[go: up one dir, main page]

WO2022209206A1 - Imaging element and imaging device - Google Patents

Imaging element and imaging device Download PDF

Info

Publication number
WO2022209206A1
WO2022209206A1 PCT/JP2022/002339 JP2022002339W WO2022209206A1 WO 2022209206 A1 WO2022209206 A1 WO 2022209206A1 JP 2022002339 W JP2022002339 W JP 2022002339W WO 2022209206 A1 WO2022209206 A1 WO 2022209206A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
request
imaging device
luminance change
threshold voltage
Prior art date
Application number
PCT/JP2022/002339
Other languages
French (fr)
Japanese (ja)
Inventor
祐士 田仲
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022209206A1 publication Critical patent/WO2022209206A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • the present disclosure relates to imaging elements and imaging devices.
  • an imaging device having a pixel array section in which pixels having photoelectric conversion sections that perform photoelectric conversion of incident light are arranged in a two-dimensional matrix, only pixels that have detected a predetermined change in brightness are selected and a signal of the change in brightness is generated.
  • An imaging device that performs readout is used. Such changes in brightness are caused by the motion of the object, and by selecting and reading out only pixels in which changes in brightness are detected, a moving object can be detected at a high frame rate.
  • Such an imaging device is called an EVS (Event-based Vision Sensor).
  • a pixel in this EVS detects a change in luminance of incident light as an event and transmits a signal indicating the occurrence of the event to the control circuit.
  • This control circuit called an arbitration circuit, arbitrates signals output from a plurality of pixels and determines a pixel from which an event is read.
  • a flickering light source such as an LED or a fluorescent lamp
  • the flickering of the lighting device generates an excessive number of events. Since this event is not an event associated with the movement of the light source, it interferes with the readout of the event associated with the movement of the subject.
  • An imaging device has been proposed that detects pixels that generate such unnecessary events as abnormal pixels and sets them to invalid (see, for example, Patent Document 1).
  • This prior art has a detection mode for detecting the presence or absence of an event for each pixel and an abnormality determination mode for determining whether or not there is an abnormality for each pixel.
  • this abnormality determination mode pixels that receive incident light from the flicker light source and detect unnecessary events are determined and recorded as abnormal pixels. Detection of events at this abnormal pixel is stopped.
  • the present disclosure proposes an imaging device and an imaging device that reduce detection of events based on flickering of a light source.
  • the imaging device of the present disclosure has a luminance change detection unit and a request generation unit.
  • the luminance change detector detects a change in luminance of incident light in the same direction based on a plurality of thresholds.
  • a request generation unit generates a request requesting transfer of the detection result of the luminance change detection unit.
  • FIG. 1 is a block diagram showing a configuration example of an imaging device according to an embodiment of the present disclosure
  • FIG. 1 is a block diagram showing a configuration example of an imaging device according to an embodiment of the present disclosure
  • FIG. 3 is a diagram showing a configuration example of a pixel according to the first embodiment of the present disclosure
  • FIG. 1 is a diagram illustrating a configuration example of a signal generation circuit according to an embodiment of the present disclosure
  • FIG. 3 is a diagram illustrating a configuration example of a luminance change detection unit according to the first embodiment of the present disclosure
  • FIG. 4 is a diagram illustrating a configuration example of a request generation unit according to the first embodiment of the present disclosure
  • FIG. 4 is a diagram illustrating an example of request generation according to the first embodiment of the present disclosure
  • FIG. FIG. 4 is a diagram illustrating an example of arbitration by an arbiter according to the first embodiment of the present disclosure
  • FIG. FIG. 7 is a diagram illustrating an example of request generation according to the second embodiment of the present disclosure
  • FIG. 11 is a diagram illustrating a configuration example of a luminance change detection unit according to a third embodiment of the present disclosure
  • FIG. 11 is a diagram illustrating a configuration example of a luminance change detection unit according to a fourth embodiment of the present disclosure
  • FIG. 11 is a diagram illustrating a configuration example of a pixel according to a fifth embodiment of the present disclosure
  • FIG. 11 is a diagram showing a configuration example of a pixel array unit according to a fifth embodiment of the present disclosure
  • FIG. 11 is a diagram showing a configuration example of a pixel array unit according to a fifth embodiment of the present disclosure
  • FIG. 11 is a diagram showing a configuration example of a threshold voltage generator 50 according to a sixth embodiment of the present disclosure
  • FIG. 11 is a diagram showing a configuration example of a threshold voltage generator 50 according to a sixth embodiment of the present disclosure
  • FIG. 1 is a block diagram showing a configuration example of an imaging device according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram showing a configuration example of the imaging device 1. As shown in FIG.
  • the imaging device 1 includes an imaging lens 5 , an imaging element 2 , a recording section 3 and a control section 4 .
  • an imaging device 1 a camera mounted on a wearable device, an in-vehicle camera, or the like is assumed.
  • the imaging lens 5 is an example of an optical system, and captures incident light from a subject and forms an image on the imaging surface of the imaging device 2 .
  • the imaging device 2 is also called an EVS (Event-based Vision Sensor), and detects as an address event that the absolute value of the amount of luminance change exceeds a threshold for each of a plurality of pixels.
  • This event includes, for example, an on-event indicating that the amount of increase in luminance has exceeded the threshold in the increasing direction, and an off-event indicating that the amount of decrease in luminance has fallen below the threshold in the decreasing direction.
  • Each detection signal includes a detection signal indicating presence/absence of an on-event and a detection signal indicating presence/absence of an off-event.
  • the imaging device 2 performs predetermined signal processing such as image recognition processing on image data consisting of detection signals, and outputs the processed data to the recording unit 3 via the signal line 6 .
  • the recording unit 3 records data from the imaging device 2 .
  • the control unit 4 controls the image sensor 2 to capture image data with the image sensor 2 .
  • FIG. 2 is a block diagram showing a configuration example of an imaging device according to an embodiment of the present disclosure. This figure is a block diagram showing a configuration example of the imaging element 2. As shown in FIG. The imaging device 2 in FIG.
  • the pixel array section 10 is configured by arranging a plurality of pixels 100 .
  • a pixel array section 10 in the figure represents an example in which pixels 100 are arranged in a two-dimensional matrix.
  • the pixel 100 includes a photoelectric conversion unit that photoelectrically converts incident light, and detects an event based on the amount of change in photocurrent based on the photoelectric conversion.
  • the pixel 100 that has detected an event outputs an event detection signal to the control circuit 20 and the signal processing unit 40, which will be described later.
  • the control circuit 20 outputs a control signal to the pixel 100 that has output the detection signal, and resets the event detected in the pixel 100 .
  • the signal processing unit 40 performs predetermined signal processing on the detection signal.
  • the pixel 100 Prior to outputting this detection signal, the pixel 100 sends a request for outputting the detection signal to the arbiter 30, which will be described later.
  • the arbiter 30 selects the pixel 100 that sent the request and outputs a response to the request. This response permits output of the detection signal.
  • the control circuit 20 is a circuit that controls resetting of pixel address events in each pixel 100 of the pixel array section 10 .
  • This control circuit 20 outputs a control signal for resetting a differentiating circuit 130 arranged in a pixel 100, which will be described later.
  • a signal line 11 connects between the pixel 100 and the control circuit 20 .
  • An event detection signal from the pixel 100 and a control signal from the control circuit 20 are transmitted through the signal line 11 .
  • the arbiter 30 selects the pixel 100 that sent the request. As described above, the pixel 100 that has detected an address event outputs a detection signal to the control circuit 20 and the signal processing section 40 . This control signal must be supplied exclusively to one pixel 100 . This is to prevent collisions when outputting detection signals from the plurality of pixels 100 . Therefore, the arbiter 30 arbitrates the plurality of pixels 100 for which the pixel address event has been detected. Specifically, the arbiter 30 selects one of the pixels 100 that sent the request and returns a response to this selected pixel 100 . This response represents the result of the selection. A signal line 12 connects between the pixel 100 and the arbiter 30 . Requests from pixels 100 and responses from arbiter 30 are conveyed by signal line 12 .
  • the arbiter 30 can select the pixels 100 in the order in which the requests are sent. At this time, the arbiter 30 can preferentially select a specific pixel 100 . For example, the arbiter 30 can preferentially select a pixel 100 that has transmitted a request with a high priority, which will be described later.
  • the signal processing unit 40 performs predetermined signal processing on detection signals from the pixels 100 .
  • the signal processing unit 40 can arrange such detection signals as image signals in a two-dimensional matrix to generate image data having 2-bit information for each pixel 100 .
  • the signal processing unit 40 can perform signal processing such as image recognition processing on the generated image data.
  • a signal line 13 connects between the pixel 100 and the signal processing unit 40 .
  • a detection signal from the pixel 100 is transmitted through the signal line 13 .
  • the threshold voltage generation unit 50 generates a threshold voltage, which is a voltage corresponding to the above threshold.
  • the threshold voltage generator 50 supplies the generated threshold voltage to the pixels 100 .
  • FIG. 3 is a diagram illustrating a configuration example of a pixel according to the first embodiment of the present disclosure; This figure is a diagram showing a configuration example of the pixel 100 .
  • a pixel 100 shown in FIG. 1 A pixel 100 shown in FIG. 1
  • the photoelectric conversion unit 110 performs photoelectric conversion of incident light.
  • This photoelectric conversion unit 110 can be configured by a photodiode. This photoelectric conversion generates an electric charge corresponding to the luminance of the incident light.
  • photocurrent which is a current corresponding to the generated charge, can be supplied to an external circuit.
  • the current-voltage conversion circuit 120 converts the photocurrent from the photoelectric conversion section 110 into a voltage signal. During this conversion, the current-voltage conversion circuit 120 also performs logarithmic compression of the voltage signal. The converted voltage signal is output to the differentiating circuit 130 . The details of the configuration of the current-voltage conversion circuit 120 will be described later.
  • the differentiating circuit 130 extracts the amount of change in the voltage signal output from the current-voltage conversion circuit 120 and integrates the amount of change to generate a signal corresponding to the amount of change in the voltage signal. This signal corresponds to a signal corresponding to a change in luminance of incident light. This signal is called an optical signal. Differentiating circuit 130 outputs the generated optical signal to luminance change detecting section 140 via signal line 101 . Also, the differentiating circuit 130 receives a control signal from the control circuit 20 . This control signal is a signal for resetting the circuit that detects the amount of change in the voltage signal. The details of the configuration of the differentiating circuit 130 will be described later. Note that the current-voltage conversion circuit 120 and the differentiating circuit 130 are examples of the signal generation circuit described in the claims.
  • the brightness change detection unit 140 detects changes in brightness of incident light.
  • a luminance change detector 140 in FIG. 1 detects a change in the optical signal output from the differentiating circuit 130 based on the threshold voltage supplied from the threshold voltage generator 50 .
  • a detection result is output to the request generation unit 160 . The details of the configuration of luminance change detection section 140 will be described later.
  • the request generation unit 160 generates a request requesting transfer of the luminance change detection result in the luminance change detection unit 140 and outputs the request to the arbiter 30 . Further, when a response to the request is output from the arbiter 30 , the request generator 160 outputs a luminance change detection signal to the signal processor 40 and the control circuit 20 .
  • FIG. 4 is a diagram illustrating a configuration example of a signal generation circuit according to an embodiment of the present disclosure. This figure is a circuit diagram showing a configuration example of the current-voltage conversion circuit 120 and the differentiating circuit 130 . In addition, the photoelectric conversion unit 110 is further illustrated in FIG.
  • a current-voltage conversion circuit 120 in the figure includes MOS transistors 121 to 123 .
  • Vdd represents a power line Vdd for supplying power.
  • Vb1 represents a signal line Vb1 that supplies a bias voltage.
  • MOS transistors 121 and 123 can be n-channel MOS transistors.
  • a p-channel MOS transistor can be used for the MOS transistor 122 .
  • the photoelectric conversion unit 110 has an anode grounded and a cathode connected to the source of the MOS transistor 121 and the gate of the MOS transistor 123 .
  • the drains of the MOS transistors 121 and 122 are connected to the power supply line Vdd, and the gate of the MOS transistor 122 is connected to the signal line Vb1.
  • the source of MOS transistor 123 is grounded, and the drain is connected to the gate of MOS transistor 121 , the drain of MOS transistor 122 and the output signal line of current-voltage conversion circuit 120 .
  • One end of the capacitor of the differentiating circuit 130 is connected to this output signal line.
  • the MOS transistor 121 is a MOS transistor that supplies current to the photoelectric conversion section 110 .
  • a sink current (photocurrent) corresponding to incident light flows through the photoelectric conversion unit 110 .
  • MOS transistor 121 supplies this sink current.
  • the gate of the MOS transistor 121 is driven by the output voltage of the MOS transistor 123 which will be described later, and outputs a source current equal to the sink current of the photoelectric conversion section 110 . Since the gate-source voltage Vgs of the MOS transistor is a voltage corresponding to the source current, the source voltage of the MOS transistor 121 is a voltage corresponding to the current of the photoelectric conversion section 110 . Thereby, the photocurrent of the photoelectric conversion unit 110 is converted into a voltage signal.
  • the MOS transistor 123 is a MOS transistor that amplifies the source voltage of the MOS transistor 121 . Also, the MOS transistor 122 constitutes a constant current load for the MOS transistor 123 . An amplified voltage signal is output to the drain of the MOS transistor 123 . This voltage signal is output to signal line 129 and fed back to the gate of MOS transistor 121 .
  • Vgs of MOS transistor 121 is equal to or lower than the threshold voltage, the source current changes exponentially with respect to changes in Vgs. Therefore, the output voltage of the MOS transistor 123 fed back to the gate of the MOS transistor 121 is a voltage signal obtained by logarithmically compressing the photocurrent of the photoelectric conversion unit 110 equal to the source current of the MOS transistor 121 .
  • a differentiating circuit 130 in the figure includes capacitors 131 and 132 , MOS transistors 133 and 134 , and a constant current circuit 135 .
  • MOS transistors 133 and 134 can be p-channel MOS transistors.
  • one end of the capacitor 131 is connected to the output of the current-voltage conversion circuit 120 , and the other end of the capacitor 131 is connected to the gate of the MOS transistor 133 , the drain of the MOS transistor 134 and one end of the capacitor 132 .
  • the other end of the capacitor 132 is connected to the drain of the MOS transistor 133 , the drain of the MOS transistor 134 , the sink side terminal of the constant current circuit 135 and the signal line 101 .
  • the source of MOS transistor 133 is connected to power supply line Vdd, and the gate of MOS transistor 134 is connected to signal line 11 .
  • a sink side terminal of the constant current circuit 135 is grounded.
  • the capacitor 131 corresponds to a coupling capacitor. This capacitor 131 blocks the DC component of the output voltage of the current-voltage conversion circuit 120 and allows only the AC component to pass. Also, a current based on the change in the output voltage of the current-voltage conversion circuit 120 is supplied to the gate of the MOS transistor 133 via the capacitor 131 . The AC component of the output voltage of the current-voltage conversion circuit 120 corresponds to the variation of the photocurrent.
  • the MOS transistor 133 and constant current circuit 135 constitute an inverting amplifier circuit. MOS transistor 522 constitutes a constant current load.
  • a change in the output voltage of the current-voltage conversion circuit 120 is input to the gate of the MOS transistor 133 via the capacitor 131, inverted and amplified by the MOS transistor 133, and output to the drain. Therefore, a current based on the change in the output voltage of the current-voltage conversion circuit 120 flows through the capacitor 132, and the capacitor 132 is charged and discharged. That is, the amount of change in the output voltage of the current-voltage conversion circuit 120 is accumulated (integrated).
  • An optical signal which is a signal corresponding to the amount of change in the voltage signal output from the current-voltage conversion circuit 120 , is output to the signal line 101 .
  • the MOS transistor 134 resets the differentiating circuit 130 .
  • both ends of the capacitor 132 are short-circuited.
  • the accumulated change in the output voltage of the current-voltage conversion circuit 120 is discharged and reset. With this reset, the output voltage of the differentiating circuit 130 becomes, for example, the voltage at the middle point between the power supply line Vdd and the ground line.
  • FIG. 5 is a diagram illustrating a configuration example of a luminance change detection unit according to the first embodiment of the present disclosure; This figure is a circuit diagram showing a configuration example of the luminance change detection unit 140. As shown in FIG. A luminance change detection unit 140 in FIG. In addition, the request generating unit 160 is also shown in the figure.
  • the signal line 14 from the threshold voltage generator 50 is connected to the luminance change detector 140 .
  • the signal lines 14 in the figure include a signal line VbhA, a signal line VbhB and a signal line Vbl. These signal lines are signal lines for transmitting the threshold voltages generated by the threshold voltage generator 50 .
  • the threshold voltages supplied by signal line VbhA, signal line VbhB and signal line Vbl are denoted as VbhA, VbhB and Vbl, respectively.
  • VbhA and VbhB are threshold voltages higher than the output voltage of the differentiating circuit 130 at reset. Therefore, VbhA and VbhB are rising threshold voltages for the output voltage of the differentiating circuit 130 . That is, VbhA and VbhB constitute thresholds in the direction in which the luminance of incident light increases. VbhB is assumed to be a threshold voltage higher than VbhA.
  • Vbl is a threshold voltage lower than the output voltage of the differentiating circuit 130 at reset. Therefore, Vbl becomes a decreasing threshold voltage with respect to the output voltage of the differentiating circuit 130 . That is, Vbl constitutes a threshold in the direction in which the luminance of incident light decreases.
  • the determination circuit 141 includes a MOS transistor 150 and a MOS transistor 153 .
  • MOS transistors 150 and 153 can be p-channel MOS transistors and n-channel MOS transistors, respectively.
  • the MOS transistor 150 has a source connected to the power supply line Vdd and a gate connected to the signal line 101 .
  • MOS transistor 153 has a source grounded and a gate connected to signal line VbhA.
  • the drain of the MOS transistor 153 is connected to the drain of the MOS transistor 150 and the signal line VinA.
  • a signal line VinA is an output signal line of the determination circuit 141 .
  • the determination circuit 141 constitutes a comparator. Specifically, the determination circuit 141 connects the drain of the MOS transistor 153 to the gate of which the threshold voltage VbhA is applied and the drain of the MOS transistor 150 to the gate of which the output voltage of the differentiating circuit 130 is applied. The output of determination circuit 141 changes according to the magnitude relationship between the drain current on the sink side of MOS transistor 153 and the drain current on the source side of MOS transistor 150 .
  • the determination circuit 141 compares the output voltage of the differentiating circuit 130 and the threshold voltage VbhA, and detects a change in the direction in which the luminance of incident light increases.
  • the determination circuit 142 includes MOS transistors 151 and 154 .
  • a signal line VbhB is connected to the gate of the MOS transistor 154, and a signal line VinB is connected as an output signal line. Since the configuration other than this is the same as that of the determination circuit 141, description thereof is omitted.
  • the determination circuit 142 compares the output voltage of the differentiating circuit 130 and the threshold voltage VbhB. Since VbhB is a voltage higher than VbhA, the determination circuit 142 detects a larger luminance change amount than the determination circuit 141 does.
  • the determination circuit 143 includes MOS transistors 152 and 155, the signal line Vbl is connected to the gate of the MOS transistor 155, and the signal line VinD is connected as an output signal line. be done. Since the configuration other than this is the same as that of the determination circuit 141, description thereof is omitted.
  • the determination circuit 143 compares the output voltage of the differentiating circuit 130 and the threshold voltage Vbl. When the output voltage of the differentiating circuit 130 is higher than Vbl, specifically, the voltage obtained by subtracting Vbl from the power supply line Vdd, the output voltage (the voltage of the signal line VinD) becomes H level.
  • the determination circuit 143 compares the output voltage of the differentiating circuit 130 and the threshold voltage Vbl, and detects a change in the direction in which the luminance of incident light decreases.
  • the outputs of the determination circuits 141 and 142 correspond to the on-event detection signal, and the output of the determination circuit 143 corresponds to the off-event detection signal.
  • the determination circuit 143 is an example of a second luminance change detection unit described in the claims.
  • the request generation unit 160 in the figure includes a first request generation unit 161 and a second request generation unit 162.
  • Signal lines VinA and VinB from the brightness change detection unit 140 are connected to the first request generation unit 161, and the results of brightness change detection by the determination circuits 141 and 142 are input.
  • the first request generator 161 generates a request based on the change in the direction in which the luminance of incident light increases, and outputs the request to the arbiter 30 .
  • a signal line VinD from the brightness change detection unit 140 is connected to the second request generation unit 162, and the brightness change detection result of the determination circuit 143 is input.
  • the second request generation unit 162 generates a request based on the change in the direction of decrease in luminance of incident light, and outputs the request to the arbiter 30 .
  • FIG. 6A is a diagram illustrating a configuration example of a request generation unit according to the first embodiment of the present disclosure
  • FIG. This figure is a diagram showing a configuration example of the first request generation unit 161 .
  • a first request generation unit 161 shown in the figure receives the results of luminance change detection by determination circuits 141 and 142 supplied via signal lines VinA and VinB.
  • the first request generator 161 also generates two types of requests based on these detection results, and outputs them to the arbiter 30 via the signal lines REQstrength and REQweak.
  • FIG. 6B is a diagram illustrating an example of request generation according to the first embodiment of the present disclosure. This figure is a diagram showing an example of request generation in the first request generation unit 161, and is a truth table showing an example of request generation based on the detection result of luminance change.
  • Luminance change in the figure represents the detection result of the luminance change in the luminance change detection unit 140.
  • Determination circuit 141” and “determination circuit 142” represent outputs of the luminance change detection unit 140 corresponding to this luminance change.
  • Request represents the strength of the request determined based on the detection result of luminance change.
  • REQstrength and “REQweak” represent requests generated based on the strength of the request.
  • the first request generator 161 does not generate a request.
  • the first request generation unit 161 determines that the change in luminance is caused by the movement of the object, and generates a strong request (strong request).
  • the first request generator 161 outputs an H level signal to the signal line REQstrength. This signal represents a strong request.
  • the first request generation unit 161 determines that the change in brightness is caused by flicker, and generates a weak request (weak request).
  • the first request generator 161 outputs an H level signal to the signal line REQweak. This signal represents a weak request.
  • the luminance change detection unit 140 generates different requests according to the luminance change of incident light.
  • a strong request corresponds to a high priority request and a weak request corresponds to a low priority request.
  • FIG. 7 is a diagram illustrating an example of arbitration by an arbiter according to the first embodiment of the present disclosure; This figure is a flow chart showing an example of request arbitration by the arbiter 30 .
  • the arbiter 30 determines whether or not there is a pixel 100 that outputs a strong request (step S101). As a result, if there is a pixel 100 that outputs a strong request (step S101, Yes), the arbiter 30 sends a response to the target pixel 100 (step S102), and returns to step S101.
  • step S101 determines whether there is a pixel 100 outputting a strong request (step S101, No).
  • step S103 determines whether there is a pixel 100 outputting a weak request.
  • step S104 the arbiter 30 sends a response to the target pixel 100 (step S104), and returns to step S101.
  • step S103, No the arbiter 30 terminates the process.
  • the arbiter 30 performs arbitration giving priority to pixels 100 that generate strong requests.
  • the pixel 100 that has generated a strong request can preferentially output the luminance change detection signal to the signal processing unit 40 and the control circuit 20 .
  • the imaging device 2 of the first embodiment of the present disclosure detects changes in luminance of incident light based on a plurality of thresholds. This makes it possible to determine whether the change in brightness of the incident light is a change in brightness accompanying the movement of the object or a change in brightness due to flicker. It is possible to lower the priority of the event based on the change in luminance due to flicker, and reduce the detection of unnecessary events.
  • the imaging device 2 of the first embodiment described above detects changes in brightness due to flicker.
  • the imaging device 2 of the second embodiment of the present disclosure is different from the above-described first embodiment in that it detects changes in luminance due to noise.
  • FIG. 8 is a diagram showing an example of request generation according to the second embodiment of the present disclosure.
  • This figure like FIG. 6B, is a diagram showing an example of request generation in the first request generation unit 161.
  • the request generation in FIG. 6 differs from that in FIG. 6B in the setting of the request strength.
  • the first request generation unit 161 detects the luminance change due to noise. judge and generate a weak request (weak request). The first request generator 161 outputs an H level signal to the signal line REQweak.
  • the first request generation unit 161 determines that the change in brightness is caused by the movement of the object and generates a strong request (strong request).
  • the first request generator 161 outputs an H level signal to the signal line REQstrength.
  • the arbiter 30 arbitrates the requests.
  • a low priority is set for requests that are determined to be luminance due to noise.
  • the configuration of the image pickup device 2 other than this is the same as the configuration of the image pickup device 2 in the first embodiment of the present disclosure, so the description is omitted.
  • the imaging device 2 of the second embodiment of the present disclosure detects changes in luminance of incident light based on a plurality of thresholds. This makes it possible to determine whether the change in luminance of incident light is due to noise. It is possible to lower the priority of the event based on the luminance change due to this noise, and reduce the detection of unnecessary events.
  • the imaging device 2 of the first embodiment described above detects changes in the direction of increase in luminance of incident light based on a plurality of thresholds.
  • the imaging device 2 of the third embodiment of the present disclosure is different from the above-described first embodiment in that the change in the decreasing direction of the luminance of incident light is also determined based on a plurality of thresholds.
  • FIG. 9 is a diagram illustrating a configuration example of a luminance change detection unit according to the third embodiment of the present disclosure.
  • This figure, like FIG. 5, is a circuit diagram showing a configuration example of the luminance change detection section 140.
  • the brightness change detection section 140 in FIG. 5 is different from the brightness change detection section 140 in FIG. 5 in that it further includes a determination circuit 144 and the signal lines 14 include the signal lines VblA and VblB.
  • VblA and VblB are threshold voltages lower than the output voltage of the differentiating circuit 130 at reset. Therefore, VblA and VblB are threshold voltages that decrease with respect to the output voltage of the differentiating circuit 130 . That is, VblA and VblB constitute thresholds in the direction in which the luminance of incident light decreases. Note that VblB is a threshold voltage lower than VblA.
  • a signal line VblA is connected to the determination circuit 143 in the figure, and the threshold voltage VblA is supplied.
  • the determination circuit 144 includes MOS transistors 156 and 157 .
  • a signal line VblB is connected to the gate of the MOS transistor 157, and a signal line VinE is connected as an output signal line. Since the configuration other than this is the same as that of the determination circuit 141, description thereof is omitted.
  • the determination circuit 144 compares the output voltage of the differentiating circuit 130 and the threshold voltage VblB. Since VblB is a voltage lower than VblA, the determination circuit 144 detects a greater amount of change in luminance in the direction of decrease than the determination circuit 143 does.
  • the signal lines VinD and VinE from the brightness change detection unit 140 are connected to the second request generation unit 162 in FIG.
  • the second request generation unit 162 generates a request based on the change in the direction of decrease in luminance of incident light, and outputs the request to the arbiter 30 .
  • the configuration of the image pickup device 2 other than this is the same as the configuration of the image pickup device 2 in the first embodiment of the present disclosure, so the description is omitted.
  • the imaging device 2 of the third embodiment of the present disclosure detects changes in the direction of increase and decrease in luminance of incident light based on a plurality of thresholds. Accordingly, noise can be detected based on changes in the direction of increase and decrease in the luminance of incident light.
  • the imaging device 2 of the first embodiment described above detects changes in the direction in which the luminance of incident light increases based on two types of threshold values.
  • the imaging device 2 of the fourth embodiment of the present disclosure is different from the above-described first embodiment in that the change in the increasing direction of the luminance of incident light is detected based on three or more thresholds. .
  • FIG. 10 is a diagram illustrating a configuration example of a luminance change detection unit according to the fourth embodiment of the present disclosure; This figure, like FIG. 5, is a circuit diagram showing a configuration example of the luminance change detection section 140. As shown in FIG. The brightness change detection unit 140 in FIG. 5 is different from the brightness change detection unit 140 in FIG. 5 in that it further includes a determination circuit 145 and the signal line 14 includes the signal line VbhC.
  • VbhC The threshold voltage supplied by the signal line VbhC is denoted as VbhC.
  • VbhC is the threshold voltage generated by the threshold voltage generator 50 .
  • VbhC is a threshold voltage higher than the output voltage of the differentiating circuit 130 at reset. Therefore, VbhC becomes a rising threshold voltage with respect to the output voltage of the differentiating circuit 130 . That is, VblC constitutes a threshold in the direction in which the luminance of incident light increases.
  • VbhC is a threshold voltage lower than VbhB.
  • a signal line VbhC is connected to the determination circuit 145 in the figure, and the threshold voltage VbhC is supplied.
  • the determination circuit 145 includes MOS transistors 158 and 159 .
  • a signal line VbhC is connected to the gate of the MOS transistor 159, and a signal line VinC is connected as an output signal line. Since the configuration other than this is the same as that of the determination circuit 141, description thereof is omitted.
  • the determination circuit 145 compares the output voltage of the differentiating circuit 130 and the threshold voltage VbhC. Since VbhC is a voltage lower than VbhB, the determination circuit 145 detects a smaller amount of change in the upward direction of luminance than the determination circuit 142 does.
  • the signal lines VinAVinB and VinC from the brightness change detection unit 140 are connected to the first request generation unit 161 in FIG.
  • the first request generator 161 can, for example, lower the priority of requests for changes in luminance due to flicker based on the detection results of the determination circuits 141 and 142 . Also, the first request generation unit 161 can lower the priority of the request for luminance change due to noise based on the detection results of the determination circuits 142 and 145 .
  • the configuration of the image pickup device 2 other than this is the same as the configuration of the image pickup device 2 in the first embodiment of the present disclosure, so the description is omitted.
  • the imaging device 2 of the fourth embodiment of the present disclosure detects changes in the increasing direction of the luminance of incident light based on three or more thresholds.
  • the imaging device 2 of the first embodiment described above has a plurality of determination circuits 141 and 142 for each pixel 100 .
  • the imaging device 2 of the fifth embodiment of the present disclosure differs from the above-described first embodiment in that the determination circuits 141 and 142 are distributed and arranged in the plurality of pixels 100 .
  • FIG. 11 is a diagram illustrating a configuration example of a pixel according to the fifth embodiment of the present disclosure.
  • This figure like FIG. 3, is a diagram showing a configuration example of pixels (pixels 100a and 100b).
  • a pixel 100a and a pixel 100b in FIG. 3 differ from the pixel 100 in FIG. 3 in that determination circuits 141 and 142 are arranged in a distributed manner.
  • a determination circuit 141 is arranged in the brightness change detection section 140 of the pixel 100a in the same figure, and a determination circuit 142 is arranged in the brightness change detection section 140 of the pixel 100b in the same figure.
  • a request generation unit 160 is arranged to generate a request in common for the pixels 100a and 100b.
  • a signal line VinA from the pixel 100a and a signal line VinB from the pixel 100b are wired to the request generation unit 160 .
  • the request generation unit 160 sets the priority of the flicker request based on the detection result based on the threshold voltage VbhA in the determination circuit 141 of the pixel 100a and the detection result based on the threshold voltage VbhB in the determination circuit 142 of the pixel 100b. can be done.
  • the request generation unit 160 can generate a request based on the change in luminance based on the motion of the object based on the detection result of the pixel 100a.
  • FIGS. 12A and 12B are diagrams showing configuration examples of a pixel array unit according to the fifth embodiment of the present disclosure. This figure is a diagram showing an arrangement example of pixels 100 a and 100 b in the pixel array section 10 .
  • FIG. 12A shows an example in which pixels 100a and 100b are alternately arranged in row and column directions. Note that the dotted line in FIG. 2 represents the range of pixels connected to the common request generator 160 .
  • FIG. 12B shows an example in which three pixels 100a and one pixel 100b are arranged in four pixels of two rows and two columns.
  • a request generator 160 can be arranged for each pixel in two rows and two columns.
  • the configuration of the image pickup device 2 other than this is the same as the configuration of the image pickup device 2 in the first embodiment of the present disclosure, so the description is omitted.
  • the imaging device 2 of the fifth embodiment of the present disclosure can simplify the configuration of the pixels 100 by arranging the determination circuits 141 and the like in a plurality of pixels 100 in a distributed manner.
  • the threshold voltage generator 50 generates the threshold voltage.
  • the imaging device 2 of the sixth embodiment of the present disclosure differs from the above-described first embodiment in that the threshold voltage generator 50 adjusts the threshold rolling pressure.
  • FIGS. 13A and 13B are diagrams showing configuration examples of the threshold voltage generator 50 according to the sixth embodiment of the present disclosure.
  • FIG. 13A is a diagram showing an example of the threshold voltage generation unit 50 including the illuminance measurement unit 60.
  • the illuminance measurement unit 60 measures the illuminance around the imaging element 2 and outputs the result to the threshold voltage generation unit 50 .
  • the threshold voltage generation unit 50 in FIG. 13A adjusts the threshold voltage based on the illuminance from the illuminance measurement unit 60.
  • the threshold voltage generator 50 can set thresholds for illuminance, for example, two illuminances, low illuminance (L1) and high illuminance (L2).
  • the threshold voltage generation unit 50 can adjust the values of VinA and VbhB for three cases: when the illuminance from the illuminance measurement unit 60 is less than L1, when it is greater than or equal to L1 and less than L2, and when it is greater than or equal to L2.
  • the threshold voltage generator 50 in FIG. 13B includes a strong request counter 51 , a weak request counter 52 , comparators 53 and 54 , and voltage generators 55 and 56 .
  • the strong request counting unit 51 counts the number of strong requests in a predetermined period and outputs the count to the comparing unit 53 .
  • the weak request counting unit 52 counts the number of weak requests in a predetermined period and outputs the count to the comparing unit 54 .
  • the comparison unit 53 compares the target number of strong request events and the number of strong requests, and outputs the comparison result to the voltage generation unit 55 .
  • the comparison unit 54 compares the target number of weak requests with the number of weak requests, and outputs the comparison result to the voltage generation unit 56 .
  • the voltage generating section 55 generates a threshold voltage according to the comparison result from the comparing section 53. Also, the voltage generator 56 generates a threshold voltage according to the comparison result from the comparator 54 .
  • the comparison unit 53 and the voltage generation unit 55 perform feedback control so that the number of strong requests converges to the target number of strong request events, and adjust the threshold voltage.
  • the comparison unit 54 and the voltage generation unit 56 perform feedback control so that the number of weak requests converges to the target number of weak request events, and adjust the threshold voltage.
  • the present technology can also take the following configuration.
  • a luminance change detection unit that detects changes in the luminance of incident light in the same direction based on a plurality of thresholds; and a request generation unit that generates a request to transfer the result of detection by the luminance change detection unit.
  • the luminance change detection unit detects a change in a direction in which the luminance increases.
  • the request generating section requests transfer of the detection results of the luminance change detecting section and the second luminance change detecting section.
  • the imaging device (4) The imaging device according to (3), wherein the second brightness change detection unit detects the change based on a plurality of threshold values. (5) The imaging device according to any one of (1) to (4), wherein the request generation unit generates the requests with different priorities according to the detection result. (6) The imaging device according to (5), further comprising an arbiter that arbitrates the requests according to the priority. (7) a pixel further comprising a photoelectric conversion unit that photoelectrically converts the incident light and a signal generation circuit that generates an optical signal corresponding to a change in photocurrent based on the photoelectric conversion; The imaging device according to any one of (1) to (6), wherein the luminance change detection section detects a change in luminance of the incident light based on the generated optical signal and the threshold.
  • the luminance change detection unit includes a plurality of determination circuits for detecting changes in the same direction of luminance of the incident light based on each of the plurality of thresholds, the plurality of determination circuits detect a luminance change of the incident light based on optical signals generated by the signal generation circuits arranged in the different pixels;
  • the imaging device according to (7), wherein the request generation unit generates the request based on detection results of the plurality of determination circuits.
  • (9) further comprising a threshold voltage generation unit that generates a threshold voltage that is a voltage corresponding to the threshold value and supplies the threshold voltage to the luminance change detection unit;
  • the imaging device according to any one of (1) to (8), wherein the luminance change detection section detects the luminance change of the incident light based on the generated threshold voltage.
  • the threshold voltage generation unit adjusts the threshold voltage according to ambient illuminance.
  • the threshold voltage generation unit adjusts the threshold voltage according to the number of generated requests.
  • a luminance change detection unit that detects changes in the luminance of incident light in the same direction based on a plurality of thresholds; a request generating unit for generating a request requesting transfer of the detection result of the luminance change detecting unit; and a signal processing unit that processes the result of the detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

In an imaging element that detects movements of a target as an event, detection of events that are based on flickering of a light source is reduced. This imaging element has a brightness change detection unit and a request generation unit. On the basis of multiple threshold values, the brightness change detection unit of the imaging element detects change in the same direction as the brightness of the incident light. The request generation unit of the imaging element generates a request for requesting transfer of the results of the detection in the brightness change detection unit of the imaging element.

Description

撮像素子及び撮像装置Imaging element and imaging device
 本開示は、撮像素子及び撮像装置に関する。 The present disclosure relates to imaging elements and imaging devices.
 入射光の光電変換を行う光電変換部を備える画素が2次元行列状に配置された画素アレイ部を有する撮像素子において、所定の輝度変化を検出した画素のみを選択して当該輝度変化の信号の読出しを行う撮像素子が使用されている。このような輝度の変化は対象物の動きに起因するものであり、輝度の変化を検出した画素のみを選択して読出しを行うことにより、動く被写体を高いフレームレートで検出することができる。このような撮像素子は、EVS(Event-based Vision Sensor)と称される。 In an imaging device having a pixel array section in which pixels having photoelectric conversion sections that perform photoelectric conversion of incident light are arranged in a two-dimensional matrix, only pixels that have detected a predetermined change in brightness are selected and a signal of the change in brightness is generated. An imaging device that performs readout is used. Such changes in brightness are caused by the motion of the object, and by selecting and reading out only pixels in which changes in brightness are detected, a moving object can be detected at a high frame rate. Such an imaging device is called an EVS (Event-based Vision Sensor).
 このEVSにおける画素は、入射光の輝度変化をイベントとして検出し、イベントが発生した旨を表す信号を制御回路に伝達する。この制御回路は、調停回路と称され、複数の画素から出力された信号の調停を行い、イベントを読み出す画素を決定する。しかし、LEDや蛍光灯等の点滅する光源を撮像した場合、照明装置のフリッカによりイベントが過剰に生成される。このイベントは、光源の動きに伴うイベントではないため、被写体の動きに伴うイベントの読出しに支障を来すこととなる。 A pixel in this EVS detects a change in luminance of incident light as an event and transmits a signal indicating the occurrence of the event to the control circuit. This control circuit, called an arbitration circuit, arbitrates signals output from a plurality of pixels and determines a pixel from which an event is read. However, when capturing an image of a flickering light source such as an LED or a fluorescent lamp, the flickering of the lighting device generates an excessive number of events. Since this event is not an event associated with the movement of the light source, it interferes with the readout of the event associated with the movement of the subject.
 このような、不要なイベントを生成する画素を異常画素として検出し、無効に設定する撮像素子が提案されている(例えば、特許文献1参照)。この従来技術では、イベントの有無を画素毎に検出する検出モードと画素毎に異常か否かを判定する異常判定モードとを有する。この異常判定モードにおいてフリッカ光源からの入射光を受光して不要なイベントを検出する画素の判定を行い、異常な画素として記録する。この異常な画素におけるイベントの検出が停止される。 An imaging device has been proposed that detects pixels that generate such unnecessary events as abnormal pixels and sets them to invalid (see, for example, Patent Document 1). This prior art has a detection mode for detecting the presence or absence of an event for each pixel and an abnormality determination mode for determining whether or not there is an abnormality for each pixel. In this abnormality determination mode, pixels that receive incident light from the flicker light source and detect unnecessary events are determined and recorded as abnormal pixels. Detection of events at this abnormal pixel is stopped.
特開2020-088723号公報JP 2020-088723 A
 しかしながら、上記の従来技術では、異常と判定されるまでは、画素のイベントが検出されるため、フリッカによるイベントの検出が困難という問題がある。 However, with the above-described conventional technology, pixel events are detected until they are determined to be abnormal, so there is a problem that it is difficult to detect events due to flicker.
 そこで、本開示では、光源のフリッカに基づくイベントの検出を削減する撮像素子及び撮像装置を提案する。 Therefore, the present disclosure proposes an imaging device and an imaging device that reduce detection of events based on flickering of a light source.
 本開示の撮像素子は、輝度変化検出部と、リクエスト生成部とを有する。輝度変化検出部は、入射光の輝度の同一方向の変化を複数の閾値に基づいて検出する。リクエスト生成部は、上記輝度変化検出部における検出の結果の転送を要求するリクエストを生成する。 The imaging device of the present disclosure has a luminance change detection unit and a request generation unit. The luminance change detector detects a change in luminance of incident light in the same direction based on a plurality of thresholds. A request generation unit generates a request requesting transfer of the detection result of the luminance change detection unit.
本開示の実施形態に係る撮像装置の構成例を示すブロック図である。1 is a block diagram showing a configuration example of an imaging device according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係る撮像素子の構成例を示すブロック図である。1 is a block diagram showing a configuration example of an imaging device according to an embodiment of the present disclosure; FIG. 本開示の第1の実施形態に係る画素の構成例を示す図である。FIG. 3 is a diagram showing a configuration example of a pixel according to the first embodiment of the present disclosure; FIG. 本開示の実施形態に係る信号生成回路の構成例を示す図である。1 is a diagram illustrating a configuration example of a signal generation circuit according to an embodiment of the present disclosure; FIG. 本開示の第1の実施形態に係る輝度変化検出部の構成例を示す図である。3 is a diagram illustrating a configuration example of a luminance change detection unit according to the first embodiment of the present disclosure; FIG. 本開示の第1の実施形態に係るリクエスト生成部の構成例を示す図である。4 is a diagram illustrating a configuration example of a request generation unit according to the first embodiment of the present disclosure; FIG. 本開示の第1の実施形態に係るリクエストの生成の一例を示す図である。FIG. 4 is a diagram illustrating an example of request generation according to the first embodiment of the present disclosure; FIG. 本開示の第1の実施形態に係るアービタの調停の一例を示す図である。FIG. 4 is a diagram illustrating an example of arbitration by an arbiter according to the first embodiment of the present disclosure; FIG. 本開示の第2の実施形態に係るリクエストの生成の一例を示す図である。FIG. 7 is a diagram illustrating an example of request generation according to the second embodiment of the present disclosure; 本開示の第3の実施形態に係る輝度変化検出部の構成例を示す図である。FIG. 11 is a diagram illustrating a configuration example of a luminance change detection unit according to a third embodiment of the present disclosure; 本開示の第4の実施形態に係る輝度変化検出部の構成例を示す図である。FIG. 11 is a diagram illustrating a configuration example of a luminance change detection unit according to a fourth embodiment of the present disclosure; 本開示の第5の実施形態に係る画素の構成例を示す図である。FIG. 11 is a diagram illustrating a configuration example of a pixel according to a fifth embodiment of the present disclosure; FIG. 本開示の第5の実施形態に係る画素アレイ部の構成例を示す図である。FIG. 11 is a diagram showing a configuration example of a pixel array unit according to a fifth embodiment of the present disclosure; 本開示の第5の実施形態に係る画素アレイ部の構成例を示す図である。FIG. 11 is a diagram showing a configuration example of a pixel array unit according to a fifth embodiment of the present disclosure; 本開示の第6の実施形態に係る閾値電圧生成部50の構成例を示す図である。FIG. 11 is a diagram showing a configuration example of a threshold voltage generator 50 according to a sixth embodiment of the present disclosure; FIG. 本開示の第6の実施形態に係る閾値電圧生成部50の構成例を示す図である。FIG. 11 is a diagram showing a configuration example of a threshold voltage generator 50 according to a sixth embodiment of the present disclosure; FIG.
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。説明は、以下の順に行う。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
1.第1の実施形態
2.第2の実施形態
3.第3の実施形態
4.第4の実施形態
5.第5の実施形態
6.第6の実施形態
Embodiments of the present disclosure will be described in detail below with reference to the drawings. The explanation is given in the following order. In addition, in each of the following embodiments, the same parts are denoted by the same reference numerals, thereby omitting redundant explanations.
1. First Embodiment 2. Second Embodiment 3. Third Embodiment 4. Fourth Embodiment 5. Fifth embodiment6. Sixth embodiment
 (1.第1の実施形態)
 [撮像装置の構成]
 図1は、本開示の実施形態に係る撮像装置の構成例を示すブロック図である。同図は、撮像装置1の構成例を表す図である。
(1. First embodiment)
[Configuration of imaging device]
FIG. 1 is a block diagram showing a configuration example of an imaging device according to an embodiment of the present disclosure. FIG. 1 is a diagram showing a configuration example of the imaging device 1. As shown in FIG.
 実施形態に係る撮像装置1は、撮像レンズ5と、撮像素子2と、記録部3と、制御部4とを備える。この撮像装置1としては、ウェアラブルデバイスに搭載されるカメラや、車載カメラなどが想定される。 The imaging device 1 according to the embodiment includes an imaging lens 5 , an imaging element 2 , a recording section 3 and a control section 4 . As the imaging device 1, a camera mounted on a wearable device, an in-vehicle camera, or the like is assumed.
 撮像レンズ5は、光学系の一例であり、被写体からの入射光を取り込んで撮像素子2の撮像面上に結像させる。 The imaging lens 5 is an example of an optical system, and captures incident light from a subject and forms an image on the imaging surface of the imaging device 2 .
 撮像素子2は、EVS(Event-based Vision Sensor)とも呼称され、複数の画素のそれぞれについて、輝度の変化量の絶対値が閾値を超えた旨をアドレスイベントとして検出する。このイベントは、たとえば、輝度の上昇量が上昇方向の閾値を超えた旨を示すオンイベントと、輝度の低下量が低下方向の閾値を下回った旨を示すオフイベントとを含む。 The imaging device 2 is also called an EVS (Event-based Vision Sensor), and detects as an address event that the absolute value of the amount of luminance change exceeds a threshold for each of a plurality of pixels. This event includes, for example, an on-event indicating that the amount of increase in luminance has exceeded the threshold in the increasing direction, and an off-event indicating that the amount of decrease in luminance has fallen below the threshold in the decreasing direction.
 そして、撮像素子2は、イベントの検出結果を示す検出信号を画素毎に生成する。それぞれの検出信号は、オンイベントの有無を示す検出信号と、オフイベントの有無を示す検出信号とを含む。 Then, the imaging device 2 generates a detection signal indicating the event detection result for each pixel. Each detection signal includes a detection signal indicating presence/absence of an on-event and a detection signal indicating presence/absence of an off-event.
 撮像素子2は、検出信号からなる画像データに対し、画像認識処理などの所定の信号処理を実行し、その処理後のデータを記録部3に信号線6を介して出力する。 The imaging device 2 performs predetermined signal processing such as image recognition processing on image data consisting of detection signals, and outputs the processed data to the recording unit 3 via the signal line 6 .
 記録部3は、撮像素子2からのデータを記録する。制御部4は、撮像素子2を制御して、かかる撮像素子2に画像データを撮像させる。 The recording unit 3 records data from the imaging device 2 . The control unit 4 controls the image sensor 2 to capture image data with the image sensor 2 .
 [撮像素子の構成]
 図2は、本開示の実施形態に係る撮像素子の構成例を示すブロック図である。同図は、撮像素子2の構成例を表すブロック図である。同図の撮像素子2は、画素アレイ部10と、制御回路20と、アービタ30と、信号処理部40と、閾値電圧生成部50とを備える。
[Configuration of imaging device]
FIG. 2 is a block diagram showing a configuration example of an imaging device according to an embodiment of the present disclosure. This figure is a block diagram showing a configuration example of the imaging element 2. As shown in FIG. The imaging device 2 in FIG.
 画素アレイ部10は、複数の画素100が配置されて構成されたものである。同図の画素アレイ部10は、画素100が2次元行列状に配置される例を表したものである。画素100は、入射光の光電変換を行う光電変換部を備え、光電変換に基づく光電流の変化量に基づいてイベントの検出を行う。 The pixel array section 10 is configured by arranging a plurality of pixels 100 . A pixel array section 10 in the figure represents an example in which pixels 100 are arranged in a two-dimensional matrix. The pixel 100 includes a photoelectric conversion unit that photoelectrically converts incident light, and detects an event based on the amount of change in photocurrent based on the photoelectric conversion.
 イベントを検出した画素100は、イベントの検出信号を後述する制御回路20および信号処理部40に対して出力する。制御回路20は、検出信号を出力した画素100に対して制御信号を出力し、画素100において検出されたイベントをリセットさせる。また、信号処理部40は、検出信号に対して所定の信号処理を行う。 The pixel 100 that has detected an event outputs an event detection signal to the control circuit 20 and the signal processing unit 40, which will be described later. The control circuit 20 outputs a control signal to the pixel 100 that has output the detection signal, and resets the event detected in the pixel 100 . Further, the signal processing unit 40 performs predetermined signal processing on the detection signal.
 この検出信号の出力に先立ち、画素100は、後述するアービタ30に対して検出信号の出力を要求するリクエストを送出する。アービタ30は、リクエストを送出した画素100を選択してリクエストに対する応答を出力する。この応答は、検出信号の出力を許可するものである。 Prior to outputting this detection signal, the pixel 100 sends a request for outputting the detection signal to the arbiter 30, which will be described later. The arbiter 30 selects the pixel 100 that sent the request and outputs a response to the request. This response permits output of the detection signal.
 制御回路20は、画素アレイ部10のそれぞれの画素100における画素アドレスイベントのリセットを制御する回路である。この制御回路20は、後述する画素100に配置された微分回路130をリセットする制御信号を出力する。画素100と制御回路20との間は信号線11により接続される。画素100からのイベントの検出信号および制御回路20からの制御信号は、信号線11により伝達される。 The control circuit 20 is a circuit that controls resetting of pixel address events in each pixel 100 of the pixel array section 10 . This control circuit 20 outputs a control signal for resetting a differentiating circuit 130 arranged in a pixel 100, which will be described later. A signal line 11 connects between the pixel 100 and the control circuit 20 . An event detection signal from the pixel 100 and a control signal from the control circuit 20 are transmitted through the signal line 11 .
 アービタ30は、リクエストを送出した画素100を選択するものである。上述のように、アドレスイベントを検出した画素100は、検出信号を制御回路20および信号処理部40に出力する。この制御信号の供給は、1つの画素100に対して独占的に行う必要がある。複数の画素100における検出信号の出力の際の衝突を防ぐためである。そこで、アービタ30が画素アドレスイベントを検出した複数の画素100の調停を行う。具体的には、アービタ30は、リクエストを送出した画素100のうちの1つを選択し、この選択した画素100に対して応答を返す。この応答は、選択の結果を表す。画素100とアービタ30との間は信号線12により接続される。画素100からのリクエスト及びアービタ30からの応答は、信号線12により伝達される。 The arbiter 30 selects the pixel 100 that sent the request. As described above, the pixel 100 that has detected an address event outputs a detection signal to the control circuit 20 and the signal processing section 40 . This control signal must be supplied exclusively to one pixel 100 . This is to prevent collisions when outputting detection signals from the plurality of pixels 100 . Therefore, the arbiter 30 arbitrates the plurality of pixels 100 for which the pixel address event has been detected. Specifically, the arbiter 30 selects one of the pixels 100 that sent the request and returns a response to this selected pixel 100 . This response represents the result of the selection. A signal line 12 connects between the pixel 100 and the arbiter 30 . Requests from pixels 100 and responses from arbiter 30 are conveyed by signal line 12 .
 アービタ30は、複数の画素100からリクエストが送出された際は、リクエストが送出された順に画素100を選択することができる。この際、アービタ30は、特定の画素100に対して優先的な選択を行うことができる。例えば、アービタ30は、後述する高い優先度が設定されたリクエストを送出した画素100を優先して選択することができる。 When requests are sent from a plurality of pixels 100, the arbiter 30 can select the pixels 100 in the order in which the requests are sent. At this time, the arbiter 30 can preferentially select a specific pixel 100 . For example, the arbiter 30 can preferentially select a pixel 100 that has transmitted a request with a high priority, which will be described later.
 信号処理部40は、画素100からの検出信号に対して所定の信号処理を行うものである。例えば、信号処理部40は、かかる検出信号を画像信号として2次元行列状に配列し、画素100毎に2ビットの情報を有する画像データを生成することができる。また、信号処理部40は、生成した画像データに対して画像認識処理などの信号処理を行うことができる。画素100と信号処理部40との間は信号線13により接続される。画素100からの検出信号は、信号線13により伝達される。 The signal processing unit 40 performs predetermined signal processing on detection signals from the pixels 100 . For example, the signal processing unit 40 can arrange such detection signals as image signals in a two-dimensional matrix to generate image data having 2-bit information for each pixel 100 . Further, the signal processing unit 40 can perform signal processing such as image recognition processing on the generated image data. A signal line 13 connects between the pixel 100 and the signal processing unit 40 . A detection signal from the pixel 100 is transmitted through the signal line 13 .
 閾値電圧生成部50は、前述の閾値に相当する電圧である閾値電圧を生成するものである。この閾値電圧生成部50は、生成した閾値電圧を画素100に供給する。 The threshold voltage generation unit 50 generates a threshold voltage, which is a voltage corresponding to the above threshold. The threshold voltage generator 50 supplies the generated threshold voltage to the pixels 100 .
 [画素の構成]
 図3は、本開示の第1の実施形態に係る画素の構成例を示す図である。同図は、画素100の構成例を表す図である。同図の画素100は、光電変換部110と、電流電圧変換回路120と、微分回路130と、輝度変化検出部140と、リクエスト生成部160とを備える。
[Pixel configuration]
FIG. 3 is a diagram illustrating a configuration example of a pixel according to the first embodiment of the present disclosure; This figure is a diagram showing a configuration example of the pixel 100 . A pixel 100 shown in FIG.
 光電変換部110は、入射光の光電変換を行うものである。この光電変換部110は、フォトダイオードにより構成することができる。この光電変換により入射光の輝度に応じた電荷が生成される。この光電変換部110に電圧を印加することにより、生成された電荷に応じた電流である光電流を外部の回路に供給することができる。 The photoelectric conversion unit 110 performs photoelectric conversion of incident light. This photoelectric conversion unit 110 can be configured by a photodiode. This photoelectric conversion generates an electric charge corresponding to the luminance of the incident light. By applying a voltage to the photoelectric conversion unit 110, photocurrent, which is a current corresponding to the generated charge, can be supplied to an external circuit.
 電流電圧変換回路120は、光電変換部110からの光電流を電圧信号に変換するものである。また、この変換の際、電流電圧変換回路120は、電圧信号の対数圧縮を行う。変換後の電圧信号は、微分回路130に対して出力される。電流電圧変換回路120の構成の詳細については後述する。 The current-voltage conversion circuit 120 converts the photocurrent from the photoelectric conversion section 110 into a voltage signal. During this conversion, the current-voltage conversion circuit 120 also performs logarithmic compression of the voltage signal. The converted voltage signal is output to the differentiating circuit 130 . The details of the configuration of the current-voltage conversion circuit 120 will be described later.
