WO2022209421A1 - 電池廃棄物の処理方法 - Google Patents
電池廃棄物の処理方法 Download PDFInfo
- Publication number
- WO2022209421A1 WO2022209421A1 PCT/JP2022/007001 JP2022007001W WO2022209421A1 WO 2022209421 A1 WO2022209421 A1 WO 2022209421A1 JP 2022007001 W JP2022007001 W JP 2022007001W WO 2022209421 A1 WO2022209421 A1 WO 2022209421A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat treatment
- treatment step
- battery
- battery waste
- atmosphere
- Prior art date
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 96
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000010438 heat treatment Methods 0.000 claims abstract description 194
- 239000012298 atmosphere Substances 0.000 claims abstract description 54
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000001301 oxygen Substances 0.000 claims abstract description 41
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 24
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 239000007789 gas Substances 0.000 claims description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 7
- 229910001416 lithium ion Inorganic materials 0.000 claims description 7
- 238000002386 leaching Methods 0.000 description 47
- 239000002253 acid Substances 0.000 description 39
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 35
- 229910052744 lithium Inorganic materials 0.000 description 35
- 239000000843 powder Substances 0.000 description 27
- 229910052782 aluminium Inorganic materials 0.000 description 24
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 239000000243 solution Substances 0.000 description 21
- 238000005187 foaming Methods 0.000 description 19
- 150000002739 metals Chemical class 0.000 description 17
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 14
- 229910052808 lithium carbonate Inorganic materials 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 238000007873 sieving Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 229910017052 cobalt Inorganic materials 0.000 description 8
- 239000010941 cobalt Substances 0.000 description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 8
- 239000005486 organic electrolyte Substances 0.000 description 8
- 238000010298 pulverizing process Methods 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 239000012299 nitrogen atmosphere Substances 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- -1 cobalt Chemical class 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000003929 acidic solution Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910000428 cobalt oxide Inorganic materials 0.000 description 3
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000002360 explosive Substances 0.000 description 3
- 229910000480 nickel oxide Inorganic materials 0.000 description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- 239000010926 waste battery Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 206010014357 Electric shock Diseases 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 229910021450 lithium metal oxide Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/02—Roasting processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
Definitions
- This specification discloses a method for treating battery waste.
- vehicles such as hybrid vehicles, fuel cell vehicles, and electric vehicles are equipped with a battery that supplies power to an electric motor as a drive source.
- a battery that supplies power to an electric motor as a drive source.
- the battery usually, as described in Patent Documents 1 to 5, etc., the battery, an ECU that controls the battery, a cooling device that cools the battery, and various devices that measure the state of the battery.
- In-vehicle battery packs are used in which a large number of electrical components such as sensors are integrated into one package and housed inside a case.
- Lithium ion secondary batteries that can store electricity by charging and can be used repeatedly, especially nickel-metal hydride batteries, are generally used for the batteries of such on-vehicle battery packs.
- the battery waste is heated and heat-treated in a heat treatment furnace, and then crushed and sieved. It is effective to perform a wet treatment by leaching the components in the battery powder into water, acid, or the like.
- This specification discloses a method for treating battery waste that can suppress the foaming phenomenon during acid leaching.
- the method for treating battery waste disclosed in this specification includes a first heat treatment step of heating battery waste in an atmosphere containing at least one selected from the group consisting of nitrogen, carbon dioxide and water vapor, and a first heat treatment step. After that, a second heat treatment step of switching from the atmosphere in the first heat treatment step and heating the battery waste in an atmosphere different from the atmosphere and containing a larger amount of oxygen than the first heat treatment step. .
- FIG. 2 is a flow chart showing an example of a metal recovery method including a first heat treatment step and a second heat treatment step according to a heat treatment method for battery waste according to one embodiment.
- 1 is a photograph showing a state of acid leaching in an example.
- 10 is a photograph showing a state of a comparative example during acid leaching.
- a method for treating battery waste includes a first heat treatment step of heating battery waste under an atmosphere containing at least one selected from the group consisting of nitrogen, carbon dioxide and water vapor, and a first heat treatment step. After that, a second heat treatment step of switching from the atmosphere in the first heat treatment step and heating the battery waste in an atmosphere different from the atmosphere and containing a larger amount of oxygen than the first heat treatment step. It is a thing.
- the battery waste after the heat treatment is subjected to a crushing step, a crushing/pulverization step, and a sieving step, if necessary.
- a lithium leaching step for leaching lithium in the battery powder thus obtained into water or the like, and an acid leaching step for leaching the leaching residue from the lithium leaching step into an acid can be performed.
- various metals contained in the battery waste can be recovered.
- the battery waste can be the waste of batteries for vehicle use, consumer use, or the like.
- Battery waste includes, for example, waste of vehicle-mounted battery packs mounted in vehicles such as hybrid vehicles, fuel cell vehicles, and electric vehicles, more specifically, vehicle scrap, battery replacement, manufacturing defects, or other reasons. It may be used as vehicle battery module waste or vehicle battery pack waste discarded by By targeting waste such as vehicle battery packs, it is possible to effectively utilize resources. However, waste of batteries used in electronic equipment or devices may also be targeted.
- a vehicle battery pack generally includes a metal case forming a surrounding housing, and a battery and other components housed inside the case and having a plurality of battery cells.
- Components inside the case include a control device such as an ECU that controls the battery, a cooling device that circulates cooling air inside the case to suppress battery temperature rise during battery discharge or charging, and the state of the battery.
- a control device such as an ECU that controls the battery
- a cooling device that circulates cooling air inside the case to suppress battery temperature rise during battery discharge or charging, and the state of the battery.
- a battery may be included in an on-vehicle battery pack as an on-vehicle battery module in which a plurality of module cells are combined in series or in parallel.
- Vehicle-mounted battery packs come in a variety of shapes depending on the space constraints of the vehicle in which they are mounted. Some have external shapes.
- Battery waste includes nickel-cadmium secondary batteries, nickel-hydrogen secondary batteries, or lithium-ion secondary batteries that can be charged and used repeatedly, such as batteries housed inside vehicle battery packs. etc.
- lithium-ion secondary batteries generally use aluminum foil ( Positive electrode base material), for example, polyvinylidene fluoride (PVDF) or other organic binder, etc. is applied and fixed to the positive electrode, a negative electrode made of a carbon-based material, etc., and an organic electrolyte such as ethylene carbonate or diethyl carbonate. Including other electrolytes.
- the positive electrode contains valuable metals such as cobalt, so it is desirable to recover these valuable metals from waste in terms of effective utilization of resources.
- First heat treatment step It is not easy to dismantle the waste battery such as the waste battery pack for vehicle as described above, because it has a solid structure surrounded by a case made of metal or the like. Also, if dismantled, there is a risk of electric shock due to residual voltage. Therefore, in the first heat treatment step, heat treatment is applied to the battery waste while maintaining the structure in which the battery and the like are surrounded by the case without dismantling the battery waste. As a result, the time required for the dismantling work can be reduced. Moreover, even if the battery waste is not discharged by, for example, being immersed in a predetermined liquid, there is no risk of electric shock in this heat treatment.
- the battery waste is heated in an atmosphere containing at least one selected from the group consisting of nitrogen, carbon dioxide and water vapor.
- an atmosphere containing mainly nitrogen is preferable because the properties of the battery powder after the heat treatment can be made uniform when the treatment scale is increased.
- the heating atmosphere in the first heat treatment process contains a relatively large amount of oxygen, the combustible organic electrolyte present inside the case of vehicle battery pack waste, etc., will burn explosively, resulting in a heat treatment furnace. Temperature control can be difficult. In this case, it is feared that aluminum such as aluminum foil is melted, and valuable metals such as cobalt and nickel are taken into the melted aluminum and solidified, and are removed together with the aluminum in the sieving step described later. This can reduce the recovery of valuable metals. Therefore, it is desirable to maintain the oxygen partial pressure in the heat treatment furnace at a relatively low level during the first heat treatment step.
- the temperature can be controlled with a relatively low oxygen partial pressure in the first heat treatment step, it is possible to suppress the formation of powdery lithium aluminate due to the reaction between aluminum and lithium oxide. .
- the formation of lithium aluminate, which is promoted at high temperature and high oxygen partial pressure, is due to the fact that lithium aluminate has a lower solubility in water than lithium carbonate. lead to a decline in The aluminum foil that has not reacted to lithium aluminate can be easily separated in the sieving process. When lithium aluminate is produced, the aluminum foil becomes brittle and easily mixed with the battery powder in the subsequent sieving step. Therefore, it is important to perform heat treatment under conditions that do not produce lithium aluminate as much as possible.
- the low oxygen partial pressure during heat treatment suppresses the formation of nickel oxide and cobalt oxide, and promotes the formation of cobalt and nickel, which are metals that are more easily soluble in acid, which effectively reduces the recovery rate of valuable metals. can be suppressed.
- the first heat treatment process it is possible to create a heating atmosphere in which the inside of the heat treatment furnace contains almost no oxygen.
- the heat treatment does not promote the formation of lithium carbonate. If lithium carbonate, which is easily leached into water, is not sufficiently produced, the leaching rate of lithium in the lithium leaching step decreases, and the recovery rate of lithium also decreases.
- lithium carbonate is produced by heat treatment through a reaction between oxygen, carbon contained in the negative electrode of the lithium ion secondary battery, etc., and lithium.
- Oxygen can also be contained in the oxide of the positive electrode, but the amount is small and not sufficient to convert much of the lithium in the battery waste to lithium carbonate.
- the atmosphere gas contains a relatively small amount of oxygen to adjust the oxygen partial pressure, thereby promoting the production of lithium carbonate.
- an atmosphere gas containing oxygen and at least one selected from the group consisting of nitrogen, carbon dioxide and water vapor can be flowed into the heat treatment furnace to adjust the oxygen partial pressure.
- the oxygen partial pressure during heating can be at least higher than 0 atm.
- the oxygen partial pressure during heating is 1 ⁇ 10 ⁇ 2 atm or less
- embrittlement of aluminum in the battery waste can be suppressed, and it is more preferably 5 ⁇ 10 ⁇ 3 atm or less. If aluminum becomes embrittled during heat treatment, there is concern that the separability of aluminum will deteriorate during sieving, which will be described later.
- the oxygen partial pressure can be measured with a zirconia oxygen concentration meter.
- the range of the partial pressure mentioned above means that at least the measured value of the partial pressure measured when the partial pressure is measurable should be within the range. For example, when the organic electrolyte volatilizes, the oxygen partial pressure and the like may not be measured.
- the inert gas when introduced into the heat treatment furnace, preferably has an oxygen concentration of 0.05% by volume to 4.00% by volume. %.
- the flow rate of the atmosphere gas in the heat treatment furnace is preferably 6 m 3 /hr to 60 m 3 /hr. If the flow rate of the inert gas is too large, there is a concern that the temperature distribution during heat treatment will become large and heat treatment will not be possible at the optimum temperature. On the other hand, if the flow rate of the inert gas is too low, the oxygen partial pressure distribution during the heat treatment becomes large, and there is a possibility that the heat treatment cannot be performed at the optimum oxygen partial pressure. From this point of view, the flow rate of the atmosphere gas is preferably 6 m 3 /hr to 60 m 3 /hr.
- the battery waste is heated so that the maximum temperature of the battery waste is 400° C. to 800° C. is preferred. If the maximum temperature of the battery waste is too low, the decomposition of the lithium metal oxide in the battery waste and the reduction of nickel oxide and cobalt oxide obtained after the decomposition will be insufficient, and lithium carbonate will be produced. There are concerns that the removal of the organic electrolytic solution and the decomposition of polyvinylidene fluoride or polypropylene/polyethylene may not be sufficiently carried out, and the temperature is more preferably 500° C. or higher. On the other hand, the maximum temperature of the battery waste is preferably 700° C.
- the temperature may exceed 700° C. due to combustion of the electrolytic solution or the like, but there is no problem if the temperature exceeds 700° C. and is 800° C. or less for a relatively short time. If the temperature is higher than that, it cannot be denied that the melting of aluminum, the formation of lithium aluminate, etc., may become intense.
- the rate of temperature increase until reaching the maximum temperature is 50°C/hr or more. If the temperature rise is too slow, the heat treatment will take a long time, the treatment will not progress, and the facility will be large. On the other hand, if the temperature is raised too quickly, the electrolyte will gasify and pyrolysis gases of PVDF and PE and PP, which are commonly used as separators, will be generated all at once. If it is not a special furnace for the purpose but a normal heat treatment furnace, there is no problem if the upper limit is about 200° C./hr or less.
- the total time for holding the highest temperature in the first heat treatment step and the time for holding the highest temperature in the second heat treatment step described later may be 4 hours to 12 hours, and further 4 hours to 9 hours. preferable.
- the holding time in the first heat treatment step can be determined according to the ratio of the holding time in the second heat treatment step, which will be described later. , and the effect of suppressing foaming by the second heat treatment step. For example, when the first heat treatment step is 3 hours and the second heat treatment step is 5 hours, the foaming suppression effect can be enhanced. However, since it is possible to suppress it within the allowable range of operation and embrittlement of Al can be minimized, the Al grade in the battery powder can be lowered.
- the heat treatment furnace for example, an atmospheric electric furnace or atmospheric muffle furnace for batch type, or a roller hearth kiln, mesh belt kiln, pusher kiln or the like for continuous type. be able to.
- roller hearth kilns and pusher kilns are preferred because they are suitable for large-scale processing.
- the combustible organic electrolyte that is evaporated and removed from the inside of the vehicle battery pack waste case is introduced into a secondary combustion furnace, where it is burned with a burner. It is preferable to make it harmless by burning it by, for example. Such detoxification of the organic electrolyte is also possible for vehicle battery module waste.
- the reason why the bubbling phenomenon during acid leaching is suppressed by heating the battery waste in an atmosphere containing oxygen after heating it in an atmosphere such as nitrogen is considered as follows.
- the polymer (polyvinylidene fluoride or polypropylene) contained in the battery waste thermally decomposes. At this time, not all of it is gasified and removed by thermal decomposition, but a part that has not been completely decomposed may remain as a solid in the battery waste.
- Carbides generated by such incomplete thermal decomposition and carbon particles of the negative electrode active material hereinafter referred to as "residual carbides, etc." can cause foaming when the battery waste is leached with acid.
- the battery waste to be heated in the second heat treatment process has almost all of the organic electrolyte removed in the previous first heat treatment process. Therefore, even if the second heat treatment step is performed in an oxygen-containing atmosphere, it is unlikely that temperature control will become difficult due to explosive combustion of the organic electrolyte. Also, by adjusting the heating time, temperature, etc. in the second heat treatment step, it is possible to suppress the formation of oxides of lithium aluminate and nickel or cobalt.
- the second heat treatment step preferably has an atmosphere containing 1.0% by volume or more of oxygen. It is preferable to carry out the second heat treatment step in an air atmosphere, because it becomes unnecessary to adjust the atmosphere.
- a batch atmosphere electric furnace or atmosphere muffle furnace, or a continuous roller hearth kiln or mesh belt kiln can be used as the heat treatment furnace.
- the same heat treatment furnace as in the first heat treatment step is used, in the second heat treatment step, the atmosphere in the heat treatment furnace is switched from the atmosphere in the first heat treatment step to a different atmosphere.
- the heating temperature may be lowered and then raised again, but the atmosphere in the heat treatment furnace may be switched while maintaining the heating temperature.
- the maximum temperature of the battery waste it is preferable to set the maximum temperature of the battery waste to 400°C to 800°C. If the maximum temperature of the battery waste is too low, there is concern that some solids that have not been completely decomposed will not be removed. On the other hand, if the maximum temperature of the battery waste is too high, the aluminum may melt or oxidize and become embrittled.
- the maximum temperature reached in the second heat treatment step is preferably 700° C. or less, more preferably 650° C. or less, because the electrolytic solution or the like is decomposed by heating in the first heat treatment step, and the temperature rise due to explosive combustion is unlikely to occur. . Also, the highest temperature reached in the second heat treatment step may be lower, maintained or higher than the highest temperature reached in the first heat treatment step.
- the temperature is less than 400° C., the effect of suppressing foaming cannot be expected. Most preferably, it is between 450°C and 600°C. This range is a range in which a sufficient recovery rate of valuable metals and an effect of suppressing foaming can be expected by decomposition of the binder, and embrittlement of aluminum and formation of nickel oxide and cobalt oxide can be suppressed. Moreover, within this temperature range, it is suitable for operation to perform the second treatment step at the same temperature as the first heat treatment step.
- a second heat treatment step can be performed continuously after the first heat treatment step.
- the temperature of the first heat treatment step is 500° C. or higher, when the temperatures of the first heat treatment step and the second heat treatment step are the same, or when the temperature of the second heat treatment step is lower than that of the first heat treatment step, the heating rate of the second heat treatment step does not need to be specified.
- the temperature in the first heat treatment step is as low as 300 to 400° C. and the temperature in the second heat treatment step is higher than that, there is a possibility that the generation of the resin decomposition gas has not ended in the first heat treatment step. Therefore, it is necessary to pay attention to the temperature increase rate, and specifically, it is preferably 50° C./hr or more and 200° C./hr or less.
- the cooled battery waste may be allowed to reach the maximum temperature in the second heat treatment step.
- the temperature of the first heat treatment step is 500° C. or higher, the organic substances such as the electrolyte and the binder are decomposed by heating in the first heat treatment step, and it is unlikely that temperature control becomes difficult due to explosive combustion. It is not necessary to specify the rate of temperature increase in the second heat treatment step.
- the temperature in the first heat treatment step is as low as 300 to 400° C., for example, the rapid generation of resin decomposition gas can be prevented by raising the temperature at 200° C./hr or less as in the first heat treatment step. .
- the peak temperature is preferably maintained for 2-6 hours. After that, the battery waste is cooled by natural cooling or forced cooling such as water cooling or water cooling jacket or air cooling.
- the heating time of the second heat treatment step (the total heating time from the start to the end of heating in a predetermined atmosphere) is the time to hold the maximum temperature in the first heat treatment step and the maximum temperature in the second heat treatment step. It is preferably 10% to 90%, more preferably 30% to 70%, of the total time of holding at temperature. If the heating time in the second heat treatment step is too short, there is concern that residual carbides and the like remaining due to incomplete thermal decomposition of the polymer in the first heat treatment step may not be sufficiently removed in the second heat treatment step. On the other hand, if the heating time in the second heat treatment step is too long, a large amount of aluminum contained in the battery waste may cause embrittlement.
- crushing process crushing/pulverizing process, sieving process
- a crushing step a crushing/pulverization step, and a subsequent sieving step can be performed as necessary.
- a battery is taken out of a case such as an in-vehicle battery module waste or an in-vehicle battery pack waste as battery waste, the housing of the battery is destroyed, and the aluminum coated with the positive electrode active material is removed. This is done to selectively separate the cathode active material from the foil.
- various known devices or devices can be used.
- an impact-type crusher capable of crushing the case and the battery by applying an impact while cutting
- a sample mill Hammer mills, pin mills, wing mills, tornado mills, hammer crushers and the like
- a screen can be installed at the outlet of the crusher, so that the battery is discharged from the crusher through the screen when it is crushed to a size that allows it to pass through the screen.
- the crushed battery After crushing, the crushed battery is lightly crushed into powder, and then sieved using a sieve with an appropriate mesh size.
- the pulverization and pulverization improve the separability from the aluminum foil of the positive electrode active material adhering to the aluminum foil. As a result, it is possible to obtain a battery powder containing lithium, cobalt, nickel, etc., with aluminum, copper, etc. remaining on the sieve, and aluminum, copper, etc. removed to some extent under the sieve.
- the preferred pH of the water or solution is 2 ⁇ pH ⁇ 13, more preferably 3 ⁇ pH ⁇ 12.
- the lithium contained in the battery waste is sufficiently converted into lithium carbonate. Therefore, in the lithium leaching process, the lithium carbonate in the battery powder can be easily leached into either weak acid solution, water or alkaline solution.
- other metals that may be included in the battery powder are nearly insoluble in weakly acidic solutions and much less soluble in water or alkaline solutions. Thereby, lithium contained in the battery powder can be effectively separated from other metals in the lithium leaching step.
