[go: up one dir, main page]

WO2022204997A1 - 无线通信方法、可移动平台、系统及计算机可读存储介质 - Google Patents

无线通信方法、可移动平台、系统及计算机可读存储介质 Download PDF

Info

Publication number
WO2022204997A1
WO2022204997A1 PCT/CN2021/084134 CN2021084134W WO2022204997A1 WO 2022204997 A1 WO2022204997 A1 WO 2022204997A1 CN 2021084134 W CN2021084134 W CN 2021084134W WO 2022204997 A1 WO2022204997 A1 WO 2022204997A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
image data
communication link
terminal device
target
Prior art date
Application number
PCT/CN2021/084134
Other languages
English (en)
French (fr)
Inventor
吴利予
尹小俊
马宁
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/084134 priority Critical patent/WO2022204997A1/zh
Publication of WO2022204997A1 publication Critical patent/WO2022204997A1/zh
Priority to US18/374,665 priority patent/US20240032118A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/005Moving wireless networks

Definitions

  • the present application relates to the field of data transmission, and in particular, to a wireless communication method, a removable platform, a system, and a computer-readable storage medium.
  • the wireless communication link between the mobile platform and the terminal device is mainly realized based on the point-to-point private communication method.
  • the mobile platform as an unmanned aerial vehicle as an example
  • most of the wireless communication links between the unmanned aerial vehicle and the terminal device are implemented based on Software Defined Radio (SDR).
  • SDR Software Defined Radio
  • the private communication method has the advantage of low latency
  • the working frequency band of the private communication method is the ISM frequency band, which is prone to interference. Therefore, it is difficult to use this single wireless communication method to meet the increasing users' demands for delay, image transmission quality and The user experience is not good due to the requirements of various performance indicators such as communication reliability.
  • the embodiments of the present application provide a wireless communication method, a movable platform, a system, and a computer-readable storage medium, which aim to improve the reliability and efficiency of data transmission.
  • an embodiment of the present application provides a wireless communication method, which is applied to a movable platform, where at least two wireless communication links can be established between the movable platform and a terminal device, and the at least two wireless communication links
  • the method is used to transmit the image data collected by the movable platform to the terminal device, and the method includes:
  • the image data collected by the movable platform is encoded according to the channel parameters, and the encoded image data is sent to the terminal device through the at least two wireless communication links.
  • an embodiment of the present application further provides a movable platform, where at least two wireless communication links can be established between the movable platform and a terminal device, and the at least two wireless communication links are used to connect all The image data collected by the movable platform is transmitted to the terminal device, and the movable platform includes at least two wireless communication devices, a memory and a processor;
  • the at least two wireless communication devices are used to establish at least two wireless communication links between the movable platform and the terminal device;
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • the image data collected by the movable platform is encoded according to the channel parameters, and the encoded image data is sent to the terminal device through the at least two wireless communication links.
  • an embodiment of the present application further provides a communication system, characterized in that, the communication system includes a terminal device and the above-mentioned movable platform, and at least two communication systems can be established between the movable platform and the terminal device. wireless communication links, the at least two wireless communication links are used for transmitting the image data collected by the movable platform to the terminal device.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the above-mentioned wireless communication method.
  • Embodiments of the present application provide a wireless communication method, a movable platform, a system, and a computer-readable storage medium, by acquiring channel parameters of at least two established wireless communication links, and the established at least two wireless communication links
  • the channel includes at least one public network communication link, and then encodes the image data collected by the mobile platform according to the channel parameters, and sends the encoded image data to the terminal device through at least two wireless communication links, which can greatly improve the Improve the reliability and efficiency of data transmission.
  • FIG. 1 is a schematic diagram of a scenario for implementing a wireless communication method provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of steps of a wireless communication method provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of sub-steps of the wireless communication method in FIG. 2;
  • FIG. 4 is a schematic diagram of two wireless communication links transmitting image data in an embodiment of the present application.
  • FIG. 5 is another schematic diagram of two wireless communication links transmitting image data in an embodiment of the present application.
  • FIG. 6 is another schematic diagram of two wireless communication links transmitting image data in an embodiment of the present application.
  • FIG. 7 is another schematic diagram of two wireless communication links transmitting image data in an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of sub-steps of the wireless communication method in FIG. 2;
  • FIG. 9 is a schematic block diagram of the structure of a movable platform provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural block diagram of a communication system provided by an embodiment of the present application.
  • the wireless communication link between the mobile platform and the terminal device is mainly realized based on the point-to-point private communication method.
  • the mobile platform as an unmanned aerial vehicle as an example
  • most of the wireless communication links between the unmanned aerial vehicle and the terminal device are implemented based on Software Defined Radio (SDR).
  • SDR Software Defined Radio
  • the private communication method has the advantage of low latency
  • the working frequency band of the private communication method is the ISM frequency band, which is prone to interference. Therefore, it is difficult to use this single wireless communication method to meet the increasing users' demands for delay, image transmission quality and The user experience is not good due to the requirements of various performance indicators such as communication reliability.
  • the embodiments of the present application provide a wireless communication method, a movable platform, a system and a computer-readable storage medium, by acquiring the channel parameters of at least two established wireless communication links, and the established at least The two wireless communication links include at least one public network communication link, and then encode the image data collected by the movable platform according to the channel parameters, and send the encoded image data to the terminal device through at least two wireless communication links , which can greatly improve the reliability and efficiency of data transmission.
  • FIG. 1 is a schematic diagram of a scenario for implementing the wireless communication method provided by the embodiment of the present application.
  • this scenario includes a movable platform 100 and a terminal device 200.
  • At least two wireless communication links can be established between the movable platform 100 and the terminal device 200, and the at least two wireless communication links are used to connect the movable platform 100 and the terminal device 200.
  • the image data collected by the platform 100 is transmitted to the terminal device 200 , the at least two established wireless communication links include at least one public network communication link, and the terminal device 200 is used to control the movable platform 100 .
  • the movable platform 100 includes a platform body 110, a power system 120 provided on the platform body 110, a photographing device 130, at least two wireless communication devices (not shown in FIG. 1 ) and a control system (not shown in FIG. 1 ),
  • the power system 120 is used for providing moving power for the movable platform 100
  • the photographing device 130 is used for collecting image data.
  • the at least two wireless communication devices included in the movable platform 100 include a first wireless communication device and a second wireless communication device
  • the terminal device 200 also includes at least two wireless communication devices
  • the terminal device 200 includes at least two wireless communication devices.
  • the wireless communication devices include a third wireless communication device and a fourth wireless communication device.
  • the first wireless communication device and the third wireless communication device are used to establish a first wireless communication link between the movable platform 100 and the terminal device 200.
  • the second wireless communication device and the fourth wireless communication device are used to establish a second wireless communication link between the movable platform 100 and the terminal device 200 .
  • the first wireless communication link may be a public network communication link
  • the second wireless communication link may be a private network communication link
  • the first wireless communication link may be a private network communication link
  • the second wireless communication link may be a private network communication link.
  • the road can be a public network communication link.
  • the public network communication link is a wireless communication link established based on public network communication
  • the private network communication link is a wireless communication link established based on private communication.
  • Public communication includes but is not limited to 4G communication, 5G communication and 6G communication
  • private communication includes but is not limited to Lightbridge and Ocusync based on Software Defined Radio (SDR).
  • the power system 120 may include one or more propellers 121 , one or more motors 122 corresponding to the one or more propellers, and one or more electronic governors (referred to as ESCs for short).
  • the motor 122 is connected between the electronic governor and the propeller 121, and the motor 122 and the propeller 121 are arranged on the platform body 110 of the movable platform 100; the electronic governor is used for receiving the driving signal generated by the control system, and according to the driving signal A driving current is provided to the motor 122 to control the rotational speed of the motor 122 .
  • the motor 122 is used to drive the propeller 121 to rotate, thereby providing power for the movement of the movable platform 100, and the power enables the movable platform 100 to achieve one or more degrees of freedom movement.
  • the movable platform 100 may rotate about one or more axes of rotation.
  • the above-mentioned rotation axes may include a roll axis, a yaw axis, and a pitch axis.
  • the motor 122 may be a DC motor or an AC motor.
  • the motor 122 may be a brushless motor or a brushed motor.
  • the control system may include a processor and a sensing system.
  • the sensing system is used to measure the attitude information of the movable platform, that is, the position information and state information of the movable platform 100 in space, such as 3D position, 3D angle, 3D velocity, 3D acceleration and 3D angular velocity.
  • the sensing system may include, for example, at least one of a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (Inertial Measurement Unit, IMU), a visual sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • the processor is used to control the movement of the movable platform 100, for example, the movement of the movable platform 100 can be controlled according to the attitude information measured by the sensing system. It should be understood that the processor may control the movable platform 100 according to pre-programmed instructions.
  • the processor is configured to acquire channel parameters of at least two established wireless communication links; and encode the image data collected by the movable platform 100 according to the channel parameters, and pass the at least two wireless communication links.
  • the encoded image data is transmitted to the terminal device 200 .
  • the movable platform 100 includes unmanned aerial vehicles, unmanned vehicles, manned vehicles, manned aircraft and mobile robots, and the unmanned aerial vehicles include rotary-wing unmanned aerial vehicles, such as single-rotor unmanned aerial vehicles, dual-rotor unmanned aerial vehicles, A quad-rotor drone, a six-rotor drone, an eight-rotor drone, or a fixed-wing drone, or a combination of a rotary-wing and fixed-wing drone, is not limited here.
  • the terminal device 200 includes a display device 210 , and the terminal device 200 displays the image data sent by the movable platform 100 through the display device 210 for viewing by the user.
  • the display device 210 includes a display screen disposed on the terminal device 200 or a display independent of the terminal device 200, and the display independent of the terminal device 200 may include a mobile phone, a tablet computer, a personal computer, etc. Other electronic equipment with a display screen.
  • the display screen includes an LED display screen, an OLED display screen, an LCD display screen, and the like.
  • the terminal device 200 may include but is not limited to: smart phone/mobile phone, tablet computer, personal digital assistant (PDA), desktop computer, media content player, video game station/system, virtual reality system, augmented reality system, wearable devices (eg, watches, glasses, gloves, headwear (eg, hats, helmets, virtual reality headsets, augmented reality headsets, head mounted devices (HMDs), headbands), pendants, armbands, leg loops, shoes, vest), gesture recognition device, microphone, any electronic device capable of providing or rendering image data, or any other type of device.
  • the terminal device 200 may be a handheld terminal, and the terminal device 200 may be portable.
  • the terminal device 200 may be carried by a human user. In some cases, the end device 200 may be remote from the human user, and the user may control the end device 200 using wireless and/or wired communications.
  • the wireless communication method provided by the present application can also be applied to image transmission between a movable platform and a movable platform (such as video transmission between two manned vehicles), and the connection between the terminal device and the terminal device image transmission (such as video call) between surveillance cameras and terminal equipment, etc., which are not specifically limited in this application.
  • the wireless communication method provided by the embodiments of the present application will be introduced in detail with reference to the scenario in FIG. 1 .
  • the scenario in FIG. 1 is only used to explain the wireless communication method provided by the embodiment of the present application, but does not constitute a limitation on the application scenario of the wireless communication method provided by the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of steps of a wireless communication method provided by an embodiment of the present application.
  • the wireless communication method can be applied to a movable platform for improving the reliability and efficiency of data transmission between the movable platform and a terminal device.
  • the wireless communication method may include steps S101 to S102.
  • Step S101 Acquire channel parameters of at least two established wireless communication links, wherein the at least two established wireless communication links include at least one public network communication link.
  • Step S102 Encode the image data collected by the movable platform according to the channel parameter, and send the encoded image data to the terminal device through the at least two wireless communication links.
  • the at least two wireless communication links between the movable platform and the terminal device include at least one public network communication link and at least one private network communication link, and the public network communication link is established based on public network communication.
  • private network communication link is a wireless communication link established based on private communication
  • public communication includes but is not limited to 4G communication, 5G communication and 6G communication
  • private communication includes but is not limited to software defined radio (Software Defined Radio) , Lightbridge and Ocusync of SDR), etc.
  • the channel parameters of the wireless communication link include the channel bandwidth, reference signal received power and/or received signal-to-noise ratio of the wireless communication link. Sending the encoded image data to the terminal device through the public network communication link and the private network communication link can solve the problem of signal occlusion in the point-to-point private communication, and can greatly improve the reliability and efficiency of data transmission.
  • the terminal device in the process of the user controlling the movable platform through the terminal device, after receiving the first channel of image data transmitted through the private network communication link, the terminal device can decode the first channel of image data in real time, And display the first image data obtained by decoding, so that the terminal device can display the real-time image transmission data, and it is convenient for the user to control the mobile platform.
  • the second image data transmitted through the public network communication link if the terminal device is in the live broadcast state , the second channel of image data can be transmitted to the live broadcast platform, and the live broadcast platform distributes the second channel of image data to the user terminals watching the live broadcast.
  • the movable platform includes at least a first wireless communication device and a second wireless communication device
  • the terminal device also includes at least two wireless communication devices
  • the terminal device includes at least a third wireless communication device and a fourth wireless communication device.
  • the first wireless communication device The device and the third wireless communication device are used to establish the first wireless communication link between the movable platform and the terminal device
  • the second wireless communication device and the fourth wireless communication device are used to establish the first wireless communication link between the movable platform and the terminal device. Two wireless communication links.
  • the first wireless communication link may be a public network communication link
  • the second wireless communication link may be a private network communication link
  • the first wireless communication link may be a private network communication link
  • the second wireless communication link may be a private network communication link.
  • the road can be a public network communication link.
  • the public network communication link is a wireless communication link established based on public network communication
  • the private network communication link is a wireless communication link established based on private communication.
  • the first transmission delay corresponding to the private network communication link is smaller than the second transmission delay corresponding to the public network communication link
  • the first transmission data volume corresponding to the private network communication link is smaller than the second transmission data corresponding to the public network communication link quantity.
  • the at least two wireless communication links between the movable platform and the terminal device include a first public network communication link and a second public network communication link, and the network operation corresponding to the first public network communication link is
  • the network operator corresponding to the second public network communication link is different or the same.