 微分回路130は、電流電圧変換回路120から出力される電圧信号の変化分を抽出するとともに変化分を積算して電圧信号の変化量に応じた信号を生成するものである。この信号は、入射光の輝度の変化に応じた信号に相当する。この信号を光信号と称する。微分回路130は、生成した光信号を信号線101を介して輝度変化検出部140に出力する。また、微分回路130は、制御回路20から制御信号が入力される。この制御信号は、上述の電圧信号の変化量を検出する回路をリセットする信号である。微分回路130の構成の詳細については後述する。なお、電流電圧変換回路120及び微分回路130は、請求の範囲に記載の信号発生回路の一例である。 The differentiating circuit 130 extracts the amount of change in the voltage signal output from the current-voltage conversion circuit 120 and integrates the amount of change to generate a signal corresponding to the amount of change in the voltage signal. This signal corresponds to a signal corresponding to a change in luminance of incident light. This signal is called an optical signal. Differentiating circuit 130 outputs the generated optical signal to luminance change detecting section 140 via signal line 101 . Also, the differentiating circuit 130 receives a control signal from the control circuit 20 . This control signal is a signal for resetting the circuit that detects the amount of change in the voltage signal. The details of the configuration of the differentiating circuit 130 will be described later. Note that the current-voltage conversion circuit 120 and the differentiating circuit 130 are examples of the signal generation circuit described in the claims.
 輝度変化検出部140は、入射光の輝度変化を検出するものである。同図の輝度変化検出部140は、微分回路130から出力された光信号の変化を閾値電圧生成部50から供給された閾値電圧に基づいて検出する。検出結果は、リクエスト生成部160に出力される。輝度変化検出部140の構成の詳細については後述する。 The brightness change detection unit 140 detects changes in brightness of incident light. A luminance change detector 140 in FIG. 1 detects a change in the optical signal output from the differentiating circuit 130 based on the threshold voltage supplied from the threshold voltage generator 50 . A detection result is output to the request generation unit 160 . The details of the configuration of luminance change detection section 140 will be described later.
 リクエスト生成部160は、輝度変化検出部140における輝度変化の検出結果の転送を要求するリクエストを生成し、アービタ30に対して出力するものである。また、リクエスト生成部160は、リクエストに対する応答がアービタ30から出力されると、輝度変化の検出信号を信号処理部40および制御回路20に対して出力する。 The request generation unit 160 generates a request requesting transfer of the luminance change detection result in the luminance change detection unit 140 and outputs the request to the arbiter 30 . Further, when a response to the request is output from the arbiter 30 , the request generator 160 outputs a luminance change detection signal to the signal processor 40 and the control circuit 20 .
 [信号生成回路の構成]
 図4は、本開示の実施形態に係る信号生成回路の構成例を示す図である。同図は、電流電圧変換回路120及び微分回路130の構成例を表す回路図である。なお、同図には、光電変換部110をさらに記載した。
[Configuration of Signal Generation Circuit]
FIG. 4 is a diagram illustrating a configuration example of a signal generation circuit according to an embodiment of the present disclosure; This figure is a circuit diagram showing a configuration example of the current-voltage conversion circuit 120 and the differentiating circuit 130 . In addition, the photoelectric conversion unit 110 is further illustrated in FIG.
 同図の電流電圧変換回路120は、MOSトランジスタ121乃至123を備える。同図においてVddは、電源を供給する電源線Vddを表す。Vb1は、バイアス電圧を供給する信号線Vb1を表す。MOSトランジスタ121及び123には、nチャネルMOSトランジスタを使用することができる。MOSトランジスタ122には、pチャネルMOSトランジスタを使用することができる。 A current-voltage conversion circuit 120 in the figure includes MOS transistors 121 to 123 . In the figure, Vdd represents a power line Vdd for supplying power. Vb1 represents a signal line Vb1 that supplies a bias voltage. MOS transistors 121 and 123 can be n-channel MOS transistors. A p-channel MOS transistor can be used for the MOS transistor 122 .
 光電変換部110のアノードは接地され、カソードはMOSトランジスタ121のソースおよびMOSトランジスタ123のゲートに接続される。MOSトランジスタ121及びMOSトランジスタ122のドレインは電源線Vddに接続され、MOSトランジスタ122のゲートは信号線Vb1に接続される。MOSトランジスタ123のソースは接地され、ドレインはMOSトランジスタ121のゲート、MOSトランジスタ122のドレインおよび電流電圧変換回路120の出力信号線に接続される。この出力信号線には、微分回路130のキャパシタの一端が接続される。 The photoelectric conversion unit 110 has an anode grounded and a cathode connected to the source of the MOS transistor 121 and the gate of the MOS transistor 123 . The drains of the MOS transistors 121 and 122 are connected to the power supply line Vdd, and the gate of the MOS transistor 122 is connected to the signal line Vb1. The source of MOS transistor 123 is grounded, and the drain is connected to the gate of MOS transistor 121 , the drain of MOS transistor 122 and the output signal line of current-voltage conversion circuit 120 . One end of the capacitor of the differentiating circuit 130 is connected to this output signal line.
 MOSトランジスタ121は、光電変換部110に電流を供給するMOSトランジスタである。光電変換部110には、入射光に応じたシンク電流(光電流)が流れる。MOSトランジスタ121は、このシンク電流を供給する。この際、MOSトランジスタ121のゲートは、後述するMOSトランジスタ123の出力電圧により駆動され、光電変換部110のシンク電流に等しいソース電流を出力する。MOSトランジスタのゲートソース間電圧Vgsがソース電流に応じた電圧となるため、MOSトランジスタ121のソース電圧は、光電変換部110の電流に応じた電圧となる。これにより、光電変換部110の光電流が電圧信号に変換される。 The MOS transistor 121 is a MOS transistor that supplies current to the photoelectric conversion section 110 . A sink current (photocurrent) corresponding to incident light flows through the photoelectric conversion unit 110 . MOS transistor 121 supplies this sink current. At this time, the gate of the MOS transistor 121 is driven by the output voltage of the MOS transistor 123 which will be described later, and outputs a source current equal to the sink current of the photoelectric conversion section 110 . Since the gate-source voltage Vgs of the MOS transistor is a voltage corresponding to the source current, the source voltage of the MOS transistor 121 is a voltage corresponding to the current of the photoelectric conversion section 110 . Thereby, the photocurrent of the photoelectric conversion unit 110 is converted into a voltage signal.
 MOSトランジスタ123は、MOSトランジスタ121のソース電圧を増幅するMOSトランジスタである。また、MOSトランジスタ122は、MOSトランジスタ123の定電流負荷を構成する。MOSトランジスタ123のドレインには、増幅された電圧信号が出力される。この電圧信号は、信号線129に出力されるとともに、MOSトランジスタ121のゲートに帰還される。MOSトランジスタ121のVgsがしきい値電圧以下の場合には、Vgsの変化に対してソース電流は指数関数状に変化する。このため、MOSトランジスタ121のゲートに帰還されるMOSトランジスタ123の出力電圧は、MOSトランジスタ121のソース電流と等しい光電変換部110の光電流が対数圧縮された電圧信号となる。 The MOS transistor 123 is a MOS transistor that amplifies the source voltage of the MOS transistor 121 . Also, the MOS transistor 122 constitutes a constant current load for the MOS transistor 123 . An amplified voltage signal is output to the drain of the MOS transistor 123 . This voltage signal is output to signal line 129 and fed back to the gate of MOS transistor 121 . When Vgs of MOS transistor 121 is equal to or lower than the threshold voltage, the source current changes exponentially with respect to changes in Vgs. Therefore, the output voltage of the MOS transistor 123 fed back to the gate of the MOS transistor 121 is a voltage signal obtained by logarithmically compressing the photocurrent of the photoelectric conversion unit 110 equal to the source current of the MOS transistor 121 .
 [微分回路の構成]
 同図の微分回路130は、キャパシタ131及び132と、MOSトランジスタ133及び134と、定電流回路135とを備える。MOSトランジスタ133及び134にはpチャネルMOSトランジスタを使用することができる。
[Configuration of differentiating circuit]
A differentiating circuit 130 in the figure includes capacitors 131 and 132 , MOS transistors 133 and 134 , and a constant current circuit 135 . MOS transistors 133 and 134 can be p-channel MOS transistors.
 前述のようにキャパシタ131の一端には電流電圧変換回路120の出力が接続され、キャパシタ131の他の一端は、MOSトランジスタ133のゲート、MOSトランジスタ134のドレインおよびキャパシタ132の一端に接続される。キャパシタ132の他の一端は、MOSトランジスタ133のドレイン、MOSトランジスタ134のドレイン、定電流回路135のシンク側端子及び信号線101に接続される。MOSトランジスタ133のソースは電源線Vddに接続され、MOSトランジスタ134のゲートは信号線11に接続される。定電流回路135のシンク側端子は、接地される。 As described above, one end of the capacitor 131 is connected to the output of the current-voltage conversion circuit 120 , and the other end of the capacitor 131 is connected to the gate of the MOS transistor 133 , the drain of the MOS transistor 134 and one end of the capacitor 132 . The other end of the capacitor 132 is connected to the drain of the MOS transistor 133 , the drain of the MOS transistor 134 , the sink side terminal of the constant current circuit 135 and the signal line 101 . The source of MOS transistor 133 is connected to power supply line Vdd, and the gate of MOS transistor 134 is connected to signal line 11 . A sink side terminal of the constant current circuit 135 is grounded.
 キャパシタ131は、結合キャパシタに相当する。このキャパシタ131は、電流電圧変換回路120の出力電圧のうちの直流分を阻止し、交流分のみを通過させる。また、電流電圧変換回路120の出力電圧の変化に基づく電流がキャパシタ131を介してMOSトランジスタ133のゲートに供給される。電流電圧変換回路120の出力電圧の交流分は、光電流の変化分に相当する。MOSトランジスタ133及び定電流回路135は、反転増幅回路を構成する。なお、MOSトランジスタ522は、定電流負荷を構成する。MOSトランジスタ133のゲートにはキャパシタ131を介して電流電圧変換回路120出力電圧の変化分が入力され、MOSトランジスタ133により反転増幅されてドレインに出力される。このため、キャパシタ132には電流電圧変換回路120の出力電圧の変化に基づく電流が流れ、キャパシタ132が充放電される。すなわち、電流電圧変換回路120の出力電圧の変化分が積算(積分)される。信号線101には、電流電圧変換回路120が出力する電圧信号の変化量に応じた信号である光信号が出力される。 The capacitor 131 corresponds to a coupling capacitor. This capacitor 131 blocks the DC component of the output voltage of the current-voltage conversion circuit 120 and allows only the AC component to pass. Also, a current based on the change in the output voltage of the current-voltage conversion circuit 120 is supplied to the gate of the MOS transistor 133 via the capacitor 131 . The AC component of the output voltage of the current-voltage conversion circuit 120 corresponds to the variation of the photocurrent. The MOS transistor 133 and constant current circuit 135 constitute an inverting amplifier circuit. MOS transistor 522 constitutes a constant current load. A change in the output voltage of the current-voltage conversion circuit 120 is input to the gate of the MOS transistor 133 via the capacitor 131, inverted and amplified by the MOS transistor 133, and output to the drain. Therefore, a current based on the change in the output voltage of the current-voltage conversion circuit 120 flows through the capacitor 132, and the capacitor 132 is charged and discharged. That is, the amount of change in the output voltage of the current-voltage conversion circuit 120 is accumulated (integrated). An optical signal, which is a signal corresponding to the amount of change in the voltage signal output from the current-voltage conversion circuit 120 , is output to the signal line 101 .
 MOSトランジスタ134は、微分回路130をリセットするものである。このMOSトランジスタ134を導通させることにより、キャパシタ132の両端が短絡される。積算された電流電圧変換回路120の出力電圧の変化分が放電されてリセットされる。このリセットにより、微分回路130の出力電圧は、例えば、電源線Vddと接地線との中点の電圧になる。 The MOS transistor 134 resets the differentiating circuit 130 . By making the MOS transistor 134 conductive, both ends of the capacitor 132 are short-circuited. The accumulated change in the output voltage of the current-voltage conversion circuit 120 is discharged and reset. With this reset, the output voltage of the differentiating circuit 130 becomes, for example, the voltage at the middle point between the power supply line Vdd and the ground line.
 [輝度変化検出部の構成]
 図5は、本開示の第1の実施形態に係る輝度変化検出部の構成例を示す図である。同図は、輝度変化検出部140の構成例を表す回路図である。同図の輝度変化検出部140は、判定回路141、142及び143を備える。なお、同図には、リクエスト生成部160を更に記載した。
[Configuration of Luminance Change Detector]
FIG. 5 is a diagram illustrating a configuration example of a luminance change detection unit according to the first embodiment of the present disclosure; This figure is a circuit diagram showing a configuration example of the luminance change detection unit 140. As shown in FIG. A luminance change detection unit 140 in FIG. In addition, the request generating unit 160 is also shown in the figure.
 また、輝度変化検出部140には、閾値電圧生成部50からの信号線14が接続される。同図の信号線14は、信号線VbhA、信号線VbhB及び信号線Vblが含まれる。これらの信号線は、閾値電圧生成部50が生成した閾値電圧を伝達する信号線である。信号線VbhA、信号線VbhB及び信号線Vblにより供給される閾値電圧をそれぞれVbhA、VbhB及びVblと記載する。 Also, the signal line 14 from the threshold voltage generator 50 is connected to the luminance change detector 140 . The signal lines 14 in the figure include a signal line VbhA, a signal line VbhB and a signal line Vbl. These signal lines are signal lines for transmitting the threshold voltages generated by the threshold voltage generator 50 . The threshold voltages supplied by signal line VbhA, signal line VbhB and signal line Vbl are denoted as VbhA, VbhB and Vbl, respectively.
 VbhA及びVbhBは、リセット時の微分回路130の出力電圧より高い電圧の閾値電圧である。このため、VbhA及びVbhBは、微分回路130の出力電圧に対する上昇方向の閾値電圧となる。すなわち、VbhA及びVbhBは、入射光の輝度が上昇する方向の閾値を構成する。なお、VbhBは、VbhAより高い電圧の閾値電圧を想定する。 VbhA and VbhB are threshold voltages higher than the output voltage of the differentiating circuit 130 at reset. Therefore, VbhA and VbhB are rising threshold voltages for the output voltage of the differentiating circuit 130 . That is, VbhA and VbhB constitute thresholds in the direction in which the luminance of incident light increases. VbhB is assumed to be a threshold voltage higher than VbhA.
 一方、Vblは、リセット時の微分回路130の出力電圧より低い電圧の閾値電圧である。このため、Vblは、微分回路130の出力電圧に対する低下方向の閾値電圧となる。すなわち、Vblは、入射光の輝度が低下する方向の閾値を構成する。 On the other hand, Vbl is a threshold voltage lower than the output voltage of the differentiating circuit 130 at reset. Therefore, Vbl becomes a decreasing threshold voltage with respect to the output voltage of the differentiating circuit 130 . That is, Vbl constitutes a threshold in the direction in which the luminance of incident light decreases.
 判定回路141は、MOSトランジスタ150及びMOSトランジスタ153を備える。MOSトランジスタ150及び153には、それぞれpチャネルMOSトランジスタ及びnチャネルMOSトランジスタを使用することができる。MOSトランジスタ150のソースは電源線Vddに接続され、ゲートは信号線101に接続される。MOSトランジスタ153のソースは接地され、ゲートは信号線VbhAに接続される。MOSトランジスタ153のドレインは、MOSトランジスタ150のドレイン及び信号線VinAに接続される。信号線VinAは、判定回路141の出力信号線である。 The determination circuit 141 includes a MOS transistor 150 and a MOS transistor 153 . MOS transistors 150 and 153 can be p-channel MOS transistors and n-channel MOS transistors, respectively. The MOS transistor 150 has a source connected to the power supply line Vdd and a gate connected to the signal line 101 . MOS transistor 153 has a source grounded and a gate connected to signal line VbhA. The drain of the MOS transistor 153 is connected to the drain of the MOS transistor 150 and the signal line VinA. A signal line VinA is an output signal line of the determination circuit 141 .
 判定回路141は、コンパレータを構成する。具体的には、判定回路141は、閾値電圧VbhAがゲートに印加されたMOSトランジスタ153のドレインと微分回路130の出力電圧がゲートに印加されたMOSトランジスタ150のドレインとが接続される。判定回路141の出力は、MOSトランジスタ153のシンク側のドレイン電流とMOSトランジスタ150のソース側のドレイン電流との大小関係に応じて変化する。 The determination circuit 141 constitutes a comparator. Specifically, the determination circuit 141 connects the drain of the MOS transistor 153 to the gate of which the threshold voltage VbhA is applied and the drain of the MOS transistor 150 to the gate of which the output voltage of the differentiating circuit 130 is applied. The output of determination circuit 141 changes according to the magnitude relationship between the drain current on the sink side of MOS transistor 153 and the drain current on the source side of MOS transistor 150 .
 微分回路130の出力電圧がVbhA、具体的には、電源電圧VddからVbhAを減算した電圧より低い場合、MOSトランジスタ150のソース電流の方がMOSトランジスタ153のシンク電流より小さくなる。このため、出力電圧(信号線VinAの電圧)は、Lレベルとなる。一方、微分回路130の出力電圧がVbhA(電源電圧VddからVbhAを減算した電圧)より高くなると、MOSトランジスタ153のシンク電流の方がMOSトランジスタ150のソース電流より小さくなる。このため、出力電圧は、Hレベルに移行する。このように、判定回路141は、微分回路130の出力電圧と閾値電圧VbhAとを比較し、入射光の輝度が上昇する方向の変化を検出する。 When the output voltage of the differentiation circuit 130 is lower than VbhA, specifically, the voltage obtained by subtracting VbhA from the power supply voltage Vdd, the source current of the MOS transistor 150 is smaller than the sink current of the MOS transistor 153 . Therefore, the output voltage (the voltage of the signal line VinA) becomes L level. On the other hand, when the output voltage of differentiating circuit 130 becomes higher than VbhA (the voltage obtained by subtracting VbhA from power supply voltage Vdd), the sink current of MOS transistor 153 becomes smaller than the source current of MOS transistor 150 . Therefore, the output voltage shifts to H level. Thus, the determination circuit 141 compares the output voltage of the differentiating circuit 130 and the threshold voltage VbhA, and detects a change in the direction in which the luminance of incident light increases.
 判定回路142は、MOSトランジスタ151及び154を備える。また、MOSトランジスタ154のゲートには信号線VbhBが接続され、出力の信号線として信号線VinBが接続される。これ以外の構成は判定回路141と同様であるため、説明を省略する。判定回路142は、微分回路130の出力電圧と閾値電圧VbhBとを比較する。VbhBはVbhAより高い電圧であるため、判定回路142は、判定回路141よりも大きな輝度の変化量を検出する。 The determination circuit 142 includes MOS transistors 151 and 154 . A signal line VbhB is connected to the gate of the MOS transistor 154, and a signal line VinB is connected as an output signal line. Since the configuration other than this is the same as that of the determination circuit 141, description thereof is omitted. The determination circuit 142 compares the output voltage of the differentiating circuit 130 and the threshold voltage VbhB. Since VbhB is a voltage higher than VbhA, the determination circuit 142 detects a larger luminance change amount than the determination circuit 141 does.
 判定回路143は、MOSトランジスタ152及び155を備え、MOSトランジスタ155のゲートには信号線Vblが接続され、出力の信号線として信号線VinDが接続される。される。これ以外の構成は判定回路141と同様であるため、説明を省略する。判定回路143は、微分回路130の出力電圧と閾値電圧Vblとを比較する。微分回路130の出力電圧がVbl、具体的には、電源線VddからVblを減算した電圧より高い場合、出力電圧(信号線VinDの電圧)は、Hレベルとなる。一方、微分回路130の出力電圧がVbl(電源電圧VddからVblを減算した電圧)より低くなると、出力電圧は、Lレベルに移行する。このように、判定回路143は、微分回路130の出力電圧と閾値電圧Vblとを比較し、入射光の輝度が低下する方向の変化を検出する。 The determination circuit 143 includes MOS transistors 152 and 155, the signal line Vbl is connected to the gate of the MOS transistor 155, and the signal line VinD is connected as an output signal line. be done. Since the configuration other than this is the same as that of the determination circuit 141, description thereof is omitted. The determination circuit 143 compares the output voltage of the differentiating circuit 130 and the threshold voltage Vbl. When the output voltage of the differentiating circuit 130 is higher than Vbl, specifically, the voltage obtained by subtracting Vbl from the power supply line Vdd, the output voltage (the voltage of the signal line VinD) becomes H level. On the other hand, when the output voltage of the differentiating circuit 130 becomes lower than Vbl (the voltage obtained by subtracting Vbl from the power supply voltage Vdd), the output voltage shifts to L level. Thus, the determination circuit 143 compares the output voltage of the differentiating circuit 130 and the threshold voltage Vbl, and detects a change in the direction in which the luminance of incident light decreases.
