[go: up one dir, main page]

WO2022209180A1 - 距離測定装置および距離測定システム - Google Patents

距離測定装置および距離測定システム Download PDF

Info

Publication number
WO2022209180A1
WO2022209180A1 PCT/JP2022/001822 JP2022001822W WO2022209180A1 WO 2022209180 A1 WO2022209180 A1 WO 2022209180A1 JP 2022001822 W JP2022001822 W JP 2022001822W WO 2022209180 A1 WO2022209180 A1 WO 2022209180A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
light
distance measurement
distance
ranging
Prior art date
Application number
PCT/JP2022/001822
Other languages
English (en)
French (fr)
Inventor
翔太 山田
征人 竹本
繁 齋藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280019894.1A priority Critical patent/CN116964487A/zh
Priority to JP2023510517A priority patent/JPWO2022209180A1/ja
Publication of WO2022209180A1 publication Critical patent/WO2022209180A1/ja
Priority to US18/466,429 priority patent/US20240004041A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/495Counter-measures or counter-counter-measures using electronic or electro-optical means

Definitions

  • the present disclosure relates to a distance measuring device that generates a distance image from a plurality of section images obtained by dividing a target space to be imaged according to the distance.
  • This distance measuring device irradiates a laser beam that repeatedly emits light with a predetermined pulse width, and receives the reflected light when the irradiated laser beam hits an object and reflects it, thereby calculating the round-trip time of the laser beam phase difference).
  • TOF Time of Flight
  • Patent Document 1 a light emitting period and a non-light emitting period are provided, and a distance measurement operation is performed by subtracting the pixel signal in the non-light emitting period from the pixel signal in the light emitting period. Also, by modulating the length of the light emitting period and the non-light emitting period, the influence of interference light from other distance measuring devices is suppressed.
  • Patent Document 1 has a problem that the frame rate decreases because the light emission interval becomes longer.
  • the present disclosure has been made in view of this point, and aims to reduce the influence of interference light in a distance measurement device without causing a decrease in frame rate.
  • a distance measuring device includes: a light source that projects pulsed light toward a target space; a light receiving unit that receives light reflected by an object in the target space; A distance measurement control unit for selecting a distance measurement interval in which distance measurement is to be performed from among a plurality of distance measurement intervals set in response to the measurement, and controlling the projection timing of the light source and the light reception timing of the light receiving unit in accordance with the selected distance measurement interval.
  • the ranging control unit has a random number generation unit that generates random number data for randomly selecting a ranging interval from the plurality of ranging intervals.
  • a distance measuring device includes a light source that projects pulsed light toward a target space, a light receiving unit that receives light reflected by an object in the target space, and a distance to the target space. selecting a range-finding section in which range-finding is to be performed from among a plurality of range-finding sections set according to the distance measurement, and controlling the projection timing of the light source and the light-receiving timing of the light-receiving unit in accordance with the selected range-finding section A section image corresponding to the range-finding section selected by the ranging control section is generated from output signals from the control section and the light-receiving section, and a plurality of section images corresponding to the plurality of range-finding sections are synthesized. and a distance image generation unit for generating a distance image, wherein the ranging control unit generates random number data for randomly selecting a distance measurement interval from the plurality of distance measurement intervals.
  • the ranging control unit can randomly select a ranging section for ranging from among a plurality of ranging sections set according to the distance to the target space. Therefore, even if there is a laser beam emitted from another distance measuring device, the influence of the reflected light can be dispersed over a plurality of distance measurement intervals, and the reflected light can be reflected in the interval image of a specific distance measurement interval. The probability of contamination can be greatly reduced. Moreover, since the range-finding interval for range-finding is selected at random, the light emission interval does not become long, and the frame period does not become long. Therefore, the influence of interference light can be reduced without lowering the frame rate.
  • the random number generation unit may generate random number data such that each of the plurality of ranging intervals is selected once in each frame.
  • the distance measurement control section can use the random number data generated by the random number generation section to give a random delay to the projection timing of the light source and the light reception timing of the light receiving section in the distance measurement section. It may be configured as follows.
  • the random delay may be set within a range that does not extend the period for generating the interval image.
  • the distance image generation unit includes an interference determination unit that determines whether there is an influence of interference light other than the pulsed light projected from the light source. Random number data may be generated when it is determined to be present.
  • the influence can be reduced by randomly selecting the distance measurement section for distance measurement.
  • the interference determination unit detects the influence of interference light when a signal equal to or greater than a predetermined threshold is detected in a section image obtained when the light receiving unit receives light in a non-light emitting state in which the light source does not project pulsed light. It may be determined that there is.
  • the distance image generation unit includes a storage unit that stores a plurality of frames of a plurality of section images corresponding to the plurality of distance measurement sections, and the section images affected by the interference light are stored in the storage unit. Correction may be performed using the stored section images of the range-finding section in the preceding and following frames.
  • a distance measurement system includes two or more distance measurement devices according to the aspect, and controls the operation of the random number generation unit included in the distance measurement control unit of the distance measurement device.
  • a random number assignment control unit is provided.
  • the random number assignment control unit may provide a pseudorandom number seed to the random number generation unit, and may change the seed in time series.
  • FIG. 1 is a block diagram showing the configuration of the distance measuring device according to the first embodiment.
  • the distance measuring device 1 is a device that acquires information on the distance to an object using the TOF method (TOF: Time Of Flight) and outputs a distance image.
  • TOF Time Of Flight
  • the light source 11 is configured to project pulsed light toward the target space.
  • the light receiving unit 12 is configured to receive light reflected by an object in the target space.
  • the distance measurement control section 20 is configured to control the pulsed light projection operation of the light source 11 and the light receiving operation of the light receiving section 12 .
  • the ranging control unit 20 sets a plurality of ranging sections (subranges, also simply referred to as sections) in the target space according to the distance. Then, a distance measurement interval in which distance measurement is to be performed is selected from a plurality of distance measurement intervals, and the timing at which the light source 11 projects the pulsed light and the light reception (exposure) by the light receiving unit 12 are determined according to the selected distance measurement interval. Control when to do it.