- the weakly acidic solution to be brought into contact with the battery powder any kind of acid is acceptable, but a sulfuric acid acidic solution is generally used. is common, but lithium hydroxide may be used in the disposal of battery waste containing lithium ion secondary batteries.
- the water to be brought into contact with the battery powder is specifically tap water, industrial water, distilled water, purified water, ion-exchanged water, pure water, ultrapure water, or the like.
- an acid such as sulfuric acid is added to the above water or solution so that the pH of the lithium solution becomes 7 to 10.
- the acid may be added at any time before, during and/or after dissolving the lithium. It is preferable that the finally obtained lithium solution has a pH of 7-10. The reason for this is that if the pH of the lithium solution is less than 7, metals such as Co may begin to dissolve, and if the pH exceeds 10, aluminum may begin to dissolve.
- a method for contacting the battery powder with water or a solution there are various methods such as spraying, immersion, and liquid passage. From the viewpoint of reaction efficiency, a method of immersing the battery powder in water or a solution and stirring is preferable. .
- the temperature of the liquid when the battery powder and water or solution come into contact can be 10°C to 60°C.
- Pulp consistency can be from 50 g/L to 150 g/L. Pulp consistency refers to the ratio of the dry weight (g) of the battery powder to the amount (L) of water or solution with which the battery powder is contacted.
- the leaching rate of lithium into water or solution is preferably 30% to 70%, more preferably 45% to 55%.
- the lithium concentration of the lithium solution is preferably 1.0 g/L to 3.0 g/L, more preferably 1.5 g/L to 2.5 g/L.
- the lithium solution may contain 0 mg/L to 1000 mg/L of sodium and 0 mg/L to 500 mg/L of aluminum.
- the lithium in the lithium solution can be recovered as lithium carbonate.
- the lithium carbonate thus obtained may be purified as necessary to reduce the quality of impurities.
- the residue left undissolved in water or solution in the lithium leaching process described above can be extracted by solid-liquid separation using a filter press, a thickener, or the like, and then leached with acid in the acid leaching process.
- Various metals such as cobalt and nickel can be recovered by subjecting the post-leaching solution obtained by acid leaching and solid-liquid separation in the acid leaching step to, for example, neutralization, solvent extraction and other treatments.
- the foaming phenomenon is suppressed when the residue from the lithium leaching step is leached with an acid. This makes it possible to smoothly carry out the acid leaching process.
- the acid leaching process can be performed by a known method or conditions.
- a pH of 0.0 to 3.0 is suitable.
- the pH of the post-leaching liquor may be between 0.5 and 2.0.
- the oxidation-reduction potential (ORP value, based on silver/silver chloride potential) is, for example, ⁇ 250 mV to 0 mV immediately after acid leaching, and may be about 300 mV in the leached solution after solid-liquid separation.
- a first heat treatment step In the examples, a first heat treatment step, a second heat treatment step, a crushing step, a crushing/pulverization step, and a sieving step were performed in order to obtain battery powder.
