[go: up one dir, main page]

WO2022193925A1 - 作业机械的动臂矫正方法及装置 - Google Patents

作业机械的动臂矫正方法及装置 Download PDF

Info

Publication number
WO2022193925A1
WO2022193925A1 PCT/CN2022/077677 CN2022077677W WO2022193925A1 WO 2022193925 A1 WO2022193925 A1 WO 2022193925A1 CN 2022077677 W CN2022077677 W CN 2022077677W WO 2022193925 A1 WO2022193925 A1 WO 2022193925A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
displacement
value
work machine
moment
Prior art date
Application number
PCT/CN2022/077677
Other languages
English (en)
French (fr)
Inventor
李曾
宋佳林
王传宇
Original Assignee
上海三一重机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海三一重机股份有限公司 filed Critical 上海三一重机股份有限公司
Publication of WO2022193925A1 publication Critical patent/WO2022193925A1/zh
Priority to US18/449,825 priority Critical patent/US12234628B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • E02F9/268Diagnosing or detecting failure of vehicles with failure correction follow-up actions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Definitions

  • the present application relates to the technical field of mechanical engineering, and in particular, to a method and device for correcting a boom of a working machine.
  • the boom is one of the most important parts in a work machine. When the boom occurs, it indicates that the fault of the working machine has deteriorated, which seriously affects the reliability and accuracy of the action of the working machine. Therefore, the boom needs to be inspected and corrected to ensure the normal operation of the work machine.
  • the inspection and correction of the boom of the working machine mainly depends on the inspection and correction at the factory.
  • the user finds that the boom is abnormal or the arm is dropped during use he will manually check the relevant parts one by one. Then, correct the boom according to the inspection results.
  • the problem of the boom drop involves many components.
  • the manual maintenance method after the event not only has low maintenance efficiency, but also has a long maintenance cycle and untimely maintenance.
  • the problem of the falling arm of the boom will have a great impact after the occurrence of the problem. If the maintenance is not timely, it will have a significant impact on the user.
  • the present application provides a method and device for correcting a boom of a working machine, which are used to solve the defects of low maintenance efficiency, long maintenance cycle and untimely maintenance in the prior art post-event manual maintenance, and realize automatic and timely maintenance of the boom of the working machine. Correction.
  • the present application provides a method for correcting a boom of a working machine, including:
  • the second operating parameter of the target work machine is adjusted according to the difference to correct the boom of the target work machine, and then also includes:
  • the alarm information includes an actual displacement value of the boom at each moment within a second preset time period, the target work machine at the second preset time The first operating parameter at each moment in the duration, the predicted value of the displacement of the boom at each moment in the second preset duration, and the predicted value of the displacement of the boom at each moment in the second preset duration and the difference between the preset displacement values.
  • the first operating parameters include the pressure of the main pump of the target work machine, the pressure of the large cavity of the boom cylinder, the speed of the engine and the pilot pressure of the boom.
  • the actual value of the displacement of the boom of the target work machine at the current moment and the first operating parameter of the target work machine at the current moment are input into the prediction model , output the predicted value of the displacement of the boom at the next moment of the current moment, including:
  • the preprocessing includes taking the rotational speed of the engine as the logarithm of the logarithmic function, obtaining the value of the logarithmic function, and/or comparing the pressure of the main pump with the boom of the target working machine Subtract the pressure of the main pump before lifting, and divide the subtraction result by a preset coefficient;
  • the second operating parameter includes the rotational speed of the engine of the target work machine, and/or the pressure of the main pump.
  • the application also provides a boom correcting device for a working machine, comprising:
  • the prediction model is used to input the actual value of the displacement of the boom of the target work machine at the current moment and the first operating parameter of the target work machine at the current moment into the prediction model, and output the boom of the boom at the current moment.
  • the displacement prediction value at the next moment is used to input the actual value of the displacement of the boom of the target work machine at the current moment and the first operating parameter of the target work machine at the current moment into the prediction model, and output the boom of the boom at the current moment.
  • the correction module is used to calculate the difference between the predicted displacement value of the boom and the preset displacement value, and if the difference value is greater than the first preset threshold value, then according to the difference value, the target working machine will be adjusted according to the difference value.
  • a second operating parameter is adjusted to correct the boom of the target work machine; wherein the first and second operating parameters are both related to the displacement of the boom.
  • the rectification module is specifically used for:
  • the present application also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and executable on the processor, where the processor executes the computer program to achieve any of the above The steps of the boom straightening method of the working machine.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of any one of the above-mentioned methods for correcting a boom of a working machine.
  • the method and device for correcting the boom of the work machine provided by the present application fully consider the actual value of the boom of the target work machine and the first operating parameter of the target work machine as the input of the prediction model, fully considering the actual value of the target work machine.
  • the influence of the subsystem on the displacement of the boom makes the predicted value of the boom's displacement more accurate; on the other hand, according to the difference between the predicted value of the boom's displacement and the preset displacement value, it is automatically determined whether the boom has a dropped arm It can automatically correct the boom of the target work machine according to the difference value, timely correct the boom when the boom occurs, and correct the displacement of the boom in real time when the target work machine is working.
  • Fig. 1 is one of the schematic flow charts of the method for correcting the boom of the working machine provided by the present application
  • Fig. 2 is the second schematic flow chart of the method for correcting the boom of the working machine provided by the present application
  • Fig. 3 is the structural representation of the boom straightening device of the working machine provided by the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by the present application.
  • Step 101 comparing the actual displacement value of the boom of the target working machine at the current moment and the first operation of the target working machine at the current moment.
  • the parameters are input to the prediction model, and the displacement prediction value of the boom at the next moment of the current moment is output;
  • the prediction model is a machine learning model, such as a multiple linear regression model.
  • This embodiment is not limited to the type of prediction model.
  • the target work machine is an excavator or a loader, and this embodiment is not limited to the type of the target work machine.
  • the number of target work machines is one or more, and this implementation does not specifically limit the number of target work machines. That is, the present implementation can monitor and correct the booms of one or more target machines at the same time.
  • the edge computing module is used to read the actual value of the displacement of the boom of the target work machine at the current moment from the interface of the pose system of the target work machine, and from the CAN (Controller Area Network, controller area network) of the target machine The bus acquires the first operating parameter of the target work machine at the current moment.
  • CAN Controller Area Network, controller area network
  • the edge computing module also has data storage and computing capabilities.
  • the first operating parameter is the operating parameter of the subsystem in the target work machine.
  • the prediction model Before the displacement of the boom can be predicted, the prediction model needs to be trained using big data samples.
  • the actual value of the boom displacement and the first operating parameter of the sample operation machine at the historical moment are used as the sample, and the actual value of the boom displacement of the sample operation machine at the historical moment is used as the sample label, and the prediction model is trained until the termination condition is met. .
  • the input of the prediction model in this embodiment covers the actual displacement value of the boom of the target work machine at the current moment and the operating parameters of the subsystem, and fully considers the influence of the sub-system on the displacement of the boom in the target work machine, which is convenient for the operation of the boom.
  • the displacement is comprehensively analyzed to obtain a more accurate displacement prediction value of the boom, so as to accurately correct the displacement of the boom.
  • Step 102 Calculate the difference between the predicted displacement value of the boom and a preset displacement value, and if the difference value is greater than a first preset threshold value, calculate the second displacement value of the target work machine according to the difference value.
  • An operating parameter is adjusted to correct the boom of the target work machine; wherein the first operating parameter and the second operating parameter are both related to the displacement of the boom.
  • the preset displacement value is the displacement value of the boom of the target working machine in a normal operating state.