  • the distance image generation section 30 generates a section image corresponding to the distance measurement section selected by the distance measurement control section 20 from the output signal of the light receiving section 12 . Then, a plurality of section images respectively corresponding to the plurality of ranging sections are synthesized to generate a distance image showing the distance value.
  • the light source 11 is composed of, for example, a laser diode and outputs a pulsed laser.
  • the light source 11 may be a light emitting diode (LED), a vertical cavity surface emitting laser (VCSEL), a halogen lamp, or the like, other than a laser diode.
  • the pulsed light projected by the light source 11 preferably has a single wavelength, a relatively short pulse width, and a relatively high peak intensity. Further, the wavelength of the pulsed light is preferably in the near-infrared wavelength range, which has low human visibility and is less susceptible to ambient light.
  • the light source 11 may include a projection optical system, such as a lens, for projecting pulsed light onto the target space.
  • the light receiving unit 12 includes an imaging element 13 including a plurality of pixels and a pixel signal output unit 14. For example, an avalanche photodiode is arranged in each pixel of the imaging device 13 . Other photodetectors may be arranged in each pixel. Each pixel is configured to be switchable between an exposed state in which it receives reflected light and a non-exposed state in which it does not receive reflected light.
  • the light receiving unit 12 outputs a pixel signal based on the reflected light received by each pixel in an exposed state.
  • the light-receiving unit 12 may include a light-receiving optical system, such as a lens, for condensing the reflected light onto the light-receiving surface of the imaging element 13 .
  • the ranging control unit 20 controls the timing of outputting light from the light source 11, the pulse width of the light output from the light source 11, and the like. Further, in the light receiving control of the light receiving unit 12, the distance measurement control unit 20 controls the exposure timing, the exposure time, etc. by controlling the operation timing of the transistor in each pixel of the image sensor 13. FIG. The exposure timing and exposure time may be the same for all pixels, or may be different for each pixel.
  • the ranging control unit 20 includes a ranging section determination unit 21, a timing generation unit 22, and a random number generation unit 23.
  • the distance measurement section determination unit 21 selects a distance measurement section for which distance measurement is to be performed from among a plurality of distance measurement sections set according to the distance to the target space.
  • the timing generation unit 22 controls the timing at which the light source 11 projects the pulsed light and the timing at which the light receiving unit 12 performs (exposure) according to the selected ranging interval.
  • the random number generating section 23 generates random number data so that the ranging section determining section 21 can randomly select a ranging section.
  • the distance image generation unit 30 includes a section image storage unit 31 and a distance image output unit 32.
  • the section image storage unit 31 acquires a section image representing reflected light in the distance measurement section from the pixel signals output from the light receiving section 12 .
  • the acquired section images are stored in the section image storage unit 31 for a plurality of frames, for example.
  • a frame is a period during which distance measurement is performed for all of a plurality of distance measurement intervals set for the target space, and one frame corresponds to one distance image.
  • the distance image output unit 32 synthesizes a plurality of interval images acquired in one frame to generate and output a distance image.
  • Fig. 2 is an example of a captured scene.
  • distance measuring sections 1 to 5 are set in order from near to far.
  • Cone OB1, cone OB2, soccer ball OB3, cone OB4, and person OB5 exist as objects in ranging sections 1 to 5, respectively.
  • FIG. 3 shows an operation example of a typical TOF camera
  • FIG. 4 shows an operation example of the TOF camera in this embodiment.
  • the light emission pulse is a pulse for causing the light source 11 to emit light
  • the reflection pulse is a pulse for causing the light receiving section 12 to be exposed.
  • the time difference between the light emission pulse and the reflection pulse differs depending on the distance measurement section, the illustration is simplified in FIGS. 3 and 4.
  • FIG. Also, the TOF cameras A and B are assumed to operate asynchronously.
  • the TOF cameras A and B repeatedly select the range-finding section for range-finding from range-finding sections 1 to 5 in order.
  • the period during which the TOF camera A performs distance measurement in the distance measurement section 1 and the period during which the TOF camera B performs distance measurement in the distance measurement section 3 overlap. Therefore, when the TOF camera A performs distance measurement in the distance measurement section 1, the light receiving section 12 may pick up the reflected light in the distance measurement section 3 by the TOF camera B. That is, there is a possibility that the reflected light from the soccer ball OB3 existing in the ranging section 3 in the imaging scene example of FIG. That is, the TOF camera A is affected by the interference light from the TOF camera B.
  • the TOF cameras A and B randomly select the range-finding section for range-finding from the range-finding sections 1-5. Therefore, the frequency of overlap between the period in which TOF camera A measures the distance in range 1 and the period in which TOF camera B performs range 3 is significantly reduced. The probability that the light receiving unit 12 picks up the reflected light in the distance measurement section 3 by the TOF camera B when performing distance measurement is greatly reduced. TOF camera A is hardly affected by interference light from TOF camera B.
  • FIG. 5 is an image example of a distance image output from the TOF camera A, where (a) is for typical driving (FIG. 3) and (b) is for this embodiment (FIG. 4).
  • FIG. 5(a) in a typical drive pattern, reflected light from the TOF camera B is mixed in the distance measurement in the distance measurement section 1 with respect to the soccer ball OB3 in the distance measurement section 3. , the signal indicating the ranging section 1 is mixed.
  • the distance measurement section in which distance measurement is performed is randomly selected, thereby greatly reducing the probability of the reflected light from the TOF camera B being mixed. Therefore, the signals are not mixed.
  • FIG. 6 shows a setting example of light emission pulses and exposure pulses.
  • the measurement range of distances 0 to Z (m) is divided into N (N is an integer equal to or greater than 2) distance measurement sections 1 to N. That is, the distance measurement range of section N is (N ⁇ 1)/N ⁇ Z(m) to Z(m).
  • a time difference between the light emission pulse and the exposure pulse is set according to the distance for each of the ranging sections 1 to N. That is, the time difference between the light emission pulse and the exposure pulse is the shortest in the nearest distance measurement section 1, and the time difference between the light emission pulse and the exposure pulse gradually increases as the distance measurement section becomes farther. Letting the time difference in each distance measurement interval N be TdN, the following is obtained.
  • one emission pulse and one exposure pulse are generated in one measurement period, but they may be generated a plurality of times.
  • FIG. 6(a) is a typical driving example, in which the distance measurement sections are repeated in order from near to far.
  • the ranging section 1 is measured (Ts1)
  • ranging section 2 Ts2
  • ranging section 3 Ts3
  • ranging section N TsN
  • FIG. 6(b) shows the present embodiment, in which the ranging section is randomly selected.
  • the distance measurement interval 3 is measured first (Ts3), then the distance measurement interval N (TsN), the distance measurement interval 1 (Ts1), . . . , and finally the distance measurement interval 2 (Ts2). is measured. Therefore, the time difference between the light emission pulse and the exposure pulse varies randomly. Also, in frame F1, random selection is performed so that ranging sections 1 to N are selected once each.
  • the frame period does not become longer than in the conventional case, and the frame rate does not decrease.
  • the ranging control unit 20 randomly selects a ranging section for ranging from among a plurality of ranging sections set according to the distance to the target space. be able to. Therefore, even if there is a laser beam emitted from another distance measuring device, the influence of the reflected light can be dispersed over a plurality of distance measurement intervals, and the reflected light can be reflected in the interval image of a specific distance measurement interval. The probability of contamination can be greatly reduced. Moreover, since the range-finding interval for range-finding is selected at random, the light emission interval does not become long, and the frame period does not become long. Therefore, the influence of interference light can be reduced without lowering the frame rate.
  • the light emission pulse start time may be randomly delayed.
  • random number data generated by the random number generator 23 may be used.
  • FIG. 7 shows a setting example of a plurality of light emission pulses and exposure pulses.
  • FIG. 7(a) shows a typical driving example, in which the light emission pulse start time is not delayed.
  • FIG. 7B shows this modified example, in which a delay is randomly added to the light emission pulse start time.
  • the number of delay patterns of the light emission random start time is NLD-ran
  • the effect of reducing the influence of interference light is proportional to 1/NLD-ran.
  • k, l, and m are arbitrary 0 or positive integers equal to or less than the number of delay patterns NLD-ran of light emission random start time.
  • the sub-range period TsN is as follows.
  • TP is the average pulse period and NP is the number of pulses.
  • TLD-ran the maximum light emission delay amount that can be allowed within one ranging interval is as follows.
  • the exposure width TES is the exposure width and TCN is the count width. In order to maintain the frame rate, this maximum light emission delay amount TLD-ran must be positive.
  • the exposure width TES can also be expressed as follows.
  • the permissible light emission random delay pattern number NLD-ran is given by the following equation.
  • the ranging control unit 20 uses the random number data generated by the random number generating unit 23 to give a random delay to the projection timing of the light source 11 and the light receiving timing of the light receiving unit 12 in the ranging interval.
  • the random delay is preferably set within a range that does not extend the period for generating the interval image. This makes it possible to further reduce the influence of interference light without lowering the frame rate.
  • FIG. 8 is a block diagram showing the configuration of the distance measuring device according to the second embodiment.
  • a distance measuring device 2 shown in FIG. 8 has substantially the same configuration as the distance measuring device 1 shown in FIG.
  • the distance image generation section 30A includes an interference determination section 41 .
  • the interference determination unit 41 determines whether there is an influence of interference light other than the pulsed light projected from the light source 11 .
  • the ranging control unit 20 randomly selects a ranging section.
  • FIG. 9 is an example of processing for determining whether or not there is an influence of interference light.
  • the distance measurement control unit 20 causes the light receiving unit 12 to receive light in a non-light emitting state in which the light source 11 does not emit light (S11).
  • the interference determination unit 41 acquires a segment image from the output of the light receiving unit 12, and detects the presence or absence of a signal equal to or greater than a predetermined threshold in this segment image (S12). This predetermined threshold may be set based on the signal value of the background image. When there is no signal equal to or greater than the predetermined threshold value in the non-light-emitting segment image, the interference determination unit 41 determines that there is no interference (S13).
  • the interference determination unit 41 determines whether or not a similar signal was detected in the past frame (S14). If not, it is determined that there is no interference.
  • the interference determination unit 41 determines that there is an influence of interference light when similar signals are detected in past frames. Then, it is determined whether or not the order of distance measurement sections has already been randomly selected as shown in the first embodiment (S15). If it is not random, the distance measurement section is changed so as to be randomly selected (S16), and the process returns to S11. On the other hand, when the range-finding section has already been randomly selected, pixels with the possibility of interference are identified from the section image (S17).
  • the distance measurement control unit 20 causes the light receiving unit 12 to receive light while the light source 11 is in the light emitting state (S18). Thereby, the section image of each ranging section can be acquired.
  • the interference determining unit 41 has identified a pixel with the possibility of interference, the pixel in the section image is corrected (S19).
  • FIG. 10 shows an example of correction when there is an influence of interference light.
  • a signal S1 (I, x, y) exceeding a threshold value is detected in the dark image (image captured in the non-light emitting state) of the ranging section S1 as a result of imaging in the non-light emitting state.
  • I is the brightness value of the pixel
  • x and y are the coordinate values of the pixel. It is assumed that no signal exceeding the threshold value is detected in the dark image in the ranging sections S2 to S5.
  • the signal S1 (I, x, y) is corrected to the signal S1 (I', x, y) in the section image of the ranging section S1.
  • the luminance value I′ may be the luminance value in the non-interference state of the preceding and subsequent frames or the luminance value of the background image.
  • FIG. 11 shows an example of the influence of interference light when the ranging section is randomly selected.
  • the probability that the section image will become abnormal due to interference light is low, and in most cases a normal section image can be obtained. Therefore, an abnormal section image due to interference light can be corrected using the section images of the range-finding section in the preceding and succeeding frames.
  • the distance image generation unit 30A includes the interference determination unit 41 that determines the presence or absence of the influence of interference light other than the pulsed light projected from the light source 11, and the distance measurement control unit 20 , when the interference determination unit 41 determines that there is an influence of the interference light, random selection of the range-finding section is performed. As a result, when there is an influence of interference light, the influence can be reduced by randomly selecting a range-finding section in which distance measurement is performed.
  • FIG. 12 is a configuration example of a distance measurement system according to the embodiment.
  • the distance measurement system of FIG. 12 has two distance measurement devices 51 and 52 .
  • Distance measuring devices 51 and 52 have the same configuration as in FIG.
  • the distance measurement system of FIG. 12 also includes a random number assignment controller 53 that controls the operation of the random number generators 23 provided in the distance measurement devices 51 and 52, respectively.
  • the random number generator 23 has a linear feedback shift register and generates pseudorandom number data.
  • the random number provision control unit 53 provides the pseudorandom number seed to the random number generation unit 23 .
  • the random number assignment control unit 53 may change the seed of the pseudorandom number in time series.
  • the distance measuring device can reduce the influence of interference light without lowering the frame rate, it is useful for improving the performance and operating speed of TOF cameras, for example, detecting and tracking objects (people). It can be used for a monitoring camera system, a system for detecting obstacles mounted on a vehicle, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

距離測定装置(1)は、パルス光を投射する光源(11)と、反射光を受光する受光部(12)と、距離に応じて設定した複数の測距区間の中から、測距を行う測距区間を選択し、選択した測距区間に従って光源(11)および受光部(12)の動作タイミングを制御する測距制御部(20)と、受光部(12)の出力信号から区間画像を生成し、複数の測距区間に対応する複数の区間画像を合成して距離画像を生成する距離画像生成部(30)とを備える。測距制御部(20)は、複数の測距区間の中からランダムに測距区間を選択するための乱数データを生成する乱数発生部を有する。

Description

距離測定装置および距離測定システム
 本開示は、撮像する対象空間を距離に応じて分割した複数の区間画像から、距離画像を生成する距離測定装置に関する。
 従来、TOF(Time of Flight)方式などのアクティブ型の距離測定装置が知られている。この距離測定装置では、所定のパルス幅で繰り返し発光するレーザ光を照射し、照射したレーザ光が対象物に当たって反射した反射光を受光することで、レーザ光の往復時間(往復に係るレーザ光の位相差)に基づいて測距する。
 ところで、このような方式の距離測定装置では、他の距離測定装置から照射されるレーザ光の反射光の干渉を受ける可能性があるため、例えば複数の距離測定装置を利用する場合に、適切な測距を実現できないおそれがあった。
 この問題を解決するために、特許文献1では、発光期間と、非発光期間とを設けて、発光期間における画素信号から非発光期間における画素信号を減算することによって、測距演算を行う。また、発光期間と非発光期間の長さを変調することによって、他の距離測定装置からの干渉光の影響を抑制する。
特開2020-153799号公報
 ところが、特許文献1の構成では、発光間隔が長くなるため、フレームレートが低下してしまう、という問題がある。
 本開示は、かかる点に鑑みてなされたもので、距離測定装置において、フレームレートの低下を招くことなく、干渉光の影響を低減することを目的とする。
 本開示の一態様に係る距離測定装置は、対象空間に向けて、パルス光を投射する光源と、前記対象空間内の物体による反射光を受光する受光部と、前記対象空間に対して距離に応じて設定した複数の測距区間の中から、測距を行なう測距区間を選択し、選択した測距区間に従って、前記光源の投射タイミングおよび前記受光部の受光タイミングを制御する測距制御部と、前記受光部の出力信号から、前記測距制御部が選択した前記測距区間に対応する区間画像を生成し、前記複数の測距区間にそれぞれ対応する複数の区間画像を合成して、距離画像を生成する距離画像生成部と、を備え、前記測距制御部は、前記複数の測距区間の中からランダムに測距区間を選択するための乱数データを生成する乱数発生部を有するように構成されている。
 本開示によって、距離測定装置において、フレームレートの低下を招くことなく、干渉光の影響を低減することができる。
第1実施形態に係る距離測定装置の構成 撮像シーンの例 典型的なTOFカメラの動作例 実施形態におけるTOFカメラの動作例 距離画像の例であり、(a)は典型的な動作の場合、(b)は実施形態の場合 発光パルスおよび露光パルスの設定例であり、(a)は典型的な駆動例、(b)は実施形態 発光パルスおよび露光パルスの設定例であり、(a)は典型的な駆動例、(b)は変形例 第2実施形態に係る距離測定装置の構成 干渉光の影響の有無の判定処理の例 干渉光の影響がある場合における補正の例 測距区間をランダム選択している場合の干渉光の影響例 実施形態に係る距離測定システムの構成例
 (概要)
 本開示の一態様に係る距離測定装置は、対象空間に向けて、パルス光を投射する光源と、前記対象空間に内の物体による反射光を受光する受光部と、前記対象空間に対して距離に応じて設定した複数の測距区間の中から、測距を行なう測距区間を選択し、選択した前記測距区間に従って、前記光源の投射タイミングおよび前記受光部の受光タイミングを制御する測距制御部と、前記受光部の出力信号から、前記測距制御部が選択した前記測距区間に対応する区間画像を生成し、前記複数の測距区間にそれぞれ対応する複数の区間画像を合成して、距離画像を生成する距離画像生成部と、を備え、前記測距制御部は、前記複数の測距区間の中からランダムに測距区間を選択するための乱数データを生成する乱数生成部を有する。
 これにより、測距制御部は、対象空間に対して距離に応じて設定した複数の測距区間の中から、測距を行う測距区間を、ランダムに選択することができる。このため、例えば他の距離測定装置から照射されるレーザ光があっても、その反射光の影響を複数の測距区間に分散させることができ、反射光が特定の測距区間の区間画像に混入する確率を大幅に低減させることができる。しかも、測距を行う測距区間がランダムに選択されるだけなので、発光間隔は長くならず、フレーム期間は長くならない。したがって、フレームレートを低下させることなく、干渉光の影響を低減することができる。
 また、前記乱数生成部は、各フレームにおいて、前記複数の測距区間が1度ずつ選択されるように、乱数データを生成する、としてもよい。
 これにより、1フレーム期間において、複数の測距区間の区間画像を全て確実に取得することができる。
 また、前記測距制御部は、前記乱数発生部が生成する乱数データを用いて、前記測距区間における前記光源の投射タイミングおよび前記受光部の受光タイミングに、ランダムな遅延を与えることが可能なように構成されている、としてもよい。
 これにより、干渉光の影響をさらに低減することができる。
 さらに、前記ランダムな遅延は、前記区間画像を生成するための期間を延長しない範囲で、設定される、としてもよい。
 これにより、フレームレートを低下させることなく、干渉光の影響をさらに低減することができる。
 また、前記距離画像生成部は、前記光源から投射されるパルス光以外の、干渉光の影響の有無を判定する干渉判定部を備え、前記乱数発生部は、前記干渉判定部によって干渉光の影響有りと判定されたとき、乱数データを生成する、としてもよい。
 これにより、干渉光の影響が有るとき、測距を行う測距区間をランダムに選択することによって、その影響を低減することができる。
 さらに、前記干渉判定部は、前記光源がパルス光を投射しない非発光状態において前記受光部が受光を行ったときの区間画像において、所定の閾値以上の信号が検出されたとき、干渉光の影響有りと判定する、としてもよい。
 これにより、干渉光の影響が有る場合を、確実に検出することができる。
 さらに、前記距離画像生成部は、前記複数の測距区間にそれぞれ対応する複数の区間画像を、複数フレーム分、保存する記憶部を備え、干渉光の影響がある区間画像を、前記記憶部に保存された前後のフレームにおける当該測距区間の区間画像を用いて、補正する、としてもよい。
 これにより、干渉光の影響がある区間画像を、補正することができる。
 また、本開示の一態様に係る距離測定システムは、前記態様に係る距離測定装置を、2台以上備え、前記距離測定装置の前記測距制御部が有する前記乱数発生部の動作をそれぞれ制御する乱数付与制御部を備える。
 これにより、複数の距離測定装置が行う測距区間のランダム選択が、同一パターンに陥ってしまい、干渉光の影響が大きくなってしまう、といった問題を回避できる。
 また、前記乱数付与制御部は、前記乱数発生部に疑似乱数の種を与えるものであり、かつ、前記種を時系列で変化させる、としてもよい。
 以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
 (第1実施形態)
 図1は第1実施形態に係る距離測定装置の構成を示すブロック図である。図1に示す距離測定装置1は、光源11と、受光部12と、測距制御部20と、距離画像生成部30と、を備える。距離測定装置1は、TOF法(TOF: Time Of Flight)を利用して物体までの距離の情報を取得し、距離画像を出力する装置である。
