[go: up one dir, main page]

WO2022209064A1 - 接着ペースト、接着ペーストの使用方法及び半導体装置の製造方法 - Google Patents

接着ペースト、接着ペーストの使用方法及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2022209064A1
WO2022209064A1 PCT/JP2021/047322 JP2021047322W WO2022209064A1 WO 2022209064 A1 WO2022209064 A1 WO 2022209064A1 JP 2021047322 W JP2021047322 W JP 2021047322W WO 2022209064 A1 WO2022209064 A1 WO 2022209064A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive paste
group
adhesive
semiconductor element
cured product
Prior art date
Application number
PCT/JP2021/047322
Other languages
English (en)
French (fr)
Inventor
学 宮脇
迪 三浦
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN202180095979.3A priority Critical patent/CN116981751A/zh
Priority to JP2022520675A priority patent/JPWO2022209064A1/ja
Publication of WO2022209064A1 publication Critical patent/WO2022209064A1/ja
Priority to JP2025038360A priority patent/JP2025078860A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Definitions

  • the present invention provides an adhesive paste having a high thermal conductivity in a cured product obtained by heating and having excellent adhesiveness in a cured product obtained by heating at a high temperature, and this adhesive paste as an adhesive for a semiconductor element fixing material. and a method of manufacturing a semiconductor device using this adhesive paste as an adhesive for a semiconductor element fixing material.
  • Adhesive pastes have been improved in various ways according to their uses, and have been widely used industrially as raw materials for optical parts and moldings, adhesives, coating agents, and the like. Adhesive pastes are also attracting attention as pastes for semiconductor element fixing materials such as adhesives for semiconductor element fixing materials.
  • Semiconductor elements include light-emitting elements such as lasers and light-emitting diodes (LEDs), optical semiconductor elements such as light-receiving elements such as solar cells, transistors, sensors such as temperature sensors and pressure sensors, and integrated circuits.
  • LEDs light-emitting elements
  • LEDs light-emitting diodes
  • optical semiconductor elements such as light-receiving elements such as solar cells
  • transistors transistors
  • sensors such as temperature sensors and pressure sensors, and integrated circuits.
  • the cured adhesive paste used for fixing the elements has been exposed to higher energy light and higher temperature heat generated from the semiconductor elements for a longer period of time.
  • problems such as a decrease in adhesive force, detachment due to deterioration, and deterioration in the performance of the semiconductor element. Therefore, it is important to improve the thermal conductivity of the cured adhesive paste, efficiently exhaust the heat generated from the semiconductor element, and maintain or improve the performance of the semiconductor element at a high level.
  • a method of manufacturing a semiconductor device having a semiconductor element for example, there is a method including a step of fixing a semiconductor element to an adherend such as a lead frame with an adhesive sheet, a step of curing the adhesive sheet, and a wire bonding step.
  • an adherend such as a lead frame with an adhesive sheet
  • a step of curing the adhesive sheet for example, there is a method including a step of curing the adhesive sheet, and a wire bonding step.
  • Patent Document 1 describes a curable composition whose cured product has excellent adhesiveness.
  • the curable composition described in Patent Document 1 does not focus on the thermal conductivity of the cured product obtained by heating and curing the curable composition, and the evaluation results regarding the thermal deterioration of the semiconductor element are described. It has not been.
  • the present invention has been made in view of such circumstances, and is capable of reducing or preventing thermal deterioration of optical components, sensor chips, etc. due to heat generation of a semiconductor element or a semiconductor device equipped with the semiconductor element.
  • An object of the present invention is to provide a method of manufacturing a semiconductor device.
  • "high temperature” means "150°C to 190°C”.
  • excellent adhesiveness means "high adhesive strength”.
  • a cured product with high thermal conductivity obtained by heating and curing an adhesive paste containing a curable organopolysiloxane compound is used as an optical component or a sensor chip associated with heat generation of a semiconductor element or a semiconductor device equipped with the semiconductor element. It is possible to reduce or prevent thermal deterioration such as (ii) A cured product having a specific adhesive strength obtained by heating an adhesive paste containing a curable organopolysiloxane compound at a high temperature can reduce or prevent peeling of a semiconductor element in a wire bonding process. , and completed the present invention.
  • the following adhesive pastes [1] to [6], a method of using the adhesive paste of [7], and a method of manufacturing a semiconductor device using the adhesive paste of [8] are provided.
  • Conductivity is 0.5 W / (m K) or more, and the adhesive strength at 100 ° C. between the cured product obtained by heating and curing the adhesive paste at 170 ° C. for 2 hours and the silver-plated copper plate is 5 N /
  • a method of using the adhesive paste according to any one of [1] to [6] as an adhesive for a semiconductor element fixing material comprising the steps (BI) and (BII) below.
  • Adhesive pastes are provided that can be reduced or prevented. Further, according to the present invention, there are provided a method of using this adhesive paste as an adhesive for a semiconductor element fixing material, and a method of manufacturing a semiconductor device using this adhesive paste as an adhesive for a semiconductor element fixing material.
  • the present invention will be described in detail below by dividing it into 1) adhesive paste, 2) method of using the adhesive paste, and method of manufacturing a semiconductor device using the adhesive paste.
  • Adhesive paste is an adhesive paste containing a curable organopolysiloxane compound (A) and a thermally conductive filler (T), and is cured by heating at 120°C for 4 hours.
  • the thermal conductivity of the cured product obtained is 0.5 W / (m K) or more, and the cured product obtained by heating and curing the adhesive paste at 170 ° C. for 2 hours and the silver-plated copper plate are 100
  • the adhesive strength at °C is 5 N/mm square or more.
  • the "adhesive paste” means "a viscous liquid at room temperature (23°C) and in a fluid state”. Since the adhesive paste of the present invention has the properties described above, it is excellent in workability in the coating process.
  • excellent workability in the coating process means “in the coating process, when the adhesive paste is discharged from the discharge pipe and then the discharge pipe is pulled up, the amount of stringiness is small or is interrupted immediately, and the resin It must not contaminate the surroundings by splashing or spread of droplets after application.”
  • the adhesive paste of the present invention has a thermal conductivity of 0.5 W/(m ⁇ K) or more, preferably 0.7 W/(m ⁇ K), which is obtained by heating and curing the adhesive paste at 120° C. for 4 hours. Above, more preferably 1.0 W/(m ⁇ K) or more, still more preferably 1.5 W/(m ⁇ K) or more, and particularly preferably 2.0 W/(m ⁇ K) or more.
  • a cured product having a thermal conductivity equal to or higher than the lower limit value obtained by heat curing can reduce or prevent thermal deterioration of optical components, sensor chips, etc. due to heat generation of a semiconductor element or a semiconductor device equipped with the semiconductor element. becomes possible.
  • the thermal conductivity of the cured product obtained by heating and curing the adhesive paste of the present invention can be measured and calculated, for example, as follows. That is, the adhesive paste of the present invention is poured into a Teflon (registered trademark) frame and cured by heating at 120° C. for 4 hours to prepare a test piece. After that, the thermal diffusivity of this test piece is measured by the temperature wave method using a thermal diffusivity measuring device.
  • the components excluding the thermally conductive filler (T) have a specific heat of 1 J/(g K) and a density of 1.2 g/cm 3 . Assuming, the thermal conductivity is calculated by the following formula.
  • Thermal conductivity [W/(m ⁇ K)] Thermal diffusivity (m 2 /s) x Specific heat [J/(g ⁇ K)] x Density (g/cm 3 ) x 10 6 More specifically, it can be measured by the method described in Examples.
  • the adhesive paste of the present invention has an adhesive strength of 5 N/mm square or more, preferably 10 N/mm square or more at 100° C. between a cured product obtained by heating and curing the adhesive paste at 170° C. for 2 hours and a silver-plated copper plate. More preferably, it is 13 N/mm square or more.
  • the adhesive strength is equal to or higher than the above lower limit, the cured product obtained by heating and curing at a high temperature can reduce or prevent peeling of the semiconductor element in the wire bonding process.
  • the adhesive strength of the cured product obtained by heating and curing the adhesive paste of the present invention can be measured, for example, as follows.
  • the adhesive paste of the present invention is applied to the mirror surface of a square silicon chip with a side length of 1 mm (area is 1 mm 2 ), and the coated surface is placed on a silver-plated copper plate and crimped (adhesive paste after crimping). thickness: about 3 ⁇ m) and cured by heat treatment at 170° C. for 2 hours. This is left on the measurement stage of a bond tester at 100 ° C. for 60 seconds, and stress is applied in the horizontal direction (shear direction) to the adhesive surface at a speed of 200 ⁇ m / s from a position 100 ⁇ m above the adherend, The adhesive strength (N/mm ⁇ ) between the test piece and the adherend is measured.
  • “1 mm square” means “1 mm square", that is, “1 mm x 1 mm (square with a side length of 1 mm)". More specifically, it can be measured by the method described in Examples.
  • the adhesive paste of the present invention contains a curable organopolysiloxane compound (A) (hereinafter sometimes referred to as "component (A)"). Since the adhesive paste of the present invention contains the component (A), a cured product having excellent adhesiveness can be easily obtained by heating at a high temperature.
  • the curable organopolysiloxane compound (A) of the present invention is a compound having a carbon-silicon bond and a siloxane bond (--Si--O--Si--) in its molecule.
  • component (A) is a thermosetting compound, at least one functional group selected from the group consisting of functional groups capable of condensation reaction by heating and functional groups capable of condensation reaction through hydrolysis It is preferred to have a group.
  • a functional group is preferably at least one selected from the group consisting of a hydroxyl group and an alkoxy group, more preferably a hydroxyl group and an alkoxy group having 1 to 10 carbon atoms.
  • the main chain structure of the curable organopolysiloxane compound (A) is not particularly limited, and may be linear, ladder-like, or cage-like.
  • the structure represented by the following formula (a-1) is used as the linear main chain structure
  • the structure represented by the following formula (a-2) is used as the ladder-like main chain structure.
  • Examples of the main chain structure include structures represented by the following formula (a-3).
  • Rx, Ry, and Rz each independently represent a hydrogen atom or an organic group, and the organic group includes an unsubstituted or substituted alkyl group, an unsubstituted A substituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, an unsubstituted or substituted aryl group, or an alkylsilyl group is preferred.
  • the plurality of Rx in formula (a-1), the plurality of Ry in formula (a-2), and the plurality of Rz in formula (a-3) may be the same or different. However, both Rx in formula (a-1) are not hydrogen atoms.
  • alkyl group of the unsubstituted or substituted alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, C1-C10 alkyl groups such as n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group and n-octyl group can be mentioned.
  • cycloalkyl groups of unsubstituted or substituted cycloalkyl groups include cycloalkyl groups having 3 to 10 carbon atoms such as cyclobutyl group, cyclopentyl group, cyclohexyl group and cycloheptyl group.
  • Alkenyl groups of unsubstituted or substituted alkenyl groups include, for example, vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, and the like. Ten alkenyl groups are mentioned.
  • substituents of the alkyl group, cycloalkyl group and alkenyl group include halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a hydroxyl group; a thiol group; an epoxy group; a glycidoxy group; unsubstituted or substituted aryl groups such as phenyl group, 4-methylphenyl group and 4-chlorophenyl group; and the like.
  • aryl groups of unsubstituted or substituted aryl groups include aryl groups having 6 to 10 carbon atoms such as phenyl group, 1-naphthyl group and 2-naphthyl group.
  • the substituents of the aryl group include halogen atoms such as fluorine, chlorine, bromine and iodine atoms; alkyl groups having 1 to 6 carbon atoms such as methyl and ethyl groups; 1 to 6 alkoxy groups; nitro group; cyano group; hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group; an aryl group having a substituent; and the like.
  • alkylsilyl groups include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, tri-t-butylsilyl group, methyldiethylsilyl group, dimethylsilyl group, diethylsilyl group, methylsilyl group and ethylsilyl group.
  • Rx, Ry, and Rz are preferably a hydrogen atom, an unsubstituted or substituted C 1-6 alkyl group, or a phenyl group, and an unsubstituted or substituted C 1-6 Alkyl groups are particularly preferred.
  • the curable organopolysiloxane compound (A) can be obtained, for example, by a known production method of polycondensing a silane compound having a hydrolyzable functional group (alkoxy group, halogen atom, etc.).
  • the silane compound to be used may be appropriately selected according to the desired structure of the thermosetting organopolysiloxane compound (A).
  • Preferred specific examples include bifunctional silane compounds such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, and diethyldiethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-butyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyldiethoxymethoxysilane, etc.
  • the mass average molecular weight (Mw) of the curable organopolysiloxane compound (A) is usually 800 or more and 30,000 or less, preferably 1,000 or more and 20,000 or less, more preferably 1,200 or more and 15,000 or less, Especially preferably, it is 3,000 or more and 10,000 or less.
  • the molecular weight distribution (Mw/Mn) of the curable organopolysiloxane compound (A) is not particularly limited, it is usually 1.0 or more and 10.0 or less, preferably 1.1 or more and 6.0 or less.
  • Mw/Mn molecular weight distribution
  • the mass average molecular weight (Mw) and number average molecular weight (Mn) can be obtained as standard polystyrene conversion values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent, for example.
  • the curable organopolysiloxane compound (A) of the present invention is preferably a polysilsesquioxane compound obtained by polycondensation of a trifunctional organosilane compound. Since the adhesive paste of the present invention contains a polysilsesquioxane compound as the component (A), it becomes easier to obtain a cured product having excellent adhesiveness by heating at a high temperature. Therefore, the chip can be held more efficiently in the wire bonding process.
  • the polysilsesquioxane compound of the present invention is a compound having a repeating unit represented by the following formula (a-4).
  • the adhesive paste of the present invention contains, as the component (A), a polysilsesquioxane compound having a repeating unit represented by the following formula (a-4), whereby a cured product that is excellent in adhesiveness when heated at a high temperature becomes easier to obtain.
  • (R 1 -D) represents an organic group.
  • R 1 is preferably an unsubstituted alkyl group or an alkyl group having a substituent, and is an unsubstituted alkyl group having 1 to 10 carbon atoms or a substituent. is more preferred.
  • D represents a linking group (excluding an alkylene group) connecting R 1 and Si or a single bond.
  • the "unsubstituted alkyl group having 1 to 10 carbon atoms” includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n- pentyl group, n-hexyl group, n-octyl group, n-nonyl group, n-decyl group and the like.
  • the number of carbon atoms in the “unsubstituted alkyl group having 1 to 10 carbon atoms” represented by R 1 is preferably 1 to 6, more preferably 1 to 3.
  • the number of carbon atoms in the “substituted alkyl group having 1 to 10 carbon atoms” represented by R 1 is preferably 1 to 6, more preferably 1 to 3.
  • the number of carbon atoms means the number of carbon atoms in the portion (alkyl group portion) excluding the substituents. Therefore, when R 1 is a “substituted alkyl group having 1 to 10 carbon atoms”, the number of carbon atoms in R 1 may exceed 10 in some cases.
  • Examples of the alkyl group of the "substituted alkyl group having 1 to 10 carbon atoms" include the same groups as the "unsubstituted alkyl group having 1 to 10 carbon atoms".
  • substituents of the "substituted alkyl group having 1 to 10 carbon atoms” include halogen atoms such as a fluorine atom, a chlorine atom and a bromine atom; a cyano group; a group represented by the formula: OJ;
  • the number of substituent atoms in the "substituted alkyl group having 1 to 10 carbon atoms" (excluding the number of hydrogen atoms) is generally 1 to 30, preferably 1 to 20.
  • J represents a hydroxyl-protecting group.
  • the hydroxyl-protecting group is not particularly limited, and includes known protecting groups known as hydroxyl-protecting groups.
  • acyl group silyl group such as trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group; methoxymethyl group, methoxyethoxymethyl group, 1-ethoxyethyl group, tetrahydropyran-2- acetal group such as yl group and tetrahydrofuran-2-yl group; alkoxycarbonyl group such as t-butoxycarbonyl group; methyl group, ethyl group, t-butyl group, octyl group, allyl group, triphenylmethyl group, benzyl group, ethers such as p-methoxybenzyl group, fluorenyl group, trityl group and benzhydryl group;
  • R 1 is an unsubstituted alkyl group having 1 to 10 carbon atoms, or fluorine, from the viewpoint of easily obtaining a polysilsesquioxane compound with a stable structure and more stable performance as an adhesive paste.
  • An alkyl group having 1 to 10 carbon atoms and having a fluorine atom is preferable, and an alkyl group having 1 to 10 carbon atoms and having a fluorine atom is more preferable.
  • the alkyl group having 1 to 10 carbon atoms and having a fluorine atom includes a group represented by the composition formula: C m H (2m ⁇ n+1) F n (m is an integer of 1 to 10, n is 2 or more, (2m+1) are the following integers). Note that m is preferably an integer of 1 to 5, more preferably an integer of 1 to 3.
  • the fluoroalkyl group represented by the compositional formula: C m H (2m ⁇ n+1) F n includes CF 3 , CF 3 CF 2 , CF 3 (CF 2 ) 2 , CF 3 (CF 2 ) 3 , CF 3 ( perfluoroalkyl groups such as CF2 ) 4 , CF3 ( CF2) 5 , CF3 ( CF2) 6 , CF3 ( CF2) 7 , CF3 ( CF2) 8 , CF3 ( CF2) 9 ; hydrofluoroalkyl groups such as CF3CH2CH2 , CF3 ( CF2 ) 3CH2CH2 , CF3 ( CF2 ) 5CH2CH2 , CF3 ( CF2 ) 7CH2CH2 ; is mentioned. Among these, a CF 3 CH 2 CH 2 group is preferred.
  • D represents a linking group connecting R 1 and Si (excluding an alkylene group) or a single bond, preferably a single bond.
  • Examples of the linking group for D include arylene groups having 6 to 20 carbon atoms such as 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group and 1,5-naphthylene group.
  • the polysilsesquioxane compound may be one having one (R 1 -D) (homopolymer) or two or more (R 1 -D) (copolymer).
  • the polysilsesquioxane compound when the polysilsesquioxane compound is a copolymer, the polysilsesquioxane compound may be any of random copolymers, block copolymers, graft copolymers, alternating copolymers, and the like. , random copolymers are preferred from the viewpoint of ease of production.
  • the structure of the polysilsesquioxane compound may be any one of a ladder structure, a double decker structure, a cage structure, a partially cleaved cage structure, a cyclic structure, and a random structure.
  • the content of the repeating unit represented by the formula (a-4) (that is, the T site described later) in the polysilsesquioxane compound is usually 50 to 100 mol% of the total repeating units, and 70 It is more preferably up to 100 mol %, still more preferably 90 to 100 mol %, and particularly preferably 100 mol %.
  • the repeating unit represented by the formula (a-4) in the polysilsesquioxane compound may be a repeating unit represented by the following formula (a-5). That is, (R 1 -D) in formula (a-4) above may be R 2 in formula (a-5) below.
  • R 2 is an unsubstituted cycloalkyl group, a substituted cycloalkyl group, an unsubstituted alkenyl group, a substituted alkenyl group, an unsubstituted aryl group, or a substituted represents a group selected from the group consisting of an aryl group and an alkylsilyl group; Among these, unsubstituted aryl groups having 6 to 12 carbon atoms and substituted aryl groups having 6 to 12 carbon atoms are preferable.
  • Examples of the “unsubstituted aryl group having 6 to 12 carbon atoms” include phenyl group, 1-naphthyl group, 2-naphthyl group and the like.
  • the number of carbon atoms in the “unsubstituted aryl group having 6 to 12 carbon atoms” represented by R 2 is preferably 6.
  • the number of carbon atoms in the “substituted aryl group having 6 to 12 carbon atoms” represented by R 2 is preferably 6.
  • the number of carbon atoms means the number of carbon atoms in the portion (aryl group portion) excluding the substituents. Therefore, when R 2 is a “substituted aryl group having 6 to 12 carbon atoms”, the number of carbon atoms of R 2 may exceed 12 in some cases.
  • Examples of the aryl group of the "substituted aryl group having 6 to 12 carbon atoms” include the same aryl groups as the "unsubstituted aryl group having 6 to 12 carbon atoms".
  • substituents of the "substituted aryl group having 6 to 12 carbon atoms” include halogen atoms such as a fluorine atom, a chlorine atom and a bromine atom; alkoxy groups such as a methoxy group and an ethoxy group;
  • the number of substituent atoms (excluding the number of hydrogen atoms) of the "substituted C6-C12 aryl group" is usually 1-30, preferably 1-20.
  • the polysilsesquioxane compound may have one type of R2 , or two or more types of R2. may have an R 2 of
  • the content ratio of the repeating unit (T site) represented by the formula (a-4) in the polysilsesquioxane compound is, for example, 29 Si- when NMR peak assignment and area integration are possible. It can be determined by measuring NMR and 1 H-NMR.
  • Polysilsesquioxane compounds include ketone solvents such as acetone; aromatic hydrocarbon solvents such as benzene; sulfur-containing solvents such as dimethylsulfoxide; ether solvents such as tetrahydrofuran; ester solvents such as ethyl acetate; soluble in various organic solvents such as halogen-containing solvents such as; and mixed solvents comprising two or more of these. Therefore, these solvents can be used to measure the 29 Si-NMR of the polysilsesquioxane compound in a solution state.
  • the repeating unit represented by the formula (a-4) is preferably represented by the following formula (a-6).
  • G represents (R 1 -D), and R 1 and D have the same meanings as R 1 and D in formula (a-4) above.
  • * represents a Si atom, a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and at least one of the three * is a Si atom.
  • alkyl groups having 1 to 10 carbon atoms represented by * include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group and t-butyl group.
  • a plurality of * may all be the same or different.
  • the polysilsesquioxane compound has three oxygen atoms bonded to a silicon atom, generally referred to as T site, and other groups (group represented by G ) are combined to form a partial structure.
  • the polysilsesquioxane compound is a thermosetting compound, and is a compound capable of undergoing condensation reaction and/or hydrolysis by heating. Therefore, at least one of * in the above formula (a-6) of the plurality of repeating units (T sites) possessed by the polysilsesquioxane compound is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. is preferred, and a hydrogen atom is more preferred.
  • the hydrogen atom or the number of carbon atoms in * in the above formula (a-6) is 1 to 1 It is possible to confirm the presence of 10 alkyl groups and whether or not the three * in the above formula (a-6) are all repeating units of Si atoms. Furthermore, when assignment of 29 Si-NMR peaks and integration of areas are possible, with respect to the total number of repeating units (T sites) represented by the formula (a-4) in the polysilsesquioxane compound, The total number of repeating units in which all three * in the formula (a-6) are Si atoms can be roughly estimated.
  • the total number of repeating units in which are all Si atoms is preferably 30 to 95 mol%, more preferably 40 to 90 mol%, from the viewpoint of easily obtaining an adhesive paste that gives a cured product having excellent heat resistance. .
  • polysilsesquioxane compounds can be used singly or in combination of two or more.
  • the method for producing the polysilsesquioxane compound is not particularly limited.
  • the following formula (a-7) is not particularly limited.
  • the following formula (a-7) is not particularly limited.
  • the following formula (a-7) is not particularly limited.
  • R 1 and D have the same meaning as R 1 and D in formula (a-4) above;
  • R 3 represents an alkyl group having 1 to 10 carbon atoms;
  • X 1 represents a halogen atom;
  • p represents an integer of 0 to 3. Multiple R 3 and multiple X 1 may be the same or different.
  • a polysilsesquioxane compound can be produced by polycondensing at least one of the silane compounds (1) represented by.
  • Examples of the alkyl group having 1 to 10 carbon atoms for R 3 include the same groups as the alkyl group having 1 to 10 carbon atoms represented by * in the above formula (a-6).
  • a chlorine atom, a bromine atom, etc. are mentioned as a halogen atom of X1.
  • silane compound (1) examples include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, Alkyltrialkoxy such as n-propyltripropoxysilane, n-propyltributoxysilane, n-butyltrimethoxysilane, isobutyltrimethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, isooctyltriethoxysilane, etc. silane compounds;
  • methyltrichlorosilane methyltribromosilane, ethyltrichlorosilane, ethyltribromosilane, n-propyltrichlorosilane, n-propyltribromosilane, n-butyltrichlorosilane, isobutyltrichlorosilane, n-pentyltrichlorosilane, n-hexyl Alkyltrihalogenosilane compounds such as trichlorosilane and isooctyltrichlorosilane;
  • Phenyltrialkoxysilane compounds such as phenyltrimethoxysilane, phenyltriethoxysilane, phenyldiethoxymethoxysilane, phenylethoxydimethoxysilane; phenylhalogenoalkoxysilane compounds such as chlorodimethoxyphenylsilane and chlorodiethoxyphenylsilane; phenyltrihalogenosilane compounds such as phenyltrichlorosilane and phenyltribromosilane; These silane compounds (1) can be used singly or in combination of two or more.
  • the method of polycondensing the silane compound (1) is not particularly limited.
  • a method of adding a predetermined amount of a polycondensation catalyst to the silane compound (1) in a solvent or without a solvent and stirring the mixture at a predetermined temperature can be used. More specifically, (a) a method of adding a predetermined amount of an acid catalyst to the silane compound (1) and stirring at a predetermined temperature; (b) adding a predetermined amount of a base catalyst to the silane compound (1); (c) adding a predetermined amount of an acid catalyst to the silane compound (1) and stirring at a predetermined temperature; and then adding an excess amount of a base catalyst to make the reaction system basic. , a method of stirring at a predetermined temperature, and the like. Among these, the method (a) or (c) is preferable because the desired polysilsesquioxane compound can be obtained efficiently.
  • the polycondensation catalyst to be used may be either an acid catalyst or a base catalyst. Two or more polycondensation catalysts may be used in combination, but at least an acid catalyst is preferably used.
  • Acid catalysts include inorganic acids such as phosphoric acid, hydrochloric acid, boric acid, sulfuric acid and nitric acid; organic acids such as citric acid, acetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and p-toluenesulfonic acid; is mentioned. Among these, at least one selected from phosphoric acid, hydrochloric acid, boric acid, sulfuric acid, citric acid, acetic acid, and methanesulfonic acid is preferred.
  • Base catalysts include aqueous ammonia; trimethylamine, triethylamine, lithium diisopropylamide, lithium bis(trimethylsilyl)amide, pyridine, 1,8-diazabicyclo[5.4.0]-7-undecene, aniline, picoline, 1,4- Organic bases such as diazabicyclo[2.2.2]octane and imidazole; Organic salt hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; sodium methoxide, sodium ethoxide, sodium t-butoxide, potassium t-butoxide Metal alkoxides such as; Metal hydrides such as sodium hydride and calcium hydride; Metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; Metal carbonates such as sodium carbonate, potassium carbonate and magnesium carbonate; metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate;
  • the amount of the polycondensation catalyst used is usually in the range of 0.05 to 10 mol%, preferably 0.1 to 5 mol%, relative to the total mol amount of the silane compound (1).
  • the solvent to be used can be appropriately selected according to the type of silane compound (1).
  • the solvent to be used can be appropriately selected according to the type of silane compound (1).
  • water aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
  • alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol and t-butyl alcohol; These solvents can be used singly or in combination of two or more. Further, when the above method (c) is employed, after the polycondensation reaction is carried out in an aqueous system in the presence of an acid catalyst, an organic solvent and an excess amount of a base catalyst (such as aqueous ammonia) are added to the reaction solution, A further polycondensation reaction may be carried out under basic conditions.
  • a base catalyst such as aqueous ammonia
  • the amount of the solvent used is usually 0.001 liters or more and 10 liters or less, preferably 0.01 liters or more and 0.9 liters or less per 1 mol of the total molar amount of the silane compound (1).
  • the temperature at which the silane compound (1) is polycondensed is usually in the temperature range from 0°C to the boiling point of the solvent used, preferably in the range of 20°C or higher and 100°C or lower. If the reaction temperature is too low, the polycondensation reaction may proceed insufficiently. On the other hand, if the reaction temperature is too high, it becomes difficult to suppress gelation. The reaction is usually completed in 30 minutes to 30 hours.
  • a monomer in which R 1 is an alkyl group having a fluorine atom tends to be less reactive than a monomer in which R 1 is a normal alkyl group.
  • a polysilsesquioxane compound having a desired molecular weight can be easily obtained by reducing the amount of catalyst and conducting the reaction under mild conditions for a long time.
  • an aqueous alkali solution such as sodium hydrogen carbonate is added to the reaction solution
  • an acid such as hydrochloric acid is added to the reaction solution.
  • the resulting salt is removed by filtration or washing with water to obtain the intended polysilsesquioxane compound.
  • the portion of OR 3 or X 1 of the silane compound (1) that did not undergo hydrolysis and subsequent condensation reaction is the polysilsesquioxane compound remain inside.
  • the adhesive paste of the present invention is different from general heat-curable silicone adhesives that are cured by an addition reaction in the presence of a noble metal catalyst such as a platinum catalyst. Accordingly, the adhesive paste containing the polysilsesquioxane compound of the present invention contains substantially no noble metal catalyst or contains only a small amount of noble metal catalyst.
  • substantially contains no noble metal catalyst or has a low noble metal catalyst content means that "a component that can be interpreted as a noble metal catalyst is not intentionally added, and an effective It means that the content of the noble metal catalyst is, for example, less than 1 ppm by mass in terms of the mass of the catalytic metal element with respect to the amount of the components.
  • the "active ingredient” refers to "the ingredient excluding the solvent (S) contained in the adhesive paste”.
  • the adhesive paste does not substantially contain a noble metal catalyst, or contains a noble metal catalyst, from the viewpoint of stable production in consideration of formulation variations, etc., storage stability, and the viewpoint that noble metal catalysts are expensive. is preferably less.
  • the thermally conductive filler (T) (hereinafter sometimes referred to as "(T) component") constituting the adhesive paste of the present invention is a filler having high thermal conductivity.
  • the thermal conductivity of the thermally conductive filler (T) at 25° C. is preferably 5 W/(m ⁇ K) or more, more preferably 8 W/(m ⁇ K) or more and less than 300 W/(m ⁇ K), particularly preferably is 10 W/(m ⁇ K) or more and less than 100 W/(m ⁇ K).
  • thermally conductive filler (T) having a thermal conductivity equal to or higher than the above lower limit, it becomes easier to obtain a cured product having a thermal conductivity of 0.5 W/(m ⁇ K) or higher.
  • the thermal conductivity of the thermally conductive filler (T) can be measured, for example, by a laser flash method using a laser flash method thermal constant measuring device (for example, LFA477 Nanoflash manufactured by NETZSCH-Geratebau GmbH).
  • the component of the thermally conductive filler (T) is not particularly limited as long as it improves thermal conductivity, and examples thereof include metals; metal oxides; carbides; and nitrides.
  • Metals are group 1 (excluding H), groups 2 to 11, group 12 (excluding Hg), group 13 (excluding B), group 14 (excluding C and Si), group 15 (excluding C and Si) in the periodic table.
  • metal oxides include magnesium oxide, titanium oxide, zinc oxide, alumina, boehmite, chromium oxide, nickel oxide, copper oxide, zirconium oxide, indium oxide, and composite oxides thereof.
  • Carbides include magnesium carbonate, silicon carbide, and calcium carbonate
  • nitrides include boron nitride, aluminum nitride, and the like.
  • the thermally conductive filler (T) can be used singly or in combination of two or more. Among these, in the present invention, it is easy to mix well with the component (A), and the cured product obtained by heat curing has a high thermal conductivity, so that an adhesive paste with excellent adhesiveness can be easily obtained. Titanium oxide, alumina and aluminum nitride are preferred, and alumina is more preferred.
  • the shape of the thermally conductive filler (T) may be spherical, chain-like, needle-like, plate-like, plate-like, flake-like, rod-like, fiber-like, etc., but is preferably spherical.
  • spherical means “generally spherical, as well as nearly spherical, including polyhedral shapes that can be approximated to spheres such as spheroids, ovoids, confetti-like, and cocoon-like".
  • the average particle size of the thermally conductive filler (T) is preferably 0.1 ⁇ m or more and less than 5 ⁇ m, more preferably 0.2 ⁇ m or more and less than 4 ⁇ m, still more preferably 0.4 ⁇ m or more and less than 3.5 ⁇ m, and particularly preferably 0.8 ⁇ m. It is more than 3 ⁇ m and less than 3 ⁇ m.
  • the average particle diameter of the component (T) is within the above range, it is easy to mix well with the component (A) and relatively easy to mix as an adhesive paste, and a cured product obtained by heat curing. It becomes easy to obtain an adhesive paste with high thermal conductivity and excellent adhesiveness.
  • the thickness of the coating film of the adhesive paste is usually about 0.5 ⁇ m or more and 10 ⁇ m or less, and from the viewpoint that the semiconductor element can be horizontally mounted on the applied adhesive paste, the average particle size It is preferably less than the upper limit.
  • the thermally conductive filler (T) is not in contact with each other, but the (T) component and the (A) component should be in contact as much as possible. That is, it is preferable that the entire surface of each thermally conductive filler (T) is coated with the component (A) as much as possible.
  • the average particle size of the thermally conductive filler (T) can be calculated, for example, by primary particle size measurement by transmission electron microscope observation/image analysis and X-ray transmission sedimentation method using a particle size distribution analyzer (Sedigraph). can.
  • the volume filling rate of the thermally conductive filler (T) in the solid content of the adhesive paste is preferably 10 vol% or more and less than 80 vol%, more preferably 20 vol% or more and less than 70 vol%, and particularly preferably 30 vol% or more and less than 60 vol%.
  • the volume filling factor can be measured and calculated, for example, as follows. That is, the volume of the (T) component is calculated from the mass and density of the (T) component, and the solid content of the adhesive paste is calculated from the mass and density of the components excluding the (T) component among the solid content of the adhesive paste.
  • volume filling rate (vol%) [volume of (T) component (cm 3 )/[volume of (T) component (cm 3 ) + volume of component excluding (T) component among solids of adhesive paste (cm 3 )]] ⁇ 100 More specifically, it can be measured and calculated by the method described in Examples.
  • the content of component (T) is not particularly limited, but the amount is preferably 30 parts by mass or more and less than 90 parts by mass, more preferably 35 parts by mass or more and 85 parts by mass, relative to 100 parts by mass of the solid content of the adhesive paste. less than, more preferably 40 parts by mass or more and less than 80 parts by mass.
  • the content of component (T) is not particularly limited, but the amount is preferably 40 parts by mass or more and less than 1000 parts by mass, more preferably 60 parts by mass, relative to 100 parts by mass of the solid content of component (A). 900 parts by mass or more, more preferably 80 parts by mass or more and less than 800 parts by mass, particularly preferably 100 parts by mass or more and less than 600 parts by mass.
  • the adhesive paste of the present invention contains a curable organopolysiloxane compound (A) and a thermally conductive filler (T), and may contain the following components.
  • the adhesive paste of the present invention may contain a solvent (S).
  • the solvent (S) is not particularly limited as long as it can dissolve or disperse the components of the adhesive paste of the present invention.
  • the solvent (S) preferably contains an organic solvent having a boiling point of 254° C. or higher (hereinafter sometimes referred to as “organic solvent (SH)”).
  • organic solvent (SH) organic solvent having a boiling point of 254° C. or higher
  • boiling point refers to "boiling point at 1013 hPa” (same in this specification).
  • the boiling point of the organic solvent (SH) is preferably 254° C. or higher, more preferably 254° C. or higher and 300° C. or lower.
  • organic solvent examples include tripropylene glycol-n-butyl ether (boiling point 274° C.), 1,6-hexanediol diacrylate (boiling point 260° C.), diethylene glycol dibutyl ether (boiling point 256° C.), triethylene glycol butyl methyl ether (boiling point 261° C.), polyethylene glycol dimethyl ether (boiling point 264-294° C.), tetraethylene glycol dimethyl ether (boiling point 275° C.), polyethylene glycol monomethyl ether (boiling point 290-310° C.) and the like.
  • organic solvent (SH) tripropylene glycol-n-butyl ether and 1,6-hexanediol diacrylate are preferable as the organic solvent (SH) from the viewpoint that the effects of the present invention can be more easily obtained.
  • the organic solvent (SH) may be used singly or in combination of two or more.
  • the adhesive paste of the present invention may contain a solvent other than the organic solvent (SH).
  • a solvent other than the organic solvent (SH) a solvent having a boiling point of 100° C. or more and less than 254° C. (hereinafter sometimes referred to as “organic solvent (SL)”) is preferable.
  • the organic solvent (SL) is not particularly limited as long as it has a boiling point of 100° C. or more and less than 254° C. and can dissolve or disperse the components of the adhesive paste of the present invention.
  • the temperature range for heating the adhesive paste to obtain a cured product can be adjusted more precisely. It is possible to reduce the influence of heating on parts and sensor chips.
  • organic solvent examples include diethylene glycol monobutyl ether acetate (boiling point 247° C.), dipropylene glycol-n-butyl ether (boiling point 229° C.), dipropylene glycol methyl ether acetate (boiling point 209° C.), and diethylene glycol butyl methyl ether.
  • the organic solvent (SL) is preferably a glycol-based solvent, preferably diethylene glycol monobutyl ether acetate or dipropylene glycol-n-butyl ether, more preferably diethylene glycol monobutyl ether acetate, from the viewpoint of easily mixing the active ingredient. preferable.
  • an organic solvent (SH) and an organic solvent (SL) are used in combination, specifically, a combination of tripropylene glycol-n-butyl ether (solvent (SH)) and diethylene glycol monobutyl ether acetate (solvent (SL)), 1, A combination of 6-hexanediol diacrylate (solvent (SH)) and diethylene glycol monobutyl ether acetate (solvent (SL)), tripropylene glycol-n-butyl ether (solvent (SH)) and dipropylene glycol-n-butyl ether (solvent (SL)), a combination of 1,6-hexanediol diacrylate (solvent (SH)) and dipropylene glycol-n-butyl ether (solvent (SL)) is preferred.
  • the adhesive paste of the present invention preferably contains the solvent (S) in such an amount that the solid content concentration is preferably 50% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 97% by mass or less.
  • the solid content concentration is within this range, it is easy to mix the active ingredient well, and the workability in the process of filling the syringe with the adhesive paste and the coating process is excellent.
  • excellent workability in the step of filling the syringe with the adhesive paste means “capable of filling an appropriate amount into the syringe without air bubbles".
  • the adhesive paste of the present invention may contain a silane coupling agent as the component (B).
  • the silane coupling agent includes a silane coupling agent (B1) having a nitrogen atom in the molecule (hereinafter sometimes referred to as “silane coupling agent (B1)”) and a silane having an acid anhydride structure in the molecule.
  • Coupling agent (B2) (hereinafter sometimes referred to as “silane coupling agent (B2)").
  • the adhesive paste containing the silane coupling agent (B1) is excellent in workability in the coating process, and is excellent in curability due to condensation reaction with the component (A) when heated, and is adhesive when heated at high temperature. , to give a cured product that is more excellent in heat resistance and crack suppression properties of the cured product.
