WO2022181572A1 - AgAuS系化合物からなる半導体ナノ粒子 - Google Patents
AgAuS系化合物からなる半導体ナノ粒子 Download PDFInfo
- Publication number
- WO2022181572A1 WO2022181572A1 PCT/JP2022/007096 JP2022007096W WO2022181572A1 WO 2022181572 A1 WO2022181572 A1 WO 2022181572A1 JP 2022007096 W JP2022007096 W JP 2022007096W WO 2022181572 A1 WO2022181572 A1 WO 2022181572A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor nanoparticles
- semiconductor
- agaus
- compound
- chain carbon
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 159
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 147
- 150000001875 compounds Chemical class 0.000 title claims abstract description 63
- 229910052737 gold Inorganic materials 0.000 claims abstract description 30
- 229910052709 silver Inorganic materials 0.000 claims abstract description 28
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 22
- 239000013078 crystal Substances 0.000 claims abstract description 9
- 239000000470 constituent Substances 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims description 39
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 238000010521 absorption reaction Methods 0.000 claims description 15
- 125000000217 alkyl group Chemical group 0.000 claims description 15
- 238000000862 absorption spectrum Methods 0.000 claims description 14
- 239000003223 protective agent Substances 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 9
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical group C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 claims description 8
- 125000003342 alkenyl group Chemical group 0.000 claims description 6
- 150000003973 alkyl amines Chemical class 0.000 claims description 4
- FIQMHBFVRAXMOP-UHFFFAOYSA-N triphenylphosphane oxide Chemical group C=1C=CC=CC=1P(C=1C=CC=CC=1)(=O)C1=CC=CC=C1 FIQMHBFVRAXMOP-UHFFFAOYSA-N 0.000 claims description 4
- 150000007513 acids Chemical class 0.000 claims 2
- 125000004434 sulfur atom Chemical group 0.000 abstract description 3
- 239000010931 gold Substances 0.000 description 72
- 238000006243 chemical reaction Methods 0.000 description 41
- 239000000203 mixture Substances 0.000 description 28
- 239000002243 precursor Substances 0.000 description 28
- 238000005259 measurement Methods 0.000 description 17
- 238000000295 emission spectrum Methods 0.000 description 13
- 238000006862 quantum yield reaction Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000003917 TEM image Methods 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000031700 light absorption Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 5
- 229940071536 silver acetate Drugs 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 4
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- -1 WO 3 Inorganic materials 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- ZXSQEZNORDWBGZ-UHFFFAOYSA-N 1,3-dihydropyrrolo[2,3-b]pyridin-2-one Chemical compound C1=CN=C2NC(=O)CC2=C1 ZXSQEZNORDWBGZ-UHFFFAOYSA-N 0.000 description 1
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 229910003803 Gold(III) chloride Inorganic materials 0.000 description 1
- WOFVPNPAVMKHCX-UHFFFAOYSA-N N#C[Au](C#N)C#N Chemical compound N#C[Au](C#N)C#N WOFVPNPAVMKHCX-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 229910021612 Silver iodide Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- MFIHOCAEOJNSOL-UHFFFAOYSA-N [Ag]C#N Chemical class [Ag]C#N MFIHOCAEOJNSOL-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940116901 diethyldithiocarbamate Drugs 0.000 description 1
- LMBWSYZSUOEYSN-UHFFFAOYSA-N diethyldithiocarbamic acid Chemical compound CCN(CC)C(S)=S LMBWSYZSUOEYSN-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 150000004662 dithiols Chemical class 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- RJHLTVSLYWWTEF-UHFFFAOYSA-K gold trichloride Chemical compound Cl[Au](Cl)Cl RJHLTVSLYWWTEF-UHFFFAOYSA-K 0.000 description 1
- OSXGAIDUJXYDPI-UHFFFAOYSA-L gold(1+) 1-methyl-4-(2-sulfidopropan-2-yl)cyclohexane-1-thiolate Chemical compound [Au+].[Au+].CC(C)([S-])C1CCC(C)([S-])CC1 OSXGAIDUJXYDPI-UHFFFAOYSA-L 0.000 description 1
- IZLAVFWQHMDDGK-UHFFFAOYSA-N gold(1+);cyanide Chemical compound [Au+].N#[C-] IZLAVFWQHMDDGK-UHFFFAOYSA-N 0.000 description 1
- YQALRAGCVWJXGB-UHFFFAOYSA-M gold(1+);methylsulfanylmethane;chloride Chemical compound CS(C)=[Au]Cl YQALRAGCVWJXGB-UHFFFAOYSA-M 0.000 description 1
- MDECNDDIBYOQGF-UHFFFAOYSA-L gold(1+);sulfite Chemical compound [Au+].[Au+].[O-]S([O-])=O MDECNDDIBYOQGF-UHFFFAOYSA-L 0.000 description 1
- OTCKNHQTLOBDDD-UHFFFAOYSA-K gold(3+);triacetate Chemical compound [Au+3].CC([O-])=O.CC([O-])=O.CC([O-])=O OTCKNHQTLOBDDD-UHFFFAOYSA-K 0.000 description 1
- HKFKXVVVNFLHBV-UHFFFAOYSA-N gold;1,10-phenanthroline Chemical compound [Au].C1=CN=C2C3=NC=CC=C3C=CC2=C1 HKFKXVVVNFLHBV-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- MOFVSTNWEDAEEK-UHFFFAOYSA-M indocyanine green Chemical compound [Na+].[O-]S(=O)(=O)CCCCN1C2=CC=C3C=CC=CC3=C2C(C)(C)C1=CC=CC=CC=CC1=[N+](CCCCS([O-])(=O)=O)C2=CC=C(C=CC=C3)C3=C2C1(C)C MOFVSTNWEDAEEK-UHFFFAOYSA-M 0.000 description 1
- 229960004657 indocyanine green Drugs 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 229910001958 silver carbonate Inorganic materials 0.000 description 1
- LKZMBDSASOBTPN-UHFFFAOYSA-L silver carbonate Substances [Ag].[O-]C([O-])=O LKZMBDSASOBTPN-UHFFFAOYSA-L 0.000 description 1
- 229940045105 silver iodide Drugs 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- XNGYKPINNDWGGF-UHFFFAOYSA-L silver oxalate Chemical compound [Ag+].[Ag+].[O-]C(=O)C([O-])=O XNGYKPINNDWGGF-UHFFFAOYSA-L 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- YUKQRDCYNOVPGJ-UHFFFAOYSA-N thioacetamide Chemical compound CC(N)=S YUKQRDCYNOVPGJ-UHFFFAOYSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- GCZKMPJFYKFENV-UHFFFAOYSA-K triiodogold Chemical compound I[Au](I)I GCZKMPJFYKFENV-UHFFFAOYSA-K 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000012991 xanthate Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/58—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
- C09K11/582—Chalcogenides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G7/00—Compounds of gold
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
- C09K11/025—Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Definitions
- the present invention relates to semiconductor nanoparticles made of AgAuS-based compounds. More specifically, it relates to a semiconductor nanoparticle which is a ternary compound composed of Ag, Au, and S and has a novel structure.