 光源11は、対象空間に向けて、パルス光を投射するように構成されている。受光部12は、対象空間内の物体による反射光を受光するように構成されている。測距制御部20は、光源11のパルス光投射動作の制御と、受光部12の受光動作の制御を行うように構成されている。測距制御部20は、対象空間に対して、距離に応じて複数の測距区間(サブレンジ、単に区間ともいう)を設定する。そして、複数の測距区間の中から、測距を行う測距区間を選択し、選択した測距区間に従って、光源11がパルス光を投射するタイミング、および、受光部12が受光(露光)を行うタイミングを制御する。距離画像生成部30は、受光部12の出力信号から、測距制御部20が選択した測距区間に対応する区間画像を生成する。そして、複数の測距区間にそれぞれ対応する複数の区間画像を合成して、距離値が示された距離画像を生成する。
 光源11は、例えば、レーザダイオードによって構成されており、パルスレーザを出力する。光源11は、レーザダイオード以外にも例えば、発光ダイオード(LED:Light Emitting Diode)、面発光レーザ(VCSEL:Vertical Cavity Surface Emitting LASER)、ハロゲンランプ等であってもよい。光源11が投射するパルス光は、単一波長であり、パルス幅が比較的短く、ピーク強度が比較的高いことが好ましい。また、パルス光の波長は、人間の視感度が低く、外乱光の影響を受けにくい近赤外帯の波長域であることが好ましい。光源11は、レンズ等の、パルス光を対象空間に投射する投光光学系を備えていてもよい。
 受光部12は、複数の画素を含む撮像素子13と、画素信号出力部14とを備える。撮像素子13の各画素には、例えば、アバランシェフォトダイオードが配置されている。各画素には他の光検出素子が配置されていてもよい。各画素は、反射光を受光する露光状態と、反射光を受光しない非露光状態とを切り替え可能に構成されている。受光部12は、露光状態において、各画素で受光した反射光に基づく画素信号を出力する。受光部12は、レンズ等の、撮像素子13の受光面に反射光を集光させる受光光学系を備えていてもよい。
 測距制御部20は、光源11の発光制御において、光源11から光を出力させるタイミング、光源11から出力される光のパルス幅等を制御する。また、測距制御部20は、受光部12の受光制御において、撮像素子13の各画素について、画素内のトランジスタの動作タイミング等の制御により、露光イミング、露光時間等を制御する。露光タイミングと露光時間は、全ての画素で等しくてもよいし、画素ごとに異なっていても良い。
 測距制御部20は、測距区間決定部21と、タイミング生成部22と、乱数発生部23とを備える。測距区間決定部21は、対象空間に対して距離に応じて設定された複数の測距区間の中から、測距を行う測距区間を選択する。タイミング生成部22は、選択された測距区間に従って、光源11がパルス光を投射するタイミング、および、受光部12が(露光)を行うタイミングを制御する。乱数発生部23は、測距区間決定部21が測距区間をランダムに選択することができるように、乱数データを発生する。
 距離画像生成部30は、区間画像記憶部31と、距離画像出力部32とを備える。区間画像記憶部31は、受光部12から出力された画素信号から、測距区間における反射光を示す区間画像を取得する。取得した区間画像は、例えば複数フレーム分、区間画像記憶部31に記憶される。フレームとは、対象空間に対して設定された複数の測距区間全てについて測距を行う期間のことであり、1フレームは1枚の距離画像に対応している。距離画像出力部32は、1フレームで取得した複数の区間画像を合成して、距離画像を生成し、出力する。
 図2は撮像シーンの例である。図2の例では、2台のTOFカメラ(距離測定装置)A,Bにおいて、近傍から遠方に向けて、順に測距区間1~5が設定されている。測距区間1~5には、物体として、コーンOB1、コーンOB2、サッカーボールOB3、コーンOB4、人OB5がそれぞれ存在している。
 図3は典型的なTOFカメラの動作例を示し、図4は本実施形態におけるTOFカメラの動作例を示す。図3および図4において、発光パルスは光源11に発光させるためのパルスであり、反射パルスは受光部12に露光させるパルスである。なお、発光パルスと反射パルスとの時間差は測距区間によって異なるが、図3および図4では図示を簡略化している。また、TOFカメラA,Bは非同期で動作するものとしている。
 図3に示すように、典型的な駆動パターンでは、TOFカメラA,Bは、測距を行う測距区間を、測距区間1~5の中から順番に繰り返し選択している。図3では、TOFカメラAが測距区間1の測距を行う期間と、TOFカメラBが測距区間3の測距を行う期間とが重なっている。このため、TOFカメラAが測距区間1の測距を行う際に、受光部12が、TOFカメラBによる測距区間3における反射光を拾ってしまう可能性がある。すなわち、図2の撮像シーン例における測距区間3に存在するサッカーボールOB3の反射光が、TOFカメラAの測距区間1の露光信号に混入するおそれがある。すなわち、TOFカメラAは、TOFカメラBからの干渉光の影響を受けてしまう。
 一方、図4に示すように、本実施形態では、TOFカメラA,Bは、測距を行う測距区間を、測距区間1~5の中から、ランダムに選択している。このため、TOFカメラAが測距区間1の測距を行う期間と、TOFカメラBが測距区間3の測距を行う期間とが重なる頻度が格段に減り、TOFカメラAが測距区間1の測距を行う際に、受光部12が、TOFカメラBによる測距区間3における反射光を拾ってしまう確率が大きく低減する。TOFカメラAは、TOFカメラBからの干渉光の影響をほとんど受けない。
 図5はTOFカメラAから出力される距離画像のイメージ例であり、(a)は典型的な駆動(図3)の場合、(b)は本実施形態(図4)の場合である。図5(a)に示すように、典型的な駆動パターンでは、測距区間3にあるサッカーボールOB3について、TOFカメラBからの光の反射光が測距区間1の測距中に混入したことによって、測距区間1を示す信号が混ざっている。一方、図5(b)に示すように、本実施形態では、測距を行う測距区間がランダムに選択されることにより、TOFカメラBからの光の反射光が混入する確率が大幅に低減するため、信号が混ざることがない。
 図6は発光パルスおよび露光パルスの設定例を示す。図6では、距離0~Z(m)の測定範囲を、N(Nは2以上の整数)個の測距区間1~Nに分けている。すなわち、区間Nの測距範囲は(N-1)/N×Z(m)~Z(m)となる。測距区間1~Nごとに、その距離に応じて、発光パルスと露光パルスとの時間差が設定されている。すなわち、最近傍の測距区間1では、発光パルスと露光パルスとの時間差が最も短く、測距区間が遠方になるにつれて、発光パルスと露光パルスとの時間差が徐々に長くなっている。この各測距区間Nにおける時間差をTdNとすると、次のようになる。
Figure JPOXMLDOC01-appb-M000001
なお、cは光速である。
また、図6では、1つの測定期間において、発光パルスと露光パルスを1回ずつ発生させているが、複数回発生させてもかまわない。
 図6(a)は典型的な駆動例であり、測距区間を近傍から遠方に向けて順に繰り返している。例えば、フレームF1では、まず測距区間1を測定し(Ts1)、その後、測距区間2(Ts2),測距区間3(Ts3),…と測定し、最後に測距区間N(TsN)を測定している。したがって、発光パルスと露光パルスとの時間差TdNが徐々に長くなっている。
 図6(b)は本実施形態であり、測距区間をランダムに選択している。例えば、フレームF1では、まず測距区間3を測定し(Ts3)、その後、測距区間N(TsN),測距区間1(Ts1),…と測定し、最後に測距区間2(Ts2)を測定している。したがって、発光パルスと露光パルスとの時間差が、ランダムに変化している。また、フレームF1において、測距区間1~Nが1度ずつ選択されるように、ランダム選択が行われている。
 図6から分かるように、本実施形態において、従来よりもフレーム期間が長くなることはなく、フレームレートが低下することはない。