  • excellent crack suppression of the cured product means that "when the adhesive paste is heated to obtain a cured product, cracking does not occur in the cured product due to temperature changes".
  • the silane coupling agent (B1) is not particularly limited as long as it is a silane coupling agent having a nitrogen atom in its molecule.
  • Examples thereof include trialkoxysilane compounds represented by the following formula (b-1), and dialkoxyalkylsilane compounds and dialkoxyarylsilane compounds represented by the following formula (b-2).
  • R a represents an alkoxy group having 1 to 6 carbon atoms such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy and t-butoxy.
  • a plurality of R a may be the same or different.
  • R b is an alkyl group having 1 to 6 carbon atoms such as a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group; or a phenyl group, 4-chlorophenyl group, 4- An aryl group with or without a substituent such as a methylphenyl group and a 1-naphthyl group;
  • R c represents an organic group having 1 to 10 carbon atoms and having a nitrogen atom.
  • R c may be further bonded to another silicon atom-containing group.
  • Specific examples of the organic group having 1 to 10 carbon atoms for R c include N-2-(aminoethyl)-3-aminopropyl group, 3-aminopropyl group, N-(1,3-dimethyl-butylidene)amino propyl group, 3-ureidopropyl group, N-phenyl-aminopropyl group and the like.
  • the compound in which R c is an organic group bonded to another silicon atom-containing group includes an isocyanurate skeleton.
  • examples include those that form an isocyanurate-based silane coupling agent by bonding with other silicon atoms, and those that form a urea-based silane coupling agent by bonding with other silicon atoms via a urea skeleton.
  • the silane coupling agent (B1) is preferably an isocyanurate-based silane coupling agent and a urea-based silane coupling agent, since a cured product having higher adhesive strength can be easily obtained.
  • those having 4 or more silicon-bonded alkoxy groups are preferred. Having 4 or more silicon-bonded alkoxy groups means that the total number of alkoxy groups bonded to the same silicon atom and alkoxy groups bonded to different silicon atoms is 4 or more.
  • a compound represented by the following formula (b-3) is a urea-based silane cup having 4 or more silicon-bonded alkoxy groups.
  • Ring agents include compounds represented by the following formula (b-4).
  • R a has the same meaning as R a in the formulas (b-1) and (b-2).
  • Each of t1 to t5 independently represents an integer of 1 to 10, preferably an integer of 1 to 6, and particularly preferably 3.
  • Specific examples of the compound represented by formula (b-3) include 1,3,5-N-tris(3-trimethoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-tri ethoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-tri-i-propoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-tributoxysilylpropyl) isocyanurate, etc.
  • Specific examples of the compound represented by formula (b-4) include N,N'-bis(3-trimethoxysilylpropyl)urea, N,N'-bis(3-triethoxysilylpropyl)urea, N , N'-bis(3-tripropoxysilylpropyl)urea, N,N'-bis(3-tributoxysilylpropyl)urea, N,N'-bis(2-trimethoxysilylethyl)urea, etc.
  • N'-bis[(tri(C1-C6)alkoxysilyl)(C1-C10)alkyl]urea N,N'-bis(3-dimethoxymethylsilylpropyl)urea, N,N'-bis(3-dimethoxyethylsilylpropyl)urea, N,N'-bis(3-diethoxymethylsilylpropyl)urea, etc.
  • the silane coupling agents (B1) can be used singly or in combination of two or more.
  • the silane coupling agent (B1) includes 1,3,5-N-tris(3-trimethoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-triethoxysilylpropyl) ) isocyanurate (the above two are hereinafter referred to as “isocyanurate compounds”), N,N′-bis(3-trimethoxysilylpropyl)urea, N,N′-bis(3-triethoxysilylpropyl)urea (The above two are hereinafter referred to as "urea compounds”), and a combination of the isocyanurate compound and the urea compound are preferably used, and the isocyanurate compound is more preferably used.
  • the ratio of the two to be used is preferably 100:1 to 100:200 in mass ratio of (isocyanurate compound) to (urea compound), and 100: 10 to 100:110 is more preferred.
  • the content of component (B1) is not particularly limited, but the amount is On the other hand, preferably 0.7 parts by mass or more and less than 15 parts by mass, more preferably 1 part by mass or more and less than 13 parts by mass, still more preferably 1.3 parts by mass or more and less than 11 parts by mass, particularly preferably 1.5 parts by mass The amount is not less than 9 parts by mass.
  • the adhesive paste containing the silane coupling agent (B2) has excellent workability in the coating process, and gives a cured product with excellent adhesiveness and heat resistance when heated at a high temperature.
  • Silane coupling agents (B2) include 2-(trimethoxysilyl)ethyl succinic anhydride, 2-(triethoxysilyl)ethyl succinic anhydride, 3-(trimethoxysilyl)propyl succinic anhydride, 3-(tri tri(1-6C)alkoxysilyl(2-8C)alkyl succinic anhydrides, such as ethoxysilyl)propyl succinic anhydride; di(C1-C6)alkoxymethylsilyl(C2-C8)alkyl succinic anhydrides such as 2-(dimethoxymethylsilyl)ethyl succinic anhydride; (1-6 carbon atoms) alkoxydimethylsilyl (2-8 carbon atoms) alkyl succinic anhydrides, such as 2-(methoxydimethylsilyl)ethyl succinic anhydride;
  • trihalogenosilyl (2-8 carbon atoms) alkyl succinic anhydrides such as 2-(trichlorosilyl)ethyl succinic anhydride and 2-(tribromosilyl)ethyl succinic anhydride; dihalogenomethylsilyl (2-8 carbon atoms) alkyl succinic anhydride, such as 2-(dichloromethylsilyl)ethyl succinic anhydride; 2-(chlorodimethylsilyl)ethyl succinic anhydride, halogenodimethylsilyl (2-8 carbon atoms) alkyl succinic anhydride; Silane coupling agents (B2) can be used singly or in combination of two or more.
  • the silane coupling agent (B2) is preferably tri(C 1-6) alkoxysilyl (C 2-8) alkyl succinic anhydride, 3-(trimethoxysilyl) propyl succinic anhydride or 3-(Triethoxysilyl)propyl succinic anhydride is particularly preferred.
  • the content of the (B2) component is not particularly limited, but the amount is On the other hand, preferably 0.05 parts by mass or more and less than 5 parts by mass, more preferably 0.1 parts by mass or more and less than 3 parts by mass, still more preferably 0.2 parts by mass or more and less than 2 parts by mass, particularly preferably 0.3 parts by mass It is an amount that is not less than 1.5 parts by mass and less than 1.5 parts by mass.
  • the component (B2) in the above range, the effect of adding the component (B2) can be further exhibited, and a cured product having a thermal conductivity of 0.5 W / (m K) or more can be obtained. becomes easier.
  • the content of component (B) is not particularly limited, but the amount is preferably 0.00 per 100 parts by mass of the solid content of the adhesive paste. 7 parts by mass or more and less than 20 parts by mass, more preferably 1 part by mass or more and less than 15 parts by mass, still more preferably 1.3 parts by mass or more and less than 12 parts by mass, particularly preferably 1.5 parts by mass or more and less than 9 parts by mass quantity.
  • the component (B) in the above range the effect of adding the component (B) can be further exhibited, and a cured product having a thermal conductivity of 0.5 W / (m K) or more can be obtained. becomes easier.
  • the adhesive paste of the present invention contains other components [(C) component] other than the above components (A), (T) and (B) within a range that does not impede the purpose of the present invention.
  • Antioxidants are added to prevent oxidative deterioration during heating.
  • Antioxidants include phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants, and the like.
  • Phosphorus antioxidants include phosphites, oxaphosphaphenanthrene oxides and the like.
  • Phenolic antioxidants include monophenols, bisphenols, polymeric phenols, and the like.
  • sulfur-based antioxidants include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, and distearyl-3,3'-thiodipropionate.
  • antioxidants can be used singly or in combination of two or more.
  • the amount of antioxidant to be used is generally 10% by mass or less relative to the component (A).
  • a UV absorber is added for the purpose of improving the light resistance of the resulting adhesive paste.
  • ultraviolet absorbers include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like. These ultraviolet absorbers can be used singly or in combination of two or more. The amount of the ultraviolet absorber to be used is generally 10% by mass or less relative to the component (A).
  • Light stabilizers include, for example, poly[ ⁇ 6-(1,1,3,3,-tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl ⁇ (2,2,6 ,6-tetramethyl-4-piperidine)imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidine)imino ⁇ ] and other hindered amines. These light stabilizers can be used singly or in combination of two or more.
  • the total amount of component (C) used is generally 20% by mass or less relative to component (A).
  • the adhesive paste of the present invention can be produced, for example, by a production method comprising the following steps (AI) and (AII).
  • step (AI) As a method for obtaining a polysilsesquioxane compound by polycondensing at least one compound represented by the above formula (a-7) in the step (AI) in the presence of a polycondensation catalyst, 1) adhesive paste
  • the same methods as those exemplified in the section can be mentioned.
  • the solvent (S) and thermally conductive filler (T) used in step (AII) are the same as those exemplified as the solvent (S) and thermally conductive filler (T) in the section of 1) Adhesive paste. mentioned.
  • the method of dissolving the polysilsesquioxane compound in the solvent (S) includes, for example, the polysilsesquioxane compound and the thermally conductive filler (T), and optionally the component (B) and (C) are mixed with the solvent (S), defoamed, and dissolved.
  • a mixing method and a defoaming method are not particularly limited, and known methods can be used.
  • the order of mixing is not particularly limited. According to the production method including the steps (AI) and (AII), the adhesive paste of the present invention can be produced efficiently and simply.
  • a cured product can be obtained by heating the adhesive paste to volatilize the solvent (S) and cure the adhesive paste.
  • the heating temperature for curing is usually 100 to 190°C, preferably 120 to 190°C.
  • the heating time for curing is usually 30 minutes to 10 hours, preferably 30 minutes to 5 hours, more preferably 30 minutes to 3 hours.
  • the adhesive paste of the present invention has the properties described above, so it can be suitably used as an adhesive for semiconductor element fixing materials.
  • semiconductor elements include light-emitting elements such as lasers and light-emitting diodes (LEDs), optical semiconductor elements such as light-receiving elements such as solar cells, transistors, sensors such as temperature sensors and pressure sensors, and integrated circuits.
  • LEDs light-emitting elements
  • optical semiconductor elements such as light-receiving elements such as solar cells
  • transistors transistors
  • sensors such as temperature sensors and pressure sensors
  • integrated circuits an optical semiconductor element is preferable from the viewpoint that the effect of using the adhesive paste of the present invention is likely to be exhibited more preferably.
  • Materials for supporting substrates for bonding semiconductor elements include glasses such as soda lime glass and heat-resistant hard glass; ceramics; sapphire; iron, copper, aluminum, gold, silver, platinum, chromium, titanium and these metals. alloys, metals such as stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyether Synthetic resins such as ether ketone, polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene resin, cycloolefin resin, and glass epoxy resin;
  • the adhesive paste of the present invention is preferably filled in a syringe. Since the syringe is filled with the adhesive paste, workability in the coating process is excellent.
  • the material of the syringe may be synthetic resin, metal or glass, but synthetic resin is preferred.
  • the capacity of the syringe is not particularly limited, and may be appropriately determined according to the amount of adhesive paste to be filled or applied.
  • a commercial item can also be used as a syringe. Commercially available products include, for example, SS-01T series (manufactured by TERUMO) and PSY series (manufactured by Musashi Engineering).
  • the syringe filled with the adhesive paste descends vertically to approach the support substrate, and after discharging a predetermined amount of the adhesive paste from the tip of the syringe, the syringe rises to support the support substrate. As the substrate is separated, the support substrate moves laterally. By repeating this operation, the adhesive paste is continuously applied to the support substrate. After that, a semiconductor element is mounted on the applied adhesive paste and pressure-bonded to the support substrate.
  • the amount of the adhesive paste to be applied is not particularly limited, and may be any amount that allows the semiconductor element to be adhered and the supporting substrate to be firmly adhered by curing. Usually, the amount is such that the thickness of the coating film of the adhesive paste is 0.5 ⁇ m or more and 5 ⁇ m or less, preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the semiconductor element is fixed to the supporting substrate by heating and curing the adhesive paste of the obtained press-fit.
  • the heating temperature and heating time are as described in the section 1) Adhesive paste.
  • the semiconductor element is satisfactorily mounted on the adhesive paste and fixed with high adhesive strength in the wire bonding process, and thermal deterioration is reduced. or prevented.
  • curable organopolysiloxane compound (A1) had a mass average molecular weight (Mw) of 7,800 and a molecular weight distribution (Mw/Mn) of 4.52. IR spectrum data of the curable organopolysiloxane compound (A1) are shown below. Si—CH 3 : 1272 cm ⁇ 1 , 1409 cm ⁇ 1 , Si—O: 1132 cm ⁇ 1
  • Example 1 To 100 parts of curable organopolysiloxane compound (A1), 73 parts of solvent (S), 160 parts of thermally conductive filler (T1), 30 parts of silane coupling agent (B1), and 3 parts of silane coupling agent (B2) are added. In addition, by thoroughly mixing and defoaming the entire contents, an adhesive paste 1 having a solid content concentration of 80% was obtained.
  • Adhesive pastes 2 to 8 and 1r to 4r were obtained in the same manner as in Example 1, except that the types and blending ratios of the compounds (each component) were changed to those shown in Table 1 below.
  • volume filling rate (vol%) [volume of (T) component (cm 3 )/[volume of (T) component (cm 3 ) + volume of component excluding (T) component among solids of adhesive paste (cm 3 )]] ⁇ 100
  • the density of the components other than the (T) component in the solid content of the adhesive paste is 1.2 g/cm 3 . published on October 20), the density of titanium oxide ((T1) component) is 4.17 g/cm 3 , the density of alumina ((T2) component, (T3) component and (T4) component) is 4.0 g/cm 3.
  • Magnesium carbonate (component (T5)) with a density of 3.04 g/cm 3 and aluminum nitride (component (T6)) with a density of 3.05 g/cm 3 were used.
  • Thermal conductivity measurement The adhesive pastes obtained in Examples and Comparative Examples were poured into a Teflon (registered trademark) frame of 10 mm long ⁇ 10 mm wide ⁇ 0.2 mm high, and cured by heating at 120 ° C. for 4 hours. got a piece Then, the thermal diffusivity of this test piece was measured by the temperature wave method using a thermal diffusivity measuring device (ai-Phase Mobile 1, manufactured by i-Phase). In addition, among the components constituting the cured product obtained by heating and curing the adhesive paste, the components excluding the thermally conductive filler (T) have a specific heat of 1 J/(g K) and a density of 1.2 g/cm 3 .
  • This adherend with the test piece is left on the measurement stage of a bond tester (manufactured by Daisy, series 4000) at 100 ° C. for 60 seconds, and is adhered at a speed of 200 ⁇ m / s from a position 100 ⁇ m above the adherend. A stress was applied in the horizontal direction (shearing direction) to the surface, and the adhesive strength (N/mm square) between the test piece and the adherend at 100°C was measured.
  • the optical semiconductor element in the test piece for thermal deterioration evaluation is made to emit light at a current value of 250 mA, and the initial luminous flux and the luminous flux after 1000 hours of energization time are measured using a measuring device (manufactured by MentorGraphics, T3Ster/TeraLED).
  • the luminous flux maintenance rate (%) [[luminous flux (lm) after 1000 hours of energization time/initial luminous flux (lm)] ⁇ 100] is calculated, and the thermal deterioration of the semiconductor element is evaluated according to the following criteria. did. Excellent: The luminous flux maintenance rate was 97% or more. Good: The luminous flux maintenance rate was 95% or more and less than 97%. Fair: The luminous flux maintenance rate was 93% or more and less than 95%. Poor: Luminous flux maintenance rate was less than 93%.
  • the adhesive pastes obtained in Examples and Comparative Examples were each applied to the mirror surface of a square silicon chip (#2000 grinding, 200 ⁇ m thick) with a side length of 1 mm (area of 1 mm 2 ), and the coated surface was covered.
  • the adhesive paste was press-bonded onto an object [electroless silver-plated copper plate (silver-plated surface average roughness Ra: 0.025 ⁇ m)] so that the thickness of the adhesive paste after press-bonding was about 3 ⁇ m. Then, it was cured by heat treatment at 170° C. for 2 hours to obtain an adherend with a test piece.
  • Tables 1 and 2 reveal the following.
  • the adhesive pastes 1 to 8 of Examples 1 to 8 have high thermal conductivity in the cured products obtained by heat curing, and the cured products obtained by heating at a high temperature have excellent adhesiveness. Therefore, when the cured product obtained by heating the adhesive pastes 1 to 8 is used, the thermal deterioration of the semiconductor element can be reduced, and the peeling of the semiconductor element can be reduced or prevented in the wire bonding process. be able to. Since alumina has a higher thermal conductivity than titanium oxide, the adhesive paste 2 containing alumina (T2) as the (T) component is compared with the adhesive paste 1 containing titanium oxide (T1). Thus, a cured product having higher thermal conductivity can be obtained.
  • An adhesive paste containing a thermally conductive filler (T) with a large average particle size can obtain a cured product with a higher thermal conductivity, and the adhesive strength of the cured product obtained by heating at a high temperature Excellent. Therefore, when a cured product obtained by heating and curing an adhesive paste containing a thermally conductive filler (T) having a large average particle size is used, peeling of the semiconductor element can be further reduced or prevented in the wire bonding process. Yes (Examples 2-4).
  • adhesive pastes 5 and 6 which have a high content of (T) component with respect to 100 parts by mass of the solid content of the adhesive paste, have a higher thermal conductivity than adhesive paste 4, which has a low content of (T) component. A cured product can be obtained.
  • the adhesive paste 6 has a large content of the (T) component, but a small content of the (B) component and the (B1) component with respect to 100 parts by mass of the solid content of the adhesive paste.
  • the adhesiveness of the resulting cured product is slightly reduced (Examples 4-6).
  • the adhesive paste contains a thermally conductive filler (T2) with a small average particle size, the adhesive pastes 7 and 4r with a large content thereof can provide a cured product with high thermal conductivity.
  • the adhesive paste 7 has a relatively large content of the components (B) and (B1) with respect to 100 parts by mass of the solid content of the adhesive paste, the cured product obtained by heating the adhesive paste at a high temperature has more adhesiveness. It will be excellent for (Example 7 and Comparative Example 4).
  • the adhesive paste 8 containing aluminum nitride (T6) as the (T) component a cured product with high thermal conductivity can be obtained, like the adhesive paste 4 containing alumina (T4).
  • the cured product obtained by heating at a high temperature has excellent adhesiveness (Examples 4 and 8). That is, by selecting the content of the thermally conductive filler (T), the optimum adhesive paste can be obtained in consideration of the type of semiconductor element, the temperature at which the adhesive paste is cured, and the like.
  • the adhesive paste 1r of Comparative Example 1 is an adhesive paste that does not contain a thermally conductive filler (T), the thermal conductivity of the cured product obtained by heating and curing is low. Therefore, when this cured product was used, thermal deterioration of the semiconductor element was observed.
  • the adhesive paste 2r of Comparative Example 2 has a small content of the (T) component with respect to 100 parts by mass of the solid content of the adhesive paste, the thermal conductivity of the cured product obtained by heat curing is low. Therefore, when this cured product was used, thermal deterioration of the semiconductor element was observed.
  • the adhesive paste 3r of Comparative Example 3 contains magnesium carbonate as a thermally conductive filler (T), and is relatively difficult to mix with the component (A) produced in Production Example 1. ), the area of the thermally conductive filler (T) that can cover the component is small, so the cured product obtained by heating the adhesive paste at a high temperature does not exhibit sufficient adhesive strength. Therefore, when this cured product was used, peeling of the semiconductor element was observed in the wire bonding process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)
  • Silicon Polymers (AREA)

Abstract

本発明は、硬化性オルガノポリシロキサン化合物、及び、熱伝導性フィラーを含有する接着ペーストであって、前記接着ペーストを120℃で4時間加熱硬化して得られる硬化物の熱伝導率が、0.5W/(m・K)以上であり、前記接着ペーストを170℃で2時間加熱硬化して得られる硬化物と、銀メッキ銅板との100℃における接着強度が、5N/mm□以上である接着ペーストである。本発明によれば、半導体素子や該半導体素子を備える半導体装置の発熱に伴う光学部品やセンサチップ等の熱劣化を低減ないし防止することができ、かつ、ワイヤーボンディング工程において、半導体素子の剥がれを低減ないし防止することができる接着ペースト、この接着ペーストを半導体素子固定材用接着剤として使用する方法及び半導体装置の製造方法が提供される。

Description

接着ペースト、接着ペーストの使用方法及び半導体装置の製造方法
 本発明は、加熱硬化して得られる硬化物の熱伝導率が高く、かつ、高温で加熱して得られる硬化物が接着性に優れる接着ペースト、この接着ペーストを半導体素子固定材用接着剤として使用する方法、及びこの接着ペーストを半導体素子固定材用接着剤として使用する半導体装置の製造方法に関する。
 従来、接着ペーストは用途に応じて様々な改良がなされ、光学部品や成形体の原料、接着剤、コーティング剤等として産業上広く利用されてきている。
 また、接着ペーストは、半導体素子固定材用接着剤等の半導体素子固定材用ペーストとしても注目を浴びてきている。
 半導体素子には、レーザー、発光ダイオード(LED)等の発光素子や太陽電池等の受光素子等の光半導体素子、トランジスタ、温度センサや圧力センサ等のセンサ、集積回路等がある。
 近年においては、半導体素子の高輝度化や高出力化が飛躍的に進み、これに伴い、半導体素子の発熱量がさらに増大していく傾向にある。
 ところが、近年における半導体素子の高輝度化や高出力化に伴い、素子固定用に用いられる接着ペーストの硬化物が、より高いエネルギーの光や半導体素子から発生するより高温の熱に長時間さらされ、接着力が低下したり、劣化して剥離するという問題、又は半導体素子の性能が劣化するという問題が生じることがあった。
 したがって、接着ペーストの硬化物の熱伝導率を向上させ、半導体素子から発せられる熱を効率よく排熱し、半導体素子の性能を高レベルで維持ないし向上させることが重要な課題となっている。
 他方、半導体素子を備える半導体装置の製造方法として、例えば、半導体素子を接着シートでリードフレームなどの被着体に固定する工程と、接着シートを硬化させる工程と、ワイヤーボンディング工程とを含む方法が知られている。
 ところが、近年における半導体素子の小型化に伴い、ワイヤーボンディング装置から発生する超音波により、小型の半導体素子が振動し易くなっているため、また、ボンディングされたワイヤーの張力が発生するため、ワイヤーボンディング工程においては、半導体素子の剥がれが生じるという問題もあった。
 したがって、半導体素子の種類、接着ペーストの硬化温度等の様々なワイヤーボンディング条件に対応するべく、半導体素子の剥がれを防止することができる接着性に優れる接着ペーストも要望されている。
 本発明に関連して、例えば、特許文献1には、硬化物が接着性に優れる硬化性組成物が記載されている。
 しかしながら、特許文献1に記載の硬化性組成物は、該硬化性組成物を加熱硬化して得られる硬化物の熱伝導率に着目されておらず、半導体素子の熱劣化に関する評価結果については記載されていない。
国際公開第2020/067451号
 本発明は、かかる実情に鑑みてなされたものであり、半導体素子や該半導体素子を備える半導体装置の発熱に伴う光学部品やセンサチップ等の熱劣化を低減ないし防止することができ、かつ、ワイヤーボンディング工程において、半導体素子の剥がれを低減ないし防止することができる接着ペースト、この接着ペーストを半導体素子固定材用接着剤として使用する方法、及びこの接着ペーストを半導体素子固定材用接着剤として使用する半導体装置の製造方法を提供することを目的とする。
 なお、本発明において、「高温」とは、「150℃~190℃」をいう。
 また、「接着性に優れる」とは、「接着強度が高い」を意味する。
 本発明者らは上記課題を解決すべく鋭意検討を重ねた。その結果、
(i)硬化性オルガノポリシロキサン化合物を含有する接着ペーストを加熱硬化して得られる、熱伝導率が高い硬化物は、半導体素子や該半導体素子を備える半導体装置の発熱に伴う光学部品やセンサチップ等の熱劣化を低減ないし防止することができること、及び、
(ii)硬化性オルガノポリシロキサン化合物を含有する接着ペーストを高温で加熱して得られる、特定の接着強度を有する硬化物は、ワイヤーボンディング工程において、半導体素子の剥がれを低減ないし防止することができること、を見出し、本発明を完成するに至った。
 かくして本発明によれば、下記〔1〕~〔6〕の接着ペースト、〔7〕の接着ペーストの使用方法、及び、〔8〕の接着ペーストを使用する半導体装置の製造方法が提供される。
〔1〕硬化性オルガノポリシロキサン化合物(A)、及び、熱伝導性フィラー(T)を含有する接着ペーストであって、前記接着ペーストを120℃で4時間加熱硬化して得られる硬化物の熱伝導率が、0.5W/(m・K)以上であり、前記接着ペーストを170℃で2時間加熱硬化して得られる硬化物と、銀メッキ銅板との100℃における接着強度が、5N/mm□以上である接着ペースト。
〔2〕前記硬化性オルガノポリシロキサン化合物(A)が、ポリシルセスキオキサン化合物である、〔1〕に記載の接着ペースト。
〔3〕前記熱伝導性フィラー(T)が、熱伝導率が5W/(m・K)以上の無機フィラーである、〔1〕又は〔2〕に記載の接着ペースト。
〔4〕前記熱伝導性フィラー(T)が、酸化チタン、アルミナ、及び窒化アルミニウムからなる群から選ばれる少なくとも1種である、〔1〕~〔3〕のいずれかに記載の接着ペースト。
〔5〕貴金属触媒を実質的に含有しない、〔1〕~〔4〕のいずれかに記載の接着ペースト。
〔6〕半導体素子固定材用接着剤である、〔1〕~〔5〕のいずれかに記載の接着ペースト。
〔7〕〔1〕~〔6〕のいずれかに記載の接着ペーストを、半導体素子固定材用接着剤として使用する方法。
〔8〕〔1〕~〔6〕のいずれかに記載の接着ペーストを、半導体素子固定材用接着剤として使用する半導体装置の製造方法であって、下記工程(BI)及び工程(BII)を有する半導体装置の製造方法。
工程(BI):半導体素子と支持基板の一方又は両方の接着面に前記接着ペーストを塗布し、圧着する工程
工程(BII):工程(BI)で得られた圧着物の前記接着ペーストを加熱硬化させ、前記半導体素子を前記支持基板に固定する工程
 本発明によれば、半導体素子や該半導体素子を備える半導体装置の発熱に伴う光学部品やセンサチップ等の熱劣化を低減ないし防止することができ、かつ、ワイヤーボンディング工程において、半導体素子の剥がれを低減ないし防止することができる接着ペーストが提供される。
 また、本発明によれば、この接着ペーストを半導体素子固定材用接着剤として使用する方法、及びこの接着ペーストを半導体素子固定材用接着剤として使用する半導体装置の製造方法が提供される。
 以下、本発明を、1)接着ペースト、2)接着ペーストの使用方法、及び、接着ペーストを使用する半導体装置の製造方法、に項分けして詳細に説明する。
1)接着ペースト
 本発明の接着ペーストは、硬化性オルガノポリシロキサン化合物(A)、及び、熱伝導性フィラー(T)を含有する接着ペーストであって、前記接着ペーストを120℃で4時間加熱硬化して得られる硬化物の熱伝導率が、0.5W/(m・K)以上であり、前記接着ペーストを170℃で2時間加熱硬化して得られる硬化物と、銀メッキ銅板との100℃における接着強度が、5N/mm□以上のものである。
 なお、本発明において、「接着ペースト」とは、「室温(23℃)において、粘稠な液体であって、流動性を有する状態のもの」をいう。
 本発明の接着ペーストは、前記状態の性質を有しているため、塗布工程における作業性に優れる。
 ここで、「塗布工程における作業性に優れる」とは、「塗布工程において、接着ペーストを吐出管から吐出し、次いで吐出管を引き上げる際、糸引き量が少ないか、又はすぐに途切れて、樹脂飛びしたり、塗布後に液滴が広がることにより、周囲を汚染したりすることがないこと」をいう。
 本発明の接着ペーストは、接着ペーストを120℃で4時間加熱硬化して得られる硬化物の熱伝導率が0.5W/(m・K)以上、好ましくは0.7W/(m・K)以上、より好ましくは1.0W/(m・K)以上、さらに好ましくは1.5W/(m・K)以上、特に好ましくは2.0W/(m・K)以上のものである。
 加熱硬化して得られる熱伝導率が上記下限値以上である硬化物は、半導体素子や該半導体素子を備える半導体装置の発熱に伴う光学部品やセンサチップ等の熱劣化を低減ないし防止することができるものとなる。
 本発明の接着ペーストを加熱硬化して得られる硬化物の熱伝導率は、例えば、次のようにして測定及び算出することができる。すなわち、本発明の接着ペーストをテフロン(登録商標)枠へ流し込み、120℃で4時間加熱処理して硬化させて試験片を作製する。その後、熱拡散率測定装置を使用して、温度波法により、この試験片の熱拡散率を測定する。また、接着ペーストを加熱硬化して得られる硬化物を構成する成分のうち、熱伝導性フィラー(T)を除く成分の比熱を1J/(g・K)、密度を1.2g/cmと仮定し、下記式にて熱伝導率を算出する。
 熱伝導率〔W/(m・K)〕=熱拡散率(m/s)×比熱〔J/(g・K)〕×密度(g/cm)×10
 より具体的には、実施例に記載の方法により測定することができる。
 本発明の接着ペーストは、接着ペーストを170℃で2時間加熱硬化して得られる硬化物と、銀メッキ銅板との100℃における接着強度が5N/mm□以上、好ましくは10N/mm□以上、より好ましくは13N/mm□以上のものである。
 接着強度が上記下限値以上であることにより、高温で加熱硬化して得られる硬化物は、ワイヤーボンディング工程において、半導体素子の剥がれを低減ないし防止することができるものとなる。
 本発明の接着ペーストを加熱硬化して得られる硬化物の接着強度は、例えば、次のようにして測定することができる。すなわち、一辺の長さが1mmの正方形(面積が1mm)のシリコンチップのミラー面に、本発明の接着ペーストを塗布し、塗布面を銀メッキ銅板の上に載せ圧着(圧着後の接着ペーストの厚さ:約3μm)し、170℃で2時間加熱処理して硬化させる。これを、100℃のボンドテスターの測定ステージ上に60秒間放置し、被着体から100μmの高さの位置より、スピード200μm/sで接着面に対し水平方向(せん断方向)に応力をかけ、試験片と被着体との接着強度(N/mm□)を測定する。
 本明細書において、「1mm□」とは、「1mm square」、すなわち、「1mm×1mm(一辺の長さが1mmの正方形)」を意味する。
 より具体的には、実施例に記載の方法により測定することができる。
〔硬化性オルガノポリシロキサン化合物(A)〕
 本発明の接着ペーストは、硬化性オルガノポリシロキサン化合物(A)(以下、「(A)成分」ということがある。)を含有する。
 本発明の接着ペーストは、(A)成分を含有することにより、高温で加熱することにより接着性に優れる硬化物が得られ易くなる。
 本発明の硬化性オルガノポリシロキサン化合物(A)は、分子内に、炭素-ケイ素結合とシロキサン結合(-Si-O-Si-)を有する化合物である。
 また、(A)成分は、熱硬化性の化合物であるため、加熱により、縮合反応が可能な官能基、及び加水分解を経て縮合反応が可能な官能基からなる群から選ばれる少なくとも一種の官能基を有することが好ましい。
 このような官能基としては、水酸基及びアルコキシ基からなる群から選ばれる少なくとも一種が好ましく、水酸基、炭素数1~10のアルコキシ基がより好ましい。
 硬化性オルガノポリシロキサン化合物(A)の主鎖構造に制限はなく、直鎖状、ラダー状、籠状のいずれであってもよい。
 例えば、直鎖状の主鎖構造としては下記式(a-1)で表される構造が、ラダー状の主鎖構造としては下記式(a-2)で表される構造が、籠状の主鎖構造としては下記式(a-3)で表される構造が、それぞれ挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 式(a-1)~(a-3)中、Rx、Ry、Rzは、それぞれ独立して、水素原子又は有機基を表し、有機基としては、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基、又はアルキルシリル基が好ましい。式(a-1)の複数のRx、式(a-2)の複数のRy、及び式(a-3)の複数のRzは、それぞれ同一でも相異なっていてもよい。ただし、前記式(a-1)のRxが2つとも水素原子であることはない。
 前記無置換若しくは置換基を有するアルキル基のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、n-ヘプチル基、n-オクチル基等の炭素数1~10のアルキル基が挙げられる。
 無置換若しくは置換基を有するシクロアルキル基のシクロアルキル基としては、例えば、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基等の炭素数3~10のシクロアルキル基が挙げられる。
 無置換若しくは置換基を有するアルケニル基のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等の炭素数2~10のアルケニル基が挙げられる。
 前記アルキル基、シクロアルキル基及びアルケニル基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。
 無置換又は置換基を有するアリール基のアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~10のアリール基が挙げられる。
 前記アリール基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基等の炭素数1~6のアルコキシ基;ニトロ基;シアノ基;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。
 アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、トリt-ブチルシリル基、メチルジエチルシリル基、ジメチルシリル基、ジエチルシリル基、メチルシリル基、エチルシリル基等が挙げられる。
 これらの中でも、Rx、Ry、Rzとしては、水素原子、無置換若しくは置換基を有する炭素数1~6のアルキル基、又はフェニル基が好ましく、無置換若しくは置換基を有する炭素数1~6のアルキル基が特に好ましい。
 硬化性オルガノポリシロキサン化合物(A)は、例えば、加水分解性官能基(アルコキシ基、ハロゲン原子等)を有するシラン化合物を重縮合する、公知の製造方法により得ることができる。
 用いるシラン化合物は、目的とする熱硬化性オルガノポリシロキサン化合物(A)の構造に応じて適宜選択すればよい。好ましい具体例としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン等の2官能シラン化合物;
メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-ブチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルジエトキシメトキシシラン等の3官能シラン化合物;
テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン、テトラs-ブトキシシラン、メトキシトリエトキシシラン、ジメトキシジエトキシシラン、トリメトキシエトキシシラン等の4官能シラン化合物;等が挙げられる。
 硬化性オルガノポリシロキサン化合物(A)の質量平均分子量(Mw)は、通常、800以上30,000以下、好ましくは1,000以上20,000以下、より好ましくは1,200以上15,000以下、特に好ましくは3,000以上10,000以下である。質量平均分子量(Mw)が上記範囲内にある硬化性オルガノポリシロキサン化合物(A)を用いることにより、耐熱性及び接着性により優れる硬化物を与える接着ペーストが得られ易くなる。
 硬化性オルガノポリシロキサン化合物(A)の分子量分布(Mw/Mn)は特に制限されないが、通常1.0以上10.0以下、好ましくは1.1以上6.0以下である。分子量分布(Mw/Mn)が上記範囲内にある硬化性オルガノポリシロキサン化合物(A)を用いることにより、耐熱性及び接着性により優れる硬化物を与える接着ペーストが得られ易くなる。
 質量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる。
 本発明の硬化性オルガノポリシロキサン化合物(A)は、3官能オルガノシラン化合物を重縮合して得られる、ポリシルセスキオキサン化合物であることが好ましい。
 本発明の接着ペーストは、(A)成分として、ポリシルセスキオキサン化合物を含有することにより、高温で加熱して接着性に優れる硬化物が得られ易くなる。そのため、ワイヤーボンディング工程において、より効率良くチップを保持することができる。
 本発明のポリシルセスキオキサン化合物は、下記式(a-4)で示される繰り返し単位を有する化合物である。
 本発明の接着ペーストは、(A)成分として、下記式(a-4)で示される繰り返し単位を有するポリシルセスキオキサン化合物を含有することにより、高温で加熱して接着性により優れる硬化物が得られ易くなる。
Figure JPOXMLDOC01-appb-C000004
 式(a-4)中、(R-D)は有機基を表す。有機基である(R-D)のうち、Rは、無置換のアルキル基、又は、置換基を有するアルキル基が好ましく、無置換の炭素数1~10のアルキル基、又は、置換基を有する炭素数1~10のアルキル基がより好ましい。Dは、RとSiとを結合する連結基(ただし、アルキレン基を除く)又は単結合を表す。
 「無置換の炭素数1~10のアルキル基」としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。
 Rで表される「無置換の炭素数1~10のアルキル基」の炭素数は、1~6が好ましく、1~3がより好ましい。
 Rで表される「置換基を有する炭素数1~10のアルキル基」の炭素数は、1~6が好ましく、1~3がより好ましい。なお、この炭素数は、置換基を除いた部分(アルキル基の部分)の炭素数を意味するものである。したがって、Rが「置換基を有する炭素数1~10のアルキル基」である場合、Rの炭素数は10を超える場合もあり得る。
 「置換基を有する炭素数1~10のアルキル基」のアルキル基としては、「無置換の炭素数1~10のアルキル基」として示したものと同様のものが挙げられる。
 「置換基を有する炭素数1~10のアルキル基」の置換基としては、フッ素原子、塩素原子、臭素原子等のハロゲン原子;シアノ基;式:OJで表される基;等が挙げられる。
 「置換基を有する炭素数1~10のアルキル基」の置換基の原子の数(ただし水素原子の数を除く)は、通常1~30、好ましくは1~20である。
 ここで、Jは水酸基の保護基を表す。水酸基の保護基としては、特に制約はなく、水酸基の保護基として知られている公知の保護基が挙げられる。例えば、アシル系;トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基等のシリル系;メトキシメチル基、メトキシエトキシメチル基、1-エトキシエチル基、テトラヒドロピラン-2-イル基、テトラヒドロフラン-2-イル基等のアセタール系;t-ブトキシカルボニル基等のアルコキシカルボニル系;メチル基、エチル基、t-ブチル基、オクチル基、アリル基、トリフェニルメチル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基等のエーテル系;等が挙げられる。
 これらの中でも、Rとしては、構造の安定したポリシルセスキオキサン化合物が得られ易く、接着ペーストとしての性能がより安定する観点から、無置換の炭素数1~10のアルキル基、又はフッ素原子を有する炭素数1~10のアルキル基が好ましく、フッ素原子を有する炭素数1~10のアルキル基がより好ましい。
 Rが、無置換の炭素数1~10のアルキル基であるポリシルセスキオキサン化合物を用いることにより、耐熱性及び接着性により優れる硬化物を与える接着ペーストが得られ易くなる。
 Rが、フッ素原子を有する炭素数1~10のアルキル基であるポリシルセスキオキサン化合物を用いることにより、屈折率が低い接着ペーストや硬化物が得られ易くなり、屈折率が低いことが要望される光半導体素子に好適に用いられ易くなる。また、半導体素子が光半導体素子である場合の、光半導体素子の光取り出し効率が向上し、発光効率の低下を抑制することができる。
 フッ素原子を有する炭素数1~10のアルキル基としては、組成式:C(2m-n+1)で表される基(mは1~10の整数、nは2以上、(2m+1)以下の整数である。)が挙げられる。なお、mは、好ましくは1~5の整数、より好ましくは1~3の整数である。
 組成式:C(2m-n+1)で表されるフルオロアルキル基としては、CF、CFCF、CF(CF、CF(CF、CF(CF、CF(CF、CF(CF、CF(CF、CF(CF、CF(CF等のパーフルオロアルキル基;CFCHCH、CF(CFCHCH、CF(CFCHCH、CF(CFCHCH等のハイドロフルオロアルキル基;が挙げられる。これらの中でも、CFCHCH基が好ましい。
 式(a-4)中、Dは、RとSiとを結合する連結基(ただし、アルキレン基を除く)又は単結合を表し、単結合が好ましい。
 Dの連結基としては、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基、1,5-ナフチレン基等の炭素数が6~20のアリーレン基が挙げられる。
 ポリシルセスキオキサン化合物は、一種の(R-D)を有するもの(単独重合体)であってもよく、二種以上の(R-D)を有するもの(共重合体)であってもよい。
 ポリシルセスキオキサン化合物が共重合体である場合、ポリシルセスキオキサン化合物は、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等のいずれであってもよいが、製造容易性等の観点からは、ランダム共重合体が好ましい。
 また、ポリシルセスキオキサン化合物の構造は、ラダー型構造、ダブルデッカー型構造、籠型構造、部分開裂籠型構造、環状型構造、ランダム型構造のいずれの構造であってもよい。
 ポリシルセスキオキサン化合物中の前記式(a-4)で示される繰り返し単位(すなわち、後述のTサイト)の含有割合は、全繰り返し単位に対して、通常、50~100mol%であり、70~100mol%であることがより好ましく、90~100mol%であることがさらに好ましく、100mol%であることが特に好ましい。
 前記式(a-4)で示される繰り返し単位(Tサイト)の含有割合が、上記割合であるポリシルセスキオキサン化合物を用いることで、耐熱性、接着性及び屈折率の性能を発現し易い接着ペーストを得ることができる。
 ポリシルセスキオキサン化合物中の前記式(a-4)で示される繰り返し単位は、下記式(a-5)で示される繰り返し単位であってもよい。すなわち、前記式(a-4)中の(R-D)は、下記式(a-5)中のRであってもよい。
Figure JPOXMLDOC01-appb-C000005
 式(a-5)中、Rは、無置換のシクロアルキル基、置換基を有するシクロアルキル基、無置換のアルケニル基、置換基を有するアルケニル基、無置換のアリール基、置換基を有するアリール基、及び、アルキルシリル基からなる群から選ばれる基を表す。これらの中でも、無置換の炭素数6~12のアリール基、及び、置換基を有する炭素数6~12のアリール基が好ましい。
 「無置換の炭素数6~12のアリール基」としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。
 Rで表される「無置換の炭素数6~12のアリール基」の炭素数は6が好ましい。
 Rで表される「置換基を有する炭素数6~12のアリール基」の炭素数は6が好ましい。なお、この炭素数は、置換基を除いた部分(アリール基の部分)の炭素数を意味するものである。したがって、Rが「置換基を有する炭素数6~12のアリール基」である場合、Rの炭素数は12を超える場合もあり得る。
 「置換基を有する炭素数6~12のアリール基」のアリール基としては、「無置換の炭素数6~12のアリール基」として示したものと同様のものが挙げられる。
 「置換基を有する炭素数6~12のアリール基」の置換基としては、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;等が挙げられる。
 「置換基を有する炭素数6~12のアリール基」の置換基の原子の数(ただし水素原子の数を除く)は、通常1~30、好ましくは1~20である。
 ポリシルセスキオキサン化合物が、式(a-5)で示される繰り返し単位を有するものである場合、ポリシルセスキオキサン化合物は、一種のRを有するものであってもよく、二種以上のRを有するものであってもよい。
 ポリシルセスキオキサン化合物中の前記式(a-4)で示される繰り返し単位(Tサイト)の含有割合は、例えば、NMRピークの帰属及び面積の積分が可能である場合には、29Si-NMR及びH-NMRを測定することにより求めることができる。
 ポリシルセスキオキサン化合物は、アセトン等のケトン系溶媒;ベンゼン等の芳香族炭化水素系溶媒;ジメチルスルホキシド等の含硫黄系溶媒;テトラヒドロフラン等のエーテル系溶媒;酢酸エチル等のエステル系溶媒;クロロホルム等の含ハロゲン系溶媒;及びこれらの二種以上からなる混合溶媒;等の各種有機溶媒に可溶である。そのため、これらの溶媒を用いて、ポリシルセスキオキサン化合物の溶液状態での29Si-NMRを測定することができる。
 前記式(a-4)で示される繰り返し単位は、下記式(a-6)で示されるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 式(a-6)中、Gは、(R-D)を表し、R及びDは、前記式(a-4)におけるR及びDと同じ意味を表す。*は、Si原子、水素原子又は炭素数1~10のアルキル基を表し、3つの*のうち少なくとも1つはSi原子である。*の炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基等が挙げられる。複数の*同士は、すべて同一であっても相異なっていてもよい。
 式(a-6)で示されるように、ポリシルセスキオキサン化合物は、一般にTサイトと総称される、ケイ素原子に酸素原子が3つ結合し、それ以外の基(Gで表される基)が1つ結合してなる部分構造を有する。
 また、ポリシルセスキオキサン化合物は、熱硬化性の化合物であり、加熱により、縮合反応及び/又は加水分解を経て縮合反応が可能な化合物である。そのため、ポリシルセスキオキサン化合物が有する複数の繰り返し単位(Tサイト)の前記式(a-6)中の*のうち、少なくとも1つは、水素原子又は炭素数1~10のアルキル基であることが好ましく、水素原子であることがより好ましい。
 なお、ポリシルセスキオキサン化合物が測定用の溶媒に可溶である場合には、29Si-NMRを測定することにより、前記式(a-6)中の*における水素原子又は炭素数1~10のアルキル基の存在や、前記式(a-6)中の3つの*が全てSi原子である繰り返し単位であるかを確認することができる。
 さらに、29Si-NMRのピークの帰属及び面積の積分が可能である場合には、ポリシルセスキオキサン化合物中の前記式(a-4)で示される繰り返し単位(Tサイト)の総数に対する、前記式(a-6)中の3つの*が全てSi原子である繰り返し単位の総数を概算することができる。
 このポリシルセスキオキサン化合物中の前記式(a-4)で示される繰り返し単位(Tサイト)で示される繰り返し単位(Tサイト)の総数に対する、前記式(a-6)中の3つの*が全てSi原子である繰り返し単位の総数は、耐熱性により優れる硬化物を与える接着ペーストが得られ易くなる観点から、30~95mol%であることが好ましく、40~90mol%であることがより好ましい。
 本発明において、ポリシルセスキオキサン化合物は一種単独で、あるいは二種以上を組み合わせて用いることができる。
 ポリシルセスキオキサン化合物の製造方法は特に限定されない。例えば、下記式(a-7)
Figure JPOXMLDOC01-appb-C000007
(式中、R及びDは、前記式(a-4)におけるR及びDと同じ意味を表す。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、pは0~3の整数を表す。複数のR、及び複数のXは、それぞれ、互いに同一であっても、相異なっていてもよい。)
で示されるシラン化合物(1)の少なくとも一種を重縮合させることにより、ポリシルセスキオキサン化合物を製造することができる。
 Rの炭素数1~10のアルキル基としては、前記式(a-6)中の*の炭素数1~10のアルキル基として示したものと同様のものが挙げられる。
 Xのハロゲン原子としては、塩素原子、及び臭素原子等が挙げられる。
 シラン化合物(1)の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-プロピルトリプロポキシシラン、n-プロピルトリブトキシシラン、n-ブチルトリメトキシシラン、イソブチルトリメトキシシラン、n-ペンチルトリメトキシシラン、n-ヘキシルトリメトキシシラン、イソオクチルトリエトキシシラン等のアルキルトリアルコキシシラン化合物類;
 メチルクロロジメトキシシラン、メチルクロロジエトキシシラン、メチルジクロロメトキシシラン、メチルブロモジメトキシシラン、エチルクロロジメトキシシラン、エチルクロロジエトキシシラン、エチルジクロロメトキシシラン、エチルブロモジメトキシシラン、n-プロピルクロロジメトキシシラン、n-プロピルジクロロメトキシシラン、n-ブチルクロロジメトキシシラン、n-ブチルジクロロメトキシシラン等のアルキルハロゲノアルコキシシラン化合物類;
 メチルトリクロロシラン、メチルトリブロモシラン、エチルトリクロロシラン、エチルトリブロモシラン、n-プロピルトリクロロシラン、n-プロピルトリブロモシラン、n-ブチルトリクロロシラン、イソブチルトリクロロシラン、n-ペンチルトリクロロシラン、n-ヘキシルトリクロロシラン、イソオクチルトリクロロシラン等のアルキルトリハロゲノシラン化合物類;
 CFSi(OCH、CFCFSi(OCH、CFCFCFSi(OCH、CFCFCFCFSi(OCH、CFCHCHSi(OCH、CFCFCFCFCHCHSi(OCH、CFCFCFCFCFCFCHCHSi(OCH、CFCFCFCFCFCFCFCFCHCHSi(OCH、CF(C)Si(OCH、CFSi(OCHCH、CFCFSi(OCHCH、CFCFCFSi(OCHCH、CFCFCFCFSi(OCHCH、CFCHCHSi(OCHCH、CFCFCFCFCHCHSi(OCHCH、CFCFCFCFCFCFCHCHSi(OCHCH、CFCFCFCFCFCFCFCFCHCHSi(OCHCH、CF(C)Si(OCHCH等のフルオロアルキルトリアルコキシシラン化合物類;
 CFSiCl(OCH、CFCFSiCl(OCH、CFCFCFSiCl(OCH、CFSiBr(OCH、CFCFSiBr(OCH、CFCFCFSiBr(OCH
CFCFCFCFSiCl(OCH、CFCHCHSiCl(OCH、CFCFCFCFCHCHSiCl(OCH、CFCFCFCFCFCFCHCHSiCl(OCH、CFCFCFCFCFCFCFCFCHCHSiCl(OCH、CF(C)SiCl(OCH、CFSiCl(OCHCH、CFCFSiCl(OCHCH、CFCFCFSiCl(OCHCH、CFCFCFCFSiCl(OCHCH、CFCHCHSiCl(OCHCH、CFCFCFCFCHCHSiCl(OCHCH、CFCFCFCFCFCFCHCHSiCl(OCHCH、CFCFCFCFCFCFCFCFCHCHSiCl(OCHCH、CF(C)SiCl(OCHCH等のフルオロアルキルハロゲノジアルコキシシラン化合物類;
 CFSiCl(OCH)、CFCFSiCl(OCH)、CFCFCFSiCl(OCH)、CFCFCFCFSiCl(OCH)、CFCHCHSiCl(OCH)、CFCFCFCFCHCHSiCl(OCH)、CFCFCFCFCFCFCHCHSiCl(OCH)、CFCFCFCFCFCFCFCFCHCHSiCl(OCH)、CF(C)SiCl(OCH)、CFSiCl(OCHCH)、CFCFSiCl(OCHCH)、CFCFCFSiCl(OCHCH)、CFCFCFCFSiCl(OCHCH)、CFCHCHSiCl(OCHCH)、CFCFCFCFCHCHSiCl(OCHCH)、CFCFCFCFCFCFCHCHSiCl(OCHCH、CFCFCFCFCFCFCFCFCHCHSiCl(OCHCH)、CF(C)SiCl(OCHCH)等のフルオロアルキルジハロゲノアルコキシシラン化合物類;
 CFSiCl、CFCFSiCl、CFSiBr、CFCFSiBr、CFCFCFSiCl、CFCFCFCFSiCl、CFCHCHSiCl、CFCFCFCFCHCHSiCl、CFCFCFCFCFCFCHCHSiCl、CFCFCFCFCFCFCFCFCHCHSiCl、CF(C)SiCl等のフルオロアルキルトリハロゲノシラン化合物類;
 フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルジエトキシメトキシシラン、フェニルエトキシジメトキシシラン等のフェニルトリアルコキシシラン化合物類;
クロロジメトキシフェニルシラン、クロロジエトキシフェニルシラン等のフェニルハロゲノアルコキシシラン化合物類;
フェニルトリクロロシラン、フェニルトリブロモシラン等のフェニルトリハロゲノシラン化合物類;が挙げられる。
 これらのシラン化合物(1)は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
 前記シラン化合物(1)を重縮合させる方法は特に限定されない。例えば、溶媒中、又は無溶媒で、シラン化合物(1)に、所定量の重縮合触媒を添加し、所定温度で撹拌する方法が挙げられる。より具体的には、(a)シラン化合物(1)に、所定量の酸触媒を添加し、所定温度で撹拌する方法、(b)シラン化合物(1)に、所定量の塩基触媒を添加し、所定温度で撹拌する方法、(c)シラン化合物(1)に、所定量の酸触媒を添加し、所定温度で撹拌した後、過剰量の塩基触媒を添加して、反応系を塩基性とし、所定温度で撹拌する方法等が挙げられる。これらの中でも、効率よく目的とするポリシルセスキオキサン化合物を得ることができることから、(a)又は(c)の方法が好ましい。
 用いる重縮合触媒は、酸触媒及び塩基触媒のいずれであってもよい。また、2以上の重縮合触媒を組み合わせて用いてもよいが、少なくとも酸触媒を用いることが好ましい。
 酸触媒としては、リン酸、塩酸、ホウ酸、硫酸、硝酸等の無機酸;クエン酸、酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機酸;等が挙げられる。これらの中でも、リン酸、塩酸、ホウ酸、硫酸、クエン酸、酢酸、及びメタンスルホン酸から選ばれる少なくとも一種が好ましい。
 塩基触媒としては、アンモニア水;トリメチルアミン、トリエチルアミン、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、アニリン、ピコリン、1,4-ジアザビシクロ[2.2.2]オクタン、イミダゾール等の有機塩基;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等の有機塩水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等の金属アルコキシド;水素化ナトリウム、水素化カルシウム等の金属水素化物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム等の金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;等が挙げられる。
 重縮合触媒の使用量は、シラン化合物(1)の総mol量に対して、通常、0.05~10mol%、好ましくは0.1~5mol%の範囲である。
 重縮合時に溶媒を用いる場合、用いる溶媒は、シラン化合物(1)の種類等に応じて、適宜選択することができる。例えば、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、s-ブチルアルコール、t-ブチルアルコール等のアルコール類;等が挙げられる。これらの溶媒は一種単独で、あるいは二種以上を組み合わせて用いることができる。また、上記(c)の方法を採用する場合、酸触媒の存在下、水系で重縮合反応を行った後、反応液に、有機溶媒と過剰量の塩基触媒(アンモニア水など)を添加し、塩基性条件下で、更に重縮合反応を行うようにしてもよい。
 溶媒の使用量は、シラン化合物(1)の総mol量1mol当たり、通常、0.001リットル以上10リットル以下、好ましくは0.01リットル以上0.9リットル以下である。
 シラン化合物(1)を重縮合させるときの温度は、通常0℃から用いる溶媒の沸点までの温度範囲、好ましくは20℃以上100℃以下の範囲である。反応温度があまりに低いと重縮合反応の進行が不十分となる場合がある。一方、反応温度が高くなりすぎるとゲル化抑制が困難となる。反応は、通常30分から30時間で完結する。
 なお、用いるモノマーの種類によっては、高分子量化が困難な場合がある。例えば、Rがフッ素原子を有するアルキル基であるモノマーは、Rが通常のアルキル基であるモノマーよりも反応性に劣る傾向がある。このような場合、触媒量を減らし、かつ、穏やかな条件で長時間反応を行うことにより、目的の分子量のポリシルセスキオキサン化合物が得られ易くなる。
 反応終了後は、酸触媒を用いた場合は、反応溶液に炭酸水素ナトリウム等のアルカリ水溶液を添加することにより、塩基触媒を用いた場合は、反応溶液に塩酸等の酸を添加することにより中和を行い、その際に生じる塩をろ別又は水洗等により除去し、目的とするポリシルセスキオキサン化合物を得ることができる。
 上記方法により、ポリシルセスキオキサン化合物を製造する際、シラン化合物(1)のOR又はXのうち、加水分解およびその後の縮合反応等が起こらなかった部分は、ポリシルセスキオキサン化合物中に残存する。
 (A)成分が、例えば、シラン化合物(1)の重縮合反応により得られたポリシルセスキオキサン化合物である場合、後述のシランカップリング剤との反応を含め、硬化は縮合反応で進行するため、本発明の接着ペーストは、白金触媒等の貴金属触媒の存在下で付加反応が進行して硬化する一般的な加熱硬化型シリコーン接着剤とは異なるものである。
 したがって、本発明のポリシルセスキオキサン化合物を含有する接着ペーストは、貴金属触媒を実質的に含有しない、又は貴金属触媒の含有量が少ないものである。
 ここで、「貴金属触媒を実質的に含有しない、又は貴金属触媒の含有量が少ない」とは、「貴金属触媒と解釈され得る成分が意図的に添加されていないことのほか、接着ペースト中の有効成分の量に対して、貴金属触媒の含有量が触媒金属元素の質量換算で、例えば、1質量ppm未満であること」を意味する。
 なお、ここで、「有効成分」とは、「接着ペースト中に含まれる溶媒(S)を除いた成分」をいう。
 接着ペーストは、調合ばらつき等を考慮した安定的な製造の観点、貯蔵安定性の観点、貴金属触媒が高価なものである観点等から、貴金属触媒を実質的に含有しない、又は貴金属触媒の含有量が少ないものであることが好ましい。
〔熱伝導性フィラー(T)〕
 本発明の接着ペーストを構成する熱伝導性フィラー(T)(以下、「(T)成分」ということがある。)は、高い熱伝導率を有するフィラーである。
 熱伝導性フィラー(T)の熱伝導率は、25℃において、好ましくは5W/(m・K)以上、より好ましくは8W/(m・K)以上300W/(m・K)未満、特に好ましくは10W/(m・K)以上100W/(m・K)未満である。
 熱伝導率が上記下限値以上の熱伝導性フィラー(T)を用いることにより、熱伝導率が0.5W/(m・K)以上である硬化物が得られ易くなる。
 熱伝導性フィラー(T)の熱伝導率は、例えば、レーザーフラッシュ法熱定数測定装置(例えば、NETZSCH-GeratebauGmbH社製、LFA477 Nanoflash等)を使用したレーザーフラッシュ法等により測定することができる。
 熱伝導性フィラー(T)の構成成分としては、熱伝導性を向上させるものであれば特に限定されないが、例えば、金属;金属酸化物;炭化物;窒化物;等が挙げられる。
 金属とは、周期表における、1族(Hを除く)、2~11族、12族(Hgを除く)、13族(Bを除く)、14族(C及びSiを除く)、15族(N、P、As及びSbを除く)、又は16族(O、S、Se、Te及びPoを除く)に属する元素をいう。
 金属酸化物としては、例えば、酸化マグネシウム、酸化チタン、酸化亜鉛、アルミナ、ベーマイト、酸化クロム、酸化ニッケル、酸化銅、酸化ジルコニウム、酸化インジウム、及びこれらの複合酸化物等が挙げられる。
 炭化物としては、炭酸マグネシウム、炭化ケイ素、炭酸カルシウム等が、窒化物としては、窒化ホウ素、窒化アルミニウム等が挙げられる。
 熱伝導性フィラー(T)は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
 これらの中でも、本発明においては、(A)成分と良好に混合し易く、かつ、加熱硬化して得られる硬化物の熱伝導率が高く、接着性に優れる接着ペーストが得られ易いことから、酸化チタン、アルミナ、窒化アルミニウムが好ましく、アルミナがより好ましい。
 熱伝導性フィラー(T)の形状は、球状、鎖状、針状、板状、片状、棒状、繊維状等のいずれであってもよいが、球状であるのが好ましい。ここで、「球状」とは、「真球状の他、回転楕円体、卵形、金平糖状、まゆ状等球体に近似できる多面体形状を含む略球状」を意味する。
 熱伝導性フィラー(T)の平均粒径は、好ましくは0.1μm以上5μm未満、より好ましくは0.2μm以上4μm未満、さらに好ましくは0.4μm以上3.5μm未満、特に好ましくは0.8μm以上3μm未満である。
 (T)成分の平均粒径が上記範囲内であることにより、(A)成分と良好に混合し易く、接着ペーストとして混合が比較的容易であり、かつ、加熱硬化して得られる硬化物の熱伝導率が高く、接着性に優れる接着ペーストが得られ易くなる。
 また、接着ペーストの塗膜の厚みは、通常0.5μm以上10μm以下程度であり、塗布された接着ペースト上に、半導体素子を水平にマウントすることができる観点からも、平均粒径は、上記上限値未満であることが好ましい。
 さらに、本発明の接着ペーストを加熱硬化して得られる硬化物が高い接着強度を発現するためには、熱伝導性フィラー(T)同士の接触ではなく、(T)成分と(A)成分とが可能な限り多く接触している必要がある。すなわち、個々の熱伝導性フィラー(T)において、可能な限り、全表面が(A)成分で被覆されていることが好ましい。このような観点から、平均粒径が上記下限値未満になると、熱伝導性フィラー(T)の凝集力が高まり、(A)成分が被覆することができない熱伝導性フィラー(T)同士の接触部分が多くなるため、高い接着強度を発現しないおそれがあるが、平均粒径が上記下限値以上であることで、(A)成分が被覆することができる熱伝導性フィラー(T)の面積が大きくなるため、そのおそれを低減することができる。
 熱伝導性フィラー(T)の平均粒径は、例えば、透過型電子顕微鏡観察・画像解析による一次粒子径測定と粒度分布測定装置(セディグラフ)を使用したX線透過沈降法により算出することができる。
 接着ペーストの固形分における熱伝導性フィラー(T)の体積充填率は、好ましくは10vol%以上80vol%未満、より好ましくは20vol%以上70vol%未満、特に好ましくは30vol%以上60vol%未満である。
 体積充填率が上記範囲内となるように(T)成分を含有させることにより、熱伝導性が向上するため、熱伝導率が高い硬化物が得られ易くなる。
 体積充填率は、例えば、次のようにして測定及び算出することができる。すなわち、(T)成分の質量及び密度から、(T)成分の体積を算出し、さらに、接着ペーストの固形分のうち(T)成分を除く成分の質量及び密度から、接着ペーストの固形分のうち(T)成分を除く成分の体積を算出して、下記式にて算出することができる。
体積充填率(vol%)=〔(T)成分の体積(cm)/[(T)成分の体積(cm)+接着ペーストの固形分のうち(T)成分を除く成分の体積(cm)]〕×100
 より具体的には、実施例に記載の方法により測定及び算出することができる。
 (T)成分の含有量は特に限定されないが、その量は、接着ペーストの固形分100質量部に対して、好ましくは30質量部以上90質量部未満、より好ましくは35質量部以上85質量部未満、さらに好ましくは40質量部以上80質量部未満となる量である。
 (T)成分を上記範囲で用いることにより、熱伝導率が高く、かつ、高温で加熱することにより接着性に優れる硬化物が得られ易くなる。
 また、(T)成分の含有量は特に限定されないが、その量は、(A)成分の固形分100質量部に対して、好ましくは40質量部以上1000質量部未満、より好ましくは60質量部以上900質量部未満、さらに好ましくは80質量部以上800質量部未満、特に好ましくは100質量部以上600質量部未満となる量である。
 (T)成分を上記範囲で用いることにより、熱伝導率が高く、かつ、高温で加熱することにより接着性に優れる硬化物が得られ易くなる。
〔その他の成分〕
 本発明の接着ペーストは、硬化性オルガノポリシロキサン化合物(A)及び熱伝導性フィラー(T)を含有するものであるが、以下に示す成分を含有していてもよい。
(1)溶媒(S)
 本発明の接着ペーストは、溶媒(S)を含有していてもよい。溶媒(S)は、本発明の接着ペーストの成分を溶解又は分散し得るものであれば特に限定されない。
 溶媒(S)としては、254℃以上の沸点を有する有機溶媒(以下、「有機溶媒(SH)」と記載することがある。)を含むものであることが好ましい。
 ここで、「沸点」は、「1013hPaにおける沸点」をいう(本明細書において同じ。)。
 有機溶媒(SH)の沸点は、254℃以上であることが好ましく、254℃以上300℃以下であることがより好ましい。
 有機溶媒(SH)としては、具体的には、トリプロピレングリコール-n-ブチルエーテル(沸点274℃)、1,6-へキサンジオールジアクリレート(沸点260℃)、ジエチレングリコールジブチルエーテル(沸点256℃)、トリエチレングリコールブチルメチルエーテル(沸点261℃)、ポリエチレングリコールジメチルエーテル(沸点264~294℃)、テトラエチレングリコールジメチルエーテル(沸点275℃)、ポリエチレングリコールモノメチルエーテル(沸点290~310℃)等が挙げられる。
 これらの中でも、有機溶媒(SH)としては、本発明の効果がより得られやすい観点から、トリプロピレングリコール-n-ブチルエーテル、1,6-ヘキサンジオールジアクリレートが好ましい。
 有機溶媒(SH)は一種単独で、あるいは二種以上を組み合わせて用いてもよい。
 本発明の接着ペーストは、有機溶媒(SH)以外の溶媒を含有してもよい。
 有機溶媒(SH)以外の溶媒としては、沸点が100℃以上254℃未満の溶媒(以下、「有機溶媒(SL)」と記載することがある。)が好ましい。
 有機溶媒(SL)としては、沸点が100℃以上254℃未満であり、かつ、本発明の接着ペーストの成分を溶解又は分散し得るものであれば特に制限されない。
 有機溶媒(SH)と有機溶媒(SH)以外の溶媒を併用することにより、接着ペーストを加熱して硬化物を得る温度範囲をより精密に調節することができるため、熱による影響を受けやすい光学部品やセンサチップに対する加熱の影響を小さくすることができる。
 有機溶媒(SL)の具体例としては、ジエチレングリコールモノブチルエーテルアセテート(沸点247℃)、ジプロピレングリコール-n-ブチルエーテル(沸点229℃)、ジプロピレングリコールメチルエーテルアセテート(沸点209℃)、ジエチレングリコールブチルメチルエーテル(沸点212℃)、ジプロピレングリコール-n-プロピルエーテル(沸点212℃)、トリプロピレングリコールジメチルエーテル(沸点215℃)、トリエチレングリコールジメチルエーテル(沸点216℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点218℃)、ジエチレングリコール-n-ブチルエーテル(沸点230℃)、エチレングリコールモノフェニルエーテル(沸点245℃)、
トリプロピレングリコールメチルエーテル(沸点242℃)、プロピレングリコールフェニルエーテル(沸点243℃)、トリエチレングリコールモノメチルエーテル(沸点249℃)、ベンジルアルコール(沸点204.9℃)、フェネチルアルコール(沸点219~221℃)、エチレングリコールモノブチルエーテルアセテート(沸点192℃)、エチレングリコールモノエチルエーテル(沸点134.8℃)、エチレングリコールモノメチルエーテル(沸点124.5℃)、プロピレングリコールモノメチルエーテルアセテート(沸点146℃)、シクロペンタノン(沸点130℃)、シクロヘキサノン(沸点157℃)、シクロヘプタノン(沸点180℃)、シクロオクタノン(沸点195~197℃)、シクロヘキサノール(沸点161℃)、シクロヘキサジエノン(沸点104~104.5℃)等が挙げられる。
 これらの中でも、有機溶媒(SL)としては、有効成分を良好に混合し易い観点から、グリコール系溶媒が好ましく、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコール-n-ブチルエーテルが好ましく、ジエチレングリコールモノブチルエーテルアセテートがより好ましい。
 有機溶媒(SH)と有機溶媒(SL)を併用する場合、具体的には、トリプロピレングリコール-n-ブチルエーテル(溶媒(SH))とジエチレングリコールモノブチルエーテルアセテート(溶媒(SL))の組み合わせ、1,6-ヘキサンジオールジアクリレート(溶媒(SH))と、ジエチレングリコールモノブチルエーテルアセテート(溶媒(SL))の組み合わせ、トリプロピレングリコール-n-ブチルエーテル(溶媒(SH))とジプロピレングリコール-n-ブチルエーテル(溶媒(SL))の組み合わせ、1,6-ヘキサンジオールジアクリレート(溶媒(SH))とジプロピレングリコール-n-ブチルエーテル(溶媒(SL))の組み合わせが好ましい。
 本発明の接着ペーストは、固形分濃度が、好ましくは50質量%以上99質量%以下、より好ましくは70質量%以上97質量%以下になる量の溶媒(S)を含有することが好ましい。
 固形分濃度がこの範囲内であることで、有効成分を良好に混合し易く、接着ペーストをシリンジに充填する工程や塗布工程における作業性に優れる。
 ここで、「接着ペーストをシリンジに充填する工程における作業性に優れる」とは、「適量を気泡なくシリンジ内に充填できること」をいう。
 また、ダイボンディングを行なう際、接着ペーストとその接着対象である基板等との間に生じる空隙部(ボイド)の発生を抑制することができ、パッケージの信頼性が高くなる。
(2)シランカップリング剤(B)
 本発明の接着ペーストは、(B)成分として、シランカップリング剤を含有していてもよい。
 シランカップリング剤としては、分子内に窒素原子を有するシランカップリング剤(B1)(以下、「シランカップリング剤(B1)」ということがある。)及び分子内に酸無水物構造を有するシランカップリング剤(B2)(以下、「シランカップリング剤(B2)」ということがある。)が挙げられる。
 シランカップリング剤(B1)を含有する接着ペーストは、塗布工程における作業性に優れ、かつ、加熱時に、(A)成分と共に縮合反応することによる硬化性に優れ、高温で加熱した場合の接着性、耐熱性及び硬化物の割れ抑制性により優れる硬化物を与える。
 ここで、「硬化物の割れ抑制性により優れる」とは、「接着ペーストを加熱して硬化物を得る際に、温度変化に伴う硬化物の割れが発生しないこと」をいう。
 シランカップリング剤(B1)としては、分子内に窒素原子を有するシランカップリング剤であれば特に制限はない。例えば、下記式(b-1)で表されるトリアルコキシシラン化合物、式(b-2)で表されるジアルコキシアルキルシラン化合物又はジアルコキシアリールシラン化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 上記式中、Rは、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等の炭素数1~6のアルコキシ基を表す。複数のR同士は同一であっても相異なっていてもよい。
 Rは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等の炭素数1~6のアルキル基;又は、フェニル基、4-クロロフェニル基、4-メチルフェニル基、1-ナフチル基等の、置換基を有する、又は置換基を有さないアリール基;を表す。
 Rは、窒素原子を有する、炭素数1~10の有機基を表す。また、Rは、さらに他のケイ素原子を含む基と結合していてもよい。
 Rの炭素数1~10の有機基の具体例としては、N-2-(アミノエチル)-3-アミノプロピル基、3-アミノプロピル基、N-(1,3-ジメチル-ブチリデン)アミノプロピル基、3-ウレイドプロピル基、N-フェニル-アミノプロピル基等が挙げられる。
 上記式(b-1)又は(b-2)で表される化合物のうち、Rが、他のケイ素原子を含む基と結合した有機基である場合の化合物としては、イソシアヌレート骨格を介して他のケイ素原子と結合してイソシアヌレート系シランカップリング剤を構成するものや、ウレア骨格を介して他のケイ素原子と結合してウレア系シランカップリング剤を構成するものが挙げられる。
 これらの中でも、シランカップリング剤(B1)としては、接着強度がより高い硬化物が得られ易いことから、イソシアヌレート系シランカップリング剤、及びウレア系シランカップリング剤が好ましく、さらに、分子内に、ケイ素原子に結合したアルコキシ基を4以上有するものが好ましい。
 ケイ素原子に結合したアルコキシ基を4以上有するとは、同一のケイ素原子に結合したアルコキシ基と、異なるケイ素原子に結合したアルコキシ基との総合計数が4以上という意味である。
 ケイ素原子に結合したアルコキシ基を4以上有するイソシアヌレート系シランカップリング剤としては、下記式(b-3)で表される化合物が、ケイ素原子に結合したアルコキシ基を4以上有するウレア系シランカップリング剤としては、下記式(b-4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 式中、Rは、前記式(b-1)及び(b-2)におけるRと同じ意味を表す。t1~t5はそれぞれ独立して、1~10の整数を表し、1~6の整数が好ましく、3が特に好ましい。
 式(b-3)で表される化合物の具体例としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリi-プロポキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリブトキシシリルプロピル)イソシアヌレート等の1,3,5-N-トリス〔(トリ(炭素数1~6)アルコキシ)シリル(炭素数1~10)アルキル〕イソシアヌレート;
1,3,5-N-トリス(3-ジメトキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシフェニルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシフェニルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジi-プロポキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジi-プロポキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジi-プロポキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジi-プロポキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジi-プロポキシフェニルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシフェニルシリルプロピル)イソシアヌレート等の1,3,5-N-トリス〔(ジ(炭素数1~6)アルコキシ)シリル(炭素数1~10)アルキル〕イソシアヌレート;等が挙げられる。
 式(b-4)で表される化合物の具体例としては、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア、N,N’-ビス(3-トリプロポキシシリルプロピル)ウレア、N,N’-ビス(3-トリブトキシシリルプロピル)ウレア、N,N’-ビス(2-トリメトキシシリルエチル)ウレア等のN,N’-ビス〔(トリ(炭素数1~6)アルコキシシリル)(炭素数1~10)アルキル〕ウレア;
N,N’-ビス(3-ジメトキシメチルシリルプロピル)ウレア、N,N’-ビス(3-ジメトキシエチルシリルプロピル)ウレア、N,N’-ビス(3-ジエトキシメチルシリルプロピル)ウレア等のN,N’-ビス〔(ジ(炭素数1~6)アルコキシ(炭素数1~6)アルキルシリル(炭素数1~10)アルキル)ウレア;
N,N’-ビス(3-ジメトキシフェニルシリルプロピル)ウレア、N,N’-ビス(3-ジエトキシフェニルシリルプロピル)ウレア等のN,N’-ビス〔(ジ(炭素数1~6)アルコキシ(炭素数6~20)アリールシリル(炭素数1~10)アルキル)ウレア;等が挙げられる。
 シランカップリング剤(B1)は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
 これらの中でも、シランカップリング剤(B1)としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート(以下、前記2つを「イソシアヌレート化合物」という。)、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア(以下、前記2つを「ウレア化合物」という。)、及び、上記イソシアヌレート化合物とウレア化合物との組み合わせを用いるのが好ましく、イソシアヌレート化合物を用いるのがより好ましい。
 上記イソシアヌレート化合物とウレア化合物とを組み合わせて用いる場合、両者の使用割合は、(イソシアヌレート化合物)と(ウレア化合物)の質量比で、100:1~100:200であるのが好ましく、100:10~100:110がより好ましい。このような割合で、イソシアヌレート化合物とウレア化合物とを組み合わせて用いることにより、接着強度がより高く、耐熱性により優れる硬化物を与える接着ペーストを得ることができる。
 本発明の接着ペーストがシランカップリング剤(B1)〔(B1)成分〕を含有する場合、(B1)成分の含有量は特に限定されないが、その量は、接着ペーストの固形分100質量部に対して、好ましくは0.7質量部以上15質量部未満、より好ましくは1質量部以上13質量部未満、さらに好ましくは1.3質量部以上11質量部未満、特に好ましくは1.5質量部以上9質量部未満となる量である。
 (B1)成分を上記範囲で用いることにより、(B1)成分を加える効果をより発現することができ、かつ、熱伝導率が0.5W/(m・K)以上である硬化物が得られ易くなる。
 シランカップリング剤(B2)を含有する接着ペーストは、塗布工程における作業性に優れ、かつ、高温で加熱した場合の接着性及び耐熱性により優れる硬化物を与える。
 シランカップリング剤(B2)としては、2-(トリメトキシシリル)エチル無水コハク酸、2-(トリエトキシシリル)エチル無水コハク酸、3-(トリメトキシシリル)プロピル無水コハク酸、3-(トリエトキシシリル)プロピル無水コハク酸等の、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジメトキシメチルシリル)エチル無水コハク酸等の、ジ(炭素数1~6)アルコキシメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(メトキシジメチルシリル)エチル無水コハク酸等の、(炭素数1~6)アルコキシジメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(トリクロロシリル)エチル無水コハク酸、2-(トリブロモシリル)エチル無水コハク酸等の、トリハロゲノシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジクロロメチルシリル)エチル無水コハク酸等の、ジハロゲノメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(クロロジメチルシリル)エチル無水コハク酸等の、ハロゲノジメチルシリル(炭素数2~8)アルキル無水コハク酸;等が挙げられる。
 シランカップリング剤(B2)は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
 これらの中でも、シランカップリング剤(B2)としては、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸が好ましく、3-(トリメトキシシリル)プロピル無水コハク酸又は3-(トリエトキシシリル)プロピル無水コハク酸が特に好ましい。
 本発明の接着ペーストがシランカップリング剤(B2)〔(B2)成分〕を含有する場合、(B2)成分の含有量は特に限定されないが、その量は、接着ペーストの固形分100質量部に対して、好ましくは0.05質量部以上5質量部未満、より好ましくは0.1質量部以上3質量部未満、さらに好ましくは0.2質量部以上2質量部未満、特に好ましくは0.3質量部以上1.5質量部未満となる量である。
 (B2)成分を上記範囲で用いることにより、(B2)成分を加える効果をより発現することができ、かつ、熱伝導率が0.5W/(m・K)以上である硬化物が得られ易くなる。
 また、本発明の接着ペーストが(B)成分を含有する場合、(B)成分の含有量は特に限定されないが、その量は、接着ペーストの固形分100質量部に対して、好ましくは0.7質量部以上20質量部未満、より好ましくは1質量部以上15質量部未満、さらに好ましくは1.3質量部以上12質量部未満、特に好ましくは1.5質量部以上9質量部未満となる量である。
 (B)成分を上記範囲で用いることにより、(B)成分を加える効果をより発現することができ、かつ、熱伝導率が0.5W/(m・K)以上である硬化物が得られ易くなる。
(3)その他の添加成分
 本発明の接着ペーストは、本発明の目的を阻害しない範囲で、上記(A)、(T)及び(B)成分以外の他の成分〔(C)成分〕を含有してもよい。
 (C)成分としては、酸化防止剤、紫外線吸収剤、光安定剤等が挙げられる。
 酸化防止剤は、加熱時の酸化劣化を防止するために添加される。酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤等が挙げられる。
 リン系酸化防止剤としては、ホスファイト類、オキサホスファフェナントレンオキサイド類等が挙げられる。
 フェノール系酸化防止剤としては、モノフェノール類、ビスフェノール類、高分子型フェノール類等が挙げられる。
 硫黄系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。
 これらの酸化防止剤は、一種単独で、あるいは二種以上を組み合わせて用いることができる。酸化防止剤の使用量は、(A)成分に対して、通常、10質量%以下である。
 紫外線吸収剤は、得られる接着ペーストの耐光性を向上させる目的で添加される。
 紫外線吸収剤としては、サリチル酸類、ベンゾフェノン類、ベンゾトリアゾール類、ヒンダードアミン類等が挙げられる。
 これらの紫外線吸収剤は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
 紫外線吸収剤の使用量は、(A)成分に対して、通常、10質量%以下である。
 光安定剤は、得られる接着ペーストの耐光性を向上させる目的で添加される。
 光安定剤としては、例えば、ポリ[{6-(1,1,3,3,-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}]等のヒンダードアミン類等が挙げられる。
 これらの光安定剤は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
 (C)成分の総使用量は、(A)成分に対して、通常、20質量%以下である。
 本発明の接着ペーストは、例えば、下記工程(AI)及び工程(AII)を有する製造方法により製造することができる。
工程(AI):上記式(a-7)で示される化合物の少なくとも一種を、重縮合触媒の存在下に重縮合させて、ポリシルセスキオキサン化合物を得る工程
工程(AII):工程(AI)で得られたポリシルセスキオキサン化合物を、溶媒(S)に溶解させ、得られたポリシルセスキオキサン化合物を含有する溶液に、熱伝導性フィラー(T)を添加する工程
 工程(AI)の上記式(a-7)で示される化合物の少なくとも一種を、重縮合触媒の存在下に重縮合させて、ポリシルセスキオキサン化合物を得る方法としては、1)接着ペーストの項で例示したものと同様の方法が挙げられる。また、工程(AII)で用いる溶媒(S)、熱伝導性フィラー(T)は、1)接着ペーストの項で溶媒(S)、熱伝導性フィラー(T)として例示したものと同様のものが挙げられる。
 工程(AII)において、ポリシルセスキオキサン化合物を溶媒(S)に溶解する方法としては、例えば、ポリシルセスキオキサン化合物と熱伝導性フィラー(T)、及び、所望により前記(B)成分や(C)成分を、溶媒(S)と混合、脱泡し、溶解する方法が挙げられる。
 混合方法、脱泡方法は特に限定されず、公知の方法を利用することができる。
 混合する順番は特に限定されない。
 上記工程(AI)及び工程(AII)を有する製造方法によれば、本発明の接着ペーストを、効率よく簡便に製造することができる。
 本発明は、接着ペーストを加熱して溶媒(S)を揮発させ、硬化することにより、硬化物を得ることができる。
 硬化させるときの加熱温度は、通常100~190℃であり、好ましくは120~190℃である。また、硬化させるときの加熱時間は、通常30分から10時間、好ましくは30分から5時間、より好ましくは30分から3時間である。
 本発明の接着ペーストは、上述した特性を有することから、半導体素子固定材用接着剤として好適に使用することができる。
2)接着ペーストの使用方法、及び、接着ペーストを使用する半導体装置の製造方法
 本発明の接着ペーストを光素子固定材用接着剤として使用する半導体装置を製造する方法は、下記工程(BI)及び工程(BII)を有する方法である。
工程(BI):半導体素子と支持基板の一方又は両方の接着面に接着ペーストを塗布し、圧着する工程
工程(BII):工程(BI)で得られた圧着物の前記接着ペーストを加熱硬化させ、前記半導体素子を前記支持基板に固定する工程
 半導体素子としては、レーザー、発光ダイオード(LED)等の発光素子や太陽電池等の受光素子等の光半導体素子、トランジスタ、温度センサや圧力センサ等のセンサ、集積回路等が挙げられる。これらの中でも、本発明の接着ペーストを用いることによる効果がより好適に発揮され易い観点から、光半導体素子が好ましい。
 半導体素子を接着するための支持基板の材料としては、ソーダライムガラス、耐熱性硬質ガラス等のガラス類;セラミックス;サファイア;鉄、銅、アルミニウム、金、銀、白金、クロム、チタン及びこれらの金属の合金、ステンレス(SUS302、SUS304、SUS304L、SUS309等)等の金属類;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、アクリル樹脂、ノルボルネン系樹脂、シクロオレフィン樹脂、ガラスエポキシ樹脂等の合成樹脂;等が挙げられる。
 本発明の接着ペーストは、シリンジに充填されていることが好ましい。
 接着ペーストがシリンジに充填されていることにより、塗布工程における作業性に優れる。
 シリンジの材料は、合成樹脂、金属、ガラスのいずれであってもよいが、合成樹脂であるのが好ましい。
 シリンジの容量としては、特に制限はなく、充填する又は塗布する接着ペーストの量に合わせ、適宜決定すればよい。
 また、シリンジとしては、市販品を用いることもできる。市販品としては、例えば、SS-01Tシリーズ(TERUMO社製)、PSYシリーズ(武蔵エンジニアリング社製)等が挙げられる。
 本発明の半導体装置の製造方法においては、接着ペーストが充填されたシリンジが垂直に下降して支持基板に近づき、シリンジの先端部から所定量の接着ペーストを吐出した後、シリンジが上昇して支持基板から離れるとともに、支持基板が横に移動する。そして、この操作を繰り返すことで、連続的に接着ペーストが支持基板に塗布される。その後、塗布された接着ペースト上に、半導体素子をマウントし、支持基板に圧着される。
 接着ペーストの塗布量は、特に限定されず、硬化させることにより、接着の対象とする半導体素子と支持基板を強固に接着することができる量であればよい。通常、接着ペーストの塗膜の厚みが0.5μm以上5μm以下、好ましくは1μm以上3μm以下となる量である。
 次いで、得られた圧着物の接着ペーストを加熱硬化させることにより、半導体素子は支持基板に固定される。
 加熱温度及び加熱時間は、1)接着ペーストの項で説明した通りである。
 本発明の半導体装置の製造方法により得られる半導体装置は、半導体素子が接着ペースト上に良好にマウントされ、かつワイヤーボンディング工程において、高い接着強度で固定されたものであり、また、熱劣化が低減ないし防止されたものとなる。
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。
 各例中の部及び%は、特に断りのない限り、質量基準である。
〔平均分子量測定〕
 製造例で得た硬化性オルガノポリシロキサン化合物(A)の質量平均分子量(Mw)及び数平均分子量(Mn)は、標準ポリスチレン換算値とし、以下の装置及び条件にて測定した。
 装置名:HLC-8220GPC、東ソー株式会社製
 カラム:TSKgelGMHXL、TSKgelGMHXL、及び、TSKgel2000HXLを順次連結したもの
 溶媒:テトラヒドロフラン
 注入量:80μl
 測定温度:40℃
 流速:1ml/分
 検出器:示差屈折計
〔IRスペクトルの測定〕
 製造例で得た硬化性オルガノポリシロキサン化合物(A)のIRスペクトルは、フーリエ変換赤外分光光度計(パーキンエルマー社製、Spectrum100)を使用して測定した。
(製造例1)
 300mlのナス型フラスコに、メチルトリエトキシシラン(信越化学工業社製)71.37g(400mmol)を仕込んだ後、蒸留水21.6mlに35%塩酸0.10g(シラン化合物の合計量に対して0.25mol%)を溶解した水溶液を撹拌しながら加え、全容を30℃にて2時間、次いで70℃に昇温して5時間撹拌したのち、反応液を室温(23℃)まで戻し、酢酸プロピルを140g加えた。
 ここに、28%アンモニア水0.12g(シラン化合物の合計量に対して0.5mol%)を、全容を撹拌しながら加え、70℃に昇温して3時間さらに撹拌した。
 反応液に精製水を加え、分液し、水層のpHが7.0になるまでこの操作を繰り返した。
 有機層をエバポレーターで濃縮し、濃縮物を真空乾燥することにより、硬化性オルガノポリシロキサン化合物(A1)を55.7g得た。
 硬化性オルガノポリシロキサン化合物(A1)の質量平均分子量(Mw)は7,800、分子量分布(Mw/Mn)は4.52であった。
 また、硬化性オルガノポリシロキサン化合物(A1)のIRスペクトルデータを以下に示す。
Si-CH:1272cm-1,1409cm-1,Si-O:1132cm-1
 実施例及び比較例で用いた化合物を以下に示す。
〔(A)成分〕
硬化性オルガノポリシロキサン化合物(A1):製造例1で得られたオルガノポリシロキサン化合物
〔(T)成分〕
熱伝導性フィラー(T1):酸化チタン(石原産業社製、製品名「CR-90-2」、平均粒径:0.25μm、熱伝導率:8W/(m・K))
熱伝導性フィラー(T2):アルミナ(住友化学社製、製品名「AA-03F」、平均粒径:0.25μm、熱伝導率:30W/(m・K))
熱伝導性フィラー(T3):アルミナ(住友化学社製、製品名「AA-04」、平均粒径:0.50μm、熱伝導率:30W/(m・K))
熱伝導性フィラー(T4):アルミナ(住友化学社製、製品名「AA-2」、平均粒径:2.1μm、熱伝導率:30W/(m・K))
熱伝導性フィラー(T5):炭酸マグネシウム(神島化学工業社製、製品名「MS-S」、平均粒径:1.2μm、熱伝導率:15W/(m・K))
熱伝導性フィラー(T6):窒化アルミニウム(昭和電工社製、製品名「AlN0201」、平均粒径:2.0μm、熱伝導率:285W/(m・K))
〔溶媒(S)〕
ジエチレングリコールモノブチルエーテルアセテート(BDGAC)(SL)(東京化成工業社製、沸点:247℃)とトリプロピレングリコール-n-ブチルエーテル(TPnB)(SH)(ダウ・ケミカル社製、沸点:274℃)との混合溶媒〔BDGAC:TPnB=40:60(質量比)〕
〔(B)成分〕
シランカップリング剤(B1):1,3,5-N-トリス〔3-(トリメトキシシリル)プロピル〕イソシアヌレート(信越化学工業社製、製品名「KBM-9659」)
シランカップリング剤(B2):3-(トリメトキシシリル)プロピルコハク酸無水物(信越化学工業社製、製品名「X-12-967C」)
(実施例1)
 硬化性オルガノポリシロキサン化合物(A1)100部に、溶媒(S)73部、熱伝導性フィラー(T1)160部、シランカップリング剤(B1)30部、シランカップリング剤(B2)3部を加えて、全容を十分に混合、脱泡することにより、固形分濃度80%の接着ペースト1を得た。
(実施例2~8、比較例1~4)
 化合物(各成分)の種類及び配合割合を、下記表1に示すものに変更した以外は、実施例1と同様にして接着ペースト2~8及び1r~4rを得た。
 実施例及び比較例で得られた接着ペースト1~8及び1r~4rを用いて、それぞれ以下の試験を行った。結果を表1及び表2に示す。
〔体積充填率算出〕
 (T)成分の質量及び密度から、(T)成分の体積を算出し、さらに、接着ペーストの固形分のうち(T)成分を除く成分の質量及び密度から、接着ペーストの固形分のうち(T)成分を除く成分の体積を算出して、下記式にて、接着ペーストの固形分における(T)成分の体積充填率を算出した。
体積充填率(vol%)=〔(T)成分の体積(cm)/[(T)成分の体積(cm)+接着ペーストの固形分のうち(T)成分を除く成分の体積(cm)]〕×100
 なお、接着ペーストの固形分のうち(T)成分を除く成分の密度として1.2g/cmを用い、(T)成分の密度は、化学大辞典(東京化学同人、第1版、1989年10月20日発行)に基づき、酸化チタン((T1)成分)の密度4.17g/cm、アルミナ((T2)成分、(T3)成分及び(T4)成分)の密度4.0g/cm、炭酸マグネシウム((T5)成分)の密度3.04g/cm、窒化アルミニウム((T6)成分)の密度3.05g/cmを用いた。
〔熱伝導率測定〕
 実施例及び比較例で得た接着ペーストを縦10mm×横10mm×高さ0.2mmのテフロン(登録商標)枠へ流し込み、120℃で4時間加熱処理して硬化させて、表面が平滑な試験片を得た。その後、熱拡散率測定装置(アイフェイズ社製、ai-Phase Mobile 1)を使用して、温度波法により、この試験片の熱拡散率を測定した。また、接着ペーストを加熱硬化して得られる硬化物を構成する成分のうち、熱伝導性フィラー(T)を除く成分の比熱として1J/(g・K)、密度として1.2g/cmを用い、下記式にて熱伝導率を算出した。
 熱伝導率〔W/(m・K)〕=熱拡散率(m/s)×比熱〔J/(g・K)〕×密度(g/cm)×10
〔接着強度評価〕
 一辺の長さが1mmの正方形(面積が1mm)のシリコンチップのミラー面に、実施例及び比較例で得た接着ペーストを塗布し、標準環境下(温度:23℃±1℃、相対湿度:50±5%)に静置した。5分後、塗布面を被着体〔無電解銀メッキ銅板(銀メッキ表面の平均粗さRa:0.025μm)〕の上に載せ、圧着後の接着ペーストの厚さが約3μmになるように圧着した。その後、170℃で2時間加熱処理して硬化させて試験片付被着体を得た。この試験片付被着体を、100℃のボンドテスター(デイジ社製、シリーズ4000)の測定ステージ上に60秒間放置し、被着体から100μmの高さの位置より、スピード200μm/sで接着面に対し水平方向(せん断方向)に応力をかけ、100℃における、試験片と被着体との接着強度(N/mm□)を測定した。
〔半導体素子の熱劣化評価〕
 光素子固定用基板(エノモト社製;OP-04)に、実施例及び比較例で得た接着ペーストをそれぞれ塗布し、圧着後の接着ペーストの厚さが約3μmになるように光半導体素子(Genelite社製、B2020BCI0)を圧着した。その後、170℃で2時間加熱処理して硬化させた。その後、光半導体素子と光素子固定用基板間を2本のワイヤーでボンディングして電気的に導通させて熱劣化評価用の試験片を得た。その後、熱劣化評価用の試験片における光半導体素子を電流値250mAで発光させ、初期の光束と通電時間1000時間後の光束とを、測定装置(MentorGraphics社製、T3Ster/TeraLED)を用いて測定した。
 測定した光束より、光束の維持率(%)〔[通電時間1000時間後の光束(lm)/初期の光束(lm)]×100〕を算出し、以下の基準で半導体素子の熱劣化を評価した。
優:光束の維持率が97%以上であった。
良:光束の維持率が95%以上97%未満であった。
可:光束の維持率が93%以上95%未満であった。
不可:光束の維持率が93%未満であった。
〔ワイヤーボンディング評価〕
 一辺の長さが1mmの正方形(面積が1mm)のシリコンチップ(#2000研削、200μm厚)のミラー面に、実施例及び比較例で得た接着ペーストを、それぞれ塗布し、塗布面を被着体〔無電解銀メッキ銅板(銀メッキ表面の平均粗さRa:0.025μm)〕の上に圧着後の接着ペーストの厚さが約3μmになるように圧着した。その後、170℃で2時間加熱処理して硬化させて試験片付被着体を得た。その後、ワイヤーボンダ〔新川社製;UTC-2000Super(φ25μm、Au線ワイヤー、K&S社製)〕を用いて170℃、0.01秒間、荷重25gf、超音波出力30PLSでシリコンチップと銅板間を4本のワイヤーでボンディングし、「無電解銀メッキ銅板からの試験片(接着ペーストの硬化物)の剥がれの有無」を観察した。同評価及び観察を、実施例及び比較例で得た接着ペースト各々に対して、繰り返しチップ20個に対して行い、以下の基準で評価した。
良:チップ20個のうち、剥がれ又は位置ずれが発生したチップが0個であった。
可:チップ20個のうち、剥がれ又は位置ずれが発生したチップが1~3個であった。
不可:チップ20個のうち、剥がれ又は位置ずれが発生したチップが4個以上であった。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表1及び2から以下のことが分かる。
 実施例1~8の接着ペースト1~8は、加熱硬化して得られる硬化物の熱伝導率が高く、かつ、高温で加熱して得られる硬化物が接着性に優れるものである。そのため、接着ペースト1~8を加熱して得られる硬化物を用いた場合には、半導体素子の熱劣化を低減することができ、かつ、ワイヤーボンディング工程において、半導体素子の剥がれを低減ないし防止することができる。
 酸化チタンよりもアルミナの方が、熱伝導率が高いため、(T)成分として、アルミナ(T2)を含有させた接着ペースト2は、酸化チタン(T1)を含有させた接着ペースト1と比較して、熱伝導率がより高い硬化物を得ることができる。そのため、接着ペースト2を加熱硬化して得られた硬化物を用いた場合、半導体素子の熱劣化をより低減ないし防止することができる。他方、アルミナよりも酸化チタンの方が、製造例1で作製した(A)成分に対してより良好に混合し易く、(A)成分を被覆することができる熱伝導性フィラー(T)の面積がより大きくなるため、接着ペースト1は、接着ペースト2と比較して、高温で加熱して得られる硬化物がより接着性に優れるものとなる(実施例1及び2)。
 すなわち、熱伝導性フィラー(T)の種類の選択により、半導体素子の種類や接着ペーストを硬化させる温度等を勘案し、最適な接着ペーストを得ることができる。
 平均粒径の大きい熱伝導性フィラー(T)を含有する接着ペーストの方が、熱伝導率がより高い硬化物を得ることができ、かつ、高温で加熱して得られる硬化物の接着強度に優れる。そのため、平均粒径の大きい熱伝導性フィラー(T)を含有する接着ペーストを加熱硬化して得られる硬化物を用いた場合、ワイヤーボンディング工程において、半導体素子の剥がれをより低減ないし防止することができる(実施例2~4)。
 また、接着ペーストの固形分100質量部に対する(T)成分の含有量が多い接着ペースト5及び6は、(T)成分の含有量が少ない接着ペースト4と比較して、熱伝導率がより高い硬化物を得ることができる。そのため、接着ペースト5及び6を加熱硬化して得られた硬化物を用いた場合、半導体素子の熱劣化をより低減ないし防止することができる。他方、接着ペースト6は、(T)成分の含有量が多い反面、接着ペーストの固形分100質量部に対する(B)成分及び(B1)成分の含有量は少なくなるため、高温で加熱して得られる硬化物の接着性は若干低下する(実施例4~6)。
 平均粒径の小さい熱伝導性フィラー(T2)を含有する接着ペーストであっても、その含有量が多い接着ペースト7及び4rは、熱伝導率が高い硬化物を得ることができる。さらに、接着ペースト7は、接着ペーストの固形分100質量部に対する(B)成分及び(B1)成分の含有割合が比較的多いため、接着ペーストを高温で加熱して得られる硬化物がより接着性に優れるものとなる。(実施例7及び比較例4)。
 (T)成分として、窒化アルミニウム(T6)を含有させた接着ペースト8であっても、アルミナ(T4)を含有させた接着ペースト4と同様に、熱伝導率が高い硬化物を得ることができ、高温で加熱して得られる硬化物は接着性に優れる(実施例4及び8)。
 すなわち、熱伝導性フィラー(T)の含有量の選択により、半導体素子の種類や接着ペーストを硬化させる温度等を勘案し、最適な接着ペーストを得ることができる。
 一方、比較例1の接着ペースト1rは、熱伝導性フィラー(T)を含有しない接着ペーストであるため、加熱硬化して得られる硬化物の熱伝導率が低い。そのため、この硬化物を用いた場合、半導体素子の熱劣化が見られた。
 比較例2の接着ペースト2rは、接着ペーストの固形分100質量部に対する(T)成分の含有量が少ないため、加熱硬化して得られる硬化物の熱伝導率が低い。そのため、この硬化物を用いた場合、半導体素子の熱劣化が見られた。
 比較例3の接着ペースト3rは、熱伝導性フィラー(T)として、炭酸マグネシウムを含有させたものであり、製造例1で作製した(A)成分に対しては比較的混合し難く、(A)成分を被覆することができる熱伝導性フィラー(T)の面積が小さくなるため、接着ペーストを高温で加熱して得られる硬化物は、十分な接着強度を発現しない。そのため、この硬化物を用いた場合、ワイヤーボンディング工程において、半導体素子の剥がれが見られた。

Claims (8)

  1.  硬化性オルガノポリシロキサン化合物(A)、及び、熱伝導性フィラー(T)を含有する接着ペーストであって、
     前記接着ペーストを120℃で4時間加熱硬化して得られる硬化物の熱伝導率が、0.5W/(m・K)以上であり、
     前記接着ペーストを170℃で2時間加熱硬化して得られる硬化物と、銀メッキ銅板との100℃における接着強度が、5N/mm□以上である接着ペースト。
  2.  前記硬化性オルガノポリシロキサン化合物(A)が、ポリシルセスキオキサン化合物である、請求項1に記載の接着ペースト。
  3.  前記熱伝導性フィラー(T)が、熱伝導率が5W/(m・K)以上の無機フィラーである、請求項1又は2に記載の接着ペースト。
  4.  前記熱伝導性フィラー(T)が、酸化チタン、アルミナ、及び窒化アルミニウムからなる群から選ばれる少なくとも1種である、請求項1~3のいずれかに記載の接着ペースト。
  5.  貴金属触媒を実質的に含有しない、請求項1~4のいずれかに記載の接着ペースト。
  6.  半導体素子固定材用接着剤である、請求項1~5のいずれかに記載の接着ペースト。
  7.  請求項1~6のいずれかに記載の接着ペーストを、半導体素子固定材用接着剤として使用する方法。
  8.  請求項1~6のいずれかに記載の接着ペーストを、半導体素子固定材用接着剤として使用する半導体装置の製造方法であって、下記工程(BI)及び工程(BII)を有する半導体装置の製造方法。
    工程(BI):半導体素子と支持基板の一方又は両方の接着面に前記接着ペーストを塗布し、圧着する工程
    工程(BII):工程(BI)で得られた圧着物の前記接着ペーストを加熱硬化させ、前記半導体素子を前記支持基板に固定する工程
PCT/JP2021/047322 2021-03-30 2021-12-21 接着ペースト、接着ペーストの使用方法及び半導体装置の製造方法 WO2022209064A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180095979.3A CN116981751A (zh) 2021-03-30 2021-12-21 粘接糊料、粘接糊料的使用方法和半导体装置的制造方法
JP2022520675A JPWO2022209064A1 (ja) 2021-03-30 2021-12-21
JP2025038360A JP2025078860A (ja) 2021-03-30 2025-03-11 接着ペースト、接着ペーストの使用方法及び半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-056736 2021-03-30
JP2021056736 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209064A1 true WO2022209064A1 (ja) 2022-10-06

Family

ID=83455825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047322 WO2022209064A1 (ja) 2021-03-30 2021-12-21 接着ペースト、接着ペーストの使用方法及び半導体装置の製造方法

Country Status (4)

Country Link
JP (3) JPWO2022209064A1 (ja)
CN (1) CN116981751A (ja)
TW (1) TW202237790A (ja)
WO (1) WO2022209064A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155482A1 (ja) * 2010-06-08 2011-12-15 積水化学工業株式会社 光半導体装置用ダイボンド材及びそれを用いた光半導体装置
WO2016031731A1 (ja) * 2014-08-26 2016-03-03 リンテック株式会社 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
JP2018100401A (ja) * 2016-12-20 2018-06-28 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 接着剤組成物及びエレクトロニクスにおけるその使用
JP2020176212A (ja) * 2019-04-18 2020-10-29 リンテック株式会社 ダイボンド材、発光装置、及び、発光装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155482A1 (ja) * 2010-06-08 2011-12-15 積水化学工業株式会社 光半導体装置用ダイボンド材及びそれを用いた光半導体装置
WO2016031731A1 (ja) * 2014-08-26 2016-03-03 リンテック株式会社 硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイス
JP2018100401A (ja) * 2016-12-20 2018-06-28 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 接着剤組成物及びエレクトロニクスにおけるその使用
JP2020176212A (ja) * 2019-04-18 2020-10-29 リンテック株式会社 ダイボンド材、発光装置、及び、発光装置の製造方法

Also Published As

Publication number Publication date
CN116981751A (zh) 2023-10-31
JP2023105012A (ja) 2023-07-28
JPWO2022209064A1 (ja) 2022-10-06
JP2025078860A (ja) 2025-05-20
TW202237790A (zh) 2022-10-01

Similar Documents

Publication Publication Date Title
JP6779235B2 (ja) 硬化性組成物、硬化性組成物の製造方法、硬化物、硬化性組成物の使用方法、および光デバイス
JP6840901B2 (ja) 硬化性組成物、硬化物、及び、硬化性組成物の使用方法
JP6821600B2 (ja) 硬化性組成物、硬化性組成物の製造方法、硬化物、及び硬化性組成物の使用方法
WO2022209064A1 (ja) 接着ペースト、接着ペーストの使用方法及び半導体装置の製造方法
JP2023139659A (ja) 接着ペースト、接着ペーストの使用方法及び半導体装置の製造方法
WO2022202844A1 (ja) 接着ペースト、接着ペーストの使用方法及び半導体装置の製造方法
JP6830563B2 (ja) 硬化性ポリシルセスキオキサン化合物、硬化性組成物、硬化物、及び、硬化性組成物の使用方法
WO2022202846A1 (ja) 接着ペースト、接着ペーストの使用方法及び半導体装置の製造方法
JP2022151346A (ja) 接着ペースト、接着ペーストの使用方法及び半導体装置の製造方法
JP6840900B2 (ja) 硬化性組成物、硬化物、及び、硬化性組成物の使用方法
JP2024092134A (ja) 接着ペースト、および半導体装置の製造方法
JP2024004932A (ja) 接着ペースト、接着ペーストの使用方法、および発光装置の製造方法
TWI877232B (zh) 硬化性組合物、硬化物及硬化性組合物的使用方法
JP2024101873A (ja) 接着ペースト、および半導体装置の製造方法
KR102839021B1 (ko) 경화성 조성물, 경화물, 및 경화성 조성물의 사용 방법
JP2024101872A (ja) 接着ペースト、および半導体装置の製造方法
JP2024142048A (ja) 液状の硬化性組成物、硬化性組成物の層、硬化性組成物の層の形成方法、および、半導体素子の固定方法
WO2021060562A1 (ja) 硬化性組成物、硬化物、及び、硬化性組成物の使用方法
JP2020158609A (ja) 硬化性組成物、硬化物、及び、硬化性組成物の使用方法
WO2020196704A1 (ja) 硬化性組成物、硬化物、及び、硬化性組成物の使用方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022520675

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935213

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095979.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935213

Country of ref document: EP

Kind code of ref document: A1