- heating was performed at a maximum temperature of 600° C. under a nitrogen atmosphere, and the temperature was maintained for 4 hours. After that, in the same heat treatment furnace, the atmosphere in the furnace was changed to air while maintaining the maximum temperature, and the maximum temperature was maintained for 4 hours to perform the second heat treatment step.
- the battery powder obtained as described above was subjected to the lithium leaching process, and the residue was subjected to the acid leaching process. As shown in FIG. An acid leach could be performed. At this time, the volume ratio obtained by dividing the volume of the residue at the time of foaming by the volume at the beginning of acid leaching (volume at the time of foaming/initial volume of acid leaching) was 1.5.
- the comparative example is the same as the example except that instead of the first heat treatment step and the second heat treatment step of the above-described example, a heat treatment step of holding the maximum temperature for 8 hours in a nitrogen atmosphere was performed. did.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Processing Of Solid Wastes (AREA)
- Secondary Cells (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
一の実施形態に係る電池廃棄物の処理方法は、窒素、二酸化炭素及び水蒸気からなる群から選択される少なくとも一種を含む雰囲気下で電池廃棄物を加熱する第一熱処理工程と、第一熱処理工程の後、第一熱処理工程での前記雰囲気から切り替えて、当該雰囲気と異なるとともに第一熱処理工程よりも多い量の酸素を含む雰囲気下で、前記電池廃棄物を加熱する第二熱処理工程とを含むものである。
電池廃棄物としては、車載用もしくは民生用等の電池の廃棄物を対象とすることができる。電池廃棄物は、たとえば、ハイブリッド自動車や燃料電池自動車、電気自動車等の車両に搭載された車載用電池パックの廃棄物、より具体的には、車両の廃車や電池交換もしくは製造不良またはその他の理由によって廃棄された車載用電池モジュール廃棄物又は車載用電池パック廃棄物とすることがある。このような車載用電池パック等の廃棄物を対象とすることにより、資源の有効活用を図ることができる。但し、電子機器もしくは装置等に用いられた電池の廃棄物を対象としてもよい。
車載用電池パックは、それを搭載する車両のスペース上の制約等に応じて様々な形状のものが存在するが、たとえば、平面視でほぼ長方形をなす直方体状等の、一方向に長い縦長の外形を有するものがある。
上述したような車載用電池パック廃棄物等の電池廃棄物は、周囲が金属製等のケースにより保護された堅固な構造を有することから、これを解体することは容易ではない。また解体した場合、残留電圧による感電の危険性がある。
そのため、第一熱処理工程では、電池廃棄物を解体せずに、バッテリー等がケースにより取り囲まれた構造を維持した状態で、これに加熱処理を施す。それにより、解体作業に要する時間を削減することができる。また、たとえば所定の液体に浸漬すること等による電池廃棄物の放電を行わなくても、この熱処理では感電のおそれがない。
なお、加熱時の酸素分圧を1×10-2atm以下としたときは、電池廃棄物中のアルミニウムの脆化を抑制することができ、5×10-3atm以下であればより好ましい。熱処理時にアルミニウムが脆化すると、後述する篩別の際にアルミニウムの分離性が悪化することが懸念される。
第二熱処理工程では、第一熱処理工程での熱処理炉内の上述した雰囲気から切り替えて、第一熱処理工程での雰囲気とは異なる雰囲気であって、第一熱処理工程よりも多い量の酸素を含む雰囲気下で、電池廃棄物を加熱する。これは、電池廃棄物を、第一熱処理工程の窒素等の雰囲気で加熱した後に、第二熱処理工程として酸素を含む雰囲気で加熱した場合、酸浸出工程での発泡現象を抑制できるという新たな知見に基づくものである。
最も好ましくは、450℃~600℃である。この範囲は、結着剤の分解により有価金属の回収率や発泡抑制効果が十分見込め、なおかつアルミニウムの脆化や酸化ニッケル・コバルトの生成も抑制できる範囲である。また、この温度範囲であれば、第一熱処理工程と同じ温度で第二処理工程も行うことが操業上好適である。
第一熱処理工程で電池廃棄物を加熱した後、冷却した当該電池廃棄物を第二熱処理工程で上記の最高到達温度に到達させてもよい。第一熱処理工程が500℃以上の場合には、第一熱処理工程の加熱で電解液やバインダー等の有機物質が分解しており爆発的な燃焼によって温度制御が困難になることは起こりにくいため、第二熱処理工程の昇温速度は特に特定する必要はない。しかし、例えば第一熱処理工程の温度が300~400℃のように低い場合は、第一熱処理工程と同じように200℃/hr以下で昇温することで樹脂分解ガスの急激な発生を防止できる。最高到達温度は、2時間~6時間にわたって保持されることが好適である。その後は、自然冷却、あるいは水冷もしくは水冷ジャケット又は空冷等の強制冷却により、電池廃棄物を冷却する。
上述した第二熱処理工程の後、必要に応じて、破砕工程、解砕・粉化工程および、その後の篩別工程を行うことができる。
破砕は、たとえば、電池廃棄物としての車載用電池モジュール廃棄物、又は車載用電池パック廃棄物等のケースからバッテリーを取り出し、そのバッテリーの筐体を破壊するとともに、正極活物質が塗布されたアルミニウム箔から正極活物質を選択的に分離させるために行う。ここでは、種々の公知の装置ないし機器を用いることができるが、その具体例としては、ケース及びバッテリーを切断しながら衝撃を加えて破砕することのできる衝撃式の粉砕機、たとえば、サンプルミル、ハンマーミル、ピンミル、ウィングミル、トルネードミル、ハンマークラッシャ等を挙げることができる。なお、粉砕機の出口にはスクリーンを設置することができ、それにより、バッテリーは、スクリーンを通過できる程度の大きさにまで粉砕されると粉砕機よりスクリーンを通じて排出される。
上述した熱処理工程、必要に応じて破砕工程、解砕・粉化工程、篩別工程を経て得られた電池粉末は、リチウム浸出工程で弱酸性溶液、水又はアルカリ性溶液のいずれかと接触させ、電池粉末に含まれるリチウムを溶液に溶解させる。水もしくは溶液の好ましいpHは、2<pH<13、より好ましくは3<pH<12である。
