[go: up one dir, main page]

WO2022194174A1 - 一种负极极片及含该负极极片的锂离子电池 - Google Patents

一种负极极片及含该负极极片的锂离子电池 Download PDF

Info

Publication number
WO2022194174A1
WO2022194174A1 PCT/CN2022/081032 CN2022081032W WO2022194174A1 WO 2022194174 A1 WO2022194174 A1 WO 2022194174A1 CN 2022081032 W CN2022081032 W CN 2022081032W WO 2022194174 A1 WO2022194174 A1 WO 2022194174A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
formula
pole piece
ether
segment
Prior art date
Application number
PCT/CN2022/081032
Other languages
English (en)
French (fr)
Inventor
唐伟超
李素丽
赵伟
刘春洋
莫肇华
张赵帅
董德锐
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2022194174A1 publication Critical patent/WO2022194174A1/zh
Priority to US18/227,252 priority Critical patent/US20230369563A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of lithium ion batteries, in particular to a negative electrode pole piece containing a silicon-based material and optionally a carbon-based material and a lithium ion battery containing the negative electrode pole piece.
  • Lithium-ion batteries have the advantages of long cycle life, low self-discharge rate, and environmental protection. Lithium-ion batteries have been widely used in consumer electronic products such as notebook computers, mobile phones, and cameras. Lithium-ion batteries are mainly composed of positive electrodes, negative electrodes, separators and electrolytes. Lithium-ion negative electrode materials are particularly important as important components in lithium-ion batteries.
  • Lithium-ion anode materials are mainly composed of graphite, hard carbon, silicon, silicon oxide, and tin.
  • Silicon anode has high gram capacity and rich content, and has always been an important material for high energy density batteries.
  • the continuous consumption of the solid interface film on the surface of the silicon negative electrode affects the cycle life of the battery and becomes the main bottleneck restricting the application of the silicon negative electrode.
  • the continuous consumption of the solid interface film on the surface of the silicon negative electrode leads to the deterioration of the battery performance. How to improve the cycle performance of the silicon negative electrode? appear particularly important.
  • the present invention provides a negative pole piece and a Lithium-ion battery containing the negative pole piece.
  • the negative electrode sheet can effectively improve the transport of lithium ions and electrons, form a solid interface film with a stable structure, suppress the volume change of the negative electrode sheet, and improve the cycle performance of the silicon negative electrode, especially the normal temperature cycle performance of the silicon negative electrode.
  • a negative pole piece includes a negative electrode current collector and a negative electrode active material layer coated on one side or both sides of the negative electrode current collector, the negative electrode active material layer includes a negative electrode active material, a conductive agent, a bonding agent agent and auxiliary agent, wherein, the negative electrode active material comprises a silicon-based material; the auxiliary agent is selected from at least one of the compounds represented by the following formula 1:
  • M is selected from polyphenylene ether segment, polyethylene glycol segment, polyethylene dithiol segment, polycarbonate segment, polypropylene glycol segment or polysilicon ether segment;
  • R 1 and R' 1 is an end-capping group, and at least one of R 1 and R' 1 includes a carbon-carbon double bond or a carbon-carbon triple bond as an end group;
  • R and R' are linking groups.
  • the invention adopts the negative electrode additive of carbon-carbon double bond or carbon-carbon triple bond, and the carbon-carbon double bond or carbon-carbon triple bond undergoes electrochemical polymerization under the condition of low potential, and forms a stable solid interface film in the silicon-based negative electrode, which effectively slows down the The occurrence of side reactions at the interface of the base material reduces the increase in internal resistance during the battery cycle and improves the battery cycle performance.
  • R 2 is selected from H or organic functional groups (such as C 1-12 alkyl, C 3-20 cycloalkyl, 3-20 -membered hetero Ring group, C 6 - 18 aryl group, 5-20 membered heteroaryl group, bridged ring group formed by C 3 - 20 cycloalkyl group and C 3 - 20 cycloalkyl group, C 3 - 20 cycloalkyl group and 3-20 cycloalkyl group,
  • R and R' are the same or different and are independently selected from absence, alkylene, -NR 3 -, wherein R 3 is H or C 1-3 alkyl.
  • R and R' are the same or different and independently of each other are selected from absence, -CH2- , -CH2CH2- , -NH-, -N( CH3 ) - , -N( CH2CH3 )-.
  • the polyphenylene ether segment has repeating units shown in formula 2:
  • R 4 is selected from H or C 1-6 alkyl, and m is an integer between 0-4.
  • R 4 is selected from H or C 1-3 alkyl, and m is an integer between 0-2.
  • polyphenylene ether segment has a repeating unit represented by formula 2':
  • the polyethylene glycol segment has a repeating unit shown in formula 3:
  • the polypropylene glycol segment has a repeating unit shown in formula 4:
  • the polyethylene dithiol segment has a repeating unit shown in formula 5:
  • the polycarbonate segment has repeating units represented by formula 6:
  • the polysiloxane segment has repeating units shown in formula 7:
  • the number average molecular weight of the compound represented by formula 1 is 200-30000, preferably 300-10000.
  • the compound represented by the formula 1 is selected from polyethylene dithiol acrylate, polyethylene dithiol methacrylate, polyethylene dithiol diacrylate, polyethylene dithiol dimethacrylate , polyethylene dithiol phenyl ether acrylate, polyethylene dithiol monoallyl ether, polyethylene glycol acrylate, polyethylene glycol methacrylate, polyethylene glycol diacrylate, polyethylene glycol Alcohol Dimethacrylate, Polyethylene Glycol Phenyl Ether Acrylate, Polyethylene Glycol Monoallyl Ether, Polycarbonate Acrylate, Polycarbonate Methacrylate, Polycarbonate Diacrylate, Polycarbonate Ester Dimethacrylate, Polycarbonate Phenyl Ether Acrylate, Polycarbonate Monoallyl Ether, Polypropylene Glycol Acrylate, Polypropylene Glycol Methacrylate, Polypropylene Glycol Diacrylate, Polypropylene Glycol Dimethacrylate , Polypropylene Glycol
  • the negative electrode active material layer includes the following components by mass percentage:
  • the negative electrode active material 75-98wt% of the negative electrode active material, 1-15wt% of the conductive agent, 0.999-10wt% of the binder, and 0.001-2wt% of the auxiliary agent.
  • the silicon-based material is selected from at least one of nano-silicon, SiOx (0 ⁇ x ⁇ 2), aluminum-silicon alloy, magnesium-silicon alloy, boron-silicon alloy, phosphorus-silicon alloy, and lithium-silicon alloy.
  • the negative electrode active material further includes a carbon-based material selected from at least one of artificial graphite, natural graphite, hard carbon, soft carbon, mesophase microspheres, fullerenes, and graphene. .
  • the invention adopts the auxiliary agent containing carbon-carbon double bond or carbon-carbon triple bond, and the carbon-carbon double bond or carbon-carbon triple bond undergoes electrochemical polymerization under the condition of low potential, and forms a stable solid state in the silicon-based material and the carbon-based material negative electrode
  • the interface film can effectively slow down the occurrence of interfacial side reactions between silicon-based materials and carbon-based materials, reduce the increase in internal resistance during battery cycling, and improve battery cycle performance.
  • the thickness of the negative electrode active material layer is 20 ⁇ m-200 ⁇ m, preferably 30 ⁇ m-150 ⁇ m.
  • the present invention also provides a lithium ion battery, the lithium ion battery includes the above-mentioned negative pole piece.
  • the invention provides a negative pole piece and a lithium ion battery containing the negative pole piece.
  • a negative electrode active material, a conductive agent, a binder and an auxiliary agent (the compound shown in formula 1) are used, and the above substances are dissolved in a solvent, and after uniform mixing, coating is carried out on the surface of the negative electrode current collector. , after drying, the negative pole piece of the present invention can be obtained.