  • the 4G network or 5G network in the public network communication is mainly constructed by different network operators. For example, China Mobile and China Radio and Television share and jointly build a 5G network in the 700MHz+2.6GHz+4.9GHz frequency band, and use 700M to expand the network.
  • step S102 may include: sub-steps S1021 to S1023.
  • Sub-step S1021 Determine a target channel parameter from the first channel parameter and the second channel parameter.
  • the at least two wireless communication links include a first wireless communication link and a second wireless communication link
  • the channel parameters include a first channel parameter of the first wireless communication link and a second channel of the second wireless communication link parameters
  • the first channel parameter includes any one of the first channel bandwidth and the first received signal-to-noise ratio
  • the second channel parameter includes any one of the second channel bandwidth and the second received signal-to-noise ratio
  • the target channel parameter includes Either of the target channel bandwidth and the target received signal-to-noise ratio.
  • the first channel parameter is determined as the target channel parameter; if the first channel parameter is greater than the second channel parameter, the second channel parameter is determined as the target channel parameter.
  • the first channel bandwidth is determined as the target channel bandwidth, and if the first channel bandwidth is greater than the second channel bandwidth, the second channel bandwidth is determined as the target channel bandwidth.
  • the first received SNR is smaller than the second received SNR, the first received SNR is determined as the target received SNR, and if the first received SNR is greater than the second received SNR, the first received SNR is determined as the target received SNR.
  • the second received signal-to-noise ratio is determined as the target received signal-to-noise ratio.
  • Sub-step S1022 Encode the image data according to the target channel parameter to obtain target image data.
  • the target coding rate is determined according to the target channel parameter; the image data is encoded according to the target coding rate to obtain the target image data.
  • the movable platform stores the mapping relationship between the channel parameters and the coding rate. According to the mapping relationship between the channel parameters and the coding rate and the target channel parameters, the target coding rate can be quickly determined. The larger the coding rate and the smaller the channel parameter, the smaller the coding rate.
  • the mapping relationship between the channel parameter and the coding rate can be set based on the actual situation, which is not specifically limited in this embodiment of the present application. By dynamically adjusting the target coding rate through the target channel parameters, the bandwidth utilization rate of the wireless communication link can be improved.
  • Sub-step S1023 Send the target image data to the terminal device through the at least two wireless communication links.
  • the target image data is simultaneously sent to the terminal device through at least two wireless communication links, and the terminal device decodes the received target image data after receiving the at least two channels of encoded target image data. and perform de-redundancy processing on the decoded image data, and then display or store the de-redundant image data.
  • the target image data is sub-packaged to obtain multiple data packets; and multiple data packets are simultaneously sent to the terminal device through the first wireless communication link and the second wireless communication link.
  • Sending multiple data packets to the terminal device simultaneously through the first wireless communication link and the second wireless communication link can avoid the retransmission of the entire target image data caused by the loss of bytes during the transmission process. If the data packet is lost or wrong, but the data packet transmitted by another wireless communication link is correct, the correct data packet can be used to restore the complete image data, which greatly improves the reliability and efficiency of data transmission.
  • the method of sub-packetizing the target image data to obtain multiple data packets may be: determining the target number of bits according to the target channel parameter; data pack.
  • the movable platform stores the mapping relationship between the channel parameters and the number of bits of the data packet, and according to the mapping relationship and the target channel parameter, the target number of bits of the data packet can be determined, and each data packet carries a CRC check code, The terminal device can check the received data packet through the CRC check code.
  • the target image data is divided into a first data packet queue 11, the first data packet queue 11 includes 6 data packets, and each data packet carries a CRC check code, the first wireless
  • the third data packet is lost or an error occurs, resulting in that there is no third data packet in the second data packet queue 12 transmitted by the first wireless communication link, and the second wireless communication link does not have the third data packet.
  • the fifth data packet is lost or an error occurs, resulting in that there is no fifth data packet in the third data packet queue 13 transmitted by the second wireless communication link.
  • the first data packet queue 11 can be recovered from the second data packet queue 12 and the third data packet queue 13, thereby improving the reliability of data transmission.
  • the first number of bits is determined according to the first channel parameter, and the target image data is packetized according to the first number of bits to obtain a plurality of first data packets; the second number of bits is determined according to the second channel parameter , and perform packet processing on the target image data according to the second number of bits to obtain a plurality of second data packets; send a plurality of first data packets to the terminal device through the first wireless communication link, and at the same time through the second wireless communication link A plurality of second data packets are sent to the terminal device.
  • the first number of bits and the second number of bits may be the same or different, which is not specifically limited in this application.
  • the encoded transmission that is divided into zeros can also be based on the byte order, and the packet size is completely determined by the two wireless communication links.
  • the second wireless communication link is based on one data packet every 4000 bytes, and the terminal device restores the original data through the byte order. For example, the data reception error between the 1000th byte and the 2000th byte transmitted by the first wireless communication link , the data between the 1st byte and the 4000th byte transmitted by the second wireless communication link can be used for recovery.
  • the target image data is sub-packaged to obtain multiple data packets; the first part of the data packets in the multiple data packets is sent to the terminal device through the first wireless communication link; and the second wireless communication link is used simultaneously.
  • the route sends the second part of the data packets other than the first part of the data packets among the plurality of data packets to the terminal device.
  • the number of the data packets in the first part of the data packets and the number of the data packets in the second part of the data packets may be the same or different. Transmission of a part of data packets through one wireless communication link, and simultaneous transmission of another part of data packets through another wireless communication link can improve data transmission efficiency and reliability.
  • the target image data is divided into a data packet queue 20, and the data packet queue 20 includes 6 data packets, namely, data packet 1, data packet 2, data packet 3, data packet 4, and data packet 4.
  • Packet 5 and data packet 6, and each data packet carries a CRC check code
  • the first part of the data packet 21 is transmitted through the first wireless communication link
  • the first part of the data packet 21 includes data packet 1
  • the second part of the data packet 22 is transmitted through the second wireless communication link
  • the second part of the data packet 22 includes the data packet 4 , the data packet 5 and the data packet 6 .
  • the second part of the data packet is sent to the terminal device through the first wireless communication link, and the second part of the data packet is sent to the terminal device through the second wireless communication link at the same time.
  • the first part of the packet By sending the second part of the data packet to the terminal device through the first wireless communication link after completing the sending of the first part of the data packet and the second part of the data packet, and simultaneously sending the first part of the data packet to the terminal device through the second wireless communication link, Realizing the exchange and transmission of data packets can improve the reliability of data transmission.
  • the movable platform splits the target image data into 6 data packets, and at time T1, the first transmission starts, that is, link 1 sends data packet 1, data packet 2 and packet 3, link 2 sends packet 4, packet 5, and packet 6 to the terminal device; after the transmission is completed, start the second transmission, that is, link 1 sends packet 4, data packet 4 to the terminal device packet 5 and packet 6, link 2 sends packet 1, packet 2, and packet 3 to the terminal device; at time T2, the terminal device receives the data sent by link 1 and link 2, because the two links
  • the transmission delay is different, and T2 is subject to the longest transmission delay; if there is no packet loss during the transmission process, then at the time of T2, the terminal device can only receive 3 data packets before, and can receive two data packets.
  • link 1 may be the first wireless communication link
  • link 2 may be the second wireless communication link.
  • the channel quality of the link where the packet loss occurs is not high, or there is interference.
  • link 1 did not successfully transmit packet 2
  • the link Road 1 and link 2 exchange the order of the transmitted data packets, that is, data packet 2 will be transmitted on link 2, and the interference will not change too drastically in a short time, so the probability that link 2 successfully transmits data packet 2 will increase so that the end device can receive the complete 6 data packets sent by both links.
  • the data packet transmission of the two links is completed at time T4, and the terminal device can receive the complete 6 data packets.
  • the first feedback information sent by the terminal device is obtained, and whether there is an error in the transmitted data packet is determined according to the first feedback information; Send the second part of the data packet; at the same time send the first part of the data packet to the terminal device through the second wireless communication link.
  • the first feedback information carries an error label, it can be determined that an error occurs in the transmitted data packet, and if the first feedback information does not carry an error label, it can be determined that there is no error in the transmitted data packet.
  • the second part of the data packet is sent to the terminal device through the first wireless communication link, and the first part of the data packet is sent to the terminal device through the second wireless communication link, so as to realize the exchange and transmission of data packets , which can improve the reliability of data transmission.
  • the first feedback information sent by the terminal device is acquired, and whether there is an error in the transmitted data packet is determined according to the first feedback information; Determine the data packet to be retransmitted in the If the data packet is located in the second part of the data packet, the data packet to be retransmitted is retransmitted to the terminal device through the first wireless communication link.
  • the reliability and efficiency of data transmission can be improved by retransmitting the lost data packets through another wireless communication link when a packet loss occurs in a certain wireless communication link.
  • the movable platform splits the target image data into 6 data packets, and at time T1, the first transmission starts, that is, link 1 sends data packet 1, data packet 2 and packet 3, link 2 sends packet 4, packet 5, and packet 6 to the terminal device; at time T2, the terminal device receives the data sent by link 1 and link 2, because the two links The transmission delay is different, and T2 is subject to the longest transmission delay; at time T3, the terminal device sends the first feedback information to the mobile platform, and it can be seen from the first feedback information that the data packet 2 transmitted by link 1 has not been received. Request retransmission; after receiving the feedback, the movable platform retransmits data packet 2 on link 2; at time T4, the terminal device receives the retransmitted data packet 2 and recovers the complete 6 data packets.
  • step S102 may include: sub-steps S1024 to S1026.
  • Sub-step S1024 Determine a target wireless communication link with the best link quality from the at least two wireless communication links according to the channel parameters of each wireless communication link.
  • the link quality of each wireless communication link is determined according to the channel parameters of each wireless communication link; the wireless communication link with the best link quality is selected from the at least two wireless communication links as the target wireless communication link.
  • the method for determining the link quality of the wireless communication link may be: determining each wireless communication link according to the channel bandwidth, reference signal received power, received signal-to-noise ratio and/or transmission delay of each wireless communication link link quality.
  • Sub-step S1025 Encode the first part of the image data according to the channel parameters of the target wireless communication link, and send the encoded first part of the image data to the terminal device through the target wireless communication link.
  • the target coding rate is determined according to the channel bandwidth of the target wireless communication link; the first part of the image data is coded according to the target coding rate.
  • the movable platform stores a mapping relationship between the channel bandwidth and the coding rate. According to the mapping relationship and the channel bandwidth of the target wireless communication link, the target coding rate can be determined. The larger the channel bandwidth, the larger the coding rate. The smaller the channel bandwidth, the smaller the encoding rate.
  • the mapping relationship between the channel bandwidth and the encoding rate may be set based on the actual situation, which is not specifically limited in this embodiment of the present application.
  • Sub-step S1026 Encode the second part of the image data according to the channel parameters of the remaining wireless communication links, and send the encoded second part of the image data to the terminal device through the remaining wireless communication links.
  • the link quality of the first wireless communication link is the best, the first part of image data is transmitted through the first wireless communication link, and the second part of image data is transmitted through the second wireless communication link; If the link quality of the wireless communication link is the best, the first part of the image data is transmitted through the second wireless communication link, and the second part of the image data is transmitted through the first wireless communication link.
  • the transmission priority of the first part of the image data is higher than the transmission priority of the second part of the image data.
  • the first part of the image data is the real-time image transmission data of the mobile platform
  • the second part of the image data is the captured video or picture that the user wants to download
  • the real-time image transmission is transmitted through the target wireless communication link with the best link quality.
  • Data, through the rest of the wireless communication link to transmit the captured video or pictures that the user wants to download which can ensure that the terminal device can reliably receive the real-time image transmission data, and the terminal device can display the real-time image transmission data to inform the user of the mobile platform.
  • the surrounding environment is convenient for users to control the movable platform through the displayed real-time image transmission data, so as to ensure the safety of the movable platform.
  • obtain the second feedback information sent by the terminal device and determine whether there is an error in the image data transmitted by the target wireless communication link according to the second feedback information; if there is an error in the image data transmitted by the target wireless communication link, then Determine the image data to be retransmitted from the first part of the image data according to the second feedback information; suspend the encoded second part of image data sent to the terminal device through the remaining wireless communication links, and send the encoded second image data to the terminal device through the remaining wireless communication links.
  • the terminal device sends the image data to be retransmitted; after the image data to be retransmitted is sent, the second part of the encoded image data continues to be sent to the terminal device through the remaining wireless communication links.
  • the erroneous image data is transmitted through the remaining wireless communication links, so that the terminal device can quickly restore the complete image data based on the retransmitted image data, and can also ensure the transmission of the image data. Continuity greatly improves the reliability and efficiency of data transmission.
  • a target wireless communication link with the best link quality is determined from at least two wireless communication links;
  • the image data collected by the mobile platform is encoded; the encoded image data is simultaneously sent to the terminal device through at least two wireless communication links.
  • Encoding the image data through the channel parameters of the wireless communication link with the best link quality can ensure the utilization rate of the wireless communication link with the best link quality, and transmit the same image data through the remaining wireless communication links at the same time. The reliability and efficiency of data transmission can be improved.
  • the link quality of the first wireless communication link is the best, the image data collected by the movable platform is encoded according to the first channel parameter of the first wireless communication link; The encoded image data is sent to the terminal device simultaneously with the second wireless communication link. If the link quality of the second wireless communication link is the best, encode the image data collected by the movable platform according to the second channel parameter of the second wireless communication link; The communication link simultaneously sends the encoded image data to the end device.
  • obtain the third feedback information sent by the terminal device and determine whether there is an error in the image data transmitted by the target wireless communication link according to the third feedback information; if there is an error in the image data transmitted by the target wireless communication link, then Determine the image data to be retransmitted according to the third feedback information; suspend sending the encoded image data to the terminal device through the remaining wireless communication links; send the image data to be retransmitted to the terminal device through the remaining wireless communication links; After the image data to be retransmitted is sent, continue to send the encoded image data to the terminal device through the remaining wireless communication links.
  • the erroneous image data is transmitted through the remaining wireless communication links, so that the terminal device can quickly restore the complete image data based on the retransmitted image data, and can also ensure the transmission of the image data. Continuity greatly improves the reliability and efficiency of data transmission.