- Semiconductors exhibit a quantum confinement effect by forming nanoscale microparticles, and exhibit a bandgap that corresponds to the particle size. Therefore, by controlling the composition and particle diameter of the semiconductor nanoparticles to adjust the bandgap, it becomes possible to arbitrarily set the emission wavelength and the absorption wavelength. Semiconductor nanoparticles utilizing this property are also called quantum dots (QDs), and are expected to be utilized in various technical fields.
- QDs quantum dots
- semiconductor nanoparticles are being studied for their response to light-emitting elements and fluorescent substances used in display devices and bio-related substance detection marker substances.
- the emission peak width of semiconductor nanoparticles is sufficiently narrower than that of organic dyes, and under irradiation with excitation light, the emission peak width of semiconductor nanoparticles is narrower than that of organic dyes. Stable. For this reason, it can be expected to be applied to light-emitting devices and the like.
- semiconductor nanoparticles are also expected to be used for photoelectric conversion elements and light-receiving elements mounted in solar cells and optical sensors. In addition to being able to control the absorption wavelength by the particle size, it also has the characteristics of high quantum efficiency and high absorption coefficient. Owing to this property, semiconductor nanoparticles can contribute to miniaturization and thinning of semiconductor devices.
- Specific structures of the semiconductor nanoparticles include binary compounds such as group 12-group 16 compound semiconductors such as CdS, CdSe, and CdTe, and group 14-group 16 compound semiconductors such as PbS and PbSe.
- semiconductor nanoparticles composed of semiconductors and ternary compound semiconductors such as Group 11-Group 13-Group 16 compound semiconductors such as AgInTe 2 are known (Patent Documents 1 to 3).
- the semiconductor nanoparticles which are being applied to the various uses described above, are still in the research stage, and the optimal ones, including their manufacturing methods, have not yet been found. Under such circumstances, there are many requests for the development of nanoparticles that apply novel compound semiconductors that have the above-mentioned unique properties due to the quantum confinement effect and have practical properties such as biocompatibility (low toxicity composition). .
- the present invention has been made under the above background, and semiconductor nanoparticles made of a novel compound semiconductor, which has not been reported in the composition examples so far, have appropriate light emission and light absorption properties. Provided are semiconductor nanoparticles that also have biocompatibility.
- the present invention for solving the above problems is a semiconductor nanoparticle composed of a semiconductor crystal of a compound containing Ag, Au, and S as essential constituent elements, wherein the total content of Ag, Au, and S in the compound is 95 mass. % or more.
- Ag and Au are relatively chemically stable metals and have long been known as metals with biocompatibility. S is an essential element for living organisms and an element having biocompatibility. Therefore, AgAuS-based compound semiconductors can be expected to be applied to fluorescent materials used in the human body, such as markers and DNA chips.
- the semiconductor nanoparticles according to the present invention are semiconductor nanoparticles made of a compound containing Ag, Au, and S as essential constituent elements.
- the compound composed of Ag, Au, and S is an AgAuS ternary compound represented by the general formula Ag (nx) Au (ny) S (nz) .
- n is any positive integer.
- x, y, and z represent the ratio of the number of atoms of Ag, Au, and S in the compound, and are real numbers satisfying 0 ⁇ x, y, z ⁇ 1.
- the atomic number ratios x and y of Ag and Au is 1/7 or more and 7 or less.
- the atomic number ratio z of S is a real number that satisfies 0 ⁇ z ⁇ 1, but is preferably a real number that satisfies z ⁇ (x+y)/2.
- the AgAuS - based compound in the present invention is Ag1Au7S4 , AgAu3S2 , Ag3Au5S4 , AgAuS , Ag5Au3S4 , Ag3AuS2 , Ag7AuS 4 is mentioned.
- AgAuS-based compounds having these specific compositions are compounds having stoichiometric compositions in which nx, ny, and nz are integers. Not limited.
- x/y is 0.3 or more and 3.6 or less. More preferably, x/(x+y) is a real number of 0.33 or more and 0.78 or less.
- AgAuS, Ag 5 Au 3 S 4 , and Ag 3 AuS 2 satisfy these conditions as the AgAuS-based compounds having the stoichiometric compositions listed above. Semiconductor nanoparticles composed of these compounds have relatively high emission quantum yields and exhibit more effective properties as light-emitting devices and the like.
- the semiconductor nanoparticles according to the present invention are composed of AgAuS-based compounds represented by Ag (nx) Au (ny) S (nz) .
- This AgAuS-based compound is not necessarily composed of a single phase, and may be composed of a mixed phase.
- AgAuS-based compounds (Ag3AuS2, etc.) having the above-described stoichiometric composition and AgAuS - based compounds not having a stoichiometric composition (Ag (nx) Au (ny) S (nz) : nx, ny, and nz are It may be a mixed phase with a real number that is not an integer within the above range).
- the semiconductor nanoparticles according to the present invention are composed of semiconductor crystals of the compounds having the above-described composition, in which Ag, Au, and S are essential constituent elements.
- This semiconductor crystal has a total content of Ag, Au and S of 95% by mass or more.
- Ge, Si, Sn, Pb, O, Se, Te, and the like can be considered as elements that may be contained other than Ag, Au, and S, which are essential constituent elements. is acceptable.
- the compound preferably has a total content of Ag, Au, and S of 99% by mass or more, more preferably 99.9% by mass or more.
- the composition value of the compound here is the value of the semiconductor crystal itself in the semiconductor nanoparticle, and does not include the component of the protective agent described later.
- the semiconductor nanoparticles according to the present invention preferably have an average particle size of 2 nm or more and 20 nm or less.
- the particle size of semiconductor nanoparticles is related to the adjustment of the bandgap due to the quantum confinement effect. In order to exhibit suitable light emission/light absorption characteristics by adjusting the bandgap, it is preferable to set the average particle size as described above.
- the average particle size of the semiconductor nanoparticles can be obtained by observing a plurality of particles (preferably 100 or more) with an electron microscope such as a TEM, measuring the particle size of each particle, and calculating the particle number average. can be done.
- an alkylamine having an alkyl chain carbon number of 4 or more and 20 or less, an alkenylamine having an alkenyl chain carbon number of 4 or more and 20 or less, or an alkyl chain carbon number of 3 or more and 20 or less is used as a protective agent.
- Semiconductor nanoparticles are often handled as a solution (also referred to as slurry or ink) in which the semiconductor nanoparticles are dispersed in an appropriate dispersion medium.
- the protective agent is useful for suppressing aggregation of the semiconductor nanoparticles in the solution to make a uniform solution or the like.
- the protective agent is added to the reaction system together with the raw materials in the process of synthesizing the AgAuS compound, and also acts to form nanoparticles having a suitable average particle size.
- the alkylamine, alkenylamine, alkylcarboxylic acid, alkenylcarboxylic acid, alkanethiol, trialkylphosphine, trialkylphosphine oxide, triphenylphosphine, and triphenylphosphine oxide are applied singly or in combination. be able to.
- the bandgap of semiconductor nanoparticles is adjusted by the quantum confinement effect, depending on their particle size, and the light absorption characteristics change.
- the semiconductor nanoparticles according to the present invention preferably have an absorption edge wavelength of 600 nm or more on the long wavelength side of the absorption spectrum. As a result, the semiconductor nanoparticles have absorptivity and responsiveness to light in the visible region to the near infrared region.
- the semiconductor nanoparticles according to the present invention By coating and supporting the semiconductor nanoparticles according to the present invention on an appropriate base material or carrier, they can be applied to the above-described various uses such as light-emitting devices.
- this base material or carrier There are no particular restrictions on the configuration, shape and dimensions of this base material or carrier.
- plate-shaped or foil/film substrates include glass, quartz, silicon, ceramics, metals, and the like.
- granular/powder carriers include inorganic oxides such as ZnO, TiO 2 , WO 3 , SnO 2 , In 2 O 3 and Al 2 O 3 .
- the semiconductor nanoparticles may be supported on the inorganic oxide carrier and further fixed to the substrate.
- solutions, slurries, or inks in which semiconductor nanoparticles are dispersed in an appropriate dispersion medium are often used.
- Chloroform, toluene, cyclohexane, hexane and the like can be used as a dispersion medium for this solution.
- Various methods such as dipping and spin coating can be applied as the method of applying the solution of the semiconductor nanoparticles, and various methods such as the dropping method, the impregnation method, and the adsorption method can be applied as the method of carrying the semiconductor nanoparticles.
- Semiconductor nanoparticles to which the AgAuS-based compound semiconductor according to the present invention is applied react Ag precursors, Au precursors, and, if necessary, S precursors, which are sulfur sources. It can be produced by mixing with a solvent and heating a reaction system comprising these at a temperature of 100°C or higher and 200°C or lower. As described above, in the reaction system, alkylamine having an alkyl chain carbon number of 4 to 20, alkenylamine having an alkenyl chain carbon number of 4 to 20, and alkyl chain carbon number of 3 to 20 are used as protective agents in the reaction system.
- Alkylcarboxylic acid alkenylcarboxylic acid having 3 to 20 carbon atoms in the alkenyl chain, alkanethiol having 4 to 20 carbon atoms in the alkyl chain, trialkylphosphine having 4 to 20 carbon atoms in the alkyl chain, and It is preferable to add at least one of 4 to 20 trialkylphosphine oxide, triphenylphosphine, and triphenylphosphine oxide.
- Ag salt or Ag complex and Au salt or Au complex are used as the raw material Ag precursor and Au precursor, respectively.
- the Ag precursor and Au precursor are preferably salts or complexes containing monovalent Ag and monovalent Au.
- a precursor containing trivalent Au can be used as for the Au precursor. This is because trivalent Au is reduced to monovalent Au by a solvent, a coexisting sulfur compound, or the like in the process of synthesizing semiconductor nanoparticles.
- Suitable Ag precursors include silver acetate (Ag(OAc)), silver nitrate, silver carbonate, silver oxide, silver oxalate, silver chloride, silver iodide, silver(I) cyanide salts, and the like.
- suitable Au precursors include Au resinate (C 10 H 18 Au 2 S 2 : CAS 68990-27-2), chloro(dimethylsulfide) gold (I) ((CH 3 ) 2 SAuCl), gold iodide (I), gold (I) sulfite, gold (III) chloride, gold (III) acetate, gold (I) cyanide, gold (III) cyanide, 1,10-phenanthroline gold (III), etc. is mentioned.
- sulfur compounds that serve as S precursors include, in addition to elemental sulfur, compounds such as thiourea, alkylthiourea, thioacetamide, and alkanethiol, ⁇ -dithiones, dithiols, xanthates, diethyldithiocarbamate, and the like. can be applied. Even if the Ag complex or Au complex has a ligand containing an S atom, an S compound may be added.
- the composition of the synthesized AgAuS-based compound (x, y in the general formula Ag (nx) Au (ny) S (nz) ) is adjusted by the mixing ratio (charge atomic ratio) of the Ag precursor and Au precursor It is possible.
- the ratio of metal atoms contained in them (Ag:Au) is a:b
- a:b is the atomic ratio is preferably set between 0.78:0.22 and 0.14:0.86.
- the amount (c) of S in the reaction system is preferably 0.25 or more and 4 or less in atomic ratio with respect to the total number of atoms of Ag and Au in the reaction system.
- the sulfur source even if excess S is present in the reaction system, it has little effect on the composition of the AgAuS-based compound.
- the reaction system in the synthesis of semiconductor nanoparticles can be generated without a solvent, and a solvent may be used.
- a solvent octadecene, tetradecane, oleic acid, oleylamine, dodecanethiol, or a mixture thereof can be applied.
- the heating temperature (reaction temperature) of the reaction system composed of the Ag precursor, Au precursor, S precursor and protective agent should be 50°C or higher and 200°C or lower. If the temperature is less than 50°C, synthesis of the AgAuS-based compound is difficult to proceed. On the other hand, when the temperature exceeds 200° C., there is a problem that Au alone forms nanoparticles and a compound having a desired composition may not be produced.
- the average particle size of the semiconductor nanoparticles increases as the reaction temperature rises, but within the above temperature range, it rarely exceeds the preferred average particle size.
- a more preferable reaction temperature is 100° C. or higher and 165° C. or lower.
- the heating time (reaction time) can be adjusted depending on the charged amount of the raw materials, but is preferably 1 minute or more and 60 minutes or less. It is preferable to stir the reaction system during the synthesis reaction of the semiconductor nanoparticles.
- the reaction system is cooled as necessary and the semiconductor nanoparticles are recovered.
- an alcohol ethanol, methanol, etc.
- alcohol ethanol, methanol, etc.
- the present invention provides semiconductor nanoparticles composed of AgAuS-based compounds.
- the AgAuS-based compound has a novel composition as a component of semiconductor nanoparticles, it exhibits suitable optical characteristics when formed into nanoparticles.
- the constituent elements thereof are biocompatible and low-toxic elements, they are expected to be applied not only to general semiconductor devices such as light-emitting devices but also to bio-utilizable markers and the like.
- FIG. 3 is a diagram for explaining an outline of a manufacturing process of AgAuS semiconductor nanoparticles of the first and second embodiments; TEM image of AgAuS semiconductor nanoparticles manufactured in the first embodiment.
- FIG. 4 is a graph showing the relationship between the charged atomic ratio a:b and the average particle diameter of AgAuS semiconductor nanoparticles produced in the first embodiment;
- FIG. 4 is a view showing XRD diffraction patterns of AgAuS semiconductor nanoparticles produced in the first embodiment;
- FIG. 4 is a graph showing measurement results of absorption spectra of AgAuS semiconductor nanoparticles produced in the first embodiment;
- FIG. 4 is a diagram showing the emission spectrum measurement results of AgAuS semiconductor nanoparticles manufactured in the first embodiment;
- FIG. 4 is a diagram showing measurement results of emission spectra of AgAuS semiconductor nanoparticles (long wavelength region) manufactured in the first embodiment;
- FIG. 4 is a diagram showing the relationship between the charged atomic ratio a:b and the absorption edge wavelength of the AgAuS semiconductor nanoparticles produced in the first embodiment.
- FIG. 4 is a diagram showing the relationship between the charge atomic ratio a:b and the emission quantum yield of the AgAuS semiconductor nanoparticles produced in the first embodiment.
- FIG. 5 is a graph showing the relationship between the reaction temperature and the average particle size of AgAuS semiconductor nanoparticles produced in the second embodiment;
- FIG. 10 is a graph showing measurement results of absorption spectra of AgAuS semiconductor nanoparticles produced in the second embodiment;
- FIG. 5 is a diagram showing the relationship between the reaction temperature and the absorption edge wavelength of AgAuS semiconductor nanoparticles produced in the second embodiment
- FIG. 10 is a diagram showing measurement results of emission spectra of AgAuS semiconductor nanoparticles manufactured in the second embodiment
- FIG. 5 is a graph showing the relationship between reaction temperature and emission quantum yield of AgAuS semiconductor nanoparticles produced in the second embodiment
- FIG. 10 shows XRD diffraction patterns of AgAuS semiconductor nanoparticles (reaction temperatures of 125° C., 150° C., and 165° C.) produced in the second embodiment;
- FIG. 1 shows an outline of the manufacturing process of Ag (nx) Au (ny) S (nz) semiconductor nanoparticles in this embodiment.
- Silver acetate (Ag(OAc)) as a raw material Ag precursor, Au resinate (C 10 H 18 Au 2 S 2 : see the following chemical formula) as an Au precursor, and 0.2 mmol of thiourea as an S precursor were weighed. 100 mm 3 of 1-dodecanethiol (DDT) as a protective agent and 2900 mm 3 of oleylamine (OLA) as a solvent were further added.
- DDT 1-dodecanethiol
- OVA oleylamine
- the metal atom charge atomic ratio (a:b) of Ag:Au was adjusted while the total amount of silver acetate and Au resinate was 0.4 mmol.
- a:b 1.0:0, 0.78:0.22, 0.60:0.40, 0.45:0.55, 0.33:0.67, 0.14 : 0.86, 0: 1.0 Ag (nx) Au (ny) S (nz) compounds were synthesized with seven different atomic ratios of charge.
- each precursor, protective agent, solvent, and stirrer were placed in a test tube, and after purging with nitrogen three times, the reaction temperature was raised to 150° C. with a hot stirrer and stirred for 10 minutes while heating. After completion of the reaction, the mixture was allowed to cool for 30 minutes, transferred to a small test tube, and centrifuged at 4000 rpm for 5 minutes to separate the supernatant and the precipitate.
- FIG. 2 shows a TEM image of the semiconductor nanoparticles produced in this embodiment (see the scale bar (10 nm) in each photograph for magnification). From each TEM image, it was confirmed that substantially spherical semiconductor nanoparticles were synthesized.
- the average particle size of the semiconductor nanoparticles of each composition was measured and calculated.
- the particle size was determined for all measurable semiconductor nanoparticles contained in the TEM image, and the average particle size and standard deviation were calculated.
- the results are shown in FIG. Error bars in each plot indicate standard deviation. From FIG. 3, the average particle size of the semiconductor nanoparticles produced in this embodiment is in the range of 2 nm to 5 nm.
- the atomic ratio (x:y:z) of the semiconductor nanoparticles produced in this embodiment does not completely match the charged atomic ratio (a:b) of the metal precursor, but it is a close value. I understand.
- the cation/anion ratio ((x+y)/(2z)) showed a value of 0.78 to 0.95, and the semiconductor particles had a non-stoichiometric composition deficient in cations.
- the total concentration of Ag, Au and S in the AgAuS compound was 100% by mass.
- the semiconductor nanoparticles with a charge atomic ratio of 0:1.0 have peaks that match the diffraction pattern of Au 2 S.
- a peak around 35 to 37° C. derived from the diffraction of Ag 2 S was observed in the semiconductor nanoparticles with a charge atomic ratio of 1.0:0, although there was some disagreement in the peaks on the high angle side. be.
- the charge metal ratio (Ag:Au) a:b 0.78:0.22, 0.60:0.40, 0.45:0.55, 0.33:0. 67, 0.14:0.86, it was confirmed that the peak pattern gradually changed from Au 2 S to Ag 2 S as the Ag ratio increased and the Au ratio decreased. be.
- the XRD analysis of this embodiment although it has not reached the determination of the structure and composition of the solid solution of the particles synthesized at each charged atomic ratio, and the determination of the composition and abundance when the mixture coexists, any It can be confirmed that particles with crystallinity could be synthesized even in the charged composition.
- PMA-12 fluorescence spectrophotometer
- an absolute PL quantum yield device (C9920-03, manufactured by Hamamatsu Photonics Co., Ltd.) was used to measure the emission quantum yield.
- a multichannel spectrophotometer manufactured by Hamamatsu Photonics Co., Ltd., PMA-12 (model number: C10027-02 (wavelength range 350 to 1100 nm) and 10028-01 (wavelength range 900 to 1650 nm)
- ICG indocyanine green
- FIGS. 7 and 8 The emission spectra of the semiconductor nanoparticles of this embodiment measured and calculated as described above are shown in FIGS. 7 and 8.
- FIG. 9 shows the relationship between the charge atomic ratio a:b of the semiconductor nanoparticles of this embodiment obtained from FIG. 6 and the absorption edge wavelength on the long wavelength side.
- FIG. 10 shows the relationship between the charge atomic ratio a:b of the semiconductor nanoparticles of this embodiment and the emission quantum yield obtained from FIGS.
- the absorption edge wavelength reaches a long wavelength region of 1100 nm or more, and it can be measured accurately. I didn't.
- the emission quantum yield of the semiconductor nanoparticles of this embodiment is maximized when the charge atomic ratio a:b is around 0.60:0.40.
- the semiconductor nanoparticles produced at the preferred atomic ratio of charge have an atomic ratio (x, y) of Ag and Au of 0.46 to 0.78 at x/(x+y), that is, x/ y is 0.85 to 3.5.
- Second Embodiment In this embodiment, silver acetate and gold resinate are used, and the reaction temperature during synthesis is changed while fixing the charged atomic ratio (a:b) of metal atoms to 0.60:0.40. Then, semiconductor nanoparticles composed of Ag (nx) Au (ny) S (nz) compounds were produced, and the average particle size, absorption spectrum and emission spectrum were measured.
- the manufacturing process of Ag (nx) Au (ny) S (nz) semiconductor nanoparticles is basically the same as in the first embodiment.
- the total amount of silver acetate and Au resinate was set to 0.4 mmol, and the reaction system was formed by setting the atomic ratio a:b of the charged metals to 0.60:0.40. Then, semiconductor nanoparticles were produced under five reaction conditions of 100°C, 125°C, 150°C, 165°C, and 175°C.
- FIG. 11 shows a TEM image of each semiconductor nanoparticle. From FIG. 11, it is confirmed that substantially spherical nanoparticles are produced in this embodiment as well.
- FIG. 12 shows the relationship between the reaction temperature and the average particle size measured for each semiconductor nanoparticle. It can be seen that the particle size of the semiconductor nanoparticles increases as the reaction temperature rises. It is considered that this is due to the fact that crystal growth is promoted by the increase in reaction temperature.
- FIG. 13 shows the measurement result of the absorption spectrum of the semiconductor nanoparticles of this embodiment.
- FIG. 14 shows the relationship between the reaction temperature and the absorption edge wavelength on the long wavelength side obtained from the measurement result of the absorption spectrum. From FIG. 14, even if the reaction temperature changes, the absorption edge wavelength of the semiconductor nanoparticles is not greatly affected, nm and almost constant. It was confirmed that the semiconductor nanoparticles produced in this embodiment also had an absorption edge wavelength of 600 nm or more.
- FIG. 15 shows the emission spectrum of the semiconductor nanoparticles of this embodiment. From FIG. 15, it can be seen that at a reaction temperature of 100 to 165° C., the emission peak wavelength of the semiconductor nanoparticles is 700 to 800 nm and hardly changes. At 175°C, no emission peak was detected.
- FIG. 16 shows the relationship between the reaction temperature of the semiconductor nanoparticles of this embodiment and the emission quantum yield. According to FIG. 16, from 100° C. to 150° C., the emission quantum yield of the semiconductor nanoparticles obtained increased as the reaction temperature increased. On the other hand, when the reaction temperature was further increased to 165°C and 175°C, the emission quantum yield of the obtained semiconductor nanoparticles decreased.
- FIG. 17 shows the diffraction pattern of each semiconductor nanoparticle. From FIG. 17, it was found that the semiconductor nanoparticles produced at 165° C. had higher crystallinity because each diffraction peak was sharper. When considered together with the measurement results of the average particle size, it is suggested that the promotion of crystal growth by raising the reaction temperature increases the crystallinity as the particle size of the semiconductor nanoparticles increases.
- the semiconductor nanoparticles according to the present invention can be produced at a reaction temperature of 100° C. to 175° C., but from the viewpoint of the emission quantum yield, a more suitable reaction temperature is considered to be 165° C. or less.
- the semiconductor nanoparticles made of the AgAuS-based compound according to the present invention and having a novel composition can exhibit good optical properties.
- the AgAuS-based compound is a low-toxic compound having biocompatibility.
- the semiconductor nanoparticles according to the present invention are applied to light-emitting elements and fluorescent materials used in display devices and bio-related substance detection marker substances, and to photoelectric conversion elements and light-receiving elements mounted in solar cells, optical sensors, and the like. There is expected.
- semiconductor nanoparticles capable of exhibiting light emission and light absorption properties in the near-infrared region.
- LIDAR Light Detection and Ranging
- SWIR near-infrared
- the semiconductor nanoparticles according to the present invention are expected to be applied to such photoelectric conversion devices that operate in the near-infrared region.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Luminescent Compositions (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
上記の通り、本発明に係る半導体ナノ粒子は、Ag、Au、Sを必須の構成元素とする化合物からなる半導体ナノ粒子である。このAg、Au、Sで構成される化合物は、具体的には、一般式としてAg(nx)Au(ny)S(nz)で表されるAgAuS三元系化合物である。このとき、nは任意の正の整数である。x、y、zは、化合物中のAg、Au、Sの各原子の原子数の割合を示し、0<x,y,z≦1となる実数である。また、Ag及びAuの原子数割合x、yについて、x/yは1/7以上7以下である。Sの原子数割合zは、上記のとおり、0<z≦1となる実数であるが、z≧(x+y)/2を具備する実数であることが好ましい。
本発明に係るAgAuS系化合物半導体を適用する半導体ナノ粒子は、Ag前駆体とAu前駆体と、必要に応じて硫黄源であるS前駆体とを反応溶媒に混合し、これらからなる反応系を100℃以上200℃以下の温度で加熱することで製造可能である。尚、上記の通り、反応系には保護剤であるアルキル鎖炭素数が4以上20以下のアルキルアミン、アルケニル鎖炭素数が4以上20以下のアルケニルアミン、アルキル鎖炭素数が3以上20以下のアルキルカルボン酸、アルケニル鎖炭素数が3以上20以下のアルケニルカルボン酸、アルキル鎖炭素数が4以上20以下のアルカンチオール、アルキル鎖炭素数が4以上20以下のトリアルキルホスフィン、アルキル鎖炭素数が4以上20以下のトリアルキルホスフィンオキシド、トリフェニルホスフィン、トリフェニルホスフィンオキシドの少なくともいずれかを添加することが好ましい。
の7通りの仕込み原子比でAg(nx)Au(ny)S(nz)化合物を合成することとした。そして、試験管に、各前駆体、保護剤、溶媒、および撹拌子を入れて3回窒素置換した後、ホットスターラーにより反応温度を150℃として10分間加熱しながら撹拌した。反応終了後、30分間放冷した後に小試験管に移し替えて、5分間4000rpmで遠心分離を行い上澄み液と沈殿とを分離した。
製造した半導体ナノ粒子(a:b=1.0:0、0.78:0.22、0.60:0.40、0.45:0.55、0.33:0.67、0.14:0.86、0:1.0
)について、TEM観察を行った。図2に、本実施形態で製造した半導体ナノ粒子のTEM像を示す(倍率は、各写真のスケールバー(10nm)を参照)。各TEM像から、略球形の半導体ナノ粒子が合成されたことが確認された。
上記のTEM観察と共にICP分析を行い、半導体ナノ粒子サンプルの組成分析を行った。ICP分析は、測定装置はアジレント・テクノロジー株式会社製Agilent
5110を用い、マイクロウェーブ酸分解法にて前処理を行った後に、RFパワー:1.2kW、プラズマガス流量:12L/min、補助ガス流量:1.0L/minで測定を行った。Ag、Auの仕込み原子比(a:b)をa:b=1.0:0、0.78:0.22、0.60:0.40、0.45:0.55、0.33:0.67、0.14:0.86、0:1.0とした7種の半導体ナノ粒子についての分析結果を表1に示す。表1から、本実施形態で製造した半導体ナノ粒子の原子比(x:y:z)は、金属前駆体の仕込み原子比(a:b)と完全一致はしていないものの、近い値であることがわかる。カチオン/アニオン比((x+y)/(2z))は、0.78~0.95の値を示し、カチオンが欠乏した非化学量論組成からなる半導体粒子であった。尚、本実施形態で合成した半導体ナノ粒子は、AgAuS化合物のAg、Au、Sの合計濃度が100質量%であった。
各半導体ナノ粒子についてXRD分析を行った。XRD分析装置は、株式会社リガク製Ultima IVで、特性X線をCuKα線とし、分析条件として1°/min.とした。図4に本実施形態で製造した7種のナノ粒子の回折パターンを示す。更に、それらのうちAg、Auの仕込み原子比(a:b)がa:b=0:1.0、0.60:0.40、0:1.0の3種のナノ粒子の回折パターンを拡大したものを図5a~図5cに示す。図5cから、仕込み原子比0:1.0の半導体ナノ粒子ではAu2Sの回折パターンと一致するピークが得られている。また、図5aより、仕込み原子比1.0:0の半導体ナノ粒子では高角度側のピークに一部不一致はあるものの、Ag2Sの回折に由来する35~37℃付近のピークが観測される。一方、図5bを参照すると、仕込み原子比0.60:0.40の半導体ナノ粒子は、Ag3AuS2由来のピークに加えて、Ag1.43Au0.66S由来のピークが観られた。このことから、この半導体ナノ粒子は、表1から化合物全体の組成はAgn(0.68)Aun(0.32)Sn(0.6)(x=0.68、y=0.32、z=0.60)となるが、Ag3AuS2とAg1.43Au0.66Sとの混合相で構成されている可能性があると考察される。
次に、各半導体ナノ粒子について吸収スペクトル及び発光スペクトルを測定した。吸収スペクトルは、紫外可視分光光度計(アジレント・テクノロジー株式会社製、Agilent 8453製)を用いて、波長範囲を400nm~1100nm
として測定した。本実施形態の半導体ナノ粒子の吸収スペクトルの測定結果を図6に示す。
各反応温度で製造した半導体ナノ粒子について、第1実施形態と同様にしてTEM観察を行った。図11に、各半導体ナノ粒子のTEM像を示す。図11から、本実施形態でも略球形のナノ粒子の生成が確認される。また、図12に、反応温度と各半導体ナノ粒子について測定された平均粒径との関係を示す。反応温度の上昇に伴い半導体ナノ粒子の粒径が増大していることが伺える。これは、反応温度の上昇により、結晶成長が促進されることに起因すると考察される。
各半導体ナノ粒子について吸収スペクトル及び発光スペクトルを測定した。これらの測定方法は、第1実施形態と同様とした。
nmとほぼ一定であった。本実施形態で製造した半導体ナノ粒子でも吸収端波長が600nm以上であることが確認された。
更に、反応温度を125℃、150℃、165℃として得られた半導体ナノ粒子についてのXRD分析を行った。分析条件は第1実施形態と同じである。図17には、各半導体ナノ粒子の回折パターンを示す。図17から、165℃で製造された半導体ナノ粒子は、各回折ピークがシャープになったことから、より高い結晶性をもつことがわかった。上記の平均粒径の測定結果と併せて考察すると、反応温度の上昇による結晶成長の促進は、半導体ナノ粒子の粒径の増大と共に結晶性を高めることが示唆される。以上から、本発明に係る半導体ナノ粒子は、反応温度として100℃~175℃で製造可能であるが、発光量子収率の観点からより好適な反応温度は165℃以下であると考えられる。
Claims (7)
- 必須の構成元素としてAg、Au、Sを含む化合物の半導体結晶からなる半導体ナノ粒子であって、
前記化合物は、Ag、Au、Sの合計含有量が95質量%以上である半導体ナノ粒子。 - 前記化合物は一般式Ag(nx)Au(ny)S(nz)で示されるAgAuS三元系化合物である請求項1記載の半導体ナノ粒子。
ここで、nは任意の正の整数である。x、y、zは、前記化合物中のAg、Au、Sの各原子の原子数の割合を示し、0<x,y,z≦1となる実数である。また、x/yは1/7以上7以下である。 - zは、z≧(x+y)/2を満たす実数である請求項2記載の半導体ナノ粒子。
- x/(x+y)の値が0.33以上0.78以下の実数である請求項2又は請求項3記載の半導体ナノ粒子。
- 平均粒径が、2nm以上20nm以下である請求項1~請求項4のいずれかに記載の半導体ナノ粒子。
- 保護剤として、アルキル鎖炭素数が4以上20以下のアルキルアミン、アルケニル鎖炭素数が4以上20以下のアルケニルアミン、アルキル鎖炭素数が3以上20以下のアルキルカルボン酸、アルケニル鎖炭素数が3以上20以下のアルケニルカルボン酸、アルキル鎖炭素数が4以上20以下のアルカンチオール、アルキル鎖炭素数が4以上20以下のトリアルキルホスフィン、アルキル鎖炭素数が4以上20以下のトリアルキルホスフィンオキシド、トリフェニルホスフィン、トリフェニルホスフィンオキシドの少なくともいずれかが、表面に結合された請求項1~請求項5のいずれかに記載の半導体ナノ粒子。
- 吸収スペクトルの長波長側吸収端波長が、600nm以上である請求項1~請求項6のいずれかに記載の半導体ナノ粒子。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023502414A JPWO2022181572A1 (ja) | 2021-02-25 | 2022-02-22 | |
KR1020237030881A KR20230142792A (ko) | 2021-02-25 | 2022-02-22 | AgAuS계 화합물을 포함하는 반도체 나노 입자 |
EP22759608.7A EP4299524A4 (en) | 2021-02-25 | 2022-02-22 | SEMICONDUCTOR NANOPARTICLES COMPRISING AN AGAUS-BASED COMPOUND |
US18/278,832 US20240150646A1 (en) | 2021-02-25 | 2022-02-22 | SEMICONDUCTOR NANO-PARTICLE COMPOSED OF AgAuS-BASED COMPOUND |
CN202280015993.2A CN116867739A (zh) | 2021-02-25 | 2022-02-22 | 由AgAuS系化合物构成的半导体纳米粒子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021029323 | 2021-02-25 | ||
JP2021-029323 | 2021-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022181572A1 true WO2022181572A1 (ja) | 2022-09-01 |
Family
ID=83048103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/007096 WO2022181572A1 (ja) | 2021-02-25 | 2022-02-22 | AgAuS系化合物からなる半導体ナノ粒子 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240150646A1 (ja) |
EP (1) | EP4299524A4 (ja) |
JP (1) | JPWO2022181572A1 (ja) |
KR (1) | KR20230142792A (ja) |
CN (1) | CN116867739A (ja) |
TW (1) | TWI819500B (ja) |
WO (1) | WO2022181572A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7521746B1 (ja) | 2023-10-31 | 2024-07-24 | 国立大学法人東海国立大学機構 | AgAuTe化合物を主成分とする半導体ナノ粒子 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004243507A (ja) | 2002-12-19 | 2004-09-02 | Hitachi Software Eng Co Ltd | 半導体ナノ粒子及びその製造方法 |
JP2004352594A (ja) | 2003-05-30 | 2004-12-16 | Hitachi Software Eng Co Ltd | ナノ粒子製造方法及びこの方法によって製造されたナノ粒子 |
JP2008540304A (ja) * | 2005-05-06 | 2008-11-20 | トランスファート プラス エスイーシー | 黄銅鉱型化合物およびその他の無機化合物の調製方法 |
JP2017014476A (ja) | 2015-07-03 | 2017-01-19 | 国立大学法人名古屋大学 | テルル化合物ナノ粒子および複合ナノ粒子とそれらの製造方法 |
JP2020502484A (ja) * | 2016-11-02 | 2020-01-23 | エルジー・ケム・リミテッド | ガス感知センサー |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8816193B2 (en) * | 2006-06-30 | 2014-08-26 | Mitsubishi Materials Corporation | Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method |
-
2022
- 2022-02-22 WO PCT/JP2022/007096 patent/WO2022181572A1/ja active Application Filing
- 2022-02-22 EP EP22759608.7A patent/EP4299524A4/en active Pending
- 2022-02-22 US US18/278,832 patent/US20240150646A1/en active Pending
- 2022-02-22 KR KR1020237030881A patent/KR20230142792A/ko not_active Ceased
- 2022-02-22 TW TW111106390A patent/TWI819500B/zh active
- 2022-02-22 CN CN202280015993.2A patent/CN116867739A/zh active Pending
- 2022-02-22 JP JP2023502414A patent/JPWO2022181572A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004243507A (ja) | 2002-12-19 | 2004-09-02 | Hitachi Software Eng Co Ltd | 半導体ナノ粒子及びその製造方法 |
JP2004352594A (ja) | 2003-05-30 | 2004-12-16 | Hitachi Software Eng Co Ltd | ナノ粒子製造方法及びこの方法によって製造されたナノ粒子 |
JP2008540304A (ja) * | 2005-05-06 | 2008-11-20 | トランスファート プラス エスイーシー | 黄銅鉱型化合物およびその他の無機化合物の調製方法 |
JP2017014476A (ja) | 2015-07-03 | 2017-01-19 | 国立大学法人名古屋大学 | テルル化合物ナノ粒子および複合ナノ粒子とそれらの製造方法 |
JP2020502484A (ja) * | 2016-11-02 | 2020-01-23 | エルジー・ケム・リミテッド | ガス感知センサー |
Non-Patent Citations (2)
Title |
---|
CAS , no. 68990- , 27-2 |
See also references of EP4299524A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7521746B1 (ja) | 2023-10-31 | 2024-07-24 | 国立大学法人東海国立大学機構 | AgAuTe化合物を主成分とする半導体ナノ粒子 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022181572A1 (ja) | 2022-09-01 |
EP4299524A4 (en) | 2025-01-08 |
US20240150646A1 (en) | 2024-05-09 |
TWI819500B (zh) | 2023-10-21 |
EP4299524A1 (en) | 2024-01-03 |
KR20230142792A (ko) | 2023-10-11 |
TW202246461A (zh) | 2022-12-01 |
CN116867739A (zh) | 2023-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5907544B2 (ja) | ナノ粒子の製造方法 | |
Pu et al. | Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS) | |
JP5136877B2 (ja) | 蛍光体、及びその製造方法 | |
Goktas et al. | Nanostructured Cu-doped ZnS polycrystalline thin films produced by a wet chemical route: the influences of Cu doping and film thickness on the structural, optical and electrical properties | |
Kaur et al. | Size tuning of MAA capped CdSe and CdSe/CdS quantum dots and their stability in different pH environments | |
Song et al. | Tumor cell-targeted Zn 3 In 2 S 6 and Ag–Zn–In–S quantum dots for color adjustable luminophores | |
IL203406A (en) | Nanoparticles and methods for their preparation | |
US20080044340A1 (en) | Method for Producing Highly Monodisperse Quantum Dots | |
JP2009527437A (ja) | 水性または水溶性溶媒中での合金ナノ結晶の合成 | |
US20120061627A1 (en) | Fluorescent nanoparticles, method for preparing same, and application thereof in biological marking | |
Lesnyak et al. | One-pot aqueous synthesis of high quality near infrared emitting Cd 1− x Hg x Te nanocrystals | |
Ming et al. | Tunable structural and optical properties of CuInS 2 colloidal quantum dots as photovoltaic absorbers | |
WO2022181572A1 (ja) | AgAuS系化合物からなる半導体ナノ粒子 | |
WO2021029389A1 (ja) | 量子ドット、及び、その製造方法 | |
Das et al. | Effect of molarities on structural and optical properties of type-II heterostructure CdS/PbS core/shell quantum dot | |
JP7269591B1 (ja) | AgAuS系多元化合物からなる半導体ナノ粒子 | |
JP7580090B2 (ja) | AgAuSe系多元化合物からなる半導体ナノ粒子 | |
TWI872925B (zh) | 由AgAuSe系多元化合物所構成之半導體奈米粒子 | |
Nishi et al. | Well-controlled synthesis of wurtzite-type Cu 2 ZnSnS 4 nanoparticles using multiple sulfur sources via a two-step heating process | |
TW202120665A (zh) | 量子點及其製造方法 | |
JP7521746B1 (ja) | AgAuTe化合物を主成分とする半導体ナノ粒子 | |
Bhanoth et al. | Synthesis, characterization and bio-evaluation of core-shell QDs with ZnSe, CdS and CdSe combinations | |
Okrepka et al. | CdTe-Based Nanoparticles Synthesized in Solutions | |
Lee et al. | EDTA surface capped water-dispersible ZnSe and ZnS: Mn nanocrystals | |
CN116686101A (zh) | 光电转换元件材料、光电转换元件材料的制造方法以及分散有半导体纳米粒子的油墨 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22759608 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023502414 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280015993.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18278832 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20237030881 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237030881 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022759608 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022759608 Country of ref document: EP Effective date: 20230925 |