  • the auxiliary agent (the compound represented by the formula 1) can be fully mixed with the negative electrode active material, the conductive agent and the binder due to its small molecular weight and short polymer segment, and the auxiliary agent (the compound represented by the formula 1) ) is a viscous liquid state, semi-solid state or solid state at room temperature, which can fully contact each component in the negative electrode and immerse in the inner pores of the pole piece, that is, the auxiliary agent of the present invention can form a film on the surface of the negative electrode active material, which can effectively improve the The internal resistance of the silicon anode increases during cycling, which improves the cycle life.
  • the auxiliary agent of the invention can also participate in the film-forming reaction of the silicon negative electrode, and form a solid interface film structure with a certain molecular weight on the surface of the silicon negative electrode, which can improve the composition of the solid interface film on the surface of the silicon negative electrode, increase the content of polymer components in the solid interface film, and improve the battery negative electrode.
  • the electrons and lithium ions inside the pole piece are connected, which improves the lithium ion dynamics inside the pole piece and improves the battery cycle performance.
  • the present invention provides a negative electrode sheet
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer coated on one side or both sides of the negative electrode current collector, and the negative electrode active material layer includes a negative electrode Active material, conductive agent, binder and auxiliary agent, wherein, the negative electrode active material comprises a silicon-based material; the auxiliary agent is selected from at least one of the compounds represented by the following formula 1:
  • M is selected from polyphenylene ether segment, polyethylene glycol segment, polyethylene dithiol segment, polycarbonate segment, polypropylene glycol segment or polysilicon ether segment;
  • R 1 and R' 1 is an end-capping group, and at least one of R 1 and R' 1 includes a carbon-carbon double bond or a carbon-carbon triple bond as an end group;
  • R and R' are linking groups.
  • R 2 is selected from H or organic functional groups (such as C 1-12 alkyl, C 3-20 cycloalkyl, 3 -20-membered heterocyclic group, C 6 - 18 aryl group, 5-20 membered heteroaryl group, bridged ring group formed by C 3 - 20 cycloalkyl and C 3 - 20 cycloalkyl group, C 3 - 20 cycloalkyl group Bridged ring group formed with 3-20
  • R and R' are the same or different and are independently selected from absence, alkylene, -NR3-, wherein R3 is H or C1-3 alkyl .
  • R and R' are the same or different and are independently selected from the group consisting of absence, -CH2- , -CH2CH2- , -NH-, -N( CH3 ) - , -N( CH2CH3 )-.
  • the polyphenylene ether segment has a repeating unit shown in formula 2:
  • R 4 is selected from H or C 1-6 alkyl, and m is an integer between 0-4.
  • R 4 is selected from H or C 1-3 alkyl, and m is an integer between 0-2.
  • polyphenylene ether segment has a repeating unit represented by formula 2':
  • the polyethylene glycol segment has a repeating unit shown in formula 3:
  • the polypropylene glycol segment has a repeating unit shown in formula 4:
  • the polyethylene dithiol segment has a repeating unit shown in formula 5:
  • the polycarbonate segment has a repeating unit represented by formula 6:
  • the polysiloxane segment has repeating units represented by formula 7:
  • the number average molecular weight of M is 100-30000.
  • the number average molecular weight of the compound represented by formula 1 is 200-30,000, preferably 300-10,000.
  • the compound represented by the formula 1 is selected from polyethylene dithiol acrylate, polyethylene dithiol methacrylate, polyethylene dithiol diacrylate, polyethylene dithiol diacrylate Methacrylate, polyethylene dithiol phenyl ether acrylate, polyethylene dithiol monoallyl ether, polyethylene glycol acrylate, polyethylene glycol methacrylate, polyethylene glycol diacrylate , polyethylene glycol dimethacrylate, polyethylene glycol phenyl ether acrylate, polyethylene glycol monoallyl ether, polycarbonate acrylate, polycarbonate methacrylate, polycarbonate diacrylate Ester, Polycarbonate Dimethacrylate, Polycarbonate Phenyl Ether Acrylate, Polycarbonate Monoallyl Ether, Polypropylene Glycol Acrylate, Polypropylene Glycol Methacrylate, Polypropylene Glycol Diacrylate, Polypropylene Glycol Diacrylate Methacrylate,
  • the auxiliary agent is selected from the following formula 1-1, formula 1-2, formula 1-3, formula 1-4, formula 1-5, formula 1-6, formula 1-7, formula 1-8 At least one of the compounds shown:
  • n is the number of repeating units, which are the same or different in each formula; for example, n is an integer between 2 and 680;
  • R is a linking group, which is as defined above.
  • the compound represented by formula 1-7 is, for example, propynyl-tripolyethylene glycol-acetic acid (CAS: 1415800-32-6); the compound represented by formula 1-8 is, for example, biotin tetraethylene glycol alkynyl (CAS : 1262681-31-1).
  • the adjuvant can be prepared by a conventional method in the art, or it can be purchased through commercial channels.
  • the negative electrode active material layer includes the following components by mass percentage:
  • the negative electrode active material 75-98wt% of the negative electrode active material, 1-15wt% of the conductive agent, 0.999-10wt% of the binder, and 0.001-2wt% of the auxiliary agent.
  • the mass percentage of the negative electrode active material is 75wt%, 76wt%, 77wt%, 78wt%, 79wt%, 80wt%, 81wt%, 82wt%, 83wt%, 84wt%, 85wt%, 86wt% , 87wt%, 88wt%, 89wt%, 90wt%, 91wt%, 92wt%, 93wt%, 94wt%, 95wt%, 96wt%, 97wt%, 98wt%.
  • the mass percentage content of the conductive agent is 1wt%, 2wt%, 3wt%, 4wt%, 5wt%, 6wt%, 7wt%, 8wt%, 9wt%, 10wt%, 11wt%, 12wt%, 13wt%, 14wt%, 15wt%.
  • the mass percentage content of the auxiliary agent is 0.001wt%, 0.05wt%, 0.1wt%, 0.15wt%, 0.25wt%, 0.55wt%, 0.65wt%, 0.70wt%, 0.75wt%, 0.85wt%, 0.90wt%, 1.0wt%, 1.2wt%, 1.5wt%, 2wt%.
  • the additive content is more than 2wt%, the additive content is too high, which will lead to the reduction of the negative electrode active material, resulting in low capacity of the pole piece, poor lithium-conducting conductive network in the pole piece, affecting the performance of the battery and not meeting the application conditions;
  • the additive content is less than 0.001 wt%, the additive content is too low, the film-forming property is poor, the structure of the solid interface film formed on the surface of the negative electrode is unstable, and the battery performance is reduced.
  • the mass percentage of the binder is 0.999wt%, 1wt%, 2wt%, 3wt%, 4wt%, 5wt%, 6wt%, 7wt%, 8wt%, 9wt%, 10wt%.
  • the silicon-based material is selected from at least one of nano-silicon, SiOx (0 ⁇ x ⁇ 2), aluminum-silicon alloy, magnesium-silicon alloy, boron-silicon alloy, phosphorus-silicon alloy, and lithium-silicon alloy kind.
  • the negative electrode active material further includes a carbon-based material selected from artificial graphite, natural graphite, hard carbon, soft carbon, mesophase microspheres, fullerenes, and graphene. at least one of.
  • the conductive agent is selected from conductive carbon black, ketjen black, conductive fibers, conductive polymers, acetylene black, carbon nanotubes, graphene, flake graphite, conductive oxides, and metal particles. one or more.
  • the binder is selected from the group consisting of polyvinylidene fluoride and its copolymerized derivatives, polytetrafluoroethylene and its copolymerized derivatives, polyacrylic acid and its copolymerized derivatives, polyvinyl alcohol and its copolymerized derivatives polystyrene-butadiene rubber and its copolymerized derivatives, polyimide and its copolymerized derivatives, polyethyleneimine and its copolymerized derivatives, polyacrylates and its copolymerized derivatives, sodium carboxymethyl cellulose and its copolymers at least one of the derivatives.
  • the areal density of the negative pole piece is 0.2-15 mg/cm 2 .
  • the thickness of the negative electrode current collector is 3 ⁇ m-15 ⁇ m, preferably 4 ⁇ m-10 ⁇ m, such as 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 12 ⁇ m or 15 ⁇ m.
  • the thickness of the negative electrode active material layer is 20 ⁇ m-200 ⁇ m, preferably 30 ⁇ m-150 ⁇ m, such as 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, 190 ⁇ m or 200 ⁇ m.
  • the present invention also provides a method for preparing the above-mentioned negative pole piece, the method comprising the following steps:
  • a negative electrode slurry is prepared by uniformly mixing a solvent, a negative electrode active material, a conductive agent, a binder and at least one compound shown in formula 1; the negative electrode slurry is coated on the surface of the negative electrode current collector, and after drying treatment, the obtained negative electrode slurry is prepared. the negative pole piece.
  • the negative electrode slurry contains 100-600 parts by mass of a solvent, 75-98 parts by mass of a negative electrode active material, 1-15 parts by mass of a conductive agent, and 0.001-2 parts by mass of at least one of A compound represented by formula 1 and a binder of 0.999-10 parts by mass.
  • the solvent is selected from at least one of water, acetonitrile, benzene, toluene, xylene, acetone, tetrahydrofuran, hydrofluoroether, and N-methylpyrrolidone.
  • the negative electrode slurry is preferably a negative electrode slurry after being sieved, for example, passed through a 200-mesh sieve.
  • the temperature of the drying treatment is 50°C-110°C, and the time of the drying treatment is 6-36 hours.
  • the present invention also provides a lithium ion battery, the lithium ion battery includes the above-mentioned negative pole piece.
  • NCM811 positive active material nickel cobalt manganese ternary material
  • PVDF binder polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • conductive agent single-walled carbon nanotubes SWCNT
  • 10g conductive agent conductive carbon black SP
  • 2g polyethylene glycol methyl methacrylate 4g binder sodium carboxymethyl cellulose ( CMC), 4g binder styrene-butadiene rubber (SBR), 500g deionized water, made into slurry by wet process, coated on the surface of negative electrode current collector copper foil, dried, rolled and die-cut to obtain negative electrode pole piece;
  • a lithium ion battery cell is prepared from the above-obtained positive pole piece, negative pole piece and separator, and after liquid injection, packaging and welding, a lithium ion battery is obtained.
  • Comparative Example 1.2 The specific process of Comparative Example 1.2 refers to Example 1, the main difference is that no polyethylene glycol methyl methacrylate monomer is added in Comparative Example 1.2, and other conditions are consistent with Example 1.
  • Examples 2-6 and other comparative examples refers to Example 1, and the main difference is the process conditions of the negative pole piece, the amount of each component added, and the type of each component material. See Table 1 and Table 2 for details.
  • the internal resistance test results in the battery cycle process show that the lithium ion battery prepared in the embodiment of the present invention has a lower internal resistance than the lithium ion battery prepared in the comparative example during the cycle process.
  • the main reason is that the additives added in the present invention can form a solid interface film on the surface of the silicon material.
  • the solid interface film is different from the solid interface film on the surface of the conventional silicon material, and has the functions of high polymer component content, large molecular weight and high-speed lithium conduction.
  • the lithium ion battery can be quickly turned on to pass through, the prepared lithium ion battery has lower internal resistance, and the increase of the internal resistance during the cycle of the lithium ion battery is small, which has a good application prospect.
  • the cycle performance test results of the above examples and comparative examples show that the capacity retention rate of the lithium ion batteries prepared in the examples of the present invention is higher than that of the lithium ion batteries prepared in the comparative examples during the cycling process.
  • the main reason is that the additives added in the present invention can form a solid interface film on the surface of the silicon material.
  • the solid interface film is different from the solid interface film on the surface of the conventional silicon material, and has the functions of high polymer component content, large molecular weight and high-speed lithium conduction.
  • the solid-state interface film on the surface of conventional silicon material is that during the battery cycle, with the alloying and dealloying of lithium ions, the surface of the silicon material exhibits random volume expansion, resulting in more new interfaces, which consume electrolyte.
  • test results of the cycle charge and discharge performance of the above examples and comparative examples show that the silicon material negative electrode pole piece prepared by the present invention has low internal resistance during the cycle, and lithium ions have a good lithium-conducting conduction channel inside the silicon material negative pole piece.
  • the prepared lithium-ion battery has good cycle performance.
  • the above-obtained positive pole piece, negative pole piece and separator are used to prepare a lithium ion battery cell, and after liquid injection packaging and welding, a lithium ion battery is obtained.
  • Comparative Example 7.2 refers to Example 7, the main difference is that no polyethylene glycol methyl methacrylate monomer is added in Comparative Example 7.2, and other conditions are consistent with Example 7.
  • Examples 8-12 and other comparative examples refers to Example 7, and the main difference is the process conditions of the negative pole piece, the amount of each component added, and the type of each component material. See Table 5 and Table 6 for details.
  • the internal resistance test results in the battery cycle process show that the lithium ion battery prepared in the embodiment of the present invention has a lower internal resistance than the lithium ion battery prepared in the comparative example during the cycle process.
  • the main reason is that the additives added in the present invention can form a solid interface film on the surface of the negative electrode active material.
  • the solid interface film is different from the solid interface film on the surface of the conventional negative electrode active material. It has high content of polymer components, large molecular weight and high-speed lithium conduction. and other functional characteristics, can quickly turn on lithium ions to pass through, the prepared lithium ion battery has lower internal resistance, and at the same time, the increase of internal resistance during the cycle of the lithium ion battery is small, and has a good application prospect.
  • the cycle performance test results of the above examples and comparative examples show that the capacity retention rate of the lithium ion batteries prepared in the examples of the present invention is higher than that of the lithium ion batteries prepared in the comparative examples during the cycling process.
  • the main reason is that the additives added in the present invention can form a solid interface film on the surface of the negative electrode active material.
  • the solid interface film is different from the solid interface film formed on the surface of the conventional negative electrode active material. Lithium and other functional characteristics.
  • the solid interface film on the surface of the conventional negative electrode active material is that during the battery cycle, the negative electrode active material is alloyed and dealloyed with lithium ions, and the surface of the negative electrode active material has random volume expansion, resulting in more new interfaces, and new interfaces are consumed.
  • the electrolyte and lithium salt continue to form a solid interfacial film, which can degrade the performance of the battery.
  • a more stable solid interface film with higher lithium conductivity can be formed on the surface of the negative electrode active material, which can greatly improve the performance of the silicon negative electrode.
  • test results of the cycle charge-discharge performance of the above examples and comparative examples show that the negative electrode plate prepared by the present invention has low internal resistance during the cycle process, and lithium ions have a good lithium-conducting conduction channel inside the negative electrode plate, so that the prepared Lithium-ion batteries have good cycle performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种负极极片及含该负极极片的锂离子电池。本发明的负极极片中采用负极活性物质、导电剂、粘结剂和助剂(式1所示的化合物),将上述物质溶于溶剂中,均匀混合后,在负极集流体表面进行涂布,经过烘干后,即可得到本发明的负极极片。所述助剂(式1所示的化合物)由于分子量小、聚合物链段短,因此能够与负极活性物质、导电剂、粘结剂充分混合,且助剂(式1所示的化合物)在常温下为粘稠液态、半固态或固态,其可以充分接触负极中的各个组分并浸入极片内部孔隙中,即本发明的助剂可以在负极活性物质表面成膜,能够有效改善硅负极循环过程中的内阻增加,提升循环寿命。

Description

一种负极极片及含该负极极片的锂离子电池 技术领域
本发明涉及锂离子电池技术领域,尤其涉及一种含硅基材料和任选地碳基材料的负极极片及含该负极极片的锂离子电池。
背景技术
锂离子电池具有循环寿命长,自放电率小,绿色环保等优点,锂离子电池已广泛用于笔记本电脑、手机、摄影机等消费电子产品。锂离子电池主要由正极、负极、隔膜和电解液构成,锂离子负极材料作为锂离子电池中重要组成显得尤为重要。
锂离子负极材料主要由石墨、硬碳、硅、硅氧化物、锡等构成。硅负极具有克容量高、含量丰富,一直是高能量密度电池的重要材料。但是硅负极表面的固态界面膜持续消耗,影响电池循环寿命,成为限制硅负极应用主要瓶颈,特别是硅负极表面存在的固态界面膜持续消耗,导致电池性能恶化,如何改善硅负极的循环性能,显得尤为重要。
发明内容
为了改善现有技术中硅负极材料在充放电过程中存在持续的固态界面膜的消耗,副反应直接影响极片内部的锂离子和电子的有效传输等不足,本发明提供一种负极极片及含该负极极片的锂离子电池。所述负极极片可以有效改善锂离子和电子的传输,形成稳定结构的固态界面膜,抑制负极片的体积变化,提升硅负极的循环性能,特别是硅负极的常温循环性能。
本发明目的是通过如下技术方案实现的:
一种负极极片,所述负极极片包括负极集流体和涂覆在负极集流体一侧或两侧表面的负极活性物质层,所述负极活性物质层包括负极活性物质、导电剂、粘结剂和助剂,其中,所述负极活性物质包括硅基材料;所述助剂选自如下式1所示化合物中的至少一种:
R 1-R-M-R’-R’ 1      式1
式1中,M选自聚苯醚链段、聚乙二醇链段、聚乙二硫醇链段、聚碳酸酯链段、聚丙二醇链段或聚硅醚链段;R 1和R’ 1为封端基团,且R 1和R’ 1中至少一个包括碳碳双键或碳碳三键作为端基;R和R’为连接基团。
常规电池体系负极中硅基材料,随着电池充放电的进行,在硅基负极中存在锂离子的合金化和去合金化,导致硅基材料体积无规则的膨胀,产生更多界面生成固态界面膜,消耗大量溶剂和添加剂。本发明采用碳碳双键或碳碳三键的负极添加剂,碳碳双键或碳碳三键在低电位情况下发生电化学聚合,在硅基负极中形成稳定的固态界面膜,有效减缓硅基材料界面副反应的发生,降低电池循环过程中内阻增加,提升电池循环性能。
根据本发明,R 1和R’ 1为封端基团,且R 1和R’ 1中至少一个包括至少一个如下基团作为端基:-O-(C=O)-C(R 2)=C(R’ 2)(R’ 2),-N(R 3)-(C=O)-C(R 2)=C(R’ 2)(R’ 2),-C(R 2)=C(R’ 2)(R’ 2),-C≡C-R’ 2;R 2选自H或有机官能团(如C 1-12烷基、C 3- 20环烷基、3-20元杂环基、C 6- 18芳基、5-20元杂芳基、C 3- 20环烷基与C 3- 20环烷基形成的桥环基、C 3- 20环烷基与3-20元杂环基形成的桥环基、3-20元杂环基与3-20元杂环基形成的桥环基);R’ 2相同或不同,彼此独立地选自H或有机官能团(如C 1-12烷基、C 3- 20环烷基、3-20元杂环基、C 6- 18芳基、5-20元杂芳基、C 3- 20环烷基与C 3- 20环烷基形成的桥环基、C 3- 20环烷基与3-20元杂环基形成的桥环基、3-20元杂环基与3-20元杂环基形成的桥环基);R 3选自H或C 1-3烷基。
根据本发明,R 1和R’ 1中的一个或两个包括一个或两个如下基团作为端基:-O-(C=O)-C(R 2)=C(R’ 2)(R’ 2),-N(R 3)-(C=O)-C(R 2)=C(R’ 2)(R’ 2),-C(R 2)=C(R’ 2)(R’ 2),-C≡C-R’ 2;其中,R 2选自H或C 1-6烷基(例如选自H或C 1-3烷基;再例如选自H或甲基);R’ 2相同或不同,彼此独立地选自H或C 1-6烷基(例如选自H或C 1-3烷基;再例如选自H或甲基);R 3选自H或C 1-3烷基。
根据本发明,R和R’相同或不同,彼此独立地选自不存在、亚烷基、-NR 3-,其中R 3为H或C 1-3烷基。
优选地,R和R’相同或不同,彼此独立地选自不存在、-CH 2-、-CH 2CH 2-、-NH-、-N(CH 3)-、-N(CH 2CH 3)-。
根据本发明,所述聚苯醚链段具有式2所示重复单元:
Figure PCTCN2022081032-appb-000001
式2中,R 4选自H或C 1-6烷基,m为0-4之间的整数。示例性地,R 4选自H或C 1-3烷基,m为0-2之间的整数。
具体的,所述聚苯醚链段具有式2’所示重复单元:
Figure PCTCN2022081032-appb-000002
根据本发明,所述聚乙二醇链段具有式3所示重复单元:
Figure PCTCN2022081032-appb-000003
根据本发明,所述聚丙二醇链段具有式4所示重复单元:
Figure PCTCN2022081032-appb-000004
根据本发明,所述聚乙二硫醇链段具有式5所示重复单元:
Figure PCTCN2022081032-appb-000005
根据本发明,所述聚碳酸酯链段具有式6所示重复单元:
Figure PCTCN2022081032-appb-000006
根据本发明,所述聚硅醚链段具有式7所示重复单元:
Figure PCTCN2022081032-appb-000007
根据本发明,所述式1所示化合物的数均分子量为200-30000,优选300-10000。
根据本发明,所述式1所示化合物选自聚乙二硫醇丙烯酸酯、聚乙二硫醇甲基丙烯酸酯、聚乙二硫醇二丙烯酸酯、聚乙二硫醇二甲基丙烯酸酯、聚乙二硫醇苯基醚丙烯酸酯、聚乙二硫醇单烯丙基醚、聚乙二醇丙烯酸酯、聚乙二醇甲基丙烯酸酯、聚乙二醇二丙烯酸酯、聚乙二醇二甲基丙烯酸酯、聚乙二醇苯基醚丙烯酸酯、聚乙二醇单烯丙基醚、聚碳酸酯丙烯酸酯、聚碳酸酯甲基丙烯酸酯、聚碳酸酯二丙烯酸酯、聚碳酸酯二甲基丙烯酸酯、聚碳酸酯苯基醚丙烯酸酯、聚碳酸酯单烯丙基醚、聚丙二醇丙烯酸酯、聚丙二醇甲基丙烯酸酯、聚丙二醇二丙烯酸酯、聚丙二醇二甲基丙烯酸酯、聚丙二醇苯基醚丙烯酸酯、聚丙二醇单烯丙基醚、聚硅醚丙烯酸酯、聚硅醚甲基丙烯酸酯、聚硅醚二丙烯酸酯、聚硅醚二甲基丙烯酸酯、聚硅醚苯基醚丙烯酸酯、聚硅醚单烯丙基醚中的至少一种。
根据本发明,所述负极活性物质层包括如下质量百分含量的各组分:
75-98wt%的负极活性物质、1-15wt%的导电剂、0.999-10wt%的粘结剂、0.001-2wt%的所述助剂。
根据本发明,所述硅基材料选自纳米硅、SiOx(0<x<2)、铝硅合金、镁硅合金、硼硅合金、磷硅合金、锂硅合金中的至少一种。
根据本发明,所述负极活性物质还包括碳基材料,所述碳基材料选自人造石墨、天然石墨、硬碳、软碳、中间相微球、富勒烯、石墨烯中的至少一种。
常规电池体系负极中随着电池充放电的进行,在硅基材料和碳基材料负极中存在锂离子的合金化和去合金化,导致负极极片体积无规则的膨胀,产生更多界面,生成固态界面膜,消耗电解液中大量的溶剂和添加剂。本发明采用含有碳碳双键或碳碳三键的助剂,碳碳双键或碳碳三键在低电位情况下发生电化学聚合,在硅基材料和碳基材料负极中形成稳定的固态界面膜,有 效减缓硅基材料和碳基材料的界面副反应的发生,降低电池循环过程中内阻增加,提升电池循环性能。
根据本发明,所述负极活性物质层的厚度(辊压后的厚度)为20μm-200μm,优选30μm-150μm。
本发明还提供一种锂离子电池,所述锂离子电池包括上述的负极极片。
本发明的有益效果:
本发明提供了一种负极极片及含该负极极片的锂离子电池。本发明的负极极片中采用负极活性物质、导电剂、粘结剂和助剂(式1所示的化合物),将上述物质溶于溶剂中,均匀混合后,在负极集流体表面进行涂布,经过烘干后,即可得到本发明的负极极片。所述助剂(式1所示的化合物)由于分子量小、聚合物链段短,因此能够与负极活性物质、导电剂、粘结剂充分混合,且所述助剂(式1所示的化合物)在常温下为粘稠液态、半固态或固态,其可以充分接触负极中的各个组分并浸入极片内部孔隙中,即本发明的助剂可以在负极活性物质表面成膜,能够有效改善硅负极循环过程中的内阻增加,提升循环寿命。本发明助剂还可以参与硅负极的成膜反应,在硅负极表面形成一定分子量的固态界面膜结构,可以改善硅负极表面固态界面膜组成,提高固态界面膜中高分子组分含量,改善电池负极极片内部的电子和锂离子导通,提升极片内部锂离子动力学,提升电池循环性能。
具体实施方式
<负极极片>
如前所述,本发明提供一种负极极片,所述负极极片包括负极集流体和涂覆在负极集流体一侧或两侧表面的负极活性物质层,所述负极活性物质层包括负极活性物质、导电剂、粘结剂和助剂,其中,所述负极活性物质包括硅基材料;所述助剂选自如下式1所示化合物中的至少一种:
R 1-R-M-R’-R’ 1      式1
式1中,M选自聚苯醚链段、聚乙二醇链段、聚乙二硫醇链段、聚碳酸酯链段、聚丙二醇链段或聚硅醚链段;R 1和R’ 1为封端基团,且R 1和R’ 1中至少一个包括碳碳双键或碳碳三键作为端基;R和R’为连接基团。
在本发明的一个方案中,R 1和R’ 1为封端基团,且R 1和R’ 1中至少一个包括至少一个如下基团作为端基:-O-(C=O)-C(R 2)=C(R’ 2)(R’ 2),-N(R 3)-(C=O)-C(R 2)=C(R’ 2)(R’ 2),-C(R 2)=C(R’ 2)(R’ 2),-C≡C-R’ 2;R 2选自H或有机官能团(如C 1-12烷基、C 3- 20环烷基、3-20元杂环基、C 6- 18芳基、5-20元杂芳基、C 3- 20环烷基与C 3- 20环烷基形成的桥环基、C 3- 20环烷基与3-20元杂环基形成的桥环基、3-20元杂环基与3-20元杂环基形成的桥环基);R’ 2相同或不同,彼此独立地选自H或有机官能团(如C 1-12烷基、C 3- 20环烷基、3-20元杂环基、C 6- 18芳基、5-20元杂芳基、C 3- 20环烷基与C 3- 20环烷基形成的桥环基、C 3- 20环烷基与3-20元杂环基形成的桥环基、3-20元杂环基与3-20元杂环基形成的桥环基);R 3选自H或C 1-3烷基。
在本发明的一个方案中,R 1和R’ 1中的一个或两个包括一个或两个如下基团作为端基:-O-(C=O)-C(R 2)=C(R’ 2)(R’ 2),-N(R 3)-(C=O)-C(R 2)=C(R’ 2)(R’ 2),-C(R 2)=C(R’ 2)(R’ 2),-C≡C-R’ 2;其中,R 2选自H或C 1-6烷基(例如选自H或C 1-3烷基;再例如选自H或甲基);R’ 2相同或不同,彼此独立地选自H或C 1-6烷基(例如选自H或C 1-3烷基;再例如选自H或甲基);R 3选自H或C 1-3烷基。
在本发明的一个方案中,R和R’相同或不同,彼此独立地选自不存在、亚烷基、-NR 3-,其中R 3为H或C 1-3烷基。
优选地,R和R’相同或不同,彼此独立地选自不存在、-CH 2-、-CH 2CH 2-、-NH-、-N(CH 3)-、-N(CH 2CH 3)-。
在本发明的一个方案中,所述聚苯醚链段具有式2所示重复单元:
Figure PCTCN2022081032-appb-000008
式2中,R 4选自H或C 1-6烷基,m为0-4之间的整数。示例性地,R 4选自H或C 1-3烷基,m为0-2之间的整数。
具体的,所述聚苯醚链段具有式2’所示重复单元:
Figure PCTCN2022081032-appb-000009
在本发明的一个方案中,所述聚乙二醇链段具有式3所示重复单元:
Figure PCTCN2022081032-appb-000010
在本发明的一个方案中,所述聚丙二醇链段具有式4所示重复单元:
Figure PCTCN2022081032-appb-000011
在本发明的一个方案中,所述聚乙二硫醇链段具有式5所示重复单元:
Figure PCTCN2022081032-appb-000012
在本发明的一个方案中,所述聚碳酸酯链段具有式6所示重复单元:
Figure PCTCN2022081032-appb-000013
在本发明的一个方案中,所述聚硅醚链段具有式7所示重复单元:
Figure PCTCN2022081032-appb-000014
在本发明的一个方案中,所述M的数均分子量为100-30000。
在本发明的一个方案中,所述式1所示化合物的数均分子量为200-30000,优选300-10000。
在本发明的一个方案中,所述式1所示化合物选自聚乙二硫醇丙烯酸酯、聚乙二硫醇甲基丙烯酸酯、聚乙二硫醇二丙烯酸酯、聚乙二硫醇二甲基丙烯酸酯、聚乙二硫醇苯基醚丙烯酸酯、聚乙二硫醇单烯丙基醚、聚乙二醇丙烯酸酯、聚乙二醇甲基丙烯酸酯、聚乙二醇二丙烯酸酯、聚乙二醇二甲基丙烯酸酯、聚乙二醇苯基醚丙烯酸酯、聚乙二醇单烯丙基醚、聚碳酸酯丙烯酸酯、聚碳酸酯甲基丙烯酸酯、聚碳酸酯二丙烯酸酯、聚碳酸酯二甲基丙烯酸酯、聚碳酸酯苯基醚丙烯酸酯、聚碳酸酯单烯丙基醚、聚丙二醇丙烯酸酯、聚丙二醇甲基丙烯酸酯、聚丙二醇二丙烯酸酯、聚丙二醇二甲基丙烯酸酯、聚丙二醇苯基醚丙烯酸酯、聚丙二醇单烯丙基醚、聚硅醚丙烯酸酯、聚硅醚甲基丙烯酸酯、聚硅醚二丙烯酸酯、聚硅醚二甲基丙烯酸酯、聚硅醚苯基醚丙烯酸酯、聚硅醚单烯丙基醚中的至少一种。
示例性地,所述助剂选自如下式1-1、式1-2、式1-3、式1-4、式1-5、式1-6、式1-7、式1-8所示化合物中的至少一种:
Figure PCTCN2022081032-appb-000015
Figure PCTCN2022081032-appb-000016
式1-1至式1-8中,n为重复单元的数目,各式中相同或不同;示例的,n为2~680之间的整数;
式1-4和式1-5中,R为连接基团,其定义如上所述。
式1-7所示化合物例如是丙炔基-三聚乙二醇-乙酸(CAS:1415800-32-6);式1-8所示化合物例如是生物素四聚乙二醇炔基(CAS:1262681-31-1)。
本发明中,所述的助剂可以是采用本领域常规的方法制备得到,也可以是通过商业途径购买获得。
在本发明的一个方案中,所述负极活性物质层包括如下质量百分含量的各组分:
75-98wt%的负极活性物质、1-15wt%的导电剂、0.999-10wt%的粘结剂、0.001-2wt%的所述助剂。
示例性地,所述负极活性物质的质量百分含量为75wt%、76wt%、77wt%、78wt%、79wt%、80wt%、81wt%、82wt%、83wt%、84wt%、85wt%、86wt%、87wt%、88wt%、89wt%、90wt%、91wt%、92wt%、93wt%、94wt%、95wt%、96wt%、97wt%、98wt%。
示例性地,所述导电剂的质量百分含量为1wt%、2wt%、3wt%、4wt%、5wt%、6wt%、7wt%、8wt%、9wt%、10wt%、11wt%、12wt%、13wt%、14wt%、15wt%。
示例性地,所述助剂的质量百分含量为0.001wt%、0.05wt%、0.1wt%、0.15wt%、0.25wt%、0.55wt%、0.65wt%、0.70wt%、0.75wt%、0.85wt%、0.90wt%、1.0wt%、1.2wt%、1.5wt%、2wt%。当助剂含量大于2wt%时,助剂含量过高,会导致负极活性物质降低,从而使极片容量低、极片里导锂导电网络较差,影响电池性能,不满足应用条件;当助剂含量小于0.001wt%时,助剂含量过低,成膜性较差,形成的负极表面固态界面膜结构不稳定,降低电池性能。
示例性地,所述粘结剂的质量百分含量为0.999wt%、1wt%、2wt%、3wt%、4wt%、5wt%、6wt%、7wt%、8wt%、9wt%、10wt%。
在本发明的一个方案中,所述硅基材料选自纳米硅、SiOx(0<x<2)、铝硅合金、镁硅合金、硼硅合金、磷硅合金、锂硅合金中的至少一种。
在本发明的一个方案中,所述负极活性物质还包括碳基材料,所述碳基材料选自人造石墨、天然石墨、硬碳、软碳、中间相微球、富勒烯、石墨烯中的至少一种。
在本发明的一个方案中,所述导电剂选自导电炭黑、科琴黑、导电纤维、导电聚合物、乙炔黑、碳纳米管、石墨烯、鳞片石墨、导电氧化物、金属颗粒中的一种或几种。
在本发明的一个方案中,所述粘结剂选自聚偏氟乙烯及其共聚衍生物、聚四氟乙烯及其共聚衍生物、聚丙烯酸及其共聚衍生物、聚乙烯醇及其共聚衍生物、聚丁苯橡胶及其共聚衍生物、聚酰亚胺及其共聚衍生物、聚乙烯亚胺及其共聚衍生物、聚丙烯酸酯及其共聚衍生物、羧甲基纤维素钠及其共聚衍生物中的至少一种。
在本发明的一个方案中,所述负极极片的面密度0.2-15mg/cm 2
根据本发明,所述负极集流体的厚度为3μm-15μm,优选4μm-10μm,如3μm、4μm、5μm、8μm、10μm、12μm或15μm。
根据本发明,所述负极活性物质层的厚度(辊压后的厚度)为20μm-200μm,优选30μm-150μm,如20μm、25μm、30μm、35μm、40μm、45μm、50μm、55μm、60μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm、190μm或200μm。
<负极极片的制备方法>
本发明还提供上述负极极片的制备方法,所述方法包括如下步骤:
将溶剂、负极活性物质、导电剂、粘结剂和至少一种式1所示的化合物均匀混合,制备得到负极浆料;将负极浆料涂布在负极集流体表面,经过干燥处理,制备得到所述负极极片。
在本发明的一个方案中,所述负极浆料中含有100-600质量份的溶剂、75-98质量份的负极活性物质、1-15质量份的导电剂、0.001-2质量份的至少一种式1所示的化合物、0.999-10质量份的粘结剂。
在本发明的一个方案中,所述溶剂选自水、乙腈、苯、甲苯、二甲苯、丙酮、四氢呋喃、氢氟醚、N-甲基吡咯烷酮中的至少一种。
在本发明的一个方案中,所述负极浆料优选过筛后的负极浆料,例如过200目的筛子。
在本发明的一个方案中,所述干燥处理的温度为50℃-110℃,所述干燥处理的时间为6-36小时。
<锂离子电池>
本发明还提供一种锂离子电池,所述锂离子电池包括上述的负极极片。
下文将结合具体实施例对本发明做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范 围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
实施例1
1)正极极片的制备:
将95g正极活性物质镍钴锰三元材料(NCM811)、2g粘结剂聚偏氟乙烯(PVDF)、2g导电剂导电炭黑、1g导电剂碳纳米管进行混合,加入400gN-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌,直至混合体系成均一流动性的正极浆料;将正极浆料均匀涂覆于厚度为12μm的铝箔上;经过烘干100℃处理36小时后,抽真空处理后得到极片,并将该极片进行辊压,裁切得到正极极片;
2)负极极片制备:
将75g氧化亚硅、5g导电剂单壁碳纳米管(SWCNT)、10g导电剂导电炭黑(SP)、2g聚乙二醇甲基丙烯酸甲酯、4g粘结剂羧甲基纤维素钠(CMC)、4g粘结剂丁苯橡胶(SBR)、500g去离子水,以湿法工艺制成浆料,涂覆于负极集流体铜箔的表面,经烘干、辊压和模切得到负极极片;
3)电解液制备:
在充满氩气水氧含量合格的手套箱中,将碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、丙酸正丙酯按照质量比20:10:15:55的比例混合均匀,然后往其中快速加入1mol/L的充分干燥的六氟磷酸锂(LiPF 6),搅拌均匀制备得到电解液;
4)锂离子电池的制备
将上述得到的正极极片、负极极片、隔膜制备锂离子电池电芯,经过注液封装、焊接后,得到锂离子电池。
对比例1.1
对比例1.1的具体工艺参考实施例1,主要区别对比例1.1中采用与聚乙二醇甲基丙烯酸甲酯单体等质量的聚(聚乙二醇甲基丙烯酸甲酯),其中聚(聚 乙二醇甲基丙烯酸甲酯)采用同等质量的聚乙二醇甲基丙烯酸甲酯与偶氮二异丁腈,在60℃充分聚合,聚合后聚合物红外检测不到C=C双键峰后,加入对比例1.1中,其他条件与实施例1一致。
对比例1.2
对比例1.2的具体工艺参考实施例1,主要区别对比例1.2中不加入聚乙二醇甲基丙烯酸甲酯单体,其他条件与实施例1一致。
实施例2-6和其他对比例
实施例2-6和其他对比例的具体流程参考实施例1,主要区别是负极极片的工艺条件、各组分加入量、各组分物料种类,具体详情见表1和表2。
表1 实施例和对比例的负极极片的组成
Figure PCTCN2022081032-appb-000017
表2 实施例和对比例的负极极片的组成
Figure PCTCN2022081032-appb-000018
对上述实施例和对比例制备得到的电池进行性能测试:
(1)电池内阻交流阻抗测试方法:采用Metrohm瑞士万通PGSTAT302N化学工作站在100KHz-0.1mHz范围,25℃条件下,对50%SOC锂离子电池进行交流阻抗测试,测试结果列于表3中。
表3 实施例和对比例的电池内阻交流阻抗测试结果
Figure PCTCN2022081032-appb-000019
电池循环过程中内阻测试结果表明:本发明实施例制备的锂离子电池在循环过程中,内阻小于对比例制备的锂离子电池。主要原因是本发明中添加的助剂能够在硅材料表面形成固态界面膜,该固态界面膜区别于常规硅材料表面的固态界面膜,具有高分子组分含量高、分子量大和高速导锂等功能特点,能够快速导通锂离子通过,制备的锂离子电池具有更低的内阻,同时锂离子电池循环过程中内阻增加较小,具有良好的应用前景。
(2)电池循环性能测试方法:锂离子电池在蓝电电池充放电测试柜上进行充放电循环测试,测试条件为25℃、0.5C/0.5C充放电,测试结果列于表4中。
表4 实施例和对比例的电池循环性能测试结果
Figure PCTCN2022081032-appb-000020
上述实施例和对比例循环性能测试结果表明:本发明实施例制备的锂离子电池在循环过程中,容量保持率高于对比例制备的锂离子电池。主要原因是本发明中添加的助剂能够在硅材料表面形成固态界面膜,该固态界面膜区别于常规硅材料表面的固态界面膜,具有高分子组分含量高、分子量大和高速导锂等功能特点。常规硅材料表面的固态界面膜是在电池循环过程中,硅材料随着锂离子的合金化和脱合金化,硅材料表面出现出无规则体积膨胀,产生更多新界面,新界面消耗电解液和锂盐,继续形成固态界面膜,其会降低电池性能。而本发明中由于助剂的加入,其可以在硅材料表面形成一种更稳定、导锂性能更高的固态界面膜,可大幅改善硅负极性能。
上述实施例和对比例循环充放电性能测试结果表明:本发明制备的硅材料负极极片,在循环过程中具有内阻小,锂离子在硅材料负极极片内部存在良好的导锂导电通道,使得制备得到的锂离子电池具有良好的循环性能。
实施例7
1)正极极片的制备:
将95g正极活性物质钴酸锂、2g粘结剂聚偏氟乙烯(PVDF)、2g导电剂导电炭黑、1g导电剂碳纳米管进行混合,加入400gN-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌,直至混合体系成均一流动性的正极浆料;将正极浆料均匀涂覆于厚度为12μm的铝箔上;经过烘干100℃处理36小时后,抽真空处理后得到极片,并将该极片进行辊压,裁切得到正极极片;
2)负极极片制备:
将25g氧化亚硅、50g石墨、5g导电剂单壁碳纳米管(SWCNT)、10g导电剂导电炭黑(SP)、2g聚乙二醇甲基丙烯酸甲酯、4g粘结剂羧甲基纤维素钠(CMC)、4g粘结剂丁苯橡胶(SBR)、500g去离子水,以湿法工艺制成浆料,涂覆于负极集流体铜箔的表面,经烘干、辊压和模切得到负极极片;
3)电解液制备:
在充满氩气水氧含量合格的手套箱中,将碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、丙酸正丙酯按照质量比20:10:15:55的比例混合均匀,然后往其中快速加入1mol/L的充分干燥的六氟磷酸锂(LiPF 6),搅拌均匀制备得到电解液;
4)锂离子电池的制备
将上述得到的正极极片、负极极片、隔膜(聚乙烯隔膜)制备锂离子电池电芯,经过注液封装、焊接后,得到锂离子电池。
对比例7.1
对比例7.1的具体工艺参考实施例7,主要区别对比例7.1中采用与聚乙二醇甲基丙烯酸甲酯单体等质量的聚(聚乙二醇甲基丙烯酸甲酯),其中聚(聚乙二醇甲基丙烯酸甲酯)采用同等质量的聚乙二醇甲基丙烯酸甲酯与偶氮二异丁腈,在60℃充分聚合,聚合后聚合物红外检测不到C=C双键峰后,加入对比例7.1中,其他条件与实施例7一致。
对比例7.2
对比例7.2的具体工艺参考实施例7,主要区别对比例7.2中不加入聚乙二醇甲基丙烯酸甲酯单体,其他条件与实施例7一致。
实施例8-12和其他对比例
实施例8-12和其他对比例的具体流程参考实施例7,主要区别是负极极片的工艺条件、各组分加入量、各组分物料种类,具体详情见表5和表6。
表5 实施例和对比例的负极极片的组成
Figure PCTCN2022081032-appb-000021
表6 实施例和对比例的负极极片的组成
Figure PCTCN2022081032-appb-000022
对上述实施例和对比例制备得到的电池进行性能测试:
(3)电池内阻交流阻抗测试方法:采用Metrohm瑞士万通PGSTAT302N化学工作站在100KHz-0.1mHz范围,25℃条件下,对50%SOC锂离子电池进行交流阻抗测试,测试结果列于表7中。
电池循环过程中内阻测试结果表明:本发明实施例制备的锂离子电池在循环过程中,内阻小于对比例制备的锂离子电池。主要原因是本发明中添加的助剂能够在负极活性物质表面形成固态界面膜,该固态界面膜区别于常规负极活性物质表面的固态界面膜,具有高分子组分含量高、分子量大和高速导锂等功能特点,能够快速导通锂离子通过,制备的锂离子电池具有更低的内阻,同时锂离子电池循环过程中内阻增加较小,具有良好的应用前景。
表8 实施例和对比例的电池内阻交流阻抗测试结果
Figure PCTCN2022081032-appb-000023
(4)电池循环性能测试方法:锂离子电池在蓝电电池充放电测试柜上进行充放电循环测试,测试条件为25℃、0.5C/0.5C充放电,测试结果列于表8中。
表8 实施例和对比例的电池循环性能测试结果
Figure PCTCN2022081032-appb-000024
上述实施例和对比例循环性能测试结果表明:本发明实施例制备的锂离子电池在循环过程中,容量保持率高于对比例制备的锂离子电池。主要原因是本发明中添加的助剂能够在负极活性物质表面形成固态界面膜,该固态界面膜区别于常规负极活性物质表面形成的固态界面膜,具有高分子组分含量高、分子量大和高速导锂等功能特点。常规负极活性物质表面的固态界面膜是在电池循环过程中,负极活性物质随着锂离子的合金化和脱合金化,负极活性物质表面出现无规则体积膨胀,产生更多新界面,新界面消耗电解液和锂盐,继续形成固态界面膜,其会降低电池的性能。而本发明中由于助剂的加入,其可以在负极活性物质表面形成一种更稳定、导锂性能更高的固态界面膜,可大幅改善硅负极性能。
上述实施例和对比例循环充放电性能测试结果表明:本发明制备的负极极片,在循环过程中具有内阻小,锂离子在负极极片内部存在良好的导锂导电通道,使得制备得到的锂离子电池具有良好的循环性能。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种负极极片,其中,所述负极极片包括负极集流体和涂覆在负极集流体一侧或两侧表面的负极活性物质层,所述负极活性物质层包括负极活性物质、导电剂、粘结剂和助剂,其中,所述负极活性物质包括硅基材料;所述助剂选自如下式1所示化合物中的至少一种:
    R 1-R-M-R’-R’ 1  式1
    式1中,M选自聚苯醚链段、聚乙二醇链段、聚乙二硫醇链段、聚碳酸酯链段、聚丙二醇链段或聚硅醚链段;R 1和R’ 1为封端基团,且R 1和R’ 1中至少一个包括碳碳双键或碳碳三键作为端基;R和R’为连接基团。
  2. 根据权利要求1所述的负极极片,其中,R 1和R’ 1为封端基团,且R 1和R’ 1中至少一个包括至少一个如下基团作为端基:-O-(C=O)-C(R 2)=C(R’ 2)(R’ 2),-N(R 3)-(C=O)-C(R 2)=C(R’ 2)(R’ 2),-C(R 2)=C(R’ 2)(R’ 2),-C≡C-R’ 2;R 2选自H或有机官能团;R’ 2相同或不同,彼此独立地选自H或有机官能团;R 3选自H或C 1-3烷基。
  3. 根据权利要求2所述的负极极片,其中,R 1和R’ 1中的一个或两个包括一个或两个如下基团作为端基:-O-(C=O)-C(R 2)=C(R’ 2)(R’ 2),-N(R 3)-(C=O)-C(R 2)=C(R’ 2)(R’ 2),-C(R 2)=C(R’ 2)(R’ 2),-C≡C-R’ 2;其中,R 2选自H或C 1-6烷基;R’ 2相同或不同,彼此独立地选自H或C 1-6烷基;R 3选自H或C 1-3烷基;
    和/或,R和R’相同或不同,彼此独立地选自不存在、亚烷基、-NR 3-,其中R 3为H或C 1-3烷基。
  4. 根据权利要求3所述的负极极片,其中,所述聚苯醚链段具有式2所示重复单元:
    Figure PCTCN2022081032-appb-100001
    式2中,R 4选自H或C 1-6烷基,m为0-4之间的整数;
    和/或,
    所述聚乙二醇链段具有式3所示重复单元:
    Figure PCTCN2022081032-appb-100002
    和/或,
    所述聚丙二醇链段具有式4所示重复单元:
    Figure PCTCN2022081032-appb-100003
    和/或,
    所述聚乙二硫醇链段具有式5所示重复单元:
    Figure PCTCN2022081032-appb-100004
    和/或,
    所述聚碳酸酯链段具有式6所示重复单元:
    Figure PCTCN2022081032-appb-100005
    和/或,
    所述聚硅醚链段具有式7所示重复单元:
    Figure PCTCN2022081032-appb-100006
  5. 根据权利要求1-4任一项所述的负极极片,其中,所述式1所示化合物的数均分子量为200-30000。
  6. 根据权利要求1-4任一项所述的负极极片,其中,所述式1所示化合物选自聚乙二硫醇丙烯酸酯、聚乙二硫醇甲基丙烯酸酯、聚乙二硫醇二丙烯酸 酯、聚乙二硫醇二甲基丙烯酸酯、聚乙二硫醇苯基醚丙烯酸酯、聚乙二硫醇单烯丙基醚、聚乙二醇丙烯酸酯、聚乙二醇甲基丙烯酸酯、聚乙二醇二丙烯酸酯、聚乙二醇二甲基丙烯酸酯、聚乙二醇苯基醚丙烯酸酯、聚乙二醇单烯丙基醚、聚碳酸酯丙烯酸酯、聚碳酸酯甲基丙烯酸酯、聚碳酸酯二丙烯酸酯、聚碳酸酯二甲基丙烯酸酯、聚碳酸酯苯基醚丙烯酸酯、聚碳酸酯单烯丙基醚、聚丙二醇丙烯酸酯、聚丙二醇甲基丙烯酸酯、聚丙二醇二丙烯酸酯、聚丙二醇二甲基丙烯酸酯、聚丙二醇苯基醚丙烯酸酯、聚丙二醇单烯丙基醚、聚硅醚丙烯酸酯、聚硅醚甲基丙烯酸酯、聚硅醚二丙烯酸酯、聚硅醚二甲基丙烯酸酯、聚硅醚苯基醚丙烯酸酯、聚硅醚单烯丙基醚中的至少一种。
  7. 根据权利要求1所述的负极极片,其中,所述负极活性物质层包括如下质量百分含量的各组分:
    75-98wt%的负极活性物质、1-15wt%的导电剂、0.999-10wt%的粘结剂、0.001-2wt%的所述助剂。
  8. 根据权利要求1所述的负极极片,其中,所述硅基材料选自纳米硅、SiOx(0<x<2)、铝硅合金、镁硅合金、硼硅合金、磷硅合金、锂硅合金中的至少一种。
  9. 根据权利要求1所述的负极极片,其中,所述负极活性物质还包括碳基材料,所述碳基材料选自人造石墨、天然石墨、硬碳、软碳、中间相微球、富勒烯、石墨烯中的至少一种。
  10. 一种锂离子电池,所述锂离子电池包括权利要求1-9任一项所述的负极极片。
PCT/CN2022/081032 2021-03-15 2022-03-15 一种负极极片及含该负极极片的锂离子电池 WO2022194174A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/227,252 US20230369563A1 (en) 2021-03-15 2023-07-27 Negative electrode sheet and lithium-ion battery including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110276573.7 2021-03-15
CN202110276573.7A CN115084438A (zh) 2021-03-15 2021-03-15 一种负极极片及含该负极极片的锂离子电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/227,252 Continuation US20230369563A1 (en) 2021-03-15 2023-07-27 Negative electrode sheet and lithium-ion battery including same

Publications (1)

Publication Number Publication Date
WO2022194174A1 true WO2022194174A1 (zh) 2022-09-22

Family

ID=83241490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081032 WO2022194174A1 (zh) 2021-03-15 2022-03-15 一种负极极片及含该负极极片的锂离子电池

Country Status (3)

Country Link
US (1) US20230369563A1 (zh)
CN (1) CN115084438A (zh)
WO (1) WO2022194174A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268053A (ja) * 2002-03-13 2003-09-25 Hitachi Chem Co Ltd 電池用バインダ樹脂、これを含有する電極及び電池
CN1658411A (zh) * 2004-01-02 2005-08-24 三星Sdi株式会社 基于金属合金的负电极、其制造方法以及含有该基于金属合金的负电极的锂二次电池
US20120153219A1 (en) * 2010-12-21 2012-06-21 Zhengcheng Zhang Polysiloxane binder for lithium ion battery electrodes
JP2015159069A (ja) * 2014-02-25 2015-09-03 ダイソー株式会社 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池
CN111732916A (zh) * 2020-05-28 2020-10-02 广州市黄埔乐天实业有限公司 一种聚碳酸酯-聚丙烯酸交联型水性粘结剂的制备方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725509B (zh) * 2020-06-24 2021-10-12 名添科技(深圳)有限公司 一种负极材料、负极浆料、负极片及锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268053A (ja) * 2002-03-13 2003-09-25 Hitachi Chem Co Ltd 電池用バインダ樹脂、これを含有する電極及び電池
CN1658411A (zh) * 2004-01-02 2005-08-24 三星Sdi株式会社 基于金属合金的负电极、其制造方法以及含有该基于金属合金的负电极的锂二次电池
US20120153219A1 (en) * 2010-12-21 2012-06-21 Zhengcheng Zhang Polysiloxane binder for lithium ion battery electrodes
JP2015159069A (ja) * 2014-02-25 2015-09-03 ダイソー株式会社 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池
CN111732916A (zh) * 2020-05-28 2020-10-02 广州市黄埔乐天实业有限公司 一种聚碳酸酯-聚丙烯酸交联型水性粘结剂的制备方法及其应用

Also Published As

Publication number Publication date
CN115084438A (zh) 2022-09-20
US20230369563A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
CN107665966A (zh) 一种锂硫电池
CN107958997B (zh) 正极浆料、正极极片及锂离子电池
WO2023083148A1 (zh) 一种锂离子电池
CN109216659B (zh) 一种粘结剂,使用该粘结剂的电极极片及二次电池
CN108780893A (zh) 负极用粘合剂组合物、负极用浆料、负极和锂离子二次电池
CN106068303A (zh) 作为用于锂离子电池的粘合剂体系的聚合物组合物
CN114122400B (zh) 一种负极极片及含该负极极片的锂离子电池
CN111509232B (zh) 正极片及其制备方法和应用
CN116864805A (zh) 电化学装置和电子装置
WO2022001428A1 (zh) 一种负极极片及含该负极极片的二次电池
WO2023071691A1 (zh) 一种电化学装置及电子装置
CN106784841A (zh) 一种油系电极浆料组合物及其制备电极和电化学电池的用途
US20040009399A1 (en) Binder for a lithium-sulfur battery, positive active material composition comprising same and lithium-sulfur battery using same
WO2023078367A1 (zh) 一种二次电池
WO2023093880A1 (zh) 一种锂离子电池
KR20140095804A (ko) 전극 활물질 슬러리 및 이를 포함하는 리튬 이차 전지
CN109964348A (zh) 蓄电装置用集电体、其制造方法和其制造中使用的涂布液
CN114335900A (zh) 一种隔膜及含有该隔膜的电池
CN116799151A (zh) 正极极片、二次电池及用电装置
CN113471512B (zh) 一种低温锂电池
WO2021135900A1 (zh) 一种固态电解质及固态锂离子电池
JP5136946B2 (ja) 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物及びこれを用いた非水電解液系エネルギーデバイス用電極並びに非水電解液系エネルギーデバイス
JP2005327630A (ja) リチウム電池電極用バインダ樹脂組成物、リチウム電池用電極及びリチウム電池
WO2022194174A1 (zh) 一种负极极片及含该负极极片的锂离子电池
CN114976004B (zh) 一种负极浆料、负极极片、锂离子电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770527

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/04/2024)

122 Ep: pct application non-entry in european phase

Ref document number: 22770527

Country of ref document: EP

Kind code of ref document: A1