  • the second operation parameter is the operation parameter of the subsystem in the target work machine, and the second operation parameter may be the same as or different from the first operation parameter, and the second operation parameter is not specifically limited in this implementation.
  • the difference between the predicted displacement value of the boom and the preset displacement value is calculated. and determine whether the difference is greater than the first preset threshold.
  • the first preset threshold may be set according to actual requirements.
  • the boom is running normally, and the acquired relevant data can be stored at the edge and continue to monitor the boom.
  • the relevant data includes the actual displacement value and the first operating parameter of the boom of the target working machine at the current moment, and the predicted value and the calculated difference of the displacement of the boom at the next moment at the current moment.
  • the boom has a drop phenomenon that deviates from the normal working range, and the displacement of the boom needs to be corrected to slow down the drop phenomenon of the boom.
  • the second operating parameter of the target work machine may be adjusted according to the difference, so as to correct the displacement of the boom of the target work machine.
  • whether the boom is dropped is monitored in real time according to the difference between the predicted displacement value of the boom and the preset displacement value. And when the target working machine is working, the displacement of the boom can be automatically corrected in real time according to the difference value, so as to slow down the boom drop phenomenon.
  • edge computing module based on the edge computing module to obtain data, store data and calculate data, it not only has high flexibility, but also can store the relevant data of the target operation machine at various times, and can also calculate whether the boom has dropped the arm, which can effectively Reduce the amount of data upload and reduce the pressure on the database.
  • this embodiment combines the actual value of the displacement of the boom of the target work machine and the first operating parameter of the target work machine as the input of the prediction model, and fully considers the influence of the sub-system of the target work machine on the displacement of the boom, so that the dynamic
  • the predicted value of the displacement of the boom is more accurate; on the other hand, according to the difference between the predicted value of the displacement of the boom and the preset displacement value, it is automatically determined whether the boom has dropped the boom, and based on the difference, the target operation machine is automatically determined.
  • the boom is corrected, and the boom is corrected in time when the boom occurs, and the displacement of the boom can be corrected in real time when the target working machine is working.
  • the second operating parameter of the target work machine is adjusted according to the difference value to correct the boom of the target work machine, and further includes: If the total number of times the boom of the target working machine is corrected within the first preset time period before the next time is greater than the second preset threshold, and the boom is at the next time of the next time If the difference between the predicted displacement value at the moment and the preset displacement value is greater than the first preset threshold value, alarm information is sent to the client to prompt the user to control the movement of the target work machine according to the alarm information. Correction of the arm.
  • the first preset duration before the next moment includes the current moment and a period of time before the current moment.
  • the first preset duration and the second preset threshold may be set according to actual requirements.
  • the next moment of the current moment is the N+1th moment within the first preset duration
  • the next moment of the next moment is The N+2th moment within the first preset duration
  • the value of the counter is incremented by 1.
  • the value of the counter is increased by 1 and is greater than the second preset threshold, and it is obtained through monitoring that the displacement of the boom needs to be corrected at the N+1th moment, It indicates that the number of times the displacement correction of the boom is performed within the first preset time period is too frequent. In this case, the alarm information needs to be pushed to the client. The user can correct the boom of the target work machine according to the alarm information.
  • the alarm information can be pushed in time, so that the operation and maintenance engineer can repair the target operation machine in time to avoid the continuous deterioration of the failure problem. Predictive maintenance of target work machines is achieved.
  • the alarm information in this embodiment includes the actual displacement value of the boom at each moment within the second preset time period, the position of the target working machine within the second preset time period The first operating parameter at the time, the predicted value of the displacement of the boom at each time in the second preset time period, and the predicted value of the displacement of the boom at each time in the second preset time length and the predicted value. Set the difference between displacement values.
  • the alarm information may include alarm prompt information, such as "boom failure". It may also include data stored at the edge at each moment within the second preset duration. This embodiment is not limited to the content of the alarm information.
  • the data stored at the edge end includes the actual value of the displacement of the boom at each moment, the first operating parameter of the target working machine, the predicted value of the displacement of the boom, and the difference between the predicted value of the boom and the preset displacement value. difference.
  • the second preset duration includes the aforementioned next moment and a period of time before the next moment.
  • the second preset duration can be set according to actual needs.
  • the second preset duration may be the same as or different from the first preset duration.
  • the first operating parameters in this embodiment include the pressure of the main pump of the target working machine, the pressure of the large cavity of the boom cylinder, the speed of the engine and the pilot pressure of the boom.
  • each subsystem of the target work machine will affect the displacement of the boom. Therefore, in this embodiment, the influence of each subsystem of the target working machine on the displacement of the boom is fully considered, and the potential mathematical relationship between each subsystem and the displacement of the boom is explored, so that the obtained predicted value of the displacement of the boom is more reliable and accurate.
  • the actual displacement value of the boom of the target work machine at the current moment and the first operating parameter of the target work machine at the current moment are input into the prediction model, and the output
  • the predicted value of the displacement of the boom at the next moment of the current moment includes: preprocessing the first operating parameter; wherein, the preprocessing includes taking the rotational speed of the engine as a pair in a logarithmic function number, obtain the value of the logarithmic function, and/or subtract the pressure of the main pump from the pressure of the main pump before the boom of the target work machine is raised, and divide the subtraction result by a preset coefficient; Inputting the preprocessed first operating parameter into the prediction model, and outputting the displacement prediction value of the boom at the next moment at the current moment.
  • the first operating parameter may be preprocessed.
  • the way of preprocessing the rotational speed of the engine is to perform logarithmic calculation on the rotational speed of the engine.
  • the way of preprocessing the pressure of the main pump is to subtract the pressure of the main pump from the static pressure of the main pump before the boom lifts the arm, and then divide it by a preset coefficient.
  • the preset coefficients can be set according to actual needs.
  • the pressure of the large cavity of the boom cylinder, the rotational speed of the engine and the pilot pressure of the boom can also be pre-processed according to the pre-processing method of the pressure of the main pump.
  • the preprocessed first operating parameter and the actual value of the displacement of the boom may also be preprocessed by normalization.
  • the second operating parameter in this embodiment includes the rotational speed of the engine of the target working machine and/or the pressure of the main pump.
  • the phenomenon that the boom occurs may be caused by insufficient pressure of the hydraulic system.
  • the problem of insufficient pressure in the hydraulic system can be compensated by increasing the pressure of the main pump, and/or the speed of the engine.
  • control command is generated according to the difference between the predicted displacement value of the boom and the preset displacement value, and the control command is issued to the control system of the target working machine.
  • the control system increases the rotational speed of the engine and/or the pressure of the main pump according to the control command to compensate the displacement of the boom, so as to alleviate the boom drop phenomenon.
  • the boom straightening device for a working machine provided by the present application is described below, and the boom straightening device for a working machine described below and the boom straightening method for a working machine described above can be referred to each other correspondingly.
  • a boom correcting device for a working machine includes a prediction module 301 and a correction module 302, wherein:
  • the prediction module 301 is configured to input the actual value of the displacement of the boom of the target work machine at the current moment and the first operating parameter of the target work machine at the current moment into the prediction model, and output the boom's displacement at the current moment.
  • the prediction model is a machine learning model, such as a multiple linear regression model.
  • This embodiment is not limited to the type of prediction model.
  • the target work machine is an excavator or a loader, and this embodiment is not limited to the type of the target work machine.
  • the number of target work machines is one or more, and this implementation does not specifically limit the number of target work machines. That is, the present implementation can monitor and correct the booms of one or more target machines at the same time.