リチウム溶解液のリチウム濃度は、1.0g/L~3.0g/Lであることが好ましく、特に1.5g/L~2.5g/Lであることがより一層好ましい。なお、リチウム溶解液には、ナトリウムが0mg/L~1000mg/L、アルミニウムが0mg/L~500mg/Lで含まれることがある。
上述したリチウム浸出工程で水もしくは溶液に溶けずに残った残渣は、フィルタープレスやシックナー等を用いた固液分離により取り出した後に、酸浸出工程で酸に浸出させることができる。酸浸出工程での酸浸出及び固液分離により得られる浸出後液に対して、たとえば中和、溶媒抽出その他の処理を施すことにより、コバルト、ニッケル等の各種金属を回収することができる。
実施例では、第一熱処理工程、第二熱処理工程、破砕工程、解砕・粉化工程及び篩別工程を順に行って、電池粉末を得た。第一熱処理工程では、窒素雰囲気の下、600℃の最高到達温度で加熱し、その温度を4時間にわたって保持した。その後、同じ熱処理炉で、その最高到達温度を維持しつつ炉内の雰囲気を大気に切り替えて、当該最高到達温度を4時間にわたって保持し、第二熱処理工程を行った。
電池廃棄物に対し、窒素雰囲気にて580℃~600℃で8hrにわたって熱処理を施すと、それに得られた電池粉末中の炭素率は40質量%程度であった。一方、電池廃棄物に対し、窒素雰囲気にて580℃~600℃で4hrにわたって熱処理(第一熱処理工程)を施した後、大気雰囲気にて580℃~600℃で4hrにわたって熱処理(第二熱処理工程)を施した場合、それにより得られた電池粉末中の炭素率は15質量%程度であった。なお、炭素率とは、熱処理・破砕・篩別で得られた電池粉末に含まれるトータルカーボンの割合である。それらの各電池粉末に対する酸浸出工程では、炭素率が少なかった電池粉末のほうが、発泡が抑制された。このことから、残留した炭化物等が酸浸出時の発泡に影響していると推測される。
Claims (12)
- 電池廃棄物を処理する方法であって、
窒素、二酸化炭素及び水蒸気からなる群から選択される少なくとも一種を含む雰囲気下で電池廃棄物を加熱する第一熱処理工程と、
第一熱処理工程の後、第一熱処理工程での前記雰囲気から切り替えて、当該雰囲気と異なるとともに第一熱処理工程よりも多い量の酸素を含む雰囲気下で、前記電池廃棄物を加熱する第二熱処理工程と
を含む、電池廃棄物の処理方法。 - 第一熱処理工程及び第二熱処理工程を、同じ熱処理炉で連続して行う、請求項1に記載の電池廃棄物の処理方法。
- 第二熱処理工程での加熱時間を、第一熱処理工程での最高到達温度に保持する時間と第二熱処理工程での最高到達温度に保持する時間の合計の10%~90%とする、請求項1又は2に記載の電池廃棄物の処理方法。
- 第二熱処理工程が酸素を1.0体積%以上含む雰囲気である、請求項1~3のいずれか一項に記載の電池廃棄物の処理方法。
- 第二熱処理工程での前記雰囲気を、大気雰囲気とする、請求項1~4のいずれか一項に記載の電池廃棄物の処理方法。
- 第一熱処理工程での前記雰囲気が酸素を含む、請求項1~5のいずれか一項に記載の電池廃棄物の処理方法。
- 第一熱処理工程で、前記雰囲気の酸素分圧を5×10-4atm~4×10-2atmの範囲内に維持する、請求項6に記載の電池廃棄物の処理方法。
- 第一熱処理工程で前記電池廃棄物を加熱するに際し、熱処理炉内に、酸素と、窒素、二酸化炭素及び水蒸気からなる群から選択される少なくとも一種とを含む雰囲気ガスを流す、請求項6又は7に記載の電池廃棄物の処理方法。
- 第一熱処理工程で、加熱時の前記電池廃棄物の最高到達温度を400℃~800℃とする、請求項1~8のいずれか一項に記載の電池廃棄物の処理方法。
- 第二熱処理工程で、加熱時の前記電池廃棄物の最高到達温度を400℃~800℃とする、請求項1~9のいずれか一項に記載の電池廃棄物の処理方法。
- 前記電池廃棄物が、外装をなすケース及び、前記ケースにより周囲が取り囲まれた車載用電池モジュールを備える車載用電池パック廃棄物、又は、車載用電池モジュール廃棄物である、請求項1~10のいずれか一項に記載の電池廃棄物の処理方法。
- 前記電池廃棄物がリチウムイオン二次電池を含む、請求項1~11のいずれか一項に記載の電池廃棄物の処理方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227014826A KR20220136991A (ko) | 2021-03-30 | 2022-02-21 | 전지 폐기물의 처리 방법 |
EP22757817.6A EP4178006B1 (en) | 2021-03-30 | 2022-02-21 | Method for treating battery waste |
JP2022516454A JP7109702B1 (ja) | 2021-03-30 | 2022-02-21 | 電池廃棄物の処理方法 |
CA3169915A CA3169915A1 (en) | 2021-03-30 | 2022-02-21 | Treatment method for battery waste |
CN202280001176.1A CN115413383A (zh) | 2021-03-30 | 2022-02-21 | 电池废弃物的处理方法 |
US17/798,107 US20240186604A1 (en) | 2021-03-30 | 2022-02-21 | Treatment method for battery waste |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021058767 | 2021-03-30 | ||
JP2021-058767 | 2021-03-30 | ||
JP2021164272 | 2021-10-05 | ||
JP2021-164272 | 2021-10-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022209421A1 true WO2022209421A1 (ja) | 2022-10-06 |
Family
ID=83456024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/007001 WO2022209421A1 (ja) | 2021-03-30 | 2022-02-21 | 電池廃棄物の処理方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022209421A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117594900A (zh) * | 2024-01-18 | 2024-02-23 | 江苏杰成新能源科技有限公司 | 一种废旧锂电池正极材料的固相修复方法 |
US12266772B2 (en) | 2022-05-11 | 2025-04-01 | Li Industries, Inc. | Methods and systems for scalable direct recycling of battery waste |
US12278353B2 (en) | 2024-06-17 | 2025-04-15 | Li Industries, Inc. | Systems and methods for removal and recycling of aluminum impurities from battery waste |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006179190A (ja) | 2004-12-20 | 2006-07-06 | Toyota Motor Corp | 車載用電池パック |
US20070141454A1 (en) | 2005-12-20 | 2007-06-21 | Panasonic Ev Energy Co., Ltd. | Battery pack |