  • the link quality of the first wireless communication link is the best, when an error occurs in the image data transmitted by the first wireless communication link, sending the encoded image to the terminal device through the second wireless communication link is suspended. data, and send the image data to be retransmitted to the terminal device through the second wireless communication link; after the image data to be retransmitted is sent, continue to send the encoded image data to the terminal device through the second wireless communication link.
  • the link quality change trend of the target wireless communication link is obtained; according to the link quality change trend, the target channel bandwidth is selected from the channel bandwidths of at least two wireless communication links;
  • the image data collected by the platform is encoded; the encoded image data is simultaneously sent to the terminal device through at least two wireless communication links.
  • the channel bandwidth can be dynamically determined through the change trend of the link quality of the target wireless communication link, and after encoding the image data based on the channel bandwidth, the encoded image data can be simultaneously transmitted by at least two wireless communication links. The reliability and efficiency of data transmission can be improved.
  • the channel bandwidth of the target wireless communication link is determined as the target channel bandwidth; if the link quality change trend meets the preset link quality If the falling condition is satisfied, the channel bandwidth of the remaining wireless communication link is determined as the target channel bandwidth.
  • the link quality degradation condition includes that the degraded link quality gain is greater than the link quality degradation threshold.
  • the channel of the first wireless communication link is determined as the target channel bandwidth, and when the change trend of the link quality of the first wireless communication link satisfies the preset link quality degradation condition, the channel bandwidth of the second wireless communication link is determined as the target channel bandwidth.
  • the link quality of the established first wireless communication link is obtained; if the link quality of the first wireless communication link is less than or equal to a preset threshold, then the link quality between the movable platform and the terminal device is established.
  • For the remaining wireless communication links at least two wireless communication links are obtained; the channel parameters of the at least two established wireless communication links are obtained, wherein the established at least two wireless communication links include at least one public network communication link ; Encode the image data collected by the movable platform according to the channel parameters, and send the encoded image data to the terminal device through at least two wireless communication links.
  • the link quality of the established first wireless communication link is poor, establishing the remaining wireless communication links and sending the encoded image data through at least two wireless communication links can improve the reliability and efficiency of data transmission .
  • the link quality of the first wireless communication link is greater than a preset threshold
  • the image data collected by the movable platform is encoded according to the channel parameters of the first wireless communication link;
  • the link sends the encoded image data to the end device.
  • the remaining wireless communications are disconnected. link; encode the image data collected by the movable platform according to the channel parameters of the first wireless communication link; send the encoded image data to the terminal device through the first wireless communication link.
  • a first fault-tolerant frame acquisition request sent by an intermediate node of a non-point-to-point wireless communication link is acquired; according to the first fault-tolerant frame acquisition request, intra-frame encoding is performed on the image data collected by the movable platform to obtain a fault-tolerant frame. frame; send a fault-tolerant frame to the terminal device through any wireless communication link, or send the fault-tolerant frame to the terminal device through the wireless communication link with the best link quality, or send the fault-tolerant frame to the terminal device simultaneously through at least two wireless communication links frame.
  • the at least two wireless communication links include non-point-to-point wireless communication links.
  • the non-point-to-point wireless communication links may be public network communication links.
  • the public network communication links may also be point-to-point wireless communication links.
  • the wireless communication link includes at least one intermediate node, which can be a server or a base station.
  • the mobile platform sends the fault-tolerant frame to the terminal device through the fault-tolerant frame acquisition request sent by the intermediate node of the wireless communication link, which can help the terminal device to quickly restore the picture based on the fault-tolerant frame.
  • the encoded image data of the UAV is transmitted to the remote control through the downlink, and the remote control feeds back to the UAV according to the received data; if there is frame loss during the transmission process, the It is necessary to notify the encoder of the UAV through the uplink, requesting the UAV to send an error-tolerant frame (I frame), so that the remote control can resume normal subsequent decoding.
  • I frame error-tolerant frame
  • non-point-to-point wireless communication link includes data upload (the drone uploads data to the intermediate node), data download (the intermediate node sends the drone to the intermediate node)
  • the uploaded data is sent to the remote controller) on two separate links, and frame loss may occur on both links during the transmission process. If the data has been lost in the process of uploading the data from the aircraft to the intermediate node, in this case, even if the data with packet loss is transmitted to the remote control, the remote control cannot complete the correct decoding and display, and must be reset. Initiate a fault-tolerant frame get request.
  • the remote control sends the fault-tolerant frame acquisition request to the intermediate node, and then the intermediate node sends the fault-tolerant frame acquisition request to the UAV.
  • the UAV's encoder After the UAV's encoder receives the request, it will take a long time to re-encode .
  • the decoder on the remote control cannot complete the decoding and display of all subsequent data, and the screen will freeze, which seriously affects the user experience.
  • it can actively initiate a fault-tolerant frame acquisition request to the UAV, without waiting for the remote controller to detect packet loss. Then initiate a fault-tolerant frame acquisition request to the drone to reduce the waiting time, thereby contributing to the rapid recovery of the picture.
  • the first moment recorded by the movable platform receiving the first fault-tolerant frame acquisition request is acquired;
  • the second moment recorded by the fault-tolerant frame acquisition request, and the reception time difference is determined according to the first moment and the second moment; if the reception time difference is less than or equal to the preset time difference, the second fault-tolerant frame acquisition request is not responded to.
  • the preset time difference may be set based on an actual situation, which is not specifically limited in this embodiment of the present application.
  • the intermediate node In the point-to-point wireless communication link, although the intermediate node actively sends a fault-tolerant frame acquisition request to the mobile platform, the intermediate node still transmits incomplete data to the terminal device, and the terminal device receives the incomplete data when the incomplete data is received. , it will also send a fault-tolerant frame acquisition request to the mobile platform. In order to avoid frequently sending fault-tolerant frames to the terminal device, the time difference between the two sending fault-tolerant frame acquisition requests can be recorded. When the time difference is less than or equal to the preset time difference, no new fault-tolerant frame will be added. Frame acquisition request in response.
  • FIG. 9 is a schematic structural block diagram of a movable platform provided by an embodiment of the present application.
  • the movable platform 200 includes at least two wireless communication devices 210, a memory 220 and a processor 230, and the at least two wireless communication devices 210, the memory 220 and the processor 230 are connected by a bus 240, for example, the bus 240 is I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the at least two wireless communication devices 210 are used to establish at least two wireless communication links between the movable platform 200 and the terminal device, and the at least two wireless communication links are used for image data collected by the movable platform 200 transmitted to the terminal device.
  • the memory 220 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a mobile hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 220 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a mobile hard disk, and the like.
  • the processor 230 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the processor 220 is configured to run the computer program stored in the memory 230, and implement the following steps when executing the computer program:
  • the image data collected by the movable platform is encoded according to the channel parameters, and the encoded image data is sent to the terminal device through the at least two wireless communication links.
  • the at least two wireless communication links include at least one public network communication link and at least one private network communication link
  • the public network communication link is a wireless communication link established based on public network communication
  • the private network communication link is a wireless communication link established based on private communication.
  • the first transmission delay corresponding to the private network communication link is smaller than the second transmission delay corresponding to the public network communication link, and the first transmission data volume corresponding to the private network communication link is It is less than the second transmission data amount corresponding to the public network communication link.
  • the at least two wireless communication links include a first public network communication link and a second public network communication link, and the network operator corresponding to the first public network communication link is associated with the first public network communication link.
  • the network operators corresponding to the two public network communication links are different or the same.
  • the at least two wireless communication links include a first wireless communication link and a second wireless communication link
  • the channel parameters include a first channel parameter and all of the first wireless communication link.
  • the second channel parameter of the second wireless communication link the processor encodes the image data collected by the movable platform according to the channel parameter, and sends the data to the image data collected by the movable platform through the at least two wireless communication links.
  • the terminal device sends the encoded image data, it is used to realize:
  • the target image data is sent to the terminal device through the at least two wireless communication links.
  • the processor when the processor determines the target channel parameter from the first channel parameter and the second channel parameter, the processor is configured to:
  • the first channel parameter is smaller than the second channel parameter, determining the first channel parameter as the target channel parameter
  • the second channel parameter is determined as the target channel parameter.
  • the processor when the processor encodes the image data according to the target channel parameters to obtain the target image data, the processor is configured to:
  • the image data is encoded according to the target encoding code rate to obtain target image data.
  • the processor when the processor implements sending the target image data to the terminal device through the at least two wireless communication links, the processor is configured to implement:
  • the plurality of data packets are simultaneously sent to the terminal device over the first wireless communication link and the second wireless communication link.
  • the processor when the processor implements packet processing on the target image data to obtain multiple data packets, the processor is used to implement:
  • the target image data is packetized according to the target number of bits to obtain a plurality of data packets.
  • the processor when the processor implements sending the target image data to the terminal device through the at least two wireless communication links, the processor is configured to implement:
  • the plurality of first data packets are sent to the terminal device through the first wireless communication link, while the plurality of second data packets are sent to the terminal device through the second wireless communication link.
  • the processor when the processor implements sending the target image data to the terminal device through the at least two wireless communication links, the processor is configured to implement:
  • the second part of the data packets other than the first part of the data packets among the plurality of data packets is sent to the terminal device through the second wireless communication link.
  • the processor is further configured to implement the following steps:
  • the first part of the data packet is sent to the terminal device through the second wireless communication link.
  • the processor is further configured to implement the following steps:
  • the data packet to be retransmitted is located in the first part of the data packet, retransmitting the data packet to be retransmitted to the terminal device through the second wireless communication link;
  • the data packet to be retransmitted is located in the second part of the data packet, retransmit the data packet to be retransmitted to the terminal device through the first wireless communication link.
  • the image data includes a first part of image data and a second part of image data
  • the processor encodes the image data collected by the movable platform according to the channel parameters, and uses the When the at least two wireless communication links send the encoded image data to the terminal device, it is used to implement:
  • each of the wireless communication links determine the target wireless communication link with the best link quality from the at least two wireless communication links
  • the second part of the image data is encoded according to the channel parameters of the remaining wireless communication links, and the encoded second part of the image data is sent to the terminal device through the remaining wireless communication links.
  • the transmission priority of the first part of the image data is higher than the transmission priority of the second part of the image data.
  • the processor when the processor encodes the first part of the image data according to the channel parameters of the target wireless communication link, the processor is configured to:
  • the first partial image data is encoded according to the target encoding rate.
  • the processor determines the target wireless communication link with the best link quality from the at least two wireless communication links according to the channel parameters of each wireless communication link, Used to implement:
  • the wireless communication link with the best link quality is selected from the at least two wireless communication links as the target wireless communication link.
  • the determining the link quality of each of the wireless communication links according to the channel parameters of each of the wireless communication links includes:
  • the link quality of each wireless communication link is determined according to the channel bandwidth, reference signal received power, received signal-to-noise ratio and/or transmission delay of each wireless communication link.
  • the processor is further configured to implement the following steps:
  • the processor encodes the image data collected by the movable platform according to the channel parameters, and sends the encoded image data to the terminal device through the at least two wireless communication links.
  • the image data is used to implement:
  • each of the wireless communication links from the at least two wireless communication links, determine the target wireless communication link with the best link quality
  • the encoded image data is simultaneously sent to the terminal device through the at least two wireless communication links.
  • the processor is further configured to implement the following steps:
  • the processor is further configured to implement the following steps:
  • the encoded image data is simultaneously sent to the terminal device through the at least two wireless communication links.
  • the processor when the processor selects a target channel bandwidth from channel bandwidths of the at least two wireless communication links according to the change trend of the link quality, the processor is configured to:
  • the channel bandwidths of the remaining wireless communication links are determined as the target channel bandwidth.
  • the link quality degradation condition includes that the degraded link quality gain is greater than a link quality degradation threshold.
  • the processor before obtaining the channel parameters of the at least two established wireless communication links, the processor is further configured to:
  • the link quality of the first wireless communication link is less than or equal to a preset threshold, establishing the remaining wireless communication links between the movable platform and the terminal device to obtain at least two wireless communication links.
  • the processor is further configured to implement the following steps:
  • the link quality of the first wireless communication link is greater than a preset threshold, encoding the image data collected by the movable platform according to the channel parameters of the first wireless communication link;
  • the encoded image data is sent to the terminal device through the first wireless communication link.
  • the processor is further configured to implement the following steps:
  • the encoded image data is sent to the terminal device through the first wireless communication link.
  • the at least two wireless communication links include non-point-to-point wireless communication links
  • the processor is further configured to implement the following steps:
  • the error-tolerant frame is sent to the terminal device through any one of the wireless communication links, or the error-tolerant frame is sent to the terminal device through the wireless communication link with the best link quality, or the at least two The wireless communication link simultaneously transmits the error-tolerant frame to the end device.
  • the non-point-to-point wireless communication link includes at least one intermediate node.
  • the processor is further configured to implement the following steps:
  • FIG. 10 is a schematic structural block diagram of a communication system provided by an embodiment of the present application.
  • the communication system 300 includes a movable platform 310 and a terminal device 320.
  • At least two wireless communication links can be established between the movable platform 310 and the terminal device 320, and the at least two wireless communication links are used to connect the movable platform 310 and the terminal device 320.
  • the image data collected by the mobile platform 310 is transmitted to the terminal device 320 .
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and the computer program includes program instructions, and the processor executes the program instructions to realize the provision of the above embodiments. steps of a wireless communication method.
  • the computer-readable storage medium may be an internal storage unit of the removable platform described in any of the foregoing embodiments, such as a hard disk or a memory of the removable platform.
  • the computer-readable storage medium can also be an external storage device of the removable platform, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital) equipped on the removable platform , SD) card, flash memory card (Flash Card), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信方法、可移动平台、系统及计算机可读存储介质,其中该方法包括:获取已建立的至少两条无线通信链路的信道参数,其中,已建立的至少两条无线通信链路包括至少一条公网通信链路(S101);根据信道参数对可移动平台采集到的图像数据进行编码,并通过至少两条无线通信链路向终端设备发送编码后的图像数据(S102)。该方法能够提高数据传输的可靠性和效率。