  • the edge computing module is used to read the actual displacement value of the boom of the target work machine at the current moment from the interface of the pose system of the target work machine, and the No. 1 of the target work machine at the current moment is obtained from the CAN bus of the target machine. an operating parameter.
  • the edge computing module also has data storage and computing capabilities.
  • the first operating parameter is the operating parameter of the subsystem in the target work machine.
  • the prediction model Before the displacement of the boom can be predicted, the prediction model needs to be trained using big data samples.
  • the actual value of the boom displacement and the first operating parameter of the sample operation machine at the historical moment are used as the sample, and the actual value of the boom displacement of the sample operation machine at the historical moment is used as the sample label, and the prediction model is trained until the termination condition is met. .
  • the input of the prediction model in this embodiment covers the actual displacement value of the boom of the target work machine at the current moment and the operating parameters of the subsystem, and fully considers the influence of the sub-system on the displacement of the boom in the target work machine, which is convenient for the operation of the boom.
  • the displacement is comprehensively analyzed to obtain a more accurate displacement prediction value of the boom, so as to accurately correct the displacement of the boom.
  • the correction module 302 is used to calculate the difference between the predicted displacement value of the boom and the preset displacement value, and if the difference value is greater than the first preset threshold value, then according to the difference value, the adjustment of the target working machine is calculated.
  • a second operating parameter is adjusted to correct the boom of the target work machine; wherein the first and second operating parameters are both related to the displacement of the boom.
  • the preset displacement value is the displacement value of the boom of the target working machine in a normal operating state.
  • the second operation parameter is the operation parameter of the subsystem in the target work machine, and the second operation parameter may be the same as or different from the first operation parameter, and the second operation parameter is not specifically limited in this implementation.
  • the first preset threshold may be set according to actual requirements.
  • the boom is running normally, and the acquired relevant data can be stored at the edge and continue to monitor the boom.
  • the relevant data includes the actual displacement value and the first operating parameter of the boom of the target working machine at the current moment, and the predicted value and the calculated difference of the displacement of the boom at the next moment at the current moment.
  • the boom has a drop phenomenon that deviates from the normal working range, and the displacement of the boom needs to be corrected to slow down the drop phenomenon of the boom.
  • the second operating parameter of the target working machine may be adjusted according to the difference, so as to correct the displacement of the boom of the target working machine.
  • whether the boom is dropped is monitored in real time according to the difference between the predicted displacement value of the boom and the preset displacement value. And when the target working machine is working, the displacement of the boom can be automatically corrected in real time according to the difference value, so as to slow down the boom drop phenomenon.
  • edge computing module based on the edge computing module to obtain data, store data and calculate data, it not only has high flexibility, but also can store the relevant data of the target operation machine at various times, and can also calculate whether the boom has dropped the arm, which can effectively Reduce the amount of data upload and reduce the pressure on the database.
  • this embodiment combines the actual value of the displacement of the boom of the target work machine and the first operating parameter of the target work machine as the input of the prediction model, and fully considers the influence of the sub-system of the target work machine on the displacement of the boom, so that the dynamic
  • the predicted value of the displacement of the boom is more accurate; on the other hand, according to the difference between the predicted value of the displacement of the boom and the preset displacement value, it is automatically determined whether the boom has dropped the boom, and based on the difference, the target operation machine is automatically determined.
  • the boom is corrected, and the boom is corrected in time when the boom occurs, and the displacement of the boom can be corrected in real time when the target working machine is working.
  • the correction module in this embodiment is specifically configured to: if the total number of times of correcting the boom of the target working machine within the first preset time period before the next time is greater than the second a preset threshold value, and the difference between the predicted displacement value of the boom at the next moment at the next moment and the preset displacement value is greater than the first preset threshold value, send an alarm to the client information to prompt the user to correct the boom of the target working machine according to the warning information.
  • the alarm information in this embodiment includes the actual displacement value of the boom at each moment within the second preset time period, the position of the target working machine within the second preset time period The first operating parameter at the time, the predicted value of the displacement of the boom at each time in the second preset time period, and the predicted value of the displacement of the boom at each time in the second preset time length and the predicted value. Set the difference between displacement values.
  • the first operating parameters in this embodiment include the pressure of the main pump of the target working machine, the pressure of the large cavity of the boom cylinder, the speed of the engine and the pilot pressure of the boom.
  • the prediction module in this embodiment is specifically configured to: preprocess the first operating parameter; wherein, the preprocessing includes taking the rotational speed of the engine as the logarithm in the logarithmic function , obtain the value of the logarithmic function, and/or subtract the pressure of the main pump from the pressure of the main pump before the boom of the target work machine is raised, and divide the subtraction result by a preset coefficient;
  • the preprocessed first operation parameter is input into the prediction model, and the displacement prediction value of the boom at the next moment at the current moment is output.
  • the second operating parameter in this embodiment includes the rotational speed of the engine of the target working machine and/or the pressure of the main pump.
  • FIG. 4 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 401, a communication interface (Communications Interface) 402, a memory (memory) 403 and a communication bus 404,
  • the processor 401 , the communication interface 402 , and the memory 403 communicate with each other through the communication bus 404 .
  • the processor 401 can call the logic instructions in the memory 403 to execute a method for correcting the boom of the working machine, the method comprising: comparing the actual value of the displacement of the boom of the target working machine at the current moment with the actual value of the displacement of the target working machine at the current time.
  • the first operating parameter at the moment is input into the prediction model, and the displacement prediction value of the boom at the next moment at the current moment is output; the difference between the displacement prediction value of the boom and the preset displacement value is calculated, if If the difference is greater than the first preset threshold, the second operating parameter of the target work machine is adjusted according to the difference to correct the boom of the target work machine; wherein the first Both the operating parameter and the second operating parameter are related to the displacement of the boom.
  • the above-mentioned logic instructions in the memory 403 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .
  • the present application also provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer-readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer During execution, the computer can execute the method for correcting the boom of the working machine provided by the above methods.
  • the method includes: comparing the actual value of the displacement of the boom of the target working machine at the current moment and the current value of the target working machine at the current moment.
  • the first operating parameter is input to the prediction model, and the predicted value of the displacement of the boom at the next moment at the current moment is output; the difference between the predicted displacement value of the boom and the preset displacement value is calculated, if the If the difference is greater than the first preset threshold, the second operating parameter of the target work machine is adjusted according to the difference to correct the boom of the target work machine; wherein the first operating parameter and the second operating parameter are related to the displacement of the boom.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the above-mentioned methods for correcting the boom of a working machine, the The method includes: inputting the actual value of the displacement of the boom of the target work machine at the current moment and the first operating parameter of the target work machine at the current moment into a prediction model, and outputting the next movement of the boom at the current moment.
  • the second operating parameter is adjusted to correct the boom of the target working machine; wherein the first operating parameter and the second operating parameter are both related to the displacement of the boom.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
  • each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware.
  • the above-mentioned technical solutions can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic A disc, an optical disc, etc., includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

一种作业机械的动臂矫正方法及装置,该方法包括:将目标作业机械的动臂在当前时刻的位移实际值和目标作业机械在当前时刻的第一运行参数输入预测模型,输出动臂在当前时刻的下一时刻的位移预测值;计算动臂的位移预测值与预设位移值之间的差值,若差值大于第一预设阈值,则根据差值对目标作业机械的第二运行参数进行调整,以对目标作业机械的动臂进行矫正;其中,第一运行参数和第二运行参数均与动臂的位移相关;该方法实现自动确定动臂是否存在掉臂现象,并自动对目标作业机械的动臂进行矫正,在动臂发生掉臂现象时进行及时的矫正,且可以在目标作业机械工作的状态下实时矫正动臂的位移。

Description

作业机械的动臂矫正方法及装置
相关申请的交叉引用
本申请要求于2021年3月16日提交的申请号为202110282174.1,名称为“作业机械的动臂矫正方法及装置”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及机械工程技术领域,尤其涉及一种作业机械的动臂矫正方法及装置。
背景技术
动臂是作业机械中重要的部件之一。当动臂发生掉臂问题时,表征作业机械的故障已经恶化,严重影响作业机械动作的可靠度和精度。因此,需要对动臂进行检测和矫正,以确保作业机械正常作业。
通常,作业机械的动臂检测和矫正,主要依赖出厂时的检测和矫正。当用户在使用过程中发现了动臂出现异常或掉臂问题后,再通过人工对相关部件进行逐一排查。然后,根据排查结果对动臂进行矫正。
但是,由于作业机械工作状况复杂,动臂的掉臂问题涉及的部件比较多,采用事后人工维护的方式,不仅维护效率低,维护周期长,维护不及时。且动臂的掉臂问题发生后影响较大,若维护不及时会给用户带来重大的影响。
发明内容
本申请提供一种作业机械的动臂矫正方法及装置,用以解决现有技术中事后人工维护的维护效率低,维护周期长,维护不及时的缺陷,实现对作业机械的动臂自动进行及时矫正。
本申请提供一种作业机械的动臂矫正方法,包括:
将目标作业机械的动臂在当前时刻的位移实际值和所述目标作业机械在所述当前时刻的第一运行参数输入预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值;
计算所述动臂的位移预测值与预设位移值之间的差值,若所述差值大于 第一预设阈值,则根据所述差值对所述目标作业机械的第二运行参数进行调整,以对所述目标作业机械的动臂进行矫正;其中,所述第一运行参数和第二运行参数均与所述动臂的位移相关。
根据本申请提供的一种作业机械的动臂矫正方法,所述根据所述差值对所述目标作业机械的第二运行参数进行调整,以对所述目标作业机械的动臂进行矫正,之后还包括:
若在所述下一时刻之前的第一预设时长内对所述目标作业机械的动臂进行矫正的总次数大于第二预设阈值,且所述动臂在所述下一时刻的下一时刻的位移预测值与所述预设位移值之间的差值大于所述第一预设阈值,则向客户端发送告警信息,以提示用户根据所述告警信息对所述目标作业机械的动臂进行矫正。
根据本申请提供的一种作业机械的动臂矫正方法,所述告警信息包括所述动臂在第二预设时长内各时刻的位移实际值、所述目标作业机械在所述第二预设时长内各时刻的第一运行参数、所述动臂在所述第二预设时长内各时刻的位移预测值和所述动臂在所述第二预设时长内各时刻的位移预测值与所述预设位移值之间的差值。
根据本申请提供的一种作业机械的动臂矫正方法,所述第一运行参数包括目标作业机械的主泵的压力、动臂油缸大腔的压力、发动机的转速和动臂的先导压力。
根据本申请提供的一种作业机械的动臂矫正方法,所述将目标作业机械的动臂在当前时刻的位移实际值和所述目标作业机械在所述当前时刻的第一运行参数输入预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值,包括:
对所述第一运行参数进行预处理;
其中,所述预处理包括将所述发动机的转速作为对数函数中的对数,获取所述对数函数的值,和/或将所述主泵的压力与所述目标作业机械的动臂抬升前主泵的压力相减,并将相减结果除以预设系数;
将预处理后的第一运行参数输入所述预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值。
根据本申请提供的一种作业机械的动臂矫正方法,所述第二运行参数包 括所述目标作业机械的发动机的转速,和/或主泵的压力。
本申请还提供一种作业机械的动臂矫正装置,包括:
预测模型,用于将目标作业机械的动臂在当前时刻的位移实际值和所述目标作业机械在所述当前时刻的第一运行参数输入预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值;
矫正模块,用于计算所述动臂的位移预测值与预设位移值之间的差值,若所述差值大于第一预设阈值,则根据所述差值对所述目标作业机械的第二运行参数进行调整,以对所述目标作业机械的动臂进行矫正;其中,所述第一运行参数和第二运行参数均与所述动臂的位移相关。
根据本申请提供的一种作业机械的动臂矫正装置,所述矫正模块具体用于:
若在所述下一时刻之前的第一预设时长内对所述目标作业机械的动臂进行矫正的总次数大于第二预设阈值,且所述动臂在所述下一时刻的下一时刻的位移预测值与所述预设位移值之间的差值大于所述第一预设阈值,则向客户端发送告警信息,以提示用户根据所述告警信息对所述目标作业机械的动臂进行矫正。
本申请还提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述任一种所述作业机械的动臂矫正方法的步骤。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述作业机械的动臂矫正方法的步骤。
本申请提供的作业机械的动臂矫正方法及装置,通过一方面联合目标作业机械的动臂的位移实际值和目标作业机械的第一运行参数作为预测模型的输入,充分考虑了目标作业机械中子系统对动臂的位移的影响,使得动臂的位移预测值更加准确;另一方面,根据动臂的位移预测值与预设位移值之间的差值,自动确定动臂是否存在掉臂现象,并根据差值自动对目标作业机械的动臂进行矫正,在动臂发生掉臂现象时进行及时的矫正,且可以在目标作业机械工作的状态下实时矫正动臂的位移。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的作业机械的动臂矫正方法的流程示意图之一;
图2是本申请提供的作业机械的动臂矫正方法的流程示意图之二;
图3是本申请提供的作业机械的动臂矫正装置的结构示意图;
图4是本申请提供的电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合图1描述本申请的作业机械的动臂矫正方法,包括:步骤101,将目标作业机械的动臂在当前时刻的位移实际值和所述目标作业机械在所述当前时刻的第一运行参数输入预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值;
可选地,预测模型为机器学习模型,如多元线性回归模型。本实施例不限于预测模型的类型。
可选地,目标作业机械为挖掘机或装载机等,本实施例不限于目标作业机械的类型。
可选地,目标作业机械的数量为一个或多个,本实施不对目标作业机械的数量作具体的限定。即,本实施可以同时对一个或多个目标机械的动臂进行监控并矫正。
可选地,采用边缘端计算模块从目标作业机械的位姿系统的接口读取目标作业机械的动臂在当前时刻的位移实际值,从目标机械的CAN(Controller Area Network,控制器局域网络)总线获取目标作业机械在当前时刻的第一运行参数。
可选地,边缘端计算模块还具有数据存储和计算能力。
可选地,第一运行参数为目标作业机械中子系统的运行参数。
在对动臂的位移进行预测之前,需要使用大数据样本对预测模型进行训练。将样本作业机械在历史时刻的动臂的位移实际值和第一运行参数作为样本,将样本作业机械在历史时刻的动臂的位移实际值作为样本标签,对预测模型进行训练,直到满足终止条件。
将目标作业机械的动臂在当前时刻的位移实际值和目标作业机械在当前时刻的第一运行参数作为预测模型的输入,输出目标作业机械的动臂在当前时刻的下一时刻的位移预测值。具体过程如图2所示。
本实施例中预测模型的输入涵盖目标作业机械在当前时刻的动臂的位移实际值和子系统的运行参数,充分考虑了目标作业机械中子系统对动臂的位移的影响,便于对动臂的位移进行全面分析,得到更加准确的动臂的位移预测值,从而准确的矫正动臂的位移。
步骤102,计算所述动臂的位移预测值与预设位移值之间的差值,若所述差值大于第一预设阈值,则根据所述差值对所述目标作业机械的第二运行参数进行调整,以对所述目标作业机械的动臂进行矫正;其中,所述第一运行参数和第二运行参数均与所述动臂的位移相关。
可选地预设位移值为目标作业机械在正常作态下的动臂的位移值。
可选地,第二运行参数为目标作业机械中子系统的运行参数,第二运行参数可以与第一运行参数相同,也可以不同,本实施不对第二运行参数作具体的限定。
获取到动臂的位移预测值后,计算动臂的位移预测值与预设位移值之间的差值。并判断差值是否大于第一预设阈值。其中,第一预设阈值可以根据实际需求进行设置。
若否,则动臂运行正常,可以将获取的相关数据存储在边缘端,并继续对动臂进行监测。
可选地,相关数据包括目标作业机械在当前时刻的动臂的位移实际值和第一运行参数,以及动臂在当前时刻的下一时刻的位移预测值和计算的差值。
若是,则动臂存在偏离正常工作范围的掉臂现象,需要对动臂的位移进行矫正,以减缓动臂的掉臂现象。
对动臂进行矫正时,可以根据差值对目标作业机械的第二运行参数进行 调整,以对目标作业机械的动臂的位移进行矫正。
对动臂进行矫正后,将下一时刻作为新的当前时刻,将目标作业机械在新的当前时刻的位移实际值和第一运行参数输入预测模型,输出动臂在新的当前时刻的下一时刻的位移预测值,重复上述步骤继续对动臂进行监测和矫正。
本实施例根据动臂的位移预测值与预设位移值之间的差值实时监测动臂是否存在掉臂现象。并可以在目标作业机械工作的状态下,根据差值对动臂的位移进行实时自动矫正,以减缓动臂的掉臂现象。
此外,基于边缘端计算模块获取数据、存储数据和计算数据,不仅灵活性高,可以对目标作业机械在各个时刻的相关数据进行存储,还能通过计算获取动臂是否存在掉臂现象,可以有效减少数据上传的量,减少数据库的压力。
本实施例一方面联合目标作业机械的动臂的位移实际值和目标作业机械的第一运行参数作为预测模型的输入,充分考虑了目标作业机械中子系统对动臂的位移的影响,使得动臂的位移预测值更加准确;另一方面,根据动臂的位移预测值与预设位移值之间的差值,自动确定动臂是否存在掉臂现象,并根据差值自动对目标作业机械的动臂进行矫正,在动臂发生掉臂现象时进行及时的矫正,且可以在目标作业机械工作的状态下实时矫正动臂的位移。
在上述实施例的基础上,本实施例中所述根据所述差值对所述目标作业机械的第二运行参数进行调整,以对所述目标作业机械的动臂进行矫正,之后还包括:若在所述下一时刻之前的第一预设时长内对所述目标作业机械的动臂进行矫正的总次数大于第二预设阈值,且所述动臂在所述下一时刻的下一时刻的位移预测值与所述预设位移值之间的差值大于所述第一预设阈值,则向客户端发送告警信息,以提示用户根据所述告警信息对所述目标作业机械的动臂进行矫正。
可选地,下一时刻之前的第一预设时长包括当前时刻和当前时刻之前的一段时长。
可选地,第一预设时长和第二预设阈值可以根据实际需求进行设置。
可选地,假设当前时刻为第一预设时长内的第N个时刻,则当前时刻的下一时刻为第一预设时长内的第N+1个时刻,下一时刻的下一时刻为第一预 设时长内的第N+2个时刻。
若在第一预设时长内任一时刻对动臂的位移进行了矫正,则计数器的值累计加1。当第N个时刻对动臂的位移进行了矫正,若计数器的值累计加1后大于第二预设阈值,且通过监测获取在第N+1个时刻还需要对动臂的位移进行矫正,则表明在第一预设时长内对动臂进行位移矫正的次数过于频繁。此时,需要向客户端推送告警信息。用户可以根据告警信息对目标作业机械的动臂进行矫正。
本实例中不仅可以自动对动臂的位移进行在线矫正,还可以在矫正过于频繁的情况下,及时推送告警信息,以使运维工程师可以及时对目标作业机械展开检修,避免故障问题持续恶化,实现了对目标作业机械的预测性维护。
在上述实施例的基础上,本实施例中所述告警信息包括所述动臂在第二预设时长内各时刻的位移实际值、所述目标作业机械在所述第二预设时长内各时刻的第一运行参数、所述动臂在所述第二预设时长内各时刻的位移预测值和所述动臂在所述第二预设时长内各时刻的位移预测值与所述预设位移值之间的差值。
具体地,告警信息可以包括告警提示信息,如“动臂故障”。也可以包括在第二预设时长内各时刻边缘端存储的数据。本实施例不限于告警信息的内容。
可选地,边缘端存储的数据包括在各时刻动臂的位移实际值、目标作业机械的第一运行参数、动臂的位移预测值和动臂的位移预测值与预设位移值之间的差值。
可选地,第二预设时长包括上述的下一时刻和下一时刻之前的一段时长。第二预设时长可以根据实际需求进行设置。第二预设时长可与第一预设时长相同,也可以不同。
在上述各实施例的基础上,本实施例中所述第一运行参数包括目标作业机械的主泵的压力、动臂油缸大腔的压力、发动机的转速和动臂的先导压力。
具体地,目标作业机械的各子系统的运行参数会对动臂的位移产生影响。因此,本实施例中全面考虑目标作业机械的各子系统对动臂的位移的影响,挖掘各子系统和动臂的位移之间的潜在数学关系,使得获取的动臂的位移预测值更加可靠和准确。
在上述实施例的基础上,本实施例中所述将目标作业机械的动臂在当前时刻的位移实际值和所述目标作业机械在所述当前时刻的第一运行参数输入预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值,包括:对所述第一运行参数进行预处理;其中,所述预处理包括将所述发动机的转速作为对数函数中的对数,获取所述对数函数的值,和/或将所述主泵的压力与所述目标作业机械的动臂抬升前主泵的压力相减,并将相减结果除以预设系数;将预处理后的第一运行参数输入所述预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值。
具体地,在将目标作业机械在当前时刻的动臂的位移实际值和第一运行参数输入预测模型之前,可以对第一运行参数进行预处理。
可选地,对发动机的转速进行预处理的方式为,对发动机的转速进行对数计算。
可选地,对主泵的压力进行预处理的方式为,将主泵的压力与动臂抬臂前主泵的静态压力相减后除以预设系数。其中,预设系数可以根据实际需求进行设置。
此外,也可以按照主泵的压力的预处理方式对动臂油缸大腔的压力、发动机的转速和动臂的先导压力进行预处理。
也可以将预处理后的第一运行参数和动臂的位移实际值进行归一化的预处理处理。
通过将预处理后的第一运行参数和动臂的位移实际值作为自变量建立预测模型,不仅可以提高预测模型的可靠性,还可以降低模型的复杂度和计算时间。
在上述各实施例的基础上,本实施例中所述第二运行参数包括所述目标作业机械的发动机的转速,和/或主泵的压力。
具体地,导致动臂发生掉臂现象可能是液压系统的压力不足。可以通过增加主泵的压力,和/或发动机的转速来补偿液压系统的压力不足的问题。
可选地,根据动臂的位移预测值与预设位移值之间的差值生成控制指令,并将控制指令下发到目标作业机械的控制系统。控制系统根据控制指令增加发动机的转速,和/或主泵的压力,对动臂的位移进行补偿,以缓解动臂的掉臂现象。
下面对本申请提供的作业机械的动臂矫正装置进行描述,下文描述的作业机械的动臂矫正装置与上文描述的作业机械的动臂矫正方法可相互对应参照。
如图3所示,为本实施例提供的一种作业机械的动臂矫正装置,该装置包括预测模块301和矫正模块302,其中:
预测模块301用于将目标作业机械的动臂在当前时刻的位移实际值和所述目标作业机械在所述当前时刻的第一运行参数输入预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值;
可选地,预测模型为机器学习模型,如多元线性回归模型。本实施例不限于预测模型的类型。
可选地,目标作业机械为挖掘机或装载机等,本实施例不限于目标作业机械的类型。
可选地,目标作业机械的数量为一个或多个,本实施不对目标作业机械的数量作具体的限定。即,本实施可以同时对一个或多个目标机械的动臂进行监控并矫正。
可选地,采用边缘端计算模块从目标作业机械的位姿系统的接口读取目标作业机械的动臂在当前时刻的位移实际值,从目标机械的CAN总线获取目标作业机械在当前时刻的第一运行参数。
可选地,边缘端计算模块还具有数据存储和计算能力。
可选地,第一运行参数为目标作业机械中子系统的运行参数。
在对动臂的位移进行预测之前,需要使用大数据样本对预测模型进行训练。将样本作业机械在历史时刻的动臂的位移实际值和第一运行参数作为样本,将样本作业机械在历史时刻的动臂的位移实际值作为样本标签,对预测模型进行训练,直到满足终止条件。
将目标作业机械的动臂在当前时刻的位移实际值和目标作业机械在当前时刻的第一运行参数作为预测模型的输入,输出目标作业机械的动臂在当前时刻的下一时刻的位移预测值。具体过程如图2所示。
本实施例中预测模型的输入涵盖目标作业机械在当前时刻的动臂的位移实际值和子系统的运行参数,充分考虑了目标作业机械中子系统对动臂的位移的影响,便于对动臂的位移进行全面分析,得到更加准确的动臂的位移预 测值,从而准确的矫正动臂的位移。
矫正模块302用于计算所述动臂的位移预测值与预设位移值之间的差值,若所述差值大于第一预设阈值,则根据所述差值对所述目标作业机械的第二运行参数进行调整,以对所述目标作业机械的动臂进行矫正;其中,所述第一运行参数和第二运行参数均与所述动臂的位移相关。
可选地预设位移值为目标作业机械在正常作态下的动臂的位移值。
可选地,第二运行参数为目标作业机械中子系统的运行参数,第二运行参数可以与第一运行参数相同,也可以不同,本实施不对第二运行参数作具体的限定。
获取到动臂的位移预测值后,计算动臂的位移预测值与预设位移值之间的差值。并判断差值是否大于第一预设阈值。其中,第一预设阈值可以根据实际需求进行设置。
若否,则动臂运行正常,可以将获取的相关数据存储在边缘端,并继续对动臂进行监测。
可选地,相关数据包括目标作业机械在当前时刻的动臂的位移实际值和第一运行参数,以及动臂在当前时刻的下一时刻的位移预测值和计算的差值。
若是,则动臂存在偏离正常工作范围的掉臂现象,需要对动臂的位移进行矫正,以减缓动臂的掉臂现象。
对动臂进行矫正时,可以根据差值对目标作业机械的第二运行参数进行调整,以对目标作业机械的动臂的位移进行矫正。
对动臂进行矫正后,将下一时刻作为新的当前时刻,将目标作业机械在新的当前时刻的位移实际值和第一运行参数输入预测模型,输出动臂在新的当前时刻的下一时刻的位移预测值,重复上述步骤继续对动臂进行监测和矫正。
本实施例根据动臂的位移预测值与预设位移值之间的差值实时监测动臂是否存在掉臂现象。并可以在目标作业机械工作的状态下,根据差值对动臂的位移进行实时自动矫正,以减缓动臂的掉臂现象。
此外,基于边缘端计算模块获取数据、存储数据和计算数据,不仅灵活性高,可以对目标作业机械在各个时刻的相关数据进行存储,还能通过计算获取动臂是否存在掉臂现象,可以有效减少数据上传的量,减少数据库的压 力。
本实施例一方面联合目标作业机械的动臂的位移实际值和目标作业机械的第一运行参数作为预测模型的输入,充分考虑了目标作业机械中子系统对动臂的位移的影响,使得动臂的位移预测值更加准确;另一方面,根据动臂的位移预测值与预设位移值之间的差值,自动确定动臂是否存在掉臂现象,并根据差值自动对目标作业机械的动臂进行矫正,在动臂发生掉臂现象时进行及时的矫正,且可以在目标作业机械工作的状态下实时矫正动臂的位移。
在上述实施例的基础上,本实施例中矫正模块具体用于:若在所述下一时刻之前的第一预设时长内对所述目标作业机械的动臂进行矫正的总次数大于第二预设阈值,且所述动臂在所述下一时刻的下一时刻的位移预测值与所述预设位移值之间的差值大于所述第一预设阈值,则向客户端发送告警信息,以提示用户根据所述告警信息对所述目标作业机械的动臂进行矫正。
在上述实施例的基础上,本实施例中所述告警信息包括所述动臂在第二预设时长内各时刻的位移实际值、所述目标作业机械在所述第二预设时长内各时刻的第一运行参数、所述动臂在所述第二预设时长内各时刻的位移预测值和所述动臂在所述第二预设时长内各时刻的位移预测值与所述预设位移值之间的差值。
在上述各实施例的基础上,本实施例中所述第一运行参数包括目标作业机械的主泵的压力、动臂油缸大腔的压力、发动机的转速和动臂的先导压力。
在上述实施例的基础上,本实施例中预测模块具体用于:对所述第一运行参数进行预处理;其中,所述预处理包括将所述发动机的转速作为对数函数中的对数,获取所述对数函数的值,和/或将所述主泵的压力与所述目标作业机械的动臂抬升前主泵的压力相减,并将相减结果除以预设系数;将预处理后的第一运行参数输入所述预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值。
在上述各实施例的基础上,本实施例中所述第二运行参数包括所述目标作业机械的发动机的转速,和/或主泵的压力。
图4示例了一种电子设备的实体结构示意图,如图4所示,该电子设备可以包括:处理器(processor)401、通信接口(Communications Interface)402、存储器(memory)403和通信总线404,其中,处理器401,通信接口 402,存储器403通过通信总线404完成相互间的通信。处理器401可以调用存储器403中的逻辑指令,以执行作业机械的动臂矫正方法,该方法包括:将目标作业机械的动臂在当前时刻的位移实际值和所述目标作业机械在所述当前时刻的第一运行参数输入预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值;计算所述动臂的位移预测值与预设位移值之间的差值,若所述差值大于第一预设阈值,则根据所述差值对所述目标作业机械的第二运行参数进行调整,以对所述目标作业机械的动臂进行矫正;其中,所述第一运行参数和第二运行参数均与所述动臂的位移相关。
此外,上述的存储器403中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的作业机械的动臂矫正方法,该方法包括:将目标作业机械的动臂在当前时刻的位移实际值和所述目标作业机械在所述当前时刻的第一运行参数输入预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值;计算所述动臂的位移预测值与预设位移值之间的差值,若所述差值大于第一预设阈值,则根据所述差值对所述目标作业机械的第二运行参数进行调整,以对所述目标作业机械的动臂进行矫正;其中,所述第一运行参数和第二运行参数均与所述动臂的位移相关。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各提供的作业机械的动臂矫正方法,该方法包括:将目标作业机械的动臂在当前时刻的位移 实际值和所述目标作业机械在所述当前时刻的第一运行参数输入预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值;计算所述动臂的位移预测值与预设位移值之间的差值,若所述差值大于第一预设阈值,则根据所述差值对所述目标作业机械的第二运行参数进行调整,以对所述目标作业机械的动臂进行矫正;其中,所述第一运行参数和第二运行参数均与所述动臂的位移相关。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种作业机械的动臂矫正方法,包括:
    将目标作业机械的动臂在当前时刻的位移实际值和所述目标作业机械在所述当前时刻的第一运行参数输入预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值;
    计算所述动臂的位移预测值与预设位移值之间的差值,若所述差值大于第一预设阈值,则根据所述差值对所述目标作业机械的第二运行参数进行调整,以对所述目标作业机械的动臂进行矫正;其中,所述第一运行参数和第二运行参数均与所述动臂的位移相关。
  2. 根据权利要求1所述的作业机械的动臂矫正方法,其特征在于,所述根据所述差值对所述目标作业机械的第二运行参数进行调整,以对所述目标作业机械的动臂进行矫正,之后还包括:
    若在所述下一时刻之前的第一预设时长内对所述目标作业机械的动臂进行矫正的总次数大于第二预设阈值,且所述动臂在所述下一时刻的下一时刻的位移预测值与所述预设位移值之间的差值大于所述第一预设阈值,则向客户端发送告警信息,以提示用户根据所述告警信息对所述目标作业机械的动臂进行矫正。
  3. 根据权利要求2所述的作业机械的动臂矫正方法,其特征在于,所述告警信息包括所述动臂在第二预设时长内各时刻的位移实际值、所述目标作业机械在所述第二预设时长内各时刻的第一运行参数、所述动臂在所述第二预设时长内各时刻的位移预测值和所述动臂在所述第二预设时长内各时刻的位移预测值与所述预设位移值之间的差值。
  4. 根据权利要求1-3任一所述的作业机械的动臂矫正方法,其特征在于,所述第一运行参数包括目标作业机械的主泵的压力、动臂油缸大腔的压力、发动机的转速和动臂的先导压力。
  5. 根据权利要求4所述的作业机械的动臂矫正方法,其特征在于,所述将目标作业机械的动臂在当前时刻的位移实际值和所述目标作业机械在所述当前时刻的第一运行参数输入预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值,包括:
    对所述第一运行参数进行预处理;
    其中,所述预处理包括将所述发动机的转速作为对数函数中的对数,获取所述对数函数的值,和/或将所述主泵的压力与所述目标作业机械的动臂抬升前主泵的压力相减,并将相减结果除以预设系数;
    将预处理后的第一运行参数输入所述预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值。
  6. 根据权利要求1-3任一所述的作业机械的动臂矫正方法,其特征在于,所述第二运行参数包括所述目标作业机械的发动机的转速,和/或主泵的压力。
  7. 一种作业机械的动臂矫正装置,包括:
    预测模型,用于将目标作业机械的动臂在当前时刻的位移实际值和所述目标作业机械在所述当前时刻的第一运行参数输入预测模型,输出所述动臂在所述当前时刻的下一时刻的位移预测值;
    矫正模块,用于计算所述动臂的位移预测值与预设位移值之间的差值,若所述差值大于第一预设阈值,则根据所述差值对所述目标作业机械的第二运行参数进行调整,以对所述目标作业机械的动臂进行矫正;其中,所述第一运行参数和第二运行参数均与所述动臂的位移相关。
  8. 根据权利要求7所述的作业机械的动臂矫正装置,其特征在于,所述矫正模块具体用于:
    若在所述下一时刻之前的第一预设时长内对所述目标作业机械的动臂进行矫正的总次数大于第二预设阈值,且所述动臂在所述下一时刻的下一时刻的位移预测值与所述预设位移值之间的差值大于所述第一预设阈值,则向客户端发送告警信息,以提示用户根据所述告警信息对所述目标作业机械的动臂进行矫正。
  9. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至6任一项所述作业机械的动臂矫正方法的步骤。
  10. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述作业机械的动臂矫正方法的步骤。
PCT/CN2022/077677 2021-03-16 2022-02-24 作业机械的动臂矫正方法及装置 WO2022193925A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/449,825 US12234628B2 (en) 2021-03-16 2023-08-15 Boom correction method and device for working machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110282174.1A CN112975983B (zh) 2021-03-16 2021-03-16 作业机械的动臂矫正方法及装置
CN202110282174.1 2021-03-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/449,825 Continuation US12234628B2 (en) 2021-03-16 2023-08-15 Boom correction method and device for working machine

Publications (1)

Publication Number Publication Date
WO2022193925A1 true WO2022193925A1 (zh) 2022-09-22

Family

ID=76335997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077677 WO2022193925A1 (zh) 2021-03-16 2022-02-24 作业机械的动臂矫正方法及装置

Country Status (3)

Country Link
US (1) US12234628B2 (zh)
CN (1) CN112975983B (zh)
WO (1) WO2022193925A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112975983B (zh) * 2021-03-16 2022-04-01 上海三一重机股份有限公司 作业机械的动臂矫正方法及装置
CN114326378B (zh) * 2022-01-27 2023-12-05 三一重机有限公司 作业机械轨迹控制方法、装置及作业机械
CN114688004B (zh) * 2022-03-16 2023-10-27 三一重机有限公司 流量分配方法、装置及作业机械
WO2024187319A1 (en) * 2023-03-10 2024-09-19 Siemens Aktiengesellschaft Method, device, medium and apparatus for controlling running of gantry
CN116871877A (zh) * 2023-06-30 2023-10-13 三一汽车起重机械有限公司 单缸插销孔位参数修正方法、系统及起重机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1651666A (zh) * 2005-03-28 2005-08-10 广西柳工机械股份有限公司 用于液压挖掘机工作装置的轨迹控制系统及方法
WO2007014832A1 (de) * 2005-08-04 2007-02-08 Siemens Aktiengesellschaft Verfahren und einrichtung zur bewegungsführung eines bewegbaren maschinenelements einer maschine
CN107030699A (zh) * 2017-05-18 2017-08-11 广州视源电子科技股份有限公司 位姿误差修正方法及装置、机器人及存储介质
CN108691324A (zh) * 2017-03-31 2018-10-23 日立建机株式会社 作业机械
CN110485502A (zh) * 2019-07-17 2019-11-22 爱克斯维智能科技(苏州)有限公司 一种挖掘机智能行走系统、挖掘机及控制方法
US20200070346A1 (en) * 2018-08-28 2020-03-05 Kabushiki Kaisha Toshiba Robot control device, robot control parameter adjustment method, and non-transitory storage medium storing program
CN112091977A (zh) * 2020-09-18 2020-12-18 珠海格力智能装备有限公司 机器人的外部视觉辅助定位方法、装置和处理器
CN112975983A (zh) * 2021-03-16 2021-06-18 上海三一重机股份有限公司 作业机械的动臂矫正方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305519A (ja) * 1994-05-10 1995-11-21 Yutani Heavy Ind Ltd 油圧作業車両の安全装置
SE0001312D0 (sv) * 2000-04-10 2000-04-10 Abb Ab Industrirobot
US8886359B2 (en) * 2011-05-17 2014-11-11 Fanuc Corporation Robot and spot welding robot with learning control function
US9226796B2 (en) * 2012-08-03 2016-01-05 Stryker Corporation Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path
KR102763860B1 (ko) * 2017-12-20 2025-02-07 가부시끼 가이샤 구보다 작업차, 작업차를 위한 주행 경로 선택 시스템, 및 주행 경로 산출 시스템
JP7316052B2 (ja) * 2019-01-29 2023-07-27 株式会社小松製作所 作業機械を含むシステム、およびコンピュータによって実行される方法
KR102695638B1 (ko) * 2019-03-13 2024-08-16 에이치디현대인프라코어 주식회사 건설기계의 트랙 장력 모니터링 방법 및 시스템
US11560908B2 (en) * 2019-05-13 2023-01-24 Caterpillar Inc. Control mapping for hydraulic machines
US11615707B2 (en) * 2019-05-29 2023-03-28 Deere & Company Guidance display system for work vehicles and work implements
CN110977991A (zh) * 2019-12-31 2020-04-10 芜湖哈特机器人产业技术研究院有限公司 一种飞机清洗机械臂运动控制方法
US20210340724A1 (en) * 2020-05-01 2021-11-04 Deere & Company Work vehicle magnetorheological fluid joystick systems providing machine state feedback

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1651666A (zh) * 2005-03-28 2005-08-10 广西柳工机械股份有限公司 用于液压挖掘机工作装置的轨迹控制系统及方法
WO2007014832A1 (de) * 2005-08-04 2007-02-08 Siemens Aktiengesellschaft Verfahren und einrichtung zur bewegungsführung eines bewegbaren maschinenelements einer maschine
CN108691324A (zh) * 2017-03-31 2018-10-23 日立建机株式会社 作业机械
CN107030699A (zh) * 2017-05-18 2017-08-11 广州视源电子科技股份有限公司 位姿误差修正方法及装置、机器人及存储介质
US20200070346A1 (en) * 2018-08-28 2020-03-05 Kabushiki Kaisha Toshiba Robot control device, robot control parameter adjustment method, and non-transitory storage medium storing program
CN110485502A (zh) * 2019-07-17 2019-11-22 爱克斯维智能科技(苏州)有限公司 一种挖掘机智能行走系统、挖掘机及控制方法
CN112091977A (zh) * 2020-09-18 2020-12-18 珠海格力智能装备有限公司 机器人的外部视觉辅助定位方法、装置和处理器
CN112975983A (zh) * 2021-03-16 2021-06-18 上海三一重机股份有限公司 作业机械的动臂矫正方法及装置

Also Published As

Publication number Publication date
CN112975983A (zh) 2021-06-18
CN112975983B (zh) 2022-04-01
US20240003122A1 (en) 2024-01-04
US12234628B2 (en) 2025-02-25

Similar Documents

Publication Publication Date Title
WO2022193925A1 (zh) 作业机械的动臂矫正方法及装置
CN117420967B (zh) 一种软件采集数据存储性能提升方法和系统
CN118900275B (zh) 基于数据智能的工业互联网云平台
US20210088986A1 (en) Assistance device, learning device, and plant operation condition setting assistance system
CN114962390A (zh) 液压系统故障诊断方法、系统及作业机械
KR102108975B1 (ko) 함정설비의 상태기반 정비 지원 장치 및 방법
CN118778585B (zh) 基于大数据的智能化工厂质量管理系统
CN119126610A (zh) 一种基于人工智能的智能控制器及其控制方法
CN113111006A (zh) 作业机械控制系统调试方法及系统
CN119727468B (zh) 一种直流无刷减速电机用控制方法及系统
WO2023160300A1 (zh) 结构件剩余寿命预测方法、装置及作业机械
CN119577681A (zh) 基于大数据算法的工业设备数据智能管理方法
CN117783795A (zh) 边缘分析的换流变阀侧套管绝缘状态综合分析方法及系统
CN117591949A (zh) 一种设备异常识别方法、设备及介质
CN116451878A (zh) 基于数字孪生技术的故障预测方法、装置、设备及介质
CN115953738A (zh) 一种图像识别分布式训练的监控方法、装置、设备及介质
CN112834255B (zh) 机械装置的协调性测试方法、故障诊断方法和工程机械
CN119665643B (zh) 推板窑堆堵故障预测方法、装置、计算机设备及介质
CN118394028A (zh) 基于工业控制上位机的应急恢复方法、装置及电子设备
CN117519052B (zh) 基于电子气体生产制造系统的故障分析方法及系统
CN110814054B (zh) 基于液压缸伺服阀开度静态和动态特征的预警方法
RU2835476C1 (ru) Способ автоматизированного управления технологическими процессами
CN119916847A (zh) 推进系统流量补偿方法、分析方法、装置、设备及介质
CN120196763A (zh) 一种故障推理路径优化方法、系统、电子设备和存储介质
CN119808588A (zh) 风电数据异常监测方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770280

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 22770280

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.02.2024)

122 Ep: pct application non-entry in european phase

Ref document number: 22770280

Country of ref document: EP

Kind code of ref document: A1