JP4955995B2 (ja) | 2005-12-20 | 2012-06-20 | プライムアースEvエナジー株式会社 | 電池パック |
JP2012204000A (ja) * | 2011-03-23 | 2012-10-22 | Toyota Motor Corp | 電池パックのリサイクル方法及び処理装置 |
JP5464357B2 (ja) | 2010-03-23 | 2014-04-09 | 三菱自動車工業株式会社 | 車載用電池パック |
JP2016219402A (ja) * | 2015-05-15 | 2016-12-22 | Dowaエコシステム株式会社 | リチウムイオン二次電池からの有価物の回収方法 |
JP2017526820A (ja) * | 2014-08-14 | 2017-09-14 | ユミコア | リチウムイオン電池を溶解するためのプロセス |
JP2019533881A (ja) * | 2016-10-20 | 2019-11-21 | デュッセンフェルト・ゲーエムベーハー | 特に充電式バッテリのような使用済みバッテリを処理するリサイクル方法およびバッテリ処理設備 |
WO2020011765A1 (en) * | 2018-07-10 | 2020-01-16 | Basf Se | Process for the recycling of spent lithium ion cells |
WO2021201055A1 (ja) * | 2020-03-31 | 2021-10-07 | Jx金属株式会社 | 電池廃棄物の熱処理方法及び、リチウム回収方法 |
-
2022
- 2022-02-21 WO PCT/JP2022/007001 patent/WO2022209421A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006179190A (ja) | 2004-12-20 | 2006-07-06 | Toyota Motor Corp | 車載用電池パック |
US20070141454A1 (en) | 2005-12-20 | 2007-06-21 | Panasonic Ev Energy Co., Ltd. | Battery pack |
JP4917307B2 (ja) | 2005-12-20 | 2012-04-18 | プライムアースEvエナジー株式会社 | 電池パック |
JP4955995B2 (ja) | 2005-12-20 | 2012-06-20 | プライムアースEvエナジー株式会社 | 電池パック |
JP5464357B2 (ja) | 2010-03-23 | 2014-04-09 | 三菱自動車工業株式会社 | 車載用電池パック |
JP2012204000A (ja) * | 2011-03-23 | 2012-10-22 | Toyota Motor Corp | 電池パックのリサイクル方法及び処理装置 |
JP2017526820A (ja) * | 2014-08-14 | 2017-09-14 | ユミコア | リチウムイオン電池を溶解するためのプロセス |
JP2016219402A (ja) * | 2015-05-15 | 2016-12-22 | Dowaエコシステム株式会社 | リチウムイオン二次電池からの有価物の回収方法 |
JP2019533881A (ja) * | 2016-10-20 | 2019-11-21 | デュッセンフェルト・ゲーエムベーハー | 特に充電式バッテリのような使用済みバッテリを処理するリサイクル方法およびバッテリ処理設備 |
WO2020011765A1 (en) * | 2018-07-10 | 2020-01-16 | Basf Se | Process for the recycling of spent lithium ion cells |
WO2021201055A1 (ja) * | 2020-03-31 | 2021-10-07 | Jx金属株式会社 | 電池廃棄物の熱処理方法及び、リチウム回収方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12266772B2 (en) | 2022-05-11 | 2025-04-01 | Li Industries, Inc. | Methods and systems for scalable direct recycling of battery waste |
CN117594900A (zh) * | 2024-01-18 | 2024-02-23 | 江苏杰成新能源科技有限公司 | 一种废旧锂电池正极材料的固相修复方法 |
CN117594900B (zh) * | 2024-01-18 | 2024-04-19 | 江苏杰成新能源科技有限公司 | 一种废旧锂电池正极材料的固相修复方法 |
US12278353B2 (en) | 2024-06-17 | 2025-04-15 | Li Industries, Inc. | Systems and methods for removal and recycling of aluminum impurities from battery waste |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7402733B2 (ja) | 電池廃棄物の熱処理方法及び、リチウム回収方法 | |
CN110719963B (zh) | 锂离子电池废料的处理方法 | |
JP7109702B1 (ja) | 電池廃棄物の処理方法 | |
JP6963135B2 (ja) | リチウムの回収方法及びリチウムイオン二次電池の処理方法 | |
WO2022209421A1 (ja) | 電池廃棄物の処理方法 | |
JP2023516663A (ja) | リン酸鉄リチウムバッテリーの処理方法 | |
Al-Asheh et al. | Treatment and recycling of spent lithium-based batteries: a review | |
EP4119245A1 (en) | Method for recovering lithium and method for processing lithium ion secondary battery | |
JP7271833B2 (ja) | リチウムの回収方法 | |
JP7349592B1 (ja) | 金属浸出方法及び金属回収方法 | |
US20240240281A1 (en) | Method for producing valuable metal | |
Lubenets | Recycling of lithium iron phosphate batteries | |
WO2023188489A1 (ja) | 金属浸出方法及び金属回収方法 | |
WO2024048248A1 (ja) | 有価金属の回収方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022516454 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 17798107 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22757817 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022757817 Country of ref document: EP Effective date: 20230131 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |