WO2022201622A1 - 双極型蓄電池 - Google Patents
双極型蓄電池 Download PDFInfo
- Publication number
- WO2022201622A1 WO2022201622A1 PCT/JP2021/041426 JP2021041426W WO2022201622A1 WO 2022201622 A1 WO2022201622 A1 WO 2022201622A1 JP 2021041426 W JP2021041426 W JP 2021041426W WO 2022201622 A1 WO2022201622 A1 WO 2022201622A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- negative electrode
- substrate
- conductor
- lead foil
- Prior art date
Links
- 238000003860 storage Methods 0.000 title claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 110
- 239000004020 conductor Substances 0.000 claims abstract description 61
- 239000011888 foil Substances 0.000 claims description 113
- 239000007774 positive electrode material Substances 0.000 claims description 15
- 239000007773 negative electrode material Substances 0.000 claims description 14
- 238000003466 welding Methods 0.000 abstract description 37
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 210000004027 cell Anatomy 0.000 description 51
- 239000010410 layer Substances 0.000 description 40
- 239000002253 acid Substances 0.000 description 30
- 239000000853 adhesive Substances 0.000 description 15
- 230000001070 adhesive effect Effects 0.000 description 15
- 239000012790 adhesive layer Substances 0.000 description 12
- 239000008151 electrolyte solution Substances 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000010248 power generation Methods 0.000 description 5
- 230000003014 reinforcing effect Effects 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 210000003771 C cell Anatomy 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
- H01M10/12—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0413—Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
- H01M10/0418—Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
- H01M10/18—Lead-acid accumulators with bipolar electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/68—Selection of materials for use in lead-acid accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/503—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/509—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
- H01M50/51—Connection only in series
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a bipolar storage battery.
- a storage battery is used to level the power load. That is, when the amount of power generation is greater than the amount of consumption, the storage battery is charged with the difference, and when the amount of power generation is less than the amount of consumption, the difference is discharged from the storage battery.
- a lead-acid battery is often used from the viewpoint of economy, safety, and the like.
- a bipolar lead-acid battery described in Patent Document 1 is known.
- This bipolar lead-acid battery is frame-shaped and has a resin substrate attached to the inside of a resin frame. A lead layer is placed on both sides of the board. The positive electrode active material layer is adjacent to the lead layer on one surface of the substrate, and the negative electrode active material layer is adjacent to the lead layer on the other surface. It also has a frame-shaped spacer made of resin, inside of which a glass mat impregnated with an electrolytic solution is arranged. A plurality of frames and spacers are alternately laminated, and the frames and spacers are adhered with an adhesive or the like.
- the bipolar lead-acid battery described in Patent Document 1 includes a positive electrode having a positive electrode current collector (lead layer) and a positive electrode active material layer, a negative electrode current collector (lead layer) and a negative electrode active material layer. and a separator (glass mat) interposed between the positive electrode and the negative electrode, forming a plurality of cell members stacked with a gap therebetween and a plurality of spaces for individually accommodating the plurality of cell members. and a plurality of space forming members.
- the space forming member includes a substrate covering at least one of the positive electrode side and the negative electrode side of the cell member, and a frame surrounding the side surface of the cell member (frames and spacers of the bipolar plates and the end plates). I'm in.
- the cell members and the substrates of the space-forming members are alternately arranged in a stacked state, the frames are joined together, and the substrates arranged between the cell members have through holes extending in a direction intersecting the plate surfaces.
- the positive electrode current collector plate and the negative electrode current collector plate of the adjacent cell members are electrically connected to each other by means of conductors disposed in the through holes, thereby electrically connecting the plurality of cell members in series.
- An object of the present invention is to solve the problem of, when a bipolar storage battery is manufactured through a welding process in which current collector plates on both sides of a substrate are connected by resistance welding or the like via conductors arranged in through-holes of the substrate, the conductors are removed during welding. To make it difficult for heat to stay inside and to make it difficult for heat to be conducted around a through hole.
- a bipolar storage battery having the following configurations (1) to (4).
- the space forming member includes a substrate that covers at least one of the positive electrode side and the negative electrode side of the cell member, and a frame that surrounds the side surface of the cell member.
- the cell members and the substrates of the space forming members are alternately stacked.
- the frames are joined together.
- the substrates arranged between the cell members have through holes extending in a direction intersecting the plate surface.
- the positive current collector plate and the negative current collector plate of the adjacent cell members are electrically connected to each other by the conductor disposed in the through hole, and the plurality of cell members are electrically connected in series.
- the area of at least one of the connection surface of the conductor with the positive collector plate and the connection surface with the negative collector plate is the middle portion of the conductor in the plate thickness direction of the substrate. smaller than the cross-sectional area parallel to the connecting surface.
- the conductors are removed during welding. It is possible to make it difficult for heat to accumulate inside and to make it difficult for heat to be conducted around the through hole.
- FIG. 1 is a cross-sectional view showing a schematic configuration of a bipolar lead-acid battery that is an embodiment of the present invention
- FIG. FIG. 2 is a partially enlarged view of the bipolar lead-acid battery of FIG. 1
- FIG. 2 is a perspective view showing a stacking and coupling state of space forming members that constitute the bipolar lead-acid battery of FIG. 1
- FIG. 4 is a plan view showing an example of a biplate substrate
- FIG. 2 is a partially enlarged view showing a conductor and its peripheral portion in the bipolar lead-acid battery of FIG. 1;
- a bipolar lead-acid battery 100 of this embodiment includes a plurality of cell members 110, a plurality of biplates (space forming members) 120, and a first end plate (space forming member) 130. , a second end plate (space forming member) 140 and a cover plate 170 .
- FIG. 1 shows a bipolar lead-acid battery 100 in which three cell members 110 are stacked, the number of cell members 110 is determined by battery design. Also, the number of biplates 120 is determined according to the number of cell members 110 .
- FIG. 2 is a diagram extracting and explaining two biplates 120 from FIG.
- the stacking direction of the cell members 110 is the Z direction (the vertical direction in FIGS. 1 to 3), and the directions perpendicular to the Z direction and perpendicular to each other are the X direction and the Y direction. do.
- the cell member 110 includes a positive electrode 111 , a negative electrode 112 and a separator (electrolyte layer) 113 .
- the separator 113 is impregnated with an electrolytic solution.
- the positive electrode 111 has a positive electrode lead foil (positive electrode collector plate) 111a and a positive electrode active material layer 111b.
- the negative electrode 112 has a negative electrode lead foil (negative electrode current collector) 112a and a negative electrode active material layer 112b. Separator 113 is interposed between positive electrode 111 and negative electrode 112 .
- the positive electrode lead foil 111a, the positive electrode active material layer 111b, the separator 113, the negative electrode active material layer 112b, and the negative electrode lead foil 112a are laminated in this order.
- the X-direction and Y-direction dimensions of the positive electrode lead foil 111a and the negative electrode lead foil 112a are larger than the X- and Y-direction dimensions of the positive electrode active material layer 111b and the negative electrode active material layer 112b.
- the positive electrode lead foil 111a is larger (thicker) than the negative electrode lead foil 112a
- the positive electrode active material layer 111b is larger (thicker) than the negative electrode active material layer 112b.
- a plurality of cell members 110 are stacked and arranged at intervals in the Z direction, and substrates 121 of biplates 120 are arranged at the intervals.
- the plurality of cell members 110 are stacked with the substrate 121 of the biplate 120 interposed therebetween.
- the plurality of biplates 120, the first end plate 130, and the second end plate 140 are members for forming a plurality of spaces (cells) C that individually accommodate the plurality of cell members 110. As shown in FIG.
- the biplate 120 includes a substrate 121 having a rectangular planar shape, a frame 122 covering four end surfaces of the substrate 121, and columns 123 projecting vertically from both sides of the substrate 121.
- the substrate 121, the frame 122 and the pillars 123 are integrally formed of synthetic resin.
- the number of pillars 123 protruding from each surface of substrate 121 may be one, or may be plural.
- the dimension of the frame 122 is larger than the dimension (thickness) of the substrate 121 , and the dimension between the projecting end faces of the pillars 123 is the same as the dimension of the frame 122 .
- a space C is formed between the substrates 121 and 121, and the pillars 123 in contact with each other form a space C.
- the Z dimension of C is preserved.
- the positive electrode lead foil 111a, the positive electrode active material layer 111b, the negative electrode lead foil 112a, the negative electrode active material layer 112b, and the separator 113 have through holes 111c, 111d, 112c, 112d, and 113a through which the columnar portion 123 penetrates. formed respectively.
- a substrate 121 of the biplate 120 has a plurality of through holes 121a extending perpendicularly to the plate surface (in a direction intersecting the plate surface).
- a first concave portion 121b is formed on one surface of the substrate 121, and a second concave portion 121c is formed on the other surface.
- the depth of the first recess 121b is deeper than the depth of the second recess 121c.
- the X-direction and Y-direction dimensions of the first recess 121b and the second recess 121c correspond to the X- and Y-direction dimensions of the positive electrode lead foil 111a and the negative electrode lead foil
- Substrates 121 of biplates 120 are positioned between adjacent cell members 110 in the Z direction.
- the positive electrode lead foil 111 a of the cell member 110 is arranged in the first concave portion 121 b of the substrate 121 of the biplate 120 with an adhesive layer 150 interposed therebetween.
- the cover plate 170 is for covering the outer edge of the positive electrode lead foil 111a, is a thin plate-like frame, and has a rectangular inner line and an outer line. The inner edge of the cover plate 170 overlaps the outer edge of the positive electrode lead foil 111 a , and the outer edge of the cover plate 170 overlaps the peripheral edge of the first recess 121 b on one surface of the substrate 121 .
- the rectangle forming the inner line of the cover plate 170 is smaller than the rectangle forming the outer line of the positive electrode active material layer 111b, and the rectangle forming the outer line of the cover plate 170 forms the opening surface of the first recess 121b. larger than a rectangle.
- the adhesive layer 150 wraps around from the end surface of the positive electrode lead foil 111a to the outer edge on the opening side of the first recess 121b, and also between the inner edge of the cover plate 170 and the outer edge of the positive electrode lead foil 111a. It is also arranged between the outer edge of the cover plate 170 and one surface of the substrate 121 . That is, the cover plate 170 is fixed by the adhesive layer 150 across the peripheral edge of the first concave portion 121b on one surface of the substrate 121 and the outer edge of the positive electrode lead foil 111a. As a result, the outer edge of the positive electrode lead foil 111a is reliably covered with the cover plate 170 even at the boundary with the peripheral edge of the first recess 121b.
- the negative electrode lead foil 112a of the cell member 110 is arranged in the second concave portion 121c of the substrate 121 of the biplate 120 with the adhesive layer 150 interposed therebetween.
- the outer edge of the negative electrode lead foil 112a may also be covered with a cover plate similar to the cover plate 170 covering the outer edge of the positive electrode lead foil 111a.
- Conductor 160 is disposed in through-hole 121a of substrate 121 of biplate 120, and both end surfaces of conductor 160 are in contact with and bonded to positive electrode lead foil 111a and negative electrode lead foil 112a. That is, the conductor 160 electrically connects the positive electrode lead foil 111a and the negative electrode lead foil 112a. As a result, all of the plurality of cell members 110 are electrically connected in series.
- the substrate 121 of the biplate 120 has a plurality of cylindrical through-holes 121a, and a conductor 160 is embedded in each through-hole 121a.
- the conductor 160 shown in FIGS. 4 and 5 includes a disk-shaped large-diameter portion (intermediate portion) 161 and a pair of disk-shaped small-diameter portions (ends) integrally formed at both ends of the large-diameter portion 161 in the axial direction. part) 162.
- the disc forming the small diameter portion 162 is thinner than the disc forming the large diameter portion 161 .
- the small diameter portion 162 has a joint surface 162a with the positive electrode lead foil 111a and the negative electrode lead foil 112a.
- Adhesive layer 150 does not exist near through hole 121a.
- a space 181 surrounded by the conductor 160, the positive electrode lead foil 111a, the through hole 121a, and the adhesive layer 150 is formed on the positive electrode lead foil 111a side of the substrate 121 in the plate thickness direction.
- a space 182 surrounded by the conductor 160, the negative electrode lead foil 112a, the through hole 121a, and the adhesive layer 150 is formed on the side of the negative electrode lead foil 112a in the plate thickness direction of the substrate 121.
- the diameter A1 of the large diameter portion 161 is slightly smaller than the diameter of the through hole 121a, and the ratio (A2/A1) of the diameter A2 of the small diameter portion 162 to the diameter A1 of the large diameter portion 161 is, for example, 2/5.
- the ratio (S2/S1) of the area S2 of the connection surface 162a of the small diameter portion 162 between the positive electrode lead foil 111a and the negative electrode lead foil 112a to the cross-sectional area S1 parallel to the connection surface 162a of the large diameter portion 161 is 0. 0.01 or more and 0.50 or less.
- This ratio (S2/S1) is preferably 0.03 or more and 0.30 or less.
- the first end plate 130 includes a substrate 131 that covers the positive electrode side of the cell member 110, a frame 132 that surrounds the side surface of the cell member 110, and one surface of the substrate 131 (located closest to the positive electrode side). and a pillar portion 133 projecting vertically from the surface of the biplate 120 facing the substrate 121 .
- the planar shape of the substrate 131 is rectangular, and four end surfaces of the substrate 131 are covered with a frame 132.
- the substrate 131, the frame 132, and the pillars 133 are integrally formed of synthetic resin.
- the number of columnar portions 133 protruding from one surface of the substrate 131 may be one or plural, and the columnar portions 133 correspond to the columnar portions 123 of the biplate 120 that come into contact with the columnar portions 133 .
- the dimension of the frame 132 is larger than the dimension (thickness) of the substrate 131 , and the dimension between the projecting end faces of the pillars 133 is the same as the dimension of the frame 132 .
- the frame 132 and the column 133 are brought into contact with the frame 122 and the column 123 of the biplate 120 arranged on the outermost side (on the positive electrode side) to stack the substrate 121 of the biplate 120 .
- a space C is formed between the substrate 131 of the first end plate 130, and the dimension of the space C in the Z direction is defined by the columnar portion 123 of the biplate 120 and the columnar portion 133 of the first endplate 130 that are in contact with each other. is retained.
- Through-holes 111c, 111d, and 113a through which the column portion 133 penetrates are formed in the positive electrode lead foil 111a, the positive electrode active material layer 111b, and the separator 113 of the cell member 110 arranged on the outermost side (positive electrode side). ing.
- a concave portion 131 b is formed on one surface of the substrate 131 of the first end plate 130 .
- the X-direction and Y-direction dimensions of the recess 131b correspond to the X- and Y-direction dimensions of the positive electrode lead foil 111a.
- the positive electrode lead foil 111 a of the cell member 110 is arranged in the concave portion 131 b of the substrate 131 of the first end plate 130 with the adhesive layer 150 interposed therebetween.
- the cover plate 170 is fixed to one side of the substrate 131 by the adhesive layer 150, and the outer edge of the positive electrode lead foil 111a is positioned at the boundary with the peripheral edge of the recess 131b. are also reliably covered with the cover plate 170 .
- the first end plate 130 also has a positive terminal electrically connected to the positive lead foil 111a in the recess 131b.
- the second end plate 140 includes a substrate 141 covering the negative electrode side of the cell member 110, a frame 142 surrounding the side surface of the cell member 110, and one surface of the substrate 141 (the substrate 121 of the biplate 120 arranged closest to the negative electrode side). and a pillar portion 143 projecting vertically from the surface facing the .
- the planar shape of the substrate 141 is rectangular, and four end surfaces of the substrate 141 are covered with a frame 142.
- the substrate 141, the frame 142, and the pillars 143 are integrally formed of synthetic resin.
- the number of columnar portions 143 protruding from one surface of the substrate 141 may be one or plural, and the columnar portions 143 are made to correspond to the columnar portions 123 of the biplate 120 that come into contact with each other.
- the dimension of the frame 142 is larger than the dimension (thickness) of the substrate 131 , and the dimension between the projecting end faces of the two pillars 143 is the same as the dimension of the frame 142 . Then, the frame 142 and the column 143 are brought into contact with the frame 122 and the column 123 of the biplate 120 arranged on the outermost side (negative electrode side), thereby laminating the substrate 121 of the biplate 120.
- a space C is formed between the substrate 141 of the second end plate 140, and the dimension of the space C in the Z direction is defined by the columnar portion 123 of the biplate 120 and the columnar portion 143 of the second endplate 140 that are in contact with each other. is retained.
- Through-holes 112c, 112d, and 113a through which the column portion 143 penetrates are formed in the negative electrode lead foil 112a, the negative electrode active material layer 112b, and the separator 113 of the cell member 110 arranged on the outermost side (on the negative electrode side), respectively. ing.
- a concave portion 141 b is formed on one surface of the substrate 141 of the second end plate 140 .
- the X-direction and Y-direction dimensions of the recess 141b correspond to the X- and Y-direction dimensions of the negative electrode lead foil 112a.
- the negative electrode lead foil 112a of the cell member 110 is arranged in the concave portion 141b of the substrate 141 of the second end plate 140 with the adhesive layer 150 interposed therebetween.
- the second end plate 140 also has a negative terminal electrically connected to the negative lead foil 112a in the recess 141b.
- the biplate 120, the first end plate 130, the second end plate 140, and the cover plate 170 are made of resin, for example thermoplastic resin.
- thermoplastic resins examples include acrylonitrile-butadiene-styrene copolymer (ABS resin) and polypropylene. These thermoplastic resins are excellent in moldability and also in sulfuric acid resistance. Therefore, by forming these thermoplastic resins, the biplate 120, the first end plate 130, the second end plate 140, and the cover plate 170 are free from decomposition, deterioration, corrosion, etc. due to contact with the electrolyte. less likely to occur.
- the biplate 120 is a space-forming member that includes a substrate 121 that covers both the positive electrode side and the negative electrode side of the cell member 110 and a frame 122 that surrounds the side surfaces of the cell member 110.
- the first end plate 130 is a space forming member including a substrate 131 covering the positive electrode side of the cell member 110 and a frame 132 surrounding the side surface of the cell member 110 .
- the second end plate 140 is a space forming member including a substrate 141 covering the negative electrode side of the cell member 110 and a frame 142 surrounding the side surface of the cell member 110 .
- FIGS. 1 to 3 a large number of recesses 12 are formed on four end surfaces (outer surfaces; FIG. 3 shows one end surface in the X direction) of the frame.
- the concave portion 12 has one surface 12a and the other surface 12b facing each other in the Z direction, one surface 12c and the other surface 12d facing each other in the X direction or the Y direction, and an uneven bottom surface 12e.
- the frame body includes wall portions 13 that partition adjacent recesses 12, first plate portions 14 that continuously form one surface 12a of many recesses 12 facing each other in the Z direction, Z direction of many recesses 12 and other surfaces. It has a second plate portion 15 continuously forming the surface 12b, and a leg portion 16 extending from the second plate portion 15 to the side opposite to the first plate portion 14 (upper side in FIGS. 1 to 3).
- the surface of the first plate portion 14 opposite to the second plate portion 15 is chamfered at both ends in the X direction.
- the X-direction dimension L2 of the surface) 144 is greater than the X-direction dimension L1 of the surface (one opposing surface) 164 on the opposite side of the leg 16 to the second plate portion 15 (upper side in FIGS. 1 to 3).
- L1 is 4 mm and L2 is 6 mm.
- the bottom surface 12e has a step, and the surface 12f along the step exists at an intermediate position of the concave portion 12 in the Z direction (the stacking direction of the cell members 110).
- a line E in FIG. 2 indicates the position of the surface 12f along the step in the Z direction. That is, the bottom surface 12e has a first bottom surface 12g and a second bottom surface 12h having the same area and different depths. The depth (dimension in the X direction) of the first bottom surface 12g, which is the bottom surface of the biplate 120 on the positive electrode 111 side, is shallower than the depth of the second bottom surface 12h, which is the bottom surface of the biplate 120 on the negative electrode 112 side.
- the bipolar lead-acid battery 100 has a joint structure by vibration welding of the opposing surfaces of the frames. 14 are joined directly by vibration welding.
- the entire surface (one opposing surface) 164 of the leg portion 16 is a contact surface, and the surface (the other opposing surface) 144 of the first plate portion 14 extends along the substrate surface (FIGS. 1 to 3).
- reinforcing portions 17 are present at the corners formed by the non-contact surfaces 144a and 144b of the first plate portion 14 that do not contact the surface 164 of the leg portion 16 and the outer and inner side surfaces of the leg portion 16. do.
- one of the four end faces of the frame is formed with a notch for forming an injection hole for pouring the electrolytic solution into the space C.
- the notch is formed on the side surface of the frame on the right side in FIG. 1, the notch penetrates the frame in the X direction and is recessed in a semicircular shape from both end surfaces of the frame in the Z direction. have.
- This cutout portion does not participate in the above-described joint structure, and when the above-mentioned joint structure is formed by vibration welding, a circular injection hole is formed by the opposing cutout portions.
- the bipolar lead-acid battery 100 of this embodiment can be manufactured by a method including the following steps.
