[go: up one dir, main page]

WO2022208908A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2022208908A1
WO2022208908A1 PCT/JP2021/022216 JP2021022216W WO2022208908A1 WO 2022208908 A1 WO2022208908 A1 WO 2022208908A1 JP 2021022216 W JP2021022216 W JP 2021022216W WO 2022208908 A1 WO2022208908 A1 WO 2022208908A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition
intersection
state
curve
saturation
Prior art date
Application number
PCT/JP2021/022216
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 高野
友博 福村
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202180094647.3A priority Critical patent/CN116888881A/en
Publication of WO2022208908A1 publication Critical patent/WO2022208908A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present invention relates to a motor control device that drives and controls an electric motor.
  • Traction motors such as IPMs, which are driving sources for electric vehicles and hybrid vehicles, use both magnet torque and reluctance torque. It is necessary to adjust the torque distribution according to the conditions and constraints such as the power supply voltage.
  • the current target value is generated under the conditions of satisfying the voltage and current limits and maximizing efficiency within that range.
  • Patent Document 1 discloses a power limit circle, which is a d-axis and q-axis current characteristic based on the inner product of a voltage vector and a current vector on a rotating coordinate of vector control, and a d-axis and q-axis current characteristic based on angular velocity.
  • control is not performed by a current command that combines voltage, current, and power limits.
  • Patent Document 2 discloses a motor regeneration technique for a fuel cell vehicle. protects Such control is minimum efficiency control (inefficient control), not maximum efficiency control.
  • Non-Patent Document 1 does not cover all cases in that maximum efficiency control cannot be implemented because it does not explain by mathematical formulas even though it illustrates maximum efficiency control.
  • Non-Patent Document 1 proposes an optimum current table method, but there is a problem that table generation for current command values is costly.
  • the present invention has been made in view of the above-mentioned problems, and its object is to provide a current command method that combines voltage, current, and power limits, and to enable selection of an optimum motor current target value. is.
  • a first exemplary invention of the present application is a motor control device that drives a motor by current vector control in a dq-axis orthogonal coordinate system, wherein a power minimization curve (MP) in a dq-axis orthogonal coordinate plane, a current minimum curve (MA), voltage minimum curve (MV), current limit circle (LA), voltage limit curve (LV), constant torque curve (CT), motoring power limit curve (LP+), and regenerative power limit curve (LP-) means for obtaining a combination of points of intersection effective as a current command from among the points of intersection of two curves selected from the above; means for creating a state transition table in which transition conditions to transition destination states are set; and means for selecting a current target value for the motor based on the positional relationship.
  • MP power minimization curve
  • MA current minimum curve
  • MV voltage minimum curve
  • LA current limit circle
  • LV voltage limit curve
  • CT constant torque curve
  • LP+ motoring power limit curve
  • LP- regenerative power limit curve
  • a second exemplary invention of the present application is a motor control method for driving a motor by current vector control in a dq-axis orthogonal coordinate system, wherein a power minimization curve (MP) and a current minimum curve ( MA), minimum voltage curve (MV), current limit circle (LA), voltage limit curve (LV), constant torque curve (CT), power running power limit curve (LP+), and regenerative power limit curve (LP-) a step of obtaining a combination of points of intersection effective as a current command from among the points of intersection of the two curves; a step of creating a state transition table in which transition conditions to states are set; and a positional relationship on the curve of intersections corresponding to the transition destination state when transition is made from an arbitrary intersection corresponding to the current state according to the transition conditions. and selecting a current target value for the motor based on:
  • the state transition table in which the transition conditions are set is used to calculate the command value of the current vector by focusing only on the intersections that are effective as the current target value (current output value) for the motor. By doing so, it is possible to reduce the amount of calculation of the current target value, improve the processing speed, and reduce the cost.
  • FIG. 1 is a block diagram showing the overall configuration of a motor control device according to an embodiment of the invention.
  • FIG. 2 is a diagram representing valid combinations of intersections of two curves selected from eight curves.
  • FIG. 3 is a diagram showing the positional relationship of multiple curves on the dq-axis orthogonal coordinate plane.
  • FIG. 4 is a diagram summarizing the voltage, current, and power limitation conditions during power running.
  • FIG. 5 is a diagram summarizing the voltage, current, and power limitation conditions during regeneration.
  • FIG. 6 is a state transition table in which transition conditions from the current state to the destination state are set.
  • FIG. 7 is a flowchart showing a current target value calculation process in the motor control device according to the present embodiment.
  • FIG. 1 is a block diagram showing the overall configuration of a motor control device according to an embodiment of the invention.
  • a motor control device 1 shown in FIG. 1 includes a motor control unit 10, a motor drive unit 5 that supplies a predetermined drive current to an electric motor 15 to be controlled, and the like.
  • the motor control unit 10 controls the overall control of the motor control device 1 and is composed of, for example, a microprocessor. ) and the like.
  • the current command unit 2 uses a state transition table, which will be described later, to determine a two-phase command current value ( A d-axis current command value Id * and a q-axis current command value Iq * , which are target current values), are generated.
  • the memory 3 stores a state transition table, programs, etc. necessary for implementing state transitions described later.
  • the memory 3 is, for example, a read only memory (ROM).
  • the memory 3 may be built in the motor control unit 10 or may be externally attached.
  • the subtractor 13 a calculates the difference between the q-axis current command value Iq * and the q-axis current Iq output from the coordinate conversion section 28 . Further, the subtractor 13 b calculates the difference between the d-axis current command value Id * and the d-axis current Id output from the coordinate conversion section 28 .
  • the q-axis PI control unit 16a performs PI (proportional plus integral) control so that the difference between Iq * and Iq converges to zero, and calculates a q-axis voltage command value Vq * , which is a command value for the q-axis voltage.
  • the d-axis PI control unit 16b performs PI (proportional plus integral) control so that the difference between Id * and Id converges to zero, thereby obtaining a d-axis voltage command value Vd * , which is a command value for the d-axis voltage.
  • the coordinate conversion unit 17 calculates motor applied voltages from the q-axis and d-axis voltage command values Vq * and Vd * and the rotation angle ⁇ of the electric motor 15 . That is, the coordinate conversion unit 17 having a two-phase/three-phase conversion function converts the q-axis voltage command value Vq * and the d-axis voltage command value Vd * to voltage command values for each of the three phases based on the rotation angle ⁇ . are converted into voltage command values Vu * , Vv * , and Vw * .
  • the voltage command values Vu * , Vv * , Vw * after the three-phase conversion are input to the PWM signal generator 21.
  • FIG. The PWM signal generator 21 generates a drive signal for the electric motor 15 by increasing or decreasing the duty of a PWM (Pulse Width Modulation) control signal based on these voltage command values.
  • PWM Pulse Width Modulation
  • the PWM signal generator 21 generates an ON/OFF control signal (PWM signal) for a plurality of semiconductor switching elements (FETs) forming the inverter circuit 23 according to the voltage command value.
  • FETs semiconductor switching elements
  • These semiconductor switching elements correspond to the respective phases (u-phase, v-phase, w-phase) of the electric motor 15 .
  • a switching element is also called a power element.
  • switching elements such as MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) and IGBT (Insulated Gate Bipolar Transistor) are used.
  • the PWM signal generator 21 may be built in a motor control integrated circuit (pre-driver IC) that generates a motor drive signal and functions as an FET drive circuit or the like.
  • pre-driver IC motor control integrated circuit
  • the inverter circuit 23 of the motor drive unit 5 is a motor drive circuit that generates alternating current for driving the electric motor 15 from power supplied from the battery BT via the power relay 24 .
  • the electric motor 15 is, for example, an in-vehicle traction motor such as a surface magnet motor (SPM) or an interior magnet motor (IPM).
  • the power supply relay 24 is configured to be able to cut off power from the battery BT, and can also be configured by a semiconductor relay.
  • the motor drive current supplied from the inverter circuit 23 to the electric motor 15 is detected by a current detection section 25 consisting of a current sensor arranged corresponding to each phase.
  • the current detection unit 25 detects, for example, a DC current flowing through a shunt resistor for detecting motor drive current using an amplifier circuit such as an operational amplifier.
  • An output signal (current detection signal) from the current detection section 25 is input to an A/D conversion section (ADC) 27 .
  • ADC A/D conversion section
  • the analog current values are converted into digital values by the A/D conversion function of the ADC 27 , and the three-phase currents Iu, Iv, and Iw obtained by the conversion are input to the coordinate conversion section 28 .
  • a coordinate conversion unit 28 having a three-phase/two-phase conversion function outputs a q-axis current Iq and a d-axis current Id from the rotation angle ⁇ detected by the rotation angle sensor 29 and the three-phase currents Iu, Iv, and Iw. That is, the coordinate conversion unit 28 calculates the d-axis current and the q-axis current based on the actual motor current (q-axis actual current, d-axis actual current).
  • the first condition is to satisfy the voltage/current/power limits
  • the second condition is the command torque
  • the third condition is power minimization.
  • the power limit curve (LP) described later is divided into LP + curve (power running) and LP- curve (regeneration) to limit power.
  • the power minimization curve (MP) and the current minimum curve (MA), voltage minimum curve (MV), current limit circle (LA), voltage limit curve (LV), constant torque curve (CT), motoring power limit curve (LP+), and regenerative power limit curve (LP-) Define 8 curves of
  • a current target value is selected that overlaps or is closest to the constant torque curve and the power limit curve within the above regions.
  • a constant torque curve (CT (Constant Torque) curve) is a trajectory of orthogonal coordinates (x, y) that satisfies a constant torque T, and can be expressed by Equation (1).
  • the constant torque curve is hyperbolic, and in equation (1), ⁇ m is the permanent magnet coefficient, which is 1 for motors with permanent magnets and 0 for motors without.
  • is the motor constant amplitude, which is the difference between the maximum value ⁇ max and the minimum value ⁇ min of the dimensionless motor constant ⁇ .
  • LA Lited Ampere
  • a minimum voltage norm curve (minimum voltage curve, MV (Minimum Voltage) curve) MV (x, y) can be expressed by Equation (4).
  • the current norm minimum curve (current minimum curve, MA (Minimum Ampere) curve) shown in Equation (5) is defined.
  • the power minimization curve (also called MP (Minimum Power) curve) is obtained by, for example, deriving the hysteresis loss factor and eddy current loss factor based on analysis or actual measurement data, and using a formula containing them, as follows: Define.
  • a power minimization curve is also an efficiency maximization curve.
  • K( ⁇ ) is a coefficient for iron loss calculation, and can be defined as follows, where kh is the hysteresis loss coefficient and ke is the eddy current loss coefficient. .
  • a power limit curve (LP (Limited Power) curve) derives a power balance formula based on the law of conservation of energy in a motor system, and is defined by a voltage equation that includes iron loss derived therefrom.
  • Equation (8) the AC power P AC shown in Equation (8), which is derived from the target electromagnetic torque Te, the motor rotation angular frequency ⁇ M , the copper loss Wcu normalized by power, and the iron loss Wir_e during driving, is expressed by Equation ( Define an LP (Limited Power) function LP(x, y) represented by the left side of 9).
  • Equation (10) an LP curve represented by Equation (10) is obtained as a general quadratic curve obtained by transforming Equation (9).
  • Equation (11) The shape of the LP curve changes depending on the eccentricity e shown in Equation (11).
  • the minimum current curve (MA), the minimum voltage curve (MV), and the minimum power curve (MP) are upward hyperbolas with the y-axis as the main axis.
  • the current target value is the intersection point of two curves selected from the eight curves described above. As shown in FIG. ).
  • FIG. 3 shows the positional relationship of the above eight curves (MV curve, MP curve, MA curve, LA curve, LV curve, CT curve, LP+ curve, LP- curve) on the dq-axis orthogonal coordinate plane.
  • the horizontal axis is the iq axis (x axis) and the vertical axis is the id axis (y axis). relationship is established.
  • the range sandwiched between the two parabolas of the MV curve and the MA curve is an effective operating point for current output.
  • This range has its aperture limited by the LP+ and LP- curves in addition to the LA and LV curves.
  • Area A in FIG. 3 is a current output possible range, which is a power limitation condition, the range of Pmin ⁇ P AC ⁇ Pmax described above, and within the LV curve and within the LA curve (LV (x, y) ⁇ v max 2 and LA(x, y) ⁇ i max 2 ) and above the MA curve and below the MV curve (MA(x, y) ⁇ 0 and MV(x, y) ⁇ 0) are all satisfied.
  • MPLP+ is the maximum torque that can be output when only the power limit is considered, and since it does not move on the LP+ curve, LPCT+ does not become an effective current output.
  • the output of the target electromagnetic torque Te is possible when the CT curve based on Te is included in the current output possible range (also called constraint condition) due to the voltage/current/power limits shown in FIG.
  • the current target value is set at the point of intersection with the MP curve or the closest point to minimize power consumption.
  • the selection range of the current target value in the motor control of the motor control device according to the present embodiment will be explained based on the interrelationship between the six curves excluding the CT curve.
  • the power running limited by the LP+ curve and the regeneration limited by the LP- curve will be described.
  • Fig. 4 is a diagram summarizing the voltage, current, and power restrictions during power running. A case with no intersection (NOVA, which will be described later) is omitted. In each case of FIG. 4, the area shown in gray is the current output possible area, and the maximum torque conditions in that range are indicated in the frame.
  • the horizontal axis indicates cases when power saturation is ignored and torque is increased along the MP curve.
  • the vertical axis in Fig. 4 is classified according to whether the power is saturated at the points marked with ⁇ and ⁇ above. Since there is no case of " ⁇ power saturation” and " ⁇ power undersaturation", there are three cases.
  • Fig. 5 is a diagram summarizing the voltage, current, and power limitation conditions during regeneration. Also in each case of FIG. 5, the area shown in gray is the current output possible area, and the maximum torque conditions in that range are indicated in the frame.
  • the horizontal axis in FIG. 5 is the same as during power running in FIG. In FIG. 5, the vertical axis is classified according to whether or not the power is saturated at the points indicated by * and *. Here, there are four cases because there are cases of " ⁇ power saturation” and " ⁇ power not saturated”.
  • the LP-curve may be an ellipse, a parabola, or a hyperbola.
  • the inside of the ellipse is power saturated, and in the case of a parabola/hyperbola, the power saturation is not including the origin.
  • the torque absolute value during regeneration is referred to as regenerative torque.
  • the MPLP- closer to the origin has the minimum regenerative torque on the LP-curve, and when the LP-curve becomes an ellipse, there is an MPLP- farther from the origin and the maximum regenerative torque.
  • MPLP- ( ⁇ mark) notation closer to the origin is added to all cases.
  • LVLP- or LALP- is the maximum torque condition. Voltage or current saturates and then power saturates, but that point is not the maximum torque condition. The maximum torque condition ( ⁇ mark) is determined farther from the MP curve.
  • FIG. 6 shows that for both powering and regeneration, combinations of intersections effective as current target values are arranged in the row direction and column direction as the current state and the transition destination state, respectively, and the transition condition from the current state to the transition destination state (C1 to C60) is set.
  • the current target value has a total of 13 states.
  • a transition condition is a judgment condition for moving from an arbitrary intersection to another intersection, and since the judgment condition depends on the current intersection, it becomes a state transition machine.
  • a cross indicates no transition.
  • a case where there is no output possible range is defined as NOVA (No cross Voltage and Ampere).
  • the state transitions shown in FIG. 6 have regularity. (1) Of the two curves involved in each state, only one is replaced before and after the state transition, and (2) the transition condition is the current target value of the current state. It has a relationship with the curve that is replaced at the transition destination.
  • the MP curve is replaced by the LV curve while the CT curve remains unchanged, and (2) the current target value of MPCT is substituted into the LV function that is replaced at the transition destination and confirmed, and the voltage is saturated. If it is, it transitions to LVCT.
  • LVCT ⁇ LACT transitions via MPCT LVLP+ ⁇ LALP+ transitions via MPLP+ or LVLA
  • LVLP- ⁇ LALP- transitions via LVLA LVLA- ⁇ LALP- transitions via LVLA. Therefore, the state transition table in FIG. 6 indicates that there is no direct transition. Also, LVLA->LVCT and LVLA->LACT are separated by adding a comparison with the MP curve because the transition condition overlaps with the CT curve.
  • MPCT, MALA, MVLV, and MPLP+ always have intersection points, but LACT, LVCT, LVLA, LPCT-, LVLP+, LALP+, LVLP-, and LALP- may not have intersection points. All cases that do not have an intersection point can avoid the operation of the intersection point by state transition.
  • LVCT, LACT, LPCT-, LVLA, LVLP+, and LVLP- must start calculating intersections after judging the state transition to another state. For example, since the condition that the LVCT has no intersection is the MVLV transition condition, it is checked whether the MVLV transition condition is satisfied before obtaining the intersection of the LVCT. At that time, since the LVCT intersection information cannot be used, the MVLV torque is compared with the command torque.
  • FIG. 7 is a flowchart showing a current target value calculation process in the motor control device according to the present embodiment.
  • the motor control unit 10 defines the eight quadratic curves described above on the dq-axis orthogonal coordinate plane. Specifically, power minimization curve (MP), current minimum curve (MA), voltage minimum curve (MV), current limit circle (LA), voltage limit curve (LV), constant torque curve (CT), power running power A limit curve (LP+) and a regenerative power limit curve (LP-) are drawn on the xy plane.
  • MP power minimization curve
  • MA current minimum curve
  • MV voltage minimum curve
  • LA current limit circle
  • LV voltage limit curve
  • CT constant torque curve
  • LP+ power running power A limit curve
  • LP- regenerative power limit curve
  • step S13 the intersection point of two curves selected from the eight curves drawn in step S11 is defined.
  • step S15 the combinations of intersections effective as current targets obtained in step S13 are arranged in the row direction and the column direction as the current state and the transition destination state, respectively, and transition conditions are added to them, as shown in FIG. Create a state transition table.
  • step S17 the motor control unit 10 sets an initial state (for example, starting from MPCT), and in step S19, determines whether or not a transition condition, which will be described later, is satisfied. If the transition condition is satisfied, in step S21, according to the state transition table created in step S15, current saturation, voltage saturation, power saturation, torque saturation, etc. are used as transition conditions, and the state is moved from a predetermined intersection to another intersection. Implement transitions. As a result, the transfer destination (transition destination) is narrowed down, and the current target value that provides the maximum torque within the voltage/current/power limit range is selected.
  • step S19 the process of executing another state transition is repeated (steps S19, S21). If the transition condition is not satisfied (NO in step S19), the motor control unit 10 selects the current target value at the intersection of the current states in step S23.
  • step S25 it is determined whether or not the state transition process has ended. If not, the process returns to step S19 to perform state transition process based on other transition conditions.
  • FIG. 4 shows the relationship between the curves in the case of the maximum torque condition MALA.
  • (12) in FIG. 4 is a case of power non-saturation and current saturation for both * and *.
  • MALA (marked with *) is not power saturated, that is, it is the same state transition without considering power limitation.
  • State changes and their transition conditions are shown when the torque command increases from 0 and when the torque command decreases from infinity. That is, when the torque command increases, in the state transition table of FIG. : current saturation) as a transition condition to the next state, and a transition is performed with the intersection coordinate (LACT) of the current limit circle and the constant torque curve as the transition destination state.
  • LACT intersection coordinate
  • the current state is the intersection coordinate (LACT)
  • the transition condition is C13 (MA ⁇ 0: torque saturation) in FIG.
  • the intersection coordinate (MALA) is the maximum torque condition.
  • intersection coordinates (MALA) are set to the current state, and the intersection coordinates (LACT) are set to C25 (
  • the current state is the intersection point coordinate (LACT)
  • the transition condition is C11 (MP>0: elimination of current saturation) in FIG. conduct.
  • the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve, and C1 (
  • a transition is performed with the coordinates of the intersection with the constant torque curve (LVCT) as the transition destination state.
  • the current state is the intersection point coordinate (LVCT), and C7 (MV ⁇ 0: torque saturation) in FIG. A transition with an end point makes the intersection point coordinate (MVLV) the maximum torque condition.
  • intersection coordinates are set to the current state, and C29 (
  • the current state is the intersection point ( MPCT ) of the power minimization curve and the constant torque curve
  • the power minimization curve and The intersection coordinate (MPLP+) with the power running power limit curve is the transition destination state and the end point, and the transition is performed such that the intersection coordinate (MPLP+) is the maximum torque condition.
  • T pmax is the torque value of MPLP+(powering).
  • the current state is the intersection point coordinate (LACT), C14 (
  • intersection coordinate (LVLA) When the torque command decreases, the intersection coordinate (LVLA) is set to the current state, and C34 (
  • the current state is the intersection point coordinate (LACT)
  • the transition condition is C11 (MP>0: elimination of current saturation) in FIG. conduct.
  • the current state is the intersection point coordinate (LVCT), and the transition condition is C8 (
  • the intersection coordinate (LVLA) is set as the maximum torque condition.
  • intersection coordinate (LVLA) When the torque command decreases, the intersection coordinate (LVLA) is set to the current state, and C33 (
  • the current state is set to the coordinates of the intersection point (LVCT), and C5 (MP ⁇ 0: elimination of voltage saturation) in FIG. .
  • the current state is the intersection point coordinate (LACT), C15 (p ⁇ p max : power saturation) in FIG. , and the intersection coordinate (LALP+) is set as the maximum torque condition.
  • intersection coordinate (LALP+) is set to the current state, and C51 (
  • the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve, and C1 (
  • a transition is performed with the coordinates of the intersection with the constant torque curve (LVCT) as the transition destination state.
  • intersection point coordinates (LVCT) as the current state and C9 (p ⁇ p max : power saturation) in FIG.
  • intersection coordinate (LVLP+) is set as the maximum torque condition.
  • intersection coordinate (LVLP+) is set to the current state, and C42 (
  • Transitions when the maximum torque condition changes include the following transitions.
  • the intersection coordinate (MALA) is the current state
  • the transition condition is C26 (
  • C35 (MA ⁇ 0: elimination of voltage saturation) in FIG. 6 is the transition condition
  • the intersection coordinate (MALA) is the transition destination state.
  • intersection coordinate (MALA) is the current state
  • the transition condition is C27 (p ⁇ p max : power saturation) in FIG.
  • C53 MA ⁇ 0: elimination of power saturation
  • intersection point coordinates (MVLV) as the current state and C30 (
  • intersection coordinate is the current state
  • the transition condition is C31 (p ⁇ p max : power saturation) in FIG.
  • C44 MV ⁇ 0: elimination of power saturation
  • intersection point coordinate (LALP+) as the current state and the transition condition C52 (MP>0: elimination of voltage saturation) in FIG. state
  • C24
  • intersection coordinates (LALP+) as a transition destination state.
  • intersection coordinate (LALP+) is the current state
  • the transition condition is C54 (
  • the current state is C39 (p ⁇ p max [MP ⁇ 0]: power saturation and the intersection point coordinate (LVLA) is on the current minimum curve (MA) side) as a transition condition
  • the intersection point coordinate (LALP+) is the transition destination state.
  • intersection point coordinate (LVLP+) as the current state and C43 (MP ⁇ 0: elimination of voltage saturation) in FIG. state
  • C23
  • ⁇ v max voltage saturation
  • intersection coordinate (LVLP+) as the transition destination state.
  • intersection coordinate (LVLP+) is the current state
  • the transition condition is C45 (
  • the intersection point coordinate (LVLP+) is set to Transition to be transition destination state.
  • the NOVA transition speed ⁇ NOVA in the state transition table of FIG. 6 is the speed at which the LA curve, the LV curve, and the LP curve have a triple intersection (approximately, the speed at which the y-intercept of the LA curve exists on the LV curve ).
  • (12) in FIG. 5 is a case where the power saturates before the current and the power saturation is canceled in the middle.
  • the current state is the intersection point (MPCT) of the power minimization curve and the constant torque curve
  • the transition condition is C3 (p ⁇ p min : power saturation) in FIG.
  • a transition is made with the intersection point (LPCT-) of the power limit curve and the constant torque curve as the transition destination state.
  • the current state is defined as the intersection coordinate (LPCT-), and the transition condition is C19 (
  • a transition is performed with the intersection coordinate (LACT) with the torque curve as the transition destination state.
  • the current state is the intersection coordinate (LACT)
  • the transition condition is C13 (MA ⁇ 0: torque saturation) in FIG.
  • a transition with an endpoint causes its intersection coordinate (MALA) to be the maximum torque condition.
  • intersection coordinate (MALA) is set to the current state
  • C25
  • C25
  • LACT is set as the current state
  • C12 p ⁇ p min : power saturation
  • LPCT ⁇ is set as the transition destination state.
  • intersection point coordinates are set to the current state, and the intersection point coordinates (MPCT) are transitioned with C17 (
  • T pmin_l is the MALA (regeneration: close to the origin) torque value
  • T pmin_h is the MALA (regeneration: far from the origin) torque value.
  • the maximum torque condition is MALA and power is saturated in the middle of LACT.
  • the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve, and C2 (
  • the intersection coordinates (LACT) of the current limiting circle and the constant torque curve are transition destination states.
  • intersection coordinate (LACT) is the current state, C12 (p ⁇ p min : power saturation) in FIG. Make a state transition. Also, with the intersection point coordinate (LPCT ⁇ ) as the current state and C19 (
  • intersection coordinates (LACT) as the current state and C13 (MA ⁇ 0: torque saturation) in FIG.
  • the intersection coordinate (MALA) is the maximum torque condition due to the transition that ends at one.
  • intersection coordinate (MALA) is set to the current state
  • C25
  • C25
  • LACT is set as the current state
  • C12 p ⁇ p min : power saturation
  • LPCT ⁇ is set as the transition destination state.
  • intersection point coordinates (LPCT ⁇ ) as the current state and C19 (
  • the intersection coordinate (LACT) is the current state
  • C11 MP>0: elimination of current saturation
  • the intersection coordinate (MPCT) is the destination state and the end point I do.
  • the case shown in (9) in FIG. 5 is a case where the power is saturated before the voltage and the power saturation is canceled in the middle.
  • the current state is the intersection point (MPCT) of the power minimization curve and the constant torque curve
  • the transition condition is C3 (p ⁇ p min : power saturation) in FIG.
  • a transition is made with the intersection point (LPCT-) of the power limit curve and the constant torque curve as the transition destination state.
  • the current state is the intersection coordinate (LPCT-), and C18 (
  • a transition is made with the intersection coordinates (LVCT) with the torque curve as the transition destination state.
  • intersection coordinate (MVLV) is set as the maximum torque condition.
  • intersection coordinates are set to the current state, and C29 (
  • the current state is the intersection point coordinates (LVCT)
  • the transition condition is C6 (p ⁇ p min : voltage saturation) in FIG. 6, and the intersection point coordinates (LPCT ⁇ ) is the transition destination state.
  • ⁇ ) is the current state, C17 (
  • the maximum torque condition is MVLV and power is saturated during LVCT.
  • the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve
  • ⁇ v max : voltage saturation) in FIG. 6 is the transition condition.
  • the intersection point coordinates (LVCT) of the voltage limit curve and the constant torque curve are transition destination states.
  • the current state is the intersection point coordinate (LVCT)
  • the transition condition is C6 (p ⁇ p min : power saturation) in FIG.
  • C6 p ⁇ p min : power saturation
  • C18
  • the current state is the intersection point coordinate (LVCT)
  • the transition condition is C7 (MV ⁇ 0: torque saturation) in FIG.
  • intersection point coordinates are set to the current state, and the intersection point coordinates (LVCT) are set to the transition destination state with C29 (
  • the current state is the intersection point coordinates (LVCT)
  • the transition condition is C6 (p ⁇ p min : power saturation) in FIG. (LPCT-) is the current state
  • ⁇ v max : elimination of power saturation) in FIG. 6 is the transition condition
  • the intersection coordinate (LVCT) is the transition destination state.
  • the current state is set to the coordinates of the intersection point (LVCT), and C5 (MP ⁇ 0: elimination of voltage saturation) in FIG. .
  • the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve, and C3 (p ⁇ p min : power saturation ) as the transition condition, the transition is performed with the intersection coordinate (LPCT-) between the regenerative power limit curve and the constant torque curve as the transition destination state.
  • intersection point coordinates are defined as the current state, and C19 (
  • intersection coordinate (LACT) is the current state
  • the transition condition is C14 (
  • the intersection coordinate (LVLA) is the transition destination state and transition point and the intersection coordinate (LVLA) is set as the maximum torque condition.
  • intersection coordinate (LVLA) When the torque command decreases, the intersection coordinate (LVLA) is set to the current state, and C34 (
  • intersection coordinate (LACT) is set as the current state, C12 (p ⁇ p min : power saturation) in FIG.
  • the coordinates ( LPCT- ) be the current state, and let C17 in FIG . There is a transition with an end point.
  • the transition when the power is saturated in the middle of LACT, the transition is as follows. That is, when the torque command increases, the current state is the intersection point (MPCT) of the power minimization curve and the constant torque curve, and the transition condition is C2 (
  • MPCT intersection point
  • C2
  • intersection coordinate (LACT) is the current state, C12 (p ⁇ p min : power saturation) in FIG. Make a state transition.
  • intersection point coordinate (LPCT-) as the current state and C19 (
  • the current limit circle and the constant torque A transition is made with the intersection coordinate (LACT) with the curve as the transition destination state.
  • intersection coordinate (LACT) the current state is the intersection coordinate (LACT)
  • transition condition is C14 (v ⁇ v max : torque saturation) in FIG. 6
  • intersection coordinate (LVLA) the destination state and the end point.
  • intersection coordinates (LVLA) as the maximum torque condition.
  • intersection point coordinate (LVLA) is set to the current state
  • C34
  • a transition is performed with the intersection coordinate (LACT) as a transition destination state.
  • intersection coordinates (LACT) are set to the current state, C12 (p ⁇ p min : power saturation) in FIG. With the intersection point coordinate (LPCT ⁇ ) as the current state and C19 (
  • intersection coordinate (LACT) is the current state, C11 (MP>0: elimination of current saturation) in FIG. .
  • the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve, and C3 (p ⁇ p min : power saturation ) as the transition condition, the transition is performed with the intersection coordinate (LPCT-) between the regenerative power limit curve and the constant torque curve as the transition destination state.
  • MPCT intersection point
  • LPCT- intersection coordinate
  • the current state is the intersection coordinate (LPCT-), and C18 (
  • a transition is made with the intersection coordinates (LVCT) with the torque curve as the transition destination state.
  • intersection point coordinates (LVCT) as the current state and C8 (
  • C8
  • LVLA intersection coordinate
  • intersection coordinate (LVLA) is set to the current state
  • C33
  • LVCT intersection coordinates
  • intersection coordinate (LVCT) is set to the current state, and C6 (p ⁇ p min : power saturation) in FIG.
  • C17
  • the transition is as follows. That is, when the torque command increases, the current state is the intersection point (MPCT) of the power minimization curve and the constant torque curve, and C1 (
  • MPCT intersection point
  • C1
  • the current state is the intersection point coordinate (LVCT)
  • the transition condition is C6 (p ⁇ p min : power saturation) in FIG.
  • C6 p ⁇ p min : power saturation
  • C18
  • the current state is the intersection point coordinate (LVCT), C8 (
  • intersection coordinate (LVLA) When the torque command decreases, the intersection coordinate (LVLA) is set to the current state, and C33 (
  • intersection coordinate (LVCT) is set as the current state, C6 (p ⁇ p min : power saturation) in FIG. With the coordinate (LPCT-) as the current state, C18 (
  • intersection coordinates are set to the current state, C5 (MP ⁇ 0: elimination of voltage saturation) in FIG. .
  • intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are set as the current state, and C2 (
  • a transition is performed with the intersection coordinate (LACT) with the constant torque curve as the transition destination state.
  • the intersection coordinates (LACT) are the current state, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are the transition destination state with C12 (p ⁇ p min : power saturation) in FIG. 6 as the transition condition.
  • intersection coordinate (LPCT-) as the current state and C21 (
  • the current limit circle and the regenerative power limit curve A transition is made with the intersection coordinate (LALP-) as the transition destination state and the end point, and the intersection coordinate (LALP-) is set as the maximum torque condition.
  • intersection point coordinate (LALP-) is set to the current state, and the intersection point coordinate (LPCT-) is set to C56 (
  • intersection coordinate (LPCT ⁇ ) is set to the current state, and C19 (
  • the current state is set to the intersection coordinate (LACT), and C11 (MP>0: elimination of current saturation) in FIG.
  • both MALA (marked with ⁇ ) and MPLA (marked with ⁇ ) are power saturated, and MPCT ( ⁇ mark) MA curve in which LALP- torque always increases at power saturation go to the side.
  • the current state is the intersection point (MPCT) of the power minimization curve and the constant torque curve
  • the transition condition is C3 (p ⁇ p min : power saturation) in FIG.
  • a transition is made with the intersection point (LPCT-) of the power limit curve and the constant torque curve as the transition destination state.
  • intersection coordinates (LPCT-) are the current state
  • ⁇ i max [MA ⁇ 0 or MP ⁇ 0]: torque saturation) in FIG. 6 is the transition condition.
  • a transition is made with the intersection coordinate (LALP-) as the transition destination state and the end point, and the intersection coordinate (LALP-) is set as the maximum torque condition.
  • intersection point coordinate (LALP-) is set to the current state, and the intersection point coordinate (LPCT-) is transitioned with C56 (
  • C56
  • C17
  • LALP- which is the farthest from the MP curve
  • ⁇ mark the maximum torque condition
  • the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve
  • C1
  • a transition is made with the coordinates of the intersection point (LVCT) of the limit curve and the constant torque curve as the transition destination state.
  • intersection coordinates are the current state
  • intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are the transition destination state with C6 (p ⁇ p min : power saturation) in FIG. 6 as the transition condition.
  • intersection point (LALP-) is the transition destination state and the end point, and the intersection point (LALP-) is set as the maximum torque condition.
  • intersection point coordinate (LALP-) is set to the current state, and the intersection point coordinate (LPCT-) is set to C56 (
  • the intersection coordinate (LPCT-) is set to the current state, and the intersection coordinate (LVCT) is transitioned with C18 (
  • the current state is set to the coordinates of the intersection point (LVCT), C5 (MP ⁇ 0: elimination of voltage saturation) in FIG. .
  • LVLP- When the maximum torque condition is LVLP->
  • the cases of the maximum torque condition LVLP- can be classified into three types (1), (5) and (7) in FIG.
  • (5) in FIG. 5 only the MVLV (marked with *) is power saturated, and the torque is greater at the point farthest from the MP curve, so the LVLP- closer to the MP curve does not meet the maximum torque condition.
  • LVLP- which is farther from the MP curve, is the maximum torque condition (marked with .tangle-solidup.).
  • the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve
  • C3 (p ⁇ p min : power saturation) in FIG. is the transition condition
  • the transition destination state is the coordinate (LPCT-) of the intersection of the regenerative power limit curve and the constant torque curve.
  • the voltage limit curve and the regenerative power limit A transition is made with the coordinates of the intersection with the curve (LVLP-) being the destination state and the end point, and the coordinates of the intersection (LVLP-) being the maximum torque condition.
  • intersection point coordinate (LVLP-) is set to the current state, and the intersection point coordinate (LPCT-) is set to C47 (
  • the MPCT advances to the MV curve side where the torque of LVLP- always increases at the time of power saturation.
  • the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve
  • C1
  • the intersection point coordinates (LVCT) of the voltage limit curve and the constant torque curve are transition destination states.
  • intersection coordinates are the current state
  • intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are the transition destination state with C6 (p ⁇ p min : power saturation) in FIG. 6 as the transition condition.
  • intersection coordinate (LPCT-) as the current state and C20 (
  • the voltage limit curve and the regenerative power limit curve A transition is made with the intersection coordinate (LVLP-) as the transition destination state and the end point, and the intersection coordinate (LVLP-) is set as the maximum torque condition.
  • intersection point coordinate (LVLP-) is set to the current state, and the intersection point coordinate (LPCT-) is transitioned with C47 (
  • C47
  • the current state is set to the intersection coordinate (LPCT-)
  • the transition destination state is set to the intersection coordinate (LVCT) with C18 (
  • the current state is the intersection point coordinates (LVCT), and C5 (MP ⁇ 0: elimination of voltage saturation) in FIG.
  • FIG. 5 (7) in FIG. 5 is a case in which restrictions are made in the order of voltage limitation, power limitation, and current limitation.
  • the farthest point LVLP- ( ⁇ mark) from the MP curve is the maximum torque condition.
  • the intersection point (MPCT) between the power minimization curve and the constant torque curve is set as the current state, and C2 (
  • a transition is made with the intersection coordinates (LACT) of the limit circle and the constant torque curve as the transition destination state.
  • intersection coordinates (LACT) are the current state
  • intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are the transition destination state with C12 (p ⁇ p min : power saturation) in FIG. 6 as the transition condition.
  • intersection coordinate (LPCT-) as the current state and C20 (
  • the voltage limit curve and the regenerative power limit curve A transition is made with the intersection coordinate (LVLP-) as the transition destination state and the end point, and the intersection coordinate (LVLP-) is set as the maximum torque condition.
  • intersection point coordinate (LVLP-) is set to the current state, and the intersection point coordinate (LPCT-) is transitioned with C47 (
  • the current state is the intersection point coordinate (LACT), and C11 (MP>0: elimination of current saturation) in FIG.
  • the current state is the intersection point (MPCT) of the power minimization curve and the constant torque curve, and the regenerative power limit curve is determined with C3 (p ⁇ p min : power saturation) in FIG. 6 as the transition condition.
  • a transition is made with the intersection coordinate (LPCT-) with the torque curve as the transition destination state.
  • intersection coordinates (LPCT-) are the current state
  • C21
  • a transition is performed with the intersection coordinate (LALP-) of .
  • intersection point coordinate (LALP-) is set to the current state, and the intersection point coordinate (LPCT-) is set to C56 (
  • Transition to the transition destination state is performed, then the intersection coordinate (LPCT-) is set to the current state, and C17 (
  • a transition is performed with intersection coordinates (MPCT) as a transition destination state and an end point.
  • the torque on LVLP- is greater, the following transition occurs. That is, when the torque command increases, the current state is the intersection point (MPCT) of the power minimization curve and the constant torque curve, and the regenerative power limit curve is set to C3 (p ⁇ p min : power saturation) in FIG. and the constant torque curve (LPCT-) is the transition destination state.
  • MPCT intersection point
  • LPCT- constant torque curve
  • the voltage limit curve and the regenerative power limit A transition is made with the coordinates of the intersection with the curve (LVLP-) as the transition destination state and the end point, and the coordinates of the intersection (LVLP-) become the maximum torque condition.
  • intersection coordinate (LALP-) is set to the current state, and the intersection coordinate (LPCT-) is set to C47 (
  • intersection point coordinates (LPCT-) are set to the current state, and the intersection point coordinates (MPCT) are transitioned with C17 (
  • Transitions when the maximum torque condition changes during regeneration include the following six transitions.
  • the current state is the intersection point coordinate (MALA), the transition condition is C26 (
  • MALA intersection point coordinate
  • the current state is the intersection coordinate (MALA), the transition condition is C28 (p ⁇ p min : power saturation) in FIG. 6, and the transition destination state is the intersection coordinate (LALP-). state, C57 (MA ⁇ 0: elimination of power saturation) in FIG. 6 as the transition condition, and the intersection coordinate (MALA) as the transition destination state.
  • the current state is the intersection coordinate (MVLV), the transition condition is C30 (
  • the current state is the intersection coordinate (MVLV), the transition condition is C32 (p ⁇ p min : power saturation) in FIG. 6, and the transition destination state is the intersection coordinate (LVLP-). state, C48 (MV ⁇ 0: elimination of current saturation) in FIG. 6 as a transition condition, and intersection coordinates (MVLV) as a transition destination state.
  • intersection coordinate (LALP-) is the current state
  • the transition condition is C58 (
  • the intersection coordinate (LVLA) is the transition destination state. 6 (p ⁇ p min [MP ⁇ 0]: power saturation and the intersection coordinate (LVLA) is on the current minimum curve (MA) side) as a transition condition
  • the intersection coordinate (LALP-) is set as a transition condition. Transition to be transition destination state.
  • the current state is the intersection coordinate (LVLP ⁇ ), the transition condition is C49 (
  • the positional relationship of the curve defined on the dq-axis orthogonal coordinate plane (current vector plane) on that plane can determine the transition destination based on At that time, by calculating the command value of the current vector by focusing on the intersection of the two curves, which is effective as the current target value (current output value) for the motor, the amount of calculation of the current target value is reduced and the processing speed is increased. can improve and reduce costs.
  • the accuracy of maximum efficiency control is improved, and by considering the power limit, it is possible to avoid damage to the battery due to power running and regeneration that exceed the battery charge/discharge allowable power. can. That is, the accuracy of the maximum efficiency control of the motor can be improved by including not only the copper loss but also the iron loss and considering the power limit.
  • motor controller central control unit (CPU) 3 memory 4 voltage command unit 5 motor drive unit 10 motor control unit 15 electric motor 16a q-axis PI control unit 16b d-axis PI control unit 17, 28 coordinate conversion unit 21 PWM signal generation unit 23 inverter circuit 24 power relay 25 current detection unit 27 A/D converter (ADC) 29 Rotation angle sensor BT External battery

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

A motor control device for driving a motor by using current vector control in a dq-axis Cartesian coordinate system, said motor control device comprising: a means that finds combinations of intersections that are effective as a current command from among the intersections of two curves selected from among a power minimization curve (MP) , a current minimization curve (MA), a voltage minimization curve (MV), a current limit circle (LA), a voltage limit curve (LV), a constant torque curve (CT), a running-power limit curve (LP+), and a regenerative power limit curve (LP–) in the dq-axis Cartesian coordinate system; a means that arranges the combinations of intersections in the row and column directions, respectively, as the current state and the transitioned state, and creates a state transition table in which conditions for transition from the current state to the transitioned state have been set; and a means that selects a target current value for the motor on the basis of the positional relationships of intersections corresponding to the transitioned state on the curved lines when transitioned from optional intersections corresponding to the current state in accordance with the transition conditions.

Description

モータ制御装置motor controller
 本発明は、電動モータを駆動制御するモータ制御装置に関する。 The present invention relates to a motor control device that drives and controls an electric motor.
 電気自動車、ハイブリッド車両等の駆動源になっている埋め込み磁石型モータ(IPM)等のトラクションモータは、マグネットトルクとリラクタンストルクを併用するモータであり、最大効率を得るためには、速度等の動作条件と、電源電圧等の制約に応じてトルク配分を調整する必要がある。  Traction motors such as IPMs, which are driving sources for electric vehicles and hybrid vehicles, use both magnet torque and reluctance torque. It is necessary to adjust the torque distribution according to the conditions and constraints such as the power supply voltage. 
 通常、モータ制御では、電圧電流限界までモータを動作させるという観点から、電圧・電流制限を満たすことと、その範囲内で効率を最大化することを条件として電流目標値を生成している。  Normally, in motor control, from the perspective of operating the motor up to the voltage and current limit, the current target value is generated under the conditions of satisfying the voltage and current limits and maximizing efficiency within that range. 
 特許文献1は、ベクトル制御の回転座標上における電圧ベクトルと電流ベクトルとの内積に基づくd軸,q軸の電流特性である電力制限円と、角速度に基づいたd軸,q軸の電流特性である電圧制限円の双方の円内に、回転座標上でd軸指令電流とq軸指令電流を表す点を収めることで、d軸電流がd軸指令電流から乖離せず、q軸電流がq軸指令電流から乖離しない状態でブラシレスモータを駆動する技術を開示している。  Patent Document 1 discloses a power limit circle, which is a d-axis and q-axis current characteristic based on the inner product of a voltage vector and a current vector on a rotating coordinate of vector control, and a d-axis and q-axis current characteristic based on angular velocity. By placing the points representing the d-axis command current and the q-axis command current on the rotating coordinates in both circles of a certain voltage limit circle, the d-axis current does not deviate from the d-axis command current, and the q-axis current becomes q A technique for driving a brushless motor without deviation from the axis command current is disclosed. 
 モータ制御において電力制限を考慮しない場合、バッテリ充放電許容電力を超過した力行、回生によりバッテリにダメージを与える懸念がある。例えば、特許文献2は、車両(燃料電池車)の駆動モータの負荷要求出力が急減した場合におけるバッテリの応答遅れに起因して発生した余剰電力をモータで消費させて、余剰電力によるバッテリへの充電電流が過剰となるのを回避する技術を開示している。  If the power limit is not taken into consideration in motor control, there is a concern that the battery will be damaged due to powering and regeneration that exceed the battery charge/discharge allowable power. For example, in Patent Document 2, when the load demand output of the drive motor of a vehicle (fuel cell vehicle) suddenly decreases, the excess power generated due to the response delay of the battery is consumed by the motor, and the excess power is transferred to the battery. Techniques are disclosed to avoid excessive charging current.
特開2020-54086号公報Japanese Patent Application Laid-Open No. 2020-54086 特許第6395268号公報Japanese Patent No. 6395268
 従来のモータ制御では、その制御に用いる電圧方程式で鉄損を考慮していないため、実際の最大効率点に対して誤差が生じるという問題がある。また、従来は、電圧・電流・電力制限を複合させた電流指令による制御を行っていない。  In conventional motor control, iron loss is not taken into consideration in the voltage equation used for that control, so there is a problem that an error occurs with respect to the actual maximum efficiency point. Conventionally, control is not performed by a current command that combines voltage, current, and power limits. 
 上記のように特許文献2では、燃料電池車のモータ回生技術を開示しているが、瞬間的に負荷が急減して電力が過剰になったとき、故意にモータで電力を消費することでバッテリを保護している。このような制御は最小効率制御(非効率制御)であって、最大効率制御ではない。また、特許文献2では、鉄損Wfを、Wf=(Vd+Vq)/Rc(Rcは等価鉄損抵抗)と定義しているが、等価鉄損抵抗の具体的な導出方法については言及していない。  As described above, Patent Document 2 discloses a motor regeneration technique for a fuel cell vehicle. protects Such control is minimum efficiency control (inefficient control), not maximum efficiency control. In addition, in Patent Document 2, iron loss Wf is defined as Wf=(Vd 2 +Vq 2 )/Rc (Rc is equivalent iron loss resistance), but a specific derivation method for equivalent iron loss resistance is mentioned. not.
 一方、制御方法を実際の製品(モータ)に適用するには電圧・電流制限のすべてのケースに対して安定動作を可能にする必要があるが、例えば非特許文献1は、電圧・電流制限が発生し得るケースの一部を示しているに過ぎない。  On the other hand, in order to apply the control method to an actual product (motor), it is necessary to enable stable operation in all cases of voltage/current limitation. It only shows some of the possible cases. 
 さらに非特許文献1は、最大効率制御を図示しているも数式による説明が一切ないため、最大効率制御を実施できない点で全ケースを網羅していない。また、非特許文献1は、最適電流テーブル方式を提案しているが、電流指令値のためのテーブル生成は高コストとなるという問題がある。  Furthermore, Non-Patent Document 1 does not cover all cases in that maximum efficiency control cannot be implemented because it does not explain by mathematical formulas even though it illustrates maximum efficiency control. Non-Patent Document 1 proposes an optimum current table method, but there is a problem that table generation for current command values is costly. 
 本発明は、上述した課題に鑑みてなされたものであり、その目的は、電圧・電流・電力制限を複合させた電流指令方法を提供し、最適なモータ電流目標値の選択を可能にすることである。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and its object is to provide a current command method that combines voltage, current, and power limits, and to enable selection of an optimum motor current target value. is.
 上記の目的を達成し、上述した課題を解決する一手段として以下の構成を備える。すなわち、本願の例示的な第1の発明は、dq軸直交座標系において電流ベクトル制御によってモータを駆動するモータ制御装置であって、dq軸直交座標平面における電力最小化曲線(MP)、電流最小曲線(MA)、電圧最小曲線(MV)、電流制限円(LA)、電圧制限曲線(LV)、定トルク曲線(CT)、力行電力制限曲線(LP+)、および回生電力制限曲線(LP-)より選択した2つの曲線の交点のうち電流指令として有効な交点の組合せを求める手段と、前記交点の組合せを現在状態と遷移先状態として行方向と列方向にそれぞれ配列し、前記現在状態から前記遷移先状態への遷移条件を設定した状態遷移表を作成する手段と、前記現在状態に対応する任意の交点から前記遷移条件に従って遷移したときの前記遷移先状態に対応する交点の前記曲線上における位置関係に基づいて前記モータに対する電流目標値を選択する手段とを備えることを特徴とする。   The following configuration is provided as a means of achieving the above objectives and solving the above problems. That is, a first exemplary invention of the present application is a motor control device that drives a motor by current vector control in a dq-axis orthogonal coordinate system, wherein a power minimization curve (MP) in a dq-axis orthogonal coordinate plane, a current minimum curve (MA), voltage minimum curve (MV), current limit circle (LA), voltage limit curve (LV), constant torque curve (CT), motoring power limit curve (LP+), and regenerative power limit curve (LP-) means for obtaining a combination of points of intersection effective as a current command from among the points of intersection of two curves selected from the above; means for creating a state transition table in which transition conditions to transition destination states are set; and means for selecting a current target value for the motor based on the positional relationship. 
 本願の例示的な第2の発明は、dq軸直交座標系において電流ベクトル制御によってモータを駆動するモータ制御方法であって、dq軸直交座標平面における電力最小化曲線(MP)、電流最小曲線(MA)、電圧最小曲線(MV)、電流制限円(LA)、電圧制限曲線(LV)、定トルク曲線(CT)、力行電力制限曲線(LP+)、および回生電力制限曲線(LP-)より選択した2つの曲線の交点のうち電流指令として有効な交点の組合せを求める工程と、前記交点の組合せを現在状態と遷移先状態として行方向と列方向にそれぞれ配列し、前記現在状態から前記遷移先状態への遷移条件を設定した状態遷移表を作成する工程と、前記現在状態に対応する任意の交点から前記遷移条件に従って遷移したときの前記遷移先状態に対応する交点の前記曲線上における位置関係に基づいて前記モータに対する電流目標値を選択する工程とを備えることを特徴とする。 A second exemplary invention of the present application is a motor control method for driving a motor by current vector control in a dq-axis orthogonal coordinate system, wherein a power minimization curve (MP) and a current minimum curve ( MA), minimum voltage curve (MV), current limit circle (LA), voltage limit curve (LV), constant torque curve (CT), power running power limit curve (LP+), and regenerative power limit curve (LP-) a step of obtaining a combination of points of intersection effective as a current command from among the points of intersection of the two curves; a step of creating a state transition table in which transition conditions to states are set; and a positional relationship on the curve of intersections corresponding to the transition destination state when transition is made from an arbitrary intersection corresponding to the current state according to the transition conditions. and selecting a current target value for the motor based on:
 本発明のモータ制御装置によれば、遷移条件が設定された状態遷移表を使用して、モータに対する電流目標値(電流出力値)として有効な交点のみに着目して電流ベクトルの指令値を計算することで、電流目標値の計算量を軽減して処理速度の向上とコスト削減が可能になる。 According to the motor control device of the present invention, the state transition table in which the transition conditions are set is used to calculate the command value of the current vector by focusing only on the intersections that are effective as the current target value (current output value) for the motor. By doing so, it is possible to reduce the amount of calculation of the current target value, improve the processing speed, and reduce the cost.
図1は、本発明の実施形態に係るモータ制御装置の全体構成を示すブロック図である。FIG. 1 is a block diagram showing the overall configuration of a motor control device according to an embodiment of the invention. 図2は、8曲線から選択した2曲線相互の交点のうち有効な組合せを表記する図である。FIG. 2 is a diagram representing valid combinations of intersections of two curves selected from eight curves. 図3は、dq軸直交座標平面上における複数曲線の位置関係を示す図である。FIG. 3 is a diagram showing the positional relationship of multiple curves on the dq-axis orthogonal coordinate plane. 図4は、力行時の電圧・電流・電力の制限状況をまとめた図である。FIG. 4 is a diagram summarizing the voltage, current, and power limitation conditions during power running. 図5は、回生時の電圧・電流・電力の制限状況をまとめた図である。FIG. 5 is a diagram summarizing the voltage, current, and power limitation conditions during regeneration. 図6は、現在状態から遷移先状態への遷移条件が設定された状態遷移表である。FIG. 6 is a state transition table in which transition conditions from the current state to the destination state are set. 図7は、本実施形態に係るモータ制御装置における電流目標値の算出処理を示すフローチャートである。FIG. 7 is a flowchart showing a current target value calculation process in the motor control device according to the present embodiment.
 以下、本発明に係る実施形態について添付図面を参照して詳細に説明する。  Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings. 
<モータ制御装置の構成>
 図1は、本発明の実施形態に係るモータ制御装置の全体構成を示すブロック図である。図1に示すモータ制御装置1は、モータ制御部10、制御対象である電動モータ15に所定の駆動電流を供給するモータ駆動部5等を備える。モータ制御部10は、モータ制御装置1の全体の制御を司る、例えばマイクロプロセッサからなり、電動モータ15に流れる電流と目標電流とが一致するように電流値をフィードバックするフィードバック制御(F/B制御)等を行う中央制御部(CPU)である。 
<Configuration of motor control device>
FIG. 1 is a block diagram showing the overall configuration of a motor control device according to an embodiment of the invention. A motor control device 1 shown in FIG. 1 includes a motor control unit 10, a motor drive unit 5 that supplies a predetermined drive current to an electric motor 15 to be controlled, and the like. The motor control unit 10 controls the overall control of the motor control device 1 and is composed of, for example, a microprocessor. ) and the like.
 電流指令部2は、後述する状態遷移表を使用して指示トルク(トルク指令値)Tq、電動モータ15の回転速度ω等から、d軸成分およびq軸成分を持つ2相の指令電流値(目標電流値)であるd軸の電流指令値Idおよびq軸の電流指令値Iqを生成する。  The current command unit 2 uses a state transition table, which will be described later, to determine a two-phase command current value ( A d-axis current command value Id * and a q-axis current command value Iq * , which are target current values), are generated.
 メモリ3には、モータ制御部10が実行するモータ制御プログラムに加え、後述する状態遷移の実施に必要な状態遷移表、プログラム等が記憶される。メモリ3は、例えば読み出し専用メモリ(ROM)である。メモリ3はモータ制御部10に内蔵された構成であっても、あるいは、外付けされた構成としてもよい。  In addition to the motor control program executed by the motor control unit 10, the memory 3 stores a state transition table, programs, etc. necessary for implementing state transitions described later. The memory 3 is, for example, a read only memory (ROM). The memory 3 may be built in the motor control unit 10 or may be externally attached. 
 減算器13aは、q軸の電流指令値Iqと、座標変換部28より出力されたq軸電流Iqとの差分を演算する。また、減算器13bは、d軸の電流指令値Idと、座標変換部28より出力されたd軸電流Idとの差分を演算する。  The subtractor 13 a calculates the difference between the q-axis current command value Iq * and the q-axis current Iq output from the coordinate conversion section 28 . Further, the subtractor 13 b calculates the difference between the d-axis current command value Id * and the d-axis current Id output from the coordinate conversion section 28 .
 q軸PI制御部16aは、IqとIqの差分をゼロに収束させるようにPI(比例+積分)制御を行い、q軸電圧の指令値であるq軸電圧指令値Vqを算出する。また、d軸PI制御部16bは、IdとIdの差分をゼロに収束させるようにPI(比例+積分)制御を行うことで、d軸電圧の指令値であるd軸電圧指令値Vdを算出する。  The q-axis PI control unit 16a performs PI (proportional plus integral) control so that the difference between Iq * and Iq converges to zero, and calculates a q-axis voltage command value Vq * , which is a command value for the q-axis voltage. Further, the d-axis PI control unit 16b performs PI (proportional plus integral) control so that the difference between Id * and Id converges to zero, thereby obtaining a d-axis voltage command value Vd * , which is a command value for the d-axis voltage. Calculate
 座標変換部17は、q軸、d軸の電圧指令値Vq,Vdと電動モータ15の回転角度θとからモータ印加電圧を演算する。すなわち、2相/3相変換機能を有する座標変換部17は、回転角度θに基づいて、q軸電圧指令値Vqとd軸電圧指令値Vdを3相の各相毎の電圧指令値である電圧指令値Vu,Vv,Vwに変換する。  The coordinate conversion unit 17 calculates motor applied voltages from the q-axis and d-axis voltage command values Vq * and Vd * and the rotation angle θ of the electric motor 15 . That is, the coordinate conversion unit 17 having a two-phase/three-phase conversion function converts the q-axis voltage command value Vq * and the d-axis voltage command value Vd * to voltage command values for each of the three phases based on the rotation angle θ. are converted into voltage command values Vu * , Vv * , and Vw * .
 3相変換後の電圧指令値Vu,Vv,Vwは、PWM信号生成部21に入力される。PWM信号生成部21は、これらの電圧指令値に基づいてPWM(パルス幅変調)制御信号のデューティを増減することにより、電動モータ15の駆動信号を生成する。  The voltage command values Vu * , Vv * , Vw * after the three-phase conversion are input to the PWM signal generator 21. FIG. The PWM signal generator 21 generates a drive signal for the electric motor 15 by increasing or decreasing the duty of a PWM (Pulse Width Modulation) control signal based on these voltage command values.
 すなわち、PWM信号生成部21は、電圧指令値に従って、インバータ回路23を構成する複数の半導体スイッチング素子(FET)のON/OFF制御信号(PWM信号)を生成する。これらの半導体スイッチング素子は、電動モータ15の各相(u相、v相、w相)に対応している。  That is, the PWM signal generator 21 generates an ON/OFF control signal (PWM signal) for a plurality of semiconductor switching elements (FETs) forming the inverter circuit 23 according to the voltage command value. These semiconductor switching elements correspond to the respective phases (u-phase, v-phase, w-phase) of the electric motor 15 . 
 スイッチング素子(FET)はパワー素子とも呼ばれ、例えば、MOSFET(Metal-Oxide Semiconductor Field-Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子を用いる。  A switching element (FET) is also called a power element. For example, switching elements such as MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) and IGBT (Insulated Gate Bipolar Transistor) are used. 
 なお、PWM信号生成部21は、モータ駆動信号を生成しFET駆動回路等として機能するモータ制御用集積回路(プリドライバIC)に内蔵される構成としてもよい。  The PWM signal generator 21 may be built in a motor control integrated circuit (pre-driver IC) that generates a motor drive signal and functions as an FET drive circuit or the like. 
 モータ駆動部5のインバータ回路23は、電源リレー24を介してバッテリBTから供給された電力より、電動モータ15を駆動する交流を生成するモータ駆動回路である。電動モータ15は、例えば、表面磁石型モータ(SPM)、埋め込み磁石型モータ(IPM)等の車載トラクションモータである。電源リレー24は、バッテリBTからの電力を遮断可能に構成され、半導体リレーで構成することもできる。  The inverter circuit 23 of the motor drive unit 5 is a motor drive circuit that generates alternating current for driving the electric motor 15 from power supplied from the battery BT via the power relay 24 . The electric motor 15 is, for example, an in-vehicle traction motor such as a surface magnet motor (SPM) or an interior magnet motor (IPM). The power supply relay 24 is configured to be able to cut off power from the battery BT, and can also be configured by a semiconductor relay. 
 インバータ回路23より電動モータ15に供給されるモータ駆動電流は、各相に対応して配置した電流センサからなる電流検出部25で検出される。電流検出部25は、例えばモータ駆動電流検出用のシャント抵抗に流れる直流電流を、オペアンプ等からなる増幅回路を用いて検出する。  The motor drive current supplied from the inverter circuit 23 to the electric motor 15 is detected by a current detection section 25 consisting of a current sensor arranged corresponding to each phase. The current detection unit 25 detects, for example, a DC current flowing through a shunt resistor for detecting motor drive current using an amplifier circuit such as an operational amplifier. 
 電流検出部25からの出力信号(電流検出信号)は、A/D変換部(ADC)27に入力される。ここでは、ADC27のA/D変換機能によりアナログ電流値をデジタル値に変換し、その変換により得られた3相電流Iu,Iv,Iwは、座標変換部28に入力される。  An output signal (current detection signal) from the current detection section 25 is input to an A/D conversion section (ADC) 27 . Here, the analog current values are converted into digital values by the A/D conversion function of the ADC 27 , and the three-phase currents Iu, Iv, and Iw obtained by the conversion are input to the coordinate conversion section 28 . 
 3相/2相変換機能を有する座標変換部28は、回転角センサ29で検出された回転角度θと3相電流Iu,Iv,Iwより、q軸電流Iqとd軸電流Idを出力する。すなわち、座標変換部28はモータの実電流(q軸実電流、d軸実電流)をもとにd軸電流とq軸電流を演算する。  A coordinate conversion unit 28 having a three-phase/two-phase conversion function outputs a q-axis current Iq and a d-axis current Id from the rotation angle θ detected by the rotation angle sensor 29 and the three-phase currents Iu, Iv, and Iw. That is, the coordinate conversion unit 28 calculates the d-axis current and the q-axis current based on the actual motor current (q-axis actual current, d-axis actual current). 
<電流目標値の選択>
 本実施形態に係るモータ制御装置のモータ制御において電流目標値を選択するため、第一の条件として電圧・電流・電力制限を満たし、第二の条件を指令トルク、第三の条件を電力最小化とする。ここでは、実際の用途を考慮して力行と回生を明確に区別するため、後述する電力制限曲線(LP)については、LP+曲線(力行)、LP-曲線(回生)に分けて電力制限する。 
<Selection of current target value>
In order to select the current target value in the motor control of the motor control device according to the present embodiment, the first condition is to satisfy the voltage/current/power limits, the second condition is the command torque, and the third condition is power minimization. and Here, in order to clearly distinguish power running and regeneration in consideration of actual applications, the power limit curve (LP) described later is divided into LP + curve (power running) and LP- curve (regeneration) to limit power.
 そこで、x軸をIq成分、y軸をId成分とし、y軸正方向を弱め界磁方向と定義した電流dq軸平面(dq軸直交座標平面)上に電力最小化曲線(MP)、電流最小曲線(MA)、電圧最小曲線(MV)、電流制限円(LA)、電圧制限曲線(LV)、定トルク曲線(CT)、力行電力制限曲線(LP+)、および回生電力制限曲線(LP-)の8曲線を定義する。  Therefore, the power minimization curve (MP) and the current minimum curve (MA), voltage minimum curve (MV), current limit circle (LA), voltage limit curve (LV), constant torque curve (CT), motoring power limit curve (LP+), and regenerative power limit curve (LP-) Define 8 curves of 
 これら8曲線に囲まれた領域が上記第一の条件を満たす。さらに第二の条件と第三の条件を満たすため、上記の領域内で定トルク曲線および電力制限曲線と重なるか、あるいは最も近くなる点を電流目標値として選択する。  The area surrounded by these eight curves satisfies the above first condition. Furthermore, in order to satisfy the second and third conditions, a current target value is selected that overlaps or is closest to the constant torque curve and the power limit curve within the above regions. 
 定トルク曲線(CT(Constant Torque) 曲線)は、一定トルクTを満たす直交座標(x,y)の軌跡であり、式(1)で表すことができる。定トルク曲線は双曲線であり、式(1)において、ξは永久磁石係数であって、永久磁石を含むモータでは1、含まないモータでは0とする。Δηはモータ定数振幅であり、無次元モータ定数ηの最大値ηmaxと最小値ηminの差である。  A constant torque curve (CT (Constant Torque) curve) is a trajectory of orthogonal coordinates (x, y) that satisfies a constant torque T, and can be expressed by Equation (1). The constant torque curve is hyperbolic, and in equation (1), ξ m is the permanent magnet coefficient, which is 1 for motors with permanent magnets and 0 for motors without. Δη is the motor constant amplitude, which is the difference between the maximum value η max and the minimum value η min of the dimensionless motor constant η.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 電流ノルムiを一定にする(x,y)の軌跡はi =x+yとなり、電流制限関数をLA(x,y)=x+yとする。電流ノルム上限(電流基準に対する電流上限値)を|imax|に設定すると、電流制限円は原点を中心とする半径|imax|の円である。そこで、式(2)で示される曲線を電流制限円(LA(Limited Ampere)曲線)と呼ぶ。  The locus of (x,y) that makes the current norm i1 constant is i12 = x2 + y2, and the current limiting function is LA( x ,y) = x2 + y2. If the current norm upper limit (the current upper limit relative to the current reference) is set to |i max |, the current limit circle is the circle centered at the origin of radius |i max |. Therefore, the curve represented by Equation (2) is called a current limit circle (LA (Limited Ampere) curve).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 本実施形態では、電圧制限関数(LV(Limited Voltage)関数)と電圧ノルム最小関数(MV(Minimum Voltage)関数)においても鉄損を考慮する。電圧ノルム上限(電圧基準に対する電圧上限値)を|vmax|とすると、電圧制限曲線(LV(Limited Voltage)曲線)LV(x,y)は式(3)で表すことができる。  In this embodiment, iron loss is also taken into account in the voltage limit function (LV (Limited Voltage) function) and voltage norm minimum function (MV (Minimum Voltage) function). Assuming that the voltage norm upper limit (voltage upper limit value with respect to the voltage reference) is |v max |, a voltage limit curve (LV (Limited Voltage) curve) LV(x, y) can be expressed by Equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 電圧ノルム最小曲線(電圧最小曲線、MV(Minimum Voltage)曲線)MV(x,y)は、式(4)で表すことができる。  A minimum voltage norm curve (minimum voltage curve, MV (Minimum Voltage) curve) MV (x, y) can be expressed by Equation (4). 
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 一定トルクに対する電流ノルム最小化条件を導出することで、式(5)に示す電流ノルム最小曲線(電流最小曲線、MA(Minimum Ampere)曲線)を定義する。  By deriving the current norm minimization condition for constant torque, the current norm minimum curve (current minimum curve, MA (Minimum Ampere) curve) shown in Equation (5) is defined. 
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 電力最小化曲線(MP(Minimum Power)曲線ともいう)は、例えば、解析あるいは実測データをもとにヒステリシス損係数と渦電流損係数を導出し、それらを含む数式を用いて、以下のように定義する。電力最小化曲線は効率最大化曲線でもある。  The power minimization curve (also called MP (Minimum Power) curve) is obtained by, for example, deriving the hysteresis loss factor and eddy current loss factor based on analysis or actual measurement data, and using a formula containing them, as follows: Define. A power minimization curve is also an efficiency maximization curve. 
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上記の式(4),(6)において、K(ω)は鉄損計算用の係数であり、ヒステリシス損係数をk、渦電流損係数をkとした場合、以下のように定義できる。  In the above equations (4) and (6), K(ω) is a coefficient for iron loss calculation, and can be defined as follows, where kh is the hysteresis loss coefficient and ke is the eddy current loss coefficient. .
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 電力制限曲線(LP(Limited Power)曲線)は、モータシステムにおけるエネルギ保存則に基づいて電力釣り合いの式を導出し、そこから導かれる鉄損を含んだ電圧方程式で定義する。  A power limit curve (LP (Limited Power) curve) derives a power balance formula based on the law of conservation of energy in a motor system, and is defined by a voltage equation that includes iron loss derived therefrom. 
 ここでは、目標電磁トルクTe、モータ回転角周波数ω、電力で正規化された銅損Wcu、駆動時鉄損Wir_eより導出される、式(8)で示される交流電力PACによって、式(9)の左辺で表されるLP(Limited Power)関数LP(x,y)を定義する。  Here, the AC power P AC shown in Equation (8), which is derived from the target electromagnetic torque Te, the motor rotation angular frequency ω M , the copper loss Wcu normalized by power, and the iron loss Wir_e during driving, is expressed by Equation ( Define an LP (Limited Power) function LP(x, y) represented by the left side of 9).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 そして、式(9)を変形した一般の二次曲線として、式(10)で表されるLP曲線を得る。  Then, an LP curve represented by Equation (10) is obtained as a general quadratic curve obtained by transforming Equation (9). 
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 電力制限値には、力行制限電力Pmax≧0と、回生制限電力Pmin≦0とで定義される2種類の制限値があり、上記のPACは、Pmin≦PAC≦Pmaxの範囲に制限される。LP(x,y)=Pmax、LP(x,y)=PminはいずれもLP曲線であるが、力行と回生とで区別する場合には、LP(x,y)=PmaxをLP+曲線、LP(x,y)=PminをLP-曲線と記載する。  There are two types of power limit values defined by power limit power P max 0 and regeneration limit power P min 0 . limited in scope. Both LP(x, y) = P max and LP(x, y) = P min are LP curves . The curve LP(x,y)=P min is denoted as LP-curve.
 LP曲線は、式(11)で示す離心率eによって形状が変化する。式(11)において、axx=1+ηmax (ω)、ayy=1+ηmin (ω)、axy=Δηωである。  The shape of the LP curve changes depending on the eccentricity e shown in Equation (11). In equation (11), a xx =1+η max 2 K 2 (ω), a yy =1+η min 2 K 2 (ω), and a xy =Δηω.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 LP曲線は、上記の離心率eがe=0では真円、e=1で放物線、e>1では双曲線、0<e<1では楕円となる。一方、上記の電流最小曲線(MA)、電圧最小曲線(MV)、電力最小化曲線(MP)は、y軸を主軸とする上向きの双曲線である。  The LP curve is a perfect circle when the above eccentricity e is e=0, a parabola when e=1, a hyperbola when e>1, and an ellipse when 0<e<1. On the other hand, the minimum current curve (MA), the minimum voltage curve (MV), and the minimum power curve (MP) are upward hyperbolas with the y-axis as the main axis. 
 次に、本実施形態に係るモータ制御装置における電流指令値の選択方法(電流目標値を絞り込む方法)について説明する。電流目標値は、上述した8曲線より選択した2曲線の交点であり、図2に示すように、8曲線から選択した2曲線相互の交点をアルファベット4文字(それらの曲線の略称を繋いだ称呼)で表記する。  Next, a method of selecting a current command value (a method of narrowing down the current target value) in the motor control device according to this embodiment will be described. The current target value is the intersection point of two curves selected from the eight curves described above. As shown in FIG. ). 
 図3は、上述した8曲線(MV曲線、MP曲線、MA曲線、LA曲線、LV曲線、CT曲線、LP+曲線、LP-曲線)のdq軸直交座標平面上における位置関係を示す。図2の横軸がiq軸(x軸)、縦軸がid軸(y軸)であり、各曲線の大小関係(同じx座標に対するy座標の値)は、MV曲線>MP曲線>MA曲線の関係が成り立つ。  FIG. 3 shows the positional relationship of the above eight curves (MV curve, MP curve, MA curve, LA curve, LV curve, CT curve, LP+ curve, LP- curve) on the dq-axis orthogonal coordinate plane. In FIG. 2, the horizontal axis is the iq axis (x axis) and the vertical axis is the id axis (y axis). relationship is established. 
 上記のようにMA,MV,MP間で交点は存在せず、MALV,MVLA,MPLV,MPLA,MACT,MVCTは有効な電流出力にならないことから、LP曲線を除く電流出力として有効な組合せはMPCT,LVCT,LACT,MVLV,MALA,LVLAの6通りに限られる。また、LP曲線が関係する6本のうち、MPLP+,LPCT-,LVLP+,LALP+,LVLP-,LALP-の6本が有効な電流出力となる。  As described above, there is no intersection between MA, MV, and MP, and MALV, MVLA, MPLV, MPLA, MACT, and MVCT are not valid current outputs. , LVCT, LACT, MVLV, MALA, and LVLA. Also, among the six LP curves related, six of MPLP+, LPCT-, LVLP+, LALP+, LVLP-, and LALP- are effective current outputs. 
 図3において、MV曲線とMA曲線の2個の放物線で挟まれた範囲が電流出力として有効な動作点である。この範囲は、その開口部がLA曲線とLV曲線に加えてLP+曲線とLP-曲線で制限される。  In FIG. 3, the range sandwiched between the two parabolas of the MV curve and the MA curve is an effective operating point for current output. This range has its aperture limited by the LP+ and LP- curves in addition to the LA and LV curves. 
 図3の領域Aは電流出力可能範囲であり、電力制限条件である、上述したPmin≦PAC≦Pmaxの範囲と、LV曲線内かつLA曲線内(LV(x,y)≦vmax かつLA(x,y)≦imax )の範囲と、MA曲線以上かつMV曲線以下(MA(x,y)≧0かつMV(x,y)≦0)の範囲のすべてを満たす。  Area A in FIG. 3 is a current output possible range, which is a power limitation condition, the range of Pmin ≤ P AC ≤ Pmax described above, and within the LV curve and within the LA curve (LV (x, y) ≤ v max 2 and LA(x, y)≦i max 2 ) and above the MA curve and below the MV curve (MA(x, y)≧0 and MV(x, y)≦0) are all satisfied.
 なお、LP-曲線上に限り、上記の「MA(x,y)≧0かつMV(x,y)≦0」を満たさない点(図3の太線部分)も電流出力可能範囲に入る。回生時はLP-曲線上を移動するとMPLP-から、さらに小さい(絶対値の大きい)トルクが出力可能である(図3では、トルク増加により第2象限のMALP-からLVLP-に進む)。このとき、MA曲線は電流、MV曲線は電圧の最小条件であり、電力とは無関係のため、LA曲線またはLV曲線と交わるまで電流出力可能範囲に入る。  Note that, only on the LP-curve, points that do not satisfy "MA (x, y) ≥ 0 and MV (x, y) ≤ 0" (thick line portion in Fig. 3) also fall within the current output possible range. During regeneration, moving on the LP- curve, MPLP- can output even smaller torque (larger absolute value) (in FIG. 3, the increase in torque advances from MALP- to LVLP- in the second quadrant). At this time, the MA curve is the current and the MV curve is the minimum condition of voltage, and since they are not related to power, the current output possible range is entered until they intersect the LA curve or LV curve. 
 力行では、電力制限のみを考慮するとMPLP+が出力可能な最大トルクであり、LP+曲線上を移動しないため、LPCT+は有効な電流出力にならない。  In motoring, MPLP+ is the maximum torque that can be output when only the power limit is considered, and since it does not move on the LP+ curve, LPCT+ does not become an effective current output. 
 目標電磁トルクTeの出力が可能なのは、図3に示す電圧・電流・電力制限による電流出力可能範囲(制約条件ともいう)内にTeに基づくCT曲線を含む場合である。消費電力を最小化するためMP曲線との交点、または最も近くなる点を電流目標値とする。   The output of the target electromagnetic torque Te is possible when the CT curve based on Te is included in the current output possible range (also called constraint condition) due to the voltage/current/power limits shown in FIG. The current target value is set at the point of intersection with the MP curve or the closest point to minimize power consumption. 
 一方、Teが大きく、上記の制約条件を満たす範囲内にCT曲線を含まない場合は、電圧・電流制限範囲内でトルクを最大化する点を電流目標値として選択する。  On the other hand, if Te is large and the CT curve is not included within the range that satisfies the above constraints, the point that maximizes the torque within the voltage/current limit range is selected as the current target value. 
 本実施形態に係るモータ制御装置のモータ制御における電流目標値の選択範囲について、CT曲線を除いた6曲線の相互関係に基づいて説明する。LP+曲線で制限される力行時、およびLP-曲線で制限される回生時それぞれについて説明する。  The selection range of the current target value in the motor control of the motor control device according to the present embodiment will be explained based on the interrelationship between the six curves excluding the CT curve. The power running limited by the LP+ curve and the regeneration limited by the LP- curve will be described. 
 図4は、力行時の電圧・電流・電力の制限状況をまとめた図である。交点を持たないケース(後述するNOVA)は省略する。図4の各ケースでは、グレーで示す領域が電流出力可能領域であり、その範囲の最大トルク条件が枠内に表記されている。  Fig. 4 is a diagram summarizing the voltage, current, and power restrictions during power running. A case with no intersection (NOVA, which will be described later) is omitted. In each case of FIG. 4, the area shown in gray is the current output possible area, and the maximum torque conditions in that range are indicated in the frame. 
 図4において横軸は、電力飽和を無視し、MP曲線に沿ってトルクを増加させるときの場合分けを示す。(a)電圧飽和では、電圧飽和に達した(図4の☆印)後にLV曲線に移り、最大トルクに達する(★印)。  In FIG. 4, the horizontal axis indicates cases when power saturation is ignored and torque is increased along the MP curve. (a) In voltage saturation, after voltage saturation is reached (* in FIG. 4), the LV curve shifts to the maximum torque (*). 
 (b)電圧→電流飽和では、上記(a)でLV曲線に移った後に、電流飽和して最大トルクに達する(★印)。(c)電流→電圧飽和では、電流飽和に達した(☆印)後にLV曲線に移り、電圧飽和して最大トルクに達する(★印)。また、(d)電流飽和では、電流飽和に達した(☆印)後にLA曲線に移り最大トルクに達する(★印)。  (b) In voltage → current saturation, after moving to the LV curve in (a) above, the current is saturated and the maximum torque is reached (marked with ★). (c) In current→voltage saturation, the LV curve shifts to the LV curve after current saturation is reached (marked with ☆), and the voltage is saturated and the maximum torque is reached (marked with ★). In (d) current saturation, after current saturation is reached (*), the LA curve shifts to the maximum torque (*). 
 図4の縦軸は、上記の☆印、★印の時点でそれぞれ電力飽和しているかで分類している。「☆電力飽和」、「★電力未飽和」のケースはないので3通りである。  The vertical axis in Fig. 4 is classified according to whether the power is saturated at the points marked with ☆ and ★ above. Since there is no case of "☆ power saturation" and "★ power undersaturation", there are three cases. 
 (A)「☆電力飽和」、「★電力飽和」では、MPLP+(▲印)がLP+曲線上で最大トルクとなるので、横軸に関わらず最大トルク条件はMPLP+となる。(B)☆電力未飽和、「★電力飽和」では、電圧あるいは電流が制限されて電力制限となる。電圧が先に飽和するとLVLP+(▲印)が最大トルク条件となり、電流が先に飽和するとLALP+(▲印)が最大トルク条件になる。  (A) In "☆ power saturation" and "★ power saturation", MPLP+ (marked with ▲) is the maximum torque on the LP+ curve, so the maximum torque condition is MPLP+ regardless of the horizontal axis. (B) In ☆power undersaturation and "★power saturation", the voltage or current is limited, resulting in power limitation. If the voltage saturates first then LVLP+ (▴) will be the maximum torque condition and if the current saturates first then LALP+ (▴) will be the maximum torque condition. 
 (D)「☆電力未飽和」、「★電力未飽和」では、電圧・電流制限のみを考慮してMVLV,LVLA,MALAの何れかになる。  (D) In "☆ power undersaturation" and "★ power undersaturation", only the voltage/current limit is taken into account and it becomes one of MVLV, LVLA, and MALA. 
 図5は、回生時の電圧・電流・電力の制限状況をまとめた図である。図5の各ケースにおいても、グレーで示す領域が電流出力可能領域であり、その範囲の最大トルク条件が枠内に表記されている。  Fig. 5 is a diagram summarizing the voltage, current, and power limitation conditions during regeneration. Also in each case of FIG. 5, the area shown in gray is the current output possible area, and the maximum torque conditions in that range are indicated in the frame. 
 図5の横軸は、図4の力行時と同じである。図5では、縦軸において上記☆印、★印の時点でそれぞれ電力飽和しているかで分類している。ここでは、「☆電力飽和」、「★電力未飽和」のケースも存在するため、4通りある。  The horizontal axis in FIG. 5 is the same as during power running in FIG. In FIG. 5, the vertical axis is classified according to whether or not the power is saturated at the points indicated by * and *. Here, there are four cases because there are cases of "☆ power saturation" and "★ power not saturated". 
 上記のようにLP-曲線は楕円、放物線、双曲線の場合があり、楕円の場合は楕円の内側が電力飽和、放物線・双曲線の場合は原点を含まない方が電力飽和である。回生時のトルク絶対値を回生トルクと表記する。  As described above, the LP-curve may be an ellipse, a parabola, or a hyperbola. In the case of an ellipse, the inside of the ellipse is power saturated, and in the case of a parabola/hyperbola, the power saturation is not including the origin. The torque absolute value during regeneration is referred to as regenerative torque. 
 原点から近い方のMPLP-は、LP-曲線上で回生トルク最小、LP-曲線が楕円になる場合は原点から遠い方のMPLP-が存在し、回生トルク最大である。図5では、すべてのケースに原点から近い方のMPLP-(△印)表記を追加した。  The MPLP- closer to the origin has the minimum regenerative torque on the LP-curve, and when the LP-curve becomes an ellipse, there is an MPLP- farther from the origin and the maximum regenerative torque. In FIG. 5, MPLP- (Δ mark) notation closer to the origin is added to all cases. 
 (A)「☆電力飽和」、「★電力飽和」では、電力がまず飽和する。電圧飽和はMV方向に、電流飽和はMA方向にLP-曲線上を進み、▲印が最大トルク条件である。電圧→電流飽和と電流→電圧飽和は、LVLP-またはLALP-が最大トルク条件になり得る。  (A) In "☆ power saturation" and "★ power saturation", the power is saturated first. Voltage saturation progresses in the MV direction and current saturation progresses in the MA direction on the LP-curve, and the ▴ mark is the maximum torque condition. Voltage to current saturation and current to voltage saturation can be LVLP- or LALP- maximum torque conditions. 
 (B)「☆電力未飽和」、「★電力飽和」では、LVLP-またはLALP-が最大トルク条件となる。電圧あるいは電流が飽和し、次に電力飽和するが、その点は最大トルク条件ではない。最大トルク条件(▲印)は、よりMP曲線から遠い方に定まる。  (B) In "☆ power not saturated" and "★ power saturated", LVLP- or LALP- is the maximum torque condition. Voltage or current saturates and then power saturates, but that point is not the maximum torque condition. The maximum torque condition (▴ mark) is determined farther from the MP curve. 
 (C)「☆電力飽和」、「★電力未飽和」では、最大トルク条件は★印になる。電力飽和後に電圧または電流で飽和したときに電力飽和が解消される。  (C) In "☆ power saturation" and "★ power undersaturation", the maximum torque condition is marked with a star. Power saturation is canceled when the voltage or current saturates after power saturation. 
 (D)「☆電力未飽和」、「★電力未飽和」では、力行の場合と同様、電圧・電流制限のみを考慮する。ただし、後述するように、☆印と★印の中間点が電力飽和するケースも考えられる。  (D) In "☆ power undersaturation" and "★ power undersaturation", only voltage and current limits are considered, as in the case of motoring. However, as will be described later, there may be a case where power saturation occurs at an intermediate point between ☆ and ★. 
 図6は、力行と回生の双方について、電流目標値として有効な交点の組合せを行方向と列方向それぞれに現在状態と遷移先状態として配列し、現在状態から遷移先状態への遷移条件(C1~C60)を設定した状態遷移表である。電流目標値は、合計で13の状態を持つ。  FIG. 6 shows that for both powering and regeneration, combinations of intersections effective as current target values are arranged in the row direction and column direction as the current state and the transition destination state, respectively, and the transition condition from the current state to the transition destination state (C1 to C60) is set. The current target value has a total of 13 states. 
 遷移条件は、任意の交点から別の交点へ移動するための判断条件であり、その判断条件は現在の交点に依存しているため、状態遷移マシンとなる。×印は遷移がないことを示す。出力可能範囲が存在しないケースをNOVA(No cross Voltage and Ampere)と定義する。  A transition condition is a judgment condition for moving from an arbitrary intersection to another intersection, and since the judgment condition depends on the current intersection, it becomes a state transition machine. A cross indicates no transition. A case where there is no output possible range is defined as NOVA (No cross Voltage and Ampere). 
 図6に示す状態遷移には規則性があり、(1)各状態で関与する2曲線のうち状態遷移の前後で入れ替わるのは1本のみ、(2)遷移条件が現在状態の電流目標値と遷移先で入れ替わる曲線との関係になっている。  The state transitions shown in FIG. 6 have regularity. (1) Of the two curves involved in each state, only one is replaced before and after the state transition, and (2) the transition condition is the current target value of the current state. It has a relationship with the curve that is replaced at the transition destination. 
 例えば、MPCT→LVCTの遷移では、(1)CT曲線はそのままでMP曲線からLV曲線に入れ替わり、(2)MPCTの電流目標値を遷移先で入れ替わるLV関数に代入して確認し、電圧飽和していればLVCTに遷移する。  For example, in the transition from MPCT to LVCT, (1) the MP curve is replaced by the LV curve while the CT curve remains unchanged, and (2) the current target value of MPCT is substituted into the LV function that is replaced at the transition destination and confirmed, and the voltage is saturated. If it is, it transitions to LVCT. 
 なお、LVCT⇔LACTはMPCT経由で遷移、LVLP+⇔LALP+はMPLP+またはLVLA経由、LVLP-⇔LALP-はLVLA経由で遷移するため、図6の状態遷移表では、直接遷移なし、としている。また、LVLA→LVCTとLVLA→LACTは、遷移条件がCT曲線で被るため、MP曲線との比較を追加することで分離している。LVLA→LVCTの状態遷移は、トルク条件がトリガー、MP条件がガード条件となるため、|T|<|T| [MP≧0]と表記する。  LVCT ⇔ LACT transitions via MPCT, LVLP+ ⇔ LALP+ transitions via MPLP+ or LVLA, and LVLP- ⇔ LALP- transitions via LVLA. Therefore, the state transition table in FIG. 6 indicates that there is no direct transition. Also, LVLA->LVCT and LVLA->LACT are separated by adding a comparison with the MP curve because the transition condition overlaps with the CT curve. The state transition from LVLA to LVCT is expressed as |T * |<|T| [MP≧0] because the torque condition is the trigger and the MP condition is the guard condition.
 MPCT,MALA,MVLV,MPLP+は常に交点が存在するが、LACT,LVCT,LVLA,LPCT-,LVLP+,LALP+,LVLP-,LALP-は交点が存在しない場合がある。交点を持たないケースはすべて状態遷移により、交点の演算をすることを回避できる。  MPCT, MALA, MVLV, and MPLP+ always have intersection points, but LACT, LVCT, LVLA, LPCT-, LVLP+, LALP+, LVLP-, and LALP- may not have intersection points. All cases that do not have an intersection point can avoid the operation of the intersection point by state transition. 
 LVCT,LACT,LPCT-,LVLA,LVLP+,LVLP-は、他状態への状態遷移を判定してから、交点の計算を開始する必要がある。例えば、LVCTが交点を持たない条件はMVLV遷移条件のため、LVCTの交点を求める前にMVLV遷移条件を満たすかを確認する。その際、LVCTの交点情報を使えないため、MVLVのトルクと指令トルクを比較する。  LVCT, LACT, LPCT-, LVLA, LVLP+, and LVLP- must start calculating intersections after judging the state transition to another state. For example, since the condition that the LVCT has no intersection is the MVLV transition condition, it is checked whether the MVLV transition condition is satisfied before obtaining the intersection of the LVCT. At that time, since the LVCT intersection information cannot be used, the MVLV torque is compared with the command torque. 
 次に、本実施形態に係るモータ制御装置における電流目標値の出力動作について説明する。図7は、本実施形態に係るモータ制御装置における電流目標値の算出処理を示すフローチャートである。  Next, the output operation of the current target value in the motor control device according to this embodiment will be described. FIG. 7 is a flowchart showing a current target value calculation process in the motor control device according to the present embodiment. 
 図7のステップS11においてモータ制御部10は、上述した8個の二次曲線をdq軸直交座標平面上に定義する。具体的には、電力最小化曲線(MP)、電流最小曲線(MA)、電圧最小曲線(MV)、電流制限円(LA)、電圧制限曲線(LV)、定トルク曲線(CT)、力行電力制限曲線(LP+)、および回生電力制限曲線(LP-)をxy平面上に描画する。  At step S11 in FIG. 7, the motor control unit 10 defines the eight quadratic curves described above on the dq-axis orthogonal coordinate plane. Specifically, power minimization curve (MP), current minimum curve (MA), voltage minimum curve (MV), current limit circle (LA), voltage limit curve (LV), constant torque curve (CT), power running power A limit curve (LP+) and a regenerative power limit curve (LP-) are drawn on the xy plane. 
 続くステップS13において、ステップS11で描画した8曲線より選択した2曲線の交点を定義する。ここでの交点の組合せは、上述したように電流目標として有効な12通りと、電流目標として有効な交点を持たない組合せとの計13通りとなる。  In the following step S13, the intersection point of two curves selected from the eight curves drawn in step S11 is defined. Here, there are 13 combinations of intersections, ie, 12 combinations effective as current targets and combinations without intersections effective as current targets, as described above. 
 ステップS15において、上記のステップS13で得た電流目標として有効な交点の組合せを、行方向と列方向それぞれに現在状態と遷移先状態として配列し、それらに遷移条件を付加した、図6に示す状態遷移表を作成する。  In step S15, the combinations of intersections effective as current targets obtained in step S13 are arranged in the row direction and the column direction as the current state and the transition destination state, respectively, and transition conditions are added to them, as shown in FIG. Create a state transition table. 
 ステップS17においてモータ制御部10は、初期状態(例えば、MPCTから開始する)を設定し、ステップS19で、後述する遷移条件を満たすか否かを判断する。遷移条件を満たす場合、ステップS21において、上記のステップS15で作成した状態遷移表に従い、電流飽和、電圧飽和、電力飽和、トルク飽和等を遷移条件として、所定の交点から別の交点へ移動する状態遷移を実施する。これにより移転先(遷移先)を絞り込み、電圧・電流・電力制限範囲内で最大トルクとなる電流目標値を選択する。  In step S17, the motor control unit 10 sets an initial state (for example, starting from MPCT), and in step S19, determines whether or not a transition condition, which will be described later, is satisfied. If the transition condition is satisfied, in step S21, according to the state transition table created in step S15, current saturation, voltage saturation, power saturation, torque saturation, etc. are used as transition conditions, and the state is moved from a predetermined intersection to another intersection. Implement transitions. As a result, the transfer destination (transition destination) is narrowed down, and the current target value that provides the maximum torque within the voltage/current/power limit range is selected. 
 このように、初期値(x,y)が遷移条件を満たす限り、他の状態遷移を実施する処理を繰り返す(ステップS19,S21)。遷移条件を満たさない場合(ステップS19でNO)には、ステップS23においてモータ制御部10は、現在状態の交点の電流目標値を選択する。  In this way, as long as the initial value (x, y) satisfies the transition condition, the process of executing another state transition is repeated (steps S19, S21). If the transition condition is not satisfied (NO in step S19), the motor control unit 10 selects the current target value at the intersection of the current states in step S23. 
 ステップS25において、状態遷移処理が終了したかどうかを判断し、終了していない場合、処理をステップS19に戻して、他の遷移条件に基づく状態遷移処理を実施する。  In step S25, it is determined whether or not the state transition process has ended. If not, the process returns to step S19 to perform state transition process based on other transition conditions. 
 次に、図6に示す状態遷移表を検証する。ここでは、力行と回生それぞれについての状態遷移表を検証する。  Next, verify the state transition table shown in FIG. Here, state transition tables for power running and regeneration are examined. 
[力行についての状態遷移表の検証]
 図4を参照して分類した最大トルク条件別に、力行の制御シナリオを検証する。ここでは、トルクの増加方向と減少方向の双方向で考え、最大トルク条件が変化するケースも検証する。以降では速度正での説明であるが、速度負でも同様に実施可能である。また、特に言及しない場合、トルクは絶対値として説明する。 
[Verification of state transition table for motoring]
Power running control scenarios are verified for each of the maximum torque conditions classified with reference to FIG. Here, we consider both directions of torque increase and decrease, and examine cases where the maximum torque condition changes. Although the following description is for positive speed, it can also be implemented for negative speed. Also, torque is described as an absolute value unless otherwise specified.
 図4より、最大トルク条件はMALA,MVLV,MPLP+,LVLA,LALP+,LVLP+の6通り存在する。  From FIG. 4, there are six maximum torque conditions: MALA, MVLV, MPLP+, LVLA, LALP+, and LVLP+. 
<最大トルク条件がMALAの場合>
 図4の(12)は、最大トルク条件MALAになるケースの各曲線の関係を示している。図4の(12)は、★印と☆印の両方が電力非飽和かつ電流飽和のケースである。MALA(★印)が電力飽和しない、つまり電力制限を考慮しない状態遷移と同じである。 
<When the maximum torque condition is MALA>
(12) in FIG. 4 shows the relationship between the curves in the case of the maximum torque condition MALA. (12) in FIG. 4 is a case of power non-saturation and current saturation for both * and *. MALA (marked with *) is not power saturated, that is, it is the same state transition without considering power limitation.
 トルク指令が0から増加する場合と、トルク指令が無限大から減少する場合における状態の変化とその遷移条件を示す。すなわち、トルク指令が増加する場合には、図6の状態遷移表において、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC2(|i|≧imax:電流飽和)を次状態への遷移条件として、電流制限円と定トルク曲線との交点座標(LACT)を遷移先状態とする遷移を行う。  State changes and their transition conditions are shown when the torque command increases from 0 and when the torque command decreases from infinity. That is, when the torque command increases, in the state transition table of FIG. : current saturation) as a transition condition to the next state, and a transition is performed with the intersection coordinate (LACT) of the current limit circle and the constant torque curve as the transition destination state.
 続いて、交点座標(LACT)を現在状態とし、図6のC13(MA≦0:トルク飽和)を遷移条件として、電流最小曲線と電流制限円との交点座標(MALA)を遷移先状態であって終着点とする遷移によって、その交点座標(MALA)を最大トルク条件とする。  Subsequently, the current state is the intersection coordinate (LACT), the transition condition is C13 (MA≦0: torque saturation) in FIG. , the intersection coordinate (MALA) is the maximum torque condition. 
 トルク指令が無限大から減少する場合には、交点座標(MALA)を現在状態とし、図6のC25(|T|<|T|:トルク飽和の解消)を遷移条件として交点座標(LACT)を遷移先状態とする遷移を行う。続いて、交点座標(LACT)を現在状態とし、図6のC11(MP>0:電流飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  When the torque command decreases from infinity, the intersection coordinates (MALA) are set to the current state, and the intersection coordinates (LACT) are set to C25 (|T * |<|T|: elimination of torque saturation) in FIG. 6 as a transition condition. is the transition destination state. Subsequently, the current state is the intersection point coordinate (LACT), the transition condition is C11 (MP>0: elimination of current saturation) in FIG. conduct.
<最大トルク条件がMVLVの場合>
 図4の(9)は、★印と☆印の両方が電力不飽和、かつ電圧飽和のケースを示す。この場合、速度に応じて3種類の遷移があるが、ω≦1では、必ず図4の(9)のMPCT⇔LVCT⇔MVLVとなる。ω>1では、LVCT⇔MPCT⇔LVCT⇔MVLV、あるいはLVCT⇔MVLVになる可能性があるが、ここでは、ω>1の場合の説明を省略する。 
<When the maximum torque condition is MVLV>
(9) in FIG. 4 shows the case where both the * and * marks are power unsaturated and voltage saturated. In this case, there are three types of transitions depending on the speed, but when ω≦1, the transition is always MPCT ⇔ LVCT ⇔ MVLV in (9) of FIG. When ω>1, there is a possibility that LVCT <-> MPCT <-> LVCT <-> MVLV or LVCT <-> MVLV.
 トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC1(|v|≧vmax:電圧飽和)を遷移条件として電圧制限曲線と定トルク曲線との交点座標(LVCT)を遷移先状態とする遷移を行う。  When the torque command increases, the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve, and C1 (|v|≧v max : voltage saturation) in FIG. A transition is performed with the coordinates of the intersection with the constant torque curve (LVCT) as the transition destination state.
 続いて、交点座標(LVCT)を現在状態とし、図6のC7(MV≧0:トルク飽和)を遷移条件として電圧最小曲線と電圧制限曲線との交点座標(MVLV)を遷移先状態であって終着点とする遷移により、交点座標(MVLV)を最大トルク条件とする。  Subsequently, the current state is the intersection point coordinate (LVCT), and C7 (MV≧0: torque saturation) in FIG. A transition with an end point makes the intersection point coordinate (MVLV) the maximum torque condition. 
 トルク指令が減少する場合には、交点座標(MVLV)を現在状態とし、図6のC29(|T|<|T|:トルク飽和の解消)を遷移条件として、交点座標(LVCT)を遷移先状態とする遷移を行う。続いて、交点座標(LVCT)を現在状態とし、図6のC5(MP<0:電圧飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  When the torque command decreases, the intersection coordinates (MVLV) are set to the current state, and C29 (|T * |<|T|: elimination of torque saturation) in FIG. Make a transition to the previous state. Subsequently, the current state is set to the coordinates of the intersection point (LVCT), C5 (MP<0: elimination of voltage saturation) in FIG. conduct.
<最大トルク条件がMPLP+の場合>
 図4の(1)~(4)は、★印と☆印の両方が電力飽和で、最大トルク条件がMPLP+となる場合の各曲線の関係を示す。 
<When the maximum torque condition is MPLP+>
(1) to (4) in FIG. 4 show the relationship of each curve when both the * and ☆ marks indicate power saturation and the maximum torque condition is MPLP+.
 トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC4(p≧pmax:電力飽和)を遷移条件として、電力最小化曲線と力行電力制限曲線との交点座標(MPLP+)が遷移先状態であって終着点となり、その交点座標(MPLP+)が最大トルク条件となる遷移を行う。  When the torque command increases, the current state is the intersection point ( MPCT ) of the power minimization curve and the constant torque curve, and the power minimization curve and The intersection coordinate (MPLP+) with the power running power limit curve is the transition destination state and the end point, and the transition is performed such that the intersection coordinate (MPLP+) is the maximum torque condition.
 トルク指令が減少する場合には、交点座標(MPLP+)を現在状態とし、図6のC22(|T|<Tpmax:電力飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。Tpmaxは、MPLP+(力行)のトルク値である。  When the torque command decreases, the intersection point coordinate (MPLP+) is set to the current state, and C22 (|T * |<T pmax : elimination of power saturation) in FIG. Make a transition that is a state and an end point. T pmax is the torque value of MPLP+(powering).
<最大トルク条件がLVLAの場合>
 図4の(10),(11)は、最大トルク条件がLVLAで、★印と☆印の両方が電力不飽和のケースである。図4の(10)は、電流→電圧の順で飽和するケースであり、図4の(11)は、電圧→電流の順で飽和するケースに対応する。 
<When the maximum torque condition is LVLA>
In (10) and (11) of FIG. 4, the maximum torque condition is LVLA, and both the asterisks and the asterisks are power unsaturated cases. (10) in FIG. 4 corresponds to the case of saturation in the order of current→voltage, and (11) in FIG. 4 corresponds to the case of saturation in the order of voltage→current.
 電流→電圧の順で飽和するケースにおいて、トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC2(|i|≧imax:電流飽和)を遷移条件として、電流制限円と定トルク曲線との交点座標(LACT)を遷移先状態とする遷移を行う。  In the case of saturation in the order of current → voltage, when the torque command increases, the coordinates of the intersection point (MPCT) between the power minimization curve and the constant torque curve are set to the current state, and C2 (|i|≧i max : Current saturation) is used as a transition condition, and a transition is performed with the intersection coordinate (LACT) of the current limit circle and the constant torque curve as the transition destination state.
 続いて、交点座標(LACT)を現在状態とし、図6のC14(|v|≧vmax:トルク飽和)を遷移条件として、電圧制限曲線と電流制限円の交点座標(LVLA)を遷移先状態であって終着点とする遷移を行い、その交点座標(LVLA)を最大トルク条件とする。  Subsequently, the current state is the intersection point coordinate (LACT), C14 (|v|≧v max : torque saturation) in FIG. , and the intersection coordinate (LVLA) is set as the maximum torque condition.
 トルク指令が減少する場合には、交点座標(LVLA)を現在状態とし、図6のC34(|T|<|T| [MP<0]:トルク飽和が解消し、交点座標(LVLA)が電流最小曲線(MA)側にある)を遷移条件として、交点座標(LACT)を遷移先状態とする遷移を行う。  When the torque command decreases, the intersection coordinate (LVLA) is set to the current state, and C34 (|T * |<|T| [MP<0] in FIG. 6: Torque saturation is resolved and the intersection coordinate (LVLA) is (on the minimum current curve (MA) side) is set as a transition condition, and a transition is performed with the intersection coordinate (LACT) as a transition destination state.
 続いて、交点座標(LACT)を現在状態とし、図6のC11(MP>0:電流飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  Subsequently, the current state is the intersection point coordinate (LACT), the transition condition is C11 (MP>0: elimination of current saturation) in FIG. conduct. 
 電圧→電流の順で飽和するケースでは、トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC1(|v|≧vmax:電圧飽和)を遷移条件として、電圧制限曲線と定トルク曲線との交点座標(LVCT)を遷移先状態とする遷移を行う。  In the case of saturation in the order of voltage→current, when the torque command increases, the coordinates of the intersection point (MPCT) between the power minimization curve and the constant torque curve are set to the current state, and C1 (|v|≧v max : Voltage saturation) is used as a transition condition, and a transition is performed with the intersection coordinates (LVCT) of the voltage limit curve and the constant torque curve as the transition destination state.
 続いて、交点座標(LVCT)を現在状態とし、図6のC8(|i|≧imax:トルク飽和)を遷移条件として、電圧制限曲線と電流制限円との交点座標(LVLA)を遷移先状態であって終着点とする遷移を行うことで、その交点座標(LVLA)を最大トルク条件とする。  Subsequently, the current state is the intersection point coordinate (LVCT), and the transition condition is C8 (|i|≧i max : torque saturation) in FIG. By performing a transition that is a state and an end point, the intersection coordinate (LVLA) is set as the maximum torque condition.
 トルク指令が減少する場合には、交点座標(LVLA)を現在状態とし、図6のC33(|T|<|T| [MP≧0]:トルク飽和が解消し、交点座標(LVLA)が電流最小曲線(MA)側にある)所定のトルク飽和が解消し、交点座標(LVLA)が電圧最小曲線(MV)側にある)を遷移条件として、交点座標(LVCT)を遷移先状態とする遷移を行う。  When the torque command decreases, the intersection coordinate (LVLA) is set to the current state, and C33 (|T * |<|T| [MP≧0] in FIG. A predetermined torque saturation (on the minimum current curve (MA) side) is eliminated, and the intersection coordinate (LVLA) is on the minimum voltage curve (MV) side) is set as a transition condition, and the intersection coordinate (LVCT) is set as a transition destination state. Make a transition.
 その後、交点座標(LVCT)を現在状態とし、図6のC5(MP<0:電圧飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  After that, the current state is set to the coordinates of the intersection point (LVCT), and C5 (MP<0: elimination of voltage saturation) in FIG. . 
<最大トルク条件がLALP+の場合>
 図4の(7),(8)は、最大トルク条件がLALP+のシナリオであって、★印のみが電力飽和、かつ電流が先に飽和する2つの場合である。 
<When the maximum torque condition is LALP+>
(7) and (8) in FIG. 4 are scenarios in which the maximum torque condition is LALP+, and only the asterisks are two cases in which the power is saturated and the current is saturated first.
 トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC2(|i|≧imax:電流飽和)を遷移条件として、電流制限円と定トルク曲線との交点座標(LACT)を遷移先状態とする遷移を行う。  When the torque command increases, the intersection point (MPCT) between the power minimization curve and the constant torque curve is set as the current state, and C2 (|i|≧i max : current saturation) in FIG. and the constant torque curve (LACT) is the transition destination state.
 続いて、交点座標(LACT)を現在状態とし、図6のC15(p≧pmax:電力飽和)を遷移条件として、電流制限円と力行電力制限曲線との交点座標(LALP+)を遷移先状態であって終着点とする遷移を行うことで、その交点座標(LALP+)を最大トルク条件とする。  Subsequently, the current state is the intersection point coordinate (LACT), C15 (p≧p max : power saturation) in FIG. , and the intersection coordinate (LALP+) is set as the maximum torque condition.
 トルク指令が減少する場合には、交点座標(LALP+)を現在状態とし、図6のC51(|T|<|T|:トルク飽和の解消)を遷移条件として、交点座標(LACT)を遷移先状態とする遷移を行う。続いて、交点座標(LACT)を現在状態とし、図6のC11(MP>0:電流飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  When the torque command decreases, the intersection coordinate (LALP+) is set to the current state, and C51 (|T * |<|T|: elimination of torque saturation) in FIG. Make a transition to the previous state. Subsequently, the current state is the intersection point coordinate (LACT), the transition condition is C11 (MP>0: elimination of current saturation) in FIG. conduct.
<最大トルク条件がLVLP+の場合>
 図4の(5),(6)は、最大トルク条件がLVLP+のシナリオであって、★印のみが電力飽和、かつ電圧が先に飽和する2つの場合である。 
<When the maximum torque condition is LVLP+>
(5) and (6) in FIG. 4 are scenarios in which the maximum torque condition is LVLP+, and only the asterisks are two cases in which the power is saturated and the voltage is saturated first.
 トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC1(|v|≧vmax:電圧飽和)を遷移条件として電圧制限曲線と定トルク曲線との交点座標(LVCT)を遷移先状態とする遷移を行う。  When the torque command increases, the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve, and C1 (|v|≧v max : voltage saturation) in FIG. A transition is performed with the coordinates of the intersection with the constant torque curve (LVCT) as the transition destination state.
 続いて、交点座標(LVCT)を現在状態とし、図6のC9(p≧pmax:電力飽和)を遷移条件として、電圧制限曲線と力行電力制限曲線との交点座標(LVLP+)を遷移先状態であって終着点とする遷移を行って、その交点座標(LVLP+)を最大トルク条件とする。  Next, with the intersection point coordinates (LVCT) as the current state and C9 (p≧p max : power saturation) in FIG. , and the intersection coordinate (LVLP+) is set as the maximum torque condition.
 トルク指令が減少する場合には、交点座標(LVLP+)を現在状態とし、図6のC42(|T|<|T|:トルク飽和の解消)を遷移条件として、交点座標(LVCT)を遷移先状態とする遷移を行う。そして、交点座標(LVCT)を現在状態とし、図6のC5(MP<0:電圧飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  When the torque command decreases, the intersection coordinate (LVLP+) is set to the current state, and C42 (|T * |<|T|: elimination of torque saturation) in FIG. Make a transition to the previous state. Then, the intersection coordinates (LVCT) are set to the current state, C5 (MP<0: elimination of voltage saturation) in FIG. .
 次に、力行時において速度等の変化で最大トルク条件が変化するときの遷移を説明する。  Next, the transition when the maximum torque condition changes due to changes in speed, etc. during power running will be explained. 
 最大トルク条件が変化するときの遷移には、以下の遷移が含まれる。例えば、交点座標(MALA)を現在状態とし、図6のC26(|v|≧vmax:電圧飽和)を遷移条件として、交点座標(LVLA)を遷移先状態とする遷移と、交点座標(LVLA)を現在状態とし、図6のC35(MA≦0:電圧飽和の解消)を遷移条件として、交点座標(MALA)を遷移先状態とする遷移。  Transitions when the maximum torque condition changes include the following transitions. For example, the intersection coordinate (MALA) is the current state, the transition condition is C26 (|v|≧v max : voltage saturation) in FIG. ) is the current state, C35 (MA≦0: elimination of voltage saturation) in FIG. 6 is the transition condition, and the intersection coordinate (MALA) is the transition destination state.
 交点座標(MALA)を現在状態とし、図6のC27(p≧pmax:電力飽和)を遷移条件として、交点座標(LALP+)を遷移先状態とする遷移と、交点座標(LALP+)を現在状態とし、図6のC53(MA≦0:電力飽和の解消)を遷移条件として、交点座標(MALA)を遷移先状態とする遷移。  The intersection coordinate (MALA) is the current state, the transition condition is C27 (p≧p max : power saturation) in FIG. , with C53 (MA≦0: elimination of power saturation) in FIG.
 交点座標(MVLV)を現在状態とし、図6のC30(|i|≧imax:電流飽和)を遷移条件として、交点座標(LVLA)を遷移先状態とする遷移と、交点座標(LVLA)を現在状態とし、図6のC36(MP≧0:電流飽和の解消)を遷移条件として、交点座標(MVLV)を遷移先状態とする遷移。  With the intersection point coordinates (MVLV) as the current state and C30 (|i|≧i max : current saturation) in FIG. Transition with current state, C36 (MP≧0: elimination of current saturation) in FIG. 6 as transition condition, and intersection coordinate (MVLV) as transition destination state.
 交点座標(MVLV)を現在状態とし、図6のC31(p≧pmax:電力飽和)を遷移条件として、交点座標(LVLP+)を遷移先状態とする遷移と、交点座標(LVLP+)を現在状態とし、図6のC44(MV≧0:電力飽和の解消)を遷移条件として、交点座標(MVLV)を遷移先状態とする遷移。  The intersection coordinate (MVLV) is the current state, the transition condition is C31 (p≧p max : power saturation) in FIG. , and with C44 (MV≧0: elimination of power saturation) in FIG.
 交点座標(LALP+)を現在状態とし、図6のC52(MP>0:電圧飽和の解消)を遷移条件として、交点座標(MPLP+)を遷移先状態とする遷移と、交点座標(MPLP+)を現在状態とし、図6のC24(|i|≧imax:電流飽和)を遷移条件として、交点座標(LALP+)を遷移先状態とする遷移。  With the intersection point coordinate (LALP+) as the current state and the transition condition C52 (MP>0: elimination of voltage saturation) in FIG. state, C24 (|i|≧i max : current saturation) in FIG. 6 as a transition condition, and intersection coordinates (LALP+) as a transition destination state.
 交点座標(LALP+)を現在状態とし、図6のC54(|v|≧vmax:電圧飽和)を遷移条件として、交点座標(LVLA)を遷移先状態とする遷移と、交点座標(LVLA)を現在状態とし、図6のC39(p≧pmax [MP<0]:電力飽和と、交点座標(LVLA)が電流最小曲線(MA)側にある)ことを遷移条件として、交点座標(LALP+)を遷移先状態とする遷移。  The intersection coordinate (LALP+) is the current state, the transition condition is C54 (|v|≧v max : voltage saturation) in FIG. The current state is C39 (p≧p max [MP<0]: power saturation and the intersection point coordinate (LVLA) is on the current minimum curve (MA) side) as a transition condition, and the intersection point coordinate (LALP+) is the transition destination state.
 交点座標(LVLP+)を現在状態とし、図6のC43(MP<0:電圧飽和の解消)を遷移条件として、交点座標(MPLP+)を遷移先状態とする遷移と、交点座標(MPLP+)を現在状態とし、図6のC23(|v|≧vmax:電圧飽和)を遷移条件として、交点座標(LVLP+)を遷移先状態とする遷移。  With the intersection point coordinate (LVLP+) as the current state and C43 (MP<0: elimination of voltage saturation) in FIG. state, C23 (|v|≧v max : voltage saturation) in FIG. 6 as the transition condition, and the intersection coordinate (LVLP+) as the transition destination state.
 交点座標(LVLP+)を現在状態とし、図6のC45(|i|≧imax:電流飽和)を遷移条件として、交点座標(LVLA)を遷移先状態とする遷移と、交点座標(LVLA)を現在状態とし、図6のC37(p≧pmax [MP≧0]:電力飽和と、交点座標(LVLA)が電圧最小曲線(MV)側にある)を遷移条件として、交点座標(LVLP+)を遷移先状態とする遷移。  The intersection coordinate (LVLP+) is the current state, the transition condition is C45 (|i|≧i max : current saturation) in FIG. 6 (p ≥ p max [MP ≥ 0]: power saturation and the intersection point coordinate (LVLA) is on the voltage minimum curve (MV) side) as a transition condition, and the intersection point coordinate (LVLP+) is set to Transition to be transition destination state.
 なお、図6の状態遷移表におけるNOVA遷移速度ωNOVAは、LA曲線、LV曲線、LP曲線が3重交点を持つ速度(近似的には、LA曲線のy切片がLV曲線上に存在する速度)に設定する。LVLA,LVLP+,LALP+からNOVAに遷移し、NOVAからはLVLAのみに遷移する。  The NOVA transition speed ω NOVA in the state transition table of FIG. 6 is the speed at which the LA curve, the LV curve, and the LP curve have a triple intersection (approximately, the speed at which the y-intercept of the LA curve exists on the LV curve ). LVLA, LVLP+, and LALP+ transition to NOVA, and NOVA transitions to LVLA only.
[回生についての状態遷移表の検証]
 図5を参照して分類した最大トルク条件別に、回生の制御シナリオを検証する。回生状態ではMPLP-が最大トルク条件にならないため、上述した力行状態よりもシナリオが増加する。 
[Verification of state transition table for regeneration]
A regeneration control scenario is verified for each maximum torque condition classified with reference to FIG. Since MPLP- does not reach the maximum torque condition in the regenerative state, the number of scenarios increases more than in the power running state described above.
<最大トルク条件がMALAの場合>
 図5の(12),(16)は、最大トルク条件MALAになるケースの各曲線の関係を示している。図5の(16)は、電力制限の影響を受けないため、上述した力行時における最大トルク条件がMALAの場合と同じである。 
<When the maximum torque condition is MALA>
(12) and (16) in FIG. 5 show the relationship between the curves in the case of the maximum torque condition MALA. (16) in FIG. 5 is not affected by the power limitation, so the maximum torque condition during power running is the same as in MALA.
 図5の(12)は、電力が電流より先に飽和して途中で電力飽和が解消されるケースである。このケースにおいて、トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC3(p≦pmin:電力飽和)を遷移条件として、回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。  (12) in FIG. 5 is a case where the power saturates before the current and the power saturation is canceled in the middle. In this case, when the torque command increases, the current state is the intersection point (MPCT) of the power minimization curve and the constant torque curve, and the transition condition is C3 (p ≤ p min : power saturation) in FIG. A transition is made with the intersection point (LPCT-) of the power limit curve and the constant torque curve as the transition destination state.
 続いて、交点座標(LPCT-)を現在状態とし、図6のC19(|i|≧imax [MA>0かつMP<0]:電力飽和の解消)を遷移条件として、電流制限円と定トルク曲線との交点座標(LACT)を遷移先状態とする遷移を行う。  Next, the current state is defined as the intersection coordinate (LPCT-), and the transition condition is C19 (|i|≧i max [MA>0 and MP<0]: elimination of power saturation) in FIG. A transition is performed with the intersection coordinate (LACT) with the torque curve as the transition destination state.
 さらに、交点座標(LACT)を現在状態とし、図6のC13(MA≦0:トルク飽和)を遷移条件として、電流最小曲線と電流制限円との交点座標(MALA)を遷移先状態であって終着点とする遷移により、その交点座標(MALA)を最大トルク条件とする。  Further, the current state is the intersection coordinate (LACT), the transition condition is C13 (MA≦0: torque saturation) in FIG. A transition with an endpoint causes its intersection coordinate (MALA) to be the maximum torque condition. 
 トルク指令が減少する場合には、交点座標(MALA)を現在状態とし、図6のC25(|T|<|T|:トルク飽和の解消)を遷移条件として、交点座標(LACT)を遷移先状態とする遷移を行う。続いて、交点座標(LACT)を現在状態とし、図6のC12(p≦pmin:電力飽和)を遷移条件として、交点座標(LPCT-)を遷移先状態とする遷移を行う。  When the torque command decreases, the intersection coordinate (MALA) is set to the current state, and C25 (|T * |<|T|: elimination of torque saturation) in FIG. Make a transition to the previous state. Subsequently, the intersection coordinate (LACT) is set as the current state, C12 (p≦p min : power saturation) in FIG. 6 is set as the transition condition, and the intersection coordinate (LPCT−) is set as the transition destination state.
 さらに、交点座標(LPCT-)を現在状態とし、図6のC17(|Tpmin_l|<|T|<|Tpmin_h|:電力飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。Tpmin_lは、MALA(回生:原点から近い)トルク値、Tpmin_hは、MALA(回生:原点から遠い)トルク値である。  Furthermore, the intersection point coordinates (LPCT-) are set to the current state, and the intersection point coordinates (MPCT) are transitioned with C17 (|T pmin_l |<|T * |<|T pmin_h |: elimination of power saturation) in FIG. 6 as a transition condition. Make a transition that is the previous state and the end point. T pmin_l is the MALA (regeneration: close to the origin) torque value, and T pmin_h is the MALA (regeneration: far from the origin) torque value.
 図5には示していないが、最大トルク条件がMALAのケースであって、LACTの途中で電力が飽和するケースが存在する。そのケースでは、トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC2(|i|≧imax:電流飽和)を遷移条件として、電流制限円と定トルク曲線との交点座標(LACT)を遷移先状態とする遷移を行う。  Although not shown in FIG. 5, there is a case where the maximum torque condition is MALA and power is saturated in the middle of LACT. In that case, when the torque command increases, the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve, and C2 (|i|≧i max : current saturation) in FIG. 6 is the transition condition. , the intersection coordinates (LACT) of the current limiting circle and the constant torque curve are transition destination states.
 続いて、交点座標(LACT)を現在状態とし、図6のC12(p≦pmin:電力飽和)を遷移条件として、回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。また、交点座標(LPCT-)を現在状態とし、図6のC19(|i|≧imax [MA>0かつMP<0]:電力飽和の解消)を遷移条件として、交点座標(LACT)を遷移先状態とする遷移を行う。  Subsequently, the intersection coordinate (LACT) is the current state, C12 (p ≤ p min : power saturation) in FIG. Make a state transition. Also, with the intersection point coordinate (LPCT−) as the current state and C19 (|i|≧i max [MA>0 and MP<0]: elimination of power saturation) in FIG. Execute the transition to be the transition destination state.
 さらには、交点座標(LACT)を現在状態とし、図6のC13(MA≦0:トルク飽和)を遷移条件として、電流最小曲線と電流制限円との交点座標(MALA)を、遷移先状態であって終着点とする遷移によって、交点座標(MALA)を最大トルク条件とする。  Furthermore, with the intersection coordinates (LACT) as the current state and C13 (MA≦0: torque saturation) in FIG. The intersection coordinate (MALA) is the maximum torque condition due to the transition that ends at one. 
 トルク指令が減少する場合には、交点座標(MALA)を現在状態とし、図6のC25(|T|<|T|:トルク飽和の解消)を遷移条件として、交点座標(LACT)を遷移先状態とする遷移を行う。続いて、交点座標(LACT)を現在状態とし、図6のC12(p≦pmin:電力飽和)を遷移条件として、交点座標(LPCT-)を遷移先状態とする遷移を行う。  When the torque command decreases, the intersection coordinate (MALA) is set to the current state, and C25 (|T * |<|T|: elimination of torque saturation) in FIG. Make a transition to the previous state. Subsequently, the intersection coordinate (LACT) is set as the current state, C12 (p≦p min : power saturation) in FIG. 6 is set as the transition condition, and the intersection coordinate (LPCT−) is set as the transition destination state.
 さらに、交点座標(LPCT-)を現在状態とし、図6のC19(|i|≧imax:電力飽和の解消)を遷移条件として、交点座標(LACT)を遷移先状態とする遷移を行い、それに続いて、交点座標(LACT)を現在状態とし、図6のC11(MP>0:電流飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  Furthermore, with the intersection point coordinates (LPCT−) as the current state and C19 (|i|≧i max : elimination of power saturation) in FIG. Subsequently, the intersection coordinate (LACT) is the current state, C11 (MP>0: elimination of current saturation) in FIG. 6 is the transition condition, and the intersection coordinate (MPCT) is the destination state and the end point I do.
<最大トルク条件がMVLVの場合>
 図5の(13)のケースは電力制限の影響を受けないため、上述した力行時における最大トルク条件がMVLVの場合と同じである。 
<When the maximum torque condition is MVLV>
Since the case of (13) in FIG. 5 is not affected by the power limitation, the maximum torque condition during power running is the same as the case of MVLV described above.
 図5の(9)に示すケースは、電力が電圧より先に飽和して途中で電力飽和が解消されるケースである。このケースにおいて、トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC3(p≦pmin:電力飽和)を遷移条件として、回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。  The case shown in (9) in FIG. 5 is a case where the power is saturated before the voltage and the power saturation is canceled in the middle. In this case, when the torque command increases, the current state is the intersection point (MPCT) of the power minimization curve and the constant torque curve, and the transition condition is C3 (p ≤ p min : power saturation) in FIG. A transition is made with the intersection point (LPCT-) of the power limit curve and the constant torque curve as the transition destination state.
 続いて、交点座標(LPCT-)を現在状態とし、図6のC18(|v|≧vmax [MV<0かつMP>0]:電力飽和の解消)を遷移条件として、電圧制限曲線と定トルク曲線との交点座標(LVCT)を遷移先状態とする遷移を行う。  Subsequently, the current state is the intersection coordinate (LPCT-), and C18 (|v|≧v max [MV<0 and MP>0]: elimination of power saturation) in FIG. A transition is made with the intersection coordinates (LVCT) with the torque curve as the transition destination state.
 さらに、交点座標(LVCT)を現在状態とし、図6のC7(MV≧0:トルク飽和)を遷移条件として、電圧最小曲線と電圧制限曲線との交点座標(MVLV)を、遷移先状態であって終着点とする遷移を行うことで、その交点座標(MVLV)を最大トルク条件とする。  Further, with the current state as the intersection point coordinates (LVCT) and C7 (MV≧0: torque saturation) in FIG. By making a transition to the end point, the intersection coordinate (MVLV) is set as the maximum torque condition. 
 トルク指令が減少する場合には、交点座標(MVLV)を現在状態とし、図6のC29(|T|<|T|:トルク飽和の解消)を遷移条件として、交点座標(LVCT)を遷移先状態とする遷移を行う。続いて、交点座標(LVCT)を現在状態とし、図6のC6(p≦pmin:電圧飽和)を遷移条件として交点座標(LPCT-)を遷移先状態とする遷移の後、交点座標(LPCT-)を現在状態とし、図6のC17(|Tpmin_l|<|T|<|Tpmin_h|:電圧飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  When the torque command decreases, the intersection coordinates (MVLV) are set to the current state, and C29 (|T * |<|T|: elimination of torque saturation) in FIG. Make a transition to the previous state. Subsequently, the current state is the intersection point coordinates (LVCT), the transition condition is C6 (p≦p min : voltage saturation) in FIG. 6, and the intersection point coordinates (LPCT−) is the transition destination state. −) is the current state, C17 (|T pmin_l |<|T * |<|T pmin_h |: elimination of voltage saturation) in FIG. Make a point transition.
 図5では図示を省略しているが、最大トルク条件がMVLVのケースであって、LVCTの途中で電力が飽和するケースが存在する。そのケースでは、トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC1(|v|≧vmax:電圧飽和)を遷移条件として、電圧制限曲線と定トルク曲線との交点座標(LVCT)を遷移先状態とする遷移を行う。  Although not shown in FIG. 5, there is a case where the maximum torque condition is MVLV and power is saturated during LVCT. In that case, when the torque command increases, the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve, and C1 (|v|≧v max : voltage saturation) in FIG. 6 is the transition condition. , the intersection point coordinates (LVCT) of the voltage limit curve and the constant torque curve are transition destination states.
 続いて、交点座標(LVCT)を現在状態とし、図6のC6(p≦pmin:電力飽和)を遷移条件として、回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。そして、交点座標(LPCT-)を現在状態とし、図6のC18(|v|≧vmax [MV<0かつMP>0]:電力飽和の解消)を遷移条件として、交点座標(LVCT)を遷移先状態とする遷移を行う。  Subsequently, the current state is the intersection point coordinate (LVCT), the transition condition is C6 (p ≤ p min : power saturation) in FIG. Make a state transition. Then, with the intersection point coordinates (LPCT−) as the current state and C18 (|v|≧v max [MV<0 and MP>0]: elimination of power saturation) in FIG. Execute the transition to be the transition destination state.
 さらに、交点座標(LVCT)を現在状態とし、図6のC7(MV≧0:トルク飽和)を遷移条件として、電圧最小曲線と電圧制限曲線との交点座標(MVLV)を遷移先状態であって終着点とする遷移を行うことで、その交点座標(MVLV)を最大トルク条件とする。  Further, the current state is the intersection point coordinate (LVCT), the transition condition is C7 (MV≧0: torque saturation) in FIG. By performing a transition with an end point, the intersection coordinate (MVLV) is set as the maximum torque condition. 
 トルク指令が減少する場合は、交点座標(MVLV)を現在状態とし、図6のC29(|T|<|T|:トルク飽和の解消)を遷移条件として交点座標(LVCT)を遷移先状態とする遷移を行う。  When the torque command decreases, the intersection point coordinates (MVLV) are set to the current state, and the intersection point coordinates (LVCT) are set to the transition destination state with C29 (|T * |<|T|: Torque saturation elimination) in FIG. 6 as the transition condition. Make a transition to
 さらに、交点座標(LVCT)を現在状態とし、図6のC6(p≦pmin:電力飽和)を遷移条件として、交点座標(LPCT-)を遷移先状態とする遷移を行った後、交点座標(LPCT-)を現在状態とし、図6のC18(|v|≧vmax:電力飽和の解消)を遷移条件として、交点座標(LVCT)を遷移先状態とする遷移を行う。  Further, the current state is the intersection point coordinates (LVCT), the transition condition is C6 (p≦p min : power saturation) in FIG. (LPCT-) is the current state, C18 (|v|≧v max : elimination of power saturation) in FIG. 6 is the transition condition, and the intersection coordinate (LVCT) is the transition destination state.
 その後、交点座標(LVCT)を現在状態とし、図6のC5(MP<0:電圧飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  After that, the current state is set to the coordinates of the intersection point (LVCT), and C5 (MP<0: elimination of voltage saturation) in FIG. . 
<最大トルク条件がLVLAの場合>
 図5の(11),(15)は、電流が先に飽和するケースであり、電力飽和が無い場合(図5の(15))は、上述した力行時における最大トルク条件がLVLAの場合と同じである。 
<When the maximum torque condition is LVLA>
(11) and (15) in FIG. 5 are cases in which the current saturates first. are the same.
 図5の(11)に示すケースにおいて、トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC3(p≦pmin:電力飽和)を遷移条件として、回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。  In the case shown in (11) of FIG. 5, when the torque command increases, the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve, and C3 (p≤p min : power saturation ) as the transition condition, the transition is performed with the intersection coordinate (LPCT-) between the regenerative power limit curve and the constant torque curve as the transition destination state.
 次に、交点座標(LPCT-)を現在状態とし、図6のC19(|i|≧imax [MA>0かつMP<0]:電力飽和の解消)を遷移条件として、電流制限円と定トルク曲線との交点座標(LACT)を遷移先状態とする遷移を行う。  Next, the intersection point coordinates (LPCT-) are defined as the current state, and C19 (|i|≧i max [MA>0 and MP<0]: elimination of power saturation) in FIG. A transition is performed with the intersection coordinate (LACT) with the torque curve as the transition destination state.
 続いて、交点座標(LACT)を現在状態とし、図6のC14(|v|≧vmax:トルク飽和)を遷移条件として、交点座標(LVLA)を遷移先状態であって終着点とする遷移を行い、その交点座標(LVLA)を最大トルク条件とする。  Subsequently, the intersection coordinate (LACT) is the current state, the transition condition is C14 (|v|≧v max : torque saturation) in FIG. 6, and the intersection coordinate (LVLA) is the transition destination state and transition point and the intersection coordinate (LVLA) is set as the maximum torque condition.
 トルク指令が減少する場合には、交点座標(LVLA)を現在状態とし、図6のC34(|T|<|T| [MP<0]:トルク飽和が解消し、交点座標(LVLA)が電流最小曲線(MA)側にある)を遷移条件として、交点座標(LACT)を遷移先状態とする遷移を行う。  When the torque command decreases, the intersection coordinate (LVLA) is set to the current state, and C34 (|T * |<|T| [MP<0] in FIG. 6: Torque saturation is resolved and the intersection coordinate (LVLA) is (on the minimum current curve (MA) side) is set as a transition condition, and a transition is performed with the intersection coordinate (LACT) as a transition destination state.
 続いて、交点座標(LACT)を現在状態とし、図6のC12(p≦pmin:電力飽和)を遷移条件として、交点座標(LPCT-)を遷移先状態とする遷移を行い、さらに、交点座標(LPCT-)を現在状態とし、図6のC17(|Tpmin_l|<|T|<|Tpmin_h|:電流飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  Subsequently, the intersection coordinate (LACT) is set as the current state, C12 (p≤p min : power saturation) in FIG. Let the coordinates ( LPCT- ) be the current state, and let C17 in FIG . There is a transition with an end point.
 図示を省略するが、LACTの途中で電力飽和する場合には、以下のように遷移する。すなわち、トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC2(|i|≧imax:電流飽和)を遷移条件として、電流制限円と定トルク曲線との交点座標(LACT)を遷移先状態とする遷移を行う。  Although illustration is omitted, when the power is saturated in the middle of LACT, the transition is as follows. That is, when the torque command increases, the current state is the intersection point (MPCT) of the power minimization curve and the constant torque curve, and the transition condition is C2 (|i|≧i max : current saturation) in FIG. A transition is made with the intersection coordinates (LACT) of the limit circle and the constant torque curve as the transition destination state.
 続いて、交点座標(LACT)を現在状態とし、図6のC12(p≦pmin:電力飽和)を遷移条件として、回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。  Subsequently, the intersection coordinate (LACT) is the current state, C12 (p ≤ p min : power saturation) in FIG. Make a state transition.
 さらに、交点座標(LPCT-)を現在状態とし、図6のC19(|i|≧imax [MA>0かつMP<0]:電力飽和の解消)を遷移条件として、電流制限円と定トルク曲線との交点座標(LACT)を遷移先状態とする遷移を行う。  Further, with the intersection point coordinate (LPCT-) as the current state and C19 (|i|≧i max [MA>0 and MP<0]: elimination of power saturation) in FIG. 6 as the transition condition, the current limit circle and the constant torque A transition is made with the intersection coordinate (LACT) with the curve as the transition destination state.
 その後、交点座標(LACT)を現在状態とし、図6のC14(v≧vmax:トルク飽和)を遷移条件として、交点座標(LVLA)を遷移先状態であって終着点とする遷移を行った、交点座標(LVLA)を最大トルク条件とする。  After that, the current state is the intersection coordinate (LACT), the transition condition is C14 (v≧v max : torque saturation) in FIG. 6, and the intersection coordinate (LVLA) is the destination state and the end point. , intersection coordinates (LVLA) as the maximum torque condition.
 トルク指令が減少する場合は、交点座標(LVLA)を現在状態とし、図6のC34(|T|<|T| [MP<0]:トルク飽和が解消し、交点座標(LVLA)が電流最小曲線(MA)側にある)を遷移条件として、交点座標(LACT)を遷移先状態とする遷移を行う。  When the torque command decreases, the intersection point coordinate (LVLA) is set to the current state, and C34 (|T * |<|T| [MP<0] in FIG. (on the minimum curve (MA) side) is set as a transition condition, and a transition is performed with the intersection coordinate (LACT) as a transition destination state.
 次に、交点座標(LACT)を現在状態とし、図6のC12(p≦pmin:電力飽和)を遷移条件として、交点座標(LPCT-)を遷移先状態とする遷移を行い、続いて、交点座標(LPCT-)を現在状態とし、図6のC19(|i|≧imax:電力飽和の解消)を遷移条件として、交点座標(LACT)を遷移先状態とする遷移を行う。  Next, the intersection coordinates (LACT) are set to the current state, C12 (p≦p min : power saturation) in FIG. With the intersection point coordinate (LPCT−) as the current state and C19 (|i|≧i max : elimination of power saturation) in FIG.
 さらに、交点座標(LACT)を現在状態とし、図6のC11(MP>0:電流飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  Further, the intersection coordinate (LACT) is the current state, C11 (MP>0: elimination of current saturation) in FIG. . 
 図5の(10),(14)は、電圧が先に飽和するケースであり、電力飽和が無い場合(図5の(14))は、上述した力行時における最大トルク条件がLVLAの場合と同じである。  (10) and (14) in FIG. 5 are cases in which the voltage saturates first. are the same. 
 図5の(10)に示すケースにおいて、トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC3(p≦pmin:電力飽和)を遷移条件として、回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。  In the case shown in (10) of FIG. 5, when the torque command increases, the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve, and C3 (p≤p min : power saturation ) as the transition condition, the transition is performed with the intersection coordinate (LPCT-) between the regenerative power limit curve and the constant torque curve as the transition destination state.
 続いて、交点座標(LPCT-)を現在状態とし、図6のC18(|v|≧vmax [MV<0かつMP>0]:電力飽和の解消)を遷移条件として、電圧制限曲線と定トルク曲線との交点座標(LVCT)を遷移先状態とする遷移を行う。  Subsequently, the current state is the intersection coordinate (LPCT-), and C18 (|v|≧v max [MV<0 and MP>0]: elimination of power saturation) in FIG. A transition is made with the intersection coordinates (LVCT) with the torque curve as the transition destination state.
 その後、交点座標(LVCT)を現在状態とし、図6のC8(|i|≧imax:トルク飽和)を遷移条件として、電圧制限曲線と電流制限円の交点座標(LVLA)を遷移先状態であって終着点とする遷移を行い、その交点座標(LVLA)を最大トルク条件とする。  After that, with the intersection point coordinates (LVCT) as the current state and C8 (|i|≧i max : torque saturation) in FIG. A transition is made to the end point, and the intersection coordinate (LVLA) is set as the maximum torque condition.
 トルク指令が減少する場合は、交点座標(LVLA)を現在状態とし、図6のC33(|T|<|T| [MP≧0]:トルク飽和が解消し、交点座標(LVLA)が電圧最小曲線(MV)側にある)を遷移条件として、交点座標(LVCT)を遷移先状態とする遷移を行う。  When the torque command decreases, the intersection coordinate (LVLA) is set to the current state, and C33 (|T * |<|T| [MP≧0] in FIG. (on the minimum curve (MV) side) is set as a transition condition, and a transition is performed with the intersection coordinates (LVCT) as the transition destination state.
 次に、交点座標(LVCT)を現在状態とし、図6のC6(p≦pmin:電力飽和)を遷移条件として交点座標(LPCT-)を遷移先状態とする遷移を行い、続いて、交点座標(LPCT-)を現在状態とし、図6のC17(|Tpmin_l|<|T|<|Tpmin_h|:電圧飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  Next, the intersection coordinate (LVCT) is set to the current state, and C6 (p≦p min : power saturation) in FIG. With the coordinate (LPCT−) as the current state and C17 (|T pmin — l |<|T * |<|T pmin — h |: elimination of voltage saturation) in FIG. There is a transition with an end point.
 図示を省略するが、LVCTの途中で電力飽和する場合には、以下のように遷移する。すなわち、トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC1(|v|≧vmax:電圧飽和)を遷移条件として、電圧制限曲線と定トルク曲線との交点座標(LVCT)を遷移先状態とする遷移を行う。  Although illustration is omitted, when power saturation occurs in the middle of LVCT, the transition is as follows. That is, when the torque command increases, the current state is the intersection point (MPCT) of the power minimization curve and the constant torque curve, and C1 (|v|≧v max : voltage saturation) in FIG. A transition is made with the coordinates of the intersection point (LVCT) of the limit curve and the constant torque curve as the transition destination state.
 続いて、交点座標(LVCT)を現在状態とし、図6のC6(p≦pmin:電力飽和)を遷移条件として、回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。そして、交点座標(LPCT-)を現在状態とし、図6のC18(|v|≧vmax [MV<0かつMP>0]:電力飽和の解消)を遷移条件として、交点座標(LVCT)を遷移先状態とする遷移を行う。  Subsequently, the current state is the intersection point coordinate (LVCT), the transition condition is C6 (p ≤ p min : power saturation) in FIG. Make a state transition. Then, with the intersection point coordinates (LPCT−) as the current state and C18 (|v|≧v max [MV<0 and MP>0]: elimination of power saturation) in FIG. Execute the transition to be the transition destination state.
 さらに、交点座標(LVCT)を現在状態とし、図6のC8(|i|≧imax:トルク飽和)を遷移条件として、電圧制限曲線と電流制限円の交点座標(LVLA)を、遷移先状態であって終着点とする遷移を行い、その交点座標(LVLA)を最大トルク条件とする。  Further, the current state is the intersection point coordinate (LVCT), C8 (|i|≧i max : torque saturation) in FIG. , and the intersection coordinate (LVLA) is set as the maximum torque condition.
 トルク指令が減少する場合には、交点座標(LVLA)を現在状態とし、図6のC33(|T|<|T| [MP>0]:トルク飽和が解消し、交点座標(LVLA)が電圧最小曲線(MV)側にある)を遷移条件として、交点座標(LVCT)を遷移先状態とする遷移を行う。  When the torque command decreases, the intersection coordinate (LVLA) is set to the current state, and C33 (|T * |<|T| [MP>0] in FIG. 6: Torque saturation is eliminated and the intersection coordinate (LVLA) is (on the minimum voltage curve (MV) side) is set as a transition condition, and a transition is performed with the intersection coordinate (LVCT) as a transition destination state.
 続いて、交点座標(LVCT)を現在状態とし、図6のC6(p≦pmin:電力飽和)を遷移条件として、交点座標(LPCT-)を遷移先状態とする遷移を行い、さらに、交点座標(LPCT-)を現在状態とし、図6のC18(|v|≧vmax:電力飽和の解消)を遷移条件として、交点座標(LVCT)を遷移先状態とする遷移を行う。  Subsequently, the intersection coordinate (LVCT) is set as the current state, C6 (p≦p min : power saturation) in FIG. With the coordinate (LPCT-) as the current state, C18 (|v|≧v max : elimination of power saturation) in FIG. 6 as the transition condition, and the intersection coordinate (LVCT) as the destination state.
 そして、交点座標(LVCT)を現在状態とし、図6のC5(MP<0:電圧飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  Then, the intersection coordinates (LVCT) are set to the current state, C5 (MP<0: elimination of voltage saturation) in FIG. . 
<最大トルク条件がLALP-の場合>
 最大トルク条件LALP-のケースは、図5の(4),(6),(8)の3通りに分類できる。最初に、MALA(★印)のみ電力飽和している、図5の(8)のケースを説明する。このケースでは、MP曲線から最も遠い点がよりトルクが大きいことから、MP曲線に近い方のLALP-は最大トルク条件にならず、MP曲線から遠い方のLALP-が最大トルク条件(▲印)となる。 
<When the maximum torque condition is LALP->
The cases of the maximum torque condition LALP- can be classified into three types (4), (6) and (8) in FIG. First, the case of (8) in FIG. 5, in which only MALA (marked with *) is power saturated, will be described. In this case, since the torque is greater at the point farthest from the MP curve, the LALP- closer to the MP curve is not the maximum torque condition, and the LALP- farther from the MP curve is the maximum torque condition (▲) becomes.
 トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC2(|i|≧imax:電流飽和)を遷移条件として電流制限円と定トルク曲線との交点座標(LACT)を遷移先状態とする遷移を行う。続いて、交点座標(LACT)を現在状態とし、図6のC12(p≦pmin:電力飽和)を遷移条件として回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。  When the torque command increases, the intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are set as the current state, and C2 (|i|≧i max : current saturation) in FIG. A transition is performed with the intersection coordinate (LACT) with the constant torque curve as the transition destination state. Subsequently, the intersection coordinates (LACT) are the current state, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are the transition destination state with C12 (p ≤ p min : power saturation) in FIG. 6 as the transition condition. Make a transition to
 さらに、交点座標(LPCT-)を現在状態とし、図6のC21(|i|≧imax [MA≦0またはMP≧0]:トルク飽和)を遷移条件として、電流制限円と回生電力制限曲線との交点座標(LALP-)を遷移先状態であって終着点とする遷移を行い、その交点座標(LALP-)を最大トルク条件とする。  Further, with the intersection coordinate (LPCT-) as the current state and C21 (|i|≧i max [MA≦0 or MP≧0]: torque saturation) in FIG. 6 as the transition condition, the current limit circle and the regenerative power limit curve A transition is made with the intersection coordinate (LALP-) as the transition destination state and the end point, and the intersection coordinate (LALP-) is set as the maximum torque condition.
 トルク指令が減少する場合には、交点座標(LALP-)を現在状態とし、図6のC56(|T|<|T|:トルク飽和の解消)を遷移条件として交点座標(LPCT-)を遷移先状態とする遷移を行う。  When the torque command decreases, the intersection point coordinate (LALP-) is set to the current state, and the intersection point coordinate (LPCT-) is set to C56 (|T * |<|T|: cancellation of torque saturation) in FIG. 6 as a transition condition. Execute the transition to be the transition destination state.
 続いて、交点座標(LPCT-)を現在状態とし、図6のC19(|i|≧imax:電力飽和の解消)を遷移条件として交点座標(LACT)を遷移先状態とする遷移を行った後、交点座標(LACT)を現在状態とし、図6のC11(MP>0:電流飽和の解消)を遷移条件として交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  Subsequently, the intersection coordinate (LPCT−) is set to the current state, and C19 (|i|≧i max : elimination of power saturation) in FIG. After that, the current state is set to the intersection coordinate (LACT), and C11 (MP>0: elimination of current saturation) in FIG.
 図5の(4)のケースでは、MALA(★印)とMPLA(☆印)の両方が電力飽和しており、MPCT(△印)電力飽和時にLALP-のトルクが必ず大きくなる方のMA曲線側に進む。  In the case of (4) in FIG. 5, both MALA (marked with ★) and MPLA (marked with ☆) are power saturated, and MPCT (△ mark) MA curve in which LALP- torque always increases at power saturation go to the side. 
 このケースにおいて、トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC3(p≦pmin:電力飽和)を遷移条件として、回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。  In this case, when the torque command increases, the current state is the intersection point (MPCT) of the power minimization curve and the constant torque curve, and the transition condition is C3 (p ≤ p min : power saturation) in FIG. A transition is made with the intersection point (LPCT-) of the power limit curve and the constant torque curve as the transition destination state.
 続いて、交点座標(LPCT-)を現在状態とし、図6のC21(|i|≧imax [MA≦0またはMP≧0]:トルク飽和)を遷移条件として電流制限円と回生電力制限曲線との交点座標(LALP-)を遷移先状態であって終着点とする遷移を行い、その交点座標(LALP-)を最大トルク条件とする。  Subsequently, the intersection coordinates (LPCT-) are the current state, and C21 (|i|≧i max [MA≦0 or MP≧0]: torque saturation) in FIG. 6 is the transition condition. A transition is made with the intersection coordinate (LALP-) as the transition destination state and the end point, and the intersection coordinate (LALP-) is set as the maximum torque condition.
 トルク指令が減少する場合は、交点座標(LALP-)を現在状態とし、図6のC56(|T|<|T|:トルク飽和の解消)を遷移条件として交点座標(LPCT-)を遷移先状態とする遷移を行った後、交点座標(LPCT-)を現在状態とし、図6のC17(|Tpmin_l|<|T|<|Tpmin_h|:電力飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  When the torque command decreases, the intersection point coordinate (LALP-) is set to the current state, and the intersection point coordinate (LPCT-) is transitioned with C56 (|T * |<|T|: cancellation of torque saturation) in FIG. 6 as the transition condition. After the transition to the previous state, the intersection coordinate (LPCT-) is set to the current state, and C17 (|T pmin_l |<|T * |<|T pmin_h |: elimination of power saturation) in FIG. 6 is set as the transition condition. , the intersection coordinates (MPCT) as the transition destination state and the end point.
 図5の(6)は、電圧制限⇒電力制限⇒電流制限の順で制限されるケースである。MP曲線から最も遠いLALP-が最大トルク条件(▲印)となる。このケースでトルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC1(|v|≧vmax:電圧飽和)を遷移条件として電圧制限曲線と定トルク曲線との交点座標(LVCT)を遷移先状態とする遷移を行う。  (6) in FIG. 5 is a case where restrictions are made in the order of voltage limitation, power limitation, and current limitation. LALP-, which is the farthest from the MP curve, is the maximum torque condition (▴ mark). In this case, when the torque command increases, the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve, and C1 (|v|≧v max : voltage saturation) in FIG. A transition is made with the coordinates of the intersection point (LVCT) of the limit curve and the constant torque curve as the transition destination state.
 続いて、交点座標(LVCT)を現在状態とし、図6のC6(p≦pmin:電力飽和)を遷移条件として回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。  Subsequently, the intersection coordinates (LVCT) are the current state, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are the transition destination state with C6 (p ≤ p min : power saturation) in FIG. 6 as the transition condition. Make a transition to
 さらに、交点座標(LPCT-)を現在状態とし、図6のC21(|i|≧imax [MA≦0またはMP≧0]:トルク飽和)を遷移条件として電流制限円と回生電力制限曲線との交点座標(LALP-)を、遷移先状態であって終着点とする遷移を行い、その交点座標(LALP-)を最大トルク条件とする。  Furthermore, with the intersection coordinate (LPCT−) as the current state and C21 (|i|≧i max [MA≦0 or MP≧0]: torque saturation) in FIG. The intersection point (LALP-) is the transition destination state and the end point, and the intersection point (LALP-) is set as the maximum torque condition.
 トルク指令が減少する場合には、交点座標(LALP-)を現在状態とし、図6のC56(|T|<|T|:トルク飽和の解消)を遷移条件として交点座標(LPCT-)を遷移先状態とする遷移を行った後、交点座標(LPCT-)を現在状態とし、図6のC18(|v|≧vmax:電力飽和の解消)を遷移条件として交点座標(LVCT)を遷移先状態とする遷移を行う。  When the torque command decreases, the intersection point coordinate (LALP-) is set to the current state, and the intersection point coordinate (LPCT-) is set to C56 (|T * |<|T|: cancellation of torque saturation) in FIG. 6 as a transition condition. After the transition to the transition destination state, the intersection coordinate (LPCT-) is set to the current state, and the intersection coordinate (LVCT) is transitioned with C18 (|v|≧v max : elimination of power saturation) in FIG. 6 as the transition condition. Make a transition to the previous state.
 さらに、交点座標(LVCT)を現在状態とし、図6のC5(MP<0:電圧飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  Further, the current state is set to the coordinates of the intersection point (LVCT), C5 (MP<0: elimination of voltage saturation) in FIG. . 
<最大トルク条件がLVLP-の場合>
 最大トルク条件LVLP-のケースは、図5の(1),(5),(7)の3通りに分類できる。図5の(5)のケースでは、MVLV(★印)のみ電力飽和しており、MP曲線から最も遠い点がよりトルクが大きいことから、MP曲線に近い方のLVLP-は最大トルク条件にならず、MP曲線から遠い方のLVLP-が最大トルク条件(▲印)となる。 
<When the maximum torque condition is LVLP->
The cases of the maximum torque condition LVLP- can be classified into three types (1), (5) and (7) in FIG. In the case of (5) in FIG. 5, only the MVLV (marked with *) is power saturated, and the torque is greater at the point farthest from the MP curve, so the LVLP- closer to the MP curve does not meet the maximum torque condition. LVLP-, which is farther from the MP curve, is the maximum torque condition (marked with .tangle-solidup.).
 図5の(5)のケースにおいて、トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC3(p≦pmin:電力飽和)を遷移条件として回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。  In the case of (5) in FIG. 5, when the torque command increases, the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve, and C3 (p≦p min : power saturation) in FIG. is the transition condition, and the transition destination state is the coordinate (LPCT-) of the intersection of the regenerative power limit curve and the constant torque curve.
 続いて、交点座標(LPCT-)を現在状態とし、図6のC20(|v|≧vmax [MV≧0またはMP≦0]:トルク飽和)を遷移条件として、電圧制限曲線と回生電力制限曲線との交点座標(LVLP-)を遷移先状態であって終着点とする遷移を行い、その交点座標(LVLP-)を最大トルク条件とする。  Next, with the intersection coordinate (LPCT-) as the current state and C20 (|v|≧v max [MV≧0 or MP≦0]: torque saturation) in FIG. 6 as the transition condition, the voltage limit curve and the regenerative power limit A transition is made with the coordinates of the intersection with the curve (LVLP-) being the destination state and the end point, and the coordinates of the intersection (LVLP-) being the maximum torque condition.
 トルク指令が減少する場合には、交点座標(LVLP-)を現在状態とし、図6のC47(|T|<|T|:トルク飽和の解消)を遷移条件として交点座標(LPCT-)を遷移先状態とする遷移を行う。続いて、交点座標(LPCT-)を現在状態とし、図6のC17(|Tpmin_l|<|T|<|Tpmin_h|:電圧飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  When the torque command decreases, the intersection point coordinate (LVLP-) is set to the current state, and the intersection point coordinate (LPCT-) is set to C47 (|T * |<|T|: cancellation of torque saturation) in FIG. 6 as a transition condition. Execute the transition to be the transition destination state. Next, with the intersection point coordinates (LPCT-) as the current state and C17 (|T pmin_l |<|T * |<|T pmin_h |: elimination of voltage saturation) in FIG. Executes a transition that is a transition destination state and an end point.
 図5の(1)のケースでは、MPCT(△印)電力飽和時にLVLP-のトルクが必ず大きくなる方のMV曲線側に進む。このケースにおいて、トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC1(|v|≧vmax:電圧飽和)を遷移条件として、電圧制限曲線と定トルク曲線との交点座標(LVCT)を遷移先状態とする遷移を行う。  In the case of (1) in FIG. 5, the MPCT (.DELTA.mark) advances to the MV curve side where the torque of LVLP- always increases at the time of power saturation. In this case, when the torque command increases, the current state is the intersection point (MPCT) between the power minimization curve and the constant torque curve, and C1 (|v|≧v max : voltage saturation) in FIG. 6 is the transition condition. , the intersection point coordinates (LVCT) of the voltage limit curve and the constant torque curve are transition destination states.
 続いて、交点座標(LVCT)を現在状態とし、図6のC6(p≦pmin:電力飽和)を遷移条件として回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。  Subsequently, the intersection coordinates (LVCT) are the current state, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are the transition destination state with C6 (p ≤ p min : power saturation) in FIG. 6 as the transition condition. Make a transition to
 さらに、交点座標(LPCT-)を現在状態とし、図6のC20(|v|≧vmax [MV≧0またはMP≦0]:トルク飽和)を遷移条件として、電圧制限曲線と回生電力制限曲線との交点座標(LVLP-)を遷移先状態であって終着点とする遷移を行い、その交点座標(LVLP-)を最大トルク条件とする。  Furthermore, with the intersection coordinate (LPCT-) as the current state and C20 (|v|≧v max [MV≧0 or MP≦0]: torque saturation) in FIG. 6 as the transition condition, the voltage limit curve and the regenerative power limit curve A transition is made with the intersection coordinate (LVLP-) as the transition destination state and the end point, and the intersection coordinate (LVLP-) is set as the maximum torque condition.
 トルク指令が減少する場合は、交点座標(LVLP-)を現在状態とし、図6のC47(|T|<|T|:トルク飽和の解消)を遷移条件として交点座標(LPCT-)を遷移先状態とする遷移を行う。続いて、交点座標(LPCT-)を現在状態とし、図6のC18(|v|≧vmax:電力飽和の解消)を遷移条件として交点座標(LVCT)を遷移先状態とする遷移を行う。  When the torque command decreases, the intersection point coordinate (LVLP-) is set to the current state, and the intersection point coordinate (LPCT-) is transitioned with C47 (|T * |<|T|: cancellation of torque saturation) in FIG. 6 as the transition condition. Make a transition to the previous state. Subsequently, the current state is set to the intersection coordinate (LPCT-), and the transition destination state is set to the intersection coordinate (LVCT) with C18 (|v|≧v max : elimination of power saturation) as the transition condition.
 さらに、交点座標(LVCT)を現在状態とし、図6のC5(MP<0:電圧飽和の解消)を遷移条件として交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  Furthermore, the current state is the intersection point coordinates (LVCT), and C5 (MP<0: elimination of voltage saturation) in FIG. 
 図5の(7)は、電圧制限⇒電力制限⇒電流制限の順で制限されるケースである。ここでは、MP曲線から最も遠い点LVLP-(▲印)が最大トルク条件となる。このケースでトルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC2(|i|≧imax:電流飽和)を遷移条件として電流制限円と定トルク曲線との交点座標(LACT)を遷移先状態とする遷移を行う。  (7) in FIG. 5 is a case in which restrictions are made in the order of voltage limitation, power limitation, and current limitation. Here, the farthest point LVLP- (▴ mark) from the MP curve is the maximum torque condition. In this case, when the torque command increases, the intersection point (MPCT) between the power minimization curve and the constant torque curve is set as the current state, and C2 (|i|≧i max : current saturation) in FIG. A transition is made with the intersection coordinates (LACT) of the limit circle and the constant torque curve as the transition destination state.
 続いて、交点座標(LACT)を現在状態とし、図6のC12(p≦pmin:電力飽和)を遷移条件として回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。  Subsequently, the intersection coordinates (LACT) are the current state, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are the transition destination state with C12 (p ≤ p min : power saturation) in FIG. 6 as the transition condition. Make a transition to
 さらに、交点座標(LPCT-)を現在状態とし、図6のC20(|v|≧vmax [MV≧0またはMP≦0]:トルク飽和)を遷移条件として、電圧制限曲線と回生電力制限曲線との交点座標(LVLP-)を遷移先状態であって終着点とする遷移を行い、その交点座標(LVLP-)を最大トルク条件とする。  Furthermore, with the intersection coordinate (LPCT-) as the current state and C20 (|v|≧v max [MV≧0 or MP≦0]: torque saturation) in FIG. 6 as the transition condition, the voltage limit curve and the regenerative power limit curve A transition is made with the intersection coordinate (LVLP-) as the transition destination state and the end point, and the intersection coordinate (LVLP-) is set as the maximum torque condition.
 トルク指令が減少する場合は、交点座標(LVLP-)を現在状態とし、図6のC47(|T|<|T|:トルク飽和の解消)を遷移条件として交点座標(LPCT-)を遷移先状態とする遷移を行う。そして、交点座標(LPCT-)を現在状態とし、図6のC19(|i|≧imax:電力飽和の解消)を遷移条件として交点座標(LACT)を遷移先状態とする遷移を行う。  When the torque command decreases, the intersection point coordinate (LVLP-) is set to the current state, and the intersection point coordinate (LPCT-) is transitioned with C47 (|T * |<|T|: cancellation of torque saturation) in FIG. 6 as the transition condition. Make a transition to the previous state. Then, the current state is set to the intersection coordinate (LPCT-), and C19 (|i|≧i max : elimination of power saturation) in FIG.
 さらに、交点座標(LACT)を現在状態とし、図6のC11(MP>0:電流飽和の解消)を遷移条件として交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  Furthermore, the current state is the intersection point coordinate (LACT), and C11 (MP>0: elimination of current saturation) in FIG. 
<最大トルク条件が不定の場合>
  図5の(2),(3)は、最大トルク条件がLVLP-とLALP-のいずれになるかが不定のケースである。LALP-のトルクがより大きければ、以下の遷移となる。 
<When the maximum torque condition is undefined>
(2) and (3) in FIG. 5 are cases in which it is uncertain whether the maximum torque condition is LVLP- or LALP-. If the torque on LALP- is greater, the following transitions occur.
 トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC3(p≦pmin:電力飽和)を遷移条件として回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。  When the torque command increases, the current state is the intersection point (MPCT) of the power minimization curve and the constant torque curve, and the regenerative power limit curve is determined with C3 (p≤p min : power saturation) in FIG. 6 as the transition condition. A transition is made with the intersection coordinate (LPCT-) with the torque curve as the transition destination state.
 続いて、交点座標(LPCT-)を現在状態とし、図6のC21(|i|≧imax [MA≦0またはMP≧0]:トルク飽和)を遷移条件として電流制限円と回生電力制限曲線との交点座標(LALP-)を遷移先状態であって終着点とする遷移を行い、その交点座標(LALP-)が最大トルク条件となる。  Subsequently, the intersection coordinates (LPCT-) are the current state, and C21 (|i|≧i max [MA≦0 or MP≧0]: torque saturation) in FIG. 6 is the transition condition. A transition is performed with the intersection coordinate (LALP-) of .
 トルク指令が減少する場合には、交点座標(LALP-)を現在状態とし、図6のC56(|T|<|T|:トルク飽和の解消)を遷移条件として交点座標(LPCT-)を遷移先状態とする遷移を行い、続いて、交点座標(LPCT-)を現在状態とし、図6のC17(|Tpmin_l|<|T|<|Tpmin_h|:電力飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  When the torque command decreases, the intersection point coordinate (LALP-) is set to the current state, and the intersection point coordinate (LPCT-) is set to C56 (|T * |<|T|: cancellation of torque saturation) in FIG. 6 as a transition condition. Transition to the transition destination state is performed, then the intersection coordinate (LPCT-) is set to the current state, and C17 (|T pmin_l |<|T * |<|T pmin_h |: elimination of power saturation) in FIG. 6 is transitioned. As a condition, a transition is performed with intersection coordinates (MPCT) as a transition destination state and an end point.
 一方、LVLP-のトルクがより大きければ、以下の遷移となる。すなわち、トルク指令が増加する場合、電力最小化曲線と定トルク曲線との交点座標(MPCT)を現在状態とし、図6のC3(p≦pmin:電力飽和)を遷移条件として回生電力制限曲線と定トルク曲線との交点座標(LPCT-)を遷移先状態とする遷移を行う。  On the other hand, if the torque on LVLP- is greater, the following transition occurs. That is, when the torque command increases, the current state is the intersection point (MPCT) of the power minimization curve and the constant torque curve, and the regenerative power limit curve is set to C3 (p≤p min : power saturation) in FIG. and the constant torque curve (LPCT-) is the transition destination state.
 続いて、交点座標(LPCT-)を現在状態とし、図6のC20(|v|≧vmax [MV≧0またはMP≦0]:トルク飽和)を遷移条件として、電圧制限曲線と回生電力制限曲線との交点座標(LVLP-)を遷移先状態であって終着点とする遷移を行い、その交点座標(LVLP-)が最大トルク条件となる。  Next, with the intersection coordinate (LPCT-) as the current state and C20 (|v|≧v max [MV≧0 or MP≦0]: torque saturation) in FIG. 6 as the transition condition, the voltage limit curve and the regenerative power limit A transition is made with the coordinates of the intersection with the curve (LVLP-) as the transition destination state and the end point, and the coordinates of the intersection (LVLP-) become the maximum torque condition.
 トルク指令が減少する場合には、交点座標(LALP-)を現在状態とし、図6のC47(|T|<|T|:トルク飽和の解消)を遷移条件として交点座標(LPCT-)を遷移先状態とする遷移を行う。  When the torque command decreases, the intersection coordinate (LALP-) is set to the current state, and the intersection coordinate (LPCT-) is set to C47 (|T * |<|T|: elimination of torque saturation) in FIG. 6 as a transition condition. Execute the transition to be the transition destination state.
 その後、交点座標(LPCT-)を現在状態とし、図6のC17(|Tpmin_l|<|T|<|Tpmin_h|:電力飽和の解消)を遷移条件として、交点座標(MPCT)を遷移先状態であって終着点とする遷移を行う。  After that, the intersection point coordinates (LPCT-) are set to the current state, and the intersection point coordinates (MPCT) are transitioned with C17 (|T pmin_l |<|T * |<|T pmin_h |: elimination of power saturation) in FIG. 6 as the transition condition. Make a transition that is the previous state and the end point.
 なお、上記のように最大トルク条件が不定の場合において、LALP-のトルクとLVLP-のトルクが同じであれば、より効率が良い方を選択する。  If the torque of LALP- and the torque of LVLP- are the same when the maximum torque condition is indefinite as described above, the one with higher efficiency is selected. 
 次に、回生時において最大トルク条件が変化するときの遷移を説明する。最大トルク条件が変化するときの遷移には、以下の6通りの遷移が含まれる。  Next, the transition when the maximum torque condition changes during regeneration will be explained. Transitions when the maximum torque condition changes include the following six transitions. 
 交点座標(MALA)を現在状態とし、図6のC26(|v|≧vmax:電圧飽和)を遷移条件として交点座標(LVLA)を遷移先状態とする遷移と、交点座標(LVLA))を現在状態とし、図6のC35(MA≦0:電圧飽和の解消)を遷移条件として交点座標(MALA)を遷移先状態とする遷移。  The current state is the intersection point coordinate (MALA), the transition condition is C26 (|v|≧v max : voltage saturation) in FIG. Transition with current state, C35 (MA≦0: elimination of voltage saturation) in FIG. 6 as a transition condition, and intersection coordinate (MALA) as a transition destination state.
 交点座標(MALA)を現在状態とし、図6のC28(p≦pmin:電力飽和)を遷移条件として交点座標(LALP-)を遷移先状態とする遷移と、交点座標(LALP-)を現在状態とし、図6のC57(MA≦0:電力飽和の解消)を遷移条件として交点座標(MALA)を遷移先状態とする遷移。  The current state is the intersection coordinate (MALA), the transition condition is C28 (p≤p min : power saturation) in FIG. 6, and the transition destination state is the intersection coordinate (LALP-). state, C57 (MA≦0: elimination of power saturation) in FIG. 6 as the transition condition, and the intersection coordinate (MALA) as the transition destination state.
 交点座標(MVLV)を現在状態とし、図6のC30(|i|≧imax:電流飽和)を遷移条件として交点座標(LVLA)を遷移先状態とする遷移と、交点座標(LVLA)を現在状態とし、図6のC36(MV≧0:電流飽和の解消)を遷移条件として交点座標(MVLV)を遷移先状態とする遷移。  The current state is the intersection coordinate (MVLV), the transition condition is C30 (|i|≧i max : current saturation) in FIG. 6, and the transition destination state is the intersection coordinate (LVLA). 6 (MV≧0: elimination of current saturation) as a transition condition, and the intersection coordinate (MVLV) as a transition destination state.
 交点座標(MVLV)を現在状態とし、図6のC32(p≦pmin:電力飽和)を遷移条件として交点座標(LVLP-)を遷移先状態とする遷移と、交点座標(LVLP-)を現在状態とし、図6のC48(MV≧0:電流飽和の解消)を遷移条件として交点座標(MVLV)を遷移先状態とする遷移。  The current state is the intersection coordinate (MVLV), the transition condition is C32 (p≤p min : power saturation) in FIG. 6, and the transition destination state is the intersection coordinate (LVLP-). state, C48 (MV≧0: elimination of current saturation) in FIG. 6 as a transition condition, and intersection coordinates (MVLV) as a transition destination state.
 交点座標(LALP-)を現在状態とし、図6のC58(|v|≧vmax:電圧飽和)を遷移条件として交点座標(LVLA)を遷移先状態とする遷移と、交点座標(LVLA)を現在状態とし、図6のC40(p≦pmin [MP<0]:電力飽和と、交点座標(LVLA)が電流最小曲線(MA)側にある)を遷移条件として交点座標(LALP-)を遷移先状態とする遷移。  The intersection coordinate (LALP-) is the current state, the transition condition is C58 (|v|≧v max : voltage saturation) in FIG. 6, and the intersection coordinate (LVLA) is the transition destination state. 6 (p≤p min [MP<0]: power saturation and the intersection coordinate (LVLA) is on the current minimum curve (MA) side) as a transition condition, and the intersection coordinate (LALP-) is set as a transition condition. Transition to be transition destination state.
 交点座標(LVLP-)を現在状態とし、図6のC49(|i|≧imax:電流飽和)を遷移条件として交点座標(LVLA)を遷移先状態とする遷移と、交点座標(LVLA)を現在状態とし、図6のC38(p≦pmin [MP<0]:電力飽和と、交点座標(LVLA)が電圧最小曲線(MV)側にある)を遷移条件として交点座標(LVLP-)を遷移先状態とする遷移。  The current state is the intersection coordinate (LVLP−), the transition condition is C49 (|i|≧i max : current saturation) in FIG. 6, and the intersection coordinate (LVLA) is the transition destination state. 6 (p≤p min [MP<0]: power saturation and the intersection coordinate (LVLA) is on the voltage minimum curve (MV) side) as the transition condition, and Transition to be transition destination state.
 以上説明したように、現在状態から遷移先状態への遷移条件が設定された状態遷移表を使用して、dq軸直交座標平面(電流ベクトル平面)に定義した曲線のその平面上での位置関係に基づいて遷移先を決定できる。その際、モータに対する電流目標値(電流出力値)として有効な、2つの曲線の交点に着目して電流ベクトルの指令値を計算することで、電流目標値の計算量を軽減して処理速度の向上とコスト削減が可能になる。  As described above, using the state transition table in which the transition conditions from the current state to the transition destination state are set, the positional relationship of the curve defined on the dq-axis orthogonal coordinate plane (current vector plane) on that plane can determine the transition destination based on At that time, by calculating the command value of the current vector by focusing on the intersection of the two curves, which is effective as the current target value (current output value) for the motor, the amount of calculation of the current target value is reduced and the processing speed is increased. can improve and reduce costs. 
 また、鉄損をエネルギ損失として考慮することで、最大効率制御の精度が向上し、電力制限を考慮したことで、バッテリ充放電許容電力を超過した力行、回生によりバッテリにダメージを与えることを回避できる。すなわち、銅損のみならず鉄損を含めるとともに電力制限を考慮することで、モータの最大効率制御の精度を向上できる。  In addition, by considering iron loss as energy loss, the accuracy of maximum efficiency control is improved, and by considering the power limit, it is possible to avoid damage to the battery due to power running and regeneration that exceed the battery charge/discharge allowable power. can. That is, the accuracy of the maximum efficiency control of the motor can be improved by including not only the copper loss but also the iron loss and considering the power limit. 
 状態遷移表に、出力可能範囲が存在しない(電流条件と電圧条件の双方を満たさない)状態も組み込むことで、解が存在しない条件下での無駄な計算を回避でき、電流指令のための交点座標の演算の破綻を防止して制御の安定化を図ることができる。 By incorporating states in the state transition table that do not have a possible output range (both the current and voltage conditions are not satisfied), it is possible to avoid unnecessary calculations under conditions where there is no solution, and the intersection point for the current command can be avoided. It is possible to prevent failure of coordinate calculation and stabilize control.
1 モータ制御装置
2 中央制御部(CPU)
3 メモリ
4 電圧指令部
5 モータ駆動部
10 モータ制御部
15 電動モータ
16a q軸PI制御部
16b d軸PI制御部
17,28 座標変換部
21 PWM信号生成部
23 インバータ回路
24 電源リレー
25 電流検出部
27 A/D変換部(ADC)
29 回転角センサ
BT 外部バッテリ
1 motor controller 2 central control unit (CPU)
3 memory 4 voltage command unit 5 motor drive unit 10 motor control unit 15 electric motor 16a q-axis PI control unit 16b d-axis PI control unit 17, 28 coordinate conversion unit 21 PWM signal generation unit 23 inverter circuit 24 power relay 25 current detection unit 27 A/D converter (ADC)
29 Rotation angle sensor BT External battery

Claims (29)

  1.  dq軸直交座標系において電流ベクトル制御によってモータを駆動するモータ制御装置であって、
     dq軸直交座標平面における電力最小化曲線(MP)、電流最小曲線(MA)、電圧最小曲線(MV)、電流制限円(LA)、電圧制限曲線(LV)、定トルク曲線(CT)、力行電力制限曲線(LP+)、および回生電力制限曲線(LP-)より選択した2つの曲線の交点のうち電流指令として有効な交点の組合せを求める手段と、
     前記交点の組合せを現在状態と遷移先状態として行方向と列方向にそれぞれ配列し、前記現在状態から前記遷移先状態への遷移条件を設定した状態遷移表を作成する手段と、
     前記現在状態に対応する任意の交点から前記遷移条件に従って遷移したときの前記遷移先状態に対応する交点の前記曲線上における位置関係に基づいて前記モータに対する電流目標値を選択する手段と、を備えるモータ制御装置。
    A motor control device for driving a motor by current vector control in a dq-axis orthogonal coordinate system,
    Power minimization curve (MP), current minimum curve (MA), voltage minimum curve (MV), current limit circle (LA), voltage limit curve (LV), constant torque curve (CT), motoring on dq axis Cartesian coordinate plane means for obtaining a combination of intersections effective as a current command from intersections of two curves selected from the power limit curve (LP+) and the regenerative power limit curve (LP-);
    means for arranging the combinations of intersections in the row direction and the column direction as a current state and a transition destination state, respectively, and creating a state transition table in which transition conditions from the current state to the transition destination state are set;
    and means for selecting a current target value for the motor based on the positional relationship on the curve of the intersection corresponding to the transition destination state when transition is made from an arbitrary intersection corresponding to the current state according to the transition condition. motor controller.
  2.  前記状態遷移表は、前記現在状態および前記遷移先状態として前記曲線に対して有効な交点を持たない状態を含む請求項1に記載のモータ制御装置。 The motor control device according to claim 1, wherein the state transition table includes, as the current state and the transition destination state, states that do not have a valid intersection with the curve.
  3.  前記状態遷移表は力行時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電流飽和を前記遷移条件として前記電流制限円と前記定トルク曲線との交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電流最小曲線と前記電流制限円との交点座標(MALA)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(MALA)が最大トルク条件となる第1の遷移と、
     トルク指令が減少する場合、
     前記交点座標(MALA)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電流飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第2の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table, as a state transition at the time of power running,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are defined as the current state, and the intersection coordinates (LACT) of the current limit circle and the constant torque curve are defined as the current state, and a predetermined current saturation as the transition condition. a transition to be a transition destination state;
    A transition in which the intersection coordinate (LACT) is the current state, a predetermined torque saturation is the transition condition, and the intersection coordinate (MALA) of the current minimum curve and the current limit circle is the transition destination state and the end point. and a first transition at which the intersection point coordinate (MALA) is a maximum torque condition;
    If the torque command decreases,
    a transition in which the coordinates of the intersection point (MALA) are the current state, the transition condition is elimination of a predetermined torque saturation, and the coordinates of the intersection point (LACT) are the transition destination state;
    a second transition including a transition in which the intersection coordinate (LACT) is the current state, the transition condition is elimination of a predetermined current saturation, and the intersection coordinate (MPCT) is the transition destination state and the end point; 2. The motor controller of claim 1, comprising:
  4.  前記状態遷移表は力行時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記電圧制限曲線と前記定トルク曲線との交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電圧最小曲線と前記電圧制限曲線との交点座標(MVLV)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(MVLV)が最大トルク条件となる第3の遷移と、
     トルク指令が減少する場合、
     前記交点座標(MVLV)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を現在状態とし、所定の電圧飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第4の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table, as a state transition at the time of power running,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are defined as the current state, and the intersection coordinates (LVCT) of the voltage limit curve and the constant torque curve are defined as the transition condition, with a predetermined voltage saturation as the transition condition. a transition to be a transition destination state;
    A transition in which the intersection coordinates (LVCT) are the current state, predetermined torque saturation is the transition condition, and the intersection coordinates (MVLV) of the voltage minimum curve and the voltage limit curve are the transition destination state and the end point. a third transition where the intersection point coordinate (MVLV) is a maximum torque condition;
    If the torque command decreases,
    a transition in which the intersection coordinates (MVLV) are the current state, the transition condition is elimination of predetermined torque saturation, and the intersection coordinates (LVCT) are the transition destination state;
    a fourth transition including a transition in which the intersection point coordinates (LVCT) are the current state, the intersection point coordinates (MPCT) are the transition destination state and the end point, with the transition condition being the elimination of a predetermined voltage saturation; 2. The motor controller of claim 1, comprising:
  5.  前記状態遷移表は力行時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記電力最小化曲線と前記力行電力制限曲線との交点座標(MPLP+)を前記遷移先状態であって終着点となり、該交点座標(MPLP+)が最大トルク条件となる第5の遷移と、
     トルク指令が減少する場合、
     前記交点座標(MPLP+)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする第6の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table, as a state transition at the time of power running,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are set as the current state, and the intersection coordinates (MPLP+) of the power minimization curve and the power-running power limit curve are set with a predetermined power saturation as the transition condition. is the transition destination state and is the end point, and the intersection coordinate (MPLP+) is the maximum torque condition;
    If the torque command decreases,
    a sixth transition in which the intersection point coordinate (MPLP+) is the current state, the transition condition is elimination of a predetermined power saturation, and the intersection point coordinate (MPCT) is the transition destination state and the end point. The motor control device according to claim 1.
  6.  前記状態遷移表は、力行時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電流飽和を前記遷移条件として前記電流制限円と前記定トルク曲線との交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電圧制限曲線と前記電流制限円の交点座標(LVLA)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LVLA)が最大トルク条件となる第7の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LVLA)を前記現在状態とし、所定のトルク飽和が解消し、該交点座標(LVLA)が前記電流最小曲線(MA)側にあることを前記遷移条件として前記交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電流飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第8の遷移と、を包含する請求項1に記載のモータ制御装置。
    In the state transition table, as state transitions during power running,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are defined as the current state, and the intersection coordinates (LACT) of the current limit circle and the constant torque curve are defined as the current state, and a predetermined current saturation as the transition condition. a transition to be a transition destination state;
    a transition in which the intersection coordinate (LACT) is the current state, a predetermined torque saturation is the transition condition, and the intersection coordinate (LVLA) of the voltage limit curve and the current limit circle is the transition destination state and the end point; and a seventh transition at which the intersection point coordinate (LVLA) is a maximum torque condition;
    If the torque command decreases,
    The intersection coordinate (LVLA) is set as the current state, and the intersection coordinate (LACT) is set as the transition condition that predetermined torque saturation is eliminated and the intersection coordinate (LVLA) is on the current minimum curve (MA) side. a transition to be the transition destination state;
    an eighth transition including a transition in which the intersection coordinate (LACT) is the current state, the transition condition is elimination of a predetermined current saturation, and the intersection coordinate (MPCT) is the transition destination state and the end point; 2. The motor controller of claim 1, comprising:
  7.  前記状態遷移表は、力行時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記電圧制限曲線と前記定トルク曲線との交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電圧制限曲線と前記電流制限円との交点座標(LVLA)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LVLA)が最大トルク条件となる第9の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LVLA)を前記現在状態とし、所定のトルク飽和が解消し、該交点座標(LVLA)が前記電圧最小曲線(MV)側にあることを前記遷移条件として前記交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定の電圧飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第10の遷移と、を包含する請求項1に記載のモータ制御装置。
    In the state transition table, as state transitions during power running,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are defined as the current state, and the intersection coordinates (LVCT) of the voltage limit curve and the constant torque curve are defined as the transition condition, with a predetermined voltage saturation as the transition condition. a transition to be a transition destination state;
    A transition in which the intersection coordinates (LVCT) are the current state, predetermined torque saturation is the transition condition, and the intersection coordinates (LVLA) of the voltage limit curve and the current limit circle are the transition destination state and the end point. and a ninth transition where the intersection coordinate (LVLA) is a maximum torque condition;
    If the torque command decreases,
    The intersection point coordinates (LVLA) are set as the current state, and the intersection point coordinates (LVCT) are set as the transition condition that predetermined torque saturation is eliminated and the intersection point coordinates (LVLA) is on the voltage minimum curve (MV) side. a transition to be the transition destination state;
    a tenth transition including a transition in which the intersection point coordinates (LVCT) are the current state, the transition condition is elimination of a predetermined voltage saturation, and the intersection point coordinates (MPCT) are the transition destination state and the end point; 2. The motor controller of claim 1, comprising:
  8.  前記状態遷移表は力行時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電流飽和を前記遷移条件として前記電流制限円と前記定トルク曲線との交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記電流制限円と前記力行電力制限曲線との交点座標(LALP+)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LALP+)が最大トルク条件となる第11の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LALP+)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電流飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第12の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table, as a state transition at the time of power running,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are defined as the current state, and the intersection coordinates (LACT) of the current limit circle and the constant torque curve are defined as the current state, and a predetermined current saturation as the transition condition. a transition to be a transition destination state;
    The intersection coordinate (LACT) is defined as the current state, a predetermined power saturation is defined as the transition condition, and the intersection coordinate (LALP+) of the current limit circle and the power running power limit curve is defined as the transition destination state and the end point. an eleventh transition, wherein the intersection coordinate (LALP+) is a maximum torque condition;
    If the torque command decreases,
    a transition in which the intersection coordinate (LALP+) is the current state, the transition condition is elimination of a predetermined torque saturation, and the intersection coordinate (LACT) is the transition destination state;
    a twelfth transition including a transition in which the intersection coordinate (LACT) is the current state, the transition condition is elimination of a predetermined current saturation, and the intersection coordinate (MPCT) is the transition destination state and the end point; 2. The motor controller of claim 1, comprising:
  9.  前記状態遷移表は力行時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記電圧制限曲線と前記定トルク曲線との交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記電圧制限曲線と前記力行電力制限曲線との交点座標(LVLP+)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LVLP+)が最大トルク条件となる第13の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LVLP+)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定の電圧飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第14の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table, as a state transition at the time of power running,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are defined as the current state, and the intersection coordinates (LVCT) of the voltage limit curve and the constant torque curve are defined as the transition condition, with a predetermined voltage saturation as the transition condition. a transition to be a transition destination state;
    The coordinates of the intersection point (LVCT) are the current state, the coordinates of the intersection point (LVLP+) of the voltage limit curve and the power limit curve are defined as the transition destination state and the end point, with a predetermined power saturation as the transition condition. a thirteenth transition, wherein the intersection coordinate (LVLP+) is a maximum torque condition;
    If the torque command decreases,
    a transition in which the intersection coordinate (LVLP+) is the current state, the transition condition is elimination of a predetermined torque saturation, and the intersection coordinate (LVCT) is the transition destination state;
    a fourteenth transition including a transition in which the intersection coordinate (LVCT) is the current state, the transition condition is elimination of a predetermined voltage saturation, and the intersection coordinate (MPCT) is the transition destination state and an end point; 2. The motor controller of claim 1, comprising:
  10.  前記状態遷移表は、前記最大トルク条件が変化するとき、
     前記交点座標(MALA)を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記交点座標(LVLA)を前記遷移先状態とする遷移と、前記交点座標(LVLA)を前記現在状態とし、所定の電圧飽和の解消を前記遷移条件として前記交点座標(MALA)を前記遷移先状態とする遷移とを含む第15の遷移と、
     前記交点座標(MALA)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記交点座標(LALP+)を前記遷移先状態とする遷移と、前記交点座標(LALP+)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(MALA)を前記遷移先状態とする遷移とを含む第16の遷移と、
     前記交点座標(MVLV)を前記現在状態とし、所定の電流飽和を前記遷移条件として前記交点座標(LVLA)を前記遷移先状態とする遷移と、前記交点座標(LVLA)を前記現在状態とし、所定の電流飽和の解消を前記遷移条件として前記交点座標(MVLV)を前記遷移先状態とする遷移とを含む第17の遷移と、
     前記交点座標(MVLV)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記交点座標(LVLP+)を前記遷移先状態とする遷移と、前記交点座標(LVLP+)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(MVLV)を前記遷移先状態とする遷移とを含む第18の遷移と、
     前記交点座標(LALP+)を前記現在状態とし、所定の電圧飽和の解消を前記遷移条件として前記交点座標(MPLP+)を前記遷移先状態とする遷移と、前記交点座標(MPLP+)を前記現在状態とし、所定の電流飽和を前記遷移条件として前記交点座標(LALP+)を前記遷移先状態とする遷移とを含む第19の遷移と、
     前記交点座標(LALP+)を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記交点座標(LVLA)を前記遷移先状態とする遷移と、前記交点座標(LVLA)を前記現在状態とし、所定の電力飽和と該交点座標(LVLA)が前記電流最小曲線(MA)側にあることを前記遷移条件として前記交点座標(LALP+)を前記遷移先状態とする遷移とを含む第20の遷移と、
     前記交点座標(LVLP+)を前記現在状態とし、所定の電圧飽和の解消を前記遷移条件として前記交点座標(MPLP+)を前記遷移先状態とする遷移と、前記交点座標(MPLP+)を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記交点座標(LVLP+)を前記遷移先状態とする遷移とを含む第21の遷移と、
     前記交点座標(LVLP+)を前記現在状態とし、所定の電流飽和を前記遷移条件として前記交点座標(LVLA)を前記遷移先状態とする遷移と、前記交点座標(LVLA)を前記現在状態とし、所定の電力飽和と該交点座標(LVLA)が前記電圧最小曲線(MV)側にあることを前記遷移条件として前記交点座標(LVLP+)を前記遷移先状態とする遷移とを含む第22の遷移と、を包含する請求項3~9のいずれか1項に記載のモータ制御装置。
    The state transition table, when the maximum torque condition changes,
    A transition in which the intersection coordinate (MALA) is the current state, a predetermined voltage saturation is the transition condition, and the intersection coordinate (LVLA) is the transition destination state, and the intersection coordinate (LVLA) is the current state, a predetermined A fifteenth transition including a transition in which the transition condition is the elimination of voltage saturation of and the intersection coordinate (MALA) is the transition destination state;
    A transition in which the intersection coordinate (MALA) is the current state, a predetermined power saturation is the transition condition, and the intersection coordinate (LALP+) is the transition destination state, and the intersection coordinate (LALP+) is the current state, and a predetermined A sixteenth transition including a transition in which the transition condition is the elimination of power saturation of and the intersection coordinate (MALA) is the transition destination state;
    A transition in which the intersection coordinate (MVLV) is the current state, a predetermined current saturation is the transition condition, the intersection coordinate (LVLA) is the transition destination state, and the intersection coordinate (LVLA) is the current state, a predetermined A seventeenth transition including a transition in which the current saturation of is resolved as the transition condition and the intersection coordinate (MVLV) is the destination state;
    A transition in which the intersection coordinate (MVLV) is the current state, a predetermined power saturation is the transition condition, and the intersection coordinate (LVLP+) is the transition destination state, and the intersection coordinate (LVLP+) is the current state, and a predetermined an eighteenth transition including a transition in which the intersection coordinate (MVLV) is set as the transition destination state with the elimination of power saturation as the transition condition;
    A transition in which the intersection coordinates (LALP+) is the current state, a transition condition is the elimination of a predetermined voltage saturation, and the intersection coordinates (MPLP+) is the destination state, and the intersection coordinates (MPLP+) are the current state. , a nineteenth transition including a predetermined current saturation as the transition condition and the intersection coordinate (LALP+) as the transition destination state;
    A transition in which the intersection coordinate (LALP+) is the current state, a predetermined voltage saturation is the transition condition, the intersection coordinate (LVLA) is the transition destination state, and the intersection coordinate (LVLA) is the current state, a predetermined A twentieth transition including a power saturation of and a transition in which the intersection coordinate (LALP+) is the transition destination state with the transition condition that the intersection coordinate (LVLA) is on the current minimum curve (MA) side;
    A transition in which the intersection point coordinates (LVLP+) is the current state, a transition condition is the elimination of a predetermined voltage saturation, and the intersection point coordinates (MPLP+) is the destination state, and the intersection point coordinates (MPLP+) are the current state. , a 21st transition including a predetermined voltage saturation as the transition condition and the intersection coordinate (LVLP+) as the transition destination state;
    A transition in which the intersection coordinate (LVLP+) is the current state, a predetermined current saturation is the transition condition, the intersection coordinate (LVLA) is the transition destination state, and the intersection coordinate (LVLA) is the current state, a predetermined A twenty-second transition including power saturation and a transition in which the intersection coordinate (LVLP+) is the transition destination state with the transition condition that the intersection coordinate (LVLA) is on the voltage minimum curve (MV) side; The motor control device according to any one of claims 3 to 9, comprising:
  11.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記電流制限円と前記定トルク曲線との交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電流最小曲線と前記電流制限円との交点座標(MALA)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(MALA)が最大トルク条件となる第23の遷移と、
     トルク指令が減少する場合、
     前記交点座標(MALA)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第24の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are set as the current state, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are set to a predetermined power saturation as the transition condition. a transition in which the transition destination state is
    a transition in which the intersection coordinate (LPCT−) is the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinate (LACT) of the current limit circle and the constant torque curve is the transition destination state;
    A transition in which the intersection coordinate (LACT) is the current state, a predetermined torque saturation is the transition condition, and the intersection coordinate (MALA) of the current minimum curve and the current limit circle is the transition destination state and the end point. and a twenty-third transition at which the intersection point coordinate (MALA) is a maximum torque condition, and
    If the torque command decreases,
    a transition in which the coordinates of the intersection point (MALA) are the current state, the transition condition is elimination of a predetermined torque saturation, and the coordinates of the intersection point (LACT) are the transition destination state;
    a transition in which the intersection coordinate (LACT) is the current state, a predetermined power saturation is the transition condition, and the intersection coordinate (LPCT-) is the transition destination state;
    A twenty-fourth transition including a transition in which the intersection point coordinate (LPCT-) is the current state, the transition condition is elimination of a predetermined power saturation, and the intersection point coordinate (MPCT) is the transition destination state and the end point. 2. The motor control device of claim 1, comprising:
  12.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電流飽和を前記遷移条件として前記電流制限円と前記定トルク曲線との交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電流最小曲線と前記電流制限円との交点座標(MALA)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(MALA)が最大トルク条件となる第25の遷移と、
     トルク指令が減少する場合、
     前記交点座標(MALA)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電流飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第26の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are defined as the current state, and the intersection coordinates (LACT) of the current limit circle and the constant torque curve are defined as the current state, and a predetermined current saturation as the transition condition. a transition to be a transition destination state;
    a transition in which the intersection coordinate (LACT) is the current state, a predetermined power saturation is the transition condition, and the intersection coordinate (LPCT-) of the regenerative power limit curve and the constant torque curve is the transition destination state;
    a transition in which the intersection coordinate (LPCT−) is the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinate (LACT) is the transition destination state;
    A transition in which the intersection coordinate (LACT) is the current state, a predetermined torque saturation is the transition condition, and the intersection coordinate (MALA) of the current minimum curve and the current limit circle is the transition destination state and the end point. and a twenty-fifth transition at which the intersection point coordinate (MALA) is a maximum torque condition,
    If the torque command decreases,
    a transition in which the coordinates of the intersection point (MALA) are the current state, the transition condition is elimination of a predetermined torque saturation, and the coordinates of the intersection point (LACT) are the transition destination state;
    a transition in which the intersection coordinate (LACT) is the current state, a predetermined power saturation is the transition condition, and the intersection coordinate (LPCT-) is the transition destination state;
    a transition in which the intersection coordinate (LPCT−) is the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinate (LACT) is the transition destination state;
    a twenty-sixth transition including a transition in which the intersection coordinate (LACT) is the current state, the transition condition is elimination of a predetermined current saturation, and the intersection coordinate (MPCT) is the transition destination state and the end point; 2. The motor controller of claim 1, comprising:
  13.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記電圧制限曲線と前記定トルク曲線との交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電圧最小曲線と前記電圧制限曲線との交点座標(MVLV)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(MVLV)が最大トルク条件となる第27の遷移と、
     トルク指令が減少する場合、
     前記交点座標(MVLV)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電圧飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第28の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are set as the current state, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are set to a predetermined power saturation as the transition condition. a transition in which the transition destination state is
    a transition in which the current state is the coordinates of the intersection point (LPCT-), and the destination state is the coordinates of the intersection point (LVCT) of the voltage limit curve and the constant torque curve, with the transition condition being the elimination of a predetermined power saturation;
    A transition in which the intersection coordinates (LVCT) are the current state, predetermined torque saturation is the transition condition, and the intersection coordinates (MVLV) of the voltage minimum curve and the voltage limit curve are the transition destination state and the end point. a twenty-seventh transition at which the intersection point coordinate (MVLV) is a maximum torque condition;
    If the torque command decreases,
    a transition in which the intersection coordinates (MVLV) are the current state, the transition condition is elimination of predetermined torque saturation, and the intersection coordinates (LVCT) are the transition destination state;
    a transition in which the intersection coordinates (LVCT) are the current state, a predetermined voltage saturation is the transition condition, and the intersection coordinates (LPCT−) are the transition destination state;
    A twenty-eighth transition including a transition in which the intersection point coordinate (LPCT-) is the current state, the transition condition is elimination of a predetermined voltage saturation, and the intersection point coordinate (MPCT) is the transition destination state and the end point. 2. The motor control device of claim 1, comprising:
  14.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記電圧制限曲線と前記定トルク曲線との交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電圧最小曲線と前記電圧制限曲線との交点座標(MVLV)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(MVLV)が最大トルク条件となる第29の遷移と、
     トルク指令が減少する場合、
     前記交点座標(MVLV)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定の電圧飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第30の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are defined as the current state, and the intersection coordinates (LVCT) of the voltage limit curve and the constant torque curve are defined as the transition condition, with a predetermined voltage saturation as the transition condition. a transition to be a transition destination state;
    a transition in which the intersection coordinates (LVCT) are the current state, a predetermined power saturation is the transition condition, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are the transition destination state;
    a transition in which the intersection coordinates (LPCT−) are the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinates (LVCT) are the transition destination state;
    A transition in which the intersection coordinates (LVCT) are the current state, predetermined torque saturation is the transition condition, and the intersection coordinates (MVLV) of the voltage minimum curve and the voltage limit curve are the transition destination state and the end point. a twenty-ninth transition at which the intersection coordinate (MVLV) is a maximum torque condition, comprising:
    If the torque command decreases,
    a transition in which the intersection coordinates (MVLV) are the current state, the transition condition is elimination of predetermined torque saturation, and the intersection coordinates (LVCT) are the transition destination state;
    a transition in which the intersection coordinates (LVCT) are the current state, a predetermined power saturation is the transition condition, and the intersection coordinates (LPCT-) are the transition destination state;
    a transition in which the intersection coordinates (LPCT−) are the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinates (LVCT) are the transition destination state;
    a thirtieth transition including a transition in which the intersection coordinates (LVCT) are the current state, the transition condition is elimination of a predetermined voltage saturation, and the intersection coordinates (MPCT) are the transition destination state and the end point; 2. The motor controller of claim 1, comprising:
  15.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記電流制限円と前記定トルク曲線との交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記交点座標(LVLA)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LVLA)が最大トルク条件となる第31の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LVLA)を前記現在状態とし、所定のトルク飽和が解消し、該交点座標(LVLA)が前記電流最小曲線(MA)側にあることを前記遷移条件として前記交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電流飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第32の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are set as the current state, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are set to a predetermined power saturation as the transition condition. a transition in which the transition destination state is
    a transition in which the intersection coordinate (LPCT−) is the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinate (LACT) of the current limit circle and the constant torque curve is the transition destination state;
    a transition in which the intersection coordinate (LACT) is the current state, a predetermined torque saturation is the transition condition, and the intersection coordinate (LVLA) is the transition destination state and the end point, and the intersection coordinate (LVLA) is the maximum torque condition; and
    If the torque command decreases,
    The intersection coordinate (LVLA) is set as the current state, and the intersection coordinate (LACT) is set as the transition condition that predetermined torque saturation is eliminated and the intersection coordinate (LVLA) is on the current minimum curve (MA) side. a transition to be the transition destination state;
    a transition in which the intersection coordinate (LACT) is the current state, a predetermined power saturation is the transition condition, and the intersection coordinate (LPCT-) is the transition destination state;
    A thirty-second transition including a transition in which the intersection point coordinate (LPCT-) is the current state, a predetermined current saturation is eliminated as the transition condition, and the intersection point coordinate (MPCT) is the transition destination state and the end point. 2. The motor control device of claim 1, comprising:
  16.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電流飽和を前記遷移条件として前記電流制限円と前記定トルク曲線との交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記電流制限円と前記定トルク曲線との交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記交点座標(LVLA)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LVLA)が最大トルク条件となる第33の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LVLA)を前記現在状態とし、所定のトルク飽和が解消し、該交点座標(LVLA)が前記電流最小曲線(MA)側にあることを前記遷移条件として前記交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電流飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第34の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are defined as the current state, and the intersection coordinates (LACT) of the current limit circle and the constant torque curve are defined as the current state, and a predetermined current saturation as the transition condition. a transition to be a transition destination state;
    a transition in which the intersection coordinate (LACT) is the current state, a predetermined power saturation is the transition condition, and the intersection coordinate (LPCT-) of the regenerative power limit curve and the constant torque curve is the transition destination state;
    a transition in which the intersection coordinate (LPCT−) is the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinate (LACT) of the current limit circle and the constant torque curve is the transition destination state;
    a transition in which the intersection coordinate (LACT) is the current state, a predetermined torque saturation is the transition condition, and the intersection coordinate (LVLA) is the transition destination state and the end point, and the intersection coordinate (LVLA) is the maximum torque condition; and
    If the torque command decreases,
    The intersection coordinate (LVLA) is set as the current state, and the intersection coordinate (LACT) is set as the transition condition that predetermined torque saturation is eliminated and the intersection coordinate (LVLA) is on the current minimum curve (MA) side. a transition to be the transition destination state;
    a transition in which the intersection coordinate (LACT) is the current state, a predetermined power saturation is the transition condition, and the intersection coordinate (LPCT-) is the transition destination state;
    a transition in which the intersection coordinate (LPCT−) is the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinate (LACT) is the transition destination state;
    a thirty-fourth transition including a transition in which the intersection coordinate (LACT) is the current state, the transition condition is elimination of a predetermined current saturation, and the intersection coordinate (MPCT) is the transition destination state and the end point; 2. The motor controller of claim 1, comprising:
  17.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記電圧制限曲線と前記定トルク曲線との交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電圧制限曲線と前記電流制限円の交点座標(LVLA)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LVLA)が最大トルク条件となる第35の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LVLA)を前記現在状態とし、所定のトルク飽和が解消し、該交点座標(LVLA)が前記電圧最小曲線(MV)側にあることを前記遷移条件として前記交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電圧飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第36の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are set as the current state, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are set to a predetermined power saturation as the transition condition. a transition in which the transition destination state is
    a transition in which the current state is the coordinates of the intersection point (LPCT-), and the destination state is the coordinates of the intersection point (LVCT) of the voltage limit curve and the constant torque curve, with the transition condition being the elimination of a predetermined power saturation;
    a transition in which the intersection coordinates (LVCT) are the current state, predetermined torque saturation is the transition condition, and the intersection coordinates (LVLA) of the voltage limit curve and the current limit circle are the transition destination state and the end point; and a thirty-fifth transition at which the intersection point coordinate (LVLA) is a maximum torque condition;
    If the torque command decreases,
    The intersection point coordinates (LVLA) are set as the current state, and the intersection point coordinates (LVCT) are set as the transition condition that predetermined torque saturation is eliminated and the intersection point coordinates (LVLA) is on the voltage minimum curve (MV) side. a transition to be the transition destination state;
    a transition in which the intersection coordinates (LVCT) are the current state, a predetermined power saturation is the transition condition, and the intersection coordinates (LPCT-) are the transition destination state;
    A thirty-sixth transition including a transition in which the intersection point coordinate (LPCT-) is the current state, the transition condition is elimination of a predetermined voltage saturation, and the intersection point coordinate (MPCT) is the transition destination state and the end point. 2. The motor control device of claim 1, comprising:
  18.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記電圧制限曲線と前記定トルク曲線との交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電圧制限曲線と前記電流制限円の交点座標(LVLA)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LVLA)が最大トルク条件となる第37の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LVLA)を前記現在状態とし、所定のトルク飽和が解消し、該交点座標(LVLA)が前記電圧最小曲線(MV)側にあることを前記遷移条件として前記交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定の電圧飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第38の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are defined as the current state, and the intersection coordinates (LVCT) of the voltage limit curve and the constant torque curve are defined as the transition condition, with a predetermined voltage saturation as the transition condition. a transition to be a transition destination state;
    a transition in which the intersection coordinates (LVCT) are the current state, a predetermined power saturation is the transition condition, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are the transition destination state;
    a transition in which the intersection coordinates (LPCT−) are the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinates (LVCT) are the transition destination state;
    a transition in which the intersection coordinates (LVCT) are the current state, predetermined torque saturation is the transition condition, and the intersection coordinates (LVLA) of the voltage limit curve and the current limit circle are the transition destination state and the end point; and a thirty-seventh transition at which the intersection point coordinate (LVLA) is a maximum torque condition;
    If the torque command decreases,
    The intersection point coordinates (LVLA) are set as the current state, and the intersection point coordinates (LVCT) are set as the transition condition that predetermined torque saturation is eliminated and the intersection point coordinates (LVLA) is on the voltage minimum curve (MV) side. a transition to be the transition destination state;
    a transition in which the intersection coordinates (LVCT) are the current state, a predetermined power saturation is the transition condition, and the intersection coordinates (LPCT-) are the transition destination state;
    a transition in which the intersection coordinates (LPCT−) are the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinates (LVCT) are the transition destination state;
    a thirty-eighth transition including a transition in which the intersection point coordinates (LVCT) are the current state, a predetermined voltage saturation is eliminated as the transition condition, and the intersection point coordinates (MPCT) are the transition destination state and the end point; 2. The motor controller of claim 1, comprising:
  19.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電流飽和を前記遷移条件として前記電流制限円と前記定トルク曲線との交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電流制限円と前記回生電力制限曲線との交点座標(LALP-)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LALP-)が最大トルク条件となる第39の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LALP-)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電流飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第40の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are defined as the current state, and the intersection coordinates (LACT) of the current limit circle and the constant torque curve are defined as the current state, and a predetermined current saturation as the transition condition. a transition to be a transition destination state;
    a transition in which the intersection coordinate (LACT) is the current state, a predetermined power saturation is the transition condition, and the intersection coordinate (LPCT-) of the regenerative power limit curve and the constant torque curve is the transition destination state;
    The coordinates of the intersection point (LPCT-) are the current state, and a predetermined torque saturation is the transition condition. A thirty-ninth transition in which the intersection coordinate (LALP-) is the maximum torque condition, and
    If the torque command decreases,
    a transition in which the coordinates of the intersection point (LALP-) are the current state, the transition condition is elimination of a predetermined torque saturation, and the coordinates of the intersection point (LPCT-) are the transition destination state;
    a transition in which the intersection coordinate (LPCT−) is the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinate (LACT) is the transition destination state;
    a 40th transition including a transition in which the intersection coordinate (LACT) is the current state, the transition condition is elimination of a predetermined current saturation, and the intersection coordinate (MPCT) is the transition destination state and the end point; 2. The motor controller of claim 1, comprising:
  20.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電流制限円と前記回生電力制限曲線との交点座標(LALP-)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LALP-)が最大トルク条件となる第41の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LALP-)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第42の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are set as the current state, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are set to a predetermined power saturation as the transition condition. a transition in which the transition destination state is
    The coordinates of the intersection point (LPCT-) are the current state, and a predetermined torque saturation is the transition condition. A 41st transition in which the intersection coordinate (LALP-) is the maximum torque condition, and
    If the torque command decreases,
    a transition in which the coordinates of the intersection point (LALP-) are the current state, the transition condition is elimination of a predetermined torque saturation, and the coordinates of the intersection point (LPCT-) are the transition destination state;
    A forty-second transition including a transition in which the intersection coordinate (LPCT-) is the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinate (MPCT) is the transition destination state and the end point. 2. The motor control device of claim 1, comprising:
  21.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記電圧制限曲線と前記定トルク曲線との交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電流制限円と前記回生電力制限曲線との交点座標(LALP-)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LALP-)が最大トルク条件となる第43の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LALP-)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定の電圧飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第44の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are defined as the current state, and the intersection coordinates (LVCT) of the voltage limit curve and the constant torque curve are defined as the transition condition, with a predetermined voltage saturation as the transition condition. a transition to be a transition destination state;
    a transition in which the intersection coordinates (LVCT) are the current state, a predetermined power saturation is the transition condition, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are the transition destination state;
    The coordinates of the intersection point (LPCT-) are the current state, and a predetermined torque saturation is the transition condition. A 43rd transition in which the intersection coordinate (LALP-) is the maximum torque condition, and
    If the torque command decreases,
    a transition in which the coordinates of the intersection point (LALP-) are the current state, the transition condition is elimination of a predetermined torque saturation, and the coordinates of the intersection point (LPCT-) are the transition destination state;
    a transition in which the intersection coordinates (LPCT−) are the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinates (LVCT) are the transition destination state;
    a forty-fourth transition including a transition in which the intersection point coordinates (LVCT) are the current state, the transition condition is elimination of a predetermined voltage saturation, and the intersection point coordinates (MPCT) are the transition destination state and the end point; 2. The motor controller of claim 1, comprising:
  22.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電圧制限曲線と前記回生電力制限曲線との交点座標(LVLP-)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LVLP-)が最大トルク条件となる第45の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LVLP-)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電圧飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第46の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are set as the current state, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are set to a predetermined power saturation as the transition condition. a transition in which the transition destination state is
    With the current state as the intersection coordinate (LPCT-), and with a predetermined torque saturation as the transition condition, the intersection coordinate (LVLP-) of the voltage limit curve and the regenerative power limit curve as the transition destination state and end point. A 45th transition in which the intersection coordinate (LVLP-) is the maximum torque condition, and
    If the torque command decreases,
    a transition in which the intersection point coordinates (LVLP−) are the current state, the transition condition is elimination of a predetermined torque saturation, and the intersection point coordinates (LPCT−) are the transition destination state;
    A forty-sixth transition including a transition in which the intersection point coordinate (LPCT-) is the current state, the transition condition is elimination of a predetermined voltage saturation, and the intersection point coordinate (MPCT) is the transition destination state and the end point. 2. The motor control device of claim 1, comprising:
  23.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記電圧制限曲線と前記定トルク曲線との交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電圧制限曲線と前記回生電力制限曲線との交点座標(LVLP-)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LVLP-)が最大トルク条件となる第47の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LVLP-)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(LVCT)を前記遷移先状態とする遷移と、
     前記交点座標(LVCT)を前記現在状態とし、所定の電圧飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第48の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are defined as the current state, and the intersection coordinates (LVCT) of the voltage limit curve and the constant torque curve are defined as the transition condition, with a predetermined voltage saturation as the transition condition. a transition to be a transition destination state;
    a transition in which the intersection coordinates (LVCT) are the current state, a predetermined power saturation is the transition condition, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are the transition destination state;
    With the current state as the intersection coordinate (LPCT-), and with a predetermined torque saturation as the transition condition, the intersection coordinate (LVLP-) of the voltage limit curve and the regenerative power limit curve as the transition destination state and end point. A 47th transition in which the intersection coordinate (LVLP-) is the maximum torque condition, and
    If the torque command decreases,
    a transition in which the intersection point coordinates (LVLP−) are the current state, the transition condition is elimination of a predetermined torque saturation, and the intersection point coordinates (LPCT−) are the transition destination state;
    a transition in which the intersection coordinates (LPCT−) are the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinates (LVCT) are the transition destination state;
    a forty-eighth transition including a transition in which the intersection point coordinates (LVCT) are the current state, the transition condition is elimination of a predetermined voltage saturation, and the intersection point coordinates (MPCT) are the transition destination state and the end point; 2. The motor controller of claim 1, comprising:
  24.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電流飽和を前記遷移条件として前記電流制限円と前記定トルク曲線との交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電圧制限曲線と前記回生電力制限曲線との交点座標(LVLP-)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LVLP-)が最大トルク条件となる第49の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LVLP-)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(LACT)を前記遷移先状態とする遷移と、
     前記交点座標(LACT)を前記現在状態とし、所定の電流飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第50の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are defined as the current state, and the intersection coordinates (LACT) of the current limit circle and the constant torque curve are defined as the current state, and a predetermined current saturation as the transition condition. a transition to be a transition destination state;
    a transition in which the intersection coordinate (LACT) is the current state, a predetermined power saturation is the transition condition, and the intersection coordinate (LPCT-) of the regenerative power limit curve and the constant torque curve is the transition destination state;
    With the current state as the intersection coordinate (LPCT-), and with a predetermined torque saturation as the transition condition, the intersection coordinate (LVLP-) of the voltage limit curve and the regenerative power limit curve as the transition destination state and end point. A 49th transition in which the intersection coordinate (LVLP-) is the maximum torque condition, and
    If the torque command decreases,
    a transition in which the intersection point coordinates (LVLP−) are the current state, the transition condition is elimination of a predetermined torque saturation, and the intersection point coordinates (LPCT−) are the transition destination state;
    a transition in which the intersection coordinate (LPCT−) is the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinate (LACT) is the transition destination state;
    a fiftieth transition including a transition in which the intersection coordinate (LACT) is the current state, the transition condition is elimination of a predetermined current saturation, and the intersection coordinate (MPCT) is the transition destination state and the end point; 2. The motor controller of claim 1, comprising:
  25.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電流制限円と前記回生電力制限曲線との交点座標(LALP-)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LALP-)が最大トルク条件となる第51の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LALP-)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第52の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are set as the current state, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are set to a predetermined power saturation as the transition condition. a transition in which the transition destination state is
    The coordinates of the intersection point (LPCT-) are the current state, and a predetermined torque saturation is the transition condition. A 51st transition in which the intersection coordinate (LALP-) is the maximum torque condition, and
    If the torque command decreases,
    a transition in which the coordinates of the intersection point (LALP-) are the current state, the transition condition is elimination of a predetermined torque saturation, and the coordinates of the intersection point (LPCT-) are the transition destination state;
    a fifty-second transition including a transition in which the intersection point coordinate (LPCT−) is the current state, the transition condition is elimination of a predetermined power saturation, and the intersection point coordinate (MPCT) is the transition destination state and the end point. 2. The motor control device of claim 1, comprising:
  26.  前記状態遷移表は回生時の状態遷移として、
     トルク指令が増加する場合、
     前記電力最小化曲線と前記定トルク曲線との交点座標(MPCT)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記回生電力制限曲線と前記定トルク曲線との交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電圧制限曲線と前記回生電力制限曲線との交点座標(LVLP-)を前記遷移先状態であって終着点とする遷移とを含み、該交点座標(LVLP-)が最大トルク条件となる第53の遷移と、
     トルク指令が減少する場合、
     前記交点座標(LALP-)を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記交点座標(LPCT-)を前記遷移先状態とする遷移と、
     前記交点座標(LPCT-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(MPCT)を前記遷移先状態であって終着点とする遷移とを含む第54の遷移と、を包含する請求項1に記載のモータ制御装置。
    The state transition table shows, as state transitions during regeneration,
    If the torque command increases,
    The intersection coordinates (MPCT) of the power minimization curve and the constant torque curve are set as the current state, and the intersection coordinates (LPCT-) of the regenerative power limit curve and the constant torque curve are set to a predetermined power saturation as the transition condition. a transition in which the transition destination state is
    With the current state as the intersection coordinate (LPCT-), and with a predetermined torque saturation as the transition condition, the intersection coordinate (LVLP-) of the voltage limit curve and the regenerative power limit curve as the transition destination state and end point. a 53rd transition in which the intersection coordinate (LVLP-) is the maximum torque condition;
    If the torque command decreases,
    a transition in which the coordinates of the intersection point (LALP-) are the current state, the transition condition is elimination of a predetermined torque saturation, and the coordinates of the intersection point (LPCT-) are the transition destination state;
    a fifty-fourth transition including a transition in which the intersection coordinate (LPCT-) is the current state, the transition condition is elimination of a predetermined power saturation, and the intersection coordinate (MPCT) is the transition destination state and the end point. 2. The motor control device of claim 1, comprising:
  27.  前記状態遷移表は、前記最大トルク条件が変化するとき、
     前記交点座標(MALA)を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記交点座標(LVLA)を前記遷移先状態とする遷移と、前記交点座標(LVLA))を前記現在状態とし、所定の電圧飽和の解消を前記遷移条件として前記交点座標(MALA)を前記遷移先状態とする遷移とを含む第55の遷移と、
     前記交点座標(MALA)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記交点座標(LALP-)を前記遷移先状態とする遷移と、前記交点座標(LALP-)を前記現在状態とし、所定の電力飽和の解消を前記遷移条件として前記交点座標(MALA)を前記遷移先状態とする遷移とを含む第56の遷移と、
     前記交点座標(MVLV)を前記現在状態とし、所定の電流飽和を前記遷移条件として前記交点座標(LVLA)を前記遷移先状態とする遷移と、前記交点座標(LVLA)を前記現在状態とし、所定の電流飽和の解消を前記遷移条件として前記交点座標(MVLV)を前記遷移先状態とする遷移とを含む第57の遷移と、
     前記交点座標(MVLV)を前記現在状態とし、所定の電力飽和を前記遷移条件として前記交点座標(LVLP-)を前記遷移先状態とする遷移と、前記交点座標(LVLP-)を前記現在状態とし、所定の電流飽和の解消を前記遷移条件として前記交点座標(MVLV)を前記遷移先状態とする遷移とを含む第58の遷移と、
     前記交点座標(LALP-)を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記交点座標(LVLA)を前記遷移先状態とする遷移と、前記交点座標(LVLA)を前記現在状態とし、所定の電力飽和と該交点座標(LVLA)が前記電流最小曲線(MA)側にあることを前記遷移条件として前記交点座標(LALP-)を前記遷移先状態とする遷移とを含む第59の遷移と、
     前記交点座標(LVLP-)を前記現在状態とし、所定の電流飽和を前記遷移条件として前記交点座標(LVLA)を前記遷移先状態とする遷移と、前記交点座標(LVLA)を前記現在状態とし、所定の電力飽和と該交点座標(LVLA)が前記電圧最小曲線(MV)側にあることを前記遷移条件として前記交点座標(LVLP-)を前記遷移先状態とする遷移とを含む第60の遷移と、を包含する請求項11~26のいずれか1項に記載のモータ制御装置。
    The state transition table, when the maximum torque condition changes,
    A transition in which the intersection coordinate (MALA) is the current state, a predetermined voltage saturation is the transition condition, and the intersection coordinate (LVLA) is the transition destination state, and the intersection coordinate (LVLA) is the current state, a fifty-fifth transition including a transition in which the transition condition is elimination of a predetermined voltage saturation and the intersection coordinate (MALA) is the transition destination state;
    A transition in which the intersection coordinates (MALA) is the current state, a predetermined power saturation is the transition condition, and the intersection coordinates (LALP-) is the transition destination state, and the intersection coordinates (LALP-) is the current state. , a 56th transition including a transition in which the transition condition is elimination of a predetermined power saturation and the intersection coordinate (MALA) is the transition destination state;
    A transition in which the intersection coordinate (MVLV) is the current state, a predetermined current saturation is the transition condition, the intersection coordinate (LVLA) is the transition destination state, and the intersection coordinate (LVLA) is the current state, a predetermined A fifty-seventh transition including a transition in which the current saturation of
    a transition in which the intersection point coordinates (MVLV) are the current state, a predetermined power saturation is the transition condition, and the intersection point coordinates (LVLP−) are the transition destination state; and the intersection point coordinates (LVLP−) are the current state. , a 58th transition including a transition in which the transition condition is elimination of a predetermined current saturation and the intersection coordinate (MVLV) is the transition destination state;
    a transition in which the intersection coordinate (LALP-) is the current state, a predetermined voltage saturation is the transition condition, and the intersection coordinate (LVLA) is the transition destination state; and the intersection coordinate (LVLA) is the current state, A fifty-ninth transition including predetermined power saturation and a transition in which the transition condition is that the intersection point coordinate (LVLA) is on the current minimum curve (MA) side and the intersection point coordinate (LALP-) is the transition destination state. When,
    a transition in which the intersection coordinate (LVLP−) is the current state, a predetermined current saturation is the transition condition, and the intersection coordinate (LVLA) is the transition destination state; and the intersection coordinate (LVLA) is the current state, A 60th transition including predetermined power saturation and a transition in which the intersection coordinate (LVLP-) is set as the transition destination state with the transition condition that the intersection coordinate (LVLA) is on the voltage minimum curve (MV) side. 27. The motor control device according to any one of claims 11 to 26, comprising:
  28.  前記電力最小化曲線(MP)、前記電圧制限曲線(LV)および前記電圧最小曲線(MV)は前記モータの鉄損を用いて記述された2次曲線であり、前記力行電力制限曲線(LP+)および前記回生電力制限曲線(LP-)は鉄損を含んだ電圧方程式で定義された放物線、真円、楕円あるいは双曲線のいずれかである請求項1から27のいずれか1項に記載のモータ制御装置。 The power minimization curve (MP), the voltage limit curve (LV) and the voltage minimum curve (MV) are quadratic curves described using the iron loss of the motor, and the power running power limit curve (LP+) 28. The motor control according to any one of claims 1 to 27, wherein the regenerative power limit curve (LP-) is any one of a parabola, a perfect circle, an ellipse, or a hyperbola defined by a voltage equation including iron loss Device.
  29.  dq軸直交座標系において電流ベクトル制御によってモータを駆動するモータ制御方法であって、
     dq軸直交座標平面における電力最小化曲線(MP)、電流最小曲線(MA)、電圧最小曲線(MV)、電流制限円(LA)、電圧制限曲線(LV)、定トルク曲線(CT)、力行電力制限曲線(LP+)、および回生電力制限曲線(LP-)より選択した2つの曲線の交点のうち電流指令として有効な交点の組合せを求める工程と、
     前記交点の組合せを現在状態と遷移先状態として行方向と列方向にそれぞれ配列し、前記現在状態から前記遷移先状態への遷移条件を設定した状態遷移表を作成する工程と、
     前記現在状態に対応する任意の交点から前記遷移条件に従って遷移したときの前記遷移先状態に対応する交点の前記曲線上における位置関係に基づいて前記モータに対する電流目標値を選択する工程と、を備えるモータ制御方法。 
    A motor control method for driving a motor by current vector control in a dq-axis orthogonal coordinate system,
    Power minimization curve (MP), current minimum curve (MA), voltage minimum curve (MV), current limit circle (LA), voltage limit curve (LV), constant torque curve (CT), motoring on dq axis Cartesian coordinate plane A step of obtaining a combination of intersections effective as a current command from intersections of two curves selected from the power limit curve (LP+) and the regenerative power limit curve (LP-);
    a step of arranging the combinations of the intersection points in the row direction and the column direction as the current state and the transition destination state, respectively, and creating a state transition table in which transition conditions from the current state to the transition destination state are set;
    selecting a current target value for the motor based on the positional relationship on the curve of the intersection corresponding to the transition destination state when transition is made from an arbitrary intersection corresponding to the current state according to the transition condition. motor control method.
PCT/JP2021/022216 2021-03-31 2021-06-10 Motor control device WO2022208908A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180094647.3A CN116888881A (en) 2021-03-31 2021-06-10 Motor control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061273 2021-03-31
JP2021-061273 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022208908A1 true WO2022208908A1 (en) 2022-10-06

Family

ID=83457572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022216 WO2022208908A1 (en) 2021-03-31 2021-06-10 Motor control device

Country Status (2)

Country Link
CN (1) CN116888881A (en)
WO (1) WO2022208908A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245763A (en) * 2006-03-13 2007-09-27 Nissan Motor Co Ltd Drive controller for vehicle
JP2008048540A (en) * 2006-08-17 2008-02-28 Aisin Aw Co Ltd Method and device for controlling driving of electric motor
JP2010041741A (en) * 2008-07-31 2010-02-18 Aisin Aw Co Ltd Rotary electric machine control system, and vehicle drive system with the control system
JP2016226190A (en) * 2015-06-01 2016-12-28 株式会社デンソー Rotating electrical machine control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245763A (en) * 2006-03-13 2007-09-27 Nissan Motor Co Ltd Drive controller for vehicle
JP2008048540A (en) * 2006-08-17 2008-02-28 Aisin Aw Co Ltd Method and device for controlling driving of electric motor
JP2010041741A (en) * 2008-07-31 2010-02-18 Aisin Aw Co Ltd Rotary electric machine control system, and vehicle drive system with the control system
JP2016226190A (en) * 2015-06-01 2016-12-28 株式会社デンソー Rotating electrical machine control device

Also Published As

Publication number Publication date
CN116888881A (en) 2023-10-13

Similar Documents

Publication Publication Date Title
CN100530935C (en) Vector controller for a permanent magnet synchronous motor
US8872454B2 (en) Control unit of rotary device
US10778130B2 (en) Control apparatus for alternating-current rotary electric machine
JP4416764B2 (en) Vector controller and inverter module for permanent magnet motor
US9548688B2 (en) Motor control apparatus
US8847527B2 (en) Control system for a rotary machine
US9935568B2 (en) Control apparatus of rotary electric machine
US20140118865A1 (en) Disconnection detecting device for rotating electrical machine, method for detecting disconnection of rotating electrical machine
JP2001186799A (en) Controller for alternating-current motor
KR101514391B1 (en) Vector controller and motor controller using the same, air-conditioner
JP4775168B2 (en) Control device for three-phase rotating machine
CN103904982A (en) Vehicle and control device for vehicle
JP3852289B2 (en) Motor control device
CN103904980B (en) Vehicle and the control device for vehicle
JP5511700B2 (en) Inverter device, fan drive device, compressor drive device, and air conditioner
JP4135753B2 (en) Motor control device and motor control method
WO2022208908A1 (en) Motor control device
US11955907B2 (en) Rotating electrical machine control system
WO2021192450A1 (en) Motor control device
US11327116B2 (en) Pulse pattern generation device
JP4526628B2 (en) AC motor control device
JP2005102385A (en) Motor controller
JP2018121394A (en) Rotary machine control device and rotary machine control method
JP6962267B2 (en) Pulse pattern generator
JP2009261109A (en) Control device of electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935068

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317056310

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 202180094647.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP