第一方向D1に沿った長さL3sは、第一エンドコア部33fの第一方向D1に沿った長さL3fよりも短い。
本形態のリアクトル1は、実施形態2のリアクトル1と同様の効果を奏することができる。
〔リアクトル〕
図13を参照して、実施形態6のリアクトル1を説明する。本形態のリアクトル1は、第一コア片3fと第二コア片3sの組み合わせがJ-L型である点が、実施形態5と相違する。以下の説明は、実施形態5との相違点を中心に行う。実施形態5と同様の構成の説明は省略することもある。
(第一コア片)
J字状である第一コア片3fは、第一ミドルコア部311と第二ミドルコア部312fと第一エンドコア部33fとが一体の成形体である。第一ミドルコア部311は、一つの第一ミドルコア部311fで構成されている。第二ミドルコア部312fは、第二ミドルコア部312の一部を構成している。第一ミドルコア部311fの長さL11fは、第二ミドルコア部312fの長さL12fと第二ミドルコア部312sの長さL12sとの合計長さと同一である。第一コア片3fは、実施形態5と同様、複合材料の成形体で構成されている。第一エンドコア部33fは、図示は省略するものの、実施形態5と同様、上述した凹部及びゲート痕を備えている。
L字状である第二コア片3sは、第二ミドルコア部312sと第二エンドコア部33sとが一体の成形体である。第二ミドルコア部312sは、第二ミドルコア部312の残部を構成している。第二コア片3sは、実施形態5と同様、圧粉成形体で構成されている。第二エンドコア部33sは、実施形態5と同様、凹部及びゲート痕を備えていない。
ギャップ部3gは、実施形態5と同様、図示しないモールド樹脂部の一部によって構成されている。ギャップ部3gの配置箇所は、実施形態5と異なり、第一の巻回部221の外部と第二の巻回部222の内部とである。一つ目のギャップ部3gの配置箇所は、第一ミドルコア部311fの端面と第二エンドコア部33sの端面との間である。二つ目のギャップ部3gの配置箇所は、第二ミドルコア部312fの端面と第二ミドルコア部312sの端面との間である。
本形態のリアクトル1は、実施形態5のリアクトル1と同様の効果を奏することができる。
〔コンバータ・電力変換装置〕
実施形態1から実施形態6のリアクトル1は、以下の通電条件を満たす用途に利用できる。通電条件は、例えば、最大直流電流、平均電圧、及び使用周波数である。最大直流電流は、100A以上1000A以下程度である。平均電圧は、100V以上1000V以下程度である。使用周波数は、5kHz以上100kHz以下程度である。実施形態1から実施形態6のリアクトル1は、代表的には図14に示す車両1200に載置されるコンバータの構成部品、このコンバータを備える電力変換装置の構成部品に利用できる。車両1200は、電気自動車又はハイブリッド自動車である。
2 コイル
21 巻回部、221 第一の巻回部、222 第二の巻回部
21a、22a 第一端部、21b、22b 第二端部
23 連結部材
3 磁性コア
3f 第一コア片、3s 第二コア片
31 ミドルコア部
31f 第一ミドルコア部、31s 第二ミドルコア部
311 第一ミドルコア部
311f 第一ミドルコア部、311s 第一ミドルコア部
312 第二ミドルコア部
312f 第二ミドルコア部、312s 第二ミドルコア部
321 第一サイドコア部
321f 第一サイドコア部、321s 第一サイドコア部
322 第二サイドコア部
322f 第二サイドコア部、322s 第二サイドコア部
33f 第一エンドコア部、33s 第二エンドコア部
33i 内方面、33o 外方面
34 凹部、341 底部、342 内壁部
35 ゲート痕、351 端面、352 側壁部
3g ギャップ部
4 モールド樹脂部
A1 第一領域
D1 第一方向、D2 第二方向、D3 第三方向
L1f、L1s、L11f、L11s、L12f、L12s 長さ
L21f、L21s 長さ、L22f、L22s 長さ
L3f、L3s 長さ、Lg 長さ
1100 電力変換装置、1110 コンバータ
1111 スイッチング素子、1112 駆動回路
1115 リアクトル、1120 インバータ
1150 給電装置用コンバータ、1160 補機電源用コンバータ
1200 車両、1210 メインバッテリ
1220 モータ、1230 サブバッテリ
1240 補機類、1250 車輪、1300 エンジン
Claims (10)
- 樹脂中に軟磁性粉末が分散した複合材料の成形体で構成されているコア片であって、
コイルの端面に臨むエンドコア部を備え、
前記エンドコア部は、
前記コイルの外部に設けられている凹部と、
前記凹部の底部に設けられているゲート痕と、を有し、
前記ゲート痕の端面は、前記凹部の内部に位置している、
コア片。 - 前記エンドコア部は、
前記コイルの端面に向かい合う内方面と、
前記内方面とは反対側に設けられている外方面と、を有し、
前記凹部及び前記ゲート痕は、前記外方面に設けられている、請求項1に記載のコア片。 - 前記コア片は、前記コイルの内部に配置される部分を有するミドルコア部を有し、
前記凹部及び前記ゲート痕の少なくとも一部は、前記外方面の第一領域に設けられており、
前記第一領域は、前記外方面のうち前記ミドルコア部に対応する領域である、請求項2に記載のコア片。 - 前記コア片の形状は、E字状であり、
前記コア片は、
前記エンドコア部と、
前記ミドルコア部と、
前記ミドルコア部を挟むように前記コイルの外周に配置される第一サイドコア部及び第二サイドコア部と、を有し、
前記凹部及び前記ゲート痕は、前記外方面の幅方向の全長にわたる長さを有し、
前記幅方向は、前記ミドルコア部と前記第一サイドコア部と前記第二サイドコア部とが並列する方向である、請求項3に記載のコア片。 - 前記コア片の形状は、U字状又はJ字状であり、
前記コア片は、
前記コイルの第一巻回部の内部に配置される部分を有する第一ミドルコア部と、
前記コイルの第二巻回部の内部に配置される部分を有する第二ミドルコア部と、を有し、
前記凹部及び前記ゲート痕の少なくとも一部は、前記外方面の第一領域に設けられており、
前記第一領域は、前記外方面のうち前記第一ミドルコア部と前記第二ミドルコア部との間に対応する領域である、請求項2に記載のコア片。 - コイルと磁性コアとを備えるリアクトルであって、
前記磁性コアの少なくとも一部を覆うモールド樹脂部を備え、
前記磁性コアは、請求項1から請求項5のいずれか1項に記載のコア片を備える、
リアクトル。 - 前記磁性コアは、第一コア片と第二コア片とを組み合わせた組物であり、
前記第一コア片及び前記第二コア片の少なくとも一方は、前記コア片である、請求項6に記載のリアクトル。 - 前記コア片の比透磁率は、5以上50以下である、請求項6又は請求項7に記載のリアクトル。
- 請求項6から請求項8のいずれか1項に記載のリアクトルを備える、
コンバータ。 - 請求項9に記載のコンバータを備える、
電力変換装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/282,786 US20240170193A1 (en) | 2021-03-29 | 2022-03-11 | Core piece, reactor, converter, and power conversion apparatus |
CN202280016168.4A CN116964698A (zh) | 2021-03-29 | 2022-03-11 | 芯片、电抗器、转换器以及电力变换装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021055052A JP7549780B2 (ja) | 2021-03-29 | 2021-03-29 | コア片、リアクトル、コンバータ、及び電力変換装置 |
JP2021-055052 | 2021-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022209759A1 true WO2022209759A1 (ja) | 2022-10-06 |
Family
ID=83456141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/010880 WO2022209759A1 (ja) | 2021-03-29 | 2022-03-11 | コア片、リアクトル、コンバータ、及び電力変換装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240170193A1 (ja) |
JP (1) | JP7549780B2 (ja) |
CN (1) | CN116964698A (ja) |
WO (1) | WO2022209759A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2025034252A (ja) * | 2023-08-30 | 2025-03-13 | 株式会社オートネットワーク技術研究所 | リアクトル、コンバータ、および電力変換装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015199044A1 (ja) * | 2014-06-24 | 2015-12-30 | 株式会社オートネットワーク技術研究所 | コア部材、リアクトル、及びコア部材の製造方法 |
JP2017189933A (ja) * | 2016-04-14 | 2017-10-19 | 株式会社ダイドー電子 | 樹脂磁石の射出成形体および樹脂磁石の射出成形体の製造方法 |
-
2021
- 2021-03-29 JP JP2021055052A patent/JP7549780B2/ja active Active
-
2022
- 2022-03-11 US US18/282,786 patent/US20240170193A1/en active Pending
- 2022-03-11 CN CN202280016168.4A patent/CN116964698A/zh active Pending
- 2022-03-11 WO PCT/JP2022/010880 patent/WO2022209759A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015199044A1 (ja) * | 2014-06-24 | 2015-12-30 | 株式会社オートネットワーク技術研究所 | コア部材、リアクトル、及びコア部材の製造方法 |
JP2017189933A (ja) * | 2016-04-14 | 2017-10-19 | 株式会社ダイドー電子 | 樹脂磁石の射出成形体および樹脂磁石の射出成形体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2022152325A (ja) | 2022-10-12 |
US20240170193A1 (en) | 2024-05-23 |
JP7549780B2 (ja) | 2024-09-12 |
CN116964698A (zh) | 2023-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104969314B (zh) | 电抗器、转换器以及电力转换装置 | |
JP7367564B2 (ja) | リアクトル、コンバータ、及び電力変換装置 | |
WO2022209759A1 (ja) | コア片、リアクトル、コンバータ、及び電力変換装置 | |
WO2021177190A1 (ja) | リアクトル、コンバータ、及び電力変換装置 | |
JP2025023053A (ja) | リアクトル、コンバータ、及び電力変換装置 | |
JP7566245B2 (ja) | リアクトル、コンバータ、及び電力変換装置 | |
JP7546846B2 (ja) | リアクトル、コンバータ、及び電力変換装置 | |
JP7567740B2 (ja) | リアクトル、コンバータ、及び電力変換装置 | |
WO2022038982A1 (ja) | リアクトル、コンバータ、及び電力変換装置 | |
WO2024122508A1 (ja) | リアクトル、コンバータ、および電力変換装置 | |
JP7630774B2 (ja) | リアクトル、コンバータ、及び電力変換装置 | |
WO2022209760A1 (ja) | コア片、リアクトル、コンバータ、及び電力変換装置 | |
WO2024122509A1 (ja) | リアクトル、コンバータ、および電力変換装置 | |
JP7569502B2 (ja) | リアクトル、コンバータ、及び電力変換装置 | |
JP7584740B2 (ja) | リアクトル、コンバータ、及び電力変換装置 | |
WO2024005094A1 (ja) | リアクトル、磁性コア、コンバータ、および電力変換装置 | |
WO2025047578A1 (ja) | リアクトル、コンバータ、および電力変換装置 | |
JP2024178545A (ja) | コア片、リアクトル、コンバータ、電力変換装置、およびコア片の製造方法 | |
WO2024005095A1 (ja) | リアクトル、磁性コア、コンバータ、および電力変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22779980 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280016168.4 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18282786 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22779980 Country of ref document: EP Kind code of ref document: A1 |