- the substrate 121 of the biplate 120 is placed on a workbench with the first concave portion 121b facing upward, an adhesive is applied to the first concave portion 121b, and the positive electrode lead foil 111a is filled in the first concave portion 121b. put in.
- the column portion 123 of the biplate 120 is passed through the through hole 111c of the positive electrode lead foil 111a.
- the adhesive is cured and the positive electrode lead foil 111 a is attached to one surface of the substrate 121 .
- the substrate 121 is placed on a workbench with the second concave portion 121c facing upward, and the conductor 160 is inserted into the through hole 121a.
- an adhesive is applied to the second recess 121c, and the negative electrode lead foil 112a is placed in the second recess 121c.
- the column portion 123 of the biplate 120 is passed through the through hole 112c of the negative electrode lead foil 112a.
- the adhesive is cured and the negative electrode lead foil 112 a is attached to the other surface of the substrate 121 .
- the substrate 121 is placed on a workbench with the first concave portion 121b facing upward, and an adhesive is applied to the outer edge of the positive electrode lead foil 111a and the upper surface of the substrate 121, which will be the edge of the first concave portion 121b. is applied, the cover plate 170 is placed thereon, and the adhesive is cured. As a result, the cover plate 170 is fixed over the outer edge of the positive electrode lead foil 111a and over the portion of the substrate 121 (peripheral edge of the first recess 121b) continuing to the outside thereof.
- resistance welding is performed to connect the positive electrode lead foil 111 a and the negative electrode lead foil 112 a with the conductor 160 .
- This resistance welding is performed by applying an electric current to the entire contact surface between the small-diameter portion 162 and the positive electrode lead foil 111a and the negative electrode lead foil 112a. As a result, the entire surface of this contact surface is dissolved and becomes a connection surface.
- the biplate 120 with lead foils for positive and negative electrodes is obtained.
- a necessary number of biplates 120 with lead foils for positive and negative electrodes are prepared.
- an adhesive is applied to the outer edge of the positive electrode lead foil 111a and the upper surface of the substrate 131, which is the edge of the recess 131b, and the cover plate 170 is placed thereon to cure the adhesive.
- the cover plate 170 is fixed over the outer edge of the positive electrode lead foil 111a and over the portion of the substrate 131 continuing to the outside thereof.
- the first end plate 130 to which the positive electrode lead foil 111a and the cover plate 170 are fixed is placed on a workbench with the positive electrode lead foil 111a facing upward. and placed on the positive electrode lead foil 111a.
- the columnar portion 133 of the first end plate 130 is passed through the through hole 111d of the positive electrode active material layer 111b.
- the separator 113 and the negative electrode active material layer 112b are placed on the positive electrode active material layer 111b.
- the biplate 120 with positive and negative lead foils is placed with the negative lead foil 112a side facing downward.
- the columnar portion 123 of the biplate 120 is passed through the through hole 113a of the separator 113 and the through hole 112d of the negative electrode active material layer 112b, and placed on the columnar portion 133 of the first end plate 130,
- the first plate portion 14 of the frame 122 of the biplate 120 is placed on the leg portion 16 of the frame 132 of the first end plate 130 .
- the first end plate 130 is fixed, and vibration welding is performed while vibrating the biplate 120 in the diagonal direction of the substrate 121 with an amplitude of 1.6 mm.
- the first plate portion 14 of the frame 122 of the biplate 120 is joined onto the leg portion 16 of the frame 132 of the first end plate 130, and the column portion 133 of the first end plate 130 is joined.
- a column portion 123 of the biplate 120 is joined thereon.
- the biplate 120 is joined on the first end plate 130 , the cell member 110 is arranged in the space C formed by the first end plate 130 and the biplate 120 , and the upper surface of the biplate 120 is The positive electrode lead foil 111a is exposed.
- the positive electrode active material layer 111b, the separator 113, and the negative electrode active material layer are placed on the thus-obtained combined body in which the biplate 120 is joined to the first end plate 130.
- 112b are placed in this order, another biplate 120 with positive and negative lead foils is placed with the negative lead foil 112a facing downward.
- this combined body is fixed, and vibration welding is performed while vibrating another biplate 120 with lead foils for positive and negative electrodes in the diagonal direction of the substrate 121 with an amplitude of 1.6 mm. This vibration welding process is continued until the required number of biplates 120 are bonded onto the first end plate 130 .
- the second end plate 140 is placed with the negative lead foil 112a side facing downward.
- the combined body is fixed, and vibration welding is performed while vibrating the second end plate 140 in the diagonal direction of the substrate 141 with an amplitude of 1.6 mm.
- the second end plate 140 is joined on top of the uppermost biplate 120 of the combined body in which all the biplates 120 are joined.
- the synthetic resin forming the first plate portion 14 and the leg portion 16 is melted, and the non-contact surfaces 144a and 144b of the first plate portion 14 and the outer and inner side surfaces of the leg portion 16 are separated.
- Reinforcing portions 17 are formed at the corners formed by the non-contact surfaces 144a and 144b and the outer and inner side surfaces of the leg portion 16 by cooling and hardening while moving between the legs.
- a joining structure is formed by vibration welding of the opposing surfaces of the frames, and the notches of the opposing frames form one end surface of the bipolar lead-acid battery 100, for example, in the X direction.
- a circular injection hole is formed at each space C of .
- the electrolytic solution is introduced into each space C through the injection hole, and the separator 113 is impregnated with the electrolytic solution.
- the injection hole may be formed by providing a notch portion in the frame in advance, or may be opened using a drill or the like after the frame is joined.
- the bipolar lead-acid battery 100 of the embodiment has a bonding structure (bonding structure by direct bonding) by vibration welding of the opposing surfaces of the frame body, and in this bonding structure, one opposing surface 144 is a contact surface entirely.
- the other opposing surface 164 has non-contact surfaces 144a and 144b outside and inside the one opposing surface 144 in the X and Y directions (directions along the substrate surface).
- the opposing surfaces of the frames are always in full contact with each other during vibration welding. Therefore, the bonding strength between the opposing surfaces of the frame is higher than that of a bipolar lead-acid battery in which the opposing surfaces of the frame sometimes do not come into full contact with each other during vibration welding.
- the presence of the reinforcing portion 17 increases the bonding strength compared to the case without the reinforcing portion 17 .
- the large number of recesses 12 formed in the four end surfaces (outer surfaces) of the frame increase the surface area exposed to the outside air at the end surfaces of the frame, so such recesses are provided. Heat dissipation is higher than that of a bipolar lead-acid battery that does not have a battery.
- the bottom surface 12e of the recess 12 has a step, compared to the case where the bottom surface of the recess 12 is flat, the surface area of the end surface of the frame that is exposed to the outside air is increased, so that heat dissipation is further enhanced.
- the surface 12f along the step of the bottom surface 12e of the recess 12 exists at the middle position in the Z direction of the recess 12, it is located at a position shifted from the middle position in the Z direction of the recess 12. Therefore, the heat from the positive electrode 111 side and the heat from the negative electrode 112 side of the substrate 121 converge, so that the heat can be more effectively radiated. As a result, according to the bipolar lead-acid battery 100 of the embodiment, it is possible to prevent the battery performance from deteriorating due to the accumulation of heat inside.
- the concave portion when the concave portion is provided in the end face of the frame, there is concern that the mechanical strength of the frame may be lowered against the pressure applied during vibration welding.
- the walls 13 extending in the Z direction which are formed by providing a large number of recesses 12 in the X and Y directions, form a frame that resists pressure during vibration welding. A decrease in mechanical strength is reduced, and deformation is suppressed. As a result, the reliability of joining by vibration welding is increased.
- the cover plate 170 reliably covers the outer edge of the positive electrode lead foil 111a even at the boundary with the peripheral edge of the first recess 121b, the positive electrode 111 is corroded by the sulfuric acid in the electrolyte. Even when growth occurs, the electrolyte solution is prevented from entering the end portion of the positive electrode lead foil 111a. As a result, "the electrolytic solution enters the interface between the positive electrode lead foil 111a and the adhesive layer 150 and reaches the negative electrode lead foil 111a through the gap between the through hole 121a of the substrate 121 and the conductor 160. Therefore, the bipolar lead-acid battery 100 of the embodiment also has the effect of preventing a short circuit and reducing battery performance.
- the area S2 of the connection surface 162a of the conductor 160 between the positive electrode lead foil 111a and the negative electrode lead foil 112a is smaller than the cross-sectional area S1 of the large diameter portion 161 (S1>S2), which is the intermediate portion, so that resistance welding is performed. is applied to the entire contact surfaces of the small-diameter portion 162 and the positive electrode lead foil 111a and the negative electrode lead foil 112a.
- the surface on the positive electrode lead foil 111a side and the surface on the negative electrode lead foil 112a side are not dissolved.
- the diameter of the through hole 121a is slightly larger than the diameter A2 of the small-diameter portion 162, and the conductor is formed of a cylindrical body having the same diameter as the small-diameter portion 162 and the same axial dimension as the conductor 160.
- resistance welding is performed by applying a current to the entire contact surface between the conductor and the positive electrode lead foil 111a and the negative electrode lead foil 112a (first case), the positive electrode lead foil of the conductor is The entire surface on the 111a side and the entire surface on the negative electrode lead foil 112a side are all melted to form connection surfaces.
- the surface of the conductor 160 on the side of the positive electrode lead foil 111a (small diameter portion 162) and the surface on the side of the negative electrode lead foil 112a Since only the surface of (small diameter portion 162) is melted and becomes a connection surface, the volume of the conductor increases only in the portion of the large diameter portion 161 outside the small diameter portion 162 in plan view, and the volume increase corresponds to the conduction. Increased heat capacity of the body.
- this part acts as a heat dissipation promoting part during resistance welding, so that heat is easily released from the inside of the conductor, and heat is less likely to accumulate in the conductor. , heat is less likely to be conducted from the conductor to the periphery of the through hole 121a.
- this conductor is brought into contact with the positive electrode lead foil 111a and the negative electrode lead foil 112a.
- resistance welding is performed by applying current to the entire surface (second case)
- the entire surface of the conductor on the positive electrode lead foil 111a side and the negative electrode lead foil 112a side of the conductor are all melted and connected to the connection surface.
- the bipolar lead-acid battery 100 of this embodiment has a smaller area of the conductor that is melted and used as the connection surface, so the amount of heat generated during resistance welding is smaller.
- the amount of heat transferred to the conductor is reduced, so that heat is less likely to remain in the conductor, and heat is less likely to be transferred from the conductor to the periphery of through hole 121a.
- the thermal performance at that time (the performance that makes it difficult for heat to accumulate in the conductor and the performance that makes it difficult for heat to be conducted from the conductor to the periphery of the through hole) is particularly high, and the conductive performance is also improved.
- a smaller ratio (S2/S1) is preferable in terms of thermal performance during resistance welding, but if the ratio (S2/S1) is too small, it is disadvantageous in terms of conductive performance.
- the ratio (S2/S1) is preferably 0.01 or more and 0.50 or less from the viewpoint of achieving both thermal performance and conductive performance during resistance welding.
- both ends of the conductor 160 are small diameter portions (ends having a connecting surface with an area smaller than the cross-sectional area of the intermediate portion) 162, but only one end may be a small diameter portion.
- the diameter of the small diameter portion may decrease from the large diameter portion toward the contact surface, and the conductor has a shape in which the diameter decreases from one contact surface to the other contact surface. You may have If the conductor has a shape in which the diameter decreases from one contact surface to the other contact surface, the cross-sectional area parallel to the connection surface of the intermediate portion is the cross-sectional area at the center position in the board thickness direction. .
- the diameter of the intermediate portion 161 of the conductor 160 is made slightly smaller than the diameter of the through hole 121a in order to facilitate the insertion of the conductor 160 into the through hole 121a of the substrate 121.
- the diameter of the intermediate portion 161 of the body 160 may be even smaller than the diameter of the through hole 121a to provide a distinct gap between the intermediate portion 161 and the through hole 121a.
- the conductor 160 is composed of the large-diameter portion 161 and the small-diameter portion 162, and the entire contact surface of the small-diameter portion 162 with the positive electrode lead foil 111a and the negative electrode lead foil 111a is the connection surface.
- the conductor may be a columnar member having a single diameter, and a part of the contact surface of the conductor with the positive electrode lead foil 111a and the negative electrode lead foil 111a may be used as the connection surface. In that case, spaces 181 and 182 are not formed.
- bipolar lead-acid battery in which the positive electrode current collector is made of the positive electrode lead foil and the negative electrode current collector is made of the negative electrode lead foil has been described.
- the present invention can also be applied to bipolar storage batteries in which the plates and negative electrode collector plates are made of metals other than lead (eg, aluminum, copper, nickel), alloys, and conductive resins.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Description
すなわち、特許文献1に記載された双極型鉛蓄電池は、正極用集電板(鉛層)と正極用活物質層を有する正極、負極用集電板(鉛層)と負極用活物質層を有する負極、および正極と負極との間に介在するセパレータ(ガラスマット)を備え、間隔を開けて積層配置された、複数のセル部材と、複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、を有している。また、空間形成部材は、セル部材の正極側および負極側の少なくとも一方を覆う基板と、セル部材の側面を囲う枠体(二極式プレートおよび端部プレートの枠部とスペーサ)と、を含んでいる。
(1)正極用集電板と正極用活物質層を有する正極、負極用集電板と負極用活物質層を有する負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、複数のセル部材と、前記複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、を有する。
(2)前記空間形成部材は、前記セル部材の前記正極側および前記負極側の少なくとも一方を覆う基板と、前記セル部材の側面を囲う枠体と、を含む。前記セル部材と前記空間形成部材の前記基板とが交互に積層された状態で配置されている。前記枠体同士が接合されている。
(3)前記セル部材同士の間に配置された前記基板は、板面と交差する方向に延びる貫通穴を有する。前記貫通穴に配置された導通体により、隣り合う前記セル部材の前記正極用集電板と前記負極用集電板とが導通されて、前記複数のセル部材が直列に電気的に接続されている。
(4)前記導通体の前記正極用集電板との接続面および前記負極用集電板との接続面の少なくともいずれかの面積は、前記導通体の前記基板の板厚方向における中間部の前記接続面と平行な断面積よりも小さい。
先ず、この実施形態の双極(バイポーラ)型鉛蓄電池の全体構成について説明する。
図1に示すように、この実施形態の双極型鉛蓄電池100は、複数のセル部材110と、複数枚のバイプレート(空間形成部材)120と、第一のエンドプレート(空間形成部材)130と、第二のエンドプレート(空間形成部材)140と、カバープレート170とを有する。図1ではセル部材110が三個積層された双極型鉛蓄電池100を示しているが、セル部材110の数は電池設計により決定される。また、バイプレート120の数はセル部材110の数に応じて決まる。
図1~図3に示すように、セル部材110の積層方向をZ方向(図1~図3の上下方向)とし、Z方向に垂直な方向で且つ互いに垂直な方向をX方向およびY方向とする。
セル部材110は、正極111、負極112、およびセパレータ(電解質層)113を備えている。セパレータ113には電解液が含浸されている。正極111は、正極用鉛箔(正極用集電板)111aと正極用活物質層111bを有する。負極112は負極用鉛箔(負極用集電板)112aと負極用活物質層112bを有する。セパレータ113は、正極111と負極112との間に介在している。セル部材110において、正極用鉛箔111a、正極用活物質層111b、セパレータ113、負極用活物質層112b、および負極用鉛箔112aは、この順に積層されている。
複数のセル部材110は、Z方向に間隔を開けて積層配置され、この間隔の部分にバイプレート120の基板121が配置されている。つまり、複数のセル部材110は、バイプレート120の基板121を間に挟んだ状態で積層されている。
複数枚のバイプレート120と第一のエンドプレート130と第二のエンドプレート140は、複数のセル部材110を個別に収容する複数の空間(セル)Cを形成するための部材である。
Z方向において、枠体122の寸法は基板121の寸法(厚さ)より大きく、柱部123の突出端面間の寸法は枠体122の寸法と同じである。そして、複数のバイプレート120が枠体122および柱部123同士を接触させて積層することにより、基板121と基板121との間に空間Cが形成され、互いに接触する柱部123同士により、空間CのZ方向の寸法が保持される。
バイプレート120の基板121は、板面に対して垂直に(板面と交差する方向に)延びる複数の貫通穴121aを有する。また、基板121の一面に第一の凹部121bが、他面に第二の凹部121cが形成されている。第一の凹部121bの深さは第二の凹部121cの深さより深い。第一の凹部121bおよび第二の凹部121cのX方向およびY方向の寸法は、正極用鉛箔111aおよび負極用鉛箔112aのX方向およびY方向の寸法に対応させてある。
バイプレート120の基板121の第一の凹部121bに、セル部材110の正極用鉛箔111aが接着剤層150を介して配置されている。
カバープレート170は、正極用鉛箔111aの外縁部を覆うためのものであり、薄板状の枠体で、長方形の内形線および外形線を有する。そして、カバープレート170の内縁部が正極用鉛箔111aの外縁部と重なり、カバープレート170の外縁部が基板121の一面の第一の凹部121bの周縁部と重なっている。つまり、カバープレート170の内形線をなす長方形は、正極用活物質層111bの外形線をなす長方形より小さく、カバープレート170の外形線をなす長方形は、第一の凹部121bの開口面をなす長方形より大きい。
バイプレート120の基板121の貫通穴121aに導通体160が配置され、導通体160の両端面は、正極用鉛箔111aおよび負極用鉛箔112aと接触し、結合されている。つまり、導通体160により正極用鉛箔111aと負極用鉛箔112aとが電気的に接続されている。その結果、複数のセル部材110の全てが電気的に直列に接続されている。
大径部161の直径A1は貫通穴121aの直径より少し小さく、大径部161の直径A1に対する小径部162の直径A2の比(A2/A1)は、例えば2/5である。
また、大径部161の接続面162aに平行な断面積S1に対する、小径部162の正極用鉛箔111aおよび負極用鉛箔112aとの接続面162aの面積S2の比(S2/S1)は0.01以上0.50以下である。この比(S2/S1)は0.03以上0.30以下であることが好ましい。
最も外側(正極側)に配置されるセル部材110の正極用鉛箔111a、正極用活物質層111b、およびセパレータ113には、柱部133を貫通させる貫通穴111c,111d,113aがそれぞれ形成されている。
第一のエンドプレート130の基板131の凹部131bに、セル部材110の正極用鉛箔111aが接着剤層150を介して配置されている。また、バイプレート120の基板121と同様に、カバープレート170が接着剤層150により基板131の一面側に固定され、正極用鉛箔111aの外縁部が、凹部131bの周縁部との境界部においてもカバープレート170で確実に覆われている。
また、第一のエンドプレート130は、凹部131b内の正極用鉛箔111aと電気的に接続された正極端子を備えている。
最も外側(負極側)に配置されるセル部材110の負極用鉛箔112a、負極用活物質層112b、およびセパレータ113には、柱部143を貫通させる貫通穴112c,112d,113aがそれぞれ形成されている。
第二のエンドプレート140の基板141の凹部141bに、セル部材110の負極用鉛箔112aが接着剤層150を介して配置されている。
また、第二のエンドプレート140は、凹部141b内の負極用鉛箔112aと電気的に接続された負極端子を備えている。
以下において、バイプレート120の枠体122、第一のエンドプレートの枠体132、および第二のエンドプレートの枠体142に共通の構成を説明する場合は、これらの枠体122,132,142を単に「枠体」として説明する。
つまり、枠体は、隣り合う凹部12を仕切る壁部13、多数の凹部12のZ方向で対向する一面12aを連続して形成する第一の板部14、多数の凹部12のZ方向および他面12bを連続して形成する第二の板部15、および第二の板部15から第一の板部14とは反対側(図1~図3の上側)に延びる脚部16を有する。
また、底面12eは段差を有し、段差に沿う面12fは凹部12のZ方向(セル部材110の積層方向)の中間位置に存在する。図2の線Eは、段差に沿う面12fのZ方向での位置を示す線である。つまり、底面12eは、面積が同じで深さの異なる第一の底面12gおよび第二の底面12hを有する。バイプレート120の正極111側の底面である第一の底面12gの深さ(X方向の寸法)は、バイプレート120の負極112側の底面である第二の底面12hの深さより浅い。
この実施形態の双極型鉛蓄電池100は、以下の各工程を有する方法で製造することができる。
先ず、バイプレート120の基板121を、第一の凹部121b側を上に向けて作業台に置き、第一の凹部121bに接着剤を塗布し、第一の凹部121b内に正極用鉛箔111aを入れる。その際に、正極用鉛箔111aの貫通穴111cにバイプレート120の柱部123を通す。この接着剤を硬化させて、基板121の一面に正極用鉛箔111aを貼り付ける。
次に、基板121の第二の凹部121c側を上に向けて作業台に置き、貫通穴121aに導通体160を挿入する。次に、第二の凹部121cに接着剤を塗布し、第二の凹部121c内に負極用鉛箔112aを入れる。その際に、負極用鉛箔112aの貫通穴112cにバイプレート120の柱部123を通す。この接着剤を硬化させて、基板121の他面に負極用鉛箔112aを貼り付ける。
このようにして、正負極用鉛箔付きのバイプレート120を得る。この正負極用鉛箔付きのバイプレート120を必要枚数だけ用意する。
第一のエンドプレート130の基板131を、凹部131b側を上に向けて作業台に置き、凹部131bに接着剤を塗布し、凹部131b内に正極用鉛箔111aを入れて接着剤を硬化させる。その際に、正極用鉛箔111aの貫通穴111cにエンドプレート130の柱部133を通す。この接着剤を硬化させて、基板131の一面に正極用鉛箔111aを貼り付ける。
これにより、正極用鉛箔付きエンドプレートを得る。
第二のエンドプレート140の基板141を、凹部141b側を上に向けて作業台に置き、凹部141bに接着剤を塗布し、凹部141b内に負極用鉛箔112aを入れて接着剤を硬化させる。その際に、負極用鉛箔112aの貫通穴112cに第二のエンドプレート140の柱部143を通す。この接着剤を硬化させて、基板141の一面に負極用鉛箔112aが貼り付けられた第二のエンドプレート140を得る。
先ず、正極用鉛箔111aおよびカバープレート170が固定された第一のエンドプレート130を、正極用鉛箔111aを上に向けて作業台に置き、カバープレート170の中に正極用活物質層111bを入れて正極用鉛箔111aの上に置く。その際に、正極用活物質層111bの貫通穴111dに第一のエンドプレート130の柱部133を通す。次に、正極用活物質層111bの上に、セパレータ113、負極用活物質層112bを置く。
次に、この状態の第一のエンドプレート130の上に、正負極用鉛箔付きのバイプレート120の負極用鉛箔112a側を下に向けて置く。その際に、バイプレート120の柱部123を、セパレータ113の貫通穴113aおよび負極用活物質層112bの貫通穴112dに通して、第一のエンドプレート130の柱部133の上に載せるとともに、第一のエンドプレート130の枠体132の脚部16の上に、バイプレート120の枠体122の第一の板部14を載せる。
また、振動溶接工程において、第一の板部14および脚部16を形成する合成樹脂が溶けて、第一の板部14の非接触面144a,144bと脚部16の外側面および内側面との間に移動した状態で冷えて固まることで、非接触面144a,144bと、脚部16の外側面および内側面と、で形成される角部に、補強部17が形成される。
上述の各プレート同士の積層、接合工程において、枠体の対向面同士の振動溶接による接合構造が形成され、対向する枠体の切り欠き部によって、双極型鉛蓄電池100の例えばX方向の一端面の各空間Cの位置に、円形の注入穴が形成されている。この注入穴から各空間Cの内部に電解液を入れて、セパレータ113に電解液を含浸させる。
なお、注入穴は、上述のように、予め枠体に切り欠き部を設けることで形成してもよいし、枠体の接合後にドリル等を用いて開けてもよい。
実施形態の双極型鉛蓄電池100は、枠体の対向面同士の振動溶接による接合構造(直接接合による接合構造)を有し、この接合構造において、一方の対向面144は全面が接触面であり、他方の対向面164は、X方向およびY方向(基板面に沿う方向)において一方の対向面144より外側および内側に非接触面144a,144bを有している。また、L1は4mm、L2は6mmであり(つまり、L2/L1=5/4以上2以下を満たし)、基板121,141の対角線方向に1.6mmの振幅で振動させながら振動溶接を行っているため、振動溶接時に枠体の対向面同士が常時全面接触している。
よって、振動溶接時に枠体の対向面同士が全面接触しない状態になる時があるように構成された双極型鉛蓄電池と比較して、枠体の対向面同士の接合強度が高くなっている。また、補強部17が存在することで、補強部17がない場合よりも接合強度が高くなる。
さらに、凹部12の底面12eが有する段差に沿う面12fが、凹部12のZ方向の中間位置に存在するため、凹部12のZ方向の中間位置からずれた位置に存在している場合と比較して、基板121の正極111側からの熱および負極112側からの熱が合流する位置で、より効果的な放熱がなされるようになる。
その結果、実施形態の双極型鉛蓄電池100によれば、内部に熱が籠ることに伴う電池性能の悪化が防止できる。
さらに、カバープレート170で正極用鉛箔111aの外縁部が、第一の凹部121bの周縁部との境界部においても確実に覆われているため、電解液中の硫酸で腐食されて正極111にグロースが生じた場合でも、正極用鉛箔111aの端部に電解液が浸入することが抑制される。その結果、「正極用鉛箔111aと接着剤層150との界面に電解液が浸入して、基板121の貫通穴121aと導通体160との隙間を経由して、負極用鉛箔111aに到達すること」が抑制されるため、実施形態の双極型鉛蓄電池100は、短絡が防止されて電池性能の低下が生じにくくなる効果も奏する。
これに対して、貫通穴121aの直径を小径部162の直径A2より僅かに大きい寸法とし、小径部162と同じ直径で軸方向の寸法が導通体160と同じである円柱体からなる導通体を用いて、この導通体と正極用鉛箔111aおよび負極用鉛箔112aとの接触面の全体に電流を流して抵抗溶接を行った場合(第一の場合)は、導通体の正極用鉛箔111a側の全面および負極用鉛箔112a側の全面が全て溶解して接続面となる。
第二の場合との比較では、この実施形態の双極型鉛蓄電池100の方が、溶解させて接続面とする導通体の面積が小さいため、抵抗溶接時に発生する熱量が小さくなる。その結果、導電体に伝わる熱量が小さくなることで、導電体に熱が籠りにくくなるとともに、導電体から貫通穴121aの周囲に熱が伝わりにくくなる。
また、実施形態の双極型鉛蓄電池100は、大径部161の断面積S1に対する接続面162aの面積S2の比(S2/S1)が0.01以上0.50以下であることにより、抵抗溶接時の熱的性能(導電体に熱が籠りにくくなるとともに、導電体から貫通穴の周囲に熱が伝わりにくくなる性能)が特に高くなるとともに、導電性能も良好なものとなる。
比(S2/S1)は、抵抗溶接時の熱的性能の点では小さい方が好ましいが、比(S2/S1)が小さすぎると導電性能の点では不利になる。抵抗溶接時の熱的性能と導電性能の両立の点から、比(S2/S1)は0.01以上0.50以下であることが好ましい。
上記実施形態では、導通体160の両端部が小径部(中間部の断面積より小さい面積の接続面を有する端部)162となっているが、一端部のみが小径部となっていてもよい。また、小径部の直径は大径部側から接触面に向かうに連れて小さくなっていてもよいし、導通体は、一方の接触面から他方の接触面に向けて直径が小さくなる形状を有していてもよい。導通体が、一方の接触面から他方の接触面に向けて直径が小さくなる形状の場合、中間部の接続面と平行な断面積は、基板の板厚方向の中心位置での断面積である。
また、上記実施形態では、導通体160を大径部161と小径部162とで構成し、小径部162の正極用鉛箔111aおよび負極用鉛箔111aとの接触面の全面を接続面としているが、導通体を単一直径の円柱状部材として、導通体の正極用鉛箔111aおよび負極用鉛箔111aとの接触面の一部を接続面としてもよい。その場合は、空間181,182は形成されない。
12e 凹部の平坦でない底面
12f 段差に沿う面
12g 第一の底面
12h 第二の底面
13 隣り合う凹部を仕切る壁部
14 第一の板部
15 第二の板部
16 脚部
17 補強部
100 双極(バイポーラ)型鉛蓄電池
110 セル部材
111 正極
112 負極
111a 正極用鉛箔(正極用集電板)
112a 負極用鉛箔(負極用集電板)
111b 正極用活物質層
112b 負極用活物質層
113 セパレータ
120 バイプレート
121 バイプレートの基板
121a 基板の貫通穴
121b 基板の第一の凹部
121c 基板の第二の凹部
122 バイプレートの枠体
130 第一のエンドプレート
131 第一のエンドプレートの基板
132 第一のエンドプレートの枠体
140 第二のエンドプレート
141 第二のエンドプレートの基板
142 第二のエンドプレートの枠体
144a,144b 非接触面
144 第一の板部の面(他方の対向面)
150 接着剤層
160 導通体
161 導通体の大径部(中間部)
162 導通体の小径部(小さく形成されている端部)
162a 小径部の接続面
164 脚部の面(一方の対向面)
170 カバープレート
C セル(セル部材を収容する空間)
E 段差に沿う面のZ方向での位置を示す線
Claims (3)
- 正極用集電板と正極用活物質層を有する正極、負極用集電板と負極用活物質層を有する負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、複数のセル部材と、
前記複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、
を有し、
前記空間形成部材は、前記セル部材の前記正極側および前記負極側の少なくとも一方を覆う基板と、前記セル部材の側面を囲う枠体と、を含み、
前記セル部材と前記空間形成部材の前記基板とが交互に積層された状態で配置され、
前記枠体同士が接合され、
前記セル部材同士の間に配置された前記基板は、板面と交差する方向に延びる貫通穴を有し、
前記貫通穴に配置された導通体により、隣り合う前記セル部材の前記正極用集電板と前記負極用集電板とが導通されて、前記複数のセル部材が直列に電気的に接続され、
前記導通体の前記正極用集電板との接続面および前記負極用集電板との接続面の少なくともいずれかの面積は、前記導通体の前記基板の板厚方向における中間部の前記接続面と平行な断面積よりも小さい双極型蓄電池。 - 前記中間部の前記断面積S1に対する前記中間部の前記断面積よりも小さい前記接続面の面積S2の比(S2/S1)は0.01以上0.50以下である請求項1記載の双極型蓄電池。
- 前記正極用集電板は正極用鉛箔からなり、前記負極用集電板は負極用鉛箔からなる請求項1または2記載の双極型蓄電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023508448A JPWO2022201622A1 (ja) | 2021-03-26 | 2021-11-10 | |
US18/473,929 US20240021883A1 (en) | 2021-03-26 | 2023-09-25 | Bipolar Storage Battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021053770 | 2021-03-26 | ||
JP2021-053770 | 2021-03-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/473,929 Continuation US20240021883A1 (en) | 2021-03-26 | 2023-09-25 | Bipolar Storage Battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022201622A1 true WO2022201622A1 (ja) | 2022-09-29 |
Family
ID=83395304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/041426 WO2022201622A1 (ja) | 2021-03-26 | 2021-11-10 | 双極型蓄電池 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240021883A1 (ja) |
JP (1) | JPWO2022201622A1 (ja) |
WO (1) | WO2022201622A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4733817U (ja) * | 1971-05-10 | 1972-12-15 | ||
JPS55104083A (en) * | 1979-02-06 | 1980-08-09 | Japan Storage Battery Co Ltd | Laminated-type lead storage battery |
US20130065106A1 (en) * | 2011-09-09 | 2013-03-14 | Thomas Faust | Bipolar Battery and Plate |
JP2014530450A (ja) * | 2011-09-09 | 2014-11-17 | イースト ペン マニュファクチャリング カンパニー インコーポレーテッドEast Penn Manufacturing Co.,Inc. | 二極式電池およびプレート |
-
2021
- 2021-11-10 WO PCT/JP2021/041426 patent/WO2022201622A1/ja active Application Filing
- 2021-11-10 JP JP2023508448A patent/JPWO2022201622A1/ja active Pending
-
2023
- 2023-09-25 US US18/473,929 patent/US20240021883A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4733817U (ja) * | 1971-05-10 | 1972-12-15 | ||
JPS55104083A (en) * | 1979-02-06 | 1980-08-09 | Japan Storage Battery Co Ltd | Laminated-type lead storage battery |
US20130065106A1 (en) * | 2011-09-09 | 2013-03-14 | Thomas Faust | Bipolar Battery and Plate |
JP2014530450A (ja) * | 2011-09-09 | 2014-11-17 | イースト ペン マニュファクチャリング カンパニー インコーポレーテッドEast Penn Manufacturing Co.,Inc. | 二極式電池およびプレート |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022201622A1 (ja) | 2022-09-29 |
US20240021883A1 (en) | 2024-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2299511B1 (en) | Rechargeable battery and battery module | |
KR20130034578A (ko) | 이차 전지 및 이차전지를 포함하는 자동차 | |
KR20180102927A (ko) | 배터리 셀 및 그 제조 방법 | |
EP2429012A1 (en) | Secondary battery | |
WO2022201622A1 (ja) | 双極型蓄電池 | |
JP2022112924A (ja) | 双極型鉛蓄電池 | |
WO2023085068A1 (ja) | 双極型蓄電池 | |
JP2022112925A (ja) | 双極型鉛蓄電池 | |
WO2022215349A1 (ja) | バイポーラ型蓄電池、及びその製造方法 | |
JP2023001638A (ja) | 双極型蓄電池 | |
JP2023076861A (ja) | 双極型蓄電池 | |
US20230335710A1 (en) | Bipolar Electrode and Bipolar Storage Battery | |
JP7636434B2 (ja) | 双極型蓄電池 | |
JP7572592B2 (ja) | 双極型蓄電池 | |
JP5393181B2 (ja) | 密閉式角形電池および密閉式角形電池の組立方法 | |
JP2023071048A (ja) | 双極型蓄電池及び双極型蓄電池の製造方法 | |
JP2022159905A (ja) | 双極型蓄電池及び双極型蓄電池の製造方法 | |
US20250015470A1 (en) | Bipolar Storage Battery | |
WO2023008426A1 (ja) | 双極型蓄電池及び双極型蓄電池の製造方法 | |
US20240234980A1 (en) | Bipolar Storage Battery | |
JP2023024097A (ja) | 双極型蓄電池及び双極型蓄電池の製造方法 | |
JP2023042804A (ja) | 双極型蓄電池 | |
JP2022122593A (ja) | バイポーラ電極、バイポーラ型鉛蓄電池、及びその製造方法 | |
JP2023024096A (ja) | 双極型蓄電池 | |
JP2025011536A (ja) | 双極型蓄電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21933220 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023508448 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021933220 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021933220 Country of ref document: EP Effective date: 20231026 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21933220 Country of ref document: EP Kind code of ref document: A1 |