 判定回路141及び142の出力がオンイベント検出信号に相当し、判定回路143の出力がオフイベント検出信号に相当する。なお、判定回路143は、請求の範囲に記載の第2の輝度変化検出部の一例である。 The outputs of the determination circuits 141 and 142 correspond to the on-event detection signal, and the output of the determination circuit 143 corresponds to the off-event detection signal. Note that the determination circuit 143 is an example of a second luminance change detection unit described in the claims.
 同図のリクエスト生成部160は、第1のリクエスト生成部161及び第2のリクエスト生成部162を備える。第1のリクエスト生成部161には、輝度変化検出部140からの信号線VinA及びVinBが接続され、判定回路141及び142の輝度変化検出の結果が入力される。第1のリクエスト生成部161は、入射光の輝度の上昇方向の変化に基づくリクエストを生成し、アービタ30に対して出力する。 The request generation unit 160 in the figure includes a first request generation unit 161 and a second request generation unit 162. Signal lines VinA and VinB from the brightness change detection unit 140 are connected to the first request generation unit 161, and the results of brightness change detection by the determination circuits 141 and 142 are input. The first request generator 161 generates a request based on the change in the direction in which the luminance of incident light increases, and outputs the request to the arbiter 30 .
 第2のリクエスト生成部162には、輝度変化検出部140からの信号線VinDが接続され、判定回路143の輝度変化検出の結果が入力される。第2のリクエスト生成部162は、入射光の輝度の低下方向の変化に基づくリクエストを生成し、アービタ30に対して出力する。 A signal line VinD from the brightness change detection unit 140 is connected to the second request generation unit 162, and the brightness change detection result of the determination circuit 143 is input. The second request generation unit 162 generates a request based on the change in the direction of decrease in luminance of incident light, and outputs the request to the arbiter 30 .
 [リクエスト生成部の構成]
 図6Aは、本開示の第1の実施形態に係るリクエスト生成部の構成例を示す図である。同図は、第1のリクエスト生成部161の構成例を表す図である。同図の第1のリクエスト生成部161は、信号線VinA及びVinBを介して供給される判定回路141及び142の輝度変化の検出結果が入力される。また、第1のリクエスト生成部161は、これらの検出結果に基づいて2種類のリクエストを生成し、信号線REQstrength及び信号線REQweakを介してアービタ30に出力する。
[Configuration of request generator]
6A is a diagram illustrating a configuration example of a request generation unit according to the first embodiment of the present disclosure; FIG. This figure is a diagram showing a configuration example of the first request generation unit 161 . A first request generation unit 161 shown in the figure receives the results of luminance change detection by determination circuits 141 and 142 supplied via signal lines VinA and VinB. The first request generator 161 also generates two types of requests based on these detection results, and outputs them to the arbiter 30 via the signal lines REQstrength and REQweak.
 図6Bは、本開示の第1の実施形態に係るリクエストの生成の一例を示す図である。同図は、第1のリクエスト生成部161におけるリクエストの生成の一例を表す図であり、輝度変化の検出結果に基づくリクエストの生成の一例を表す真理値表である。 FIG. 6B is a diagram illustrating an example of request generation according to the first embodiment of the present disclosure. This figure is a diagram showing an example of request generation in the first request generation unit 161, and is a truth table showing an example of request generation based on the detection result of luminance change.
 同図の「輝度変化」は、輝度変化検出部140における輝度変化の検出結果を表す。「判定回路141」及び「判定回路142」は、この輝度変化に対応する輝度変化検出部140の出力を表す。「リクエスト」は、輝度変化の検出結果に基づいて決定されるリクエストの強度を表す。「REQstrength」及び「REQweak」は、リクエストの強度に基づいて生成されるリクエストを表す。 "Luminance change" in the figure represents the detection result of the luminance change in the luminance change detection unit 140. “Determination circuit 141” and “determination circuit 142” represent outputs of the luminance change detection unit 140 corresponding to this luminance change. "Request" represents the strength of the request determined based on the detection result of luminance change. "REQstrength" and "REQweak" represent requests generated based on the strength of the request.
 判定回路141及び142の出力が共にLレベルの場合は、輝度変化が検出されない場合に該当する。この場合、第1のリクエスト生成部161は、リクエストを生成しない。 When the outputs of the determination circuits 141 and 142 are both at L level, it corresponds to the case where no luminance change is detected. In this case, the first request generator 161 does not generate a request.
 判定回路141の出力がHレベルかつ判定回路142の出力がLレベルの場合は、検出された輝度の変化が比較的小さい場合に該当する。この場合、第1のリクエスト生成部161は、対象物の動きに伴う輝度の変化と判断し、強いリクエスト(リクエスト強)を生成する。第1のリクエスト生成部161は、信号線REQstrengthにHレベルの信号を出力する。この信号は、強いリクエストを表す。 When the output of the determination circuit 141 is at H level and the output of the determination circuit 142 is at L level, it corresponds to the case where the change in detected brightness is relatively small. In this case, the first request generation unit 161 determines that the change in luminance is caused by the movement of the object, and generates a strong request (strong request). The first request generator 161 outputs an H level signal to the signal line REQstrength. This signal represents a strong request.
 判定回路141及び判定回路142の出力が共にHレベルの場合は、大きな輝度の変化を検出した場合に該当する。この場合、第1のリクエスト生成部161は、フリッカに伴う輝度の変化と判断し、弱いリクエスト(リクエスト弱)を生成する。第1のリクエスト生成部161は、信号線REQweakにHレベルの信号を出力する。この信号は、弱いリクエストを表す。 When both the outputs of the determination circuit 141 and the determination circuit 142 are at H level, it corresponds to the detection of a large change in luminance. In this case, the first request generation unit 161 determines that the change in brightness is caused by flicker, and generates a weak request (weak request). The first request generator 161 outputs an H level signal to the signal line REQweak. This signal represents a weak request.
 このように、輝度変化検出部140は、入射光の輝度変化に応じて異なるリクエストを生成する。強いリクエストは優先度が高いリクエストに相当し、弱いリクエストは優先度が低いリクエストに相当する。 In this way, the luminance change detection unit 140 generates different requests according to the luminance change of incident light. A strong request corresponds to a high priority request and a weak request corresponds to a low priority request.
 [アービタの調停]
 図7は、本開示の第1の実施形態に係るアービタの調停の一例を示す図である。同図は、アービタ30によるリクエストの調停例を表すフローチャート図である。まず、アービタ30は、リクエスト強を出力する画素100が存在するか否かを判断する(ステップS101)。その結果、リクエスト強を出力する画素100が存在する場合には(ステップS101,Yes)、アービタ30は、対象画素100に応答を送出し(ステップS102)、ステップS101の処理に戻る。
[arbitration of arbiter]
FIG. 7 is a diagram illustrating an example of arbitration by an arbiter according to the first embodiment of the present disclosure; This figure is a flow chart showing an example of request arbitration by the arbiter 30 . First, the arbiter 30 determines whether or not there is a pixel 100 that outputs a strong request (step S101). As a result, if there is a pixel 100 that outputs a strong request (step S101, Yes), the arbiter 30 sends a response to the target pixel 100 (step S102), and returns to step S101.
 一方、リクエスト強を出力する画素100が存在しない場合には(ステップS101,No)、アービタ30は、リクエスト弱を出力する画素100が存在するか否かを判断する(ステップS103)。その結果、リクエスト弱を出力する画素100が存在する場合には(ステップS103,Yes)、アービタ30は、対象画素100に応答を送出し(ステップS104)、ステップS101の処理に戻る。一方、リクエスト弱を出力する画素100が存在しない場合には(ステップS103,No)、アービタ30は、処理を終了する。 On the other hand, if there is no pixel 100 outputting a strong request (step S101, No), the arbiter 30 determines whether there is a pixel 100 outputting a weak request (step S103). As a result, if there is a pixel 100 that outputs a weak request (step S103, Yes), the arbiter 30 sends a response to the target pixel 100 (step S104), and returns to step S101. On the other hand, if there is no pixel 100 outputting a weak request (step S103, No), the arbiter 30 terminates the process.
 このように、アービタ30は、強いリクエストを生成する画素100を優先する調停を行う。これにより、強いリクエストを生成した画素100は、優先的に輝度変化の検出信号を信号処理部40及び制御回路20に対して出力することができる。 In this way, the arbiter 30 performs arbitration giving priority to pixels 100 that generate strong requests. As a result, the pixel 100 that has generated a strong request can preferentially output the luminance change detection signal to the signal processing unit 40 and the control circuit 20 .
 このように、本開示の第1の実施形態の撮像素子2は、入射光の輝度変化を複数の閾値に基づいて検出する。これにより、入射光の輝度変化が対象物の動き伴う輝度の変化であるか及びフリッカによる輝度の変化であるかを判断することができる。このフリッカによる輝度の変化に基づくイベントの優先度を低くすることができ、不要なイベントの検出を低減することができる。 In this way, the imaging device 2 of the first embodiment of the present disclosure detects changes in luminance of incident light based on a plurality of thresholds. This makes it possible to determine whether the change in brightness of the incident light is a change in brightness accompanying the movement of the object or a change in brightness due to flicker. It is possible to lower the priority of the event based on the change in luminance due to flicker, and reduce the detection of unnecessary events.
 (2.第2の実施形態)
 上述の第1の実施形態の撮像素子2は、フリッカによる輝度の変化を検出していた。これに対し、本開示の第2の実施形態の撮像素子2は、ノイズによる輝度の変化を検出する点で、上述の第1の実施形態と異なる。
(2. Second embodiment)
The imaging device 2 of the first embodiment described above detects changes in brightness due to flicker. On the other hand, the imaging device 2 of the second embodiment of the present disclosure is different from the above-described first embodiment in that it detects changes in luminance due to noise.
 図8は、本開示の第2の実施形態に係るリクエストの生成の一例を示す図である。同図は、図6Bと同様に、第1のリクエスト生成部161におけるリクエストの生成の一例を表す図である。同図のリクエストの生成は、リクエストの強度の設定が図6Bと異なる。 FIG. 8 is a diagram showing an example of request generation according to the second embodiment of the present disclosure. This figure, like FIG. 6B, is a diagram showing an example of request generation in the first request generation unit 161. In FIG. The request generation in FIG. 6 differs from that in FIG. 6B in the setting of the request strength.
 検出された輝度の変化が比較的小さい場合、すなわち判定回路141の出力がHレベルかつ判定回路142の出力がLレベルの場合は、第1のリクエスト生成部161は、ノイズに伴う輝度の変化と判断し、弱いリクエスト(リクエスト弱)を生成する。第1のリクエスト生成部161は、信号線REQweakにHレベルの信号を出力する。 When the detected luminance change is relatively small, that is, when the output of the determination circuit 141 is at the H level and the output of the determination circuit 142 is at the L level, the first request generation unit 161 detects the luminance change due to noise. judge and generate a weak request (weak request). The first request generator 161 outputs an H level signal to the signal line REQweak.
 判定回路141及び判定回路142の出力が共にHレベルの場合、第1のリクエスト生成部161は、対象物の動きに伴う輝度の変化と判断し、強いリクエスト(リクエスト強)を生成する。第1のリクエスト生成部161は、信号線REQstrengthにHレベルの信号を出力する。 When the outputs of the determination circuit 141 and the determination circuit 142 are both at the H level, the first request generation unit 161 determines that the change in brightness is caused by the movement of the object and generates a strong request (strong request). The first request generator 161 outputs an H level signal to the signal line REQstrength.
 このように生成されたリクエストに基づいて、アービタ30によるリクエストの調停が行われる。ノイズによる輝度と判断されるリクエストに対して低い優先度が設定される。 Based on the requests generated in this way, the arbiter 30 arbitrates the requests. A low priority is set for requests that are determined to be luminance due to noise.
 これ以外の撮像素子2の構成は本開示の第1の実施形態における撮像素子2の構成と同様であるため、説明を省略する。 The configuration of the image pickup device 2 other than this is the same as the configuration of the image pickup device 2 in the first embodiment of the present disclosure, so the description is omitted.
 このように、本開示の第2の実施形態の撮像素子2は、入射光の輝度変化を複数の閾値に基づいて検出する。これにより、入射光の輝度変化がノイズによる輝度であるかを判断することができる。このノイズによる輝度の変化に基づくイベントの優先度を低くすることができ、不要なイベントの検出を低減することができる。 In this way, the imaging device 2 of the second embodiment of the present disclosure detects changes in luminance of incident light based on a plurality of thresholds. This makes it possible to determine whether the change in luminance of incident light is due to noise. It is possible to lower the priority of the event based on the luminance change due to this noise, and reduce the detection of unnecessary events.
 (3.第3の実施形態)
 上述の第1の実施形態の撮像素子2は、入射光の輝度の上昇方向の変化を複数の閾値に基づいて検出していた。これに対し、本開示の第3の実施形態の撮像素子2は、入射光の輝度の低下方向の変化も複数の閾値に基づいて判断する点で、上述の第1の実施形態と異なる。
(3. Third Embodiment)
The imaging device 2 of the first embodiment described above detects changes in the direction of increase in luminance of incident light based on a plurality of thresholds. On the other hand, the imaging device 2 of the third embodiment of the present disclosure is different from the above-described first embodiment in that the change in the decreasing direction of the luminance of incident light is also determined based on a plurality of thresholds.
 [輝度変化検出部の構成]
 図9は、本開示の第3の実施形態に係る輝度変化検出部の構成例を示す図である。同図は、図5と同様に、輝度変化検出部140の構成例を表す回路図である。同図の輝度変化検出部140は、判定回路144を更に備え、信号線14に信号線VblA及びVblBが含まれる点で、図5の輝度変化検出部140と異なる。
[Configuration of Luminance Change Detector]
FIG. 9 is a diagram illustrating a configuration example of a luminance change detection unit according to the third embodiment of the present disclosure; This figure, like FIG. 5, is a circuit diagram showing a configuration example of the luminance change detection section 140. As shown in FIG. The brightness change detection section 140 in FIG. 5 is different from the brightness change detection section 140 in FIG. 5 in that it further includes a determination circuit 144 and the signal lines 14 include the signal lines VblA and VblB.
 信号線VblA及び信号線VblB及び信号線Vblにより供給される閾値電圧をそれぞれVblA及びVblBと記載する。これらは、閾値電圧生成部50が生成する閾値電圧である。VblA及びVblBは、リセット時の微分回路130の出力電圧より低い電圧の閾値電圧である。このため、VblA及びVblBは、微分回路130の出力電圧に対する低下方向の閾値電圧となる。すなわち、VblA及びVblBは、入射光の輝度が低下する方向の閾値を構成する。なお、VblBはVblAより低い電圧の閾値電圧である。また、同図の判定回路143には、信号線VblAが接続され、閾値電圧VblAが供給される。 The threshold voltages supplied by the signal line VblA, the signal line VblB, and the signal line Vbl are denoted as VblA and VblB, respectively. These are threshold voltages generated by the threshold voltage generator 50 . VblA and VblB are threshold voltages lower than the output voltage of the differentiating circuit 130 at reset. Therefore, VblA and VblB are threshold voltages that decrease with respect to the output voltage of the differentiating circuit 130 . That is, VblA and VblB constitute thresholds in the direction in which the luminance of incident light decreases. Note that VblB is a threshold voltage lower than VblA. A signal line VblA is connected to the determination circuit 143 in the figure, and the threshold voltage VblA is supplied.
 判定回路144は、MOSトランジスタ156及び157を備える。また、MOSトランジスタ157のゲートには信号線VblBが接続され、出力の信号線として信号線VinEが接続される。これ以外の構成は判定回路141と同様であるため、説明を省略する。判定回路144は、微分回路130の出力電圧と閾値電圧VblBとを比較する。VblBはVblAより低い電圧であるため、判定回路144は、判定回路143よりも大きな輝度の低下方向の変化量を検出する。 The determination circuit 144 includes MOS transistors 156 and 157 . A signal line VblB is connected to the gate of the MOS transistor 157, and a signal line VinE is connected as an output signal line. Since the configuration other than this is the same as that of the determination circuit 141, description thereof is omitted. The determination circuit 144 compares the output voltage of the differentiating circuit 130 and the threshold voltage VblB. Since VblB is a voltage lower than VblA, the determination circuit 144 detects a greater amount of change in luminance in the direction of decrease than the determination circuit 143 does.
 同図の第2のリクエスト生成部162は、輝度変化検出部140からの信号線VinD及びVinEが接続され、判定回路143及び145の輝度変化検出の結果が入力される。第2のリクエスト生成部162は、入射光の輝度の低下方向の変化に基づくリクエストを生成し、アービタ30に対して出力する。 The signal lines VinD and VinE from the brightness change detection unit 140 are connected to the second request generation unit 162 in FIG. The second request generation unit 162 generates a request based on the change in the direction of decrease in luminance of incident light, and outputs the request to the arbiter 30 .
 これ以外の撮像素子2の構成は本開示の第1の実施形態における撮像素子2の構成と同様であるため、説明を省略する。 The configuration of the image pickup device 2 other than this is the same as the configuration of the image pickup device 2 in the first embodiment of the present disclosure, so the description is omitted.
 このように、本開示の第3の実施形態の撮像素子2は、入射光の輝度の上昇方向及び低下方向の変化を複数の閾値に基づいて検出する。これにより、入射光の輝度の上昇方向及び低下方向の変化に基づいてノイズを検出することができる。 In this way, the imaging device 2 of the third embodiment of the present disclosure detects changes in the direction of increase and decrease in luminance of incident light based on a plurality of thresholds. Accordingly, noise can be detected based on changes in the direction of increase and decrease in the luminance of incident light.
 (4.第4の実施形態)
 上述の第1の実施形態の撮像素子2は、入射光の輝度の上昇方向の変化を2種類の閾値に基づいて検出していた。これに対し、本開示の第4の実施形態の撮像素子2は、入射光の輝度の上昇方向の変化を3つ以上の閾値に基づいて検出する点で、上述の第1の実施形態と異なる。
(4. Fourth Embodiment)
The imaging device 2 of the first embodiment described above detects changes in the direction in which the luminance of incident light increases based on two types of threshold values. On the other hand, the imaging device 2 of the fourth embodiment of the present disclosure is different from the above-described first embodiment in that the change in the increasing direction of the luminance of incident light is detected based on three or more thresholds. .
 [輝度変化検出部の構成]
 図10は、本開示の第4の実施形態に係る輝度変化検出部の構成例を示す図である。同図は、図5と同様に、輝度変化検出部140の構成例を表す回路図である。同図の輝度変化検出部140は、判定回路145を更に備え、信号線14に信号線VbhCが含まれる点で、図5の輝度変化検出部140と異なる。
[Configuration of Luminance Change Detector]
FIG. 10 is a diagram illustrating a configuration example of a luminance change detection unit according to the fourth embodiment of the present disclosure; This figure, like FIG. 5, is a circuit diagram showing a configuration example of the luminance change detection section 140. As shown in FIG. The brightness change detection unit 140 in FIG. 5 is different from the brightness change detection unit 140 in FIG. 5 in that it further includes a determination circuit 145 and the signal line 14 includes the signal line VbhC.
 信号線VbhCにより供給される閾値電圧をVbhCと記載する。VbhCは、閾値電圧生成部50が生成する閾値電圧である。VbhCは、リセット時の微分回路130の出力電圧より高い電圧の閾値電圧である。このため、VbhCは、微分回路130の出力電圧に対する上昇方向の閾値電圧となる。すなわち、VblCは、入射光の輝度が上昇する方向の閾値を構成する。なお、VbhCは、VbhBより低い電圧の閾値電圧である。また、同図の判定回路145には、信号線VbhCが接続され、閾値電圧VbhCが供給される。 The threshold voltage supplied by the signal line VbhC is denoted as VbhC. VbhC is the threshold voltage generated by the threshold voltage generator 50 . VbhC is a threshold voltage higher than the output voltage of the differentiating circuit 130 at reset. Therefore, VbhC becomes a rising threshold voltage with respect to the output voltage of the differentiating circuit 130 . That is, VblC constitutes a threshold in the direction in which the luminance of incident light increases. Note that VbhC is a threshold voltage lower than VbhB. A signal line VbhC is connected to the determination circuit 145 in the figure, and the threshold voltage VbhC is supplied.
 判定回路145は、MOSトランジスタ158及び159を備える。また、MOSトランジスタ159のゲートには信号線VbhCが接続され、出力の信号線として信号線VinCが接続される。これ以外の構成は判定回路141と同様であるため、説明を省略する。判定回路145は、微分回路130の出力電圧と閾値電圧VbhCとを比較する。VbhCはVbhBより低い電圧であるため、判定回路145は、判定回路142よりも小さな輝度の上昇方向の変化量を検出する。 The determination circuit 145 includes MOS transistors 158 and 159 . A signal line VbhC is connected to the gate of the MOS transistor 159, and a signal line VinC is connected as an output signal line. Since the configuration other than this is the same as that of the determination circuit 141, description thereof is omitted. The determination circuit 145 compares the output voltage of the differentiating circuit 130 and the threshold voltage VbhC. Since VbhC is a voltage lower than VbhB, the determination circuit 145 detects a smaller amount of change in the upward direction of luminance than the determination circuit 142 does.
 同図の第1のリクエスト生成部161は、輝度変化検出部140からの信号線VinAVinB及びVinCが接続され、判定回路141、142及び145の輝度変化検出の結果が入力される。第1のリクエスト生成部161は、例えば、判定回路141及び142の検出結果に基づいてフリッカによる輝度の変化に対するリクエストの優先度を低くすることができる。また、第1のリクエスト生成部161は、判定回路142及び145の検出結果に基づいてノイズによる輝度の変化に対するリクエストの優先度を低くすることもできる。 The signal lines VinAVinB and VinC from the brightness change detection unit 140 are connected to the first request generation unit 161 in FIG. The first request generator 161 can, for example, lower the priority of requests for changes in luminance due to flicker based on the detection results of the determination circuits 141 and 142 . Also, the first request generation unit 161 can lower the priority of the request for luminance change due to noise based on the detection results of the determination circuits 142 and 145 .
 これ以外の撮像素子2の構成は本開示の第1の実施形態における撮像素子2の構成と同様であるため、説明を省略する。 The configuration of the image pickup device 2 other than this is the same as the configuration of the image pickup device 2 in the first embodiment of the present disclosure, so the description is omitted.
 このように、本開示の第4の実施形態の撮像素子2は、入射光の輝度の上昇方向の変化を3つ以上の閾値に基づいて検出する。 In this way, the imaging device 2 of the fourth embodiment of the present disclosure detects changes in the increasing direction of the luminance of incident light based on three or more thresholds.
 (5.第5の実施形態)
 上述の第1の実施形態の撮像素子2は、画素100毎に、複数の判定回路141及び142を備えていた。これに対し、本開示の第5の実施形態の撮像素子2は、判定回路141及び142を複数の画素100に分散して配置する点で、上述の第1の実施形態と異なる。
(5. Fifth Embodiment)
The imaging device 2 of the first embodiment described above has a plurality of determination circuits 141 and 142 for each pixel 100 . On the other hand, the imaging device 2 of the fifth embodiment of the present disclosure differs from the above-described first embodiment in that the determination circuits 141 and 142 are distributed and arranged in the plurality of pixels 100 .
 [画素の構成]
 図11は、本開示の第5の実施形態に係る画素の構成例を示す図である。同図は、図3と同様に、画素(画素100a及び100b)の構成例を表す図である。同図の画素100a及び画素100bは、判定回路141及び142が分散されて配置される点で、図3の画素100と異なる。
[Pixel configuration]
FIG. 11 is a diagram illustrating a configuration example of a pixel according to the fifth embodiment of the present disclosure; This figure, like FIG. 3, is a diagram showing a configuration example of pixels ( pixels 100a and 100b). A pixel 100a and a pixel 100b in FIG. 3 differ from the pixel 100 in FIG. 3 in that determination circuits 141 and 142 are arranged in a distributed manner.
 同図の画素100aは輝度変化検出部140に判定回路141が配置され、同図の画素100bは輝度変化検出部140に判定回路142が配置される。また、画素100a及び画素100bに対して共通にリクエストを生成するリクエスト生成部160が配置される。このリクエスト生成部160には、画素100aからの信号線VinAと画素100bからの信号線VinBとが配線される。リクエスト生成部160は、画素100aの判定回路141における閾値電圧VbhAに基づく検出結果と画素100bの判定回路142にける閾値電圧VbhBに基づく検出結果とに基づいてフリッカのリクエストの優先度を設定することができる。また、リクエスト生成部160は、画素100aの検出結果に基づいて対象物の動きに基づく輝度の変化によるリクエストを生成することができる。 A determination circuit 141 is arranged in the brightness change detection section 140 of the pixel 100a in the same figure, and a determination circuit 142 is arranged in the brightness change detection section 140 of the pixel 100b in the same figure. Also, a request generation unit 160 is arranged to generate a request in common for the pixels 100a and 100b. A signal line VinA from the pixel 100a and a signal line VinB from the pixel 100b are wired to the request generation unit 160 . The request generation unit 160 sets the priority of the flicker request based on the detection result based on the threshold voltage VbhA in the determination circuit 141 of the pixel 100a and the detection result based on the threshold voltage VbhB in the determination circuit 142 of the pixel 100b. can be done. In addition, the request generation unit 160 can generate a request based on the change in luminance based on the motion of the object based on the detection result of the pixel 100a.
 [画素アレイ部の構成]
 図12A及び12Bは、本開示の第5の実施形態に係る画素アレイ部の構成例を示す図である。同図は、画素アレイ部10における画素100a及び100bの配置例を表す図である。
[Configuration of Pixel Array Section]
12A and 12B are diagrams showing configuration examples of a pixel array unit according to the fifth embodiment of the present disclosure. This figure is a diagram showing an arrangement example of pixels 100 a and 100 b in the pixel array section 10 .
 図12Aは、画素100a及び100bが行及び列方向に交互に配置される例を表したものである。なお、同図の点線は、共通のリクエスト生成部160に接続される画素の範囲を表したものである。 FIG. 12A shows an example in which pixels 100a and 100b are alternately arranged in row and column directions. Note that the dotted line in FIG. 2 represents the range of pixels connected to the common request generator 160 .
 図12Bは、2行2列の4つの画素において3つの画素100a及び1つの画素100bが配置される例を表したものである。2行2列の画素毎にリクエスト生成部160を配置することができる。 FIG. 12B shows an example in which three pixels 100a and one pixel 100b are arranged in four pixels of two rows and two columns. A request generator 160 can be arranged for each pixel in two rows and two columns.
 これ以外の撮像素子2の構成は本開示の第1の実施形態における撮像素子2の構成と同様であるため、説明を省略する。 The configuration of the image pickup device 2 other than this is the same as the configuration of the image pickup device 2 in the first embodiment of the present disclosure, so the description is omitted.
 このように、本開示の第5の実施形態の撮像素子2は、判定回路141等を複数の画素100に分散されて配置することにより、画素100の構成を簡略化することができる。 In this way, the imaging device 2 of the fifth embodiment of the present disclosure can simplify the configuration of the pixels 100 by arranging the determination circuits 141 and the like in a plurality of pixels 100 in a distributed manner.
 (6.第6の実施形態)
 上述の第1の実施形態の撮像素子2は、閾値電圧生成部50が閾値電圧を生成していた。これに対し、本開示の第6の実施形態の撮像素子2は、閾値電圧生成部50が閾値転圧を調整する点で、上述の第1の実施形態と異なる。
(6. Sixth Embodiment)
In the imaging device 2 of the first embodiment described above, the threshold voltage generator 50 generates the threshold voltage. On the other hand, the imaging device 2 of the sixth embodiment of the present disclosure differs from the above-described first embodiment in that the threshold voltage generator 50 adjusts the threshold rolling pressure.
 [画素アレイ部の構成]
 図13A及び13Bは、本開示の第6の実施形態に係る閾値電圧生成部50の構成例を示す図である。
[Configuration of Pixel Array Section]
13A and 13B are diagrams showing configuration examples of the threshold voltage generator 50 according to the sixth embodiment of the present disclosure.
 図13Aは、照度計測部60を備える閾値電圧生成部50の例を表した図である。照度計測部60は、撮像素子2の周囲の照度を計測して閾値電圧生成部50に出力するものである。 FIG. 13A is a diagram showing an example of the threshold voltage generation unit 50 including the illuminance measurement unit 60. FIG. The illuminance measurement unit 60 measures the illuminance around the imaging element 2 and outputs the result to the threshold voltage generation unit 50 .
 図13Aの閾値電圧生成部50は、照度計測部60からの照度に基づいて閾値電圧を調整する。例えば、閾値電圧生成部50は、照度に対して閾値、例えば、低照度(L1)及び高照度(L2)の2つの照度を設定することができる。更に閾値電圧生成部50は、照度計測部60からの照度がL1未満の場合、L1以上L2未満の場合及びL2以上の場合の3つの場合についてVinA及びVbhBの値を調整することができる。 The threshold voltage generation unit 50 in FIG. 13A adjusts the threshold voltage based on the illuminance from the illuminance measurement unit 60. For example, the threshold voltage generator 50 can set thresholds for illuminance, for example, two illuminances, low illuminance (L1) and high illuminance (L2). Further, the threshold voltage generation unit 50 can adjust the values of VinA and VbhB for three cases: when the illuminance from the illuminance measurement unit 60 is less than L1, when it is greater than or equal to L1 and less than L2, and when it is greater than or equal to L2.
 これにより、屋外での使用や移動しながら撮像する場合において、照度情報から対象部との明るさの変化に基づく輝度の変化とフリッカよる輝度の変化とを判別することができる。照度に基づいて閾値電圧を調整することにより、環境光が変化した場合であってもフリッカに基づく輝度の変化を検出することができる。 As a result, when using the camera outdoors or capturing images while moving, it is possible to distinguish between changes in brightness based on changes in brightness with respect to the target part and changes in brightness due to flicker from the illuminance information. By adjusting the threshold voltage based on the illuminance, changes in luminance due to flicker can be detected even when ambient light changes.
 図13Bの閾値電圧生成部50は、リクエスト強計数部51と、リクエスト弱計数部52と、比較部53及び54と、電圧生成部55及び56とを備える。 The threshold voltage generator 50 in FIG. 13B includes a strong request counter 51 , a weak request counter 52 , comparators 53 and 54 , and voltage generators 55 and 56 .
 リクエスト強計数部51は、所定の期間のリクエスト強の個数を計数し、比較部53に対して出力するものである。また、リクエスト弱計数部52は、所定の期間のリクエスト弱の個数を計数し、比較部54に対して出力するものである。 The strong request counting unit 51 counts the number of strong requests in a predetermined period and outputs the count to the comparing unit 53 . The weak request counting unit 52 counts the number of weak requests in a predetermined period and outputs the count to the comparing unit 54 .
 比較部53は、リクエスト強イベント目標数とリクエスト強の個数とを比較し、比較結果を電圧生成部55に対して出力するものである。比較部54は、リクエスト弱イベント目標数とリクエスト弱の個数とを比較し、比較結果を電圧生成部56に対して出力するものである。 The comparison unit 53 compares the target number of strong request events and the number of strong requests, and outputs the comparison result to the voltage generation unit 55 . The comparison unit 54 compares the target number of weak requests with the number of weak requests, and outputs the comparison result to the voltage generation unit 56 .
 電圧生成部55は、比較部53からの比較結果に応じた閾値電圧を生成するものである。また、電圧生成部56は、比較部54からの比較結果に応じた閾値電圧を生成するものである。 The voltage generating section 55 generates a threshold voltage according to the comparison result from the comparing section 53. Also, the voltage generator 56 generates a threshold voltage according to the comparison result from the comparator 54 .
 比較部53及び電圧生成部55は、リクエスト強の個数をリクエスト強イベント目標数に収束するように帰還制御を行い、閾値電圧を調整する。同様に、比較部54及び電圧生成部56は、リクエスト弱の個数をリクエスト弱イベント目標数に収束するように帰還制御を行い、閾値電圧を調整する。 The comparison unit 53 and the voltage generation unit 55 perform feedback control so that the number of strong requests converges to the target number of strong request events, and adjust the threshold voltage. Similarly, the comparison unit 54 and the voltage generation unit 56 perform feedback control so that the number of weak requests converges to the target number of weak request events, and adjust the threshold voltage.
 これにより、想定外の光源のフリッカやその他のイベント過剰につながる要因に対応することが可能になる。 This makes it possible to deal with unexpected flickering of light sources and other factors that lead to excess events.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 It should be noted that the effects described in this specification are only examples and are not limited, and other effects may also occur.
 なお、本技術は以下のような構成も取ることができる。
(1)
 入射光の輝度の同一方向の変化を複数の閾値に基づいて検出する輝度変化検出部と、
 前記輝度変化検出部における検出の結果の転送を要求するリクエストを生成するリクエスト生成部と
を有する撮像素子。
(2)
 前記輝度変化検出部は、前記輝度が上昇する方向の変化を検出する
前記(1)に記載の撮像素子。
(3)
 前記入射光の輝度が低下する方向の変化を検出する第2の輝度変化検出部
を更に有し、
 前記リクエスト生成部は、前記輝度変化検出部及び前記第2の輝度変化検出部における前記検出の結果の転送を要求する
前記(2)に記載の撮像素子。
(4)
 前記第2の輝度変化検出部は、複数の閾値に基づいて前記変化を検出する
前記(3)に記載の撮像素子。
(5)
 前記リクエスト生成部は、前記検出の結果に応じて異なる優先度の前記リクエストを生成する
前記(1)から(4)の何れかに記載の撮像素子。
(6)
 前記優先度に応じて前記リクエストの調停を行うアービタを更に有する
前記(5)に記載の撮像素子。
(7)
 前記入射光の光電変換を行う光電変換部及び前記光電変換に基づく光電流の変化に応じた光信号を生成する信号生成回路を備える画素を更に有し、
 前記輝度変化検出部は、前記生成された光信号と前記閾値とに基づいて前記入射光の輝度の変化を検出する
前記(1)から(6)の何れかに記載の撮像素子。
(8)
 前記輝度変化検出部は、前記複数の閾値のそれぞれに基づいて前記入射光の輝度の同一の方向の変化を検出する複数の判定回路を備え、
 前記複数の判定回路は、それぞれ異なる前記画素に配置された前記信号生成回路により生成される光信号に基づいて前記入射光の輝度変化を検出し、
 前記リクエスト生成部は、前記複数の判定回路の検出結果に基づいて前記リクエストを生成する
前記(7)に記載の撮像素子。
(9)
 前記閾値に応じた電圧である閾値電圧を生成して前記輝度変化検出部に供給する閾値電圧生成部を更に有し、
 前記輝度変化検出部は、前記生成された閾値電圧に基づいて前記入射光の輝度変化を検出する
前記(1)から(8)の何れかに記載の撮像素子。
(10)
 前記閾値電圧生成部は、周囲の照度に応じて前記閾値電圧を調整する
前記(9)に記載の撮像素子。
(11)
 前記閾値電圧生成部は、前記生成されたリクエスト数に応じて前記閾値電圧を調整する
前記(9)に記載の撮像素子。
(12)
 入射光の輝度の同一方向の変化を複数の閾値に基づいて検出する輝度変化検出部と、
 前記輝度変化検出部における検出の結果の転送を要求するリクエストを生成するリクエスト生成部と、
 前記検出の結果を処理する信号処理部と
を有する撮像装置。
Note that the present technology can also take the following configuration.
(1)
a luminance change detection unit that detects changes in the luminance of incident light in the same direction based on a plurality of thresholds;
and a request generation unit that generates a request to transfer the result of detection by the luminance change detection unit.
(2)
The imaging device according to (1), wherein the luminance change detection unit detects a change in a direction in which the luminance increases.
(3)
further comprising a second luminance change detection unit that detects a change in the direction in which the luminance of the incident light decreases;
The imaging device according to (2), wherein the request generating section requests transfer of the detection results of the luminance change detecting section and the second luminance change detecting section.
(4)
The imaging device according to (3), wherein the second brightness change detection unit detects the change based on a plurality of threshold values.
(5)
The imaging device according to any one of (1) to (4), wherein the request generation unit generates the requests with different priorities according to the detection result.
(6)
The imaging device according to (5), further comprising an arbiter that arbitrates the requests according to the priority.
(7)
a pixel further comprising a photoelectric conversion unit that photoelectrically converts the incident light and a signal generation circuit that generates an optical signal corresponding to a change in photocurrent based on the photoelectric conversion;
The imaging device according to any one of (1) to (6), wherein the luminance change detection section detects a change in luminance of the incident light based on the generated optical signal and the threshold.
(8)
The luminance change detection unit includes a plurality of determination circuits for detecting changes in the same direction of luminance of the incident light based on each of the plurality of thresholds,
the plurality of determination circuits detect a luminance change of the incident light based on optical signals generated by the signal generation circuits arranged in the different pixels;
The imaging device according to (7), wherein the request generation unit generates the request based on detection results of the plurality of determination circuits.
(9)
further comprising a threshold voltage generation unit that generates a threshold voltage that is a voltage corresponding to the threshold value and supplies the threshold voltage to the luminance change detection unit;
The imaging device according to any one of (1) to (8), wherein the luminance change detection section detects the luminance change of the incident light based on the generated threshold voltage.
(10)
The imaging device according to (9), wherein the threshold voltage generation unit adjusts the threshold voltage according to ambient illuminance.
(11)
The imaging device according to (9), wherein the threshold voltage generation unit adjusts the threshold voltage according to the number of generated requests.
(12)
a luminance change detection unit that detects changes in the luminance of incident light in the same direction based on a plurality of thresholds;
a request generating unit for generating a request requesting transfer of the detection result of the luminance change detecting unit;
and a signal processing unit that processes the result of the detection.
 1 撮像装置
 2 撮像素子
 10 画素アレイ部
 20 制御回路
 30 アービタ
 40 信号処理部
 50 閾値電圧生成部
 100、100a、100b 画素
 110 光電変換部
 120 電流電圧変換回路
 130 微分回路
 140 輝度変化検出部
 141~145 判定回路
 160 リクエスト生成部
 161 第1のリクエスト生成部
 162 第2のリクエスト生成部
1 imaging device 2 imaging device 10 pixel array unit 20 control circuit 30 arbiter 40 signal processing unit 50 threshold voltage generation unit 100, 100a, 100b pixel 110 photoelectric conversion unit 120 current-voltage conversion circuit 130 differentiation circuit 140 luminance change detection unit 141 to 145 Judgment circuit 160 request generator 161 first request generator 162 second request generator

Claims (12)

  1.  入射光の輝度の同一方向の変化を複数の閾値に基づいて検出する輝度変化検出部と、
     前記輝度変化検出部における検出の結果の転送を要求するリクエストを生成するリクエスト生成部と
    を有する撮像素子。
    a luminance change detection unit that detects changes in the luminance of incident light in the same direction based on a plurality of thresholds;
    and a request generation unit that generates a request to transfer the result of detection by the luminance change detection unit.
  2.  前記輝度変化検出部は、前記輝度が上昇する方向の変化を検出する
    請求項1に記載の撮像素子。
    2. The imaging device according to claim 1, wherein the luminance change detection section detects a change in the direction in which the luminance increases.
  3.  前記入射光の輝度が低下する方向の変化を検出する第2の輝度変化検出部
    を更に有し、
     前記リクエスト生成部は、前記輝度変化検出部及び前記第2の輝度変化検出部における前記検出の結果の転送を要求する
    請求項2に記載の撮像素子。
    further comprising a second luminance change detection unit that detects a change in the direction in which the luminance of the incident light decreases;
    3. The imaging device according to claim 2, wherein the request generating section requests transfer of the detection result in the luminance change detecting section and the second luminance change detecting section.
  4.  前記第2の輝度変化検出部は、複数の閾値に基づいて前記変化を検出する
    請求項3に記載の撮像素子。
    4. The imaging device according to claim 3, wherein the second luminance change detection section detects the change based on a plurality of thresholds.
  5.  前記リクエスト生成部は、前記検出の結果に応じて異なる優先度の前記リクエストを生成する
    請求項1に記載の撮像素子。
    The imaging device according to claim 1, wherein the request generation unit generates the requests with different priorities according to the detection result.
  6.  前記優先度に応じて前記リクエストの調停を行うアービタを更に有する
    請求項5に記載の撮像素子。
    6. The imaging device according to claim 5, further comprising an arbiter that arbitrates the requests according to the priority.
  7.  前記入射光の光電変換を行う光電変換部及び前記光電変換に基づく光電流の変化に応じた光信号を生成する信号生成回路を備える画素を更に有し、
     前記輝度変化検出部は、前記生成された光信号と前記閾値とに基づいて前記入射光の輝度の変化を検出する
    請求項1に記載の撮像素子。
    a pixel further comprising a photoelectric conversion unit that photoelectrically converts the incident light and a signal generation circuit that generates an optical signal corresponding to a change in photocurrent based on the photoelectric conversion;
    2. The imaging device according to claim 1, wherein the luminance change detection section detects a change in luminance of the incident light based on the generated optical signal and the threshold.
  8.  前記輝度変化検出部は、前記複数の閾値のそれぞれに基づいて前記入射光の輝度の同一の方向の変化を検出する複数の判定回路を備え、
     前記複数の判定回路は、それぞれ異なる前記画素に配置された前記信号生成回路により生成される光信号に基づいて前記入射光の輝度変化を検出し、
     前記リクエスト生成部は、前記複数の判定回路の検出結果に基づいて前記リクエストを生成する
    請求項7に記載の撮像素子。
    The luminance change detection unit includes a plurality of determination circuits for detecting changes in the same direction of luminance of the incident light based on each of the plurality of thresholds,
    the plurality of determination circuits detect a luminance change of the incident light based on optical signals generated by the signal generation circuits arranged in the different pixels;
    8. The imaging device according to claim 7, wherein the request generating section generates the request based on detection results of the plurality of determination circuits.
  9.  前記閾値に応じた電圧である閾値電圧を生成して前記輝度変化検出部に供給する閾値電圧生成部を更に有し、
     前記輝度変化検出部は、前記生成された閾値電圧に基づいて前記入射光の輝度変化を検出する
    請求項1に記載の撮像素子。
    further comprising a threshold voltage generation unit that generates a threshold voltage that is a voltage corresponding to the threshold value and supplies the threshold voltage to the luminance change detection unit;
    2. The imaging device according to claim 1, wherein the luminance change detection section detects the luminance change of the incident light based on the generated threshold voltage.
  10.  前記閾値電圧生成部は、周囲の照度に応じて前記閾値電圧を調整する
    請求項9に記載の撮像素子。
    10. The imaging device according to claim 9, wherein the threshold voltage generator adjusts the threshold voltage according to ambient illuminance.
  11.  前記閾値電圧生成部は、前記生成されたリクエストの数に応じて前記閾値電圧を調整する
    請求項9に記載の撮像素子。
    10. The imaging device according to claim 9, wherein the threshold voltage generator adjusts the threshold voltage according to the number of generated requests.
  12.  入射光の輝度の同一方向の変化を複数の閾値に基づいて検出する輝度変化検出部と、
     前記輝度変化検出部における検出の結果の転送を要求するリクエストを生成するリクエスト生成部と、
     前記検出の結果を処理する信号処理部と
    を有する撮像装置。
    a luminance change detection unit that detects changes in the luminance of incident light in the same direction based on a plurality of thresholds;
    a request generation unit for generating a request requesting transfer of the detection result of the luminance change detection unit;
    and a signal processing unit that processes the result of the detection.
PCT/JP2022/002339 2021-03-31 2022-01-24 Imaging element and imaging device WO2022209206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021059606A JP2022156089A (en) 2021-03-31 2021-03-31 Imaging element and imaging device
JP2021-059606 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209206A1 true WO2022209206A1 (en) 2022-10-06

Family

ID=83458632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002339 WO2022209206A1 (en) 2021-03-31 2022-01-24 Imaging element and imaging device

Country Status (2)

Country Link
JP (1) JP2022156089A (en)
WO (1) WO2022209206A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176250A1 (en) * 2018-03-15 2019-09-19 株式会社ニコン Control device, control method, and program
WO2019230217A1 (en) * 2018-06-01 2019-12-05 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
JP2020088676A (en) * 2018-11-28 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 Sensor and control method
JP2021034933A (en) * 2019-08-27 2021-03-01 キヤノン株式会社 Imaging element, imaging apparatus, control method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176250A1 (en) * 2018-03-15 2019-09-19 株式会社ニコン Control device, control method, and program
WO2019230217A1 (en) * 2018-06-01 2019-12-05 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
JP2020088676A (en) * 2018-11-28 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 Sensor and control method
JP2021034933A (en) * 2019-08-27 2021-03-01 キヤノン株式会社 Imaging element, imaging apparatus, control method, and program

Also Published As

Publication number Publication date
JP2022156089A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
US10212380B2 (en) Pixel acquisition circuit, image sensor and image acquisition system
JP7242697B2 (en) Event-based image sensor and method of operation
US7791657B2 (en) Dynamic range enhancement scheme for imagers
US20210067679A1 (en) Event sensors with flicker analysis circuitry
CN206077563U (en) Image sensor pixel and the system including imaging device
US20090310003A1 (en) Image sensor
US11330219B2 (en) Dynamic vision sensor system
EP3267678B1 (en) Pixel acquisition circuit, image sensor and image acquisition system
CN105391947A (en) Image sensor, operation method thereof and motion sensor comprising image sensor
US11815394B2 (en) Photoelectric conversion device, method of controlling photoelectric conversion device, and information processing apparatus
EP3354012A1 (en) Imaging system unit cell and methods for dynamic range imaging
US20240107194A1 (en) Delay Equalization in Event-Based Vision Sensors
WO2021184934A1 (en) Image sensing device
US20180184020A1 (en) Extended high dynamic range direct injection circuit for imaging applications
US12088934B2 (en) Image pickup element and image pickup method
US20230156354A1 (en) Imaging device and imaging method
US10356344B1 (en) High dynamic range imaging pixels with multiple exposures
WO2022209206A1 (en) Imaging element and imaging device
US9219872B2 (en) Image pickup apparatus, driving method for image pickup apparatus, image pickup system, and driving method for image pickup system
WO2021256102A1 (en) Sensor device, control method, and program
JP2022067623A (en) Photoelectric conversion element, method for controlling photoelectric conversion element, and information processing apparatus
US11917290B2 (en) Photoelectric conversion device, image pickup apparatus, control method, and storage medium
US20230139066A1 (en) Image sensing apparatus
US12267603B2 (en) Photoelectric conversion device, imaging device, control method, and storage medium
KR20250011007A (en) Dynamic vision sensor with bias vriation circuit, image signal processor and application processor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779436

Country of ref document: EP

Kind code of ref document: A1