Description

无线通信方法、可移动平台、系统及计算机可读存储介质 技术领域
本申请涉及数据传输领域,尤其涉及一种无线通信方法、可移动平台、系统及计算机可读存储介质。
背景技术
目前,可移动平台与终端设备之间的无线通信链路主要是基于点对点的私有通信方式实现的。以可移动平台为无人机为例,现有技术中,无人机和终端设备之间的无线通信链路大多数是基于软件无线电(Software Defined Radio,SDR)实现的。虽然,私有通信方式具有低延时的优点,但私有通信方式的工作频段为ISM频段,容易受到干扰,因此采用这种单一的无线通信方式难以满足用户日益增长的对时延、图传质量和通信可靠性等多种性能指标的要求,用户体验不好。
发明内容
基于此,本申请实施例提供了一种无线通信方法、可移动平台、系统及计算机可读存储介质,旨在提高数据传输的可靠性和效率。
第一方面,本申请实施例提供了一种无线通信方法,应用于可移动平台,所述可移动平台与终端设备之间能够建立至少两条无线通信链路,所述至少两条无线通信链路用于将所述可移动平台采集到的图像数据传输至所述终端设备,所述方法包括:
获取已建立的至少两条无线通信链路的信道参数,其中,已建立的所述至少两条无线通信链路包括至少一条公网通信链路;
根据所述信道参数对所述可移动平台采集到的图像数据进行编码,并通过所述至少两条无线通信链路向所述终端设备发送编码后的图像数据。
第二方面,本申请实施例还提供了一种可移动平台,所述可移动平台与终端设备之间能够建立至少两条无线通信链路,所述至少两条无线通信链路用于将所述可移动平台采集到的图像数据传输至所述终端设备,所述可移动平台包括至少两个无线通信装置、存储器和处理器;
所述至少两个无线通信装置用于建立所述可移动平台与终端设备之间的至少两条无线通信链路;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取已建立的至少两条无线通信链路的信道参数,其中,已建立的所述至少两条无线通信链路包括至少一条公网通信链路;
根据所述信道参数对所述可移动平台采集到的图像数据进行编码,并通过所述至少两条无线通信链路向所述终端设备发送编码后的图像数据。
第三方面,本申请实施例还提供了一种通信系统,其特征在于,所述通信系统包括终端设备和如上所述的可移动平台,所述可移动平台与终端设备之间能够建立至少两条无线通信链路,所述至少两条无线通信链路用于将所述可移动平台采集到的图像数据传输至所述终端设备。
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上所述的无线通信方法。
本申请实施例提供了一种无线通信方法、可移动平台、系统及计算机可读存储介质,通过获取已建立的至少两条无线通信链路的信道参数,且已建立的至少两条无线通信链路包括至少一条公网通信链路,然后根据该信道参数对可移动平台采集到的图像数据进行编码,并通过至少两条无线通信链路向终端设备发送编码后的图像数据,可以极大的提高数据传输的可靠性和效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施本申请实施例提供的无线通信方法的一场景示意图;
图2是本申请实施例提供的一种无线通信方法的步骤示意流程图;
图3是图2中的无线通信方法的子步骤示意流程图;
图4是本申请实施例中的两条无线通信链路传输图像数据的一示意图;
图5是本申请实施例中的两条无线通信链路传输图像数据的另一示意图;
图6是本申请实施例中的两条无线通信链路传输图像数据的另一示意图;
图7是本申请实施例中的两条无线通信链路传输图像数据的另一示意图;
图8是图2中的无线通信方法的子步骤示意流程图;
图9是本申请实施例提供的一种可移动平台的结构示意性框图;
图10是本申请实施例提供的一种通信系统的结构示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
目前,可移动平台与终端设备之间的无线通信链路主要是基于点对点的私有通信方式实现的。以可移动平台为无人机为例,现有技术中,无人机和终端设备之间的无线通信链路大多数是基于软件无线电(Software Defined Radio,SDR)实现的。虽然,私有通信方式具有低延时的优点,但私有通信方式的工作频段为ISM频段,容易受到干扰,因此采用这种单一的无线通信方式难以满足用户日益增长的对时延、图传质量和通信可靠性等多种性能指标的要求,用户体验不好。
为解决上述问题,本申请实施例提供了一种无线通信方法、可移动平台、系统及计算机可读存储介质,通过获取已建立的至少两条无线通信链路的信道参数,且已建立的至少两条无线通信链路包括至少一条公网通信链路,然后根据该信道参数对可移动平台采集到的图像数据进行编码,并通过至少两条无线通信链路向终端设备发送编码后的图像数据,可以极大的提高数据传输的可靠性和效率。
请参阅图1,图1是实施本申请实施例提供的无线通信方法的一场景示意图。如图1所示,该场景包括可移动平台100和终端设备200,可移动平台100与终端设备200之间能够建立至少两条无线通信链路,至少两条无线通信链路 用于将可移动平台100采集到的图像数据传输至终端设备200,已建立的至少两条无线通信链路包括至少一条公网通信链路,终端设备200用于控制可移动平台100。可移动平台100包括平台本体110、设于平台本体110上的动力系统120、拍摄装置130、至少两个无线通信装置(图1中未示出)和控制系统(图1中未示出),动力系统120用于为可移动平台100提供移动动力,拍摄装置130用于采集图像数据。
在一实施例中,可移动平台100包括的至少两个无线通信装置包括第一无线通信装置和第二无线通信装置,终端设备200也包括至少两个无线通信装置,终端设备200包括的至少两个无线通信装置包括第三无线通信装置和第四无线通信装置,第一无线通信装置与第三无线通信装置用于建立可移动平台100与终端设备200之间的第一无线通信链路,第二无线通信装置与第四无线通信装置用于建立可移动平台100与终端设备200之间的第二无线通信链路。
其中,第一无线通信链路可以为公网通信链路,第二无线通信链路可以为私网通信链路,或者第一无线通信链路可以为私网通信链路,第二无线通信链路可以为公网通信链路。公网通信链路是基于公网通信建立的无线通信链路,私网通信链路是基于私有通信建立的无线通信链路。公有通信包括但不限于4G通信、5G通信和6G通信,私有通信包括但不限于基于软件无线电(Software Defined Radio,SDR)的Lightbridge和Ocusync等。
在一实施例中,动力系统120可以包括一个或多个螺旋桨121、与一个或多个螺旋桨相对应的一个或多个电机122、一个或多个电子调速器(简称为电调)。其中,电机122连接在电子调速器与螺旋桨121之间,电机122和螺旋桨121设置在可移动平台100的平台本体110上;电子调速器用于接收控制系统产生的驱动信号,并根据驱动信号提供驱动电流给电机122,以控制电机122的转速。电机122用于驱动螺旋桨121旋转,从而为可移动平台100的移动提供动力,该动力使得可移动平台100能够实现一个或多个自由度的运动。在某些实施例中,可移动平台100可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、偏航轴和俯仰轴。应理解,电机122可以是直流电机,也可以交流电机。另外,电机122可以是无刷电机,也可以是有刷电机。
其中,控制系统可以包括处理器和传感系统。传感系统用于测量可移动平台的姿态信息,即可移动平台100在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit, IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。处理器用于控制可移动平台100的移动,例如,可以根据传感系统测量的姿态信息控制可移动平台100的移动。应理解,处理器可以按照预先编好的程序指令对可移动平台100进行控制。
在一实施例中,处理器用于获取已建立的至少两条无线通信链路的信道参数;以及根据信道参数对可移动平台100采集到的图像数据进行编码,并通过至少两条无线通信链路向终端设备200发送编码后的图像数据。其中,可移动平台100包括无人机、无人车、载人车、载人飞机和可移动机器人,无人机包括旋翼型无人机,例如单旋翼无人机、双旋翼无人机、四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机,还可以是旋翼型与固定翼无人机的组合,在此不作限定。
在一实施例中,终端设备200包括显示装置210,终端设备200通过显示装置210显示可移动平台100发送的图像数据,以供用户观看。需要说明的是,显示装置210包括设置在终端设备200上的显示屏或者独立于终端设备200的显示器,独立于终端设备200的显示器可以包括手机、平板电脑或者个人电脑等,或者也可以是带有显示屏的其他电子设备。其中,该显示屏包括LED显示屏、OLED显示屏、LCD显示屏等等。
其中,终端设备200可以包括但不限于:智能电话/手机、平板电脑、个人数字助理(PDA)、台式计算机、媒体内容播放器、视频游戏站/系统、虚拟现实系统、增强现实系统、可穿戴式装置(例如,手表、眼镜、手套、头饰(例如,帽子、头盔、虚拟现实头戴耳机、增强现实头戴耳机、头装式装置(HMD)、头带)、挂件、臂章、腿环、鞋子、马甲)、手势识别装置、麦克风、能够提供或渲染图像数据的任意电子装置、或者任何其他类型的装置。该终端设备200可以是手持终端,终端设备200可以是便携式的。该终端设备200可以由人类用户携带。在一些情况下,终端设备200可以远离人类用户,并且用户可以使用无线和/或有线通信来控制终端设备200。
在一实施例中,本申请提供的无线通信方法,也可以应用于可移动平台与可移动平台之间的图像传输(如两辆载人车之间进行视频传输),终端设备和终端设备之间的图像传输(如视频通话)、监控摄像头与终端设备之间的图像传输等,本申请对此不做具体限定。
以下,将结合图1中的场景对本申请的实施例提供的无线通信方法进行详 细介绍。需知,图1中的场景仅用于解释本申请实施例提供的无线通信方法,但并不构成对本申请实施例提供的无线通信方法应用场景的限定。
请参阅图2,图2是本申请实施例提供的一种无线通信方法的步骤示意流程图。该无线通信方法可以应用于可移动平台,用于提高可移动平台与终端设备之间的数据传输的可靠性和效率。
如图2所示,该无线通信方法可以包括步骤S101至步骤S102。
步骤S101、获取已建立的至少两条无线通信链路的信道参数,其中,已建立的所述至少两条无线通信链路包括至少一条公网通信链路。
步骤S102、根据所述信道参数对所述可移动平台采集到的图像数据进行编码,并通过所述至少两条无线通信链路向所述终端设备发送编码后的图像数据。
在一实施例中,可移动平台与终端设备之间的至少两条无线通信链路包括至少一条公网通信链路和至少一条私网通信链路,公网通信链路是基于公网通信建立的无线通信链路,私网通信链路是基于私有通信建立的无线通信链路,公有通信包括但不限于4G通信、5G通信和6G通信,私有通信包括但不限于基于软件无线电(Software Defined Radio,SDR)的Lightbridge和Ocusync等,无线通信链路的信道参数包括无线通信链路的信道带宽、参考信号接收功率和/或接收信噪比。通过公网通信链路和私网通信链路向终端设备发送编码后的图像数据,可以解决点对点的私有通信中的信号遮挡问题,能够极大的提高了数据传输的可靠性和效率。
在一实施例中,在用户通过终端设备控制可移动平台的过程中,终端设备在接收到通过私网通信链路传输的第一路图像数据后,可以实时对第一路图像数据进行解码,并显示解码得到的第一图像数据,以便终端设备显示实时图传数据,便于用户控制可移动平台,在接收到通过公网通信链路传输的第二路图像数据后,若终端设备处于直播状态,可以将第二路图像数据传输给直播平台,由直播平台将第二路图像数据分发给观看直播的用户终端。通过上述方式,可以在保证实时图传数据的传输可靠性,也可以保证直播画面的画质,极大的提高了用户体验。
其中,可移动平台至少包括第一无线通信装置和第二无线通信装置,终端设备也包括至少两个无线通信装置,终端设备至少包括第三无线通信装置和第四无线通信装置,第一无线通信装置与第三无线通信装置用于建立可移动平台与终端设备之间的第一无线通信链路,第二无线通信装置与第四无线通信装置用于建立可移动平台与终端设备之间的第二无线通信链路。
其中,第一无线通信链路可以为公网通信链路,第二无线通信链路可以为私网通信链路,或者第一无线通信链路可以为私网通信链路,第二无线通信链路可以为公网通信链路。公网通信链路是基于公网通信建立的无线通信链路,私网通信链路是基于私有通信建立的无线通信链路。私网通信链路对应的第一传输时延小于公网通信链路对应的第二传输时延,私网通信链路对应的第一传输数据量小于公网通信链路对应的第二传输数据量。
在一实施例中,可移动平台与终端设备之间的至少两条无线通信链路包括第一公网通信链路和第二公网通信链路,第一公网通信链路对应的网络运营商与第二公网通信链路对应的网络运营商不同或相同。其中,公网通信中的4G网络或5G网络主要是由不同的网络运营商进行建设的,例如,中国移动和中国广电在700MHz+2.6GHz+4.9GHz频段共享共建5G网络,以700M做广域覆盖,2.6G做热点覆盖,4.9G做室内覆盖,既能满足当前To C的需求,也能满足未来To B的应用,而中国电信和中国联通在2.1GHz+3.5GHz频段共享共建5G网络,无线侧共享,承载网互通,核心网相互独立,支持TDD+FDD时频双聚合。由于各网络运营商部署的无线网络频段不同,不可避免会出现有些地方的中国移动和中国广电的信号好,有些地方的中国电信和中国联通的信号好的情况,难以做到一个运营商适应所有无线网络,而通过连接两个不同的网络运营商的网络,可以有效应对某个网络运营商布网不够优化导致的信号弱的问题,可以极大的提高通信的可靠性。
在一实施例中,如图3所示,步骤S102可以包括:子步骤S1021至S1023。
子步骤S1021、从所述第一信道参数和所述第二信道参数中确定目标信道参数。
其中,至少两条无线通信链路包括第一无线通信链路和第二无线通信链路,该信道参数包括第一无线通信链路的第一信道参数和第二无线通信链路的第二信道参数,第一信道参数包括第一信道带宽和第一接收信噪比中的任一项,第二信道参数包括第二信道带宽和第二接收信噪比中的任一项,目标信道参数包括目标信道带宽和目标接收信噪比中的任一项。
在一实施例中,若第一信道参数小于第二信道参数,则将第一信道参数确定为目标信道参数;若第一信道参数大于第二信道参数,则将第二信道参数确定为目标信道参数。通过将第一信道参数和第二信道参数中的较小的一个确定为目标信道参数,使得后续基于目标信道参数对图像数据进行编码后,第一无线通信链路和第二无线通信链路能够传输编码后的图像数据,减少通信链路的 拥塞发生。
示例性的,若第一信道带宽小于第二信道带宽,则将第一信道带宽确定为目标信道带宽,若第一信道带宽大于第二信道带宽,则将第二信道带宽确定为目标信道带宽。或者,若第一接收信噪比小于第二接收信噪比,则将第一接收信噪比确定为目标接收信噪比,若第一接收信噪比大于第二接收信噪比,则将第二接收信噪比确定为目标接收信噪比。
子步骤S1022、根据所述目标信道参数对所述图像数据进行编码,得到目标图像数据。
示例性的,根据目标信道参数确定目标编码码率;根据该目标编码码率对图像数据进行编码,得到目标图像数据。其中,可移动平台存储有信道参数与编码码率之间的映射关系,根据信道参数与编码码率之间的映射关系以及目标信道参数可以快速的确定目标编码码率,信道参数越大,则编码码率越大,信道参数越小,则编码码率越小,信道参数与编码码率之间的映射关系可基于实际情况进行设置,本申请实施例对此不做具体限定。通过目标信道参数动态的调整目标编码码率,可以提高无线通信链路的带宽利用率。
子步骤S1023、通过所述至少两条无线通信链路向所述终端设备发送所述目标图像数据。
在得到目标图像数据后,通过至少两条无线通信链路同时向终端设备发送目标图像数据,终端设备在接收到至少两路编码后的目标图像数据后,对接收到的目标图像数据进行解码,并对解码得到的图像数据进行去冗余处理,然后显示或存储经过去冗余处理后的图像数据。
在一实施例中,对目标图像数据进行分包处理,得到多个数据包;通过第一无线通信链路和第二无线通信链路同时向终端设备发送多个数据包。通过第一无线通信链路和第二无线通信链路同时向终端设备发送多个数据包,可以避免传输过程中的字节丢失导致整个目标图像数据的重传,在一无线通信链路传输的数据包丢失或错误,而另一无线通信链路传输的数据包正确,则可以使用正确的数据包来恢复完整的图像数据,极大的提高了数据传输的可靠性和效率。
在一实施例中,对目标图像数据进行分包处理,得到多个数据包的方式可以为:根据目标信道参数确定目标比特数;根据目标比特数对目标图像数据进行分包处理,得到多个数据包。其中,可移动平台存储有信道参数与数据包的比特数之间的映射关系,根据该映射关系和目标信道参数,可以确定数据包的目标比特数,每个数据包携带有CRC校验码,终端设备可以通过CRC校验码 可以对接收到的数据包进行校验。
示例性的,如图4所示,目标图像数据被划分为第一数据包队列11,第一数据包队列11包括6个数据包,且每个数据包携带有CRC校验码,第一无线通信链路传输这6个数据包时,第3个数据包丢失或出现错误,导致第一无线通信链路传输的第二数据包队列12中没有第3个数据包,而第二无线通信链路传输这6个数据包时,第5个数据包丢失或出现错误,导致第二无线通信链路传输的第三数据包队列13中没有第5个数据包,而当终端设备同时接收到第二数据包队列12和第三数据包队列13后,可以从第二数据包队列12和第三数据包队列13中恢复得到第一数据包队列11,提高数据传输可靠性。
在一实施例中,根据第一信道参数确定第一比特数,并根据第一比特数对目标图像数据进行分包处理,得到多个第一数据包;根据第二信道参数确定第二比特数,并根据第二比特数对目标图像数据进行分包处理,得到多个第二数据包;通过第一无线通信链路向终端设备发送多个第一数据包,同时通过第二无线通信链路向终端设备发送多个第二数据包。其中,第一比特数与第二比特数可以相同,也可以不相同,本申请对此不做具体限定。
可以理解的是,化整为零的编码传输还可以基于字节序,分包大小完全由两个无线通信链路自行决定,比如第一无线通信链路按照每1000字节一个数据包,第二无线通信链路按照每4000字节一个数据包,终端设备通过字节序来恢复原始数据,例如,第一无线通信链路传输的第1000字节~第2000字节之间的数据接收错误,则可以利用第二无线通信链路传输的第1字节~第4000字节之间的数据来恢复。
在一实施例中,对目标图像数据进行分包处理,得到多个数据包;通过第一无线通信链路向终端设备发送多个数据包中的第一部分数据包;同时通过第二无线通信链路向终端设备发送多个数据包中的除第一部分数据包以外的第二部分数据包。其中,第一部分数据包中的数据包的数量与第二部分数据包中的数据包的数量可以相同,也可以不同。通过一条无线通信链路传输一部分数据包,并通过另外一条无线通信链路同时传输另一部分数据包,可以提高数据传输效率和可靠性。
示例性的,如图5所示,目标图像数据被划分为数据包队列20,数据包队列20包括6个数据包,分别为数据包1、数据包2、数据包3、数据包4、数据包5和数据包6,且每个数据包携带有CRC校验码,通过第一无线通信链路传输第一部分数据包21,第一部分数据包21包括数据包1、数据包2和数据包3, 通过第二无线通信链路传输第二部分数据包22,第二部分数据包22包括数据包4、数据包5和数据包6。
在一实施例中,在发送完成第一部分数据包和第二部分数据包后,通过第一无线通信链路向终端设备发送第二部分数据包,同时通过第二无线通信链路向终端设备发送第一部分数据包。通过在发送完成第一部分数据包和第二部分数据包后,通过第一无线通信链路向终端设备发送第二部分数据包,同时通过第二无线通信链路向终端设备发送第一部分数据包,实现数据包的交换传输,可以提高数据传输的可靠性。
例如,如图6所示,在T0时刻,可移动平台将目标图像数据拆分为6个数据包,在T1时刻,开始第一次传输,即链路1向终端设备发送数据包1、数据包2和数据包3,链路2向终端设备发送数据包4、数据包5、数据包6;在发送完成后,开启第二次传输,即链路1向终端设备发送数据包4、数据包5和数据包6,链路2向终端设备发送数据包1、数据包2、数据包3;在T2时刻,终端设备接收到链路1和链路2发送的数据,由于两个链路的传输延时不同,T2以最长传输延时为准;如果传输过程中没有丢包,那么在T2时刻,终端设备在以前只能接收3个数据包的时间内,就能够接收到两条链路发送的完整的6个数据包。其中,链路1可以为第一无线通信链路,链路2可以为第二无线通信链路。
如果第一次传输的过程中有丢包,则表示出现丢包的链路的信道质量不高,或者有干扰,比如链路1没有成功传输数据包2,但在第二次传输时,链路1与链路2交换了传输的数据包的顺序,即数据包2会在链路2上传输,在短时间内,干扰不会过于剧烈变化,因此链路2成功传输数据包2的概率会增加,使得终端设备能够接收到两条链路发送的完整的6个数据包。最差情况下,在T4时刻两条链路的数据包传输完成,终端设备可以收到完整的6个数据包。
在一实施例中,获取终端设备发送的第一反馈信息,并根据第一反馈信息确定传输的数据包是否出现错误;若传输的数据包出现错误,则通过第一无线通信链路向终端设备发送第二部分数据包;同时通过第二无线通信链路向终端设备发送第一部分数据包。其中,若第一反馈信息携带有错误标签,则可以确定传输的数据包出现错误,而若第一反馈信息未携带有错误标签,则可以确定传输的数据包未出现错误。通过在传输的数据包出现错误时,通过第一无线通信链路向终端设备发送第二部分数据包,同时通过第二无线通信链路向终端设备发送第一部分数据包,实现数据包的交换传输,可以提高数据传输的可靠性。
在一实施例中,获取终端设备发送的第一反馈信息,并根据第一反馈信息确定传输的数据包是否出现错误;若传输的数据包出现错误,则根据第一反馈信息从多个数据包中确定待重传的数据包;若待重传的数据包位于第一部分数据包,则通过第二无线通信链路向终端设备重传该待重传的数据包;若待重传的数据包位于第二部分数据包,则通过第一无线通信链路向终端设备重传该待重传的数据包。通过在某一条无线通信链路出现丢包时,通过另一条无线通信链路重传丢失的数据包,可以提高数据传输的可靠性和效率。
例如,如图7所示,在T0时刻,可移动平台将目标图像数据拆分为6个数据包,在T1时刻,开始第一次传输,即链路1向终端设备发送数据包1、数据包2和数据包3,链路2向终端设备发送数据包4、数据包5、数据包6;在T2时刻,终端设备接收到链路1和链路2发送的数据,由于两个链路的传输延时不同,T2以最长传输延时为准;在T3时刻,终端设备向可移动平台发送第一反馈信息,通过第一反馈信息可知链路1传输的数据包2没有收到,请求重传;可移动平台收到反馈后,在链路2重传数据包2;在T4时刻,终端设备收到重传的数据包2,恢复出完整的6个数据包。
在一实施例中,如图8所示,步骤S102可以包括:子步骤S1024至S1026。
子步骤S1024、根据每条所述无线通信链路的信道参数,从所述至少两条无线通信链路中确定链路质量最好的目标无线通信链路。
在一实施例中,根据每条无线通信链路的信道参数,确定每条无线通信链路的链路质量;从至少两条无线通信链路中选择链路质量最好的无线通信链路作为目标无线通信链路。其中,无线通信链路的链路质量的确定方式可以为:根据每条无线通信链路的信道带宽、参考信号接收功率、接收信噪比和/或传输时延,确定每条无线通信链路的链路质量。
可以理解的是,无线通信链路的信道带宽、参考信号接收功率和/或接收信噪比越高,而传输时延越低,则无线通信链路的链路质量越好,无线通信链路的信道带宽、参考信号接收功率和/或接收信噪比越低,而传输时延越高,则无线通信链路的链路质量越差。
子步骤S1025、根据所述目标无线通信链路的信道参数对所述第一部分图像数据进行编码,并通过所述目标无线通信链路向所述终端设备发送编码后的第一部分图像数据。
在一实施例中,根据目标无线通信链路的信道带宽确定目标编码速率;根据目标编码速率对第一部分图像数据进行编码。其中,可移动平台中存储有信 道带宽与编码速率之间的映射关系,根据该映射关系和目标无线通信链路的信道带宽,可以确定目标编码速率,信道带宽越大,则编码速率越大,信道带宽越小,则编码速率越小,信道带宽与编码速率之间的映射关系可基于实际情况进行设置,本申请实施例对此不做具体限定。
子步骤S1026、根据其余的无线通信链路的信道参数对所述第二部分图像数据进行编码,通过其余的无线通信链路向所述终端设备发送编码后的第二部分图像数据。
示例性的,若第一无线通信链路的链路质量最好,则通过第一无线通信链路传输第一部分图像数据,而通过第二无线通信链路传输第二部分图像数据;若第二无线通信链路的链路质量最好,则通过第二无线通信链路传输第一部分图像数据,而通过第一无线通信链路传输第二部分图像数据。
其中,第一部分图像数据的传输优先级高于第二部分图像数据的传输优先级。例如,第一部分图像数据为可移动平台的实时图传数据,第二部分图像数据为用户想下载的已拍摄的视频或图片,通过链路质量最好的目标无线通信链路来传输实时图传数据,通过其余的无线通信链路来传输用户想下载的已拍摄的视频或图片,可以保证终端设备可靠的接收到实时图传数据,终端设备通过显示该实时图传数据来告知用户可移动平台周围的环境,便于用户通过显示的实时图传数据来控制可移动平台,保证可移动平台的安全。
在一实施例中,获取终端设备发送的第二反馈信息,并根据第二反馈信息确定目标无线通信链路传输的图像数据是否出现错误;若目标无线通信链路传输的图像数据出现错误,则根据第二反馈信息从第一部分图像数据中确定待重传的图像数据;暂停通过其余的无线通信链路向终端设备发送的编码后的第二部分图像数据,并通过其余的无线通信链路向终端设备发送待重传的图像数据;在待重传的图像数据发送完成后,通过其余的无线通信链路继续向终端设备发送编码后的第二部分图像数据。在目标无线通信链路传输的图像数据出现错误时,通过其余的无线通信链路传输出错的图像数据,使得终端设备可以快速的基于重传的图像数据恢复完整的图像数据,也可以保证传输的连续性,极大的提高了数据传输的可靠性和效率。
在一实施例中,根据每条无线通信链路的信道参数,从至少两条无线通信链路中确定链路质量最好的目标无线通信链路;根据目标无线通信链路的信道参数对可移动平台采集到的图像数据进行编码;通过至少两条无线通信链路同时向终端设备发送编码后的图像数据。通过链路质量最好的无线通信链路的信 道参数对图像数据进行编码,可以保证链路质量最好的无线通信链路的利用率,同时通过其余的无线通信链路传输相同的图像数据,可以提高数据传输的可靠性和效率。
示例性的,若第一无线通信链路的链路质量最好,则根据第一无线通信链路的第一信道参数对可移动平台采集到的图像数据进行编码;通过第一无线通信链路和第二无线通信链路同时向终端设备发送编码后的图像数据。若第二无线通信链路的链路质量最好,则根据第二无线通信链路的第二信道参数对可移动平台采集到的图像数据进行编码;通过第一无线通信链路和第二无线通信链路同时向终端设备发送编码后的图像数据。
在一实施例中,获取终端设备发送的第三反馈信息,并根据第三反馈信息确定目标无线通信链路传输的图像数据是否出现错误;若目标无线通信链路传输的图像数据出现错误,则根据第三反馈信息确定待重传的图像数据;暂停通过其余的无线通信链路向终端设备发送编码后的图像数据;通过其余的无线通信链路向终端设备发送待重传的图像数据;在待重传的图像数据发送完成后,通过其余的无线通信链路继续向终端设备发送编码后的图像数据。在目标无线通信链路传输的图像数据出现错误时,通过其余的无线通信链路传输出错的图像数据,使得终端设备可以快速的基于重传的图像数据恢复完整的图像数据,也可以保证传输的连续性,极大的提高了数据传输的可靠性和效率。
示例性的,若第一无线通信链路的链路质量最好,则在第一无线通信链路传输的图像数据出现错误时,暂停通过第二无线通信链路向终端设备发送编码后的图像数据,并通过第二无线通信链路向终端设备发送待重传的图像数据;在待重传的图像数据发送完成后,通过第二无线通信链路继续向终端设备发送编码后的图像数据。
在一实施例中,获取目标无线通信链路的链路质量变化趋势;根据链路质量变化趋势,从至少两条无线通信链路的信道带宽中选择目标信道带宽;根据目标信道带宽对可移动平台采集到的图像数据进行编码;通过至少两条无线通信链路同时向终端设备发送编码后的图像数据。通过目标无线通信链路的链路质量变化趋势,可以动态的确定信道带宽,而基于该信道带宽对图像数据进行编码后,编码后的图像数据均能够被至少两条无线通信链路同时传输,可以提高数据传输的可靠性和效率。
在一实施例中,若链路质量变化趋势不满足预设链路质量下降条件,则将目标无线通信链路的信道带宽确定为目标信道带宽;若链路质量变化趋势满足 预设链路质量下降条件,则将其余的无线通信链路的信道带宽确定为目标信道带宽。其中,链路质量下降条件包括下降的链路质量增益大于链路质量下降门限。通过上述方式,可以在目标无线通信链路的链路质量急剧恶化时,编码速率以两条无线通信链路能够同时传输的带宽作为参考,在两条无线通信链路上同时传输图像数据。
例如,若第一无线通信链路的链路质量最好,则在第一无线通信链路的链路质量变化趋势不满足预设链路质量下降条件时,将第一无线通信链路的信道带宽确定为目标信道带宽,而在第一无线通信链路的链路质量变化趋势满足预设链路质量下降条件时,将第二无线通信链路的信道带宽确定为目标信道带宽。
在一实施例中,获取已建立的第一无线通信链路的链路质量;若第一无线通信链路的链路质量小于或等于预设阈值,则建立可移动平台与终端设备之间的其余无线通信链路,得到至少两条无线通信链路;获取已建立的至少两条无线通信链路的信道参数,其中,已建立的至少两条无线通信链路包括至少一条公网通信链路;根据信道参数对可移动平台采集到的图像数据进行编码,并通过至少两条无线通信链路向终端设备发送编码后的图像数据。在已建立的第一无线通信链路的链路质量较差时,建立其余无线通信链路,并通过至少两条无线通信链路发送编码后的图像数据,可以提高数据传输的可靠性和效率。
在一实施例中,若第一无线通信链路的链路质量大于预设阈值,则根据第一无线通信链路的信道参数对可移动平台采集到的图像数据进行编码;通过第一无线通信链路向终端设备发送编码后的图像数据。通过在第一无线通信链路的链路质量较好时,不建立其余的无线通信链路,仅通过第一无线通信链路向终端设备发送图像数据,可以在保证数据传输的可靠性的同时,降低功耗。
在一实施例中,在建立有至少两条无线通信链路后,若第一无线通信链路的链路质量由小于或等于预设阈值变化为大于预设阈值,则断开其余的无线通信链路;根据第一无线通信链路的信道参数对可移动平台采集到的图像数据进行编码;通过第一无线通信链路向终端设备发送编码后的图像数据。通过在第一无线通信链路的链路质量由差变好后,断开其余的无线通信链路,仅通过第一无线通信链路向终端设备发送图像数据,可以在保证数据传输的可靠性的同时,降低功耗。
在一实施例中,获取非点对点的无线通信链路的中间节点发送的第一容错帧获取请求;根据第一容错帧获取请求,对可移动平台采集到的图像数据进行帧内编码,得到容错帧;通过任意一条无线通信链路向终端设备发送容错帧, 或者通过链路质量最好的无线通信链路向终端设备发送容错帧,或者通过至少两条无线通信链路同时向终端设备发送容错帧。其中,至少两条无线通信链路包括非点对点的无线通信链路,非点对点的无线通信链路可以为公网通信链路,公网通信链路也可以为点对点的无线通信链路,非点对点的无线通信链路包括至少一个中间节点,该中间节点可以为服务器或基站。通过无线通信链路的中间节点发送的容错帧获取请求,由可移动平台向终端设备发送容错帧,可以有助于终端设备基于容错帧快速的恢复画面。
例如,在无人机图传系统中,无人机编码后的图像数据通过下行链路传输到遥控器,遥控器根据收到数据情况给无人机反馈;如果传输过程中有丢帧,则需要通过上行链路通知到无人机的编码器,请求无人机发送容错帧(I帧),以便遥控器恢复后续的正常解码。
若无人机与遥控器之间存在非点对点的无线通信链路,由于非点对点的无线通信链路包括数据上载(无人机将数据上传给中间节点)、数据下载(中间节点将无人机上传的数据下发给遥控器)两个单独的链路,在传输过程中在两个链路上都有可能出现丢帧。假如数据在从飞机上载到中间节点的过程中就已经出现了丢包,这种情况下,即使把存在丢包的数据传输到遥控器,遥控器也无法完成正确解码和显示,而必须要重新发起容错帧获取请求。
但是此时遥控器将容错帧获取请求发送到中间节点,再由中间节点将容错帧获取请求发送到无人机,无人机的编码器收到请求后,重新编码就会需要较长的时间。在此期间因为中途有丢包,遥控器上的解码器无法完成后续所有数据的解码和显示,画面会出现卡顿,严重影响用户体验。为了缓解这一现象,当中间环节已经检测到丢包,或者链路质量恶化或者出现拥塞的情况下,可以主动向无人机发起容错帧获取请求,而不需要等遥控器在发现丢包后再向无人机发起容错帧获取请求,减少等待时间,从而有助于画面的快速恢复。
在一实施例中,若获取到终端设备发送的第二容错帧获取请求,则获取可移动平台接收到第一容错帧获取请求所记录的第一时刻;获取可移动平台接收到所述第二容错帧获取请求所记录的第二时刻,并根据第一时刻和所述第二时刻,确定接收时间差;若接收时间差小于或等于预设时间差,则不对第二容错帧获取请求进行响应。其中,预设时间差可基于实际情况进行设置,本申请实施例对此不做具体限定。
在点对点的无线通信链路中,虽然中间节点主动向可移动平台发送了容错帧获取请求,但中间节点仍然会将不完整的数据传递给终端设备,而终端设备 在接收到不完整的数据时,也会向可移动平台发送了容错帧获取请求,为了避免频繁向终端设备发送容错帧,可以记录两者发送容错帧获取请求的时间差,在时间差小于或等于预设时间差时,不对新的容错帧获取请求进行响应。
请参阅图9,图9是本申请实施例提供的一种可移动平台的结构示意性框图。
如图9所示,可移动平台200包括至少两个无线通信装置210、存储器220和处理器230,至少两个无线通信装置210、存储器220和处理器230通过总线240连接,该总线240比如为I2C(Inter-integrated Circuit)总线。
具体地,至少两个无线通信装置210用于建立可移动平台200与终端设备之间的至少两条无线通信链路,至少两条无线通信链路用于将可移动平台200采集到的图像数据传输至终端设备。
具体地,存储器220可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
具体地,处理器230可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
其中,所述处理器220用于运行存储在存储器230中的计算机程序,并在执行所述计算机程序时实现如下步骤:
获取已建立的至少两条无线通信链路的信道参数,其中,已建立的所述至少两条无线通信链路包括至少一条公网通信链路;
根据所述信道参数对所述可移动平台采集到的图像数据进行编码,并通过所述至少两条无线通信链路向所述终端设备发送编码后的图像数据。
在一实施例中,所述至少两条无线通信链路包括至少一条公网通信链路和至少一条私网通信链路,所述公网通信链路是基于公网通信建立的无线通信链路,所述私网通信链路是基于私有通信建立的无线通信链路。
在一实施例中,所述私网通信链路对应的第一传输时延小于所述公网通信链路对应的第二传输时延,所述私网通信链路对应的第一传输数据量小于所述公网通信链路对应的第二传输数据量。
在一实施例中,所述至少两条无线通信链路包括第一公网通信链路和第二公网通信链路,所述第一公网通信链路对应的网络运营商与所述第二公网通信链路对应的网络运营商不同或相同。
在一实施例中,所述至少两条无线通信链路包括第一无线通信链路和第二 无线通信链路,所述信道参数包括所述第一无线通信链路的第一信道参数和所述第二无线通信链路的第二信道参数,所述处理器在实现根据所述信道参数对所述可移动平台采集到的图像数据进行编码,并通过所述至少两条无线通信链路向所述终端设备发送编码后的图像数据时,用于实现:
从所述第一信道参数和所述第二信道参数中确定目标信道参数;
根据所述目标信道参数对所述图像数据进行编码,得到目标图像数据;
通过所述至少两条无线通信链路向所述终端设备发送所述目标图像数据。
在一实施例中,所述处理器在实现从所述第一信道参数和所述第二信道参数中确定目标信道参数时,用于实现:
若所述第一信道参数小于所述第二信道参数,则将所述第一信道参数确定为目标信道参数;
若所述第一信道参数大于所述第二信道参数,则将所述第二信道参数确定为目标信道参数。
在一实施例中,所述处理器在实现根据所述目标信道参数对所述图像数据进行编码,得到目标图像数据时,用于实现:
根据所述目标信道参数确定目标编码码率;
根据所述目标编码码率对所述图像数据进行编码,得到目标图像数据。
在一实施例中,所述处理器在实现通过所述至少两条无线通信链路向所述终端设备发送所述目标图像数据时,用于实现:
对所述目标图像数据进行分包处理,得到多个数据包;
通过所述第一无线通信链路和所述第二无线通信链路同时向所述终端设备发送所述多个数据包。
在一实施例中,所述处理器在实现对所述目标图像数据进行分包处理,得到多个数据包时,用于实现:
根据所述目标信道参数确定目标比特数;
根据所述目标比特数对所述目标图像数据进行分包处理,得到多个数据包。
在一实施例中,所述处理器在实现通过所述至少两条无线通信链路向所述终端设备发送所述目标图像数据时,用于实现:
根据所述第一信道参数确定第一比特数,并根据所述第一比特数对所述目标图像数据进行分包处理,得到多个第一数据包;
根据所述第二信道参数确定第二比特数,并根据所述第二比特数对所述目标图像数据进行分包处理,得到多个第二数据包;
通过所述第一无线通信链路向所述终端设备发送所述多个第一数据包,同时通过所述第二无线通信链路向所述终端设备发送所述多个第二数据包。
在一实施例中,所述处理器在实现通过所述至少两条无线通信链路向所述终端设备发送所述目标图像数据时,用于实现:
对所述目标图像数据进行分包处理,得到多个数据包;
通过所述第一无线通信链路向所述终端设备发送所述多个数据包中的第一部分数据包;
同时通过所述第二无线通信链路向所述终端设备发送所述多个数据包中的除所述第一部分数据包以外的第二部分数据包。
在一实施例中,所述处理器还用于实现以下步骤:
获取所述终端设备发送的第一反馈信息,并根据所述第一反馈信息确定传输的数据包是否出现错误;
若传输的数据包出现错误,则通过所述第一无线通信链路向所述终端设备发送所述第二部分数据包;
同时通过所述第二无线通信链路向所述终端设备发送所述第一部分数据包。
在一实施例中,所述处理器还用于实现以下步骤:
获取所述终端设备发送的第一反馈信息,并根据所述第一反馈信息确定传输的数据包是否出现错误;
若传输的数据包出现错误,则根据所述第一反馈信息从所述多个数据包中确定待重传的数据包;
若所述待重传的数据包位于所述第一部分数据包,则通过所述第二无线通信链路向所述终端设备重传所述待重传的数据包;
若所述待重传的数据包位于所述第二部分数据包,则通过所述第一无线通信链路向所述终端设备重传所述待重传的数据包。
在一实施例中,所述图像数据包括第一部分图像数据和第二部分图像数据,所述处理器在实现根据所述信道参数对所述可移动平台采集到的图像数据进行编码,并通过所述至少两条无线通信链路向所述终端设备发送编码后的图像数据时,用于实现:
根据每条所述无线通信链路的信道参数,从所述至少两条无线通信链路中确定链路质量最好的目标无线通信链路;
根据所述目标无线通信链路的信道参数对所述第一部分图像数据进行编码,并通过所述目标无线通信链路向所述终端设备发送编码后的第一部分图像数据;
根据其余的无线通信链路的信道参数对所述第二部分图像数据进行编码,通过其余的无线通信链路向所述终端设备发送编码后的第二部分图像数据。
在一实施例中,所述第一部分图像数据的传输优先级高于所述第二部分图像数据的传输优先级。
在一实施例中,所述处理器在实现根据所述目标无线通信链路的信道参数对所述第一部分图像数据进行编码时,用于实现:
根据所述目标无线通信链路的信道带宽确定目标编码速率;
根据所述目标编码速率对所述第一部分图像数据进行编码。
在一实施例中,所述处理器在实现根据每条所述无线通信链路的信道参数,从所述至少两条无线通信链路中确定链路质量最好的目标无线通信链路时,用于实现:
根据每条所述无线通信链路的信道参数,确定每条所述无线通信链路的链路质量;
从所述至少两条无线通信链路中选择所述链路质量最好的无线通信链路作为目标无线通信链路。
在一实施例中,所述根据每条所述无线通信链路的信道参数,确定每条所述无线通信链路的链路质量,包括
根据每条所述无线通信链路的信道带宽、参考信号接收功率、接收信噪比和/或传输时延,确定每条所述无线通信链路的链路质量。
在一实施例中,所述处理器还用于实现以下步骤:
获取所述终端设备发送的第二反馈信息,并根据所述第二反馈信息确定所述目标无线通信链路传输的图像数据是否出现错误;
若所述目标无线通信链路传输的图像数据出现错误,则根据所述第二反馈信息从所述第一部分图像数据中确定待重传的图像数据;
暂停通过其余的无线通信链路向所述终端设备发送的编码后的第二部分图像数据,并通过其余的无线通信链路向所述终端设备发送待重传的图像数据;
在所述待重传的图像数据发送完成后,通过其余的无线通信链路继续向所述终端设备发送编码后的第二部分图像数据。
在一实施例中,所述处理器在实现根据所述信道参数对所述可移动平台采集到的图像数据进行编码,并通过所述至少两条无线通信链路向所述终端设备发送编码后的图像数据时,用于实现:
根据每条所述无线通信链路的信道参数,从所述至少两条无线通信链路中 确定链路质量最好的目标无线通信链路;
根据所述目标无线通信链路的信道参数对所述可移动平台采集到的图像数据进行编码;
通过所述至少两条无线通信链路同时向所述终端设备发送编码后的图像数据。
在一实施例中,所述处理器还用于实现以下步骤:
获取所述终端设备发送的第三反馈信息,并根据所述第三反馈信息确定所述目标无线通信链路传输的图像数据是否出现错误;
若所述目标无线通信链路传输的图像数据出现错误,则根据所述第三反馈信息确定待重传的图像数据;
暂停通过其余的无线通信链路向所述终端设备发送编码后的图像数据;
通过其余的无线通信链路向所述终端设备发送所述待重传的图像数据;
在所述待重传的图像数据发送完成后,通过其余的无线通信链路继续向所述终端设备发送编码后的图像数据。
在一实施例中,所述处理器还用于实现以下步骤:
获取所述目标无线通信链路的链路质量变化趋势;
根据所述链路质量变化趋势,从所述至少两条无线通信链路的信道带宽中选择目标信道带宽;
根据所述目标信道带宽对所述可移动平台采集到的图像数据进行编码;
通过所述至少两条无线通信链路同时向所述终端设备发送编码后的图像数据。
在一实施例中,所述处理器在实现根据所述链路质量变化趋势,从所述至少两条无线通信链路的信道带宽中选择目标信道带宽时,用于实现:
若所述链路质量变化趋势不满足预设链路质量下降条件,则将所述目标无线通信链路的信道带宽确定为目标信道带宽;
若所述链路质量变化趋势满足预设链路质量下降条件,则将其余的无线通信链路的信道带宽确定为目标信道带宽。
在一实施例中,所述链路质量下降条件包括下降的链路质量增益大于链路质量下降门限。
在一实施例中,所述处理器在实现获取已建立的至少两条无线通信链路的信道参数之前,还用于实现:
获取已建立的第一无线通信链路的链路质量;
若所述第一无线通信链路的链路质量小于或等于预设阈值,则建立所述可移动平台与所述终端设备之间的其余无线通信链路,得到至少两条无线通信链路。
在一实施例中,所述处理器还用于实现以下步骤:
若所述第一无线通信链路的链路质量大于预设阈值,则根据所述第一无线通信链路的信道参数对所述可移动平台采集到的图像数据进行编码;
通过所述第一无线通信链路向所述终端设备发送编码后的图像数据。
在一实施例中,所述处理器还用于实现以下步骤:
若所述第一无线通信链路的链路质量由小于或等于预设阈值变化为大于预设阈值,则断开其余的无线通信链路;
根据所述第一无线通信链路的信道参数对所述可移动平台采集到的图像数据进行编码;
通过所述第一无线通信链路向所述终端设备发送编码后的图像数据。
在一实施例中,所述至少两条无线通信链路包括非点对点的无线通信链路,所述处理器还用于实现以下步骤:
获取所述非点对点的无线通信链路的中间节点发送的第一容错帧获取请求;
根据所述第一容错帧获取请求,对所述可移动平台采集到的图像数据进行帧内编码,得到容错帧;
通过任意一条所述无线通信链路向所述终端设备发送所述容错帧,或者通过链路质量最好的无线通信链路向所述终端设备发送所述容错帧,或者通过所述至少两条无线通信链路同时向所述终端设备发送所述容错帧。
在一实施例中,所述非点对点的无线通信链路包括至少一个中间节点。
在一实施例中,所述处理器还用于实现以下步骤:
若获取到所述终端设备发送的第二容错帧获取请求,则获取所述可移动平台接收到所述第一容错帧获取请求所记录的第一时刻;
获取所述可移动平台接收到所述第二容错帧获取请求所记录的第二时刻,并根据所述第一时刻和所述第二时刻,确定接收时间差;
若所述接收时间差小于或等于预设时间差,则不对所述第二容错帧获取请求进行响应。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的可移动平台的具体工作过程,可以参考前述无线通信方法实施例中的对应过程,在此不再赘述。
请参阅图10,图10是本申请实施例提供的一种通信系统的结构示意性框图。如图10所示,通信系统300包括可移动平台310和终端设备320,可移动平台310与终端设备320之间能够建立至少两条无线通信链路,至少两条无线通信链路用于将可移动平台310采集到的图像数据传输至终端设备320。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的通信系统的具体工作过程,可以参考前述无线通信方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的无线通信方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的可移动平台的内部存储单元,例如所述可移动平台的硬盘或内存。所述计算机可读存储介质也可以是所述可移动平台的外部存储设备,例如所述可移动平台上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (62)

  1. 一种无线通信方法,其特征在于,应用于可移动平台,所述可移动平台与终端设备之间能够建立至少两条无线通信链路,所述至少两条无线通信链路用于将所述可移动平台采集到的图像数据传输至所述终端设备,所述方法包括:
    获取已建立的至少两条无线通信链路的信道参数,其中,已建立的所述至少两条无线通信链路包括至少一条公网通信链路;
    根据所述信道参数对所述可移动平台采集到的图像数据进行编码,并通过所述至少两条无线通信链路向所述终端设备发送编码后的图像数据。
  2. 根据权利要求1所述的无线通信方法,其特征在于,所述至少两条无线通信链路包括至少一条公网通信链路和至少一条私网通信链路,所述公网通信链路是基于公网通信建立的无线通信链路,所述私网通信链路是基于私有通信建立的无线通信链路。
  3. 根据权利要求2所述的无线通信方法,其特征在于,所述私网通信链路对应的第一传输时延小于所述公网通信链路对应的第二传输时延,所述私网通信链路对应的第一传输数据量小于所述公网通信链路对应的第二传输数据量。
  4. 根据权利要求1所述的无线通信方法,其特征在于,所述至少两条无线通信链路包括第一公网通信链路和第二公网通信链路,所述第一公网通信链路对应的网络运营商与所述第二公网通信链路对应的网络运营商不同或相同。
  5. 根据权利要求1-4中任一项所述的无线通信方法,其特征在于,所述至少两条无线通信链路包括第一无线通信链路和第二无线通信链路,所述信道参数包括所述第一无线通信链路的第一信道参数和所述第二无线通信链路的第二信道参数,所述根据所述信道参数对所述可移动平台采集到的图像数据进行编码,并通过所述至少两条无线通信链路向所述终端设备发送编码后的图像数据,包括:
    从所述第一信道参数和所述第二信道参数中确定目标信道参数;
    根据所述目标信道参数对所述图像数据进行编码,得到目标图像数据;
    通过所述至少两条无线通信链路向所述终端设备发送所述目标图像数据。
  6. 根据权利要求5所述的无线通信方法,其特征在于,所述从所述第一信道参数和所述第二信道参数中确定目标信道参数,包括:
    若所述第一信道参数小于所述第二信道参数,则将所述第一信道参数确定为目标信道参数;
    若所述第一信道参数大于所述第二信道参数,则将所述第二信道参数确定为目标信道参数。
  7. 根据权利要求5所述的无线通信方法,其特征在于,所述根据所述目标信道参数对所述图像数据进行编码,得到目标图像数据,包括:
    根据所述目标信道参数确定目标编码码率;
    根据所述目标编码码率对所述图像数据进行编码,得到目标图像数据。
  8. 根据权利要求5所述的无线通信方法,其特征在于,所述通过所述至少两条无线通信链路向所述终端设备发送所述目标图像数据,包括:
    对所述目标图像数据进行分包处理,得到多个数据包;
    通过所述第一无线通信链路和所述第二无线通信链路同时向所述终端设备发送所述多个数据包。
  9. 根据权利要求8所述的无线通信方法,其特征在于,所述对所述目标图像数据进行分包处理,得到多个数据包,包括:
    根据所述目标信道参数确定目标比特数;
    根据所述目标比特数对所述目标图像数据进行分包处理,得到多个数据包。
  10. 根据权利要求5所述的无线通信方法,其特征在于,所述通过所述至少两条无线通信链路向所述终端设备发送所述目标图像数据,包括:
    根据所述第一信道参数确定第一比特数,并根据所述第一比特数对所述目标图像数据进行分包处理,得到多个第一数据包;
    根据所述第二信道参数确定第二比特数,并根据所述第二比特数对所述目标图像数据进行分包处理,得到多个第二数据包;
    通过所述第一无线通信链路向所述终端设备发送所述多个第一数据包,同时通过所述第二无线通信链路向所述终端设备发送所述多个第二数据包。
  11. 根据权利要求5所述的无线通信方法,其特征在于,所述通过所述至少两条无线通信链路向所述终端设备发送所述目标图像数据,包括:
    对所述目标图像数据进行分包处理,得到多个数据包;
    通过所述第一无线通信链路向所述终端设备发送所述多个数据包中的第一部分数据包;
    同时通过所述第二无线通信链路向所述终端设备发送所述多个数据包中的除所述第一部分数据包以外的第二部分数据包。
  12. 根据权利要求11所述的无线通信方法,其特征在于,所述方法还包括:
    获取所述终端设备发送的第一反馈信息,并根据所述第一反馈信息确定传 输的数据包是否出现错误;
    若传输的数据包出现错误,则通过所述第一无线通信链路向所述终端设备发送所述第二部分数据包;
    同时通过所述第二无线通信链路向所述终端设备发送所述第一部分数据包。
  13. 根据权利要求11所述的无线通信方法,其特征在于,所述方法还包括:
    获取所述终端设备发送的第一反馈信息,并根据所述第一反馈信息确定传输的数据包是否出现错误;
    若传输的数据包出现错误,则根据所述第一反馈信息从所述多个数据包中确定待重传的数据包;
    若所述待重传的数据包位于所述第一部分数据包,则通过所述第二无线通信链路向所述终端设备重传所述待重传的数据包;
    若所述待重传的数据包位于所述第二部分数据包,则通过所述第一无线通信链路向所述终端设备重传所述待重传的数据包。
  14. 根据权利要求1-4中任一项所述无线通信方法,其特征在于,所述图像数据包括第一部分图像数据和第二部分图像数据,所述根据所述信道参数对所述可移动平台采集到的图像数据进行编码,并通过所述至少两条无线通信链路向所述终端设备发送编码后的图像数据,包括:
    根据每条所述无线通信链路的信道参数,从所述至少两条无线通信链路中确定链路质量最好的目标无线通信链路;
    根据所述目标无线通信链路的信道参数对所述第一部分图像数据进行编码,并通过所述目标无线通信链路向所述终端设备发送编码后的第一部分图像数据;
    根据其余的无线通信链路的信道参数对所述第二部分图像数据进行编码,通过其余的无线通信链路向所述终端设备发送编码后的第二部分图像数据。
  15. 根据权利要求14所述的无线通信方法,其特征在于,所述第一部分图像数据的传输优先级高于所述第二部分图像数据的传输优先级。
  16. 根据权利要求14所述的无线通信方法,其特征在于,所述根据所述目标无线通信链路的信道参数对所述第一部分图像数据进行编码,包括:
    根据所述目标无线通信链路的信道带宽确定目标编码速率;
    根据所述目标编码速率对所述第一部分图像数据进行编码。
  17. 根据权利要求14所述的无线通信方法,其特征在于,所述根据每条所述无线通信链路的信道参数,从所述至少两条无线通信链路中确定链路质量最好的目标无线通信链路,包括:
    根据每条所述无线通信链路的信道参数,确定每条所述无线通信链路的链路质量;
    从所述至少两条无线通信链路中选择所述链路质量最好的无线通信链路作为目标无线通信链路。
  18. 根据权利要求17所述的无线通信方法,其特征在于,所述根据每条所述无线通信链路的信道参数,确定每条所述无线通信链路的链路质量,包括
    根据每条所述无线通信链路的信道带宽、参考信号接收功率、接收信噪比和/或传输时延,确定每条所述无线通信链路的链路质量。
  19. 根据权利要求14所述的无线通信方法,其特征在于,所述方法还包括:
    获取所述终端设备发送的第二反馈信息,并根据所述第二反馈信息确定所述目标无线通信链路传输的图像数据是否出现错误;
    若所述目标无线通信链路传输的图像数据出现错误,则根据所述第二反馈信息从所述第一部分图像数据中确定待重传的图像数据;
    暂停通过其余的无线通信链路向所述终端设备发送的编码后的第二部分图像数据,并通过其余的无线通信链路向所述终端设备发送待重传的图像数据;
    在所述待重传的图像数据发送完成后,通过其余的无线通信链路继续向所述终端设备发送编码后的第二部分图像数据。
  20. 根据权利要求1-4中任一项所述无线通信方法,其特征在于,所述根据所述信道参数对所述可移动平台采集到的图像数据进行编码,并通过所述至少两条无线通信链路向所述终端设备发送编码后的图像数据,包括:
    根据每条所述无线通信链路的信道参数,从所述至少两条无线通信链路中确定链路质量最好的目标无线通信链路;
    根据所述目标无线通信链路的信道参数对所述可移动平台采集到的图像数据进行编码;
    通过所述至少两条无线通信链路同时向所述终端设备发送编码后的图像数据。
  21. 根据权利要求20所述的无线通信方法,其特征在于,所述方法还包括:
    获取所述终端设备发送的第三反馈信息,并根据所述第三反馈信息确定所述目标无线通信链路传输的图像数据是否出现错误;
    若所述目标无线通信链路传输的图像数据出现错误,则根据所述第三反馈信息确定待重传的图像数据;
    暂停通过其余的无线通信链路向所述终端设备发送编码后的图像数据;
    通过其余的无线通信链路向所述终端设备发送所述待重传的图像数据;
    在所述待重传的图像数据发送完成后,通过其余的无线通信链路继续向所述终端设备发送编码后的图像数据。
  22. 根据权利要求20所述的无线通信方法,其特征在于,所述方法还包括:
    获取所述目标无线通信链路的链路质量变化趋势;
    根据所述链路质量变化趋势,从所述至少两条无线通信链路的信道带宽中选择目标信道带宽;
    根据所述目标信道带宽对所述可移动平台采集到的图像数据进行编码;
    通过所述至少两条无线通信链路同时向所述终端设备发送编码后的图像数据。
  23. 根据权利要求22所述的无线通信方法,其特征在于,所述根据所述链路质量变化趋势,从所述至少两条无线通信链路的信道带宽中选择目标信道带宽,包括:
    若所述链路质量变化趋势不满足预设链路质量下降条件,则将所述目标无线通信链路的信道带宽确定为目标信道带宽;
    若所述链路质量变化趋势满足预设链路质量下降条件,则将其余的无线通信链路的信道带宽确定为目标信道带宽。
  24. 根据权利要求23所述的无线通信方法,其特征在于,所述链路质量下降条件包括下降的链路质量增益大于链路质量下降门限。
  25. 根据权利要求1-4中任一项所述无线通信方法,其特征在于,所述获取已建立的至少两条无线通信链路的信道参数之前,还包括:
    获取已建立的第一无线通信链路的链路质量;
    若所述第一无线通信链路的链路质量小于或等于预设阈值,则建立所述可移动平台与所述终端设备之间的其余无线通信链路,得到至少两条无线通信链路。
  26. 根据权利要求25所述的无线通信方法,其特征在于,所述方法还包括:
    若所述第一无线通信链路的链路质量大于预设阈值,则根据所述第一无线通信链路的信道参数对所述可移动平台采集到的图像数据进行编码;
    通过所述第一无线通信链路向所述终端设备发送编码后的图像数据。
  27. 根据权利要求25所述的无线通信方法,其特征在于,所述方法还包括:
    若所述第一无线通信链路的链路质量由小于或等于预设阈值变化为大于预设阈值,则断开其余的无线通信链路;
    根据所述第一无线通信链路的信道参数对所述可移动平台采集到的图像数据进行编码;
    通过所述第一无线通信链路向所述终端设备发送编码后的图像数据。
  28. 根据权利要求1-4中任一项所述无线通信方法,其特征在于,所述至少两条无线通信链路包括非点对点的无线通信链路,所述方法还包括:
    获取所述非点对点的无线通信链路的中间节点发送的第一容错帧获取请求;
    根据所述第一容错帧获取请求,对所述可移动平台采集到的图像数据进行帧内编码,得到容错帧;
    通过任意一条所述无线通信链路向所述终端设备发送所述容错帧,或者通过链路质量最好的无线通信链路向所述终端设备发送所述容错帧,或者通过所述至少两条无线通信链路同时向所述终端设备发送所述容错帧。
  29. 根据权利要求28所述的无线通信方法,其特征在于,所述非点对点的无线通信链路包括至少一个中间节点。
  30. 根据权利要求28所述的无线通信方法,其特征在于,所述方法还包括:
    若获取到所述终端设备发送的第二容错帧获取请求,则获取所述可移动平台接收到所述第一容错帧获取请求所记录的第一时刻;
    获取所述可移动平台接收到所述第二容错帧获取请求所记录的第二时刻,并根据所述第一时刻和所述第二时刻,确定接收时间差;
    若所述接收时间差小于或等于预设时间差,则不对所述第二容错帧获取请求进行响应。
  31. 一种可移动平台,其特征在于,所述可移动平台与终端设备之间能够建立至少两条无线通信链路,所述至少两条无线通信链路用于将所述可移动平台采集到的图像数据传输至所述终端设备,所述可移动平台包括至少两个无线通信装置、存储器和处理器;
    所述至少两个无线通信装置用于建立所述可移动平台与终端设备之间的至少两条无线通信链路;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    获取已建立的至少两条无线通信链路的信道参数,其中,已建立的所述至少两条无线通信链路包括至少一条公网通信链路;
    根据所述信道参数对所述可移动平台采集到的图像数据进行编码,并通过 所述至少两条无线通信链路向所述终端设备发送编码后的图像数据。
  32. 根据权利要求31所述的可移动平台,其特征在于,所述至少两条无线通信链路包括至少一条公网通信链路和至少一条私网通信链路,所述公网通信链路是基于公网通信建立的无线通信链路,所述私网通信链路是基于私有通信建立的无线通信链路。
  33. 根据权利要求32所述的可移动平台,其特征在于,所述私网通信链路对应的第一传输时延小于所述公网通信链路对应的第二传输时延,所述私网通信链路对应的第一传输数据量小于所述公网通信链路对应的第二传输数据量。
  34. 根据权利要求31所述的可移动平台,其特征在于,所述至少两条无线通信链路包括第一公网通信链路和第二公网通信链路,所述第一公网通信链路对应的网络运营商与所述第二公网通信链路对应的网络运营商不同或相同。
  35. 根据权利要求31-34中任一项所述的可移动平台,其特征在于,所述至少两条无线通信链路包括第一无线通信链路和第二无线通信链路,所述信道参数包括所述第一无线通信链路的第一信道参数和所述第二无线通信链路的第二信道参数,所述处理器在实现根据所述信道参数对所述可移动平台采集到的图像数据进行编码,并通过所述至少两条无线通信链路向所述终端设备发送编码后的图像数据时,用于实现:
    从所述第一信道参数和所述第二信道参数中确定目标信道参数;
    根据所述目标信道参数对所述图像数据进行编码,得到目标图像数据;
    通过所述至少两条无线通信链路向所述终端设备发送所述目标图像数据。
  36. 根据权利要求35所述的可移动平台,其特征在于,所述处理器在实现从所述第一信道参数和所述第二信道参数中确定目标信道参数时,用于实现:
    若所述第一信道参数小于所述第二信道参数,则将所述第一信道参数确定为目标信道参数;
    若所述第一信道参数大于所述第二信道参数,则将所述第二信道参数确定为目标信道参数。
  37. 根据权利要求35所述的可移动平台,其特征在于,所述处理器在实现根据所述目标信道参数对所述图像数据进行编码,得到目标图像数据时,用于实现:
    根据所述目标信道参数确定目标编码码率;
    根据所述目标编码码率对所述图像数据进行编码,得到目标图像数据。
  38. 根据权利要求35所述的可移动平台,其特征在于,所述处理器在实现 通过所述至少两条无线通信链路向所述终端设备发送所述目标图像数据时,用于实现:
    对所述目标图像数据进行分包处理,得到多个数据包;
    通过所述第一无线通信链路和所述第二无线通信链路同时向所述终端设备发送所述多个数据包。
  39. 根据权利要求38所述的可移动平台,其特征在于,所述处理器在实现对所述目标图像数据进行分包处理,得到多个数据包时,用于实现:
    根据所述目标信道参数确定目标比特数;
    根据所述目标比特数对所述目标图像数据进行分包处理,得到多个数据包。
  40. 根据权利要求35所述的可移动平台,其特征在于,所述处理器在实现通过所述至少两条无线通信链路向所述终端设备发送所述目标图像数据时,用于实现:
    根据所述第一信道参数确定第一比特数,并根据所述第一比特数对所述目标图像数据进行分包处理,得到多个第一数据包;
    根据所述第二信道参数确定第二比特数,并根据所述第二比特数对所述目标图像数据进行分包处理,得到多个第二数据包;
    通过所述第一无线通信链路向所述终端设备发送所述多个第一数据包,同时通过所述第二无线通信链路向所述终端设备发送所述多个第二数据包。
  41. 根据权利要求35所述的可移动平台,其特征在于,所述处理器在实现通过所述至少两条无线通信链路向所述终端设备发送所述目标图像数据时,用于实现:
    对所述目标图像数据进行分包处理,得到多个数据包;
    通过所述第一无线通信链路向所述终端设备发送所述多个数据包中的第一部分数据包;
    同时通过所述第二无线通信链路向所述终端设备发送所述多个数据包中的除所述第一部分数据包以外的第二部分数据包。
  42. 根据权利要求41所述的可移动平台,其特征在于,所述处理器还用于实现以下步骤:
    获取所述终端设备发送的第一反馈信息,并根据所述第一反馈信息确定传输的数据包是否出现错误;
    若传输的数据包出现错误,则通过所述第一无线通信链路向所述终端设备发送所述第二部分数据包;
    同时通过所述第二无线通信链路向所述终端设备发送所述第一部分数据包。
  43. 根据权利要求41所述的可移动平台,其特征在于,所述处理器还用于实现以下步骤:
    获取所述终端设备发送的第一反馈信息,并根据所述第一反馈信息确定传输的数据包是否出现错误;
    若传输的数据包出现错误,则根据所述第一反馈信息从所述多个数据包中确定待重传的数据包;
    若所述待重传的数据包位于所述第一部分数据包,则通过所述第二无线通信链路向所述终端设备重传所述待重传的数据包;
    若所述待重传的数据包位于所述第二部分数据包,则通过所述第一无线通信链路向所述终端设备重传所述待重传的数据包。
  44. 根据权利要求31-34中任一项所述的可移动平台,其特征在于,所述图像数据包括第一部分图像数据和第二部分图像数据,所述处理器在实现根据所述信道参数对所述可移动平台采集到的图像数据进行编码,并通过所述至少两条无线通信链路向所述终端设备发送编码后的图像数据时,用于实现:
    根据每条所述无线通信链路的信道参数,从所述至少两条无线通信链路中确定链路质量最好的目标无线通信链路;
    根据所述目标无线通信链路的信道参数对所述第一部分图像数据进行编码,并通过所述目标无线通信链路向所述终端设备发送编码后的第一部分图像数据;
    根据其余的无线通信链路的信道参数对所述第二部分图像数据进行编码,通过其余的无线通信链路向所述终端设备发送编码后的第二部分图像数据。
  45. 根据权利要求44所述的可移动平台,其特征在于,所述第一部分图像数据的传输优先级高于所述第二部分图像数据的传输优先级。
  46. 根据权利要求44所述的可移动平台,其特征在于,所述处理器在实现根据所述目标无线通信链路的信道参数对所述第一部分图像数据进行编码时,用于实现:
    根据所述目标无线通信链路的信道带宽确定目标编码速率;
    根据所述目标编码速率对所述第一部分图像数据进行编码。
  47. 根据权利要求44所述的可移动平台,其特征在于,所述处理器在实现根据每条所述无线通信链路的信道参数,从所述至少两条无线通信链路中确定链路质量最好的目标无线通信链路时,用于实现:
    根据每条所述无线通信链路的信道参数,确定每条所述无线通信链路的链 路质量;
    从所述至少两条无线通信链路中选择所述链路质量最好的无线通信链路作为目标无线通信链路。
  48. 根据权利要求47所述的可移动平台,其特征在于,所述根据每条所述无线通信链路的信道参数,确定每条所述无线通信链路的链路质量,包括
    根据每条所述无线通信链路的信道带宽、参考信号接收功率、接收信噪比和/或传输时延,确定每条所述无线通信链路的链路质量。
  49. 根据权利要求44所述的可移动平台,其特征在于,所述处理器还用于实现以下步骤:
    获取所述终端设备发送的第二反馈信息,并根据所述第二反馈信息确定所述目标无线通信链路传输的图像数据是否出现错误;
    若所述目标无线通信链路传输的图像数据出现错误,则根据所述第二反馈信息从所述第一部分图像数据中确定待重传的图像数据;
    暂停通过其余的无线通信链路向所述终端设备发送的编码后的第二部分图像数据,并通过其余的无线通信链路向所述终端设备发送待重传的图像数据;
    在所述待重传的图像数据发送完成后,通过其余的无线通信链路继续向所述终端设备发送编码后的第二部分图像数据。
  50. 根据权利要求31-34中任一项所述的可移动平台,其特征在于,所述处理器在实现根据所述信道参数对所述可移动平台采集到的图像数据进行编码,并通过所述至少两条无线通信链路向所述终端设备发送编码后的图像数据时,用于实现:
    根据每条所述无线通信链路的信道参数,从所述至少两条无线通信链路中确定链路质量最好的目标无线通信链路;
    根据所述目标无线通信链路的信道参数对所述可移动平台采集到的图像数据进行编码;
    通过所述至少两条无线通信链路同时向所述终端设备发送编码后的图像数据。
  51. 根据权利要求50所述的可移动平台,其特征在于,所述处理器还用于实现以下步骤:
    获取所述终端设备发送的第三反馈信息,并根据所述第三反馈信息确定所述目标无线通信链路传输的图像数据是否出现错误;
    若所述目标无线通信链路传输的图像数据出现错误,则根据所述第三反馈 信息确定待重传的图像数据;
    暂停通过其余的无线通信链路向所述终端设备发送编码后的图像数据;
    通过其余的无线通信链路向所述终端设备发送所述待重传的图像数据;
    在所述待重传的图像数据发送完成后,通过其余的无线通信链路继续向所述终端设备发送编码后的图像数据。
  52. 根据权利要求50所述的可移动平台,其特征在于,所述处理器还用于实现以下步骤:
    获取所述目标无线通信链路的链路质量变化趋势;
    根据所述链路质量变化趋势,从所述至少两条无线通信链路的信道带宽中选择目标信道带宽;
    根据所述目标信道带宽对所述可移动平台采集到的图像数据进行编码;
    通过所述至少两条无线通信链路同时向所述终端设备发送编码后的图像数据。
  53. 根据权利要求52所述的可移动平台,其特征在于,所述处理器在实现根据所述链路质量变化趋势,从所述至少两条无线通信链路的信道带宽中选择目标信道带宽时,用于实现:
    若所述链路质量变化趋势不满足预设链路质量下降条件,则将所述目标无线通信链路的信道带宽确定为目标信道带宽;
    若所述链路质量变化趋势满足预设链路质量下降条件,则将其余的无线通信链路的信道带宽确定为目标信道带宽。
  54. 根据权利要求53所述的可移动平台,其特征在于,所述链路质量下降条件包括下降的链路质量增益大于链路质量下降门限。
  55. 根据权利要求31-34中任一项所述的可移动平台,其特征在于,所述处理器在实现获取已建立的至少两条无线通信链路的信道参数之前,还用于实现:
    获取已建立的第一无线通信链路的链路质量;
    若所述第一无线通信链路的链路质量小于或等于预设阈值,则建立所述可移动平台与所述终端设备之间的其余无线通信链路,得到至少两条无线通信链路。
  56. 根据权利要求55所述的可移动平台,其特征在于,所述处理器还用于实现以下步骤:
    若所述第一无线通信链路的链路质量大于预设阈值,则根据所述第一无线 通信链路的信道参数对所述可移动平台采集到的图像数据进行编码;
    通过所述第一无线通信链路向所述终端设备发送编码后的图像数据。
  57. 根据权利要求55所述的可移动平台,其特征在于,所述处理器还用于实现以下步骤:
    若所述第一无线通信链路的链路质量由小于或等于预设阈值变化为大于预设阈值,则断开其余的无线通信链路;
    根据所述第一无线通信链路的信道参数对所述可移动平台采集到的图像数据进行编码;
    通过所述第一无线通信链路向所述终端设备发送编码后的图像数据。
  58. 根据权利要求31-34中任一项所述的可移动平台,其特征在于,所述至少两条无线通信链路包括非点对点的无线通信链路,所述处理器还用于实现以下步骤:
    获取所述非点对点的无线通信链路的中间节点发送的第一容错帧获取请求;
    根据所述第一容错帧获取请求,对所述可移动平台采集到的图像数据进行帧内编码,得到容错帧;
    通过任意一条所述无线通信链路向所述终端设备发送所述容错帧,或者通过链路质量最好的无线通信链路向所述终端设备发送所述容错帧,或者通过所述至少两条无线通信链路同时向所述终端设备发送所述容错帧。
  59. 根据权利要求58所述的可移动平台,其特征在于,所述非点对点的无线通信链路包括至少一个中间节点。
  60. 根据权利要求58所述的可移动平台,其特征在于,所述处理器还用于实现以下步骤:
    若获取到所述终端设备发送的第二容错帧获取请求,则获取所述可移动平台接收到所述第一容错帧获取请求所记录的第一时刻;
    获取所述可移动平台接收到所述第二容错帧获取请求所记录的第二时刻,并根据所述第一时刻和所述第二时刻,确定接收时间差;
    若所述接收时间差小于或等于预设时间差,则不对所述第二容错帧获取请求进行响应。
  61. 一种通信系统,其特征在于,所述通信系统包括终端设备和权利要求31-60中任一项所述的可移动平台,所述可移动平台与终端设备之间能够建立至少两条无线通信链路,所述至少两条无线通信链路用于将所述可移动平台采集到的图像数据传输至所述终端设备。
  62. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1-30中任一项所述的无线通信方法的步骤。
PCT/CN2021/084134 2021-03-30 2021-03-30 无线通信方法、可移动平台、系统及计算机可读存储介质 WO2022204997A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/084134 WO2022204997A1 (zh) 2021-03-30 2021-03-30 无线通信方法、可移动平台、系统及计算机可读存储介质
US18/374,665 US20240032118A1 (en) 2021-03-30 2023-09-29 Wireless communication method, movable platform, system, and computer-readable storage media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084134 WO2022204997A1 (zh) 2021-03-30 2021-03-30 无线通信方法、可移动平台、系统及计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/374,665 Continuation US20240032118A1 (en) 2021-03-30 2023-09-29 Wireless communication method, movable platform, system, and computer-readable storage media

Publications (1)

Publication Number Publication Date
WO2022204997A1 true WO2022204997A1 (zh) 2022-10-06

Family

ID=83455437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084134 WO2022204997A1 (zh) 2021-03-30 2021-03-30 无线通信方法、可移动平台、系统及计算机可读存储介质

Country Status (2)

Country Link
US (1) US20240032118A1 (zh)
WO (1) WO2022204997A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118353169B (zh) * 2024-04-25 2025-03-28 广西惠明电气有限公司 一种基于5g通信的输配电开关远程控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130305297A1 (en) * 2009-03-03 2013-11-14 Mobilitie, Llc System and method for multi-channel wifi video streaming
CN105472477A (zh) * 2015-12-08 2016-04-06 广州华多网络科技有限公司 一种数据传输方法、装置及设备
US20180324881A1 (en) * 2017-05-05 2018-11-08 Atc Technologies, Llc Devices, systems, and methods for communicating with unmanned aerial vehicles
CN108933622A (zh) * 2014-02-10 2018-12-04 深圳市大疆创新科技有限公司 数据传输方法及装置、以及可移动物体发送图像的方法
CN208399999U (zh) * 2018-07-23 2019-01-18 河北冉冉无人机科技有限公司 基于数字通信的无人机远程控制系统
CN110463229A (zh) * 2018-04-24 2019-11-15 深圳市大疆创新科技有限公司 一种自主移动平台、控制端以及自主移动平台系统
CN110786029A (zh) * 2018-11-30 2020-02-11 深圳市大疆创新科技有限公司 一种通信方法、装置、移动平台及控制终端
CN111279748A (zh) * 2018-12-29 2020-06-12 深圳市大疆创新科技有限公司 通信链路的自适应切换方法、可移动平台和控制装置
CN112291726A (zh) * 2020-09-22 2021-01-29 中国电子科技集团公司第二十九研究所 一种基于公用无线通信网络的无人机集群通信传输系统
CN113170052A (zh) * 2020-06-30 2021-07-23 深圳市大疆创新科技有限公司 视频传输方法、可移动平台、终端设备、系统及存储介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130305297A1 (en) * 2009-03-03 2013-11-14 Mobilitie, Llc System and method for multi-channel wifi video streaming
CN108933622A (zh) * 2014-02-10 2018-12-04 深圳市大疆创新科技有限公司 数据传输方法及装置、以及可移动物体发送图像的方法
CN105472477A (zh) * 2015-12-08 2016-04-06 广州华多网络科技有限公司 一种数据传输方法、装置及设备
US20180324881A1 (en) * 2017-05-05 2018-11-08 Atc Technologies, Llc Devices, systems, and methods for communicating with unmanned aerial vehicles
CN110463229A (zh) * 2018-04-24 2019-11-15 深圳市大疆创新科技有限公司 一种自主移动平台、控制端以及自主移动平台系统
CN208399999U (zh) * 2018-07-23 2019-01-18 河北冉冉无人机科技有限公司 基于数字通信的无人机远程控制系统
CN110786029A (zh) * 2018-11-30 2020-02-11 深圳市大疆创新科技有限公司 一种通信方法、装置、移动平台及控制终端
CN111279748A (zh) * 2018-12-29 2020-06-12 深圳市大疆创新科技有限公司 通信链路的自适应切换方法、可移动平台和控制装置
CN113170052A (zh) * 2020-06-30 2021-07-23 深圳市大疆创新科技有限公司 视频传输方法、可移动平台、终端设备、系统及存储介质
CN112291726A (zh) * 2020-09-22 2021-01-29 中国电子科技集团公司第二十九研究所 一种基于公用无线通信网络的无人机集群通信传输系统

Also Published As

Publication number Publication date
US20240032118A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
JP6973709B2 (ja) 仮想現実(vr)コンテンツを伝送するための方法、ネットワーク要素、vrコンテンツサーバ、端末装置およびプログラム
CN114339928B (zh) 无线路由器及其数据传输方法
CN107634816A (zh) 一种基于长期演进的无人机图传方法、装置和系统
US20240032118A1 (en) Wireless communication method, movable platform, system, and computer-readable storage media
WO2022000350A1 (zh) 视频传输方法、可移动平台、终端设备、系统及存储介质
US11563513B1 (en) Low-latency wireless display system
CN115250506A (zh) 一种通信方法及设备
KR101670767B1 (ko) 영상 안정화 서비스를 위한 이중화 전송 스트리밍 방법, 이를 수행하기 위한 기록 매체, 장치 및 시스템
WO2022151492A1 (zh) 一种调度传输方法及装置
WO2022126437A1 (zh) 通信方法及装置
US20230076650A1 (en) Image content transmission method and apparatus using edge computing service
KR102796681B1 (ko) 엣지 컴퓨팅 서비스를 이용한 영상 컨텐츠 전송 방법 및 장치
EP4138395A1 (en) Image content transmission method and apparatus using edge computing service
CN115225199A (zh) 一种数据传输方法和装置
US20240073734A1 (en) Systems and methods of control of quality-of-service of data units via multiple communication layers
US20250055605A1 (en) Communication control method
KR20210141295A (ko) 엣지 컴퓨팅 서비스를 이용한 영상 컨텐츠 전송 방법 및 장치
WO2022174431A1 (zh) 图像传输方法、可移动平台、设备及计算机可读存储介质
JP7548485B2 (ja) データ通信方法および関連装置
JP7644310B2 (ja) 通信制御方法
EP4274189A2 (en) Packet validity time enhancement for quality of service flows
EP4398554A1 (en) Data transmission method, and device
WO2022213836A1 (zh) 一种通信方法及设备
WO2024044253A1 (en) Systems and methods of control of quality-of-service of data units via multiple communication layers
WO2023174198A1 (zh) 一种时延控制方法、应用服务器及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933677

Country of ref document: EP

Kind code of ref document: A1