 以上のように本実施形態によると、測距制御部20は、対象空間に対して距離に応じて設定した複数の測距区間の中から、測距を行う測距区間を、ランダムに選択することができる。このため、例えば他の距離測定装置から照射されるレーザ光があっても、その反射光の影響を複数の測距区間に分散させることができ、反射光が特定の測距区間の区間画像に混入する確率を大幅に低減させることができる。しかも、測距を行う測距区間がランダムに選択されるだけなので、発光間隔は長くならず、フレーム期間は長くならない。したがって、フレームレートを低下させることなく、干渉光の影響を低減することができる。
 (変形例)
 干渉光の影響を低減するために、発光パルス開始時間にランダムに遅延を付すようにしてもよい。これには、乱数発生部23が生成する乱数データを利用すればよい。
 図7は複数の発光パルスおよび露光パルスの設定例を示す。図7(a)は典型的な駆動例であり、発光パルス開始時間に遅延を付していない。図7(b)は本変形例であり、発光パルス開始時間に遅延をランダムに付している。ここで、発光ランダム開始時間の遅延パターン数をNLD-ranとすると、干渉光の影響の低減効果は、1/NLD-ranに比例する。k,l,mは発光ランダム開始時間の遅延パターン数NLD-ran以下の任意の0または正の整数である。
 また、サブレンジ期間TsNは、次のようになる。
Figure JPOXMLDOC01-appb-M000002
TPは平均パルス周期、NPはパルス数である。
ここで、1つの測距区間内で許容できる発光最大遅延量TLD-ranは、次のようになる。
Figure JPOXMLDOC01-appb-M000003
TESは露光幅、TCNはカウント幅である。フレームレートを維持するためには、この発光最大遅延量TLD-ranは正である必要がある。なお、露光幅TESは、次のようにも表現できる。
Figure JPOXMLDOC01-appb-M000004
ΔTLD-delを発光開始時間ランダムの遅延ステップ幅とすると、許容できる発光ランダム遅延パターン数NLD-ranは、次の式のようになる。
Figure JPOXMLDOC01-appb-M000005
上式中の1は遅延がない場合もパターンとして含めることを指す。
さらに、上式は、数1~数4の式を用いて以下のように変形できる。
Figure JPOXMLDOC01-appb-M000006
 すなわち、本変形例では、測距制御部20は、乱数発生部23が生成する乱数データを用いて、測距区間における光源11の投射タイミングおよび受光部12の受光タイミングに、ランダムな遅延を与えることが可能なように構成されている。これにより、干渉光の影響をさらに低減することができる。また、ランダムな遅延は、区間画像を生成するための期間を延長しない範囲で、設定されることが好ましい。これにより、フレームレートを低下させることなく、干渉光の影響をさらに低減することができる。
 (第2実施形態)
 図8は第2実施形態に係る距離測定装置の構成を示すブロック図である。図8に示す距離測定装置2は、図1の距離測定装置1とほぼ同様の構成である。ただし、距離画像生成部30Aは、干渉判定部41を備える。干渉判定部41は、光源11から投射されるパルス光以外の、干渉光の影響の有無を判定する。測距制御部20は、干渉判定部41によって干渉光の影響有りと判定されたとき、測距区間のランダム選択を行う。
 図9は干渉光の影響の有無を判定する処理の一例である。まず、測距制御部20は、光源11を発光させない非発光状態において、受光部12に受光を行わせる(S11)。干渉判定部41は、受光部12の出力から区間画像を取得し、この区間画像において、所定の閾値以上の信号の有無を検出する(S12)。この所定の閾値は、背景画像の信号値を基にして設定すればよい。非発光状態の区間画像に所定の閾値以上の信号がないときは、干渉判定部41は、干渉無しと判定する(S13)。一方、非発光状態の区間画像に所定の閾値以上の信号があるときは、干渉判定部41は、過去のフレームで同様の信号検出があったかどうかを判定する(S14)。なければ、干渉無しと判定する。
 干渉判定部41は、過去のフレームで同様の信号検出があったときは、干渉光の影響有りと判定する。そして、測距区間順がすでに第1実施形態で示したようなランダム選択されているかどうかを判定する(S15)。ランダムでなければ、測距区間をランダム選択するように変更して(S16)、S11に戻る。一方、すでに測距区間をランダム選択しているときは、区間画像から、干渉可能性のある画素を特定する(S17)。
 その後、測距制御部20は、光源11を発光する発光状態において、受光部12に受光を行わせる(S18)。これにより、各測距区間の区間画像を取得することができる。干渉判定部41は、干渉可能性のある画素を特定している場合は、区間画像における当該画素について補正を行う(S19)。
 図10は干渉光の影響がある場合における補正の例を示す。いま、非発光状態で撮像を行った結果、測距区間S1のダーク画像(非発光状態で撮像した画像)において、閾値を超える信号S1(I,x,y)が検出されたとする。ここで、Iは画素の輝度値、x、yは画素の座標値である。測距区間S2~S5のダーク画像では、閾値を超える信号は検出されていないとする。
 その後、発光状態で撮像を行い、各測距区間S1~S5の区間画像を得たとする。このとき、測距区間S1の区間画像において、信号S1(I,x,y)を信号S1(I’,x,y)に補正する。ここで、輝度値I’は、前後フレームの非干渉状態における輝度値、または、背景画像の輝度値とすればよい。
 図11は測距区間をランダム選択している場合における、干渉光の影響例を示す。図11に示すように、測距区間をランダム選択している場合は、干渉光によって区間画像が異常になる確率は低く、ほとんどの場合、正常な区間画像を得ることができる。このため、干渉光による異常な区間画像については、その前後のフレームの当該測距区間の区間画像を用いて、補正することができる。
 以上のように本実施形態によると、距離画像生成部30Aは、光源11から投射されるパルス光以外の、干渉光の影響の有無を判定する干渉判定部41を備え、測距制御部20は、干渉判定部41によって干渉光の影響有りと判定されたとき、測距区間のランダム選択を行う。これにより、干渉光の影響が有るとき、測距を行う測距区間をランダムに選択することによって、その影響を低減することができる。
 なお、本例ではサブレンジランダムの場合を示したが、第1実施形態の変形例である発光開始時間のランダム化を加えてもよい。
 (測距システムの構成例)
 上述した実施形態に係る距離測定装置を、2台以上用いて、距離測定システムを構成してもよい。図12は実施形態に係る距離測定システムの構成例である。図12の距離測定システムは、2台の距離測定装置51,52を備える。距離測定装置51,52は、図8と同様の構成を有している。また、図12の距離測定システムは、距離測定装置51,52がそれぞれ備える乱数発生部23の動作を、それぞれ制御する乱数付与制御部53を備える。これにより、例えば、距離測定装置51,52が行う測距区間のランダム選択が、同一パターンに陥ってしまい、干渉光の影響が大きくなってしまう、といった問題を回避することができる。
 例えば、乱数発生部23は、線形帰還シフトレジスタを有しており、疑似乱数データを生成するものとする。この場合、乱数付与制御部53は、乱数発生部23に疑似乱数の種を与える。さらに、乱数付与制御部53は、疑似乱数の種を時系列で変化させるようにしてもよい。
 本発明に係る距離測定装置では、フレームレートを低下させることなく、干渉光の影響を低減できるので、TOFカメラの性能および動作速度向上に有用であり、例えば、物体(人)を検知・追跡する監視カメラシステムや、自動車に搭載され障害物を検知するシステム等に利用することができる。
1,2 距離測定装置
11 光源
12 受光部
20 測距制御部
23 乱数発生部
30,30A 距離画像生成部
31 区間画像記憶部
41 干渉判定部
51,52 距離測定装置
53 乱数付与制御部

Claims (9)

  1.  対象空間に向けて、パルス光を投射する光源と、
     前記対象空間内の物体による反射光を受光する受光部と、
     前記対象空間に対して距離に応じて設定した複数の測距区間の中から、測距を行なう測距区間を選択し、選択した前記測距区間に従って、前記光源の投射タイミングおよび前記受光部の受光タイミングを制御する測距制御部と、
     前記受光部の出力信号から、前記測距制御部が選択した前記測距区間に対応する区間画像を生成し、前記複数の測距区間にそれぞれ対応する複数の区間画像を合成して、距離画像を生成する距離画像生成部と、を備え、
     前記測距制御部は、前記複数の測距区間の中からランダムに測距区間を選択するための乱数データを生成する乱数発生部を有する
    距離測定装置。
  2.  請求項1記載の距離測定装置において、
     前記乱数発生部は、各フレームにおいて、前記複数の測距区間が1度ずつ選択されるように、乱数データを生成する
    距離測定装置。
  3.  請求項1記載の距離測定装置において、
     前記測距制御部は、前記乱数発生部が生成する乱数データを用いて、前記測距区間における前記光源の投射タイミングおよび前記受光部の受光タイミングに、ランダムな遅延を与えることが可能なように構成されている
    距離測定装置。
  4.  請求項3記載の距離測定装置において、
     前記ランダムな遅延は、前記区間画像を生成するための期間を延長しない範囲で、設定される
    距離測定装置。
  5.  請求項1記載の距離測定装置において、
     前記距離画像生成部は、
     前記光源から投射されるパルス光以外の、干渉光の影響の有無を判定する干渉判定部を備え、
     前記乱数発生部は、前記干渉判定部によって干渉光の影響有りと判定されたとき、乱数データを生成する
    距離測定装置。
  6.  請求項5記載の距離測定装置において、
     前記干渉判定部は、
     前記光源がパルス光を投射しない非発光状態において前記受光部が受光を行ったときの区間画像において、所定の閾値以上の信号が検出されたとき、干渉光の影響有りと判定する
    距離測定装置。
  7.  請求項6記載の距離測定装置において、
     前記距離画像生成部は、
     前記複数の測距区間にそれぞれ対応する複数の区間画像を、複数フレーム分、保存する記憶部を備え、
     干渉光の影響がある区間画像を、前記記憶部に保存された前後のフレームにおける当該測距区間の区間画像を用いて、補正する
    距離測定装置。
  8.  請求項1記載の距離測定装置を、2台以上備える距離測定システムであって、
     前記距離測定装置の前記測距制御部が有する乱数発生部の動作をそれぞれ制御する乱数付与制御部を備える
    距離測定システム。
  9.  請求項8記載の距離測定システムにおいて、
     前記乱数付与制御部は、前記乱数発生部に疑似乱数の種を与えるものであり、かつ、前記種を時系列で変化させる
    距離測定システム。
PCT/JP2022/001822 2021-03-31 2022-01-19 距離測定装置および距離測定システム WO2022209180A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280019894.1A CN116964487A (zh) 2021-03-31 2022-01-19 距离测量装置及距离测量系统
JP2023510517A JPWO2022209180A1 (ja) 2021-03-31 2022-01-19
US18/466,429 US20240004041A1 (en) 2021-03-31 2023-09-13 Distance measuring device and distance measuring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060606 2021-03-31
JP2021-060606 2021-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/466,429 Continuation US20240004041A1 (en) 2021-03-31 2023-09-13 Distance measuring device and distance measuring system

Publications (1)

Publication Number Publication Date
WO2022209180A1 true WO2022209180A1 (ja) 2022-10-06

Family

ID=83458526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001822 WO2022209180A1 (ja) 2021-03-31 2022-01-19 距離測定装置および距離測定システム

Country Status (4)

Country Link
US (1) US20240004041A1 (ja)
JP (1) JPWO2022209180A1 (ja)
CN (1) CN116964487A (ja)
WO (1) WO2022209180A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120098964A1 (en) * 2010-10-22 2012-04-26 Mesa Imaging Ag System and Method for Multi TOF Camera Operation Using Phase Hopping
US20120320219A1 (en) * 2010-03-02 2012-12-20 Elbit Systems Ltd. Image gated camera for detecting objects in a marine environment
US20160349359A1 (en) * 2015-05-27 2016-12-01 Amir Nevet Reduction in camera to camera interference in depth measurements using spread spectrum
WO2017110418A1 (ja) * 2015-12-21 2017-06-29 株式会社小糸製作所 車両用画像取得装置、制御装置、車両用画像取得装置または制御装置を備えた車両および車両用画像取得方法
US10656275B1 (en) * 2015-09-25 2020-05-19 Apple Inc. Remote sensing for detection and ranging of objects

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120320219A1 (en) * 2010-03-02 2012-12-20 Elbit Systems Ltd. Image gated camera for detecting objects in a marine environment
US20120098964A1 (en) * 2010-10-22 2012-04-26 Mesa Imaging Ag System and Method for Multi TOF Camera Operation Using Phase Hopping
US20160349359A1 (en) * 2015-05-27 2016-12-01 Amir Nevet Reduction in camera to camera interference in depth measurements using spread spectrum
US10656275B1 (en) * 2015-09-25 2020-05-19 Apple Inc. Remote sensing for detection and ranging of objects
WO2017110418A1 (ja) * 2015-12-21 2017-06-29 株式会社小糸製作所 車両用画像取得装置、制御装置、車両用画像取得装置または制御装置を備えた車両および車両用画像取得方法

Also Published As

Publication number Publication date
CN116964487A (zh) 2023-10-27
JPWO2022209180A1 (ja) 2022-10-06
US20240004041A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
JP7347585B2 (ja) 距離測定装置
CN109791195B (zh) 用于光达的自适应发射功率控制
JP7238343B2 (ja) 距離測定装置及び距離測定方法
JP6676866B2 (ja) 測距撮像装置及び固体撮像素子
JP6846708B2 (ja) 画像認識装置および距離画像生成方法
TWI442077B (zh) 空間資訊偵測裝置
JP2009192499A (ja) 距離画像生成装置
WO2017061104A1 (ja) 撮像装置、およびそれに用いられる固体撮像素子
CN110850426B (zh) 一种tof深度相机
US20210033730A1 (en) Distance measuring device, distance measuring system, distance measuring method, and program
JP2010066221A (ja) 車両用距離画像データ生成装置
US20230358863A1 (en) Range imaging device and range imaging method
WO2020049126A1 (en) Time of flight apparatus and method
JP7468999B2 (ja) マルチパス検出装置およびマルチパス検出方法
WO2022209180A1 (ja) 距離測定装置および距離測定システム
US20240061090A1 (en) Time-of-flight demodulation circuitry, time-of-flight demodulation method, time-of-flight imaging apparatus, time-of-flight imaging apparatus control method
US20240427020A1 (en) Distance measuring device, method for controlling the same, and distance measuring system
JP2001280951A (ja) 光学式変位計
JP2020003250A (ja) 距離計測装置
JP2000097629A (ja) 光式センサ
WO2020162273A1 (ja) 測距装置及び測距方法
CN114667457A (zh) 电子设备及其控制方法
JP7638221B2 (ja) 測距撮像装置
WO2022181097A1 (ja) 測距装置およびその制御方法、並びに、測距システム
US11604278B2 (en) Three-dimensional distance measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779412

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510517

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280019894.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779412

Country of ref document: EP

Kind code of ref document: A1