WO2022181431A1 - Photosensitive composition, transfer film, pattern formation method, production method for circuit wiring, and production method for touch panel - Google Patents
Photosensitive composition, transfer film, pattern formation method, production method for circuit wiring, and production method for touch panel Download PDFInfo
- Publication number
- WO2022181431A1 WO2022181431A1 PCT/JP2022/006314 JP2022006314W WO2022181431A1 WO 2022181431 A1 WO2022181431 A1 WO 2022181431A1 JP 2022006314 W JP2022006314 W JP 2022006314W WO 2022181431 A1 WO2022181431 A1 WO 2022181431A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- photosensitive composition
- photosensitive
- photosensitive layer
- exposure
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 277
- 238000000034 method Methods 0.000 title claims abstract description 182
- 238000012546 transfer Methods 0.000 title claims abstract description 96
- 238000004519 manufacturing process Methods 0.000 title abstract description 44
- 230000007261 regionalization Effects 0.000 title abstract description 14
- 230000009477 glass transition Effects 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 23
- 150000001875 compounds Chemical class 0.000 claims description 250
- 229940126062 Compound A Drugs 0.000 claims description 122
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 claims description 122
- 239000002253 acid Substances 0.000 claims description 119
- 239000000758 substrate Substances 0.000 claims description 97
- 229920000642 polymer Polymers 0.000 claims description 96
- 229920005989 resin Polymers 0.000 claims description 60
- 239000011347 resin Substances 0.000 claims description 60
- 239000003999 initiator Substances 0.000 claims description 38
- 238000005530 etching Methods 0.000 claims description 32
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 31
- 229910052753 mercury Inorganic materials 0.000 claims description 31
- 239000011521 glass Substances 0.000 claims description 27
- 230000001681 protective effect Effects 0.000 claims description 19
- 230000005855 radiation Effects 0.000 claims description 7
- 238000005536 corrosion prevention Methods 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 435
- 239000010408 film Substances 0.000 description 221
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 124
- 125000003118 aryl group Chemical group 0.000 description 71
- -1 methacryloyl groups Chemical group 0.000 description 54
- 239000002245 particle Substances 0.000 description 48
- 239000000178 monomer Substances 0.000 description 37
- 239000007787 solid Substances 0.000 description 31
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 29
- 239000013039 cover film Substances 0.000 description 29
- 238000011161 development Methods 0.000 description 29
- 230000018109 developmental process Effects 0.000 description 29
- 125000000217 alkyl group Chemical group 0.000 description 27
- 239000002904 solvent Substances 0.000 description 27
- 239000000463 material Substances 0.000 description 26
- 239000003960 organic solvent Substances 0.000 description 25
- 230000008569 process Effects 0.000 description 25
- 125000001424 substituent group Chemical group 0.000 description 23
- 238000002834 transmittance Methods 0.000 description 23
- 125000001072 heteroaryl group Chemical group 0.000 description 22
- 239000004094 surface-active agent Substances 0.000 description 20
- 239000000243 solution Substances 0.000 description 19
- 229920002799 BoPET Polymers 0.000 description 18
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 18
- 229910044991 metal oxide Inorganic materials 0.000 description 18
- 150000004706 metal oxides Chemical class 0.000 description 18
- 230000001588 bifunctional effect Effects 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 15
- 239000002585 base Substances 0.000 description 15
- 230000009467 reduction Effects 0.000 description 15
- 238000011282 treatment Methods 0.000 description 15
- 230000008033 biological extinction Effects 0.000 description 14
- 229910052802 copper Inorganic materials 0.000 description 14
- 239000010949 copper Substances 0.000 description 14
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 14
- 238000005259 measurement Methods 0.000 description 14
- 230000035699 permeability Effects 0.000 description 14
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 13
- 239000003513 alkali Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 11
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 125000005462 imide group Chemical group 0.000 description 11
- 239000012535 impurity Substances 0.000 description 11
- 229920000139 polyethylene terephthalate Polymers 0.000 description 11
- 239000005020 polyethylene terephthalate Substances 0.000 description 11
- 229920001296 polysiloxane Polymers 0.000 description 11
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 11
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 10
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 229920001577 copolymer Polymers 0.000 description 10
- 230000007797 corrosion Effects 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 10
- 238000006114 decarboxylation reaction Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 229910052731 fluorine Inorganic materials 0.000 description 9
- 150000002537 isoquinolines Chemical class 0.000 description 9
- 125000004433 nitrogen atom Chemical group N* 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 125000002723 alicyclic group Chemical group 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 238000004090 dissolution Methods 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 238000003475 lamination Methods 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 8
- 125000003367 polycyclic group Chemical group 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 229910000029 sodium carbonate Inorganic materials 0.000 description 8
- 229910001928 zirconium oxide Inorganic materials 0.000 description 8
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 7
- 229920002125 Sokalan® Polymers 0.000 description 7
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 7
- 125000005843 halogen group Chemical group 0.000 description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 7
- 125000002950 monocyclic group Chemical group 0.000 description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 7
- 239000004584 polyacrylic acid Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 125000002947 alkylene group Chemical group 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000005283 ground state Effects 0.000 description 6
- 125000005842 heteroatom Chemical group 0.000 description 6
- 238000010030 laminating Methods 0.000 description 6
- 239000002923 metal particle Substances 0.000 description 6
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical group C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 6
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 5
- 239000004793 Polystyrene Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 125000002252 acyl group Chemical group 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 5
- 125000005129 aryl carbonyl group Chemical group 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 5
- 125000004093 cyano group Chemical group *C#N 0.000 description 5
- 230000005281 excited state Effects 0.000 description 5
- 125000001153 fluoro group Chemical group F* 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 5
- 125000005647 linker group Chemical group 0.000 description 5
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- ZTNANFDSJRRZRJ-UHFFFAOYSA-N 2,4-dimethylquinoline Chemical compound C1=CC=CC2=NC(C)=CC(C)=C21 ZTNANFDSJRRZRJ-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 150000001491 aromatic compounds Chemical class 0.000 description 4
- 125000000732 arylene group Chemical group 0.000 description 4
- 239000008199 coating composition Substances 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 238000004770 highest occupied molecular orbital Methods 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- 150000003248 quinolines Chemical class 0.000 description 4
- 125000005504 styryl group Chemical group 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- IAXXETNIOYFMLW-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) 2-methylprop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C(=C)C)CC1C2(C)C IAXXETNIOYFMLW-UHFFFAOYSA-N 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical group C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229940027991 antiseptic and disinfectant quinoline derivative Drugs 0.000 description 3
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 3
- 239000012964 benzotriazole Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 3
- 125000002883 imidazolyl group Chemical group 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 150000003222 pyridines Chemical class 0.000 description 3
- 238000007348 radical reaction Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 150000003440 styrenes Chemical class 0.000 description 3
- 238000000957 temperature-modulated differential scanning calorimetry Methods 0.000 description 3
- 150000003536 tetrazoles Chemical group 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 2
- QYGBYAQGBVHMDD-XQRVVYSFSA-N (z)-2-cyano-3-thiophen-2-ylprop-2-enoic acid Chemical compound OC(=O)C(\C#N)=C/C1=CC=CS1 QYGBYAQGBVHMDD-XQRVVYSFSA-N 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 2
- PBYMYAJONQZORL-UHFFFAOYSA-N 1-methylisoquinoline Chemical compound C1=CC=C2C(C)=NC=CC2=C1 PBYMYAJONQZORL-UHFFFAOYSA-N 0.000 description 2
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- HEQOJEGTZCTHCF-UHFFFAOYSA-N 2-amino-1-phenylethanone Chemical group NCC(=O)C1=CC=CC=C1 HEQOJEGTZCTHCF-UHFFFAOYSA-N 0.000 description 2
- FSFHRBPNIADRGI-UHFFFAOYSA-N 2-methyl-2-morpholin-4-yl-1-(4-phenylphenyl)propan-1-one Chemical compound C=1C=C(C=2C=CC=CC=2)C=CC=1C(=O)C(C)(C)N1CCOCC1 FSFHRBPNIADRGI-UHFFFAOYSA-N 0.000 description 2
- ULRPISSMEBPJLN-UHFFFAOYSA-N 2h-tetrazol-5-amine Chemical compound NC1=NN=NN1 ULRPISSMEBPJLN-UHFFFAOYSA-N 0.000 description 2
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 2
- PGDIJTMOHORACQ-UHFFFAOYSA-N 9-prop-2-enoyloxynonyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCCCCOC(=O)C=C PGDIJTMOHORACQ-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 2
- 239000007877 V-601 Substances 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical group C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 2
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 150000004292 cyclic ethers Chemical group 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 125000006574 non-aromatic ring group Chemical group 0.000 description 2
- NWAHZAIDMVNENC-UHFFFAOYSA-N octahydro-1h-4,7-methanoinden-5-yl methacrylate Chemical compound C12CCCC2C2CC(OC(=O)C(=C)C)C1C2 NWAHZAIDMVNENC-UHFFFAOYSA-N 0.000 description 2
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 2
- 125000003566 oxetanyl group Chemical group 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- YFSUTJLHUFNCNZ-UHFFFAOYSA-N perfluorooctane-1-sulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YFSUTJLHUFNCNZ-UHFFFAOYSA-N 0.000 description 2
- SNGREZUHAYWORS-UHFFFAOYSA-N perfluorooctanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-N 0.000 description 2
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920006289 polycarbonate film Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 150000003852 triazoles Chemical group 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 1
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- UGUHFDPGDQDVGX-UHFFFAOYSA-N 1,2,3-thiadiazole Chemical group C1=CSN=N1 UGUHFDPGDQDVGX-UHFFFAOYSA-N 0.000 description 1
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical compound C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- VZNJRRMPLAUOKN-UHFFFAOYSA-N 1-butyl-4-methylisoquinoline Chemical compound C1=CC=C2C(CCCC)=NC=C(C)C2=C1 VZNJRRMPLAUOKN-UHFFFAOYSA-N 0.000 description 1
- KXAVXNWSOPHOON-UHFFFAOYSA-N 1-butylisoquinoline Chemical compound C1=CC=C2C(CCCC)=NC=CC2=C1 KXAVXNWSOPHOON-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- LPCWDYWZIWDTCV-UHFFFAOYSA-N 1-phenylisoquinoline Chemical compound C1=CC=CC=C1C1=NC=CC2=CC=CC=C12 LPCWDYWZIWDTCV-UHFFFAOYSA-N 0.000 description 1
- WMQUKDQWMMOHSA-UHFFFAOYSA-N 1-pyridin-4-ylethanone Chemical compound CC(=O)C1=CC=NC=C1 WMQUKDQWMMOHSA-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- PUGOMSLRUSTQGV-UHFFFAOYSA-N 2,3-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical class C=CC(=O)OCC(OC(=O)C=C)COC(=O)C=C PUGOMSLRUSTQGV-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- ZPACXIZJJYOIPN-UHFFFAOYSA-N 2,4,5,7-tetramethylquinoline Chemical compound CC1=CC(C)=NC2=CC(C)=CC(C)=C21 ZPACXIZJJYOIPN-UHFFFAOYSA-N 0.000 description 1
- LXOFYPKXCSULTL-UHFFFAOYSA-N 2,4,7,9-tetramethyldec-5-yne-4,7-diol Chemical compound CC(C)CC(C)(O)C#CC(C)(O)CC(C)C LXOFYPKXCSULTL-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- PUBNJSZGANKUGX-UHFFFAOYSA-N 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=C(C)C=C1 PUBNJSZGANKUGX-UHFFFAOYSA-N 0.000 description 1
- FXRQXYSJYZPGJZ-UHFFFAOYSA-N 2-[(2-methylpropan-2-yl)oxy]ethenylbenzene Chemical compound CC(C)(C)OC=CC1=CC=CC=C1 FXRQXYSJYZPGJZ-UHFFFAOYSA-N 0.000 description 1
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 1
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 1
- OKDGRDCXVWSXDC-UHFFFAOYSA-N 2-chloropyridine Chemical compound ClC1=CC=CC=N1 OKDGRDCXVWSXDC-UHFFFAOYSA-N 0.000 description 1
- ZVUNTIMPQCQCAQ-UHFFFAOYSA-N 2-dodecanoyloxyethyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCC ZVUNTIMPQCQCAQ-UHFFFAOYSA-N 0.000 description 1
- PCKZAVNWRLEHIP-UHFFFAOYSA-N 2-hydroxy-1-[4-[[4-(2-hydroxy-2-methylpropanoyl)phenyl]methyl]phenyl]-2-methylpropan-1-one Chemical compound C1=CC(C(=O)C(C)(O)C)=CC=C1CC1=CC=C(C(=O)C(C)(C)O)C=C1 PCKZAVNWRLEHIP-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- ZWVHTXAYIKBMEE-UHFFFAOYSA-N 2-hydroxyacetophenone Chemical class OCC(=O)C1=CC=CC=C1 ZWVHTXAYIKBMEE-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- MWDGNKGKLOBESZ-UHFFFAOYSA-N 2-oxooctanal Chemical compound CCCCCCC(=O)C=O MWDGNKGKLOBESZ-UHFFFAOYSA-N 0.000 description 1
- FMFHUEMLVAIBFI-UHFFFAOYSA-N 2-phenylethenyl acetate Chemical compound CC(=O)OC=CC1=CC=CC=C1 FMFHUEMLVAIBFI-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- DQYSALLXMHVJAV-UHFFFAOYSA-M 3-heptyl-2-[(3-heptyl-4-methyl-1,3-thiazol-3-ium-2-yl)methylidene]-4-methyl-1,3-thiazole;iodide Chemical compound [I-].CCCCCCCN1C(C)=CS\C1=C\C1=[N+](CCCCCCC)C(C)=CS1 DQYSALLXMHVJAV-UHFFFAOYSA-M 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- NUKYPUAOHBNCPY-UHFFFAOYSA-N 4-aminopyridine Chemical compound NC1=CC=NC=C1 NUKYPUAOHBNCPY-UHFFFAOYSA-N 0.000 description 1
- IRQWEODKXLDORP-UHFFFAOYSA-N 4-ethenylbenzoic acid Chemical compound OC(=O)C1=CC=C(C=C)C=C1 IRQWEODKXLDORP-UHFFFAOYSA-N 0.000 description 1
- MAMDZKZXIGHWCS-UHFFFAOYSA-N 4-methoxy-2-methylquinoline Chemical compound C1=CC=C2C(OC)=CC(C)=NC2=C1 MAMDZKZXIGHWCS-UHFFFAOYSA-N 0.000 description 1
- YQDGQEKUTLYWJU-UHFFFAOYSA-N 5,6,7,8-tetrahydroquinoline Chemical compound C1=CC=C2CCCCC2=N1 YQDGQEKUTLYWJU-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- FLDRLXJNISEWNZ-UHFFFAOYSA-N 9-methylacridine Chemical compound C1=CC=C2C(C)=C(C=CC=C3)C3=NC2=C1 FLDRLXJNISEWNZ-UHFFFAOYSA-N 0.000 description 1
- MTRFEWTWIPAXLG-UHFFFAOYSA-N 9-phenylacridine Chemical compound C1=CC=CC=C1C1=C(C=CC=C2)C2=NC2=CC=CC=C12 MTRFEWTWIPAXLG-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000694440 Colpidium aqueous Species 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 1
- 239000013523 DOWSIL™ Substances 0.000 description 1
- 238000003775 Density Functional Theory Methods 0.000 description 1
- 229920013731 Dowsil Polymers 0.000 description 1
- FPVVYTCTZKCSOJ-UHFFFAOYSA-N Ethylene glycol distearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCCCCCCCC FPVVYTCTZKCSOJ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- AIJULSRZWUXGPQ-UHFFFAOYSA-N Methylglyoxal Chemical compound CC(=O)C=O AIJULSRZWUXGPQ-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002359 Tetronic® Polymers 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- SEEVRZDUPHZSOX-WPWMEQJKSA-N [(e)-1-[9-ethyl-6-(2-methylbenzoyl)carbazol-3-yl]ethylideneamino] acetate Chemical compound C=1C=C2N(CC)C3=CC=C(C(\C)=N\OC(C)=O)C=C3C2=CC=1C(=O)C1=CC=CC=C1C SEEVRZDUPHZSOX-WPWMEQJKSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- XRMBQHTWUBGQDN-UHFFFAOYSA-N [2-[2,2-bis(prop-2-enoyloxymethyl)butoxymethyl]-2-(prop-2-enoyloxymethyl)butyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(CC)COCC(CC)(COC(=O)C=C)COC(=O)C=C XRMBQHTWUBGQDN-UHFFFAOYSA-N 0.000 description 1
- YPCHGLDQZXOZFW-UHFFFAOYSA-N [2-[[4-methyl-3-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]carbonylamino]phenyl]carbamoyloxymethyl]-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound CC1=CC=C(NC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C)C=C1NC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C YPCHGLDQZXOZFW-UHFFFAOYSA-N 0.000 description 1
- IIQSCIQWWQXSRY-UHFFFAOYSA-N [[1-[6-(2-benzoyloxyimino-3-cyclohexylpropanoyl)-9-ethylcarbazol-3-yl]-1-oxohexan-2-ylidene]amino] benzoate Chemical compound CCCCC(=NOC(=O)C1=CC=CC=C1)C(=O)C2=CC3=C(C=C2)N(C4=C3C=C(C=C4)C(=O)C(=NOC(=O)C5=CC=CC=C5)CC6CCCCC6)CC IIQSCIQWWQXSRY-UHFFFAOYSA-N 0.000 description 1
- OFUWNULILNEATR-UHFFFAOYSA-N [[3-cyclopentyl-1-oxo-1-(4-phenylsulfanylphenyl)propan-2-ylidene]amino] benzoate Chemical compound O=C(ON=C(CC1CCCC1)C(=O)C1=CC=C(SC2=CC=CC=C2)C=C1)C1=CC=CC=C1 OFUWNULILNEATR-UHFFFAOYSA-N 0.000 description 1
- GUCYFKSBFREPBC-UHFFFAOYSA-N [phenyl-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(C)C=C(C)C=C1C GUCYFKSBFREPBC-UHFFFAOYSA-N 0.000 description 1
- VEBCLRKUSAGCDF-UHFFFAOYSA-N ac1mi23b Chemical compound C1C2C3C(COC(=O)C=C)CCC3C1C(COC(=O)C=C)C2 VEBCLRKUSAGCDF-UHFFFAOYSA-N 0.000 description 1
- 150000001251 acridines Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical group C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000005529 alkyleneoxy group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229940027998 antiseptic and disinfectant acridine derivative Drugs 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000012663 cationic photopolymerization Methods 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000002993 cycloalkylene group Chemical group 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229960004979 fampridine Drugs 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229940100608 glycol distearate Drugs 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000005400 gorilla glass Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229940119545 isobornyl methacrylate Drugs 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229920002114 octoxynol-9 Polymers 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 150000005053 phenanthridines Chemical class 0.000 description 1
- 150000005041 phenanthrolines Chemical class 0.000 description 1
- 150000002988 phenazines Chemical class 0.000 description 1
- SKFLCXNDKRUHTA-UHFFFAOYSA-N phenyl(pyridin-4-yl)methanone Chemical compound C=1C=NC=CC=1C(=O)C1=CC=CC=C1 SKFLCXNDKRUHTA-UHFFFAOYSA-N 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 150000003216 pyrazines Chemical class 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- 150000003246 quinazolines Chemical class 0.000 description 1
- 150000003252 quinoxalines Chemical class 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 125000000565 sulfonamide group Chemical group 0.000 description 1
- 125000005463 sulfonylimide group Chemical group 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- HWCKGOZZJDHMNC-UHFFFAOYSA-M tetraethylammonium bromide Chemical compound [Br-].CC[N+](CC)(CC)CC HWCKGOZZJDHMNC-UHFFFAOYSA-M 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- JJJPTTANZGDADF-UHFFFAOYSA-N thiadiazole-4-thiol Chemical compound SC1=CSN=N1 JJJPTTANZGDADF-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
Definitions
- the present invention relates to a photosensitive composition, a transfer film, a pattern forming method, a circuit wiring manufacturing method, and a touch panel manufacturing method.
- a display device having a touch panel such as a capacitive input device (specifically, as a display device, an organic electroluminescence (EL) display device, a liquid crystal display device, etc.), an electrode pattern corresponding to a sensor in the visual recognition part , peripheral wiring portions, and lead-out wiring portions, and other conductive patterns are provided inside the touch panel.
- a capacitive input device specifically, as a display device, an organic electroluminescence (EL) display device, a liquid crystal display device, etc.
- EL organic electroluminescence
- peripheral wiring portions, and lead-out wiring portions, and other conductive patterns are provided inside the touch panel.
- a pattern made of resin is usually placed as a protective film (permanent film) for the purpose of preventing problems such as metal corrosion, increased electrical resistance between electrodes and drive circuits, and disconnection. may have been.
- a photosensitive composition is used for pattern formation, and in particular, since the number of steps for obtaining the required pattern shape is small, a temporary support and a photosensitive composition are used.
- a method using a transfer film having a formed photosensitive layer is widely used. Examples of the method of forming a pattern using a transfer film include a method of exposing and developing a photosensitive layer transferred from a transfer film onto an arbitrary substrate through a mask having a predetermined pattern shape. be done. For example, if the photosensitive layer is a negative-acting photosensitive layer, the hardening of the exposed areas can create a dissolution contrast with the unexposed areas. As a result, a pattern can be formed by removing only the unexposed area during development.
- Patent Document 1 On a substrate, a binder polymer having a carboxyl group having an acid value of 75 mgKOH/g or more, a photopolymerizable compound, a photopolymerization initiator, and a photosensitive element comprising a support film and a photosensitive layer comprising the above-mentioned photosensitive resin composition provided on the above-mentioned support film.
- a pattern used as a protective film for a conductive pattern formed from a metal material is also required to have the ability to suppress metal corrosion (hereinafter also referred to as "corrosion prevention").
- the inventors of the present invention formed a pattern using the photosensitive composition described in Patent Document 1 and studied it, and found that there is room for further improvement, particularly in the corrosion prevention property in a moist heat environment. .
- an object of the present invention is to provide a photosensitive composition capable of forming a pattern having excellent corrosion resistance in a moist and hot environment. Another object of the present invention is to provide a transfer film formed using the photosensitive composition. Another object of the present invention is to provide a pattern forming method, a circuit wiring manufacturing method, and a touch panel manufacturing method.
- a photosensitive composition that satisfies both requirements A1 and B1 shown below.
- Requirement A1 The glass transition temperature of the post-exposure photosensitive layer obtained by the following procedure X is 65° C. or higher.
- Requirement B1 The moisture content at 40° C. and 90% RH of the post-exposure photosensitive layer obtained by the following procedure X is less than 2.0% by mass.
- Procedure X A laminate having a glass substrate, a photosensitive layer formed from the photosensitive composition, and a resin film in this order is obtained.
- an ultrahigh-pressure mercury lamp was used to irradiate the photosensitive layer in the laminate so that the integrated exposure amount at a wavelength of 365 nm was 80 mJ/cm 2 . expose.
- the laminate is left in an environment of 25° C. and 50% RH for 30 minutes, and then the resin film is peeled off.
- the photosensitive layer is exposed again from the side where the resin film is peeled off using a high-pressure mercury lamp so that the cumulative exposure amount at a wavelength of 365 nm is 1000 mJ/cm 2 , After exposure a photosensitive layer is obtained.
- the photosensitive composition of [1] which further satisfies the following requirement A2.
- Requirement A2 The glass transition temperature of the post-exposure photosensitive layer obtained by the above procedure X is 165° C. or lower. [3] The photosensitive composition according to [2], wherein the glass transition temperature in requirement A2 is 120°C or lower. [4] The photosensitive composition according to any one of [1] to [3], wherein the glass transition temperature in requirement A1 is 85°C or higher. [5] The photosensitive composition according to any one of [1] to [4], which further satisfies the following requirement B2.
- Requirement B2 The moisture content at 40°C and 90% RH of the post-exposure photosensitive layer obtained by procedure X above is greater than 0% by mass.
- the photosensitive composition contains a compound A having an acid group, The photosensitive composition according to any one of [1] to [7], wherein the content of the acid group in the photosensitive composition is reduced by exposure to actinic rays or radiation.
- the photosensitive composition contains a compound A having an acid group, and a compound ⁇ having a structure that reduces the amount of the acid group contained in the compound A upon exposure to light.
- Requirement (W01) The photosensitive composition contains a compound A having an acid group, and the compound A further contains a structure that reduces the amount of the acid group upon exposure.
- the compound ⁇ is a compound B having a structure capable of accepting electrons from the acid group contained in the compound A in a photoexcited state
- the total number of the structures capable of accepting electrons contained in the compound B is 1 mol% or more with respect to the total number of acid groups contained in the compound A, [9] or [10] ].
- the present invention it is possible to provide a photosensitive composition capable of forming a pattern having excellent corrosion resistance in a moist and hot environment. Moreover, according to this invention, the transfer film formed using the said photosensitive composition can be provided.
- the numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
- the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of the numerical range described in other steps. good.
- the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
- step in this specification is not only an independent step, but even if it cannot be clearly distinguished from other steps, if the intended purpose of the step is achieved included.
- transparent means that the average transmittance of visible light with a wavelength of 400 to 700 nm is 80% or more, preferably 90% or more. Therefore, for example, a “transparent resin layer” refers to a resin layer having an average transmittance of 80% or more for visible light with a wavelength of 400 to 700 nm. Also, the average transmittance of visible light is a value measured using a spectrophotometer, and can be measured using, for example, a spectrophotometer U-3310 manufactured by Hitachi, Ltd.
- actinic ray or “radiation” means, for example, g-line, h-line, and i-line spectra of mercury lamps, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays (EUV light), X ray, electron beam (EB), and the like.
- light means actinic rays or radiation.
- exposure means not only exposure by far ultraviolet rays, extreme ultraviolet rays, X-rays, and EUV light typified by mercury lamps and excimer lasers, but also electron beams, ion beams, and the like. lithography by particle beam is also included in the exposure.
- exposure means not only exposure by far ultraviolet rays, extreme ultraviolet rays, X-rays, and EUV light typified by mercury lamps and excimer lasers, but also electron beams, ion beams, and the like. lithography by particle beam is also included in the exposure.
- irradiation of actinic rays or radiation and “exposure” may be used synonymously.
- the content ratio of each structural unit of the polymer is a molar ratio.
- the refractive index is a value measured by an ellipsometer at a wavelength of 550 nm.
- the molecular weight when there is a molecular weight distribution is the weight average molecular weight.
- the weight average molecular weight of the resin is the weight average molecular weight obtained by gel permeation chromatography (GPC) in terms of polystyrene.
- (meth)acrylic acid is a concept that includes both acrylic acid and methacrylic acid
- (meth)acryloyl group is a concept that includes both acryloyl and methacryloyl groups.
- a layer or the like constituting a compound or a transfer film being “alkali-soluble” means that the dissolution rate determined by the following method is 0.01 ⁇ m/second or more.
- a propylene glycol monomethyl ether acetate solution in which the concentration of the target (e.g., resin) is 25% by mass is applied onto a glass substrate, and then heated in an oven at 100 ° C. for 3 minutes to form a coating film of the target (e.g., resin). thickness 2.0 ⁇ m).
- the dissolution rate ( ⁇ m/sec) of the coating film is determined by immersing the coating film in a 1% by mass sodium carbonate aqueous solution (liquid temperature: 30° C.).
- the target does not dissolve in propylene glycol monomethyl ether acetate, the target is dissolved in an organic solvent (eg, tetrahydrofuran, toluene, or ethanol) with a boiling point of less than 200° C. other than propylene glycol monomethyl ether acetate.
- an organic solvent eg, tetrahydrofuran, toluene, or ethanol
- water-soluble means that the solubility in 100 g of water at pH 7.0 at a liquid temperature of 22°C is 0.1 g or more.
- water-soluble resin is intended a resin that satisfies the solubility conditions set forth above.
- the "solid content" of the composition means a component that forms a composition layer (e.g., photosensitive layer) formed using the composition, and the composition contains a solvent (e.g., organic solvent, water, etc.). When included, it means all ingredients except solvent. In addition, as long as it is a component that forms a composition layer, a liquid component is also regarded as a solid content.
- a solvent e.g., organic solvent, water, etc.
- the thickness of a layer is the average thickness measured using a scanning electron microscope (SEM) for thicknesses of 0.5 ⁇ m or more, and less than 0.5 ⁇ m. is the average thickness measured using a transmission electron microscope (TEM).
- SEM scanning electron microscope
- TEM transmission electron microscope
- the average thickness is an average thickness obtained by forming a section to be measured using an ultramicrotome, measuring the thickness at arbitrary five points, and arithmetically averaging them.
- the photosensitive composition of the present invention satisfies both Requirement A1 and Requirement B1 described later.
- Requirement A1 The glass transition temperature of the post-exposure photosensitive layer obtained by procedure X described later is 65° C. or higher.
- Requirement B1 The moisture content at 40° C. and 90% RH of the post-exposure photosensitive layer obtained by procedure X described later is less than 2.0% by mass.
- the pattern obtained from the photosensitive composition having the above constitution is excellent in corrosion prevention properties in a moist and hot environment.
- the pattern formed by the post-exposure photosensitive layer obtained from the photosensitive composition of the present invention has a small molecular movement because the glass transition temperature of the post-exposure photosensitive layer is a predetermined temperature or higher, and the water content is a predetermined value. It is estimated that the hygroscopicity is remarkably low because it is less than the value. As a result, the pattern obtained with the photosensitive composition of the present invention is considered to be excellent in corrosion prevention properties in a moist and hot environment. In addition, in the following description, the fact that the pattern formed by the photosensitive composition of the present invention has more excellent corrosion prevention properties in a moist and heat environment may also be referred to as "the effect of the present invention is more excellent". The features of the photosensitive composition of the present invention are described in detail below.
- the photosensitive composition of the present invention satisfies requirement A1 explained below. Moreover, the photosensitive composition of the present invention also preferably satisfies requirement A2 described below.
- Requirement A1 The glass transition temperature of the post-exposure photosensitive layer obtained by procedure X described later is 65° C. or higher.
- Requirement A2 The glass transition temperature of the post-exposure photosensitive layer obtained by procedure X described later is 165° C. or lower.
- the glass transition temperature in the requirement A1 is preferably 85°C or higher, more preferably 100°C or higher, from the viewpoint that the effects of the present invention are more excellent.
- the above glass transition temperature in the above requirement A2 is preferably 120° C. or lower in terms of the effect of the present invention being more excellent.
- Procedure X A laminate having a glass substrate, a photosensitive layer formed from a photosensitive composition, and a resin film in this order is obtained. Next, the photosensitive layer in the laminate is exposed from the side opposite to the glass substrate side of the laminate using an extra-high pressure mercury lamp so that the cumulative exposure amount at a wavelength of 365 nm is 80 mJ/cm 2 . After the exposure, the laminate is left in an environment of 25° C. and 50% RH for 30 minutes, and then the resin film is peeled off.
- the photosensitive layer is exposed again from the side where the resin film has been peeled off using a high-pressure mercury lamp so that the integrated exposure amount at a wavelength of 365 nm is 1000 mJ/cm 2 , and after exposure. Get a sex layer.
- procedure X exposure processing is performed using a high-pressure mercury lamp such that the integrated exposure amount at a wavelength of 365 nm is 1000 mJ/cm 2 .
- each reaction of the photosensitive layer for example, a curing reaction, a decarboxylation reaction of a carboxylic acid, which will be described later, etc.
- the laminate includes a case where another layer is interposed between the photosensitive layer and the resin film.
- the illuminance during exposure with an extra-high pressure mercury lamp is preferably 5 to 100 mW/cm 2 , more preferably 10 to 50 mW/cm 2 . Also, the illuminance during exposure with a high-pressure mercury lamp is preferably 10 to 200 mW/cm 2 , more preferably 15 to 100 mW/cm 2 .
- the film thickness of the photosensitive layer in the laminate is preferably 0.1 to 20 ⁇ m, more preferably 1 to 9 ⁇ m.
- the photosensitive composition may be a coating composition or a layered composition.
- the case where the above-mentioned photosensitive composition is in the form of a layer means, for example, the case where a photosensitive layer is formed by drying a coating film of the photosensitive composition.
- a photosensitive layer contained in a transfer film or the like corresponds to the layered photosensitive composition.
- the photosensitive layer and the temporary support (resin film) Other layers may be included in between.
- Procedure X will be specifically described below, separately for the case where the photosensitive composition is in the form of a coating composition and the case where the photosensitive composition is in the form of a layer.
- ⁇ Procedure X when the photosensitive composition is a coating composition An example of procedure X in the case where the photosensitive composition is a coating composition will be described below. After spin-coating the photosensitive composition on a glass substrate (e.g., Corning "Eagle XG"), it is dried using a hot plate (e.g., 80 ° C. for 2 minutes) to form a film (photosensitive layer: A film thickness of 2 ⁇ m, for example, is obtained.
- a glass substrate e.g., Corning "Eagle XG”
- a hot plate e.g. 80 ° C. for 2 minutes
- a resin film e.g., polyethylene terephthalate film (PET film; e.g., "16KS40" manufactured by Toray Industries, Inc.)
- PET film polyethylene terephthalate film
- photosensitive layer a film formed by Toray Industries, Inc.
- the pressure bonding conditions between the resin film and the photosensitive layer are, for example, laminating temperature: 25° C., pressure: 0.6 Pa, linear pressure: 3 N/cm, and conveying speed: 4 m/min.
- the glass substrate side of the laminate is exposed to the photosensitive layer in the laminate using an ultra-high pressure mercury lamp (for example, a proximity type exposure machine having an ultra-high pressure mercury lamp (Hitachi High-Tech Electronic Engineering Co., Ltd.)). It is exposed from the opposite side (through the resin film) so that the cumulative exposure amount at a wavelength of 365 nm is 80 mJ/cm 2 .
- the above exposure amount of 80 mJ/cm 2 is the cumulative exposure amount of light having a wavelength of 365 nm that reaches the photosensitive layer through the resin film.
- the resin film is a resin film other than a PET film (for example, a polypropylene film (PP film) or a polyethylene film (PE film), it is preferable to perform exposure through a filter that cuts wavelengths of 350 nm or less. It is preferable that the exposure is carried out through a filter that cuts the wavelength and that the integrated exposure amount measured with a 365 nm illuminometer is 80 mJ/cm 2 .
- the laminate After exposure, the laminate is left in an environment of 25° C. and 50% RH for 30 minutes, and then the resin film is peeled off. Then, from the side exposed by peeling the resin film, the photosensitive layer is irradiated with a high-pressure mercury lamp (for example, an ultraviolet irradiation conveyor device having a high-pressure mercury lamp (Igraphics Co., Ltd.)) at a wavelength of 365 nm. Exposure is performed so that the integrated exposure amount is 1000 mJ/cm 2 . The exposure at a wavelength of 365 nm with an integrated exposure amount of 1000 mJ/cm 2 is an exposure with an integrated exposure amount of 1000 mJ/cm 2 measured with a 365 nm illuminometer.
- a high-pressure mercury lamp for example, an ultraviolet irradiation conveyor device having a high-pressure mercury lamp (Igraphics Co., Ltd.
- sample X a 100 mg powdery test sample (hereinafter referred to as sample X). If the scraped post-exposure photosensitive layer is not powdery, it is pulverized before use.
- ⁇ Procedure X when the photosensitive composition is in the form of a layer An example of procedure X when the photosensitive composition is in the form of a layer is described below.
- the case where the photosensitive composition is in a layered form means the case where the photosensitive composition constitutes a photosensitive layer.
- a transfer film comprising at least a temporary support (resin film) and a photosensitive layer composed of a photosensitive composition will be exemplified, and a predetermined post-exposure photosensitive layer from the photosensitive layer in the transfer film will be described.
- a method for obtaining (Sample X) will be described.
- a transfer film is crimped (laminated) onto a glass substrate (for example, "Eagle XG" manufactured by Corning).
- a glass substrate for example, "Eagle XG” manufactured by Corning.
- laminating the transfer film the surface of the photosensitive layer in the transfer film opposite to the temporary support (resin film) side is brought into contact with the substrate, and the transfer film and the glass substrate are bonded together.
- lamination is performed after peeling the cover film from the transfer film.
- the conditions for lamination are, for example, lamination temperature: 100° C., linear pressure: 3 N/cm, and conveying speed: 1 m/min.
- the transfer film has other layers in addition to the cover film, the photosensitive layer, and the temporary support, the above other layers can be obtained based on the normal usage of the transfer film.
- the laminate may have the other layer, for example, between the temporary support and the photosensitive layer and/or on the opposite side of the photosensitive layer to the temporary support. .
- an ultra-high pressure mercury lamp for example, a proximity type exposure machine (Hitachi High-Tech Electronic Engineering Co., Ltd.) having an ultra-high pressure mercury lamp
- the layer is exposed to an integrated exposure dose of 80 mJ/cm 2 at a wavelength of 365 nm.
- the above exposure amount of 80 mJ/cm 2 is the cumulative exposure amount of light having a wavelength of 365 nm that reaches the photosensitive layer through the resin film.
- the resin film is a resin film other than a PET film (for example, a polypropylene film (PP film) or a polyethylene film (PE film), it is preferable to perform exposure through a filter that cuts wavelengths of 350 nm or less. It is preferable that the exposure is carried out through a filter that cuts the wavelength and that the integrated exposure amount measured with a 365 nm illuminometer is 80 mJ/cm 2 .
- the laminate is left in an environment of 25° C. and 50% RH for 30 minutes, and then the temporary support (resin film) is peeled off.
- a high-pressure mercury lamp for example, an ultraviolet irradiation conveyor device having a high-pressure mercury lamp (Igraphics Co., Ltd.)
- the exposure is performed so that the integrated exposure amount at a wavelength of 365 nm is 1000 mJ/cm 2 .
- the exposure at a wavelength of 365 nm with an integrated exposure amount of 1000 mJ/cm 2 is an exposure with an integrated exposure amount of 1000 mJ/cm 2 measured with a 365 nm illuminometer.
- the other layers for example, the thermoplastic resin layer and the intermediate layer
- the removal method is not particularly limited, and the other layers can be removed from the laminate by, for example, treatment such as alkali development treatment, solvent washing, and tape peeling.
- the photosensitive layer is exposed as the outermost layer by the removal treatment described above.
- the above treatment is carried out so as not to alter the quality of the photosensitive layer as much as possible.
- sample X a 100 mg powdery test sample (hereinafter referred to as sample X). If the scraped post-exposure photosensitive layer is not powdery, it is pulverized before use.
- ⁇ Measurement of glass transition temperature of post-exposure photosensitive layer formed by procedure X>> Using 5 to 6 mg of sample X prepared by procedure X, temperature modulated differential scanning calorimetry is performed under the following conditions. Measurement conditions using temperature-modulated differential scanning calorimetry are preferably the following conditions. Apparatus: DSC2500 manufactured by TA Instruments (using a Tzero aluminum pan for sealing the sample) Measurement conditions: nitrogen atmosphere, temperature range -70 to 200°C (5°C/min), temperature modulation condition ⁇ 1°C/min (N 2))) Then, the temperature (midpoint) at which the baseline shifts in the reversing heat flow (Rev. Heat Flow) is defined as the glass transition temperature (average value of n2).
- Requirement B1 The photosensitive composition of the present invention satisfies requirement B1 explained below. Moreover, the photosensitive composition of the present invention preferably also satisfies requirement B2 described below.
- Requirement B1 The moisture content at 40° C. and 90% RH of the post-exposure photosensitive layer formed by procedure X described later is less than 2.0% by mass.
- Requirement B2 The moisture content at 40° C. and 90% RH of the post-exposure photosensitive layer formed by procedure X described later is greater than 0 mass %.
- the water content at 40°C and 90% RH in requirement B2 is preferably 0.5% by mass or more in terms of the effect of the present invention being more excellent.
- the procedure X and the method for measuring the moisture content are described below.
- the method for measuring the moisture content has steps (1) to (9) described later.
- Procedure X is the same as ⁇ procedure X>> in the description of requirement A.
- the weighed sample X is put into the furnace of the heating and expelling device heated to 150° C., and the water content is measured for 15 minutes using a Karl Fischer moisture meter.
- Karl Fischer moisture meter for example, "AQ-2100” manufactured by Hiranuma Sangyo Co., Ltd. can be used.
- a heating and expelling device for example, “EV-2000” manufactured by Hiranuma Sangyo Co., Ltd. can be used.
- the weighed sample X is stored in a constant temperature and humidity chamber at 40° C. and 90% RH for 24 hours.
- the sample X is put into the furnace of the heating and expelling device heated to 150° C., and the moisture content is measured for 15 minutes using a Karl Fischer moisture meter.
- Karl Fischer moisture meter for example, "AQ-2100” manufactured by Hiranuma Sangyo Co., Ltd. can be used.
- a heating and expelling device for example, “EV-2000” manufactured by Hiranuma Sangyo Co., Ltd. can be used.
- the photosensitive composition preferably contains compound A having an acid group, and is a photosensitive composition in which the content of acid groups in the photosensitive composition is reduced by exposure to actinic rays or radiation.
- the content of acid groups is reduced by exposure. That is, the polarity of the photosensitive layer changes before and after exposure, and this changes the solubility in developing solutions (alkaline developing solutions and organic solvent-based developing solutions). Therefore, if pattern exposure is performed on such a photosensitive layer, a dissolution contrast in the developing solution can occur between the exposed area and the non-exposed area, so that a pattern can be formed.
- An example of a photosensitive composition having a mechanism for reducing the content of acid groups includes a compound A having a carboxyl group, and decarboxylation of the carboxyl group by exposure causes a decarboxylation reaction in the photosensitive composition.
- a photosensitive composition having a mechanism for reducing the content of carboxyl groups is mentioned.
- a photosensitive layer formed using a photosensitive composition having such a structure exhibits excellent pattern formability with respect to developers (alkaline developers and organic solvent-based developers).
- the pattern formed from the photosensitive layer can be suitably used, for example, as a protective film (permanent film) such as a conductive pattern.
- the photosensitive composition preferably contains a polymerizable compound.
- the acid group eg, carboxyl group
- the acid group in compound A is eliminated. Radicals can be generated at the timed part. Radical polymerization of the polymerizable compound is initiated by such radicals, and the compound A in the exposed area can be crosslinked.
- the photosensitive composition preferably contains a polymerizable compound and a photopolymerization initiator.
- the photosensitive layer formed using the photosensitive composition having such a structure can cause the elimination of the acid group (such as the carboxyl group) and the polymerization initiation reaction to occur at different timings as described above.
- the photosensitive layer formed using the photosensitive composition having the above structure is first exposed at a wavelength or exposure amount that hardly causes the elimination of acid groups, and photopolymerization is performed. Curing may be achieved by allowing initiator-based polymerization to proceed. The cured photosensitive layer may then be subjected to a second exposure to cause elimination of the acid groups.
- the first exposure is patterned exposure, a development step is performed to remove the unexposed portion or the exposed portion before the second exposure, and then the second exposure is performed to obtain a pattern.
- the photosensitive composition is preferably a photosensitive composition that satisfies either requirement (V01) or requirement (W01) shown below.
- the photosensitive composition may be a photosensitive composition that satisfies both requirements (V01) and requirements (W01).
- the photosensitive composition contains a compound A having an acid group, and a compound ⁇ having a structure (hereinafter also referred to as “specific structure S0”) that reduces the amount of the acid group contained in the compound A upon exposure.
- specific structure S0 a structure that reduces the amount of the acid group by exposure.
- the above-mentioned specific structure S0 is a structure that exhibits the action of reducing the amount of acid groups contained in compound A when exposed to light.
- the specific structure S0 is preferably a structure that transitions from a ground state to an excited state upon exposure and exhibits an effect of reducing acid groups in compound A in the excited state.
- Specific structure S0 includes, for example, a structure (specific structure S1 described later) that can accept electrons from an acid group contained in compound A upon being exposed to light and being photoexcited.
- the requirement (V01) is preferably the requirement (V1) shown below, and the requirement (W01) is preferably the requirement (W1) shown below. That is, in the requirement (V01), the compound ⁇ is preferably the compound B having a structure capable of accepting electrons from the acid group contained in the compound A in a photoexcited state. Further, in the requirement (W01), the structure is preferably a structure capable of accepting electrons from an acid group contained in compound A in a photoexcited state.
- Requirement (V1) The photosensitive composition contains a compound A having an acid group, and a compound B having a structure (specific structure S1) capable of accepting electrons from the acid group contained in the compound A in a photoexcited state. .
- the photosensitive composition contains a compound A having an acid group, and the compound A further contains a structure (specific structure S1) capable of accepting electrons from the acid group in a photoexcited state.
- the photosensitive composition may be a photosensitive composition that satisfies both requirement (V1) and requirement (W1).
- the photosensitive composition is a photosensitive composition that satisfies either requirement (V1-C) or requirement (W1-C).
- Requirement (V1-C) corresponds to the aspect of requirement (V1) in which the acid group is a carboxy group
- requirement (W1-C) corresponds to the aspect of requirement (W1) in which the acid group is a carboxy group.
- the photosensitive composition contains a compound A having a carboxy group, and a compound B having a structure capable of accepting electrons from the carboxy group in compound A in a photoexcited state (hereinafter also referred to as “specific structure S1”).
- the photosensitive composition contains a compound A having a carboxy group, and the compound A further contains a structure (specific structure S1) capable of accepting electrons from the carboxy group in compound A in a photoexcited state.
- the photosensitive composition may be a photosensitive composition that satisfies both requirements (V1-C) and requirement (W1-C).
- the photosensitive composition contains polyacrylic acid as compound A and quinoline as compound ⁇ (compound B) as an example, and the content of acid groups (carboxy groups) derived from compound A is reduced by exposure
- the mechanism for estimating As illustrated below, the carboxy group of polyacrylic acid and the nitrogen atom of quinoline form hydrogen bonds in the presence of each other.
- step 1 photoexcitation
- step 2 decarboxylation reaction
- radicals are generated in the polyacrylic acid residue, and the radical reaction proceeds.
- a radical reaction can occur between polyacrylic acid residues, between polyacrylic acid residues and optionally contained polymerizable compounds (monomer (M)), and hydrogen atoms in the atmosphere (step 3: polarity conversion, cross-linking/polymerization reaction).
- compound ⁇ is regenerated and can contribute to the decarboxylation process of compound A again (step 4: regeneration of compound ⁇ (catalyst)).
- the mechanism by which the content of acid groups derived from compound A is reduced by exposure is not limited to the decarboxylation method described above, and is a known method capable of reducing the content of acid groups derived from compound A. can be selected as appropriate.
- the photosensitive composition has an acid group (preferably a carboxyl group) content derived from the compound A by exposure to 5 mol% or more in that it has a more excellent pattern-forming ability, particularly with respect to an alkaline developer. preferably at a reduction rate of 10 mol% or more, more preferably at a reduction rate of 20 mol% or more, even more preferably at a reduction rate of 31 mol% or more It is more preferable to reduce at a reduction rate of 40 mol% or more, particularly preferably at a reduction rate of 51 mol% or more, and most preferably at a reduction rate of 71 mol% or more. preferable.
- the upper limit is not particularly limited, it is, for example, 100 mol % or less.
- the amount of decrease in the content of acid groups (preferably carboxy groups) derived from compound A due to exposure of the photosensitive composition is the decrease in the content of carboxy groups derived from compound A in the photosensitive layer in the transfer film described later. It can be quantified by the same method as the rate.
- Photosensitive composition of embodiment X-1-a1 A photosensitive composition that satisfies at least one of the requirements (V01) or (W01) and does not substantially contain a polymerizable compound and a photopolymerization initiator be.
- Photosensitive Composition of Embodiment X-1-a2 A photosensitive composition that satisfies at least either requirement (V01) or requirement (W01) and is substantially free of a photopolymerization initiator.
- Photosensitive layer of embodiment X-1-a3 A photosensitive composition that satisfies at least either requirement (V01) or requirement (W01) and contains a polymerizable compound and a photopolymerization initiator.
- the photosensitive composition substantially does not contain a polymerizable compound means that the content of the polymerizable compound is the total solid of the photosensitive composition. It may be less than 3% by mass, preferably 0 to 1% by mass, more preferably 0 to 0.1% by mass, based on the minute.
- the phrase "the photosensitive composition substantially does not contain a photopolymerization initiator” means that a photopolymerization initiator is contained. The amount may be less than 0.1% by mass, preferably 0 to 0.05% by mass, and preferably 0 to 0.01% by mass, based on the total solid content of the photosensitive composition. more preferred.
- the photosensitive compositions of Embodiments X-1-a1 and X-1-a2 are preferably applied to the pattern forming method of Embodiment 1, which will be described later. Further, the photosensitive composition of Embodiment X-1-a3 is preferably applied to the pattern forming method of Embodiment 2, which will be described later. Further, as the embodiment of the photosensitive composition, the photosensitive compositions of Embodiments X-1-a1-C to X-1-a3-C are more preferred.
- Embodiment X-1-a1-C to Embodiment X-1-a3-C are Embodiments X-1-a1 to X-1-a3 in which the requirement (V01) and the requirement (W01) are They correspond to the aspects of requirement (V1-C) and requirement (W1-C), respectively.
- the photosensitive composition contains compound A having an acid group (compound A).
- the acid group contained in compound A is preferably a proton-dissociating group with a pKa of 12 or less.
- Specific examples of the acid group include a carboxy group, a sulfonamide group, a phosphonic acid group, a sulfo group, a phenolic hydroxyl group, and a sulfonylimide group, with the carboxy group being preferred.
- the compound A may be a low-molecular-weight compound or a high-molecular-weight compound (hereinafter also referred to as a "polymer"), but preferably contains a polymer (a polymer having an acid group). It is more preferable to include a polymer having Examples of the polymerizable group include ethylenically unsaturated groups (e.g., (meth)acryloyl group, vinyl group, styryl group, etc.), and cyclic ether groups (e.g., epoxy group, oxetanyl group, etc.). , an ethylenically unsaturated group is preferred, and a (meth)acryloyl group is more preferred.
- ethylenically unsaturated groups e.g., (meth)acryloyl group, vinyl group, styryl group, etc.
- cyclic ether groups e.g., epoxy group, oxetanyl group, etc.
- the molecular weight of compound A is preferably less than 5,000, more preferably 2,000 or less, even more preferably 1,000 or less, particularly preferably 500 or less, most preferably 400 or less. preferable.
- the lower limit of the weight average molecular weight of the compound A is 5 in terms of excellent formability of the photosensitive layer (in other words, excellent film-forming ability for forming the photosensitive layer). ,000 or more is preferable, 10,000 or more is more preferable, and 15,000 or more is still more preferable.
- the upper limit is not particularly limited, it is preferably 50,000 or less from the viewpoint of better adhesion (laminate adhesion) when laminating (transferring) to any substrate.
- the acid value of compound A is preferably 60 to 300 mgKOH/g, more preferably 60 to 275 mgKOH/g, and further 75 to 250 mgKOH/g. preferable.
- the acid value of a resin is a value measured by the titration method specified in JIS K0070 (1992).
- Compound A also preferably contains a structure (specific structure S0) that reduces the amount of acid groups contained in compound A upon exposure.
- compound A not containing specific structure S0 is also referred to as “compound Aa”
- compound A containing specific structure S0 is also referred to as “compound Ab”.
- the compound Ab is preferably a polymer.
- Compound A does not contain specific structure S0 means that compound A does not substantially contain specific structure S0.
- the content of specific structure S0 in compound Aa is relative to the total mass of compound Aa is less than 1% by mass, preferably 0 to 0.5% by mass, more preferably 0 to 0.05% by mass.
- the content of the specific structure S0 in the compound Ab is preferably 1% by mass or more, more preferably 1 to 50% by mass, and even more preferably 5 to 40% by mass, relative to the total mass of the compound Ab. preferable.
- the content of compound Ab is preferably 5 to 100% by mass relative to the total mass of compound A.
- the specific structure S0 is a structure that exhibits an effect of reducing the amount of acid groups contained in the compound A upon exposure to light, as described above.
- the specific structure S0 is preferably a structure that transitions from a ground state to an excited state upon exposure and exhibits an effect of reducing acid groups in compound A in the excited state.
- Specific structure S0 of compound A includes a structure (specific structure S1) that can accept electrons from an acid group contained in compound A in a photoexcited state. Such a specific structure S1 includes a heteroaromatic ring.
- the heteroaromatic ring may be monocyclic or polycyclic, and is preferably polycyclic.
- a polycyclic heteroaromatic ring is formed by condensing a plurality of (for example, 2 to 5) aromatic ring structures, and at least one of the plurality of aromatic ring structures has a heteroatom as a ring member atom. have.
- the heteroaromatic ring has one or more heteroatoms (nitrogen atom, oxygen atom, sulfur atom, etc.) as ring member atoms, preferably 1 to 4 heteroatoms.
- the heteroaromatic ring preferably has one or more (eg, 1 to 4) nitrogen atoms as ring member atoms.
- the number of ring member atoms in the above heteroaromatic ring is preferably 5-15.
- heteroaromatic ring examples include monocyclic heteroaromatic rings such as pyridine ring, pyrazine ring, pyrimidine ring, and triazine ring; cyclic heteroaromatic rings; heteroaromatic rings in which three rings are condensed, such as acridine ring, phenanthridine ring, phenanthroline ring, and phenazine ring.
- the heteroaromatic ring may have one or more (for example, 1 to 5) substituents, and examples of the substituents include alkyl groups, aryl groups, halogen atoms, acyl groups, alkoxycarbonyl groups, and arylcarbonyl groups. , carbamoyl, hydroxy, cyano, and nitro groups.
- the aromatic ring has two or more substituents, the plurality of substituents may be combined to form a non-aromatic ring.
- the heteroaromatic ring is directly bonded to the carbonyl group.
- the heteroaromatic ring is bonded to the imide group to form a heteroaromatic imide group.
- the imide group in the heteroaromatic imide group may or may not form an imide ring together with the heteroaromatic ring.
- the entire series of the above aromatic ring structures is regarded as one specific structure S1.
- acid groups of compound A may or may not be anionized in the photosensitive composition, and both anionized acid groups and non-anionized acid groups are included. are called acid groups. That is, compound A may or may not be anionized in the photosensitive composition.
- a compound having a carboxy group is particularly preferable because the pattern forming performance of the photosensitive composition is more excellent and the film-forming property is more excellent.
- the compound having a carboxy group is preferably a monomer containing a carboxy group (hereinafter also referred to as a "carboxy group-containing monomer") or a polymer containing a carboxy group (hereinafter also referred to as a "carboxy group-containing polymer").
- a carboxyl group-containing polymer is more preferable in that the pattern forming performance of the liquid composition is more excellent and the film-forming property is more excellent.
- carboxy groups (--COOH) possessed by the carboxy group-containing monomer and the carboxy group-containing polymer may or may not be anionized in the photosensitive composition. Both (—COO ⁇ ) and non-anionized carboxy groups are referred to as carboxy groups.
- carboxy groups Both (—COO ⁇ ) and non-anionized carboxy groups are referred to as carboxy groups.
- the carboxy group-containing monomer may or may not be anionized in the photosensitive composition, and both anionized carboxy group-containing monomers and non-anionized carboxy group-containing monomers may be included. It is called contained monomer.
- the carboxy group-containing polymer may or may not be anionized in the photosensitive composition, and both the anionized carboxy group-containing polymer and the non-anionized carboxy group-containing polymer are included in the carboxy group-containing polymer. It is called the contained polymer.
- compound A containing a carboxy group may contain specific structure S0 (preferably specific structure S1).
- the carboxy group-containing monomer and the carboxy group-containing polymer may contain specific structure S0 (preferably specific structure S1).
- the compound A containing a carboxy group contains the specific structure S0 (preferably the specific structure S1), it is particularly preferably a carboxy group-containing polymer containing the specific structure S0 (preferably the specific structure S1).
- the lower limit of the content of compound A is preferably 1% by mass or more, more preferably 25% by mass or more, more preferably 30% by mass or more, relative to the total solid content of the photosensitive composition. Preferably, 45% by mass or more is even more preferable, and 50% by mass or more is particularly preferable.
- the upper limit of the content of compound A is preferably 100% by mass or less, more preferably 99% by mass or less, still more preferably 97% by mass or less, and 93% by mass or less, relative to the total solid content of the photosensitive composition. is particularly preferred, 85% by mass or less is more preferred, and 75% by mass or less is most preferred.
- the upper limit of the content of the compound A is preferably 99% by mass or less with respect to the total solid content of the photosensitive composition.
- Compound A may be used alone or in combination of two or more.
- Carboxy group-containing monomer examples include polymerizable compounds containing a carboxy group and one or more (eg, 1 to 15) ethylenically unsaturated groups. Examples of ethylenically unsaturated groups include (meth)acryloyl groups, vinyl groups, and styryl groups, with (meth)acryloyl groups being preferred.
- a bifunctional or higher functional monomer containing a carboxy group is preferable from the viewpoint of better film-forming properties.
- the bifunctional or higher monomer means a polymerizable compound having two or more (eg, 2 to 15) ethylenically unsaturated groups in one molecule.
- the carboxy group-containing monomer may further have an acid group other than the carboxy group as an acid group. Examples of acid groups other than carboxy groups include phenolic hydroxyl groups, phosphoric acid groups, and sulfonic acid groups.
- the bifunctional or higher functional monomer containing a carboxy group is not particularly limited, and can be appropriately selected from known compounds.
- Examples of bifunctional or higher monomers containing a carboxy group include Aronix (registered trademark) TO-2349 (manufactured by Toagosei Co., Ltd.), Aronix M-520 (manufactured by Toagosei Co., Ltd.), and Aronix M-510 (manufactured by Toagosei Co., Ltd.). manufactured by Toagosei Co., Ltd.) and the like.
- 5- to 6-functional polymerizable compounds containing carboxy groups dipentaerythritol penta and he
- bifunctional or higher functional monomers containing a carboxy group examples include polymerizable compounds having an acid group described in paragraphs 0025 to 0030 of JP-A-2004-239942. The contents of this publication are incorporated herein.
- Carboxy group-containing polymer Carboxy group-containing polymer
- Carboxy group-containing polymers are usually alkali-soluble resins. The definition and measurement method of alkali solubility are as described above.
- the carboxy group-containing polymer may further have an acid group other than the carboxy group as the acid group.
- acid groups other than carboxy groups include phenolic hydroxyl groups, phosphoric acid groups, and sulfonic acid groups.
- the acid value of the carboxy group-containing polymer is preferably 60-300 mgKOH/g, more preferably 60-275 mgKOH/g, even more preferably 75-250 mgKOH/g.
- the carboxy group-containing polymer preferably has a repeating unit having a carboxy group.
- Examples of repeating units having a carboxy group include repeating units represented by the following general formula (A).
- R A1 represents a hydrogen atom, a halogen atom, or an alkyl group.
- the above alkyl groups may be linear or branched.
- the number of carbon atoms in the alkyl group is preferably 1 to 5, more preferably 1.
- a 1 represents a single bond or a divalent linking group.
- divalent linking group examples include -CO-, -O-, -S-, -SO-, -SO 2 -, -NR N - (R N is a hydrogen atom or a alkyl groups), hydrocarbon groups (eg, alkylene groups, cycloalkylene groups, alkenylene groups, arylene groups such as phenylene groups, etc.), and linking groups in which a plurality of these are linked.
- Examples of monomers from which repeating units having a carboxy group are derived include (meth)acrylic acid, crotonic acid, itaconic acid, maleic acid, and fumaric acid.
- (meth)acrylic acid is preferable from the viewpoint of excellent patterning properties. That is, the repeating unit having a carboxy group is preferably a repeating unit derived from (meth)acrylic acid.
- the content of repeating units having a carboxy group in the carboxy group-containing polymer is preferably 5 to 100 mol%, more preferably 10 to 65 mol%, and 15 to 45 mol, based on the total repeating units of the carboxy group-containing polymer. % is more preferred. Further, the content of repeating units having a carboxy group in the carboxy group-containing polymer is preferably 1 to 100% by mass, more preferably 5 to 70% by mass, more preferably 12 to 12% by mass, based on the total repeating units of the carboxy group-containing polymer. 50% by mass is more preferred.
- a repeating unit having a carboxy group may be used alone or in combination of two or more.
- the carboxy group-containing polymer preferably has a repeating unit having a polymerizable group in addition to the repeating units described above.
- the polymerizable group include ethylenically unsaturated groups (e.g., (meth)acryloyl group, vinyl group, styryl group, etc.), and cyclic ether groups (e.g., epoxy group, oxetanyl group, etc.).
- An ethylenically unsaturated group is preferred, and a (meth)acryloyl group is more preferred.
- repeating units having a polymerizable group include repeating units represented by the following general formula (B).
- X B1 and X B2 each independently represent -O- or -NR N -.
- RN represents a hydrogen atom or an alkyl group.
- the alkyl group may be linear or branched, and preferably has 1 to 5 carbon atoms.
- L represents an alkylene group or an arylene group.
- the alkylene group may be linear or branched, and preferably has 1 to 5 carbon atoms.
- the arylene group may be monocyclic or polycyclic, and preferably has 6 to 15 carbon atoms.
- the alkylene group and the arylene group may have a substituent, and the substituent is preferably a hydroxyl group, for example.
- R B1 and R B2 each independently represent a hydrogen atom or an alkyl group.
- the above alkyl groups may be linear or branched.
- the number of carbon atoms in the alkyl group is preferably 1 to 5, more preferably 1.
- the content of repeating units having a polymerizable group in the carboxy group-containing polymer is preferably 3 to 60 mol%, more preferably 5 to 40 mol%, more preferably 10 to 30, based on the total repeating units of the carboxy group-containing polymer. Mole % is more preferred.
- the content of repeating units having a polymerizable group in the carboxy group-containing polymer is preferably 1 to 70% by mass, more preferably 5 to 50% by mass, more preferably 12 to 45% by mass, based on the total repeating units of the carboxy group-containing polymer. % by mass is more preferred.
- the repeating units having a polymerizable group may be used singly or in combination of two or more.
- the carboxy group-containing polymer also preferably has a repeating unit having a specific structure S0 (preferably a specific structure S1) in addition to the repeating units described above.
- the specific structure S0 and the specific structure S1 are as described above.
- the specific structure S0 preferably the specific structure S1
- the specific structure S0 may be present in the main chain, may be present in the side chain, or may be present in the side chain. preferably present in When the specific structure S0 (preferably specific structure S1) is present in the side chain, the specific structure S0 (preferably specific structure S1) is bound to the main chain of the polymer via a single bond or a linking group.
- a repeating unit having a specific structure S0 is, for example, a monomer having a heteroaromatic ring (specifically, a vinyl heteroaromatic ring such as vinylpyridine and vinyl (iso)quinoline, and a heteroaromatic It is a repeating unit based on a (meth)acrylate monomer having a ring).
- a monomer having a heteroaromatic ring specifically, a vinyl heteroaromatic ring such as vinylpyridine and vinyl (iso)quinoline
- a heteroaromatic It is a repeating unit based on a (meth)acrylate monomer having a ring.
- Specific examples of the repeating unit having the specific structure S0 are shown below, but are not limited thereto.
- the content thereof is preferably 3 to 75 mol% with respect to the total repeating units of the carboxy group-containing polymer. ⁇ 60 mol% is more preferred, and 10 to 50 mol% is even more preferred.
- the carboxy group-containing polymer has a repeating unit having the specific structure S0 (preferably specific structure S1), the content thereof is preferably 1 to 75% by mass with respect to the total repeating units of the carboxy group-containing polymer, and 3 ⁇ 60% by mass is more preferable, and 5 to 30% by mass is even more preferable.
- the repeating units having the specific structure S0 may be used singly or in combination of two or more.
- the carboxy group-containing polymer preferably has a repeating unit having an aromatic ring (preferably an aromatic hydrocarbon ring) in addition to the repeating units described above.
- a repeating unit having an aromatic ring preferably an aromatic hydrocarbon ring
- Examples thereof include repeating units based on (meth)acrylates having aromatic rings, and repeating units based on styrene and polymerizable styrene derivatives.
- Examples of (meth)acrylates having an aromatic ring include benzyl (meth)acrylate, phenethyl (meth)acrylate, phenoxyethyl (meth)acrylate, and the like.
- Styrene and polymerizable styrene derivatives include methylstyrene, vinyltoluene, tert-butoxystyrene, acetoxystyrene, 4-vinylbenzoic acid, styrene dimers, styrene trimers, and the like.
- repeating unit having an aromatic ring for example, repeating units represented by the following general formula (C) are also preferable.
- R C1 represents a hydrogen atom, a halogen atom, or an alkyl group.
- the above alkyl groups may be linear or branched.
- the number of carbon atoms in the alkyl group is preferably 1 to 5, more preferably 1.
- Ar C represents a phenyl group or a naphthyl group.
- the phenyl group and naphthyl group may have one or more substituents, and examples of the substituents include alkyl groups, alkoxy groups, aryl groups, halogen atoms, and hydroxy groups. Examples of repeating units having an aromatic ring are shown below.
- the following structure is preferable as a repeating unit having an aromatic ring.
- the content of repeating units having an aromatic ring in the carboxy group-containing polymer is preferably 5 to 80 mol%, more preferably 15 to 75 mol%, and 30 to 70 mol, based on the total repeating units of the carboxy group-containing polymer. % is more preferred.
- the content of repeating units having an aromatic ring in the carboxy group-containing polymer is preferably 5 to 90% by mass, more preferably 10 to 80% by mass, and 30 to 70% by mass, based on the total repeating units of the carboxy group-containing polymer. % is more preferred.
- a repeating unit having an aromatic ring may be used alone or in combination of two or more.
- the carboxy group-containing polymer preferably has a repeating unit having an alicyclic structure in addition to the repeating units described above.
- the alicyclic structure may be monocyclic or polycyclic.
- Alicyclic structures include, for example, dicyclopentanyl ring structures, dicyclopentenyl ring structures, isobornyl ring structures, adamantane ring structures, and cyclohexyl ring structures.
- Monomers from which repeating units having an alicyclic structure are derived include, for example, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, isobornyl (meth)acrylate, adamantyl (meth)acrylate, and cyclohexyl ( meth)acrylates.
- the content of repeating units having an alicyclic structure in the carboxy group-containing polymer is preferably 3 to 70 mol%, more preferably 5 to 60 mol%, more preferably 10 to 55 mol % is more preferred.
- the content of repeating units having an alicyclic structure in the carboxy group-containing polymer is preferably 3 to 90% by mass, more preferably 5 to 70% by mass, and 25 to 60% by mass is more preferred.
- the repeating units having an alicyclic structure may be used alone or in combination of two or more.
- the carboxy group-containing polymer may have other repeating units in addition to the repeating units described above.
- Examples of monomers from which the other repeating units are derived include (meth)acrylic acid alkyl esters, and examples of alkyl groups include alkyl groups having a chain structure.
- the chain structure may be either a linear structure or a branched structure.
- the alkyl group may have a substituent such as a hydroxy group.
- the number of carbon atoms in the alkyl group is 1-50, preferably 1-10.
- a specific example is methyl (meth)acrylate.
- the content of other repeating units in the carboxy group-containing polymer is preferably 1 to 70 mol%, more preferably 2 to 50 mol%, and 3 to 20 mol%, based on the total repeating units of the carboxy group-containing polymer. More preferred.
- the content of other repeating units in the carboxy group-containing polymer is preferably 1 to 70% by mass, more preferably 2 to 50% by mass, more preferably 5 to 35% by mass, based on the total repeating units of the carboxy group-containing polymer. More preferred. Other repeating units may be used singly or in combination of two or more.
- the weight average molecular weight of the carboxy group-containing polymer is preferably 5,000 to 200,000, more preferably 10,000 to 100,000, and most preferably 11,000 to 49,000.
- the content of the polymer (preferably carboxy group-containing polymer) in compound A is preferably 75 to 100% by mass, more preferably 85 to 100% by mass, and 90 to 100% by mass, relative to the total content of compound A. % is more preferred, and 95 to 100% by mass is particularly preferred.
- the content of the monomer (preferably a carboxy group-containing monomer) in compound A is preferably 0 to 25% by mass, more preferably 0 to 10% by mass, and 0 to 5% by mass, based on the total content of compound A. % is more preferred.
- the content of compound A is preferably 25 to 100% by mass based on the total solid content of the photosensitive composition.
- the photosensitive composition satisfies the requirements (V01) and/or requirements (V1) (that is, if the photosensitive composition contains compound ⁇ and/or compound B)
- the content of compound A is 25 to 99% by weight is preferred relative to the total solid content of the composition.
- the content of compound A is preferably 40 to 98% by mass, more preferably 50 to 96% by mass, based on the total solid content of the photosensitive composition. is more preferable, and 60 to 93% by mass is more preferable.
- the content of compound A is preferably 30 to 85% by mass, more preferably 45 to 75% by mass, based on the total solid content of the photosensitive composition.
- the content of compound A is preferably 30 to 85% by mass, more preferably 45 to 75% by mass, based on the total solid content of the photosensitive composition. .
- the photosensitive composition preferably contains compound ⁇ .
- Compound ⁇ is a compound having a structure (specific structure S0) that reduces the amount of acid groups contained in compound A upon exposure. Note that the specific structure S0 is as described above.
- the specific structure S0 of the compound ⁇ may be the entire structure that constitutes the entire compound ⁇ , or a partial structure that constitutes a part of the compound ⁇ .
- the compound ⁇ may be a high-molecular compound or a low-molecular compound, preferably a low-molecular-weight compound.
- the molecular weight of compound ⁇ , which is a low-molecular compound is preferably less than 5,000, more preferably less than 1,000, even more preferably 65-300, and particularly preferably 75-250.
- the specific structure S0 is preferably a structure (specific structure S1) that can accept electrons from the acid group contained in the compound A in a photoexcited state. That is, the compound ⁇ is preferably a compound B having a structure (specific structure S1) capable of accepting electrons from an acid group contained in the compound A in a photoexcited state.
- the compound ⁇ (preferably compound B) is described below.
- the compound ⁇ (preferably the compound B) is preferably an aromatic compound in terms of better pattern forming ability and/or lower moisture permeability of the formed pattern.
- the aromatic compound is a compound having one or more aromatic rings. Only one aromatic ring or a plurality of aromatic rings may be present in compound ⁇ (preferably compound B). When a plurality of aromatic rings are present, for example, the aromatic ring may be present in a side chain of the resin or the like.
- the aromatic ring can be used as a structure (specific structure S1) capable of accepting electrons from the acid group contained in compound A in the photoexcited state.
- the aromatic ring may be an entire structure that constitutes the entire compound ⁇ (preferably compound B), or a partial structure that constitutes a part of the compound ⁇ (preferably compound B).
- the aromatic ring may be monocyclic or polycyclic, and is preferably polycyclic.
- the polycyclic aromatic ring is, for example, an aromatic ring formed by condensing a plurality of (for example, 2 to 5) aromatic ring structures, and at least one of the plurality of aromatic ring structures has a heteroatom as a ring member atom.
- the aromatic ring may be a heteroaromatic ring, preferably has 1 or more (eg, 1 to 4) heteroatoms (nitrogen atom, oxygen atom, sulfur atom, etc.) as ring member atoms, and More preferably, it has 1 or more (eg, 1 to 4) nitrogen atoms.
- the number of ring member atoms in the aromatic ring is preferably 5-15.
- aromatic ring examples include monocyclic aromatic rings such as pyridine ring, pyrazine ring, pyrimidine ring, and triazine ring; Aromatic ring: aromatic ring in which three rings are condensed, such as acridine ring, phenanthridine ring, phenanthroline ring, and phenazine ring.
- the aromatic ring may have one or more (for example, 1 to 5) substituents, and examples of the substituents include alkyl groups, aryl groups, halogen atoms, acyl groups, alkoxycarbonyl groups, arylcarbonyl groups, Carbamoyl groups, hydroxy groups, cyano groups, amino groups, and nitro groups are included.
- the aromatic ring has two or more substituents, the plurality of substituents may be combined to form a non-aromatic ring. It is also preferred that the aromatic ring is directly bonded to the carbonyl group to form an aromatic carbonyl group in compound ⁇ (preferably compound B). It is also preferred that multiple aromatic rings are linked via a carbonyl group.
- the aromatic ring is bonded to the imide group to form an aromatic imide group in compound ⁇ (preferably compound B).
- the imide group in the aromatic imide group may or may not form an imide ring together with the aromatic ring.
- a plurality of aromatic rings e.g., 2 to 5 aromatic rings
- include single bonds, carbonyl groups, and multiple bonds (e.g., optionally substituted vinylene groups, -C ⁇ C-, -N N—, etc.), when a series of aromatic ring structures linked together are formed, the series of aromatic ring structures as a whole is regarded as one specific structure S1.
- one or more of the plurality of aromatic rings constituting the series of aromatic ring structures is preferably the heteroaromatic ring.
- Compound ⁇ (preferably compound B) has one or more of the following requirements (1) to (4) (for example, 1 to 4) are preferred. Above all, it is preferable that at least requirement (2) is satisfied, and that at least a nitrogen atom be included as the heteroatom possessed by the heteroaromatic ring. (1) It has a polycyclic aromatic ring. (2) having a heteroaromatic ring; (3) having an aromatic carbonyl group; (4) It has an aromatic imide group.
- compound ⁇ examples include pyridine and pyridine derivatives, pyrazine and pyrazine derivatives, pyrimidine and pyrimidine derivatives, and monocyclic aromatic compounds such as triazine and triazine derivatives; quinoline and quinoline derivatives; Compounds in which two rings are fused to form an aromatic ring, such as isoquinoline and isoquinoline derivatives, quinoxaline and quinoxaline derivatives, and quinazoline and quinazoline derivatives; acridine and acridine derivatives, phenanthridine and phenanthridine derivatives, phenanthroline and Compounds in which three or more rings are condensed to form an aromatic ring, such as phenanthroline derivatives and phenazine and phenazine derivatives.
- compound ⁇ (preferably compound B) is preferably one or more selected from the group consisting of pyridine and pyridine derivatives, quinoline and quinoline derivatives, and isoquinoline and isoquinoline derivatives. And, it is more preferably one or more selected from the group consisting of isoquinoline and isoquinoline derivatives, and more preferably one or more selected from the group consisting of isoquinoline and isoquinoline derivatives.
- These compounds and derivatives thereof may further have a substituent, and examples of the substituent include an alkyl group, an aryl group, a halogen atom, an acyl group, an alkoxycarbonyl group, an arylcarbonyl group, a carbamoyl group, a hydroxy group, A cyano group, an amino group, or a nitro group is preferable, an alkyl group, an aryl group, a halogen atom, an acyl group, an alkoxycarbonyl group, an arylcarbonyl group, a carbamoyl group, a hydroxy group, a cyano group, or a nitro group is more preferable, and an alkyl group , an aryl group, an acyl group, an alkoxycarbonyl group, an arylcarbonyl group, a carbamoyl group, a hydroxy group, a cyano group, or a nitro group are more preferable, and an alkyl group
- the compound ⁇ (preferably compound B) is an aromatic compound having a substituent (compound ⁇ (preferably is a compound having substituents on the constituent atoms of the aromatic ring contained in compound B)), satisfies one or more (for example, 1 to 4) of the above requirements (1) to (4), and further A compound having a substituent is more preferred.
- the position of the substituent is, for example, when the compound ⁇ (preferably compound B) is a quinoline or a quinoline derivative, the point at which the pattern forming ability is superior and/or the point at which the formed pattern has lower moisture permeability. and preferably have substituents at least at the 2- and 4-positions on the quinoline ring.
- the pattern forming ability is superior and/or the moisture permeability of the formed pattern is lower.
- at least the 1-position of has a substituent.
- an alkyl group for example, a linear or branched alkyl group having 1 to 10 carbon atoms is preferable.
- compound ⁇ when compound ⁇ (preferably compound B) is a polymer, it may be a polymer in which specific structure S0 (preferably specific structure S1) is bound to the main chain of the polymer via a single bond or a linking group.
- Compound ⁇ (preferably compound B), which is a polymer is, for example, a monomer having a heteroaromatic ring (specifically, a vinyl heteroaromatic ring and/or a specific structure S0 (preferably a specific structure S1, and more It is preferably obtained by polymerizing a (meth)acrylate monomer) having a heteroaromatic ring). You may copolymerize with another monomer as needed.
- the molar absorption coefficient (molar absorption coefficient ⁇ ) of compound ⁇ (preferably compound B) for light at a wavelength of 365 nm is , for example, 1 ⁇ 10 3 (cm ⁇ mol/L) ⁇ 1 or less, preferably 1 ⁇ 10 3 (cm ⁇ mol/L) ⁇ 1 or less, and 5 ⁇ 10 2 (cm ⁇ mol/L) It is more preferably less than ⁇ 1 , and even more preferably 1 ⁇ 10 2 (cm ⁇ mol/L) ⁇ 1 or less.
- the lower limit of the molar extinction coefficient ⁇ is not particularly limited, and is, for example, greater than 0 (cm ⁇ mol/L) ⁇ 1 .
- the molar extinction coefficient ⁇ of the compound ⁇ (preferably compound B) is within the above range is particularly effective when exposing a photosensitive layer formed from a photosensitive composition through a temporary support (preferably PET film).
- a temporary support preferably PET film.
- the photosensitive composition when used for producing a protective film (permanent film), coloration of the film can be suppressed by setting the molar extinction coefficient ⁇ of the compound ⁇ (preferably compound B) within the above range.
- the compound having such a molar extinction coefficient ⁇ the above-described monocyclic aromatic compounds or aromatic compounds in which two rings are condensed to form an aromatic ring are preferable, and pyridine or pyridine derivatives, quinoline or quinoline Derivatives, or isoquinolines or isoquinoline derivatives are more preferred, and isoquinolines or isoquinoline derivatives are even more preferred.
- the ratio of the molar extinction coefficient (molar extinction coefficient ⁇ ) of compound ⁇ (preferably compound B) at 365 nm is preferably 3 or less. , is more preferably 2 or less, and even more preferably less than 1.
- the lower limit is not particularly limited, and is, for example, 0.01 or more.
- the molar extinction coefficient (molar extinction coefficient ⁇ ) of compound ⁇ (preferably compound B) for light at a wavelength of 365 nm (molar extinction coefficient ⁇ ) and the molar extinction coefficient (molar extinction coefficient ⁇ ′) for light at a wavelength of 313 nm are the compound ⁇ (preferably compound B ) is dissolved in acetonitrile and measured. If compound ⁇ (preferably compound B) does not dissolve in acetonitrile, the solvent for dissolving compound ⁇ (preferably compound B) may be changed as appropriate.
- compound ⁇ examples include 5,6,7,8-tetrahydroquinoline, 4-acetylpyridine, 4-benzoylpyridine, 1-phenylisoquinoline, 1-n-butylisoquinoline, 1-n -butyl-4-methylisoquinoline, 1-methylisoquinoline, 2,4,5,7-tetramethylquinoline, 2-methyl-4-methoxyquinoline, 2,4-dimethylquinoline, phenanthridine, 9-methylacridine, 9-phenylacridine, pyridine, isoquinoline, quinoline, acridine, 4-aminopyridine, 2-chloropyridine and the like.
- the lower limit of the pKa in the ground state of the compound ⁇ is preferably 0.50 or more, and the pattern forming ability is more excellent and/or the moisture permeability of the formed pattern is lower. point, 2.00 or more is more preferable.
- the upper limit of pKa in the ground state of compound ⁇ (preferably compound B) is preferably 10.00 or less, more preferably 9.00 or less, still more preferably 8.00 or less, and 7.00 or less.
- the ground-state pKa of compound ⁇ (preferably compound B) means the pKa of compound ⁇ (preferably compound B) in an unexcited state, and can be determined by acid titration.
- the ground state pKa of the compound ⁇ is the base of the conjugate acid of compound ⁇ (preferably compound B). The pKa under conditions is intended.
- the molecular weight of compound ⁇ is more preferably 120 or more, more preferably 130 or more, even more preferably 150 or more, in terms of lowering the moisture permeability of the pattern.
- the upper limit of the molecular weight of compound ⁇ (preferably compound B) is not particularly limited, it is, for example, 50,000 or less.
- the compound ⁇ (preferably compound B) is a compound exhibiting a cationic state (for example, a nitrogen-containing aromatic compound)
- the level is preferably ⁇ 7.50 eV or less, and more preferably ⁇ 7.80 eV or less in terms of better pattern forming ability and/or lower moisture permeability of the formed pattern.
- the lower limit is not particularly limited, it is more preferably -13.60 eV or higher.
- the energy level of the HOMO (HOMO in the first electron excited state) in the cation state of compound ⁇ is calculated using a quantum chemical calculation program Gaussian09 (Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.
- Gaussian09 Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucc
- the time-dependent density functional theory using B3LYP as the functional and 6-31+G(d, p) as the basis function was used.
- the PCM method based on the parameters of chloroform set in Gaussian09 was also used. By this method, the structure optimization calculation of the first electron excited state was performed, the structure with the minimum energy was obtained, and the HOMO energy in that structure was calculated.
- the HOMO energy level (eV) of the cation state of a representative example of compound ⁇ is shown below.
- the molecular weight is also shown together.
- the content of compound ⁇ (preferably compound B) in the photosensitive composition is preferably 0.1 to 50% by mass based on the total solid content of the photosensitive composition.
- the content of compound ⁇ (preferably compound B) is 2.0 to 40% by mass relative to the total solid content of the photosensitive composition. is preferred, 4 to 35 mass % is more preferred, and 8 to 30 mass % is even more preferred.
- the content of compound ⁇ (preferably compound B) is preferably 0.5 to 20% by mass based on the total solid content of the photosensitive composition, 1.0 to 10% by mass is more preferable.
- the content of compound ⁇ is preferably 0.3 to 20% by mass based on the total solid content of the photosensitive composition, 0.5 to 8% by mass is more preferable.
- Compound ⁇ (preferably compound B) may be used alone or in combination of two or more.
- the total number of electron-accepting structures (specific structure S1) possessed by compound B in the photosensitive composition is the same as the acid group possessed by compound A, since the effect of the present invention is more excellent. (preferably carboxy groups), the total number is preferably 1 mol% or more, more preferably 3 mol% or more, still more preferably 5 mol% or more, particularly preferably 10 mol% or more, most preferably 20 mol% or more. preferable.
- the total number of acid groups (preferably carboxyl groups) possessed by compound A is considered from the viewpoint of the film quality of the resulting film. is preferably 200 mol % or less, more preferably 100 mol % or less, and even more preferably 80 mol % or less.
- the photosensitive composition also preferably contains a polymerizable compound.
- This polymerizable compound is a component different from the compound A having an acid group, and preferably does not contain an acid group.
- the polymerizable compound is preferably a component different from compound A.
- it is preferably a compound having a molecular weight (weight average molecular weight if it has a molecular weight distribution) of less than 5,000, and is a polymerizable monomer. is also preferred.
- a polymerizable compound is a polymerizable compound having one or more (eg, 1 to 15) ethylenically unsaturated groups in one molecule.
- the polymerizable compound preferably contains a polymerizable compound having a functionality of two or more.
- the bifunctional or higher polymerizable compound means a polymerizable compound having two or more (for example, 2 to 15) ethylenically unsaturated groups in one molecule.
- Examples of ethylenically unsaturated groups include (meth)acryloyl groups, vinyl groups, and styryl groups, with (meth)acryloyl groups being preferred.
- (Meth)acrylates are preferred as the polymerizable compound.
- the photosensitive composition contains a bifunctional polymerizable compound (preferably a difunctional (meth)acrylate) and/or a trifunctional or higher polymerizable compound (preferably a trifunctional or higher (meth)acrylate). is preferred.
- the bifunctional polymerizable compound is not particularly limited and can be appropriately selected from known compounds.
- Examples of bifunctional polymerizable compounds include tricyclodecanedimethanol di(meth)acrylate, tricyclodecanedimethanol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, and 1,6 - hexanediol di(meth)acrylates.
- bifunctional polymerizable compound more specifically, for example, tricyclodecanedimethanol diacrylate (manufactured by A-DCP Shin-Nakamura Chemical Co., Ltd.), tricyclodecane dimenanol dimethacrylate (DCP Shin-Nakamura Kagaku Kogyo Co., Ltd.), 1,9-nonanediol diacrylate (A-NOD-N Shin-Nakamura Chemical Co., Ltd.), and 1,6-hexanediol diacrylate (A-HD-N Shin-Nakamura Chemical Kogyo Co., Ltd.) and the like.
- tricyclodecanedimethanol diacrylate manufactured by A-DCP Shin-Nakamura Chemical Co., Ltd.
- tricyclodecane dimenanol dimethacrylate DCP Shin-Nakamura Kagaku Kogyo Co., Ltd.
- 1,9-nonanediol diacrylate A-NOD-
- the trifunctional or higher polymerizable compound is not particularly limited and can be appropriately selected from known compounds.
- Examples of trifunctional or higher polymerizable compounds include dipentaerythritol (tri/tetra/penta/hexa) (meth)acrylate, pentaerythritol (tri/tetra) (meth)acrylate, trimethylolpropane tri(meth)acrylate, Examples include ditrimethylolpropane tetra(meth)acrylate, isocyanuric acid (meth)acrylate, and (meth)acrylate compounds having a glycerin tri(meth)acrylate skeleton.
- (tri/tetra/penta/hexa) (meth)acrylate is a concept including tri(meth)acrylate, tetra(meth)acrylate, penta(meth)acrylate, and hexa(meth)acrylate.
- (tri/tetra)(meth)acrylate” is a concept including tri(meth)acrylate and tetra(meth)acrylate.
- polymerizable compounds include, for example, caprolactone-modified compounds of (meth)acrylate compounds (KAYARAD (registered trademark) DPCA-20 manufactured by Nippon Kayaku Co., Ltd., A-9300-1CL manufactured by Shin-Nakamura Chemical Co., Ltd. etc.), alkylene oxide-modified compounds of (meth)acrylate compounds (KAYARAD RP-1040 manufactured by Nippon Kayaku Co., Ltd., ATM-35E, A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd., EBECRYL (registered trademark) manufactured by Daicel Allnex ) 135 etc.), and ethoxylated glycerin triacrylate (A-GLY-9E etc. manufactured by Shin-Nakamura Chemical Co., Ltd.).
- KYARAD registered trademark
- DPCA-20 alkylene oxide-modified compounds of (meth)acrylate compounds
- ATM-35E alkylene oxide-modified compounds of (meth)acrylate compounds
- the polymerizable compound also includes urethane (meth)acrylates (preferably trifunctional or higher urethane (meth)acrylates).
- the lower limit of the number of functional groups is more preferably hexafunctional or more, still more preferably octafunctional or more.
- the upper limit of the number of functional groups is, for example, 20 or less.
- Trifunctional or higher urethane (meth)acrylates include, for example, 8UX-015A (manufactured by Taisei Fine Chemicals Co., Ltd.): UA-32P, U-15HA, and UA-1100H (all manufactured by Shin-Nakamura Chemical Co., Ltd.).
- AH-600 (trade name) manufactured by Kyoeisha Chemical Co., Ltd.: UA-306H, UA-306T, UA-306I, UA-510H, and UX-5000 (all manufactured by Nippon Kayaku Co., Ltd.), etc. be done.
- the weight average molecular weight (Mw) of the polymerizable compound that can be contained in the photosensitive composition is preferably 200-3000, more preferably 250-2600, and even more preferably 280-2200.
- Mw weight average molecular weight
- the photosensitive composition contains a polymerizable compound, among all the polymerizable compounds contained in the photosensitive composition, the molecular weight of the one with the smallest molecular weight is preferably 250 or more, more preferably 280 or more.
- the content thereof is preferably 3 to 70% by mass, more preferably 10 to 70% by mass, based on the total solid content of the photosensitive composition, and 20 to 55% by mass. % is particularly preferred.
- the mass ratio of the polymerizable compound to compound A is preferably 0.2 to 2.0, and 0.4 to 0. .9 is more preferred.
- a polymerizable compound may be used individually by 1 type, and may be used 2 or more types.
- the content of the bifunctional polymerizable compound is on the other hand, 10 to 90% by mass is preferable, 20 to 85% by mass is more preferable, and 30 to 80% by mass is even more preferable.
- the content of the trifunctional or higher polymerizable compound is preferably 10 to 100% by mass, more preferably 15 to 100% by mass, and 20 to 100% by mass with respect to all polymerizable compounds contained in the photosensitive composition. % is more preferred. 70 to 100% by weight is particularly preferred.
- the photosensitive composition may further contain a monofunctional polymerizable compound.
- the photosensitive composition contains a bifunctional or higher polymerizable compound
- the difunctional or higher polymerizable compound is the main component in the polymerizable compounds that the photosensitive composition may contain.
- the content of the bifunctional or higher polymerizable compound is relative to the total content of the polymerizable compounds contained in the photosensitive composition. , preferably 60 to 100% by mass, more preferably 80 to 100% by mass, and even more preferably 90 to 100% by mass.
- the photosensitive composition preferably also contains a photoinitiator.
- the photopolymerization initiator may be a radical photopolymerization initiator, a cationic photopolymerization initiator, or an anionic photopolymerization initiator, and is preferably a radical photopolymerization initiator.
- the photopolymerization initiator is not particularly limited, and known photopolymerization initiators can be used.
- an oxime ester compound photopolymerization initiator having an oxime ester structure
- an alkylphenone compound photopolymerization initiator having an alkylphenone structure
- at least one of these compounds may be included. , may include both.
- the content of the oxime ester compound is preferably 5 to 90% by mass, more preferably 15 to 50% by mass, relative to the total content of both compounds.
- the alkylphenone compound is also preferably an aminoacetophenone compound (a photopolymerization initiator having an aminoacetophenone structure).
- the photopolymerization initiator may be used in combination with other photopolymerization initiators, such as hydroxyacetophenone compounds, acylphosphine oxide compounds, and bistriphenylimidazole compounds.
- photopolymerization initiator for example, polymerization initiators described in paragraphs 0031 to 0042 of JP-A-2011-095716 and paragraphs 0064-0081 of JP-A-2015-014783 may be used.
- photopolymerization initiator examples include the following photopolymerization initiators.
- oxime ester compounds include 1,2-octanedione, 1-[4-(phenylthio)phenyl-,2-(O-benzoyloxime)] (trade name: IRGACURE OXE-01, IRGACURE series are products of BASF) ), ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(0-acetyloxime) (trade name: IRGACURE OXE-02, manufactured by BASF) , [8-[5-(2,4,6-trimethylphenyl)-11-(2-ethylhexyl)-11H-benzo[a]carbazolyl][2-(2,2,3,3-tetrafluoropropoxy) Phenyl]methanone-(O-acetyloxime) (trade name: IRGACURE OXE-03, manufactured
- aminoacetophenone compounds include 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone (trade name: Omnirad 379, The Omnirad series is a product of IGM Resins B.V.), 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one (trade name: Omnirad 907), APi-307 (1-( biphenyl-4-yl)-2-methyl-2-morpholinopropan-1-one, manufactured by Shenzhen UV-ChemTech Ltd.).
- photopolymerization initiators include, for example, 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]phenyl ⁇ -2-methyl-propan-1-one ( Trade name: Omnirad 127), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 (trade name: Omnirad 369), 2-hydroxy-2-methyl-1-phenyl-propane -1-one (trade name: Omnirad 1173), 1-hydroxy-cyclohexyl-phenyl-ketone (trade name: Omnirad 184), 2,2-dimethoxy-1,2-diphenylethan-1-one (trade name: Omnirad 651), 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (trade name: Omnirad TPO H), and bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide (trade name: Omnirad 819).
- the photosensitive composition contains a photopolymerization initiator
- its content is preferably 0.01 to 15% by mass, more preferably 0.05 to 10% by mass, based on the total solid content of the photosensitive composition. , 0.1 to 5 mass % is more preferable.
- a photoinitiator may be used individually by 1 type, and may be used 2 or more types.
- the photosensitive composition may contain a surfactant.
- Surfactants include anionic surfactants, cationic surfactants, nonionic (nonionic) surfactants, and amphoteric surfactants, with nonionic surfactants being preferred.
- nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkylphenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, silicone surfactants, and fluorine surfactants. mentioned.
- surfactants described in paragraphs 0120 to 0125 of WO 2018/179640 can also be used.
- surfactant the surfactants described in paragraph 0017 of Japanese Patent No. 4502784 and paragraphs 0060 to 0071 of JP-A-2009-237362 can also be used.
- fluorosurfactants include MEGAFACE F-171, F-172, F-173, F-176, F-177, F-141, F-142, F-143, and F-144.
- an acrylic compound that has a molecular structure with a functional group containing a fluorine atom and in which the portion of the functional group containing the fluorine atom is cleaved and the fluorine atom volatilizes when heat is applied can also be suitably used.
- fluorine-based surfactants include Megafac DS series manufactured by DIC Corporation (The Chemical Daily (February 22, 2016), Nikkei Sangyo Shimbun (February 23, 2016)), for example, Megafac and DS-21.
- the fluorosurfactant it is also preferable to use a polymer of a fluorine atom-containing vinyl ether compound having a fluorinated alkyl group or a fluorinated alkylene ether group and a hydrophilic vinyl ether compound.
- a block polymer can also be used as the fluorosurfactant.
- the fluorosurfactant has a repeating unit derived from a (meth)acrylate compound having a fluorine atom and 2 or more (preferably 5 or more) alkyleneoxy groups (preferably ethyleneoxy groups and propyleneoxy groups).
- a fluorine-containing polymer compound containing a repeating unit derived from a (meth)acrylate compound can also be preferably used.
- a fluoropolymer having an ethylenically unsaturated bond-containing group in a side chain can also be used.
- Megafac RS-101, RS-102, RS-718K, RS-72-K manufactured by DIC Corporation
- DIC Corporation Megafac RS-101, RS-102, RS-718K, RS-72-K (manufactured by DIC Corporation) and the like.
- fluorine-based surfactants from the viewpoint of improving environmental suitability, compounds having linear perfluoroalkyl groups having 7 or more carbon atoms, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), are used.
- PFOA perfluorooctanoic acid
- PFOS perfluorooctane sulfonic acid
- Surfactants derived from alternative materials are preferred.
- Nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane and their ethoxylates and propoxylates (e.g., glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester, Pluronic (registered trademark) L10, L31, L61, L62, 10R5, 17R2 , 25R2 (manufactured by BASF), Tetronic 304, 701, 704, 901, 904, 150R1 (manufactured by BASF), Solsperse 20000 (manufactured by Nippon Lubrizol Co., Ltd.), NCW-101, NC
- silicone-based surfactants include straight-chain polymers composed of siloxane bonds, and modified siloxane polymers in which organic groups are introduced into side chains and terminals.
- surfactants include DOWSIL 8032 ADDITIVE, Toray Silicone DC3PA, Toray Silicone SH7PA, Toray Silicone DC11PA, Toray Silicone SH21PA, Toray Silicone SH28PA, Toray Silicone SH29PA, Toray Silicone SH30PA, Toray Silicone SH8400 (Toray Dow Corning Co.) and X-22-4952, X-22-4272, X-22-6266, KF-351A, K354L, KF-355A, KF-945, KF-640, KF-642, KF- 643, X-22-6191, X-22-4515, KF-6004, KP-341, KF-6001, KF-6002 (manufactured by Shin-Etsu Silicone Co., Ltd.), F-4440, TSF-4300, TSF-4445 , TSF-4460, TSF-4452 (manufactured by Momentive Performance Materials), BYK307, BYK323, BYK330
- the content of the surfactant is preferably 0.0001 to 10% by mass, more preferably 0.001 to 5% by mass, and further 0.005 to 3% by mass, based on the total solid content of the photosensitive composition. preferable.
- One type of surfactant may be used alone, or two or more types may be used.
- solvent commonly used solvents can be used without particular limitation.
- Organic solvents are preferred as solvents.
- examples of organic solvents include methyl ethyl ketone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate (also known as 1-methoxy-2-propyl acetate), diethylene glycol ethyl methyl ether, cyclohexanone, methyl isobutyl ketone, ethyl lactate, methyl lactate, and caprolactam. , n-propanol, 2-propanol, and mixed solvents thereof.
- the solvent is preferably a mixed solvent of methyl ethyl ketone and propylene glycol monomethyl ether acetate, a mixed solvent of diethylene glycol ethyl methyl ether and propylene glycol monomethyl ether acetate, or a mixed solvent of methyl ethyl ketone, propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate.
- the content of the solvent is preferably 20 to 95% by mass, more preferably 60 to 95% by mass, more preferably 70 to 95% by mass, based on the total mass of the photosensitive composition. More preferred.
- a solvent may be used individually by 1 type, and may be used 2 or more types.
- the viscosity (25° C.) of the photosensitive composition is preferably 1 to 50 mPa s, more preferably 2 to 40 mPa s, more preferably 3 to 30 mPa s, from the viewpoint of coating properties. is more preferred. Viscosity is measured using, for example, VISCOMETER TV-22 (manufactured by TOKI SANGYO CO. LTD).
- the surface tension (25° C.) of the photosensitive composition is preferably 5 to 100 mN/m, more preferably 10 to 80 mN/m, more preferably 15 to 40 mN/m, from the viewpoint of coatability. m is more preferred. Surface tension can be measured, for example, with an Automatic Surface Tensiometer It is measured using CBVP-Z (manufactured by Kyowa Interface Science Co., Ltd.).
- Solvents can also be used as described in paragraphs 0054 and 0055 of US Published Application 2005/282073, the contents of which are incorporated herein. Also, as the solvent, an organic solvent having a boiling point of 180 to 250° C. (high boiling point solvent) can be used as necessary.
- the photosensitive layer preferably does not substantially contain a solvent.
- substantially solvent-free means that the content of the solvent may be less than 1% by mass relative to the total mass of the photosensitive composition (photosensitive layer), and is 0 to 0.5% by mass. is preferred, and 0 to 0.001% by mass is more preferred.
- the photosensitive composition may contain other additives as needed.
- Other additives include, for example, plasticizers, sensitizers, heterocyclic compounds, alkoxysilane compounds, and the like.
- Plasticizers, sensitizers, heterocyclic compounds, and alkoxysilane compounds include, for example, those described in paragraphs 0097 to 0119 of WO 2018/179640.
- the photosensitive composition contains other additives such as rust inhibitors, metal oxide particles, antioxidants, dispersants, acid multipliers, development accelerators, conductive fibers, colorants, and thermal radical polymerization initiators. , a thermal acid generator, an ultraviolet absorber, a thickener, a cross-linking agent, and an organic or inorganic suspending agent. Preferred aspects of these components are described in paragraphs 0165 to 0184 of JP-A-2014-085643, respectively, and the contents of this publication are incorporated herein.
- the photosensitive composition may contain impurities.
- Impurities include, for example, sodium, potassium, magnesium, calcium, iron, manganese, copper, aluminum, titanium, chromium, cobalt, nickel, zinc, tin, halogens, and ions thereof.
- halide ions, sodium ions, and potassium ions tend to be mixed as impurities, so the following contents are particularly preferable.
- the content of impurities in the photosensitive composition is preferably 80 ppm by mass or less, more preferably 10 ppm by mass or less, and even more preferably 2 ppm by mass or less, relative to the total solid content of the photosensitive composition.
- the content of impurities in the photosensitive composition may be 1 mass ppb or 0.1 mass ppm or more with respect to the total solid content of the photosensitive composition.
- the impurities within the above range for example, a raw material of the photosensitive composition with a low impurity content is selected, contamination of impurities is prevented during the formation of the photosensitive composition, and washing is performed. removal.
- the amount of impurities can be made within the above range.
- Impurities can be quantified by known methods such as ICP (Inductively Coupled Plasma) emission spectroscopy, atomic absorption spectroscopy, and ion chromatography.
- ICP Inductively Coupled Plasma
- the content of compounds such as benzene, formaldehyde, trichlorethylene, 1,3-butadiene, carbon tetrachloride, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide, and hexane in the photosensitive composition is Less is preferred.
- the content of these compounds in the photosensitive composition is preferably 100 mass ppm or less, more preferably 20 mass ppm or less, and even more preferably 4 mass ppm or less, relative to the total solid content of the photosensitive composition.
- the lower limit of the content may be 10 mass ppb or more, or 100 mass ppb or more, relative to the total solid content of the photosensitive composition.
- the content of these compounds can be suppressed in the same manner as the metal impurities described above. Moreover, it can quantify by a well-known measuring method.
- the content of water in the photosensitive composition is preferably 0.01 to 1.0% by mass, preferably 0.05 to 0.5%, based on the total solid content of the photosensitive composition, from the viewpoint of improving patterning properties. % by mass is more preferred.
- the transfer film of the invention has a temporary support and a photosensitive layer (hereinafter also simply referred to as "photosensitive layer”) formed using the photosensitive composition of the invention.
- FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of the transfer film of the present invention.
- the transfer film 100 shown in FIG. 1 comprises a temporary support 12, a photosensitive layer (a photosensitive layer formed using the photosensitive composition of the present invention) 14, and a cover film 16 laminated in this order. configuration.
- the cover film 16 may be omitted.
- the temporary support is a support that supports the photosensitive layer and is peelable from the photosensitive layer.
- the temporary support preferably has light transmittance in that the photosensitive layer can be exposed through the temporary support when patternwise exposing the photosensitive layer.
- “having light transmittance” means that the transmittance of the main wavelength of light used for exposure (either pattern exposure or overall exposure) is 50% or more.
- the transmittance of the dominant wavelength of light used for exposure is preferably 60% or more, more preferably 70% or more, from the viewpoint of better exposure sensitivity.
- a method of measuring transmittance a method of measuring using MCPD Series manufactured by Otsuka Electronics Co., Ltd. can be mentioned.
- the transmittance at 313 nm, 365 nm, 313 nm, 405 nm, and 436 nm is more preferably 70% or more, still more preferably 80% or more, and particularly preferably 90% or more.
- Preferred values of transmittance include, for example, 87%, 92%, and 98%.
- the temporary support include a glass substrate, a resin film, paper, and the like, and a resin film is preferable in terms of superior strength, flexibility, and the like.
- resin films include polyethylene terephthalate (PET) films, cellulose triacetate films, polystyrene films, and polycarbonate films. Among them, a biaxially stretched polyethylene terephthalate film is preferred.
- the number of particles, foreign substances, and defects contained in the temporary support is small.
- the number of fine particles, foreign substances, and defects with a diameter of 2 ⁇ m or more is preferably 50/10 mm 2 or less, more preferably 10/10 mm 2 or less, and even more preferably 3/10 mm 2 or less.
- the lower limit is not particularly limited, it can be 1 piece/10 mm 2 or more.
- the temporary support has a layer in which particles with a diameter of 0.5 to 5 ⁇ m are present at a rate of 1/mm 2 or more on the side opposite to the side on which the photosensitive layer is formed, in order to further improve handling properties. more preferably 1 to 50/mm 2 .
- the thickness of the temporary support is not particularly limited, and is preferably 5 to 200 ⁇ m, more preferably 10 to 150 ⁇ m, from the viewpoint of ease of handling and excellent versatility.
- the thickness of the temporary support depends on the material, considering the strength of the support, the flexibility required for lamination with the substrate for circuit wiring formation, and the light transmittance required in the first exposure step. can be selected as appropriate.
- the temporary support may be a recycled product. Recycled products include those obtained by washing used films, cutting them into chips, and making films using these as materials. A specific example of the recycled product is Ecouse series manufactured by Toray Industries, Inc.
- Preferred aspects of the temporary support include, for example, paragraphs 0017 to 0018 of JP-A-2014-085643, paragraphs 0019-0026 of JP-A-2016-027363, paragraphs 0041 to 0057 of WO2012/081680A1, and WO2018/ 179370A1, paragraphs 0029-0040, the contents of which are incorporated herein.
- Temporary supports include, for example, Cosmoshine (registered trademark) A4100, Cosmoshine (registered trademark) A4160, and Cosmoshine (registered trademark) A4360 (all manufactured by Toyobo Co., Ltd.), and Lumirror (registered trademark). ) 16FB40, Lumirror (registered trademark) 16QS62 (16KS40), Lumirror (registered trademark) #38-U48, Lumirror (registered trademark) #75-U34, and Lumirror (registered trademark) #25-T60 (all of the above are Toray ( Co., Ltd.) may be used.
- particularly preferred embodiments of the temporary support include a 16 ⁇ m thick biaxially stretched polyethylene terephthalate film, a 12 ⁇ m thick biaxially stretched polyethylene terephthalate film, and a 9 ⁇ m thick biaxially stretched polyethylene terephthalate film.
- the photosensitive layer in the transfer film is a layer formed using the photosensitive composition of the present invention.
- the photosensitive layer is a layer consisting essentially of the solid component of the photosensitive composition described above. is preferred. That is, the photosensitive composition that constitutes the photosensitive layer preferably contains solid components (components other than the solvent) that can be contained in the above-described photosensitive composition in the above-described content.
- the solvent remains in the photosensitive layer even after drying. may contain.
- the photosensitive layer has an acid group (preferably a carboxyl group) content of 5 mol% or more derived from the compound A upon exposure in terms of having superior pattern forming ability, particularly in an alkaline developer. It is preferably reduced at a reduction rate of 10 mol% or more, more preferably at a reduction rate of 10 mol% or more, even more preferably at a reduction rate of 20 mol% or more, and reduced at a reduction rate of 31 mol% or more is more preferable, it is particularly preferable that the reduction rate is 40 mol% or more, it is particularly preferable that the reduction rate is 51 mol% or more, and it is most preferable that the reduction rate is 71 mol% or more. .
- an acid group preferably a carboxyl group
- the upper limit is not particularly limited, it is, for example, 100 mol % or less.
- the acid group derived from compound A is a carboxy group
- the rate of decrease in the content of carboxy groups derived from compound A in the photosensitive layer can be obtained by measuring the amount of carboxy groups in the photosensitive layer before and after exposure. can be calculated by When measuring the amount of carboxy groups in the photosensitive layer before exposure, it can be analyzed and quantified by, for example, potentiometric titration.
- the hydrogen atoms of the carboxy groups are replaced with metal ions such as lithium, and the amount of metal ions is measured by ICP-OES (Inductivity coupled plasma optical emission spectrometer).
- the reduction rate of the content of acid groups derived from compound A in the photosensitive layer can be obtained by measuring the IR (infrared) spectrum of the photosensitive layer before and after exposure, and calculating the reduction rate of the peaks derived from the acid groups. You can get it though.
- the average thickness of the photosensitive layer is preferably 0.5-20 ⁇ m. When the average thickness of the photosensitive layer is 20 ⁇ m or less, the resolution of the pattern is more excellent, and when the average thickness of the photosensitive layer is 0.5 ⁇ m or more, it is preferable from the viewpoint of pattern linearity.
- the average thickness of the photosensitive layer is more preferably 0.8 to 15 ⁇ m, still more preferably 1.0 to 10 ⁇ m. Specific examples of the average thickness of the photosensitive layer include 3.0 ⁇ m, 5.0 ⁇ m, and 8.0 ⁇ m.
- the photosensitive layer can be formed by applying and drying the photosensitive composition of the present invention.
- the photosensitive composition should be filtered using, for example, a filter having a pore size of 0.2 to 30 ⁇ m before being subjected to formation. is preferred.
- a photosensitive layer can be formed by applying the photosensitive composition onto a temporary support or a cover film and drying it.
- the coating method is not particularly limited, and includes known methods such as slit coating, spin coating, curtain coating, and inkjet coating.
- the photosensitive layer may be formed on the above other layers.
- the 365 nm transmittance of the photosensitive layer is preferably 20% or more, more preferably 65% or more, more preferably 90%, in terms of better pattern formation ability and/or lower moisture permeability of the formed pattern. % or more is more preferable. Although the upper limit is not particularly limited, it is 100% or less.
- the ratio of the 365 nm transmittance of the photosensitive layer to the 313 nm transmittance of the photosensitive layer is more excellent in pattern formation ability. 1 or more is preferable, and 1.5 or more is more preferable in terms of point and/or the moisture permeability of the formed pattern becomes lower.
- the upper limit is not particularly limited, it is, for example, 1000 or less.
- the acid group possessed by compound A is preferably a carboxy group.
- the photosensitive layer preferably has a carboxyl group content that is reduced at a rate of 5 mol % or more by irradiation with actinic rays or radiation.
- Such a photosensitive layer is more preferably a photosensitive layer that satisfies either the requirement (V1-C) or the requirement (W1-C) described above.
- the above-described photosensitive layers of Embodiments X-1-a1-C to X-1-a3-C are more preferable.
- the visible light transmittance per 1.0 ⁇ m film thickness of the photosensitive layer is preferably 80% or more, more preferably 90% or more, and most preferably 95% or more.
- the visible light transmittance it is preferable that all of the average transmittance at a wavelength of 400 to 800 nm, the minimum transmittance at a wavelength of 400 to 800 nm, and the transmittance at a wavelength of 400 nm satisfy the above.
- Preferable values of the visible light transmittance per 1.0 ⁇ m film thickness of the photosensitive layer are, for example, 87%, 92%, 98%, and the like.
- the dissolution rate of the photosensitive layer in a 1.0% by mass aqueous solution of sodium carbonate is preferably 0.01 ⁇ m/second or more, more preferably 0.10 ⁇ m/second or more, and more preferably 0.20 ⁇ m/second from the viewpoint of suppressing residue during development. The above is more preferable. From the point of view of the edge shape of the pattern, it is preferably 5.0 ⁇ m/sec or less. Specific preferable numerical values include, for example, 1.8 ⁇ m/second, 1.0 ⁇ m/second, and 0.7 ⁇ m/second.
- the dissolution rate per unit time of the photosensitive layer in a 1.0% by mass sodium carbonate aqueous solution is measured as follows.
- a photosensitive layer formed on a glass substrate from which the solvent has been sufficiently removed is dissolved at 25 ° C. using a 1.0% by mass sodium carbonate aqueous solution.
- Perform shower development until cut (however, up to 2 minutes). It is obtained by dividing the film thickness of the photosensitive layer by the time required for the photosensitive layer to melt completely. In addition, when it does not melt completely in 2 minutes, it calculates similarly from the film thickness change amount until then.
- a 1/4 MINJJX030PP shower nozzle manufactured by Ikeuchi Co., Ltd. is used, and the shower spray pressure is 0.08 MPa. Under the above conditions, the shower flow rate per unit time is 1,800 mL/min.
- the number of foreign substances having a diameter of 1.0 ⁇ m or more in the photosensitive layer is preferably 10/mm 2 or less, more preferably 5/mm 2 or less.
- the number of foreign objects shall be measured as follows. Any five regions (1 mm ⁇ 1 mm) on the surface of the photosensitive layer from the normal direction of the surface of the photosensitive layer are visually observed using an optical microscope, and a diameter of 1 in each region Measure the number of foreign matter of 0 ⁇ m or more, and calculate the number of foreign matter by arithmetically averaging them.
- Specific preferable numerical values include, for example, 0/mm 2 , 1/mm 2 , 4/mm 2 , and 8/mm 2 .
- the haze of a solution obtained by dissolving 1.0 cm 3 of a photosensitive layer in 1.0 liter of a 30° C. aqueous solution of 1.0% by weight sodium carbonate is 60% or less. is preferably 30% or less, more preferably 10% or less, and most preferably 1% or less. Haze shall be measured as follows. First, a 1.0% by mass sodium carbonate aqueous solution is prepared and the liquid temperature is adjusted to 30°C. 1.0 cm 3 of photosensitive layer is placed in 1.0 L of sodium carbonate aqueous solution. Stir at 30° C. for 4 hours, taking care not to introduce air bubbles.
- the haze of the solution in which the photosensitive resin layer is dissolved is measured. Haze is measured using a haze meter (product name “NDH4000”, manufactured by Nippon Denshoku Industries Co., Ltd.) using a liquid measurement unit and a liquid measurement dedicated cell with an optical path length of 20 mm. Specific preferable numerical values include, for example, 0.4%, 1.0%, 9%, and 24%.
- the transfer film of the present invention may further have a cover film on the side opposite to the temporary support when viewed from the photosensitive layer.
- the transfer film of the present invention includes a high refractive index layer described later
- the cover film is arranged on the side opposite to the temporary support (that is, the side opposite to the photosensitive layer) when viewed from the high refractive index layer. is preferred.
- the transfer film is a laminate in which, for example, "temporary support/photosensitive layer/high refractive index layer/cover film" are laminated in this order.
- the number of fisheyes having a diameter of 80 ⁇ m or more contained in the cover film is preferably 5/m 2 or less.
- fish eye refers to material foreign matter, undissolved matter, and/or Alternatively, an oxidative degradation product or the like is taken into the film.
- the number of particles having a diameter of 3 ⁇ m or more contained in the cover film is preferably 30 particles/mm 2 or less, more preferably 10 particles/mm 2 or less, and even more preferably 5 particles/mm 2 or less. As a result, it is possible to suppress defects caused by the unevenness caused by the particles contained in the cover film being transferred to the photosensitive resin layer.
- the arithmetic mean roughness Ra of the surface of the cover film is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, and even more preferably 0.03 ⁇ m or more. If Ra is within such a range, for example, when the transfer film is elongated, it is possible to improve the take-up property when the transfer film is taken up. From the viewpoint of suppressing defects during transfer, Ra is preferably less than 0.50 ⁇ m, more preferably 0.40 ⁇ m or less, and even more preferably 0.30 ⁇ m or less.
- Cover films include, for example, polyethylene terephthalate films, polypropylene films, polystyrene films, and polycarbonate films.
- cover film for example, those described in paragraphs 0083 to 0087 and 0093 of JP-A-2006-259138 may be used.
- Alphan (registered trademark) FG-201 manufactured by Oji F-Tex Co., Ltd. Alphan (registered trademark) E-201F manufactured by Oji F-Tex Co., Ltd., Toray Advanced Film Co., Ltd.
- Therapeal (registered trademark) 25WZ manufactured by Toray Industries, Inc. or Lumirror (registered trademark) 16QS62 (16KS40) manufactured by Toray Industries, Inc. may also be used.
- the transfer film may have other layers than those mentioned above.
- Other layers include, for example, a high refractive index layer.
- the photosensitive layer may be formed on the high refractive index layer.
- the high refractive index layer is preferably arranged adjacent to the photosensitive layer, and is also preferably arranged on the opposite side of the temporary support from the photosensitive layer.
- the high refractive index layer is not particularly limited except that it is a layer having a refractive index of 1.50 or more at a wavelength of 550 nm.
- the refractive index of the high refractive index layer is preferably 1.55 or higher, more preferably 1.60 or higher.
- the upper limit of the refractive index of the high refractive index layer is not particularly limited, it is preferably 2.10 or less, more preferably 1.85 or less, still more preferably 1.78 or less, and particularly preferably 1.74 or less.
- the refractive index of the high refractive index layer is preferably higher than the refractive index of the photosensitive layer.
- the high refractive index layer may be photocurable (that is, photosensitive), thermosetting, or both photocurable and thermosetting. .
- the embodiment in which the high refractive index layer is photosensitive has the advantage that after transfer, the photosensitive layer and the high refractive index layer transferred onto the base material can be patterned together by photolithography once.
- the high refractive index layer preferably has alkali solubility (for example, solubility in a weakly alkaline aqueous solution). Also, the high refractive index layer is preferably a transparent layer.
- the thickness of the high refractive index layer is preferably 500 nm or less, more preferably 110 nm or less, and even more preferably 100 nm or less.
- the thickness of the high refractive index layer is preferably 20 nm or more, more preferably 55 nm or more, still more preferably 60 nm or more, and particularly preferably 70 nm or more.
- the high refractive index layer may form a laminate together with the transparent electrode pattern (preferably ITO pattern) and the photosensitive layer by being sandwiched between the transparent electrode pattern and the photosensitive layer.
- the transparent electrode pattern preferably ITO pattern
- the photosensitive layer may reduce the refractive index difference between the transparent electrode pattern and the high refractive index layer and the refractive index difference between the high refractive index layer and the photosensitive layer. This further improves the concealability of the transparent electrode pattern. For example, when a transparent electrode pattern, a high refractive index layer, and a photosensitive layer are laminated in this order, the transparent electrode pattern becomes less visible when viewed from the transparent electrode pattern side.
- the refractive index of the high refractive index layer is preferably adjusted according to the refractive index of the transparent electrode pattern.
- the refractive index of the transparent electrode pattern is in the range of 1.8 to 2.0 as in the case of forming using oxides of In and Sn (ITO)
- the refractive index of the high refractive index layer is 1.60 or more is preferable.
- the upper limit of the refractive index of the high refractive index layer in this case is not particularly limited, it is preferably 2.1 or less, more preferably 1.85 or less, even more preferably 1.78 or less, and particularly preferably 1.74 or less.
- the refractive index of the transparent electrode pattern exceeds 2.0 as in the case of forming using an oxide of In and Zn (IZO; Indium Zinc Oxide)
- the refractive index of the high refractive index layer is 1.0. 70 or more and 1.85 or less are preferable.
- the method for controlling the refractive index of the high refractive index layer is not particularly limited. A method using a complex with, and the like.
- metal oxide particles or metal particles is not particularly limited, and known metal oxide particles or metal particles can be used. Metals in metal oxide particles or metal particles also include semimetals such as B, Si, Ge, As, Sb, and Te.
- the average primary particle size of the particles is, for example, preferably 1 to 200 nm, more preferably 3 to 80 nm, from the viewpoint of transparency.
- the average primary particle diameter of particles is calculated by measuring the particle diameters of 200 arbitrary particles using an electron microscope and arithmetically averaging the measurement results. When the shape of the particles is not spherical, the longest side is taken as the particle diameter.
- Specific examples of metal oxide particles include zirconium oxide particles ( ZrO2 particles), Nb2O5 particles, titanium oxide particles ( TiO2 particles), silicon dioxide particles ( SiO2 particles), and composites thereof. At least one selected from the group consisting of particles is preferred.
- the metal oxide particles for example, at least one selected from the group consisting of zirconium oxide particles and titanium oxide particles from the viewpoint that the refractive index of the high refractive index layer can be easily adjusted to 1.6 or more. more preferred.
- the high refractive index layer may contain only one type of metal oxide particles, or may contain two or more types of metal oxide particles.
- the content of the particles improves the concealability of the object to be hidden, such as the electrode pattern, and effectively improves the visibility of the object to be hidden. It is preferably 1 to 95% by mass, more preferably 20 to 90% by mass, and even more preferably 40 to 85% by mass, relative to the total mass.
- the content of the titanium oxide particles is preferably 1 to 95% by mass, more preferably 20 to 90% by mass, based on the total mass of the high refractive index layer. It is preferably 40 to 85% by mass, and more preferably 40 to 85% by mass.
- metal oxide particles include calcined zirconium oxide particles (manufactured by CIK Nanotech Co., Ltd., product name: ZRPGM15WT%-F04), calcined zirconium oxide particles (manufactured by CIK Nanotech Co., Ltd., product name: ZRPGM15WT%-F74), Baked zirconium oxide particles (manufactured by CIK Nanotech Co., Ltd., product name: ZRPGM15WT%-F75), calcined zirconium oxide particles (manufactured by CIK Nanotech Co., Ltd., product name: ZRPGM15WT%-F76), zirconium oxide particles (Nanouse OZ-S30M, Nissan Kagaku Kogyo Co., Ltd.) zirconium oxide particles (Nanouse OZ-S30K, Nissan Chemical Industries, Ltd.).
- the high refractive index layer includes inorganic particles (metal oxide particles or metal particles) having a refractive index of 1.50 or more (more preferably 1.55 or more, still more preferably 1.60 or more), and a refractive index of 1.50 or more (more preferably 1.55 or more, still more preferably 1.60 or more), and a polymer having a refractive index of 1.50 or more (more preferably 1.55 or more, still more preferably 1.60 or more) It preferably contains one or more selected from the group consisting of toxic compounds. In this aspect, it is easy to adjust the refractive index of the high refractive index layer to 1.50 or more (more preferably 1.55 or more, particularly preferably 1.60 or more).
- the high refractive index layer preferably contains a binder polymer, a polymerizable monomer, and particles.
- the components of the high refractive index layer the components of the curable transparent resin layer described in paragraphs 0019 to 0040 and 0144 to 0150 of JP 2014-108541, paragraphs 0024 to 0035 of JP 2014-010814 and components of the transparent layer described in WO 2016/009980, components of compositions having ammonium salts described in paragraphs 0034 to 0056 of WO 2016/009980, and the like.
- the high refractive index layer preferably contains a metal oxidation inhibitor.
- a member that is in direct contact with the high refractive index layer e.g., on the substrate
- This surface treatment imparts a metal oxidation suppressing function (protective property) to the member that is in direct contact with the high refractive index layer.
- the metal oxidation inhibitor is preferably a compound having an aromatic ring containing a nitrogen atom.
- a compound having an aromatic ring containing a nitrogen atom may have a substituent.
- the aromatic ring containing a nitrogen atom is preferably an imidazole ring, a triazole ring, a tetrazole ring, a thiazole ring, a thiadiazole ring, or a condensed ring of any one of these and another aromatic ring, such as an imidazole ring, a triazole ring, and a tetrazole ring.
- any one of these is more preferably a condensed ring with another aromatic ring.
- the "other aromatic ring" forming the condensed ring may be a monocyclic ring or a heterocyclic ring, but is preferably a monocyclic ring, more preferably a benzene ring or a naphthalene ring, and still more preferably a benzene ring.
- the metal oxidation inhibitor is preferably imidazole, benzimidazole, tetrazole, 5-amino-1H-tetrazole, mercaptothiadiazole or benzotriazole, more preferably imidazole, benzimidazole, 5-amino-1H-tetrazole or benzotriazole.
- a commercial product may be used as the metal oxidation inhibitor, and as a commercial product, for example, BT120 manufactured by Johoku Chemical Industry Co., Ltd. containing benzotriazole can be preferably used.
- the content of the metal oxidation inhibitor is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, based on the total solid content of the high refractive index layer. is more preferred, and 1 to 5% by mass is even more preferred.
- the high refractive index layer may contain components other than the components described above. Other components that the high refractive index layer may contain include the same components as other components that the photosensitive layer may contain.
- the high refractive index layer also preferably contains a surfactant.
- the method for forming the high refractive index layer is not particularly limited.
- a method for forming the high refractive index layer for example, a composition for forming a high refractive index layer containing an aqueous solvent is applied onto the above photosensitive layer formed on a temporary support, and dried if necessary.
- the composition for forming a high refractive index layer may contain each component of the high refractive index layer described above.
- the composition for forming a high refractive index layer contains, for example, a binder polymer, a polymerizable monomer, particles, and an aqueous solvent. Further, as the composition for forming a high refractive index layer, compositions containing an ammonium salt described in paragraphs 0034 to 0056 of WO 2016/009980 are also preferable.
- the photosensitive layer and the high refractive index layer are preferably achromatic. Specifically, total reflection (incident angle 8°, light source: D-65 (2° field of view)) has an L * value of 10 to 90 in the CIE1976 (L * , a * , b * ) color space.
- the a * value is preferably -1.0 to 1.0
- the b * value is preferably -1.0 to 1.0.
- the transfer film may include layers other than the layers described above (hereinafter also referred to as "other layers").
- Other layers include, for example, an intermediate layer and a thermoplastic resin layer, and known layers can be used as appropriate.
- thermoplastic resin layer Preferred embodiments of the thermoplastic resin layer are described in paragraphs 0189 to 0193 of JP-A-2014-085643, and preferred embodiments of layers other than the above are described in paragraphs 0194-0196 of JP-A-2014-085643. Yes, the contents of this publication are incorporated herein.
- the production method of the transfer film is not particularly limited, and known production methods can be applied.
- the method for producing the transfer film preferably includes a step of forming a photosensitive layer from the photosensitive composition of the present invention on the temporary support, and after the step of forming the photosensitive layer, the photosensitive More preferably, the step of placing a cover film over the adhesive layer is included. Further, after the step of forming the photosensitive layer, a step of forming a high refractive index layer by applying and drying a composition for forming a high refractive index layer may be included. In this case, it is more preferable to further include a step of disposing a cover film on the high refractive layer after the step of forming the high refractive layer.
- the pattern forming method related to the present invention (also referred to as the "pattern forming method of the present invention”) is not particularly limited as long as it is a pattern forming method using the photosensitive composition of the present invention.
- a step of forming a photosensitive layer on a base material, a step of pattern-exposing the photosensitive layer, and a step of developing (in particular, alkali development) the exposed photosensitive layer, in this order. is preferred.
- the development is organic solvent development, it is preferable to include a step of further exposing the obtained pattern.
- the above-described transfer film is produced using the photosensitive composition, and such a transfer film is used to form the substrate.
- a method of forming a photosensitive layer thereon may also be used. Specifically, as such a method, the surface of the photosensitive layer in the above-described transfer film opposite to the temporary support side is brought into contact with the base material, and the transfer film and the base material are bonded together, and the transfer film is A method of using the photosensitive layer in (1) as a photosensitive layer on the base material.
- Specific embodiments of the pattern forming method of the present invention include the pattern forming methods of the first and second embodiments. Each step of the pattern forming method of Embodiments 1 and 2 will be described in detail below.
- the pattern formation method of Embodiment 1 has steps X1 to X3.
- the following step X2 corresponds to the step of reducing the content of acid groups derived from compound A in the photosensitive layer by exposure.
- the developer in step X3 is an organic solvent-based developer
- Step X1 The surface of the photosensitive layer in the transfer film opposite to the temporary support side is brought into contact with the substrate, and the transfer film and the substrate are bonded together
- Step X2 Pattern exposure of the photosensitive layer
- Step X3 A step of developing the photosensitive layer using a developer (e.g., an alkaline developer or an organic solvent-based developer).
- Step X4 After the development step of step X3, a step of exposing a pattern formed by development.
- the photosensitive layer is preferably the photosensitive layer of Embodiments X-1-a1 and X-1-a2.
- the photosensitive layer is preferably the photosensitive material of Embodiment X-1-a1.
- the patterning method of Embodiment 1 is preferably applied to transfer films comprising the photosensitive layers of Embodiments X-1-a1 and X-1-a2 described above.
- the pattern forming method of Embodiment 1 preferably has a step of peeling off the temporary support between the steps X1 and X2 or between the steps X2 and X3.
- the pattern forming method of Embodiment 1 has a step of bringing the surface of the photosensitive layer in the transfer film opposite to the temporary support side into contact with the substrate, and bonding the transfer film and the substrate together.
- the substrate is not particularly limited, and examples thereof include glass substrates, silicon substrates, resin substrates, and substrates having a conductive layer.
- substrates included in the substrate having a conductive layer include glass substrates, silicon substrates, and resin substrates.
- the substrate is preferably transparent.
- the refractive index of the substrate is preferably 1.50 to 1.52.
- the substrate may be composed of a translucent substrate such as a glass substrate.
- tempered glass such as Corning Gorilla Glass can be used. Materials used in JP-A-2010-086684, JP-A-2010-152809, and JP-A-2010-257492 are also preferable as the material contained in the base material.
- the substrate includes a resin substrate
- a resin film with small optical distortion and/or high transparency as the resin substrate.
- Specific materials include polyethylene terephthalate (PET), polyethylene naphthalate, polycarbonate, triacetyl cellulose, cycloolefin polymer, and the like.
- the substrate included in the substrate having the conductive layer is preferably a resin substrate, and more preferably a resin film, from the viewpoint of roll-to-roll production.
- the conductive layer includes any conductive layer used for general circuit wiring or touch panel wiring.
- the conductive layer one or more selected from the group consisting of a metal layer (metal foil, etc.), a conductive metal oxide layer, a graphene layer, a carbon nanotube layer, and a conductive polymer layer from the viewpoint of conductivity and fine line formation. is preferred, a metal layer is more preferred, and a copper or silver layer is even more preferred.
- the conductive layer in the substrate having the conductive layer may be one layer or two layers or more. When a substrate having a conductive layer includes two or more conductive layers, each conductive layer is preferably made of a material different from each other. Materials for the conductive layer include simple metals and conductive metal oxides.
- Conductive metal oxides include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and SiO 2 .
- conductivity refers to a volume resistivity of less than 1 ⁇ 10 6 ⁇ cm, preferably less than 1 ⁇ 10 4 ⁇ cm.
- the conductive layer is preferably an electrode pattern corresponding to the sensor of the visual recognition portion used in the capacitive touch panel or the wiring of the peripheral extracting portion. Also, the conductive layer is preferably a transparent layer.
- the step X1 is preferably a bonding step by pressing and heating with rolls or the like.
- a known laminator such as a laminator, a vacuum laminator, and an autocut laminator can be used for bonding.
- the step X1 is preferably carried out by a roll-to-roll method, and therefore the base material to which the transfer film is attached is preferably a resin film or a resin film having a conductive layer. The roll-to-roll method will be described below.
- a base material that can be wound and unwound is used as a base material, and the step of unwinding the base material (“winding (Also referred to as "unloading step"), and after any of the steps, a step of winding the base material (also referred to as “winding step”), at least any of the steps (preferably, all steps, or all the steps other than the heating step) while conveying the substrate.
- the unwinding method in the unwinding step and the winding method in the winding step are not particularly limited, and known methods may be used in manufacturing methods to which a roll-to-roll system is applied.
- the pattern forming method of Embodiment 1 includes a step of pattern-exposing the photosensitive layer (step X2) after step X1.
- Step X2 corresponds to the step of reducing the content of acid groups derived from compound A in the photosensitive layer by exposure. More specifically, specific structure S0 (preferably specific structure S1) in compound ⁇ (preferably compound B) in the photosensitive layer (for requirement V01) and specific structure S0 in compound A (preferably specific structure It is preferred to patternwise expose the photosensitive layer with light of a wavelength that excites S1) (for requirement W01).
- the detailed arrangement and specific size of the pattern are not particularly limited.
- the display quality of a display device for example, a touch panel
- the display quality of a display device for example, a touch panel
- the area occupied by the lead-out wiring can be made as small as possible
- at least a part of the pattern is preferably a thin wire of 100 ⁇ m or less, and 70 ⁇ m or less. is more preferable.
- the light source used for exposure light in a wavelength range capable of reducing the content of acid groups derived from compound A in the photosensitive layer (compound ⁇ in the photosensitive layer (preferably compound B)
- the photosensitive layer is In the case of the photosensitive layer described above, light in a wavelength range of 254 nm, 313 nm, 365 nm, 405 nm, etc. can be used.
- Specific examples include ultra-high pressure mercury lamps, high pressure mercury lamps, metal halide lamps, and LEDs (Light Emitting Diodes).
- the exposure amount is preferably 10-10000 mJ/cm 2 , more preferably 50-3000 mJ/cm 2 .
- step X2 pattern exposure may be performed after peeling the temporary support from the photosensitive layer, and before peeling the temporary support, pattern exposure is performed through the temporary support, and then the temporary support is peeled.
- the pattern exposure may be exposure through a mask, or may be direct exposure using a laser or the like.
- the temporary support is peeled off from the photosensitive layer before step X3, which will be described later.
- the pattern forming method of Embodiment 1 includes a step (step X3) of developing the pattern-exposed photosensitive layer with a developer (especially an alkaline developer) after step X2.
- a developer especially an alkaline developer
- the content of acid groups in the photosensitive layer in the exposed area is reduced, so that there is a difference in solubility (dissolution contrast) between the exposed area and the unexposed area in a developer. is occurring.
- solubility solubility
- Formation of the dissolution contrast in the photosensitive layer enables pattern formation in step X3.
- the developer in the step X3 is an alkaline developer, the unexposed portion is removed by performing the step X3 to form a negative pattern.
- the developer in the step X3 is an organic solvent-based developer
- the exposed portion is removed by performing the step X3 to form a positive pattern.
- the resulting positive pattern is subjected to a treatment for reducing the content of acid groups derived from compound A in step X4, which will be described later.
- the alkaline developer is not particularly limited as long as it can remove the unexposed portion of the photosensitive resin layer.
- the alkaline developer for example, an aqueous alkaline developer containing a compound having a pKa of 7 to 13 at a concentration of 0.05 to 5 mol/L (liter) is preferable.
- the alkaline developer may further contain a water-soluble organic solvent, a surfactant, and the like.
- the alkaline developer for example, the developer described in paragraph 0194 of International Publication No. 2015/093271 is preferable.
- the concentration of water in the alkaline developer is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 85% by mass or more, particularly preferably 90% by mass or more, and most preferably 95% by mass or more. In addition, as an upper limit, it is less than 100 mass %, for example.
- Organic solvent-based developer is not particularly limited as long as it can remove the exposed portion of the photosensitive resin layer.
- a developer containing an organic solvent such as a hydrogen-based solvent can be used.
- a plurality of organic solvents may be mixed, or an organic solvent other than the above or water may be mixed and used.
- the water content of the organic solvent-based developer as a whole is preferably less than 10% by mass, and more preferably substantially free of water.
- the concentration of the organic solvent (in the case of multiple mixtures, the total) in the organic solvent-based developer is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 85% by mass or more, and particularly preferably 90% by mass or more. , 95 mass % or more is most preferable. In addition, as an upper limit, it is 100 mass % or less, for example.
- the development method is not particularly limited, and may be any of puddle development, shower development, spin development, dip development, and the like.
- shower development will be described. Unnecessary portions can be removed by spraying a developer onto the exposed photosensitive resin layer by showering. After development, it is also preferable to remove development residues while spraying a detergent or the like with a shower and rubbing with a brush or the like.
- the liquid temperature of the developer is preferably 20 to 40.degree.
- the pattern forming method of Embodiment 1 may or may not further include a post-baking step of heat-treating the pattern including the photosensitive layer obtained by development.
- Post-baking is preferably performed in an environment of 8.1 to 121.6 kPa, more preferably in an environment of 50.66 kPa or higher. On the other hand, it is more preferable to carry out under the environment of 111.46 kPa or less, and further preferably under the environment of 101.3 kPa or less.
- the post-baking temperature is preferably 80 to 250.degree. C., more preferably 110 to 170.degree. C., even more preferably 130 to 150.degree.
- the post-baking time is preferably 1 to 60 minutes, more preferably 2 to 50 minutes, even more preferably 5 to 40 minutes. Post-baking may be performed in an air environment or in a nitrogen-substituted environment.
- Step X4 corresponds to the step of exposing the positive pattern obtained in step X3 to reduce the content of acid groups derived from compound A. More specifically, specific structure S0 (preferably specific structure S1) in compound ⁇ (preferably compound B) in the photosensitive layer (for requirement V01) and specific structure S0 in compound A (preferably specific structure It is preferred to patternwise expose the photosensitive layer with light of a wavelength that excites S1) (for requirement W01).
- the light source and exposure amount used for exposure are the same as the light source and exposure amount described in step X1, and the preferred embodiments are also the same.
- the pattern forming method of Embodiment 2 has step Y1, step Y2P, and step Y3 in this order, and further includes step Y2Q (a step of further exposing the photosensitive layer exposed in step Y2P). Between Y2P and step Y3, or after step Y3.
- Step Y1 The surface of the photosensitive layer in the transfer film opposite to the temporary support side is brought into contact with the substrate, and the transfer film and the substrate are bonded together
- Step Y2P The step of exposing the photosensitive layer
- Step Y3 Step of developing the photosensitive layer
- the pattern forming method of Embodiment 2 corresponds to an aspect applicable when the photosensitive layer further contains a photopolymerization initiator and a polymerizable compound. Therefore, the patterning method of Embodiment 2 is preferably applied to a transfer film including the photosensitive layer of Embodiment X-1-a3 described above.
- the pattern forming method of Embodiment 2 will be described below.
- Processes Y1 and Y3 are the same as the processes X1 and X3, respectively, and description thereof will be omitted. Note that the step Y3 may be performed at least after the step Y2P, and the step Y3 may be performed between the steps Y2P and Y2Q.
- the pattern forming method of Embodiment 2 may or may not have a post-baking step of heat-treating the pattern including the photosensitive layer obtained by development after step Y3. good.
- the post-baking process can be performed by the same method as the post-baking process that the pattern forming method of the first embodiment may have.
- step Y3 is performed between step Y2P and step Y2Q
- the post-baking step may be performed before step Y2Q or after step Y2Q as long as it is performed after step Y3. may have been
- the pattern forming method of Embodiment 2 preferably has a step of peeling off the temporary support between step Y1 and step Y2P or between step Y2P and step Y3.
- the pattern forming method of Embodiment 2 includes a step of exposing the photosensitive layer that has passed through step Y1 (step Y2P), and a step of further exposing the exposed photosensitive layer (step Y2Q).
- One of the exposure treatments is mainly exposure for reducing the content of acid groups derived from compound A by exposure, and the other of the exposure treatments (steps Y2P and Y2Q). mainly corresponds to exposure for causing a polymerization reaction of a polymerizable compound based on a photopolymerization initiator.
- the exposure processing may be either full-surface exposure or pattern exposure, but one of the exposure processing is pattern exposure.
- the developer used in step Y3 may be an alkaline developer or an organic solvent-based developer.
- step Y2Q is usually performed after step Y3, and in the developed photosensitive layer (pattern), the polymerization reaction of the polymerizable compound based on the photopolymerization initiator.
- the content of acid groups (preferably carboxyl groups) derived from compound A decreases as the acid groups are generated.
- step Y2P is pattern exposure for causing a polymerization reaction of a polymerizable compound based on a photopolymerization initiator
- the developer used in step Y3 is usually an alkaline developer.
- process Y2Q may be performed before or after process Y3, and process Y2Q performed before process Y3 is normal pattern exposure.
- the light source used for exposure is light in a wavelength range capable of reducing the content of acid groups derived from compound A in the photosensitive layer (compound ⁇ in the photosensitive layer ( Light of a wavelength that excites the specific structure S0 (preferably specific structure S1) in compound B) (for requirement V01) and the specific structure S0 (preferably specific structure S1) in compound A (for requirement W01).
- the photosensitive layer is the photosensitive layer described above
- light in the wavelength range of 254 nm, 313 nm, 365 nm, 405 nm, etc.) can be selected as appropriate.
- a polymerizable compound based on the photopolymerization initiator in the photosensitive layer light having a wavelength that sensitizes the photopolymerization initiator, for example, 254 nm, 313 nm, 365 nm, 405 nm, etc.
- Specific examples include ultra-high pressure mercury lamps, high pressure mercury lamps, metal halide lamps, and LEDs (Light Emitting Diodes).
- the exposure amount is preferably 10 to 10,000 mJ/cm 2 , more preferably 50 to 3,000 mJ/cm 2 .
- the exposure amount is preferably 5-200 mJ/cm 2 , more preferably 10-150 mJ/cm 2 .
- pattern exposure may be performed after peeling the temporary support from the photosensitive layer, and before peeling the temporary support, pattern exposure is performed via the temporary support, and then the temporary support is exposed. may be peeled off.
- the pattern exposure may be exposure through a mask, or may be direct exposure using a laser or the like.
- the detailed arrangement and specific size of the pattern are not particularly limited.
- the display quality of a display device for example, a touch panel
- the display quality of a display device for example, a touch panel
- the area occupied by the lead-out wiring can be made as small as possible
- at least a part of the pattern is preferably a thin wire of 100 ⁇ m or less, and 70 ⁇ m or less. is more preferable.
- the pattern forming method of Embodiment 2 preferably includes process Y1, process Y2A, process Y3, and process Y2B in this order.
- step Y2A and step Y2B one is an exposure step for reducing the content of acid groups derived from compound A by exposure, and the other is a polymerization reaction of a polymerizable compound based on a photopolymerization initiator. It is also preferred that it is an exposure step for generating.
- Step Y1 A step of bringing the surface of the photosensitive layer in the transfer film opposite to the temporary support side into contact with the substrate, and bonding the transfer film and the substrate together
- Step Y2A Step of exposing the photosensitive layer in a pattern
- Step Y3 Step of developing the photosensitive layer with an alkaline developer to form a pattern
- Step Y2B Step of exposing the pattern obtained in Step Y3
- the pattern forming method preferably has a step of peeling off the temporary support between step Y1 and step Y2A or between step Y2A and step Y3.
- the step Y2A is preferably an exposure step for causing a polymerization reaction of a polymerizable compound based on a photopolymerization initiator, and the step Y2B reduces the content of acid groups derived from compound A by exposure. It is preferable that the exposure step is for
- the pattern formation methods of Embodiments 1 and 2 may include arbitrary steps (other steps) other than those described above. Examples include, but are not limited to, the following steps.
- the pattern forming method preferably includes a step of peeling off the cover film of the transfer film (hereinafter also referred to as a “cover film peeling step”).
- a method for peeling off the cover film is not particularly limited, and a known method can be applied.
- the patterning method may further include the step of treating the conductive layer to reduce the reflectance of visible light.
- the treatment for reducing the visible light reflectance may be performed on some of the conductive layers or may be performed on all the conductive layers.
- the treatment for reducing the visible light reflectance includes oxidation treatment.
- the visible light reflectance of the conductive layer can be reduced by oxidizing copper to form copper oxide, thereby blackening the copper.
- the pattern forming method uses the pattern formed in step X3 (or step X4) and step Y3 as an etching resist film to form a conductive layer in a region where the etching resist film is not disposed. It is preferable to include a step of etching the layer (etching step).
- etching treatment method a wet etching method described in paragraphs 0048 to 0054 of JP-A-2010-152155, etc., and a known dry etching method such as plasma etching can be applied.
- etching treatment method there is a commonly used wet etching method in which the substrate is immersed in an etchant.
- an acidic type or alkaline type etchant may be appropriately selected according to the object to be etched.
- Acid type etching solutions include aqueous solutions of acidic components alone such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid, and acidic component and salts such as ferric chloride, ammonium fluoride, or potassium permanganate.
- a mixed aqueous solution and the like are exemplified.
- the acidic component a component obtained by combining a plurality of acidic components may be used.
- Alkaline etching solutions include aqueous solutions of alkali components alone, such as sodium hydroxide, potassium hydroxide, ammonia, organic amines, and salts of organic amines such as tetramethylammonium hydroxide, and alkali components and potassium permanganate.
- alkali components alone, such as sodium hydroxide, potassium hydroxide, ammonia, organic amines, and salts of organic amines such as tetramethylammonium hydroxide, and alkali components and potassium permanganate.
- a mixed aqueous solution with a salt such as As the alkaline component, a component obtained by combining a plurality of alkaline components may be used.
- the temperature of the etching solution is not particularly limited, it is preferably 45° C. or lower.
- the pattern formed in step X3 (or step X4) and step Y3 (or step Y2B), which is used as an etching resist film is acidic and alkaline in a temperature range of 45 ° C. or less. It is preferable to exhibit particularly excellent resistance to the etchant.
- the etching resist film is prevented from peeling off during the etching process, and the portions where the etching resist film does not exist are selectively etched. After the etching process, a cleaning process for cleaning the etched substrate and a drying process for drying the cleaned substrate may be performed as necessary in order to prevent contamination of the process line.
- the above pattern forming method it is also preferable to use a substrate having a plurality of conductive layers on both surfaces and pattern the conductive layers formed on both surfaces sequentially or simultaneously.
- the first conductive pattern can be formed on one surface of the substrate and the second conductive pattern can be formed on the other surface. Forming from both sides of the substrate by roll-to-roll is also preferable.
- the patterns formed by the pattern forming methods of Embodiments 1 and 2 have a low acid group content, and thus have low polarity, low moisture permeability, and low relative permittivity.
- the content of acid groups in the pattern is preferably reduced by 5 mol% or more, and preferably 10 mol% or more, relative to the content of acid groups in the photosensitive layer formed in step X1 or step Y1. It is more preferably reduced, even more preferably reduced by 20 mol% or more, still more preferably reduced by 31 mol% or more, and particularly preferably reduced by 40 mol% or more.
- a decrease of mol % or more is particularly preferred, and a decrease of 71 mol % or more is most preferred.
- the upper limit is not particularly limited, it is, for example, 100 mol % or less.
- the moisture permeability of the pattern is preferably reduced by 5% or more, more preferably by 10% or more, relative to the moisture permeability of the photosensitive layer formed in step X1 or step Y1. % or more is more preferable.
- the upper limit is not particularly limited, it is, for example, 100% or less.
- the dielectric constant of the pattern is preferably reduced by 5% or more, more preferably by 10% or more, relative to the dielectric constant of the photosensitive layer formed in step X1 or step Y1. , is more preferably reduced by 15% or more.
- the upper limit is not particularly limited, it is, for example, 100% or less.
- the average thickness of the pattern formed by the pattern forming method described above is preferably 0.5 to 20 ⁇ m.
- the average thickness of the pattern is more preferably 0.8 to 15 ⁇ m, still more preferably 1.0 to 10 ⁇ m.
- the pattern formed by the pattern forming method described above is preferably achromatic. Specifically, total internal reflection (incidence angle 8°, light source: D-65 (2° field of view)) is applied to the CIE1976 (L * , a * , b * ) color space, and the L * value of the pattern is 10 to 90.
- the a * value of the pattern is preferably ⁇ 1.0 to 1.0
- the b * value of the pattern is preferably ⁇ 1.0 to 1.0.
- the application of the pattern formed by the pattern forming method described above is not particularly limited, and can be used as various protective films or insulating films. Specifically, it is used as a protective film (permanent film) for protecting conductive patterns, as an interlayer insulating film between conductive patterns, and as an etching resist film in the production of circuit wiring. Since the pattern is excellent in low moisture permeability, it is particularly preferably used as a protective film (permanent film) for protecting the conductive pattern or an interlayer insulating film between the conductive patterns.
- the pattern is, for example, a protective film (permanent film) or a conductive film that protects conductive patterns such as electrode patterns corresponding to sensors in the visual recognition portion, peripheral wiring portions, and lead-out wiring portions provided inside the touch panel. It can be used as an interlayer insulating film between patterns.
- the invention also relates to a method of manufacturing circuit traces.
- the method for producing circuit wiring related to the present invention (also referred to as “the method for producing circuit wiring of the present invention") is not particularly limited as long as it is a method for producing circuit wiring using the photosensitive composition described above. It is preferable that it is a method for manufacturing circuit wiring using the transfer film of No.
- the surface of the photosensitive layer in the transfer film described above on the side opposite to the temporary support side is brought into contact with the conductive layer in the substrate having the conductive layer, A step of bonding a transfer film and a substrate having a conductive layer (bonding step), a step of pattern-exposing the photosensitive layer in the bonded transfer film (first exposure step), and exposing the exposed photosensitive layer to A step of forming a patterned etching resist film by developing with an alkaline developer (etching resist film forming step), and a step of etching the conductive layer in the region where the etching resist film is not arranged (etching treatment step) and , in this order.
- bonding step A step of bonding a transfer film and a substrate having a conductive layer
- first exposure step a step of pattern-exposing the photosensitive layer in the bonded transfer film
- first exposure step exposing the exposed photosensitive layer
- the etching resist film forming step includes a step of developing the exposed photosensitive layer obtained through the first exposure step with an alkali developer to form a pattern (alkali development step); and a step of exposing the formed pattern to form an etching resist film (second exposure step).
- the bonding step, the first exposure step, the alkali development step, and the second exposure step are all the steps Y1, Y2A, and Y2A of the pattern forming method of Embodiment 2 described above. It can be implemented by the same procedures as those of Step Y3 and Step Y2B.
- the etching resist film forming step may be performed by the same method as the step Y3.
- the substrate having a conductive layer used in the method for manufacturing circuit wiring of the present invention is the same as the substrate having a conductive layer used in the step X1 described above.
- the method for manufacturing the circuit wiring of the present invention may have other steps than the steps described above. Other steps include the same arbitrary steps that the pattern forming methods of the first and second embodiments may have.
- the circuit wiring manufacturing method of the present invention four steps of the bonding step, the first exposure step, the development step, the second exposure step, and the etching step are set as one set and are repeated multiple times. It is also preferable to have The film used as the etching resist film can also be used as a protective film (permanent film) for the formed circuit wiring.
- the present invention also relates to a method of manufacturing a touch panel.
- the method for producing a touch panel according to the present invention (also referred to as “the method for producing a touch panel of the present invention") is not particularly limited as long as it is a method for producing a touch panel using the photosensitive composition described above.
- the surface of the photosensitive layer in the above-described transfer film opposite to the temporary support side is coated with a conductive layer (preferably a patterned conductive layer, specifically, A step of bonding a transfer film and a substrate having a conductive layer (bonding step) by contacting a conductive layer in a substrate having a conductive pattern such as a touch panel electrode pattern or wiring), and photosensitive in the bonded transfer film A step of pattern-exposing a layer (first exposure step), and a step of developing the exposed photosensitive layer with an alkaline developer to form a patterned protective film or insulating film of the conductive layer ( protective film or insulating film forming step) in this order.
- a conductive layer preferably a patterned conductive layer, specifically, A step of bonding a transfer film and a substrate having a conductive layer (bonding step) by contacting a conductive layer in a substrate having a conductive pattern such as a touch panel electrode pattern or wiring
- the protective film or insulating film forming step includes a step of developing the exposed photosensitive layer obtained through the first exposure step using an alkali developer to form a pattern (alkali development step); It is preferable to include a step of exposing the obtained pattern to form a protective film or an insulating film for the conductive layer (second exposure step).
- the protective film functions as a film that protects the surface of the conductive layer.
- the insulating film functions as an interlayer insulating film between conductive layers.
- the touch panel manufacturing method of the present invention further includes a conductive layer (preferably a patterned conductive layer) on the insulating film, specifically, a touch panel electrode pattern or It is preferable to have a step of forming a conductive pattern such as wiring.
- the bonding step, the first exposure step, the alkali development step, and the second exposure step are all the step Y1, step Y2A, and step Y1 of the pattern forming method of Embodiment 2 described above. It can be implemented by the same procedures as Y3 and step Y2B.
- the protective film or insulating film forming step may be performed by the same procedure as the step Y3.
- the substrate having a conductive layer used in the method for manufacturing a touch panel of the present invention is the same as the substrate having a conductive layer used in step X1 described above.
- Other steps include the same arbitrary steps that the pattern forming methods of the first and second embodiments may have.
- a known method for manufacturing a touch panel can be referred to for configurations other than those described above.
- the touch panel manufactured by the touch panel manufacturing method of the present invention preferably has a transparent substrate, electrodes, and a protective layer (protective film).
- a detection method for the touch panel any of known methods such as a resistive film method, a capacitance method, an ultrasonic method, an electromagnetic induction method, and an optical method may be used. Among them, the capacitance method is preferable.
- the touch panel type the so-called in-cell type (for example, those described in FIGS. 5, 6, 7, and 8 of JP-A-2012-517051), the so-called on-cell type (for example, JP-A-2013-168125 19 of the publication, those described in FIGS.
- JP-A-2012-089102 OGS (One Glass Solution) type
- TOL (Touch-on-Lens) type for example, JP-A 2013-054727
- other configurations for example, those described in FIG. 6 of JP-A-2013-164871
- various out-cell types for example, GG, G1 G2, GFF , GF2, GF1, G1F, etc.
- the present invention will be described in more detail below based on examples.
- the materials, amounts used, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed to be limited by the examples shown below.
- Parts and “%” are based on mass unless otherwise specified.
- the weight average molecular weight of the resin is the weight average molecular weight determined by gel permeation chromatography (GPC) in terms of polystyrene.
- a photosensitive composition was prepared by mixing and stirring each component so as to obtain the composition and formulation shown in Table 2 shown in the latter part.
- the numerical value of the content (parts by mass) of the polymer in Table 2 intends the amount of solid content (other than the solvent).
- glycidyl methacrylate (Blenmer G manufactured by NOF Corporation) was added dropwise over 20 minutes. This was reacted at 100° C. for 7 hours to obtain a polymer 8 solution.
- the solid content concentration of the obtained solution was 36.3% by mass.
- the weight average molecular weight in terms of standard polystyrene in GPC was 15000, the degree of dispersion was 2.2, and the acid value of the polymer was 125 mgKOH/g.
- the amount of residual monomer measured using gas chromatography was less than 0.1% by mass based on the polymer solid content for any monomer.
- each polymer is synthesized in a state contained in a solution, but when using a polymer as a component of a photosensitive composition, only the solid content (polymer) contained in the solution is added to the photosensitive composition. added as an ingredient.
- the photosensitive compositions used in the transfer films of Examples 1 and 2 contained 100 parts by weight of Polymer 1 itself, not 100 parts by weight of the solution.
- Polymer 2 CHMA/MAA/MMA/MAA-GMA copolymer [composition ratio (mass ratio): 55.1/14.5/1.3/29.1, weight average molecular weight (Mw): 27 , 000]
- Polymer 3 IBMA/MAA copolymer [composition ratio (mass ratio): 80/20, weight average molecular weight (Mw): 12000]
- Polymer 4 DCPMA/MAA copolymer [composition ratio (mass ratio): 80/20, weight average molecular weight (Mw): 30000]
- Polymer 5 DCPMA/AA copolymer [composition ratio (mass ratio): 83/17, weight average molecular weight (Mw): 20000]
- Polymer 6
- ⁇ St repeating unit based on styrene
- ⁇ MAA repeating unit based on methacrylic acid
- ⁇ MMA repeating unit based on methyl methacrylate
- ⁇ MAA-GMA obtained by reacting the carboxy group of the repeating unit based on methacrylic acid with glycidyl methacrylate
- CHMA Repeating unit based on cyclohexyl methacrylate
- DCPMA Repeating unit based on dicyclopentanyl methacrylate
- AA Repeating unit based on acrylic acid
- AA-GMA Glycidyl methacrylate is added to the carboxy group of the repeating unit based on acrylic acid Repeating unit obtained by reacting IBMA: Repeating unit based on isobornyl methacrylate
- IBA Repeating unit based on isobornyl acrylate
- TMPTA trimethylolpropane triacrylate
- A-TMPT trimethylolpropane triacrylate
- DTMPTA ditrimethylolpropane tetraacrylate
- AYARAD T-1420 (T) manufactured by Nippon Kayaku Co., Ltd.
- DPHA Dipenerythritol hexaacrylate
- A-NOD-N 1,9-nonanediol diacrylate
- Irg379 Omnirad 379 (manufactured by IGM Resins B.V., alkylphenone compound)
- Oxe02 Irgacure OXE02 (manufactured by BASF, oxime ester compound) Molar extinction coefficient for light with a wavelength of 365 nm in acetonitrile 2700 (cm mol / L) -1
- Api307 (1-(biphenyl-4-yl)-2-methyl-2-morpholinopropan-1-one (manufactured by Shenzhen UV-ChemTech LTD)
- test sample (sample X)
- a glass substrate (“Eagle XG” manufactured by Corning)
- PET film Toray "16KS40”
- 16KS40 polyethylene terephthalate film
- the pressure bonding conditions were laminating temperature: 25° C., pressure: 0.6 Pa, linear pressure: 3 N/cm, and conveying speed: 4 m/min. Then, the photosensitive layer in the laminate is exposed through a PET film using a proximity exposure machine (Hitachi High-Tech Electronic Engineering Co., Ltd.) having an ultra-high pressure mercury lamp at a wavelength of 365 nm. The exposure was made to be cm 2 . After exposure, the laminate was allowed to stand in an environment of 25° C. and 50% RH for 30 minutes, after which the PET film was peeled off.
- the photosensitive layer exposed by peeling off the PET film is exposed to an ultraviolet irradiation conveyor device (I-Graphics Co., Ltd.) having a high-pressure mercury lamp, and the integrated exposure amount at a wavelength of 365 nm becomes 1000 mJ/cm 2 . exposed as Then, the post-exposure photosensitive layer on the glass substrate was scraped off to prepare a 100 mg powdery test sample (hereinafter referred to as sample X). When the scraped post-exposure photosensitive layer was not powdery, it was pulverized before use.
- sample X 100 mg powdery test sample
- the substrate was allowed to stand in an environment of 25° C. and 50% RH for 30 minutes, after which the PET film as a temporary support was peeled off.
- the photosensitive layer exposed by peeling the PET film as a temporary support is subjected to integrated exposure at a wavelength of 365 nm using an ultraviolet irradiation conveyor device (Igraphics Co., Ltd.) having a high-pressure mercury lamp. Exposure was performed so that the dose was 1000 mJ/cm 2 .
- the copper base material having the photosensitive layer after exposure was used as a test sample, and a corrosion test described later was carried out.
- the second table is shown below.
- the photosensitive layer formed by the photosensitive composition It can be seen that a pattern can be formed that is excellent in corrosion prevention in a moist and hot environment without depending on the film thickness. Further, from the comparison of Examples 1 to 12, the photosensitive composition satisfies requirements A1 and A2, and the glass transition temperature in requirement A1 is 100 ° C. or higher, and the glass transition temperature in requirement A2 is 120 ° C. It can be seen that a pattern having excellent corrosion resistance in a moist and hot environment can be formed when the following conditions are satisfied.
- the photosensitive composition of Comparative Example did not exhibit the desired effect.
- Example 13 Using the photosensitive compositions of Examples 1 to 12 described above, pattern formation was performed according to the following procedure. (1) The cover film of the prepared transfer film was peeled off to expose the photosensitive layer. Next, a transfer film was laminated on a copper substrate (copper foil-laminated PET film (manufactured by Geomatec)) such that the copper foil and the exposed photosensitive layer were in contact with each other. Lamination conditions were as follows: lamination temperature: 100° C., line thickness: 3 N/cm, conveying speed: 1 m/min.
- the exposed photosensitive layer was developed for 45 seconds using a 1% by mass sodium carbonate aqueous solution (liquid temperature: 30° C.) as a developer. After development, the film was rinsed with pure water for 15 seconds and air was blown to remove water, thereby obtaining a pattern. (5) Next, the entire pattern was exposed using an ultraviolet irradiation conveyor device (I-Graphics Co., Ltd.) having a high-pressure mercury lamp so that the integrated exposure amount at 365 nm was 1000 mJ/cm 2 .
- I-Graphics Co., Ltd. having a high-pressure mercury lamp
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Human Computer Interaction (AREA)
- Materials For Photolithography (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
Abstract
Description
また、本発明は、上記感光性組成物を用いて形成される転写フィルムを提供することも課題とする。
また、本発明は、パターン形成方法、回路配線の製造方法、及び、タッチパネルの製造方法を提供することも課題とする。 Accordingly, an object of the present invention is to provide a photosensitive composition capable of forming a pattern having excellent corrosion resistance in a moist and hot environment.
Another object of the present invention is to provide a transfer film formed using the photosensitive composition.
Another object of the present invention is to provide a pattern forming method, a circuit wiring manufacturing method, and a touch panel manufacturing method.
要件A1:下記手順Xにより得られる露光後感光性層のガラス転移温度が、65℃以上である。
要件B1:下記手順Xにより得られる露光後感光性層の40℃90%RHでの含水率が、2.0質量%未満である。
手順X:ガラス基板と、上記感光性組成物から形成される感光性層と、樹脂フィルムとをこの順に有する積層体を得る。次いで、上記積層体のガラス基板側とは反対側から上記積層体中の上記感光性層に対して、超高圧水銀ランプを用いて波長365nmでの積算露光量が80mJ/cm2となるように露光する。露光後、上記積層体を25℃50%RHの環境下に30分間放置した後、上記樹脂フィルムを剥がす。次いで、上記樹脂フィルムを剥離した面側から上記感光性層に対して、高圧水銀ランプを用いて波長365nmでの積算露光量が1000mJ/cm2となるように上記感光性層を再度露光し、露光後感光性層を得る。
〔2〕 更に、以下の要件A2を満たす、〔1〕に記載の感光性組成物。
要件A2:上記手順Xにより得られる露光後感光性層のガラス転移温度が、165℃以下である。
〔3〕 上記要件A2における上記ガラス転移温度が、120℃以下である、〔2〕に記載の感光性組成物。
〔4〕 上記要件A1における上記ガラス転移温度が、85℃以上である、〔1〕~〔3〕のいずれかに記載の感光性組成物。
〔5〕 更に、以下の要件B2を満たす、〔1〕~〔4〕のいずれかに記載の感光性組成物。
要件B2:上記手順Xにより得られる露光後感光性層の40℃90%RHでの含水率が、0質量%より大きい。
〔6〕 上記要件B2における上記含水率が、0.5質量%以上である、〔5〕に記載の感光性組成物。
〔7〕 上記要件A1における上記ガラス転移温度が、100℃以上である、〔1〕~〔6〕のいずれかに記載の感光性組成物。
〔8〕 上記感光性組成物は、酸基を有する化合物Aを含み、
活性光線又は放射線の照射によって上記感光性組成物中の上記酸基の含有量が減少する、〔1〕~〔7〕のいずれかに記載の感光性組成物。
〔9〕 上記感光性組成物が、下記要件(V01)及び下記要件(W01)のいずれかを満たす、〔1〕~〔8〕のいずれかに記載の感光性組成物。
要件(V01)
上記感光性組成物が、酸基を有する化合物Aと、露光により上記化合物Aが含む上記酸基の量を減少させる構造を有する化合物βと、を含む。
要件(W01)
上記感光性組成物が、酸基を有する化合物Aを含み、且つ、上記化合物Aは、更に、露光により上記酸基の量を減少させる構造を含む。
〔10〕 上記要件(V01)において、上記化合物βが、光励起状態において、上記化合物Aが含む上記酸基から電子を受容できる構造を有する化合物Bであり、
上記要件(W01)において、上記構造が、光励起状態において上記酸基から電子を受容できる構造である、〔9〕に記載の感光性組成物。
〔11〕 上記要件(V01)を満たし、且つ、上記化合物βが、光励起状態において、上記化合物Aが含む上記酸基から電子を受容できる構造を有する化合物Bであり、
上記感光性組成物中、上記化合物Bが含む上記電子を受容できる構造の合計数が、上記化合物Aが含む酸基の合計数に対して、1モル%以上である、〔9〕又は〔10〕に記載の感光性組成物。
〔12〕 上記化合物Aが、酸基を有するポリマーを含む、〔1〕~〔11〕のいずれかに記載の感光性組成物。
〔13〕 上記ポリマーが、重合性基を有する、〔12〕に記載の感光性組成物。
〔14〕 上記感光性組成物が、更に、重合性化合物を含む、〔1〕~〔13〕のいずれかに記載の感光性組成物。
〔15〕 上記感光性組成物が、更に、光重合開始剤を含む、〔1〕~〔14〕のいずれかに記載の感光性組成物。
〔16〕 仮支持体と、〔1〕~〔15〕のいずれかに記載の感光性組成物から形成された感光性層と、を有する転写フィルム。
〔17〕 〔16〕に記載の転写フィルム中の上記感光性層の上記仮支持体側とは反対側の表面を基材に接触させて、上記転写フィルムと上記基材とを貼り合わせる工程と、
上記感光性層をパターン状に露光する工程と、
露光された上記感光性層をアルカリ現像液を用いて現像して、パターンを形成する工程と、をこの順に含む、パターン形成方法。
〔18〕 〔16〕に記載の転写フィルム中の上記感光性層の上記仮支持体側とは反対側の表面を、導電層を有する基板中の上記導電層に接触させて、上記転写フィルムと上記導電層を有する基板とを貼り合わせる工程と、
上記感光性層をパターン状に露光する工程と、
露光された上記感光性層をアルカリ現像液を用いて現像して、パターン化されたエッチングレジスト膜を形成する工程と、
上記エッチングレジスト膜が配置されていない領域における上記導電層をエッチング処理する工程と、をこの順に含む、回路配線の製造方法。
〔19〕 〔16〕に記載の転写フィルム中の上記感光性層の上記仮支持体側とは反対側の表面を、導電層を有する基板中の上記導電層に接触させて、上記転写フィルムと上記導電層を有する基板とを貼り合わせる工程と、
上記感光性層をパターン状に露光する工程と、
露光された上記感光性層をアルカリ現像液を用いて現像して、上記導電層のパターン化された保護膜又は絶縁膜を形成する工程と、をこの順に含む、タッチパネルの製造方法。 [1] A photosensitive composition that satisfies both requirements A1 and B1 shown below.
Requirement A1: The glass transition temperature of the post-exposure photosensitive layer obtained by the following procedure X is 65° C. or higher.
Requirement B1: The moisture content at 40° C. and 90% RH of the post-exposure photosensitive layer obtained by the following procedure X is less than 2.0% by mass.
Procedure X: A laminate having a glass substrate, a photosensitive layer formed from the photosensitive composition, and a resin film in this order is obtained. Next, from the side opposite to the glass substrate side of the laminate, an ultrahigh-pressure mercury lamp was used to irradiate the photosensitive layer in the laminate so that the integrated exposure amount at a wavelength of 365 nm was 80 mJ/cm 2 . expose. After the exposure, the laminate is left in an environment of 25° C. and 50% RH for 30 minutes, and then the resin film is peeled off. Then, the photosensitive layer is exposed again from the side where the resin film is peeled off using a high-pressure mercury lamp so that the cumulative exposure amount at a wavelength of 365 nm is 1000 mJ/cm 2 , After exposure a photosensitive layer is obtained.
[2] The photosensitive composition of [1], which further satisfies the following requirement A2.
Requirement A2: The glass transition temperature of the post-exposure photosensitive layer obtained by the above procedure X is 165° C. or lower.
[3] The photosensitive composition according to [2], wherein the glass transition temperature in requirement A2 is 120°C or lower.
[4] The photosensitive composition according to any one of [1] to [3], wherein the glass transition temperature in requirement A1 is 85°C or higher.
[5] The photosensitive composition according to any one of [1] to [4], which further satisfies the following requirement B2.
Requirement B2: The moisture content at 40°C and 90% RH of the post-exposure photosensitive layer obtained by procedure X above is greater than 0% by mass.
[6] The photosensitive composition according to [5], wherein the moisture content in requirement B2 is 0.5% by mass or more.
[7] The photosensitive composition according to any one of [1] to [6], wherein the glass transition temperature in requirement A1 is 100° C. or higher.
[8] The photosensitive composition contains a compound A having an acid group,
The photosensitive composition according to any one of [1] to [7], wherein the content of the acid group in the photosensitive composition is reduced by exposure to actinic rays or radiation.
[9] The photosensitive composition according to any one of [1] to [8], wherein the photosensitive composition satisfies either the following requirement (V01) or the following requirement (W01).
Requirements (V01)
The photosensitive composition contains a compound A having an acid group, and a compound β having a structure that reduces the amount of the acid group contained in the compound A upon exposure to light.
Requirement (W01)
The photosensitive composition contains a compound A having an acid group, and the compound A further contains a structure that reduces the amount of the acid group upon exposure.
[10] In the requirement (V01), the compound β is a compound B having a structure capable of accepting electrons from the acid group contained in the compound A in a photoexcited state,
The photosensitive composition according to [9], wherein in the requirement (W01), the structure is a structure capable of accepting electrons from the acid group in a photoexcited state.
[11] A compound B that satisfies the above requirements (V01) and has a structure in which the compound β is capable of accepting an electron from the acid group contained in the compound A in a photoexcited state;
In the photosensitive composition, the total number of the structures capable of accepting electrons contained in the compound B is 1 mol% or more with respect to the total number of acid groups contained in the compound A, [9] or [10] ].
[12] The photosensitive composition according to any one of [1] to [11], wherein the compound A contains a polymer having an acid group.
[13] The photosensitive composition of [12], wherein the polymer has a polymerizable group.
[14] The photosensitive composition according to any one of [1] to [13], further comprising a polymerizable compound.
[15] The photosensitive composition according to any one of [1] to [14], further comprising a photopolymerization initiator.
[16] A transfer film comprising a temporary support and a photosensitive layer formed from the photosensitive composition according to any one of [1] to [15].
[17] A step of bonding the transfer film and the base material together by bringing the surface of the photosensitive layer in the transfer film described in [16] on the side opposite to the temporary support side into contact with the base material;
a step of patternwise exposing the photosensitive layer;
A pattern forming method comprising, in this order, the step of developing the exposed photosensitive layer with an alkaline developer to form a pattern.
[18] The surface of the photosensitive layer in the transfer film described in [16] on the side opposite to the temporary support side is brought into contact with the conductive layer in the substrate having a conductive layer to form the transfer film and the A step of bonding a substrate having a conductive layer;
a step of patternwise exposing the photosensitive layer;
developing the exposed photosensitive layer with an alkaline developer to form a patterned etching resist film;
and a step of etching the conductive layer in a region where the etching resist film is not disposed, in this order.
[19] The surface of the photosensitive layer in the transfer film described in [16] on the side opposite to the temporary support side is brought into contact with the conductive layer in the substrate having a conductive layer, whereby the transfer film and the above A step of bonding a substrate having a conductive layer;
a step of patternwise exposing the photosensitive layer;
and developing the exposed photosensitive layer with an alkaline developer to form a patterned protective film or insulating film of the conductive layer, in this order.
また、本発明によれば、上記感光性組成物を用いて形成される転写フィルムを提供できる。 Therefore, according to the present invention, it is possible to provide a photosensitive composition capable of forming a pattern having excellent corrosion resistance in a moist and hot environment.
Moreover, according to this invention, the transfer film formed using the said photosensitive composition can be provided.
なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
また、本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。 The present invention will be described in detail below.
In this specification, the numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
Further, in the numerical ranges described stepwise in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of the numerical range described in other steps. good. Moreover, in the numerical ranges described in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
また、可視光の平均透過率は、分光光度計を用いて測定される値であり、例えば、日立製作所株式会社製の分光光度計U-3310を用いて測定できる。 As used herein, “transparent” means that the average transmittance of visible light with a wavelength of 400 to 700 nm is 80% or more, preferably 90% or more. Therefore, for example, a “transparent resin layer” refers to a resin layer having an average transmittance of 80% or more for visible light with a wavelength of 400 to 700 nm.
Also, the average transmittance of visible light is a value measured using a spectrophotometer, and can be measured using, for example, a spectrophotometer U-3310 manufactured by Hitachi, Ltd.
また、本明細書において、特に断りがない限り、屈折率は、波長550nmでエリプソメーターによって測定される値である。 In this specification, unless otherwise specified, the content ratio of each structural unit of the polymer is a molar ratio.
Moreover, in this specification, unless otherwise specified, the refractive index is a value measured by an ellipsometer at a wavelength of 550 nm.
本明細書において、樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算で求めた重量平均分子量である。 In this specification, unless otherwise specified, the molecular weight when there is a molecular weight distribution is the weight average molecular weight.
In the present specification, the weight average molecular weight of the resin is the weight average molecular weight obtained by gel permeation chromatography (GPC) in terms of polystyrene.
対象物(例えば、樹脂)の濃度が25質量%であるプロピレングリコールモノメチルエーテルアセテート溶液をガラス基板上に塗布し、次に、100℃のオーブンで3分間加熱することによって上記対象物の塗膜(厚み2.0μm)を形成する。上記塗膜を炭酸ナトリウム1質量%水溶液(液温30℃)に浸漬させることにより、上記塗膜の溶解速度(μm/秒)を求める。
なお、対象物がプロピレングリコールモノメチルエーテルアセテートに溶解しない場合は、プロピレングリコールモノメチルエーテルアセテート以外の沸点200℃未満の有機溶剤(例えば、テトラヒドロフラン、トルエン、又はエタノール)に対象物を溶解させる。 In the present specification, a layer or the like constituting a compound or a transfer film being “alkali-soluble” means that the dissolution rate determined by the following method is 0.01 μm/second or more.
A propylene glycol monomethyl ether acetate solution in which the concentration of the target (e.g., resin) is 25% by mass is applied onto a glass substrate, and then heated in an oven at 100 ° C. for 3 minutes to form a coating film of the target (e.g., resin). thickness 2.0 μm). The dissolution rate (μm/sec) of the coating film is determined by immersing the coating film in a 1% by mass sodium carbonate aqueous solution (liquid temperature: 30° C.).
If the target does not dissolve in propylene glycol monomethyl ether acetate, the target is dissolved in an organic solvent (eg, tetrahydrofuran, toluene, or ethanol) with a boiling point of less than 200° C. other than propylene glycol monomethyl ether acetate.
本発明の感光性組成物は、後述する要件A1及び要件B1をいずれも満たす。
要件A1:後述する手順Xにより得られる露光後感光性層のガラス転移温度が、65℃以上である。
要件B1:後述する手順Xにより得られる露光後感光性層の40℃90%RHでの含水率が、2.0質量%未満である。
上記構成の感光性組成物により得られるパターンは、湿熱環境下における腐食防止性に優れる。これは、詳細には明らかではないが、本発明者らは、以下のように推測している。本発明の感光性組成物から得られる露光後感光性層によって構成されるパターンは、露光後感光性層のガラス転移温度が所定温度以上であることから分子運動が小さく、且つ、含水率が所定値以下であるため、吸湿性が著しく低いと推測される。この結果として、本発明の感光性組成物により得られるパターンは、湿熱環境下における腐食防止性に優れると考えている。
なお、以下においては、本発明の感光性組成物により形成されるパターンの湿熱環境下における腐食防止性がより優れることを「本発明の効果がより優れる」ということもある。
以下、本発明の感光性組成物の特徴について詳述する。 [Photosensitive composition]
The photosensitive composition of the present invention satisfies both Requirement A1 and Requirement B1 described later.
Requirement A1: The glass transition temperature of the post-exposure photosensitive layer obtained by procedure X described later is 65° C. or higher.
Requirement B1: The moisture content at 40° C. and 90% RH of the post-exposure photosensitive layer obtained by procedure X described later is less than 2.0% by mass.
The pattern obtained from the photosensitive composition having the above constitution is excellent in corrosion prevention properties in a moist and hot environment. Although this is not clear in detail, the present inventors presume as follows. The pattern formed by the post-exposure photosensitive layer obtained from the photosensitive composition of the present invention has a small molecular movement because the glass transition temperature of the post-exposure photosensitive layer is a predetermined temperature or higher, and the water content is a predetermined value. It is estimated that the hygroscopicity is remarkably low because it is less than the value. As a result, the pattern obtained with the photosensitive composition of the present invention is considered to be excellent in corrosion prevention properties in a moist and hot environment.
In addition, in the following description, the fact that the pattern formed by the photosensitive composition of the present invention has more excellent corrosion prevention properties in a moist and heat environment may also be referred to as "the effect of the present invention is more excellent".
The features of the photosensitive composition of the present invention are described in detail below.
本発明の感光性組成物は、以下に説明する要件A1を満たす。また、本発明の感光性組成物は、更に、以下に説明する要件A2を満たすのも好ましい。
要件A1:
後述する手順Xにより得られる露光後感光性層のガラス転移温度が、65℃以上である。
要件A2:
後述する手順Xにより得られる露光後感光性層のガラス転移温度が、165℃以下である。 [Requirement A1]
The photosensitive composition of the present invention satisfies requirement A1 explained below. Moreover, the photosensitive composition of the present invention also preferably satisfies requirement A2 described below.
Requirement A1:
The glass transition temperature of the post-exposure photosensitive layer obtained by procedure X described later is 65° C. or higher.
Requirement A2:
The glass transition temperature of the post-exposure photosensitive layer obtained by procedure X described later is 165° C. or lower.
手順X:ガラス基板と、感光性組成物から形成される感光性層と、樹脂フィルムとをこの順に有する積層体を得る。次いで、積層体のガラス基板側とは反対側から積層体中の感光性層に対して、超高圧水銀ランプを用いて波長365nmでの積算露光量が80mJ/cm2となるように露光する。露光後、積層体を25℃50%RHの環境下に30分間放置した後、樹脂フィルムを剥がす。次いで、樹脂フィルムを剥離した面側から感光性層に対して、高圧水銀ランプを用いて波長365nmでの積算露光量が1000mJ/cm2となるように感光性層を再度露光し、露光後感光性層を得る。 <<Procedure X>>
Procedure X: A laminate having a glass substrate, a photosensitive layer formed from a photosensitive composition, and a resin film in this order is obtained. Next, the photosensitive layer in the laminate is exposed from the side opposite to the glass substrate side of the laminate using an extra-high pressure mercury lamp so that the cumulative exposure amount at a wavelength of 365 nm is 80 mJ/cm 2 . After the exposure, the laminate is left in an environment of 25° C. and 50% RH for 30 minutes, and then the resin film is peeled off. Next, the photosensitive layer is exposed again from the side where the resin film has been peeled off using a high-pressure mercury lamp so that the integrated exposure amount at a wavelength of 365 nm is 1000 mJ/cm 2 , and after exposure. Get a sex layer.
また、高圧水銀ランプでの露光時の照度は、10~200mW/cm2が好ましく、15~100mW/cm2がより好ましい。 In Procedure X, the illuminance during exposure with an extra-high pressure mercury lamp is preferably 5 to 100 mW/cm 2 , more preferably 10 to 50 mW/cm 2 .
Also, the illuminance during exposure with a high-pressure mercury lamp is preferably 10 to 200 mW/cm 2 , more preferably 15 to 100 mW/cm 2 .
また、上記感光性組成物は、塗布組成物であってもよいし、層形態であってもよい。
上記感光性組成物が層形態である場合としては、例えば、感光性組成物の塗膜を乾燥することによって感光性層となっている場合を意図する。層形態である感光性組成物としては、具体的には、転写フィルムに含まれている感光性層等が該当する。
なお、転写フィルムに含まれている感光性層に対して手順Xを実施する場合には、上述の積層体において、ガラスと感光性層の間、感光性層と仮支持体(樹脂フィルム)との間にその他の層が含まれていてもよい。 In Procedure X, the film thickness of the photosensitive layer in the laminate is preferably 0.1 to 20 μm, more preferably 1 to 9 μm.
Moreover, the photosensitive composition may be a coating composition or a layered composition.
The case where the above-mentioned photosensitive composition is in the form of a layer means, for example, the case where a photosensitive layer is formed by drying a coating film of the photosensitive composition. Specifically, a photosensitive layer contained in a transfer film or the like corresponds to the layered photosensitive composition.
In addition, when performing procedure X on the photosensitive layer contained in the transfer film, in the above-described laminate, between the glass and the photosensitive layer, the photosensitive layer and the temporary support (resin film) Other layers may be included in between.
以下において、感光性組成物が塗布組成物である形態の場合の手順Xの一例について説明する。
ガラス基板(例えば、コーニング社製「イーグルXG」)の上に、感光性組成物をスピンコートした後、ホットプレートを使用して乾燥(例えば、80℃2分間)させて膜(感光性層:膜厚は例えば2μm)を得る。
次いで、得られた膜(感光性層)の上面から樹脂フィルム(例えば、ポリエチレンテレフタレートフィルム(PETフィルム。例えば、東レ社製「16KS40」等))を圧着することにより、ガラス基板、感光性層、及び、樹脂フィルムがこの順に積層した積層体を作製する。樹脂フィルムと感光性層との圧着条件としては、例えば、ラミネート温度:25℃、圧力:0.6Pa、線圧:3N/cm、搬送速度:4m/minとする。
次いで、積層体中の感光性層に対して、超高圧水銀ランプ(例えば、超高圧水銀ランプを有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)))を用いて積層体のガラス基板側とは反対側から(樹脂フィルム越しに)波長365nmでの積算露光量が80mJ/cm2となるように露光する。なお、上記露光量80mJ/cm2は、樹脂フィルムを透過して感光性層に到達する波長365nmの光の積算露光量である。樹脂フィルムがPETフィルム以外の樹脂フィルム(例えば、ポリプロピレンフィルム(PPフィルム)やポリエチレンフィルム(PEフィルム)の場合、350nm以下の波長をカットするフィルター越しに露光するのが好ましい。換言すると、350nm以下の波長をカットするフィルター越しに露光し、且つ、365nmの照度計で計測した積算露光量が80mJ/cm2となる露光であるのが好ましい。 <Procedure X when the photosensitive composition is a coating composition>
An example of procedure X in the case where the photosensitive composition is a coating composition will be described below.
After spin-coating the photosensitive composition on a glass substrate (e.g., Corning "Eagle XG"), it is dried using a hot plate (e.g., 80 ° C. for 2 minutes) to form a film (photosensitive layer: A film thickness of 2 μm, for example, is obtained.
Next, a resin film (e.g., polyethylene terephthalate film (PET film; e.g., "16KS40" manufactured by Toray Industries, Inc.)) is crimped from the upper surface of the obtained film (photosensitive layer) to form a glass substrate, a photosensitive layer, Then, a laminate is produced by laminating the resin films in this order. The pressure bonding conditions between the resin film and the photosensitive layer are, for example, laminating temperature: 25° C., pressure: 0.6 Pa, linear pressure: 3 N/cm, and conveying speed: 4 m/min.
Next, the glass substrate side of the laminate is exposed to the photosensitive layer in the laminate using an ultra-high pressure mercury lamp (for example, a proximity type exposure machine having an ultra-high pressure mercury lamp (Hitachi High-Tech Electronic Engineering Co., Ltd.)). It is exposed from the opposite side (through the resin film) so that the cumulative exposure amount at a wavelength of 365 nm is 80 mJ/cm 2 . The above exposure amount of 80 mJ/cm 2 is the cumulative exposure amount of light having a wavelength of 365 nm that reaches the photosensitive layer through the resin film. When the resin film is a resin film other than a PET film (for example, a polypropylene film (PP film) or a polyethylene film (PE film), it is preferable to perform exposure through a filter that cuts wavelengths of 350 nm or less. It is preferable that the exposure is carried out through a filter that cuts the wavelength and that the integrated exposure amount measured with a 365 nm illuminometer is 80 mJ/cm 2 .
次いで、樹脂フィルムの剥離により露出した面側から感光性層に対して、高圧水銀ランプ(例えば、高圧水銀ランプを有する紫外線照射コンベア装置(アイグラフィックス(株)))を用いて波長365nmでの積算露光量が1000mJ/cm2となるように露光する。
なお、波長365nmでの積算露光量が1000mJ/cm2での露光とは、365nmの照度計で計測した積算露光量が1000mJ/cm2となる露光である。 After exposure, the laminate is left in an environment of 25° C. and 50% RH for 30 minutes, and then the resin film is peeled off.
Then, from the side exposed by peeling the resin film, the photosensitive layer is irradiated with a high-pressure mercury lamp (for example, an ultraviolet irradiation conveyor device having a high-pressure mercury lamp (Igraphics Co., Ltd.)) at a wavelength of 365 nm. Exposure is performed so that the integrated exposure amount is 1000 mJ/cm 2 .
The exposure at a wavelength of 365 nm with an integrated exposure amount of 1000 mJ/cm 2 is an exposure with an integrated exposure amount of 1000 mJ/cm 2 measured with a 365 nm illuminometer.
以下において、感光性組成物が層形態である場合の手順Xの一例について説明する。
感光性組成物が層形態である場合とは、感光性組成物が感光性層を構成している場合を意図する。以下では、仮支持体(樹脂フィルム)と、感光性組成物により構成された感光性層とを少なくとも備えた転写フィルムを例に挙げ、転写フィルム中の感光性層から所定の露光後感光性層(試料X)を得る方法について述べる。 <Procedure X when the photosensitive composition is in the form of a layer>
An example of procedure X when the photosensitive composition is in the form of a layer is described below.
The case where the photosensitive composition is in a layered form means the case where the photosensitive composition constitutes a photosensitive layer. In the following, a transfer film comprising at least a temporary support (resin film) and a photosensitive layer composed of a photosensitive composition will be exemplified, and a predetermined post-exposure photosensitive layer from the photosensitive layer in the transfer film will be described. A method for obtaining (Sample X) will be described.
また、転写フィルムが、カバーフィルム、感光性層、及び、仮支持体のほかにも、更に、その他の層を有している場合、その転写フィルムの通常の使用方法に基づき、上記その他の層も含めた転写フィルムをガラス上にラミネートする。この場合、上記積層体は、例えば、仮支持体と感光性層との間、及び/又は、感光性層の仮支持体とは反対側等に、上記その他の層を有していてもよい。 First, a transfer film is crimped (laminated) onto a glass substrate (for example, "Eagle XG" manufactured by Corning). When laminating the transfer film, the surface of the photosensitive layer in the transfer film opposite to the temporary support (resin film) side is brought into contact with the substrate, and the transfer film and the glass substrate are bonded together. Moreover, when the transfer film has a cover film, lamination is performed after peeling the cover film from the transfer film. The conditions for lamination are, for example, lamination temperature: 100° C., linear pressure: 3 N/cm, and conveying speed: 1 m/min. Thus, a laminate is obtained.
In addition, when the transfer film has other layers in addition to the cover film, the photosensitive layer, and the temporary support, the above other layers can be obtained based on the normal usage of the transfer film. Laminate the transfer film, including , onto the glass. In this case, the laminate may have the other layer, for example, between the temporary support and the photosensitive layer and/or on the opposite side of the photosensitive layer to the temporary support. .
次いで、仮支持体(樹脂フィルム)の剥離により露出した面側から感光性層に対して、高圧水銀ランプ(例えば、高圧水銀ランプを有する紫外線照射コンベア装置(アイグラフィックス(株)))を用いて波長365nmでの積算露光量が1000mJ/cm2となるように露光する。
なお、波長365nmでの積算露光量が1000mJ/cm2での露光とは、365nmの照度計で計測した積算露光量が1000mJ/cm2となる露光である。 After the exposure, the laminate is left in an environment of 25° C. and 50% RH for 30 minutes, and then the temporary support (resin film) is peeled off.
Then, a high-pressure mercury lamp (for example, an ultraviolet irradiation conveyor device having a high-pressure mercury lamp (Igraphics Co., Ltd.)) is applied to the photosensitive layer from the side exposed by peeling the temporary support (resin film). The exposure is performed so that the integrated exposure amount at a wavelength of 365 nm is 1000 mJ/cm 2 .
The exposure at a wavelength of 365 nm with an integrated exposure amount of 1000 mJ/cm 2 is an exposure with an integrated exposure amount of 1000 mJ/cm 2 measured with a 365 nm illuminometer.
ただし、上記処理においては、積層体に対して加熱処理はしないことが好ましい。
また、上記処理は、可能な限り感光性層を変質させないように実施する。 In the laminate obtained by laminating the transfer film on the glass substrate, when the other layers (for example, the thermoplastic resin layer and the intermediate layer) are present between the temporary support and the photosensitive layer, the above-mentioned It is preferable to remove the other layers after exposure at a wavelength of 365 nm to an integrated exposure amount of 1000 mJ/cm 2 . The removal method is not particularly limited, and the other layers can be removed from the laminate by, for example, treatment such as alkali development treatment, solvent washing, and tape peeling. The photosensitive layer is exposed as the outermost layer by the removal treatment described above.
However, in the above treatment, it is preferable not to heat-treat the laminate.
Moreover, the above treatment is carried out so as not to alter the quality of the photosensitive layer as much as possible.
手順Xにより作製した試料Xを5~6mg使用し、下記条件にて温度変調示差走査熱量測定を実施する。温度変調示差走査熱量測定を使用した測定条件としては、下記条件であるのが好ましい。
装置:ティー・エイ・インスツルメント社製DSC2500(試料の封入にTzeroアルミパンを使用)
測定条件:窒素雰囲気下、温度範囲-70~200℃(5℃/分)、温度変調条件±1℃/分(N=2)))
次いで、リバーシングヒートフロー(Rev. Heat Flow)においてベースラインがシフトする温度(中点)をガラス転移温度(n2の平均値)とする。 <<Measurement of glass transition temperature of post-exposure photosensitive layer formed by procedure X>>
Using 5 to 6 mg of sample X prepared by procedure X, temperature modulated differential scanning calorimetry is performed under the following conditions. Measurement conditions using temperature-modulated differential scanning calorimetry are preferably the following conditions.
Apparatus: DSC2500 manufactured by TA Instruments (using a Tzero aluminum pan for sealing the sample)
Measurement conditions: nitrogen atmosphere, temperature range -70 to 200°C (5°C/min), temperature modulation condition ±1°C/min (N = 2)))
Then, the temperature (midpoint) at which the baseline shifts in the reversing heat flow (Rev. Heat Flow) is defined as the glass transition temperature (average value of n2).
本発明の感光性組成物は、以下に説明する要件B1を満たす。また、本発明の感光性組成物は、更に、以下に説明する要件B2を満たすのも好ましい。
要件B1:
後述する手順Xにより形成される露光後感光性層の40℃90%RHでの含水率が、2.0質量%未満である。
要件B2:
後述する手順Xにより形成される露光後感光性層の40℃90%RHでの含水率が、0質量%より大きい。 [Requirement B1]
The photosensitive composition of the present invention satisfies requirement B1 explained below. Moreover, the photosensitive composition of the present invention preferably also satisfies requirement B2 described below.
Requirement B1:
The moisture content at 40° C. and 90% RH of the post-exposure photosensitive layer formed by procedure X described later is less than 2.0% by mass.
Requirement B2:
The moisture content at 40° C. and 90% RH of the post-exposure photosensitive layer formed by procedure X described later is greater than 0 mass %.
手順Xとしては、要件Aの説明における<<手順X>>と同じである。 <<Procedure X>>
Procedure X is the same as <<procedure X>> in the description of requirement A.
(1)手順Xにより作製した試料Xを23℃50%RHの実験室内で11~12mg秤量する。ここで秤量した試料Xの質量をa[mg]とする。 <<Measurement of moisture content at 40°C and 90% RH of the post-exposure photosensitive layer formed by procedure X>>
(1) Weigh 11 to 12 mg of sample X prepared according to procedure X in a laboratory at 23° C. and 50% RH. Let the mass of the weighed sample X be a [mg].
カールフィッシャー水分計としては、例えば、平沼産業社製「AQ-2100」を使用できる。また、加熱追出装置としては、例えば、平沼産業社製「EV-2000」を使用できる。 (2) Next, the weighed sample X is put into the furnace of the heating and expelling device heated to 150° C., and the water content is measured for 15 minutes using a Karl Fischer moisture meter.
As the Karl Fischer moisture meter, for example, "AQ-2100" manufactured by Hiranuma Sangyo Co., Ltd. can be used. Also, as a heating and expelling device, for example, “EV-2000” manufactured by Hiranuma Sangyo Co., Ltd. can be used.
(水分量/a)×100=x[質量%] (3) Then, from the measured moisture content, the moisture content x [mass %] at 23°C and 50% RH is obtained by the following formula.
(Moisture content/a) x 100 = x [% by mass]
カールフィッシャー水分計としては、例えば、平沼産業社製「AQ-2100」を使用できる。また、加熱追出装置としては、例えば、平沼産業社製「EV-2000」を使用できる。 (6) Immediately after being taken out of the constant temperature and high humidity chamber, the sample X is put into the furnace of the heating and expelling device heated to 150° C., and the moisture content is measured for 15 minutes using a Karl Fischer moisture meter.
As the Karl Fischer moisture meter, for example, "AQ-2100" manufactured by Hiranuma Sangyo Co., Ltd. can be used. Also, as a heating and expelling device, for example, “EV-2000” manufactured by Hiranuma Sangyo Co., Ltd. can be used.
(水分量/b)×100=y[質量%] (7) Next, from the measured water content, the (apparent) water content y [mass %] at 40°C and 90% RH is obtained by the following formula.
(Moisture content/b) x 100 = y [% by mass]
{水分量/(乾燥質量+水分量)}×100[質量%]=[(b×y/100)/{b×(100-x)/100+b×y/100}]×100[質量%]={y/(100-x+y)}×100[質量%] (8) Using the x and y values obtained in (3) and (7) above, the water content at 40° C. and 90% RH is calculated by the following equation.
{Moisture content / (dry mass + moisture content)} × 100 [mass%] = [(b × y / 100) / {b × (100-x) / 100 + b × y / 100}] × 100 [mass%] = {y / (100-x + y)} × 100 [mass%]
以下において、上述の要件A1及び要件B1をいずれも満たす感光性組成物の具体的な態様を示す。
感光性組成物は、酸基を有する化合物Aを含み、活性光線又は放射線の照射によって感光性組成物中の酸基の含有量が減少する感光性組成物であるのが好ましい。
このような構成の感光性組成物を用いて形成される感光性層は、露光により酸基の含有量が減少する。すなわち、露光の前後で感光性層において極性が変化しており、これにより現像液(アルカリ現像液及び有機溶剤系現像液)に対する溶解性が変化する。そのため、このような感光性層に対してパターン露光をすれば、露光部と非露光部において現像液に対する溶解コントラストが生じ得るため、パターンを形成できる。 [Photosensitive composition]
Specific embodiments of the photosensitive composition satisfying both the requirements A1 and B1 described above are shown below.
The photosensitive composition preferably contains compound A having an acid group, and is a photosensitive composition in which the content of acid groups in the photosensitive composition is reduced by exposure to actinic rays or radiation.
In the photosensitive layer formed using the photosensitive composition having such a structure, the content of acid groups is reduced by exposure. That is, the polarity of the photosensitive layer changes before and after exposure, and this changes the solubility in developing solutions (alkaline developing solutions and organic solvent-based developing solutions). Therefore, if pattern exposure is performed on such a photosensitive layer, a dissolution contrast in the developing solution can occur between the exposed area and the non-exposed area, so that a pattern can be formed.
このような構成の感光性組成物を用いて形成される感光性層は、現像液(アルカリ現像液及び有機溶剤系現像液)に対して優れたパターン形成性を示す。また、露光によって感光性層の酸基の量が減少しているため、酸基の存在に起因する透湿性が低減されており、この結果として、湿熱環境下における腐食防止性により優れる。したがって、上記感光性層から形成されるパターンは、例えば、導電パターン等の保護膜(永久膜)として好適に使用され得る。 An example of a photosensitive composition having a mechanism for reducing the content of acid groups includes a compound A having a carboxyl group, and decarboxylation of the carboxyl group by exposure causes a decarboxylation reaction in the photosensitive composition. A photosensitive composition having a mechanism for reducing the content of carboxyl groups is mentioned.
A photosensitive layer formed using a photosensitive composition having such a structure exhibits excellent pattern formability with respect to developers (alkaline developers and organic solvent-based developers). In addition, since the amount of acid groups in the photosensitive layer is reduced by exposure, the moisture permeability resulting from the presence of acid groups is reduced, and as a result, the anticorrosion property is superior in a moist and hot environment. Therefore, the pattern formed from the photosensitive layer can be suitably used, for example, as a protective film (permanent film) such as a conductive pattern.
このような構成の感光性組成物を用いて形成される感光性層は、例えば、上記酸基(例えばカルボキシ基等)が脱離(例えば脱炭酸反応)すると、化合物Aにおける酸基が脱離時した部分にラジカルが生じ得る。このようなラジカルによって重合性化合物のラジカル重合が開始され、露光部の化合物Aが架橋し得る。 Moreover, as described later, the photosensitive composition preferably contains a polymerizable compound.
In the photosensitive layer formed using the photosensitive composition having such a structure, for example, when the acid group (eg, carboxyl group) is eliminated (eg, decarboxylation reaction), the acid group in compound A is eliminated. Radicals can be generated at the timed part. Radical polymerization of the polymerizable compound is initiated by such radicals, and the compound A in the exposed area can be crosslinked.
このような構成の感光性組成物を用いて形成される感光性層は、上述したような、酸基(カルボキシ基等)の脱離と、重合開始反応とを異なるタイミングで生じさせることができる。例えば、上記のような構成の感光性組成物を用いて形成される感光性層に、まず、酸基の脱離がほとんど生じないような波長又は露光量で第1の露光をし、光重合開始剤に基づく重合化を進行させて硬化させてもよい。その後、硬化させられた感光性層に第2の露光をし、酸基の脱離を生じさせてもよい。なお、第1の露光をパターン状の露光とし、第2の露光の前に未露光部分又は露光部分を除去する現像工程を実施してから、更に第2の露光を実施して、パターンを得てもよい。 Furthermore, as described later, the photosensitive composition preferably contains a polymerizable compound and a photopolymerization initiator.
The photosensitive layer formed using the photosensitive composition having such a structure can cause the elimination of the acid group (such as the carboxyl group) and the polymerization initiation reaction to occur at different timings as described above. . For example, the photosensitive layer formed using the photosensitive composition having the above structure is first exposed at a wavelength or exposure amount that hardly causes the elimination of acid groups, and photopolymerization is performed. Curing may be achieved by allowing initiator-based polymerization to proceed. The cured photosensitive layer may then be subjected to a second exposure to cause elimination of the acid groups. Note that the first exposure is patterned exposure, a development step is performed to remove the unexposed portion or the exposed portion before the second exposure, and then the second exposure is performed to obtain a pattern. may
感光性組成物としては、以下に示す要件(V01)及び要件(W01)のいずれかを満たす感光性組成物であるのが好ましい。なお、感光性組成物は、要件(V01)及び要件(W01)のいずれも満たす感光性組成物であってもよい。
要件(V01)
感光性組成物が、酸基を有する化合物Aと、露光により上記化合物Aが含む上記酸基の量を減少させる構造(以下「特定構造S0」ともいう。)を有する化合物βと、を含む。
要件(W01)
感光性組成物が、酸基を有する化合物Aを含み、且つ、上記化合物Aは、更に、露光により上記酸基の量を減少させる構造(特定構造S0)を含む。 <<Requirement (V01), Requirement (W01)>>
The photosensitive composition is preferably a photosensitive composition that satisfies either requirement (V01) or requirement (W01) shown below. The photosensitive composition may be a photosensitive composition that satisfies both requirements (V01) and requirements (W01).
Requirements (V01)
The photosensitive composition contains a compound A having an acid group, and a compound β having a structure (hereinafter also referred to as “specific structure S0”) that reduces the amount of the acid group contained in the compound A upon exposure.
Requirement (W01)
The photosensitive composition contains a compound A having an acid group, and the compound A further contains a structure (specific structure S0) that reduces the amount of the acid group by exposure.
要件(V1):感光性組成物が、酸基を有する化合物Aと、光励起状態において、上記化合物Aが含む上記酸基から電子を受容できる構造(特定構造S1)を有する化合物Bと、を含む。
要件(W1):感光性組成物が、酸基を有する化合物Aを含み、且つ、上記化合物Aは、更に、光励起状態において上記酸基から電子を受容できる構造(特定構造S1)を含む。
なお、感光性組成物は、要件(V1)及び要件(W1)のいずれも満たす感光性組成物であってもよい。 The requirement (V01) is preferably the requirement (V1) shown below, and the requirement (W01) is preferably the requirement (W1) shown below. That is, in the requirement (V01), the compound β is preferably the compound B having a structure capable of accepting electrons from the acid group contained in the compound A in a photoexcited state. Further, in the requirement (W01), the structure is preferably a structure capable of accepting electrons from an acid group contained in compound A in a photoexcited state.
Requirement (V1): The photosensitive composition contains a compound A having an acid group, and a compound B having a structure (specific structure S1) capable of accepting electrons from the acid group contained in the compound A in a photoexcited state. .
Requirement (W1): The photosensitive composition contains a compound A having an acid group, and the compound A further contains a structure (specific structure S1) capable of accepting electrons from the acid group in a photoexcited state.
The photosensitive composition may be a photosensitive composition that satisfies both requirement (V1) and requirement (W1).
要件(V1-C)
感光性組成物が、カルボキシ基を有する化合物Aと、光励起状態において、化合物A中のカルボキシ基から電子を受容できる構造(以下「特定構造S1」ともいう。)を有する化合物Bと、を含む。
要件(W1-C)
感光性組成物が、カルボキシ基を有する化合物Aを含み、且つ、上記化合物Aは、更に、光励起状態において化合物A中のカルボキシ基から電子を受容できる構造(特定構造S1)を含む。
なお、感光性組成物は、要件(V1-C)及び要件(W1-C)のいずれも満たす感光性組成物であってもよい。 More preferably, the photosensitive composition is a photosensitive composition that satisfies either requirement (V1-C) or requirement (W1-C). Requirement (V1-C) corresponds to the aspect of requirement (V1) in which the acid group is a carboxy group, and requirement (W1-C) corresponds to the aspect of requirement (W1) in which the acid group is a carboxy group.
Requirements (V1-C)
The photosensitive composition contains a compound A having a carboxy group, and a compound B having a structure capable of accepting electrons from the carboxy group in compound A in a photoexcited state (hereinafter also referred to as “specific structure S1”).
Requirement (W1-C)
The photosensitive composition contains a compound A having a carboxy group, and the compound A further contains a structure (specific structure S1) capable of accepting electrons from the carboxy group in compound A in a photoexcited state.
The photosensitive composition may be a photosensitive composition that satisfies both requirements (V1-C) and requirement (W1-C).
以下に図示するように、ポリアクリル酸のカルボキシ基とキノリンの窒素原子とは、共存下において水素結合を形成する。キノリンは、露光されると電子の受容性が増大し、ポリアクリル酸が有するカルボキシ基から電子を受け渡される(step1:光励起)。ポリアクリル酸が有するカルボキシ基は、キノリンに電子を受け渡すと不安定化し、二酸化炭素になって脱離する(step2:脱炭酸反応)。上述の脱炭酸反応を経るとポリアクリル酸の残基にはラジカルが発生し、ラジカル反応が進行する。ラジカル反応は、ポリアクリル酸の残基同士、ポリアクリル酸の残基と任意で含まれる重合性化合物(モノマー(M))、雰囲気中の水素原子との間で生じ得る(step3:極性変換・架橋・重合反応)。そして、ラジカル反応の終了後、化合物βが再生されて、再度化合物Aの脱炭酸プロセスに寄与し得る(step4:化合物β(触媒)再生)。 Hereinafter, the photosensitive composition contains polyacrylic acid as compound A and quinoline as compound β (compound B) as an example, and the content of acid groups (carboxy groups) derived from compound A is reduced by exposure The mechanism for estimating
As illustrated below, the carboxy group of polyacrylic acid and the nitrogen atom of quinoline form hydrogen bonds in the presence of each other. When quinoline is exposed to light, its electron acceptability increases, and electrons are transferred from the carboxy group of polyacrylic acid (step 1: photoexcitation). The carboxyl group of polyacrylic acid becomes unstable when electrons are transferred to quinoline, and is released as carbon dioxide (step 2: decarboxylation reaction). After the decarboxylation reaction described above, radicals are generated in the polyacrylic acid residue, and the radical reaction proceeds. A radical reaction can occur between polyacrylic acid residues, between polyacrylic acid residues and optionally contained polymerizable compounds (monomer (M)), and hydrogen atoms in the atmosphere (step 3: polarity conversion, cross-linking/polymerization reaction). After completion of the radical reaction, compound β is regenerated and can contribute to the decarboxylation process of compound A again (step 4: regeneration of compound β (catalyst)).
感光性組成物の露光により化合物Aに由来する酸基(好ましくはカルボキシ基)の含有量の減少量は、後述する転写フィルム中の感光性層における化合物Aに由来するカルボキシ基の含有量の減少率と同様の方法により定量できる。 The photosensitive composition has an acid group (preferably a carboxyl group) content derived from the compound A by exposure to 5 mol% or more in that it has a more excellent pattern-forming ability, particularly with respect to an alkaline developer. preferably at a reduction rate of 10 mol% or more, more preferably at a reduction rate of 20 mol% or more, even more preferably at a reduction rate of 31 mol% or more It is more preferable to reduce at a reduction rate of 40 mol% or more, particularly preferably at a reduction rate of 51 mol% or more, and most preferably at a reduction rate of 71 mol% or more. preferable. Although the upper limit is not particularly limited, it is, for example, 100 mol % or less.
The amount of decrease in the content of acid groups (preferably carboxy groups) derived from compound A due to exposure of the photosensitive composition is the decrease in the content of carboxy groups derived from compound A in the photosensitive layer in the transfer film described later. It can be quantified by the same method as the rate.
また、以下において、感光性組成物の実施形態の一例を示す。
・実施形態X-1-a1の感光性組成物
要件(V01)又は要件(W01)の少なくともいずれかを満たし、且つ、重合性化合物及び光重合開始剤を実質的に含まない感光性組成物である。
・実施形態X-1-a2の感光性組成物
要件(V01)又は要件(W01)の少なくともいずれかを満たし、且つ、光重合開始剤を実質的に含まない感光性組成物である。
・実施形態X-1-a3の感光性層
要件(V01)又は要件(W01)の少なくともいずれかを満たし、且つ、重合性化合物及び光重合開始剤を含む感光性組成物である。 <<Example of Embodiment of Photosensitive Composition>>
Moreover, below, an example of embodiment of a photosensitive composition is shown.
- Photosensitive composition of embodiment X-1-a1 A photosensitive composition that satisfies at least one of the requirements (V01) or (W01) and does not substantially contain a polymerizable compound and a photopolymerization initiator be.
Photosensitive Composition of Embodiment X-1-a2 A photosensitive composition that satisfies at least either requirement (V01) or requirement (W01) and is substantially free of a photopolymerization initiator.
Photosensitive layer of embodiment X-1-a3 A photosensitive composition that satisfies at least either requirement (V01) or requirement (W01) and contains a polymerizable compound and a photopolymerization initiator.
また、実施形態X-1-a1及び実施形態X-1-a2の感光性組成物において、「感光性組成物が光重合開始剤を実質的に含まない」とは、光重合開始剤の含有量が、感光性組成物の全固形分に対して、0.1質量%未満であればよく、0~0.05質量%であることが好ましく、0~0.01質量%であることがより好ましい。 In the photosensitive composition of Embodiment X-1-a1, "the photosensitive composition substantially does not contain a polymerizable compound" means that the content of the polymerizable compound is the total solid of the photosensitive composition. It may be less than 3% by mass, preferably 0 to 1% by mass, more preferably 0 to 0.1% by mass, based on the minute.
Further, in the photosensitive compositions of Embodiments X-1-a1 and X-1-a2, the phrase "the photosensitive composition substantially does not contain a photopolymerization initiator" means that a photopolymerization initiator is contained. The amount may be less than 0.1% by mass, preferably 0 to 0.05% by mass, and preferably 0 to 0.01% by mass, based on the total solid content of the photosensitive composition. more preferred.
また、感光性組成物の実施形態としては、なかでも、実施形態X-1-a1-C~実施形態X-1-a3-Cの感光性組成物であるのがより好ましい。なお、実施形態X-1-a1-C~実施形態X-1-a3-Cは、実施形態X-1-a1~実施形態X-1-a3において、要件(V01)及び要件(W01)がそれぞれ要件(V1-C)及び要件(W1-C)である態様に該当する。 The photosensitive compositions of Embodiments X-1-a1 and X-1-a2 are preferably applied to the pattern forming method of Embodiment 1, which will be described later. Further, the photosensitive composition of Embodiment X-1-a3 is preferably applied to the pattern forming method of Embodiment 2, which will be described later.
Further, as the embodiment of the photosensitive composition, the photosensitive compositions of Embodiments X-1-a1-C to X-1-a3-C are more preferred. In addition, Embodiment X-1-a1-C to Embodiment X-1-a3-C are Embodiments X-1-a1 to X-1-a3 in which the requirement (V01) and the requirement (W01) are They correspond to the aspects of requirement (V1-C) and requirement (W1-C), respectively.
<酸基を有する化合物A>
感光性組成物は、酸基を有する化合物A(化合物A)を含む。
化合物Aが含む酸基としては、pKaが12以下のプロトン解離性基であるのが好ましい。酸基としては、具体的には、カルボキシ基、スルホンアミド基、ホスホン酸基、スルホ基、フェノール性水酸基、及びスルホニルイミド基等が挙げられ、カルボキシ基が好ましい。
化合物Aとしては、低分子化合物であっても、高分子化合物(以下「ポリマー」ともいう。)であってもよいが、ポリマー(酸基を有するポリマー)を含むことが好ましく、重合性基を有するポリマーを含むことがより好ましい。
上記重合性基としては、例えば、エチレン性不飽和基(例えば、(メタ)アクリロイル基、ビニル基、及びスチリル基等)、及び環状エーテル基(例えば、エポキシ基、オキセタニル基等)等が挙げられ、エチレン性不飽和基が好ましく、(メタ)アクリロイル基がより好ましい。
化合物Aが低分子化合物である場合、化合物Aの分子量としては、5,000未満が好ましく、2,000以下がより好ましく、1,000以下が更に好ましく、500以下が特に好ましく、400以下が最も好ましい。
化合物Aがポリマーである場合、化合物Aの重量平均分子量の下限値としては、感光性層の形成性に優れる(言い換えると、感光性層を形成するための製膜能に優れる)点で、5,000以上が好ましく、10,000以上がより好ましく、15,000以上が更に好ましい。上限値としては特に制限されないが、任意の基材と貼り合わせる際(転写の際)の密着性(ラミネート密着性)がより優れる点で、50,000以下であるのが好ましい。 << Various Ingredients >>
<Compound A having an acid group>
The photosensitive composition contains compound A having an acid group (compound A).
The acid group contained in compound A is preferably a proton-dissociating group with a pKa of 12 or less. Specific examples of the acid group include a carboxy group, a sulfonamide group, a phosphonic acid group, a sulfo group, a phenolic hydroxyl group, and a sulfonylimide group, with the carboxy group being preferred.
The compound A may be a low-molecular-weight compound or a high-molecular-weight compound (hereinafter also referred to as a "polymer"), but preferably contains a polymer (a polymer having an acid group). It is more preferable to include a polymer having
Examples of the polymerizable group include ethylenically unsaturated groups (e.g., (meth)acryloyl group, vinyl group, styryl group, etc.), and cyclic ether groups (e.g., epoxy group, oxetanyl group, etc.). , an ethylenically unsaturated group is preferred, and a (meth)acryloyl group is more preferred.
When compound A is a low-molecular-weight compound, the molecular weight of compound A is preferably less than 5,000, more preferably 2,000 or less, even more preferably 1,000 or less, particularly preferably 500 or less, most preferably 400 or less. preferable.
When the compound A is a polymer, the lower limit of the weight average molecular weight of the compound A is 5 in terms of excellent formability of the photosensitive layer (in other words, excellent film-forming ability for forming the photosensitive layer). ,000 or more is preferable, 10,000 or more is more preferable, and 15,000 or more is still more preferable. Although the upper limit is not particularly limited, it is preferably 50,000 or less from the viewpoint of better adhesion (laminate adhesion) when laminating (transferring) to any substrate.
本明細書において、樹脂の酸価は、JIS K0070(1992)に規定される滴定方法で測定される値である。 Further, when compound A is a polymer, from the viewpoint of developability, the acid value of compound A, which is a polymer, is preferably 60 to 300 mgKOH/g, more preferably 60 to 275 mgKOH/g, and further 75 to 250 mgKOH/g. preferable.
As used herein, the acid value of a resin is a value measured by the titration method specified in JIS K0070 (1992).
化合物Aが特定構造S0を含まないとは、化合物Aが特定構造S0を実質的に含んでいなければよく、例えば、化合物Aaが有する特定構造S0の含有量は、化合物Aaの全質量に対して、1質量%未満であればよく、0~0.5質量%であることが好ましく、0~0.05質量%であることがより好ましい。
化合物Abにおける特定構造S0の含有量は、化合物Abの全質量に対して、1質量%以上が好ましく、1~50質量%であることがより好ましく、5~40質量%であることが更により好ましい。
化合物Aが化合物Abを含む場合、化合物Abの含有量は、化合物Aの全質量に対して5~100質量%が好ましい。
ここで、特定構造S0とは、上述のとおり、露光されると、化合物A中に含まれる酸基の量を減少させる作用を示す構造である。特定構造S0としては、露光によって基底状態から励起状態へ遷移し、且つ、励起状態において化合物A中の酸基を減少させる作用を示す構造であるのが好ましい。
化合物Aが有する特定構造S0としては、光励起状態において化合物Aが含む酸基から電子を受容できる構造(特定構造S1)が挙げられる。
このような特定構造S1としては、複素芳香環が挙げられる。 Compound A also preferably contains a structure (specific structure S0) that reduces the amount of acid groups contained in compound A upon exposure. In the following, compound A not containing specific structure S0 is also referred to as "compound Aa", and compound A containing specific structure S0 is also referred to as "compound Ab". Incidentally, the compound Ab is preferably a polymer.
Compound A does not contain specific structure S0 means that compound A does not substantially contain specific structure S0. For example, the content of specific structure S0 in compound Aa is relative to the total mass of compound Aa is less than 1% by mass, preferably 0 to 0.5% by mass, more preferably 0 to 0.05% by mass.
The content of the specific structure S0 in the compound Ab is preferably 1% by mass or more, more preferably 1 to 50% by mass, and even more preferably 5 to 40% by mass, relative to the total mass of the compound Ab. preferable.
When compound A contains compound Ab, the content of compound Ab is preferably 5 to 100% by mass relative to the total mass of compound A.
Here, the specific structure S0 is a structure that exhibits an effect of reducing the amount of acid groups contained in the compound A upon exposure to light, as described above. The specific structure S0 is preferably a structure that transitions from a ground state to an excited state upon exposure and exhibits an effect of reducing acid groups in compound A in the excited state.
Specific structure S0 of compound A includes a structure (specific structure S1) that can accept electrons from an acid group contained in compound A in a photoexcited state.
Such a specific structure S1 includes a heteroaromatic ring.
複素芳香環は、環員原子としてヘテロ原子(窒素原子、酸素原子、硫黄原子等)を1以上有しており、1~4つ有することが好ましい。また、複素芳香環は、環員原子として窒素原子を1以上(例えば1~4つ)有することが好ましい。
上記複素芳香環の環員原子数は、5~15が好ましい。 The heteroaromatic ring may be monocyclic or polycyclic, and is preferably polycyclic. A polycyclic heteroaromatic ring is formed by condensing a plurality of (for example, 2 to 5) aromatic ring structures, and at least one of the plurality of aromatic ring structures has a heteroatom as a ring member atom. have.
The heteroaromatic ring has one or more heteroatoms (nitrogen atom, oxygen atom, sulfur atom, etc.) as ring member atoms, preferably 1 to 4 heteroatoms. In addition, the heteroaromatic ring preferably has one or more (eg, 1 to 4) nitrogen atoms as ring member atoms.
The number of ring member atoms in the above heteroaromatic ring is preferably 5-15.
また、上記複素芳香環がカルボニル基と直接結合していることも好ましい。
上記複素芳香環がイミド基と結合して、複素芳香族イミド基を形成していることも好ましい。なお、複素芳香族イミド基におけるイミド基は、複素芳香環と共にイミド環を形成していてもよいし、形成していなくてもよい。 The heteroaromatic ring may have one or more (for example, 1 to 5) substituents, and examples of the substituents include alkyl groups, aryl groups, halogen atoms, acyl groups, alkoxycarbonyl groups, and arylcarbonyl groups. , carbamoyl, hydroxy, cyano, and nitro groups. Moreover, when the aromatic ring has two or more substituents, the plurality of substituents may be combined to form a non-aromatic ring.
It is also preferred that the heteroaromatic ring is directly bonded to the carbonyl group.
It is also preferred that the heteroaromatic ring is bonded to the imide group to form a heteroaromatic imide group. The imide group in the heteroaromatic imide group may or may not form an imide ring together with the heteroaromatic ring.
カルボキシ基を有する化合物としては、カルボキシ基を含むモノマー(以下「カルボキシ基含有モノマー」ともいう。)又はカルボキシ基を含むポリマー(以下「カルボキシ基含有ポリマー」ともいう。)であるのが好ましく、感光性組成物のパターン形成性能がより優れる点及び製膜性により優れる点で、カルボキシ基含有ポリマーであるのがより好ましい。 As the compound A, a compound having a carboxy group is particularly preferable because the pattern forming performance of the photosensitive composition is more excellent and the film-forming property is more excellent.
The compound having a carboxy group is preferably a monomer containing a carboxy group (hereinafter also referred to as a "carboxy group-containing monomer") or a polymer containing a carboxy group (hereinafter also referred to as a "carboxy group-containing polymer"). A carboxyl group-containing polymer is more preferable in that the pattern forming performance of the liquid composition is more excellent and the film-forming property is more excellent.
つまり、カルボキシ基含有モノマーは感光性組成物中で、アニオン化していてもアニオン化していなくてもよく、アニオン化したカルボキシ基含有モノマーも、アニオン化していないカルボキシ基含有モノマーも共に含めてカルボキシ基含有モノマーと称する。
つまり、カルボキシ基含有ポリマーは感光性組成物中で、アニオン化していてもアニオン化していなくてもよく、アニオン化したカルボキシ基含有ポリマーも、アニオン化していないカルボキシ基含有ポリマーも共に含めてカルボキシ基含有ポリマーと称する。 Some or all of the carboxy groups (--COOH) possessed by the carboxy group-containing monomer and the carboxy group-containing polymer may or may not be anionized in the photosensitive composition. Both (—COO − ) and non-anionized carboxy groups are referred to as carboxy groups.
In other words, the carboxy group-containing monomer may or may not be anionized in the photosensitive composition, and both anionized carboxy group-containing monomers and non-anionized carboxy group-containing monomers may be included. It is called contained monomer.
In other words, the carboxy group-containing polymer may or may not be anionized in the photosensitive composition, and both the anionized carboxy group-containing polymer and the non-anionized carboxy group-containing polymer are included in the carboxy group-containing polymer. It is called the contained polymer.
化合物Aは、一種単独で使用してもよく、二種以上使用してもよい。 In the photosensitive composition, the lower limit of the content of compound A is preferably 1% by mass or more, more preferably 25% by mass or more, more preferably 30% by mass or more, relative to the total solid content of the photosensitive composition. Preferably, 45% by mass or more is even more preferable, and 50% by mass or more is particularly preferable. The upper limit of the content of compound A is preferably 100% by mass or less, more preferably 99% by mass or less, still more preferably 97% by mass or less, and 93% by mass or less, relative to the total solid content of the photosensitive composition. is particularly preferred, 85% by mass or less is more preferred, and 75% by mass or less is most preferred. In addition, when the photosensitive composition satisfies the requirement W01, the upper limit of the content of the compound A is preferably 99% by mass or less with respect to the total solid content of the photosensitive composition.
Compound A may be used alone or in combination of two or more.
カルボキシ基含有モノマーとしては、カルボキシ基を含み、且つ、エチレン性不飽和基を1つ以上(例えば1~15個)含む重合性化合物が挙げられる。
エチレン性不飽和基としては、例えば、(メタ)アクリロイル基、ビニル基、及びスチリル基が挙げられ、(メタ)アクリロイル基が好ましい。
カルボキシ基含有モノマーとしては、製膜性がより優れる点で、カルボキシ基を含む2官能以上のモノマーが好ましい。なお、2官能以上のモノマーとは、一分子中にエチレン性不飽和基を2つ以上(例えば2~15個)有する重合性化合物を意味する。
カルボキシ基含有モノマーは、酸基として、カルボキシ基以外の酸基を更に有してもよい。カルボキシ基以外の酸基としては、例えば、フェノール性水酸基、リン酸基、及びスルホン酸基が挙げられる。 (Carboxy group-containing monomer)
Examples of the carboxy group-containing monomer include polymerizable compounds containing a carboxy group and one or more (eg, 1 to 15) ethylenically unsaturated groups.
Examples of ethylenically unsaturated groups include (meth)acryloyl groups, vinyl groups, and styryl groups, with (meth)acryloyl groups being preferred.
As the carboxy group-containing monomer, a bifunctional or higher functional monomer containing a carboxy group is preferable from the viewpoint of better film-forming properties. The bifunctional or higher monomer means a polymerizable compound having two or more (eg, 2 to 15) ethylenically unsaturated groups in one molecule.
The carboxy group-containing monomer may further have an acid group other than the carboxy group as an acid group. Examples of acid groups other than carboxy groups include phenolic hydroxyl groups, phosphoric acid groups, and sulfonic acid groups.
カルボキシ基を含む2官能以上のモノマーとしては、例えば、アロニックス(登録商標)TO-2349(東亞合成(株)製)、アロニックスM-520(東亞合成(株)製)、及びアロニックスM-510(東亞合成(株)製)等が挙げられる。 The bifunctional or higher functional monomer containing a carboxy group is not particularly limited, and can be appropriately selected from known compounds.
Examples of bifunctional or higher monomers containing a carboxy group include Aronix (registered trademark) TO-2349 (manufactured by Toagosei Co., Ltd.), Aronix M-520 (manufactured by Toagosei Co., Ltd.), and Aronix M-510 (manufactured by Toagosei Co., Ltd.). manufactured by Toagosei Co., Ltd.) and the like.
通常、カルボキシ基含有ポリマーは、アルカリ可溶性樹脂である。なお、アルカリ可溶性の定義及び測定方法については、既述のとおりである。 (Carboxy group-containing polymer)
Carboxy group-containing polymers are usually alkali-soluble resins. The definition and measurement method of alkali solubility are as described above.
カルボキシ基含有ポリマーは、カルボキシ基を有する繰り返し単位を有することが好ましい。
カルボキシ基を有する繰り返し単位としては、例えば、下記一般式(A)で表される繰り返し単位が挙げられる。 <<Repeating unit having a carboxy group>>
The carboxy group-containing polymer preferably has a repeating unit having a carboxy group.
Examples of repeating units having a carboxy group include repeating units represented by the following general formula (A).
上記アルキル基は、直鎖状でも分岐鎖状でもよい。上記アルキル基の炭素数は1~5が好ましく、1がより好ましい。
一般式(A)中、A1は、単結合又は2価の連結基を表す。
上記2価の連結基としては、例えば、-CO-、-O-、-S―、-SO-、―SO2-、-NRN-(RNは、水素原子又は炭素数1~5のアルキル基)、炭化水素基(例えば、アルキレン基、シクロアルキレン基、アルケニレン基、フェニレン基のようなアリーレン基等)、及びこれらの複数が連結した連結基が挙げられる。 In general formula (A), R A1 represents a hydrogen atom, a halogen atom, or an alkyl group.
The above alkyl groups may be linear or branched. The number of carbon atoms in the alkyl group is preferably 1 to 5, more preferably 1.
In general formula (A), A 1 represents a single bond or a divalent linking group.
Examples of the divalent linking group include -CO-, -O-, -S-, -SO-, -SO 2 -, -NR N - (R N is a hydrogen atom or a alkyl groups), hydrocarbon groups (eg, alkylene groups, cycloalkylene groups, alkenylene groups, arylene groups such as phenylene groups, etc.), and linking groups in which a plurality of these are linked.
また、カルボキシ基含有ポリマー中、カルボキシ基を有する繰り返し単位の含有量は、カルボキシ基含有ポリマーの全繰り返し単位に対して、1~100質量%が好ましく、5~70質量%がより好ましく、12~50質量%が更に好ましい。
カルボキシ基を有する繰り返し単位は、一種単独で使用してもよく、二種以上使用してもよい。 The content of repeating units having a carboxy group in the carboxy group-containing polymer is preferably 5 to 100 mol%, more preferably 10 to 65 mol%, and 15 to 45 mol, based on the total repeating units of the carboxy group-containing polymer. % is more preferred.
Further, the content of repeating units having a carboxy group in the carboxy group-containing polymer is preferably 1 to 100% by mass, more preferably 5 to 70% by mass, more preferably 12 to 12% by mass, based on the total repeating units of the carboxy group-containing polymer. 50% by mass is more preferred.
A repeating unit having a carboxy group may be used alone or in combination of two or more.
カルボキシ基含有ポリマーは、上述の繰り返し単位以外に、重合性基を有する繰り返し単位を有することも好ましい。
重合性基としては、例えば、エチレン性不飽和基(例えば、(メタ)アクリロイル基、ビニル基、及びスチリル基等)、及び環状エーテル基(例えば、エポキシ基、オキセタニル基等)等が挙げられ、エチレン性不飽和基が好ましく、(メタ)アクリロイル基がより好ましい。
重合性基を有する繰り返し単位としては、例えば、下記一般式(B)で表される繰り返し単位が挙げられる。 <<Repeating unit having a polymerizable group>>
The carboxy group-containing polymer preferably has a repeating unit having a polymerizable group in addition to the repeating units described above.
Examples of the polymerizable group include ethylenically unsaturated groups (e.g., (meth)acryloyl group, vinyl group, styryl group, etc.), and cyclic ether groups (e.g., epoxy group, oxetanyl group, etc.). An ethylenically unsaturated group is preferred, and a (meth)acryloyl group is more preferred.
Examples of repeating units having a polymerizable group include repeating units represented by the following general formula (B).
RNは水素原子又はアルキル基を表す。上記アルキル基は、直鎖状でも分岐鎖状でもよく、炭素数は1~5が好ましい。
Lは、アルキレン基又はアリーレン基を表す。上記アルキレン基は、直鎖状でも分岐鎖状でもよく、炭素数は1~5が好ましい。上記アリーレン基は、単環でも多環でもよく、炭素数は6~15が好ましい。上記アルキレン基及びアリーレン基は、置換基を有していてもよく、上記置換基としては、例えば、水酸基が好ましい。
RB1及びRB2は、それぞれ独立に、水素原子、又はアルキル基を表す。上記アルキル基は、直鎖状でも分岐鎖状でもよい。上記アルキル基の炭素数は1~5が好ましく、1がより好ましい。 In general formula (B), X B1 and X B2 each independently represent -O- or -NR N -.
RN represents a hydrogen atom or an alkyl group. The alkyl group may be linear or branched, and preferably has 1 to 5 carbon atoms.
L represents an alkylene group or an arylene group. The alkylene group may be linear or branched, and preferably has 1 to 5 carbon atoms. The arylene group may be monocyclic or polycyclic, and preferably has 6 to 15 carbon atoms. The alkylene group and the arylene group may have a substituent, and the substituent is preferably a hydroxyl group, for example.
R B1 and R B2 each independently represent a hydrogen atom or an alkyl group. The above alkyl groups may be linear or branched. The number of carbon atoms in the alkyl group is preferably 1 to 5, more preferably 1.
カルボキシ基含有ポリマー中、重合性基を有する繰り返し単位の含有量は、カルボキシ基含有ポリマーの全繰り返し単位に対して、1~70質量%が好ましく、5~50質量%がより好ましく、12~45質量%が更に好ましい。
重合性基を有する繰り返し単位は、一種単独で使用してもよく、二種以上使用してもよい。 The content of repeating units having a polymerizable group in the carboxy group-containing polymer is preferably 3 to 60 mol%, more preferably 5 to 40 mol%, more preferably 10 to 30, based on the total repeating units of the carboxy group-containing polymer. Mole % is more preferred.
The content of repeating units having a polymerizable group in the carboxy group-containing polymer is preferably 1 to 70% by mass, more preferably 5 to 50% by mass, more preferably 12 to 45% by mass, based on the total repeating units of the carboxy group-containing polymer. % by mass is more preferred.
The repeating units having a polymerizable group may be used singly or in combination of two or more.
カルボキシ基含有ポリマーは、上述の繰り返し単位以外に、特定構造S0(好ましくは特定構造S1)を有する繰り返し単位を有することも好ましい。
特定構造S0及び特定構造S1については、既述のとおりである。
特定構造S0(好ましくは特定構造S1)を有する繰り返し単位において、特定構造S0(好ましくは特定構造S1)は、主鎖に存在していてもよく、側鎖に存在していてもよく、側鎖に存在していることが好ましい。特定構造S0(好ましくは特定構造S1)が側鎖に存在している場合、特定構造S0(好ましくは特定構造S1)はポリマー主鎖と単結合又は連結基を介して結合している。
特定構造S0(好ましくは特定構造S1)を有する繰り返し単位は、例えば、複素芳香環を有する単量体(具体的にはビニルピリジン及びビニル(イソ)キノリン等のビニル複素芳香環、並びに、複素芳香環を有する(メタ)アクリレート単量体等)に基づく繰り返し単位である。
以下、特定構造S0(好ましくは特定構造S1)を有する繰り返し単位の具体例を例示するが、これに制限されない。 <<Repeating unit having specific structure S0>>
The carboxy group-containing polymer also preferably has a repeating unit having a specific structure S0 (preferably a specific structure S1) in addition to the repeating units described above.
The specific structure S0 and the specific structure S1 are as described above.
In the repeating unit having the specific structure S0 (preferably the specific structure S1), the specific structure S0 (preferably the specific structure S1) may be present in the main chain, may be present in the side chain, or may be present in the side chain. preferably present in When the specific structure S0 (preferably specific structure S1) is present in the side chain, the specific structure S0 (preferably specific structure S1) is bound to the main chain of the polymer via a single bond or a linking group.
A repeating unit having a specific structure S0 (preferably a specific structure S1) is, for example, a monomer having a heteroaromatic ring (specifically, a vinyl heteroaromatic ring such as vinylpyridine and vinyl (iso)quinoline, and a heteroaromatic It is a repeating unit based on a (meth)acrylate monomer having a ring).
Specific examples of the repeating unit having the specific structure S0 (preferably specific structure S1) are shown below, but are not limited thereto.
カルボキシ基含有ポリマーが、特定構造S0(好ましくは特定構造S1)を有する繰り返し単位を有する場合、その含有量は、カルボキシ基含有ポリマーの全繰り返し単位に対して、1~75質量%が好ましく、3~60質量%がより好ましく、5~30質量%が更に好ましい。
特定構造S0(好ましくは特定構造S1)を有する繰り返し単位は、一種単独で使用してもよく、二種以上使用してもよい。 When the carboxy group-containing polymer has a repeating unit having the specific structure S0 (preferably specific structure S1), the content thereof is preferably 3 to 75 mol% with respect to the total repeating units of the carboxy group-containing polymer. ~60 mol% is more preferred, and 10 to 50 mol% is even more preferred.
When the carboxy group-containing polymer has a repeating unit having the specific structure S0 (preferably specific structure S1), the content thereof is preferably 1 to 75% by mass with respect to the total repeating units of the carboxy group-containing polymer, and 3 ~60% by mass is more preferable, and 5 to 30% by mass is even more preferable.
The repeating units having the specific structure S0 (preferably specific structure S1) may be used singly or in combination of two or more.
カルボキシ基含有ポリマーは、上述の繰り返し単位以外に、芳香環(好ましくは芳香族炭化水素環)を有する繰り返し単位を有することも好ましい。例えば、芳香環を有する(メタ)アクリレートに基づく繰り返し単位、スチレン及び重合可能なスチレン誘導体に基づく繰り返し単位が挙げられる。
芳香環を有する(メタ)アクリレートとしては、ベンジル(メタ)アクリレート、フェネチル(メタ)アクリレート、及びフェノキシエチル(メタ)アクリレート等が挙げられる。
スチレン及び重合可能なスチレン誘導体としては、メチルスチレン、ビニルトルエン、tert-ブトキシスチレン、アセトキシスチレン、4-ビニル安息香酸、スチレンダイマー、及びスチレントリマー等が挙げられる。
芳香環を有する繰り返し単位としては、例えば、下記一般式(C)で表される繰り返し単位も好ましい。 <<Repeating unit having an aromatic ring>>
The carboxy group-containing polymer preferably has a repeating unit having an aromatic ring (preferably an aromatic hydrocarbon ring) in addition to the repeating units described above. Examples thereof include repeating units based on (meth)acrylates having aromatic rings, and repeating units based on styrene and polymerizable styrene derivatives.
Examples of (meth)acrylates having an aromatic ring include benzyl (meth)acrylate, phenethyl (meth)acrylate, phenoxyethyl (meth)acrylate, and the like.
Styrene and polymerizable styrene derivatives include methylstyrene, vinyltoluene, tert-butoxystyrene, acetoxystyrene, 4-vinylbenzoic acid, styrene dimers, styrene trimers, and the like.
As the repeating unit having an aromatic ring, for example, repeating units represented by the following general formula (C) are also preferable.
ArCは、フェニル基又はナフチル基を表す。上記フェニル基及びナフチル基は、1種以上の置換基を有してもよく、上記置換基としては、例えば、アルキル基、アルコキシ基、アリール基、ハロゲン原子、及びヒドロキシ基が挙げられる。
芳香環を有する繰り返し単位を以下に例示する。 In general formula (C), R C1 represents a hydrogen atom, a halogen atom, or an alkyl group. The above alkyl groups may be linear or branched. The number of carbon atoms in the alkyl group is preferably 1 to 5, more preferably 1.
Ar C represents a phenyl group or a naphthyl group. The phenyl group and naphthyl group may have one or more substituents, and examples of the substituents include alkyl groups, alkoxy groups, aryl groups, halogen atoms, and hydroxy groups.
Examples of repeating units having an aromatic ring are shown below.
カルボキシ基含有ポリマー中、芳香環を有する繰り返し単位の含有量は、カルボキシ基含有ポリマーの全繰り返し単位に対して、5~90質量%が好ましく、10~80質量%がより好ましく、30~70質量%が更に好ましい。
芳香環を有する繰り返し単位は、一種単独で使用してもよく、二種以上使用してもよい。 The content of repeating units having an aromatic ring in the carboxy group-containing polymer is preferably 5 to 80 mol%, more preferably 15 to 75 mol%, and 30 to 70 mol, based on the total repeating units of the carboxy group-containing polymer. % is more preferred.
The content of repeating units having an aromatic ring in the carboxy group-containing polymer is preferably 5 to 90% by mass, more preferably 10 to 80% by mass, and 30 to 70% by mass, based on the total repeating units of the carboxy group-containing polymer. % is more preferred.
A repeating unit having an aromatic ring may be used alone or in combination of two or more.
カルボキシ基含有ポリマーは、上述の繰り返し単位以外に、脂環構造を有する繰り返し単位を有することも好ましい。脂環構造としては単環でも多環でも良い。
脂環式構造としては、例えば、ジシクロペンタニル環構造、ジシクロペンテニル環構造、イソボルニル環構造、アダマンタン環構造、及びシクロヘキシル環構造が挙げられる。
脂環式構造を有する繰り返し単位の由来となるモノマーとしては、例えば、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、及びシクロヘキシル(メタ)アクリレートが挙げられる。 <<Repeating unit having an alicyclic structure>>
The carboxy group-containing polymer preferably has a repeating unit having an alicyclic structure in addition to the repeating units described above. The alicyclic structure may be monocyclic or polycyclic.
Alicyclic structures include, for example, dicyclopentanyl ring structures, dicyclopentenyl ring structures, isobornyl ring structures, adamantane ring structures, and cyclohexyl ring structures.
Monomers from which repeating units having an alicyclic structure are derived include, for example, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, isobornyl (meth)acrylate, adamantyl (meth)acrylate, and cyclohexyl ( meth)acrylates.
カルボキシ基含有ポリマー中、脂環式構造を有する繰り返し単位の含有量は、カルボキシ基含有ポリマーの全繰り返し単位に対して、3~90質量%が好ましく、5~70質量%がより好ましく、25~60質量%が更に好ましい。
脂環式構造を有する繰り返し単位は、一種単独で使用してもよく、二種以上使用してもよい。 The content of repeating units having an alicyclic structure in the carboxy group-containing polymer is preferably 3 to 70 mol%, more preferably 5 to 60 mol%, more preferably 10 to 55 mol % is more preferred.
The content of repeating units having an alicyclic structure in the carboxy group-containing polymer is preferably 3 to 90% by mass, more preferably 5 to 70% by mass, and 25 to 60% by mass is more preferred.
The repeating units having an alicyclic structure may be used alone or in combination of two or more.
カルボキシ基含有ポリマーは、上述の繰り返し単位以外に、その他の繰り返し単位を有していてもよい。
上記その他の繰り返し単位の由来となるモノマーとしては、(メタ)アクリル酸アルキルエステルが挙げられ、アルキル基としては、鎖状構造を有するアルキル基が挙げられる。鎖状構造としては、直鎖構造でも分岐構造でも良い。アルキル基にはヒドロキシ基などの置換基が合ってもよい。アルキル基の炭素数としては1~50が挙げられ、1~10がより好ましい。具体例としては、メチル(メタ)アクリレートが挙げられる。
カルボキシ基含有ポリマー中、その他の繰り返し単位の含有量は、カルボキシ基含有ポリマーの全繰り返し単位に対して、1~70モル%が好ましく、2~50モル%がより好ましく、3~20モル%が更に好ましい。
カルボキシ基含有ポリマー中、その他の繰り返し単位の含有量は、カルボキシ基含有ポリマーの全繰り返し単位に対して、1~70質量%が好ましく、2~50質量%がより好ましく、5~35質量%が更に好ましい。
その他の繰り返し単位は、一種単独で使用してもよく、二種以上使用してもよい。
カルボキシ基含有ポリマーの重量平均分子量は、5000~200000が好ましく、10000~100000がより好ましく、11000~49000が最も好ましい。 ≪Other repeating units≫
The carboxy group-containing polymer may have other repeating units in addition to the repeating units described above.
Examples of monomers from which the other repeating units are derived include (meth)acrylic acid alkyl esters, and examples of alkyl groups include alkyl groups having a chain structure. The chain structure may be either a linear structure or a branched structure. The alkyl group may have a substituent such as a hydroxy group. The number of carbon atoms in the alkyl group is 1-50, preferably 1-10. A specific example is methyl (meth)acrylate.
The content of other repeating units in the carboxy group-containing polymer is preferably 1 to 70 mol%, more preferably 2 to 50 mol%, and 3 to 20 mol%, based on the total repeating units of the carboxy group-containing polymer. More preferred.
The content of other repeating units in the carboxy group-containing polymer is preferably 1 to 70% by mass, more preferably 2 to 50% by mass, more preferably 5 to 35% by mass, based on the total repeating units of the carboxy group-containing polymer. More preferred.
Other repeating units may be used singly or in combination of two or more.
The weight average molecular weight of the carboxy group-containing polymer is preferably 5,000 to 200,000, more preferably 10,000 to 100,000, and most preferably 11,000 to 49,000.
なかでも、実施形態X-1-a1の感光性組成物においては、化合物Aの含有量は、感光性組成物の全固形分に対して、40~98質量%が好ましく、50~96質量%がより好ましく、60~93質量%がより好ましい。
実施形態X-1-a2の感光性組成物においては、化合物Aの含有量は、感光性組成物の全固形分に対して、30~85質量%が好ましく、45~75質量%がより好ましい。
実施形態X-1-a3の感光性組成物においては、化合物Aの含有量は、感光性組成物の全固形分に対して、30~85質量%が好ましく、45~75質量%がより好ましい。 The content of compound A is preferably 25 to 100% by mass based on the total solid content of the photosensitive composition. However, if the photosensitive composition satisfies the requirements (V01) and/or requirements (V1) (that is, if the photosensitive composition contains compound β and/or compound B), the content of compound A is 25 to 99% by weight is preferred relative to the total solid content of the composition.
Among them, in the photosensitive composition of Embodiment X-1-a1, the content of compound A is preferably 40 to 98% by mass, more preferably 50 to 96% by mass, based on the total solid content of the photosensitive composition. is more preferable, and 60 to 93% by mass is more preferable.
In the photosensitive composition of Embodiment X-1-a2, the content of compound A is preferably 30 to 85% by mass, more preferably 45 to 75% by mass, based on the total solid content of the photosensitive composition. .
In the photosensitive composition of Embodiment X-1-a3, the content of compound A is preferably 30 to 85% by mass, more preferably 45 to 75% by mass, based on the total solid content of the photosensitive composition. .
感光性組成物は、化合物βを含むのが好ましい。
化合物βは、露光により化合物Aが含む酸基の量を減少させる構造(特定構造S0)を有する化合物である。なお、特定構造S0については既述のとおりである。
化合物βが有する特定構造S0とは、化合物βの全体を構成する全体構造であってもよく、化合物βの一部分を構成する部分構造であってもよい。
化合物βは、高分子化合物でも低分子化合物でもよく、低分子化合物であることが好ましい。
低分子化合物である化合物βの分子量は、5,000未満が好ましく、1,000未満がより好ましく、65~300が更に好ましく、75~250が特に好ましい。 <Compound β>
The photosensitive composition preferably contains compound β.
Compound β is a compound having a structure (specific structure S0) that reduces the amount of acid groups contained in compound A upon exposure. Note that the specific structure S0 is as described above.
The specific structure S0 of the compound β may be the entire structure that constitutes the entire compound β, or a partial structure that constitutes a part of the compound β.
The compound β may be a high-molecular compound or a low-molecular compound, preferably a low-molecular-weight compound.
The molecular weight of compound β, which is a low-molecular compound, is preferably less than 5,000, more preferably less than 1,000, even more preferably 65-300, and particularly preferably 75-250.
パターン形成能がより優れる点、及び/又は、形成されるパターンの透湿性がより低くなる点で、化合物β(好ましくは化合物B)は芳香族化合物が好ましい。
ここで、芳香族化合物とは、芳香環を1以上有する化合物である。
芳香環は、化合物β(好ましくは化合物B)中に1個のみ存在していてもよく、複数存在していてもよい。複数存在する場合、例えば、上記芳香環が樹脂の側鎖等に存在していてもよい。
化合物β(好ましくは化合物B)において、芳香環は、上記光励起状態で化合物Aが含む酸基から電子を受容できる構造(特定構造S1)として使用可能である。上記芳香環は、化合物β(好ましくは化合物B)の全体を構成する全体構造であってもよく、化合物β(好ましくは化合物B)の一部分を構成する部分構造であってもよい。
上記芳香環は、単環でも多環でもよく、多環であることが好ましい。多環の芳香環は、例えば、複数(例えば2~5つ)の芳香環構造が縮環してなる芳香環であり、上記複数の芳香環構造のうちの少なくとも1つが環員原子としてヘテロ原子を有していることが好ましい。
上記芳香環は、複素芳香環であってもよく、環員原子としてヘテロ原子(窒素原子、酸素原子、硫黄原子等)を1以上(例えば1~4つ)有することが好ましく、環員原子として窒素原子を1以上(例えば1~4つ)有することがより好ましい。
上記芳香環の環員原子数は、5~15が好ましい。 Compound β (preferably compound B) is described below.
The compound β (preferably the compound B) is preferably an aromatic compound in terms of better pattern forming ability and/or lower moisture permeability of the formed pattern.
Here, the aromatic compound is a compound having one or more aromatic rings.
Only one aromatic ring or a plurality of aromatic rings may be present in compound β (preferably compound B). When a plurality of aromatic rings are present, for example, the aromatic ring may be present in a side chain of the resin or the like.
In compound β (preferably compound B), the aromatic ring can be used as a structure (specific structure S1) capable of accepting electrons from the acid group contained in compound A in the photoexcited state. The aromatic ring may be an entire structure that constitutes the entire compound β (preferably compound B), or a partial structure that constitutes a part of the compound β (preferably compound B).
The aromatic ring may be monocyclic or polycyclic, and is preferably polycyclic. The polycyclic aromatic ring is, for example, an aromatic ring formed by condensing a plurality of (for example, 2 to 5) aromatic ring structures, and at least one of the plurality of aromatic ring structures has a heteroatom as a ring member atom. It is preferable to have
The aromatic ring may be a heteroaromatic ring, preferably has 1 or more (eg, 1 to 4) heteroatoms (nitrogen atom, oxygen atom, sulfur atom, etc.) as ring member atoms, and More preferably, it has 1 or more (eg, 1 to 4) nitrogen atoms.
The number of ring member atoms in the aromatic ring is preferably 5-15.
また、上記芳香環がカルボニル基と直接結合して、化合物β(好ましくは化合物B)中で、芳香族カルボニル基を形成していることも好ましい。複数の芳香環が、カルボニル基を介して結合していることも好ましい。
上記芳香環がイミド基と結合して、化合物β(好ましくは化合物B)中で、芳香族イミド基を形成していることも好ましい。なお、芳香族イミド基におけるイミド基は、芳香環と共にイミド環を形成していてもよいし、形成していなくてもよい。
なお、複数の芳香環(例えば、2~5つの芳香環)が、単結合、カルボニル基、及び多重結合(例えば、置換基を有してもよいビニレン基、-C≡C-、-N=N-等)からなる群から選択される構造で結合した一連の芳香環構造を形成している場合、上記一連の芳香環構造全体で1つの特定構造S1とみなす。
また、上記一連の芳香環構造を構成する複数の芳香環のうちの1以上が上記複素芳香環であることが好ましい。 The aromatic ring may have one or more (for example, 1 to 5) substituents, and examples of the substituents include alkyl groups, aryl groups, halogen atoms, acyl groups, alkoxycarbonyl groups, arylcarbonyl groups, Carbamoyl groups, hydroxy groups, cyano groups, amino groups, and nitro groups are included. Moreover, when the aromatic ring has two or more substituents, the plurality of substituents may be combined to form a non-aromatic ring.
It is also preferred that the aromatic ring is directly bonded to the carbonyl group to form an aromatic carbonyl group in compound β (preferably compound B). It is also preferred that multiple aromatic rings are linked via a carbonyl group.
It is also preferred that the aromatic ring is bonded to the imide group to form an aromatic imide group in compound β (preferably compound B). The imide group in the aromatic imide group may or may not form an imide ring together with the aromatic ring.
In addition, a plurality of aromatic rings (e.g., 2 to 5 aromatic rings) include single bonds, carbonyl groups, and multiple bonds (e.g., optionally substituted vinylene groups, -C≡C-, -N= N—, etc.), when a series of aromatic ring structures linked together are formed, the series of aromatic ring structures as a whole is regarded as one specific structure S1.
Moreover, one or more of the plurality of aromatic rings constituting the series of aromatic ring structures is preferably the heteroaromatic ring.
(1)多環の芳香環を有する。
(2)複素芳香環を有する。
(3)芳香族カルボニル基を有する。
(4)芳香族イミド基を有する。 Compound β (preferably compound B) has one or more of the following requirements (1) to (4) (for example, 1 to 4) are preferred. Above all, it is preferable that at least requirement (2) is satisfied, and that at least a nitrogen atom be included as the heteroatom possessed by the heteroaromatic ring.
(1) It has a polycyclic aromatic ring.
(2) having a heteroaromatic ring;
(3) having an aromatic carbonyl group;
(4) It has an aromatic imide group.
なかでも、化合物β(好ましくは化合物B)は、ピリジン及びピリジン誘導体、キノリン及びキノリン誘導体、並びに、イソキノリン及びイソキノリン誘導体からなる群から選択される1種以上であることが好ましく、キノリン及びキノリン誘導体、並びに、イソキノリン及びイソキノリン誘導体からなる群から選択される1種以上であることがより好ましく、イソキノリン及びイソキノリン誘導体からなる群から選択される1種以上であることが更に好ましい。
これらの化合物及びその誘導体は更に置換基を有していてもよく、上記置換基としては、アルキル基、アリール基、ハロゲン原子、アシル基、アルコキシカルボニル基、アリールカルボニル基、カルバモイル基、ヒドロキシ基、シアノ基、アミノ基、又はニトロ基が好ましく、アルキル基、アリール基、ハロゲン原子、アシル基、アルコキシカルボニル基、アリールカルボニル基、カルバモイル基、ヒドロキシ基、シアノ基、又はニトロ基がより好ましく、アルキル基、アリール基、アシル基、アルコキシカルボニル基、アリールカルボニル基、カルバモイル基、ヒドロキシ基、シアノ基、又はニトロ基が更に好ましく、アルキル基(例えば、炭素数1~10の直鎖状又は分岐鎖状のアルキル基)が特に好ましい。 Specific examples of compound β (preferably compound B) include pyridine and pyridine derivatives, pyrazine and pyrazine derivatives, pyrimidine and pyrimidine derivatives, and monocyclic aromatic compounds such as triazine and triazine derivatives; quinoline and quinoline derivatives; Compounds in which two rings are fused to form an aromatic ring, such as isoquinoline and isoquinoline derivatives, quinoxaline and quinoxaline derivatives, and quinazoline and quinazoline derivatives; acridine and acridine derivatives, phenanthridine and phenanthridine derivatives, phenanthroline and Compounds in which three or more rings are condensed to form an aromatic ring, such as phenanthroline derivatives and phenazine and phenazine derivatives.
Among them, compound β (preferably compound B) is preferably one or more selected from the group consisting of pyridine and pyridine derivatives, quinoline and quinoline derivatives, and isoquinoline and isoquinoline derivatives. And, it is more preferably one or more selected from the group consisting of isoquinoline and isoquinoline derivatives, and more preferably one or more selected from the group consisting of isoquinoline and isoquinoline derivatives.
These compounds and derivatives thereof may further have a substituent, and examples of the substituent include an alkyl group, an aryl group, a halogen atom, an acyl group, an alkoxycarbonyl group, an arylcarbonyl group, a carbamoyl group, a hydroxy group, A cyano group, an amino group, or a nitro group is preferable, an alkyl group, an aryl group, a halogen atom, an acyl group, an alkoxycarbonyl group, an arylcarbonyl group, a carbamoyl group, a hydroxy group, a cyano group, or a nitro group is more preferable, and an alkyl group , an aryl group, an acyl group, an alkoxycarbonyl group, an arylcarbonyl group, a carbamoyl group, a hydroxy group, a cyano group, or a nitro group are more preferable, and an alkyl group (for example, a linear or branched chain having 1 to 10 carbon atoms) alkyl groups) are particularly preferred.
置換基の位置としては、例えば、化合物β(好ましくは化合物B)がキノリン及びキノリン誘導体である場合、パターン形成能がより優れる点、及び/又は、形成されるパターンの透湿性がより低くなる点で、キノリン環上の少なくとも2位及び4位の位置に置換基を有しているのが好ましい。また、例えば、化合物β(好ましくは化合物B)がイソキノリン及びイソキノリン誘導体である場合、パターン形成能がより優れる点、及び/又は、形成されるパターンの透湿性がより低くなる点で、イソキノリン環上の少なくとも1位の位置に置換基を有しているのが好ましい。なお、置換基としては、アルキル基(例えば、炭素数1~10の直鎖状又は分岐鎖状のアルキル基)が好ましい。 In addition, the compound β (preferably compound B) is an aromatic compound having a substituent (compound β (preferably is a compound having substituents on the constituent atoms of the aromatic ring contained in compound B)), satisfies one or more (for example, 1 to 4) of the above requirements (1) to (4), and further A compound having a substituent is more preferred.
The position of the substituent is, for example, when the compound β (preferably compound B) is a quinoline or a quinoline derivative, the point at which the pattern forming ability is superior and/or the point at which the formed pattern has lower moisture permeability. and preferably have substituents at least at the 2- and 4-positions on the quinoline ring. Further, for example, when the compound β (preferably the compound B) is an isoquinoline or an isoquinoline derivative, the pattern forming ability is superior and/or the moisture permeability of the formed pattern is lower. It is preferred that at least the 1-position of has a substituent. As the substituent, an alkyl group (for example, a linear or branched alkyl group having 1 to 10 carbon atoms) is preferable.
ポリマーである化合物β(好ましくは化合物B)は、例えば、複素芳香環を有する単量体(具体的にはビニル複素芳香環、及び/又は、特定構造S0(好ましくは特定構造S1であり、より好ましくは複素芳香環)を有する(メタ)アクリレート単量体)を重合することにより得られる。必要に応じて他の単量体と共重合してもよい。 When compound β (preferably compound B) is a polymer, it may be a polymer in which specific structure S0 (preferably specific structure S1) is bound to the main chain of the polymer via a single bond or a linking group.
Compound β (preferably compound B), which is a polymer, is, for example, a monomer having a heteroaromatic ring (specifically, a vinyl heteroaromatic ring and/or a specific structure S0 (preferably a specific structure S1, and more It is preferably obtained by polymerizing a (meth)acrylate monomer) having a heteroaromatic ring). You may copolymerize with another monomer as needed.
化合物β(好ましくは化合物B)のモル吸光係数εが上記範囲内であることは、仮支持体(好ましくはPETフィルム)越しに感光性組成物から形成される感光層を露光する場合に、特に利点がある。
すなわち、酸基を有する化合物Aの酸基がカルボキシ基である場合、モル吸光係数εが適度に低いため、仮支持体越しに露光しても脱炭酸による泡の発生を制御でき、パターン形状の劣化を防ぐことができる。
また、感光性組成物を保護膜(永久膜)の作製用途に用いる場合、化合物β(好ましくは化合物B)のモル吸光係数εを上記範囲内とすることで、膜の着色を抑制できる。
このようなモル吸光係数εを有する化合物としては、上述の単環の芳香族化合物、又は2環が縮合して芳香環を形成している芳香族化合物が好ましく、ピリジン若しくはピリジン誘導体、キノリン若しくはキノリン誘導体、又はイソキノリン若しくはイソキノリン誘導体がより好ましく、イソキノリン若しくはイソキノリン誘導体が更に好ましい。 The molar absorption coefficient (molar absorption coefficient ε) of compound β (preferably compound B) for light at a wavelength of 365 nm is , for example, 1×10 3 (cm·mol/L) −1 or less, preferably 1×10 3 (cm·mol/L) −1 or less, and 5×10 2 (cm·mol/L) It is more preferably less than −1 , and even more preferably 1×10 2 (cm·mol/L) −1 or less. The lower limit of the molar extinction coefficient ε is not particularly limited, and is, for example, greater than 0 (cm·mol/L) −1 .
The fact that the molar extinction coefficient ε of the compound β (preferably compound B) is within the above range is particularly effective when exposing a photosensitive layer formed from a photosensitive composition through a temporary support (preferably PET film). There are advantages.
That is, when the acid group of the compound A having an acid group is a carboxy group, the molar absorption coefficient ε is moderately low, so that the generation of bubbles due to decarboxylation can be controlled even when exposed through the temporary support, and the pattern shape can be improved. deterioration can be prevented.
Further, when the photosensitive composition is used for producing a protective film (permanent film), coloration of the film can be suppressed by setting the molar extinction coefficient ε of the compound β (preferably compound B) within the above range.
As the compound having such a molar extinction coefficient ε, the above-described monocyclic aromatic compounds or aromatic compounds in which two rings are condensed to form an aromatic ring are preferable, and pyridine or pyridine derivatives, quinoline or quinoline Derivatives, or isoquinolines or isoquinoline derivatives are more preferred, and isoquinolines or isoquinoline derivatives are even more preferred.
本明細書中、化合物β(好ましくは化合物B)のカチオン状態におけるHOMO(第1電子励起状態におけるHOMO)のエネルギー準位は、量子化学計算プログラムGaussian09(Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.)により計算した。
計算手法として、汎関数にはB3LYPを、基底関数には6-31+G(d,p)を用いた時間依存密度汎関数法を利用した。また、溶媒効果を取り込むため、Gaussian09に設定されているクロロホルムのパラメータに基づくPCM法を併用した。本手法により第1電子励起状態の構造最適化計算を行ってエネルギーが最小となる構造を求め、その構造におけるHOMOのエネルギーを計算した。 Further, when the compound β (preferably compound B) is a compound exhibiting a cationic state (for example, a nitrogen-containing aromatic compound), the energy of the HOMO (highest occupied molecular orbital) in the cationic state of the compound β (preferably compound B) The level is preferably −7.50 eV or less, and more preferably −7.80 eV or less in terms of better pattern forming ability and/or lower moisture permeability of the formed pattern. . Although the lower limit is not particularly limited, it is more preferably -13.60 eV or higher.
In this specification, the energy level of the HOMO (HOMO in the first electron excited state) in the cation state of compound β (preferably compound B) is calculated using a quantum chemical calculation program Gaussian09 (Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.).
As a calculation method, the time-dependent density functional theory using B3LYP as the functional and 6-31+G(d, p) as the basis function was used. In addition, in order to capture the solvent effect, the PCM method based on the parameters of chloroform set in Gaussian09 was also used. By this method, the structure optimization calculation of the first electron excited state was performed, the structure with the minimum energy was obtained, and the HOMO energy in that structure was calculated.
なかでも、実施形態X-1-a1の感光性組成物においては、化合物β(好ましくは化合物B)の含有量は、感光性組成物の全固形分に対して、2.0~40質量%が好ましく、4~35質量%がより好ましく、8~30質量%が更に好ましい。
実施形態X-1-a2の感光性組成物においては、化合物β(好ましくは化合物B)の含有量は、感光性組成物の全固形分に対して、0.5~20質量%が好ましく、1.0~10質量%がより好ましい。
実施形態X-1-a3の感光性組成物においては、化合物β(好ましくは化合物B)の含有量は、感光性組成物の全固形分に対して、0.3~20質量%が好ましく、0.5~8質量%がより好ましい。
化合物β(好ましくは化合物B)は、一種単独で使用してもよく、二種以上使用してもよい。 The content of compound β (preferably compound B) in the photosensitive composition is preferably 0.1 to 50% by mass based on the total solid content of the photosensitive composition.
Among them, in the photosensitive composition of Embodiment X-1-a1, the content of compound β (preferably compound B) is 2.0 to 40% by mass relative to the total solid content of the photosensitive composition. is preferred, 4 to 35 mass % is more preferred, and 8 to 30 mass % is even more preferred.
In the photosensitive composition of Embodiment X-1-a2, the content of compound β (preferably compound B) is preferably 0.5 to 20% by mass based on the total solid content of the photosensitive composition, 1.0 to 10% by mass is more preferable.
In the photosensitive composition of Embodiment X-1-a3, the content of compound β (preferably compound B) is preferably 0.3 to 20% by mass based on the total solid content of the photosensitive composition, 0.5 to 8% by mass is more preferable.
Compound β (preferably compound B) may be used alone or in combination of two or more.
化合物Bが有する電子を受容できる構造(特定構造S1)の合計数の上限に特に制限はないが、得られる膜の膜質の点から、化合物Aが有する酸基(好ましくはカルボキシ基)の合計数に対して、200モル%以下が好ましく、100モル%以下がより好ましく、80モル%以下が更に好ましい。 When compound β is compound B, the total number of electron-accepting structures (specific structure S1) possessed by compound B in the photosensitive composition is the same as the acid group possessed by compound A, since the effect of the present invention is more excellent. (preferably carboxy groups), the total number is preferably 1 mol% or more, more preferably 3 mol% or more, still more preferably 5 mol% or more, particularly preferably 10 mol% or more, most preferably 20 mol% or more. preferable.
Although there is no particular upper limit on the total number of electron-accepting structures (specific structure S1) possessed by compound B, the total number of acid groups (preferably carboxyl groups) possessed by compound A is considered from the viewpoint of the film quality of the resulting film. is preferably 200 mol % or less, more preferably 100 mol % or less, and even more preferably 80 mol % or less.
感光性組成物は、重合性化合物を含むことも好ましい。なお、この重合性化合物は、酸基を有する化合物Aとは異なる成分であり、酸基を含まないことが好ましい。 <Polymerizable compound>
The photosensitive composition also preferably contains a polymerizable compound. This polymerizable compound is a component different from the compound A having an acid group, and preferably does not contain an acid group.
重合性化合物は、2官能以上の重合性化合物を含むことが好ましい。
ここで、2官能以上の重合性化合物とは、一分子中にエチレン性不飽和基を2つ以上(例えば2~15個)有する重合性化合物を意味する。
エチレン性不飽和基としては、例えば、(メタ)アクリロイル基、ビニル基、及びスチリル基が挙げられ、(メタ)アクリロイル基が好ましい。
重合性化合物としては、(メタ)アクリレートが好ましい。 A polymerizable compound is a polymerizable compound having one or more (eg, 1 to 15) ethylenically unsaturated groups in one molecule.
The polymerizable compound preferably contains a polymerizable compound having a functionality of two or more.
Here, the bifunctional or higher polymerizable compound means a polymerizable compound having two or more (for example, 2 to 15) ethylenically unsaturated groups in one molecule.
Examples of ethylenically unsaturated groups include (meth)acryloyl groups, vinyl groups, and styryl groups, with (meth)acryloyl groups being preferred.
(Meth)acrylates are preferred as the polymerizable compound.
2官能の重合性化合物としては、例えば、トリシクロデカンジメタノールジ(メタ)アクリレート、トリシクロデカンジメナノールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、及び1,6-ヘキサンジオールジ(メタ)アクリレートが挙げられる。
2官能の重合性化合物としては、より具体的には、例えば、トリシクロデカンジメタノールジアクリレート(A-DCP 新中村化学工業(株)製)、トリシクロデカンジメナノールジメタクリレート(DCP 新中村化学工業(株)製)、1,9-ノナンジオールジアクリレート(A-NOD-N 新中村化学工業(株)製)、及び1,6-ヘキサンジオールジアクリレート(A-HD-N 新中村化学工業(株)製)等が挙げられる。 The bifunctional polymerizable compound is not particularly limited and can be appropriately selected from known compounds.
Examples of bifunctional polymerizable compounds include tricyclodecanedimethanol di(meth)acrylate, tricyclodecanedimethanol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, and 1,6 - hexanediol di(meth)acrylates.
As the bifunctional polymerizable compound, more specifically, for example, tricyclodecanedimethanol diacrylate (manufactured by A-DCP Shin-Nakamura Chemical Co., Ltd.), tricyclodecane dimenanol dimethacrylate (DCP Shin-Nakamura Kagaku Kogyo Co., Ltd.), 1,9-nonanediol diacrylate (A-NOD-N Shin-Nakamura Chemical Co., Ltd.), and 1,6-hexanediol diacrylate (A-HD-N Shin-Nakamura Chemical Kogyo Co., Ltd.) and the like.
3官能以上の重合性化合物としては、例えば、ジペンタエリスリトール(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート、ペンタエリスリトール(トリ/テトラ)(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、イソシアヌル酸(メタ)アクリレート、及びグリセリントリ(メタ)アクリレート骨格の(メタ)アクリレート化合物、等が挙げられる。 The trifunctional or higher polymerizable compound is not particularly limited and can be appropriately selected from known compounds.
Examples of trifunctional or higher polymerizable compounds include dipentaerythritol (tri/tetra/penta/hexa) (meth)acrylate, pentaerythritol (tri/tetra) (meth)acrylate, trimethylolpropane tri(meth)acrylate, Examples include ditrimethylolpropane tetra(meth)acrylate, isocyanuric acid (meth)acrylate, and (meth)acrylate compounds having a glycerin tri(meth)acrylate skeleton.
3官能以上のウレタン(メタ)アクリレートとしては、例えば、8UX-015A(大成ファインケミカル(株)製):UA-32P、U-15HA、及びUA-1100H(いずれも新中村化学工業(株)製):共栄社化学(株)製のAH-600(商品名):UA-306H、UA-306T、UA-306I、UA-510H、及びUX-5000(いずれも日本化薬(株)製)等が挙げられる。 The polymerizable compound also includes urethane (meth)acrylates (preferably trifunctional or higher urethane (meth)acrylates). The lower limit of the number of functional groups is more preferably hexafunctional or more, still more preferably octafunctional or more. The upper limit of the number of functional groups is, for example, 20 or less.
Trifunctional or higher urethane (meth)acrylates include, for example, 8UX-015A (manufactured by Taisei Fine Chemicals Co., Ltd.): UA-32P, U-15HA, and UA-1100H (all manufactured by Shin-Nakamura Chemical Co., Ltd.). : AH-600 (trade name) manufactured by Kyoeisha Chemical Co., Ltd.: UA-306H, UA-306T, UA-306I, UA-510H, and UX-5000 (all manufactured by Nippon Kayaku Co., Ltd.), etc. be done.
感光性組成物が重合性化合物を含む場合、感光性組成物に含まれる全ての重合性化合物のうち、分子量が最小のものの分子量は、250以上が好ましく、280以上がより好ましい。 The weight average molecular weight (Mw) of the polymerizable compound that can be contained in the photosensitive composition is preferably 200-3000, more preferably 250-2600, and even more preferably 280-2200.
When the photosensitive composition contains a polymerizable compound, among all the polymerizable compounds contained in the photosensitive composition, the molecular weight of the one with the smallest molecular weight is preferably 250 or more, more preferably 280 or more.
感光性組成物が重合性化合物を含む場合、化合物Aに対する重合性化合物の質量割合(重合性化合物の質量/化合物Aの質量)は、0.2~2.0が好ましく、0.4~0.9がより好ましい。
重合性化合物は、一種単独で使用してもよく、二種以上使用してもよい。 When the photosensitive composition contains a polymerizable compound, the content thereof is preferably 3 to 70% by mass, more preferably 10 to 70% by mass, based on the total solid content of the photosensitive composition, and 20 to 55% by mass. % is particularly preferred.
When the photosensitive composition contains a polymerizable compound, the mass ratio of the polymerizable compound to compound A (mass of polymerizable compound/mass of compound A) is preferably 0.2 to 2.0, and 0.4 to 0. .9 is more preferred.
A polymerizable compound may be used individually by 1 type, and may be used 2 or more types.
また、3官能以上の重合性化合物の含有量は、感光性組成物に含まれる全ての重合性化合物に対し、10~100質量%が好ましく、15~100質量%がより好ましく、20~100質量%が更に好ましく。70~100質量%が特に好ましい。 Further, when the photosensitive composition contains a bifunctional polymerizable compound and a trifunctional or higher polymerizable compound, the content of the bifunctional polymerizable compound is On the other hand, 10 to 90% by mass is preferable, 20 to 85% by mass is more preferable, and 30 to 80% by mass is even more preferable.
Further, the content of the trifunctional or higher polymerizable compound is preferably 10 to 100% by mass, more preferably 15 to 100% by mass, and 20 to 100% by mass with respect to all polymerizable compounds contained in the photosensitive composition. % is more preferred. 70 to 100% by weight is particularly preferred.
但し、感光性組成物が2官能以上の重合性化合物を含む場合、感光性組成物が含み得る重合性化合物において、2官能以上の重合性化合物が主成分であることが好ましい。
具体的には、感光性組成物が2官能以上の重合性化合物を含む場合において、2官能以上の重合性化合物の含有量は、感光性組成物に含まれる重合性化合物の総含有量に対し、60~100質量%が好ましく、80~100質量%がより好ましく、90~100質量%が更に好ましい。 Moreover, when the photosensitive composition contains a bifunctional or higher-functional polymerizable compound, the photosensitive composition may further contain a monofunctional polymerizable compound.
However, when the photosensitive composition contains a bifunctional or higher polymerizable compound, it is preferable that the difunctional or higher polymerizable compound is the main component in the polymerizable compounds that the photosensitive composition may contain.
Specifically, when the photosensitive composition contains a bifunctional or higher polymerizable compound, the content of the bifunctional or higher polymerizable compound is relative to the total content of the polymerizable compounds contained in the photosensitive composition. , preferably 60 to 100% by mass, more preferably 80 to 100% by mass, and even more preferably 90 to 100% by mass.
感光性組成物は、光重合開始剤を含むことも好ましい。
光重合開始剤は、光ラジカル重合開始剤でもよく、光カチオン重合開始剤でもよく、光アニオン重合開始剤でもよく、光ラジカル重合開始剤であることが好ましい。 <Photoinitiator>
The photosensitive composition preferably also contains a photoinitiator.
The photopolymerization initiator may be a radical photopolymerization initiator, a cationic photopolymerization initiator, or an anionic photopolymerization initiator, and is preferably a radical photopolymerization initiator.
光重合開始剤としては、オキシムエステル化合物(オキシムエステル構造を有する光重合開始剤)、又はアルキルフェノン化合物(アルキルフェノン構造を有する光重合開始剤)が好ましく、これらの化合物の少なくとも一方を含んでもよく、両方を含んでもよい。上記両方の化合物を含む場合、両方の化合物の合計含有量に対する、オキシムエステル化合物の含有量は、5~90質量%が好ましく、15~50質量%がより好ましい。アルキルフェノン化合物は、アミノアセトフェノン化合物(アミノアセトフェノン構造を有する光重合開始剤)であることも好ましい。
光重合開始剤は、更に他の光重合開始剤を併用してもよく、例えばヒドロキシアセトフェノン化合物、アシルホスフィンオキシド化合物、及びビストリフェニルイミダゾール化合物等が挙げられる。 The photopolymerization initiator is not particularly limited, and known photopolymerization initiators can be used.
As the photopolymerization initiator, an oxime ester compound (photopolymerization initiator having an oxime ester structure) or an alkylphenone compound (photopolymerization initiator having an alkylphenone structure) is preferable, and at least one of these compounds may be included. , may include both. When both the above compounds are included, the content of the oxime ester compound is preferably 5 to 90% by mass, more preferably 15 to 50% by mass, relative to the total content of both compounds. The alkylphenone compound is also preferably an aminoacetophenone compound (a photopolymerization initiator having an aminoacetophenone structure).
The photopolymerization initiator may be used in combination with other photopolymerization initiators, such as hydroxyacetophenone compounds, acylphosphine oxide compounds, and bistriphenylimidazole compounds.
オキシムエステル化合物としては、例えば、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(O-ベンゾイルオキシム)](商品名:IRGACURE OXE-01、IRGACUREシリーズはBASF社製品)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)(商品名:IRGACURE OXE-02、BASF製)、[8-[5-(2,4,6-トリメチルフェニル)-11-(2-エチルヘキシル)-11H-ベンゾ[a]カルバゾイル][2-(2,2,3,3-テトラフルオロプロポキシ)フェニル]メタノン-(O-アセチルオキシム)(商品名:IRGACURE OXE-03、BASF製)、1-[4-[4-(2-ベンゾフラニルカルボニル)フェニル]チオ]フェニル]-4-メチルペンタノン-1-(O-アセチルオキシム)(商品名:IRGACURE OXE-04、BASF製、及び商品名:Lunar 6、DKSHジャパン(株)製)、1-[4-(フェニルチオ)フェニル]-3-シクロペンチルプロパン-1,2-ジオン-2-(O-ベンゾイルオキシム)(商品名:TR-PBG-305、常州強力電子新材料社製)、1,2-プロパンジオン,3-シクロヘキシル-1-[9-エチル-6-(2-フラニルカルボニル)-9H-カルバゾール-3-イル]-,2-(O-アセチルオキシム)(商品名:TR-PBG-326、常州強力電子新材料社製)、3-シクロヘキシル-1-(6-(2-(ベンゾイルオキシイミノ)ヘキサノイル)-9-エチル-9H-カルバゾール-3-イル)-プロパン-1,2-ジオン-2-(O-ベンゾイルオキシム)(商品名:TR-PBG-391、常州強力電子新材料社製)が挙げられる。
アミノアセトフェノン化合物としては、例えば、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(商品名:Omnirad 379、OmniradシリーズはIGM Resins B.V.社製品)、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(商品名:Omnirad 907)、APi-307(1-(ビフェニル-4-イル)-2-メチル-2-モルホリノプロパン-1-オン、Shenzhen UV-ChemTech Ltd.製)が挙げられる。
他の光重合開始剤としては、例えば、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン(商品名:Omnirad 127)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(商品名:Omnirad 369)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(商品名:Omnirad 1173)、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名:Omnirad 184)、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名:Omnirad 651)、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド(商品名:Omnirad TPO H)、及びビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(商品名:Omnirad 819)が挙げられる。 Specific examples of the photopolymerization initiator include the following photopolymerization initiators.
Examples of oxime ester compounds include 1,2-octanedione, 1-[4-(phenylthio)phenyl-,2-(O-benzoyloxime)] (trade name: IRGACURE OXE-01, IRGACURE series are products of BASF) ), ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(0-acetyloxime) (trade name: IRGACURE OXE-02, manufactured by BASF) , [8-[5-(2,4,6-trimethylphenyl)-11-(2-ethylhexyl)-11H-benzo[a]carbazolyl][2-(2,2,3,3-tetrafluoropropoxy) Phenyl]methanone-(O-acetyloxime) (trade name: IRGACURE OXE-03, manufactured by BASF), 1-[4-[4-(2-benzofuranylcarbonyl)phenyl]thio]phenyl]-4-methylpenta Non-1-(O-acetyloxime) (trade name: IRGACURE OXE-04, manufactured by BASF, and trade name: Lunar 6, manufactured by DKSH Japan Co., Ltd.), 1-[4-(phenylthio)phenyl]-3- Cyclopentylpropane-1,2-dione-2-(O-benzoyloxime) (trade name: TR-PBG-305, manufactured by Changzhou Power Electronics New Materials Co., Ltd.), 1,2-propanedione, 3-cyclohexyl-1-[ 9-ethyl-6-(2-furanylcarbonyl)-9H-carbazol-3-yl]-,2-(O-acetyloxime) (trade name: TR-PBG-326, manufactured by Changzhou Tenryu Electric New Materials Co., Ltd.) , 3-cyclohexyl-1-(6-(2-(benzoyloxyimino)hexanoyl)-9-ethyl-9H-carbazol-3-yl)-propane-1,2-dione-2-(O-benzoyloxime) (trade name: TR-PBG-391, manufactured by Changzhou Strong Electronic New Materials Co., Ltd.).
Examples of aminoacetophenone compounds include 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone (trade name: Omnirad 379, The Omnirad series is a product of IGM Resins B.V.), 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one (trade name: Omnirad 907), APi-307 (1-( biphenyl-4-yl)-2-methyl-2-morpholinopropan-1-one, manufactured by Shenzhen UV-ChemTech Ltd.).
Other photopolymerization initiators include, for example, 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]phenyl}-2-methyl-propan-1-one ( Trade name: Omnirad 127), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 (trade name: Omnirad 369), 2-hydroxy-2-methyl-1-phenyl-propane -1-one (trade name: Omnirad 1173), 1-hydroxy-cyclohexyl-phenyl-ketone (trade name: Omnirad 184), 2,2-dimethoxy-1,2-diphenylethan-1-one (trade name: Omnirad 651), 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (trade name: Omnirad TPO H), and bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide (trade name: Omnirad 819).
光重合開始剤は、一種単独で使用してもよく、二種以上使用してもよい。 When the photosensitive composition contains a photopolymerization initiator, its content is preferably 0.01 to 15% by mass, more preferably 0.05 to 10% by mass, based on the total solid content of the photosensitive composition. , 0.1 to 5 mass % is more preferable.
A photoinitiator may be used individually by 1 type, and may be used 2 or more types.
感光性組成物は、界面活性剤を含んでもよい。
界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性(非イオン性)界面活性剤、及び両性界面活性剤が挙げられ、ノニオン性界面活性剤が好ましい。
ノニオン性界面活性剤としては、例えば、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリオキシエチレングリコールの高級脂肪酸ジエステル類、シリコーン系界面活性剤、及びフッ素系界面活性剤が挙げられる。 <Surfactant>
The photosensitive composition may contain a surfactant.
Surfactants include anionic surfactants, cationic surfactants, nonionic (nonionic) surfactants, and amphoteric surfactants, with nonionic surfactants being preferred.
Examples of nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkylphenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, silicone surfactants, and fluorine surfactants. mentioned.
また、界面活性剤としては、特許第4502784号公報の段落0017、特開2009-237362号公報の段落0060~段落0071に記載の界面活性剤も使用できる。
フッ素系界面活性剤の市販品としては、例えば、メガファック F-171、F-172、F-173、F-176、F-177、F-141、F-142、F-143、F-144、F-437、F-475、F-477、F-479、F-482、F-551-A、F-552、F-554、F-555-A、F-556、F-557、F-558、F-559、F-560、F-561、F-565、F-563、F-568、F-575、F-780、EXP、MFS-330、MFS-578、MFS-579、MFS-586、MFS-587、R-41、R-41-LM、R-01、R-40、R-40-LM、RS-43、TF-1956、RS-90、R-94、RS-72-K、DS-21(以上、DIC株式会社製)、フロラード FC430、FC431、FC171(以上、住友スリーエム(株)製)、サーフロンS-382、SC-101、SC-103、SC-104、SC-105、SC-1068、SC-381、SC-383、S-393、KH-40(以上、AGC(株)製)、PolyFox PF636、PF656、PF6320、PF6520、PF7002(以上、OMNOVA社製)、フタージェント 710FL、710FM、610FM、601AD、601ADH2、602A、215M、245F、251、212M、250、209F、222F、208G、710LA、710FS、730LM、650AC、681、683(以上、(株)NEOS製)等が挙げられる。
また、フッ素系界面活性剤としては、フッ素原子を含有する官能基を持つ分子構造を有し、熱を加えるとフッ素原子を含有する官能基の部分が切断されてフッ素原子が揮発するアクリル系化合物も好適に使用できる。このようなフッ素系界面活性剤としては、DIC(株)製のメガファック DSシリーズ(化学工業日報(2016年2月22日)、日経産業新聞(2016年2月23日))、例えばメガファック DS-21が挙げられる。
また、フッ素系界面活性剤としては、フッ素化アルキル基又はフッ素化アルキレンエーテル基を有するフッ素原子含有ビニルエーテル化合物と、親水性のビニルエーテル化合物との重合体を用いることも好ましい。
また、フッ素系界面活性剤としては、ブロックポリマーも使用できる。
また、フッ素系界面活性剤としては、フッ素原子を有する(メタ)アクリレート化合物に由来する繰り返し単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する繰り返し単位と、を含む含フッ素高分子化合物も好ましく使用できる。
また、フッ素系界面活性剤としては、エチレン性不飽和結合含有基を側鎖に有する含フッ素重合体も使用できる。メガファック RS-101、RS-102、RS-718K、RS-72-K(以上、DIC株式会社製)等が挙げられる。 As the surfactant, for example, surfactants described in paragraphs 0120 to 0125 of WO 2018/179640 can also be used.
As the surfactant, the surfactants described in paragraph 0017 of Japanese Patent No. 4502784 and paragraphs 0060 to 0071 of JP-A-2009-237362 can also be used.
Examples of commercially available fluorosurfactants include MEGAFACE F-171, F-172, F-173, F-176, F-177, F-141, F-142, F-143, and F-144. , F-437, F-475, F-477, F-479, F-482, F-551-A, F-552, F-554, F-555-A, F-556, F-557, F -558, F-559, F-560, F-561, F-565, F-563, F-568, F-575, F-780, EXP, MFS-330, MFS-578, MFS-579, MFS -586, MFS-587, R-41, R-41-LM, R-01, R-40, R-40-LM, RS-43, TF-1956, RS-90, R-94, RS-72 -K, DS-21 (manufactured by DIC Corporation), Florado FC430, FC431, FC171 (manufactured by Sumitomo 3M), Surflon S-382, SC-101, SC-103, SC-104, SC -105, SC-1068, SC-381, SC-383, S-393, KH-40 (manufactured by AGC Corporation), PolyFox PF636, PF656, PF6320, PF6520, PF7002 (manufactured by OMNOVA), Futergent 710FL, 710FM, 610FM, 601AD, 601ADH2, 602A, 215M, 245F, 251, 212M, 250, 209F, 222F, 208G, 710LA, 710FS, 730LM, 650AC, 681, 683 (manufactured by NEOS Co., Ltd.) etc.
In addition, as the fluorosurfactant, an acrylic compound that has a molecular structure with a functional group containing a fluorine atom and in which the portion of the functional group containing the fluorine atom is cleaved and the fluorine atom volatilizes when heat is applied. can also be suitably used. Examples of such fluorine-based surfactants include Megafac DS series manufactured by DIC Corporation (The Chemical Daily (February 22, 2016), Nikkei Sangyo Shimbun (February 23, 2016)), for example, Megafac and DS-21.
As the fluorosurfactant, it is also preferable to use a polymer of a fluorine atom-containing vinyl ether compound having a fluorinated alkyl group or a fluorinated alkylene ether group and a hydrophilic vinyl ether compound.
A block polymer can also be used as the fluorosurfactant.
Further, the fluorosurfactant has a repeating unit derived from a (meth)acrylate compound having a fluorine atom and 2 or more (preferably 5 or more) alkyleneoxy groups (preferably ethyleneoxy groups and propyleneoxy groups). A fluorine-containing polymer compound containing a repeating unit derived from a (meth)acrylate compound can also be preferably used.
As the fluorosurfactant, a fluoropolymer having an ethylenically unsaturated bond-containing group in a side chain can also be used. Megafac RS-101, RS-102, RS-718K, RS-72-K (manufactured by DIC Corporation) and the like.
ノニオン系界面活性剤としては、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレート及びプロポキシレート(例えば、グリセロールプロポキシレート、グリセロールエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル、プルロニック(登録商標) L10、L31、L61、L62、10R5、17R2、25R2(以上、BASF社製)、テトロニック 304、701、704、901、904、150R1(以上、BASF社製)、ソルスパース 20000(以上、日本ルーブリゾール(株)製)、NCW-101、NCW-1001、NCW-1002(以上、富士フイルム和光純薬(株)製)、パイオニン D-6112、D-6112-W、D-6315(以上、竹本油脂(株)製)、オルフィンE1010、サーフィノール104、400、440(以上、日信化学工業(株)製)等が挙げられる。 As fluorine-based surfactants, from the viewpoint of improving environmental suitability, compounds having linear perfluoroalkyl groups having 7 or more carbon atoms, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), are used. Surfactants derived from alternative materials are preferred.
Nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane and their ethoxylates and propoxylates (e.g., glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester, Pluronic (registered trademark) L10, L31, L61, L62, 10R5, 17R2 , 25R2 (manufactured by BASF), Tetronic 304, 701, 704, 901, 904, 150R1 (manufactured by BASF), Solsperse 20000 (manufactured by Nippon Lubrizol Co., Ltd.), NCW-101, NCW -1001, NCW-1002 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), Pionin D-6112, D-6112-W, D-6315 (manufactured by Takemoto Oil Co., Ltd.), Olphine E1010, Surfynol 104, 400, 440 (manufactured by Nissin Chemical Industry Co., Ltd.) and the like.
界面活性剤は、一種単独で使用してもよく、二種以上使用してもよい。 The content of the surfactant is preferably 0.0001 to 10% by mass, more preferably 0.001 to 5% by mass, and further 0.005 to 3% by mass, based on the total solid content of the photosensitive composition. preferable.
One type of surfactant may be used alone, or two or more types may be used.
溶媒としては、通常用いられる溶媒を特に制限なく使用できる。
溶媒としては、有機溶媒が好ましい。
有機溶媒としては、例えば、メチルエチルケトン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート(別名:1-メトキシ-2-プロピルアセテート)、ジエチレングリコールエチルメチルエーテル、シクロヘキサノン、メチルイソブチルケトン、乳酸エチル、乳酸メチル、カプロラクタム、n-プロパノール、2-プロパノール、及びこれらの混合溶媒が挙げられる。
溶媒としては、メチルエチルケトンとプロピレングリコールモノメチルエーテルアセテートとの混合溶媒、ジエチレングリコールエチルメチルエーテルとプロピレングリコールモノメチルエーテルアセテートとの混合溶媒、又はメチルエチルケトンとプロピレングリコールモノメチルエーテルとプロピレングリコールモノメチルエーテルアセテートとの混合溶媒が好ましい。 <Solvent>
As the solvent, commonly used solvents can be used without particular limitation.
Organic solvents are preferred as solvents.
Examples of organic solvents include methyl ethyl ketone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate (also known as 1-methoxy-2-propyl acetate), diethylene glycol ethyl methyl ether, cyclohexanone, methyl isobutyl ketone, ethyl lactate, methyl lactate, and caprolactam. , n-propanol, 2-propanol, and mixed solvents thereof.
The solvent is preferably a mixed solvent of methyl ethyl ketone and propylene glycol monomethyl ether acetate, a mixed solvent of diethylene glycol ethyl methyl ether and propylene glycol monomethyl ether acetate, or a mixed solvent of methyl ethyl ketone, propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate. .
溶媒は、一種単独で使用してもよく、二種以上使用してもよい。 When the photosensitive composition contains a solvent, the content of the solvent is preferably 20 to 95% by mass, more preferably 60 to 95% by mass, more preferably 70 to 95% by mass, based on the total mass of the photosensitive composition. More preferred.
A solvent may be used individually by 1 type, and may be used 2 or more types.
粘度は、例えば、VISCOMETER TV-22(TOKI SANGYO CO.LTD製)を用いて測定する。
感光性組成物が溶媒を含む場合、感光性組成物の表面張力(25℃)は、塗布性の点から、5~100mN/mが好ましく、10~80mN/mがより好ましく、15~40mN/mが更に好ましい。
表面張力は、例えば、Automatic Surface Tensiometer
CBVP-Z(協和界面科学(株)製)を用いて測定する。 When the photosensitive composition contains a solvent, the viscosity (25° C.) of the photosensitive composition is preferably 1 to 50 mPa s, more preferably 2 to 40 mPa s, more preferably 3 to 30 mPa s, from the viewpoint of coating properties. is more preferred.
Viscosity is measured using, for example, VISCOMETER TV-22 (manufactured by TOKI SANGYO CO. LTD).
When the photosensitive composition contains a solvent, the surface tension (25° C.) of the photosensitive composition is preferably 5 to 100 mN/m, more preferably 10 to 80 mN/m, more preferably 15 to 40 mN/m, from the viewpoint of coatability. m is more preferred.
Surface tension can be measured, for example, with an Automatic Surface Tensiometer
It is measured using CBVP-Z (manufactured by Kyowa Interface Science Co., Ltd.).
また、溶媒として、必要に応じて沸点が180~250℃である有機溶媒(高沸点溶媒)を使用することもできる。 Solvents can also be used as described in paragraphs 0054 and 0055 of US Published Application 2005/282073, the contents of which are incorporated herein.
Also, as the solvent, an organic solvent having a boiling point of 180 to 250° C. (high boiling point solvent) can be used as necessary.
感光性組成物は、必要に応じて、その他の添加剤を含んでいてもよい。
その他の添加剤としては、例えば、可塑剤、増感剤、ヘテロ環状化合物、及びアルコキシシラン化合物等が挙げられる。
可塑剤、増感剤、ヘテロ環状化合物、及びアルコキシシラン化合物としては、例えば、国際公開第2018/179640号の段落0097~0119に記載されたものが挙げられる。 <Other additives>
The photosensitive composition may contain other additives as needed.
Other additives include, for example, plasticizers, sensitizers, heterocyclic compounds, alkoxysilane compounds, and the like.
Plasticizers, sensitizers, heterocyclic compounds, and alkoxysilane compounds include, for example, those described in paragraphs 0097 to 0119 of WO 2018/179640.
これらの成分の好ましい態様については特開2014-085643号公報の段落0165~0184にそれぞれ記載があり、この公報の内容は本明細書に組み込まれる。 In addition, the photosensitive composition contains other additives such as rust inhibitors, metal oxide particles, antioxidants, dispersants, acid multipliers, development accelerators, conductive fibers, colorants, and thermal radical polymerization initiators. , a thermal acid generator, an ultraviolet absorber, a thickener, a cross-linking agent, and an organic or inorganic suspending agent.
Preferred aspects of these components are described in paragraphs 0165 to 0184 of JP-A-2014-085643, respectively, and the contents of this publication are incorporated herein.
不純物としては、例えば、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、マンガン、銅、アルミニウム、チタン、クロム、コバルト、ニッケル、亜鉛、スズ、ハロゲン、及びこれらのイオンが挙げられる。なかでも、ハロゲン化物イオン、ナトリウムイオン、及びカリウムイオンは不純物として混入し易いため、下記の含有量にすることが特に好ましい。 The photosensitive composition may contain impurities.
Impurities include, for example, sodium, potassium, magnesium, calcium, iron, manganese, copper, aluminum, titanium, chromium, cobalt, nickel, zinc, tin, halogens, and ions thereof. Among them, halide ions, sodium ions, and potassium ions tend to be mixed as impurities, so the following contents are particularly preferable.
上記含有量の下限は、感光性組成物の全固形分に対して、それぞれ、10質量ppb以上としてもよく、100質量ppb以上としてもよい。これら化合物は、上記の金属の不純物と同様の方法で含有量を抑制できる。また、公知の測定法により定量できる。 In addition, the content of compounds such as benzene, formaldehyde, trichlorethylene, 1,3-butadiene, carbon tetrachloride, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide, and hexane in the photosensitive composition is Less is preferred. The content of these compounds in the photosensitive composition is preferably 100 mass ppm or less, more preferably 20 mass ppm or less, and even more preferably 4 mass ppm or less, relative to the total solid content of the photosensitive composition.
The lower limit of the content may be 10 mass ppb or more, or 100 mass ppb or more, relative to the total solid content of the photosensitive composition. The content of these compounds can be suppressed in the same manner as the metal impurities described above. Moreover, it can quantify by a well-known measuring method.
本発明の転写フィルムは、仮支持体と、本発明の感光性組成物を用いて形成された感光性層(以下、単に「感光性層」ともいう。)とを有する。 [Transfer film]
The transfer film of the invention has a temporary support and a photosensitive layer (hereinafter also simply referred to as "photosensitive layer") formed using the photosensitive composition of the invention.
図1は、本発明の転写フィルムの実施形態の一例を示す断面模式図である。
図1に示す転写フィルム100は、仮支持体12と、感光性層(本発明の感光性組成物を用いて形成された感光性のある層)14と、カバーフィルム16とがこの順に積層された構成である。
カバーフィルム16は省略してもよい。 The transfer film of the present invention will be described in detail below.
FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of the transfer film of the present invention.
The
The
仮支持体は、感光性層を支持し、感光性層から剥離可能な支持体である。
仮支持体は、感光性層をパターン露光する際に仮支持体を介して感光性層を露光し得る点で、光透過性を有することが好ましい。
ここで「光透過性を有する」とは、露光(パターン露光でも全面露光でもよい)に使用する光の主波長の透過率が50%以上であることを意味する。露光に使用する光の主波長の透過率は、露光感度がより優れる点で、60%以上が好ましく、70%以上がより好ましい。透過率の測定方法としては、大塚電子(株)製MCPD Seriesを用いて測定する方法が挙げられる。
仮支持体の透過率に関して、より具体的には、313nm、365nm、313nm、405nm、及び436nmでの透過率は、70%以上がより好ましく、80%以上が更に好ましく、90%以上が特に好ましい。透過率の好ましい値としては、例えば、87%、92%、及び、98%等が挙げられる。 <<temporary support>>
The temporary support is a support that supports the photosensitive layer and is peelable from the photosensitive layer.
The temporary support preferably has light transmittance in that the photosensitive layer can be exposed through the temporary support when patternwise exposing the photosensitive layer.
Here, "having light transmittance" means that the transmittance of the main wavelength of light used for exposure (either pattern exposure or overall exposure) is 50% or more. The transmittance of the dominant wavelength of light used for exposure is preferably 60% or more, more preferably 70% or more, from the viewpoint of better exposure sensitivity. As a method of measuring transmittance, a method of measuring using MCPD Series manufactured by Otsuka Electronics Co., Ltd. can be mentioned.
Regarding the transmittance of the temporary support, more specifically, the transmittance at 313 nm, 365 nm, 313 nm, 405 nm, and 436 nm is more preferably 70% or more, still more preferably 80% or more, and particularly preferably 90% or more. . Preferred values of transmittance include, for example, 87%, 92%, and 98%.
仮支持体は、ハンドリング性をより向上させる点で、感光性層が形成される側とは反対側の面に、直径0.5~5μmの粒子が1個/mm2以上存在する層を有することが好ましく、1~50個/mm2存在するのがより好ましい。 From the viewpoints of pattern formability during pattern exposure through the temporary support and transparency of the temporary support, it is preferable that the number of particles, foreign substances, and defects contained in the temporary support is small. The number of fine particles, foreign substances, and defects with a diameter of 2 μm or more is preferably 50/10 mm 2 or less, more preferably 10/10 mm 2 or less, and even more preferably 3/10 mm 2 or less. . Although the lower limit is not particularly limited, it can be 1 piece/10 mm 2 or more.
The temporary support has a layer in which particles with a diameter of 0.5 to 5 μm are present at a rate of 1/mm 2 or more on the side opposite to the side on which the photosensitive layer is formed, in order to further improve handling properties. more preferably 1 to 50/mm 2 .
仮支持体の厚みは、支持体としての強度、回路配線形成用基板との貼り合わせに求められる可撓性、及び、最初の露光工程で要求される光透過性等の点から、材質に応じて適宜選択し得る。
仮支持体は、リサイクル品であってもよい。リサイクル品としては、使用済みフィルム等を洗浄、チップ化し、これを材料にフィルム化したものが挙げられる。リサイクル品の具体例としては、東レ社のEcouseシリーズが挙げられる。 The thickness of the temporary support is not particularly limited, and is preferably 5 to 200 μm, more preferably 10 to 150 μm, from the viewpoint of ease of handling and excellent versatility.
The thickness of the temporary support depends on the material, considering the strength of the support, the flexibility required for lamination with the substrate for circuit wiring formation, and the light transmittance required in the first exposure step. can be selected as appropriate.
The temporary support may be a recycled product. Recycled products include those obtained by washing used films, cutting them into chips, and making films using these as materials. A specific example of the recycled product is Ecouse series manufactured by Toray Industries, Inc.
また、仮支持体の特に好ましい態様としては、厚さ16μmの2軸延伸ポリエチレンテレフタレートフィルム、厚さ12μmの2軸延伸ポリエチレンテレフタレートフィルム、及び、厚さ9μmの2軸延伸ポリエチレンテレフタレートフィルムが挙げられる。 Temporary supports include, for example, Cosmoshine (registered trademark) A4100, Cosmoshine (registered trademark) A4160, and Cosmoshine (registered trademark) A4360 (all manufactured by Toyobo Co., Ltd.), and Lumirror (registered trademark). ) 16FB40, Lumirror (registered trademark) 16QS62 (16KS40), Lumirror (registered trademark) #38-U48, Lumirror (registered trademark) #75-U34, and Lumirror (registered trademark) #25-T60 (all of the above are Toray ( Co., Ltd.) may be used.
Further, particularly preferred embodiments of the temporary support include a 16 μm thick biaxially stretched polyethylene terephthalate film, a 12 μm thick biaxially stretched polyethylene terephthalate film, and a 9 μm thick biaxially stretched polyethylene terephthalate film.
転写フィルムにおける感光性層は、本発明の感光性組成物を用いて形成された層であり、例えば、感光性層は実質的に上述の感光性組成物の固形分成分のみからなる層であることが好ましい。すなわち、感光性層を構成する感光性組成物は、上述の感光性組成物が含み得る固形分成分(溶媒以外の成分)を、上述した含有量で含むことが好ましい。
ただし、溶媒を含む感光性組成物を塗布、乾燥させて感光性層を形成した場合等において、乾燥後においても感光性層中に溶媒が残存すること等を理由として、感光性層が溶媒を含んでいてもよい。 <<Photosensitive layer>>
The photosensitive layer in the transfer film is a layer formed using the photosensitive composition of the present invention. For example, the photosensitive layer is a layer consisting essentially of the solid component of the photosensitive composition described above. is preferred. That is, the photosensitive composition that constitutes the photosensitive layer preferably contains solid components (components other than the solvent) that can be contained in the above-described photosensitive composition in the above-described content.
However, when a photosensitive composition containing a solvent is applied and dried to form a photosensitive layer, the solvent remains in the photosensitive layer even after drying. may contain.
なお、化合物Aに由来する酸基がカルボキシ基である場合、感光性層における化合物Aに由来するカルボキシ基の含有量の減少率は、露光前後における感光性層のカルボキシ基の量を測定することで算出できる。露光前の感光性層のカルボキシ基の量の測定に際しては、例えば、電位差滴定により分析定量できる。露光後の感光性層のカルボキシ基の量の測定に際しては、カルボキシ基の水素原子をリチウム等の金属イオンに置換し、この金属イオンの量をICP-OES((Inductivity coupled plasma optical emission spectrometer)により分析定量することで算出できる。
また、感光性層における化合物Aに由来する酸基の含有量の減少率は、露光前後における感光性層のIR(infrared)スペクトルを測定し、酸基に由来するピークの減少率を算出することでも得られる。 The photosensitive layer has an acid group (preferably a carboxyl group) content of 5 mol% or more derived from the compound A upon exposure in terms of having superior pattern forming ability, particularly in an alkaline developer. It is preferably reduced at a reduction rate of 10 mol% or more, more preferably at a reduction rate of 10 mol% or more, even more preferably at a reduction rate of 20 mol% or more, and reduced at a reduction rate of 31 mol% or more is more preferable, it is particularly preferable that the reduction rate is 40 mol% or more, it is particularly preferable that the reduction rate is 51 mol% or more, and it is most preferable that the reduction rate is 71 mol% or more. . Although the upper limit is not particularly limited, it is, for example, 100 mol % or less.
When the acid group derived from compound A is a carboxy group, the rate of decrease in the content of carboxy groups derived from compound A in the photosensitive layer can be obtained by measuring the amount of carboxy groups in the photosensitive layer before and after exposure. can be calculated by When measuring the amount of carboxy groups in the photosensitive layer before exposure, it can be analyzed and quantified by, for example, potentiometric titration. When measuring the amount of carboxy groups in the photosensitive layer after exposure, the hydrogen atoms of the carboxy groups are replaced with metal ions such as lithium, and the amount of metal ions is measured by ICP-OES (Inductivity coupled plasma optical emission spectrometer). It can be calculated by analytical quantification.
In addition, the reduction rate of the content of acid groups derived from compound A in the photosensitive layer can be obtained by measuring the IR (infrared) spectrum of the photosensitive layer before and after exposure, and calculating the reduction rate of the peaks derived from the acid groups. You can get it though.
感光性層の平均厚さとしては、0.5~20μmが好ましい。感光性層の平均厚みが20μm以下であるとパターンの解像度がより優れ、感光性層の平均厚みが0.5μm以上であるとパターン直線性の点から好ましい。感光性層の平均厚さとしては、0.8~15μmがより好ましく、1.0~10μmが更に好ましい。感光性層の平均厚さの具体例として、3.0μm、5.0μm、及び8.0μmが挙げられる。 <Average thickness of photosensitive layer>
The average thickness of the photosensitive layer is preferably 0.5-20 μm. When the average thickness of the photosensitive layer is 20 μm or less, the resolution of the pattern is more excellent, and when the average thickness of the photosensitive layer is 0.5 μm or more, it is preferable from the viewpoint of pattern linearity. The average thickness of the photosensitive layer is more preferably 0.8 to 15 μm, still more preferably 1.0 to 10 μm. Specific examples of the average thickness of the photosensitive layer include 3.0 μm, 5.0 μm, and 8.0 μm.
感光性層は、本発明の感光性組成物を塗布及び乾燥して形成できる。なお、本発明の感光性組成物により感光性層を形成する場合、感光性組成物は、形成に供される前に、例えば、孔径0.2~30μmのフィルター等を用いて濾過されることが好ましい。
感光性組成物を仮支持体又はカバーフィルム上に塗布し、乾燥させることで、感光性層を形成できる。
塗布方法としては特に制限されず、スリット塗布、スピン塗布、カーテン塗布、及びインクジェット塗布等の公知の方法が挙げられる。
また、仮支持体又はカバーフィルム上に後述するその他の層を形成する場合、感光性層は、上記その他の層の上に形成されてもよい。 <Method for forming photosensitive layer>
The photosensitive layer can be formed by applying and drying the photosensitive composition of the present invention. When forming a photosensitive layer from the photosensitive composition of the present invention, the photosensitive composition should be filtered using, for example, a filter having a pore size of 0.2 to 30 μm before being subjected to formation. is preferred.
A photosensitive layer can be formed by applying the photosensitive composition onto a temporary support or a cover film and drying it.
The coating method is not particularly limited, and includes known methods such as slit coating, spin coating, curtain coating, and inkjet coating.
Moreover, when forming other layers described later on the temporary support or the cover film, the photosensitive layer may be formed on the above other layers.
また、感光性層の実施形態としては、なかでも、上述した、実施形態X-1-a1-C~実施形態X-1-a3-Cの感光性層であるのがより好ましい。 In the photosensitive layer, the acid group possessed by compound A is preferably a carboxy group. Furthermore, the photosensitive layer preferably has a carboxyl group content that is reduced at a rate of 5 mol % or more by irradiation with actinic rays or radiation. Such a photosensitive layer is more preferably a photosensitive layer that satisfies either the requirement (V1-C) or the requirement (W1-C) described above.
In addition, as an embodiment of the photosensitive layer, the above-described photosensitive layers of Embodiments X-1-a1-C to X-1-a3-C are more preferable.
可視光透過率としては、波長400~800nmの平均透過率、波長400~800nmの透過率の最小値、波長400nmmの透過率、いずれもが上記を満たすことが好ましい。
感光性層の膜厚1.0μmあたりの可視光透過率の好ましい値としては、例えば、87%、92%、98%等を挙げることができる。
感光性層の炭酸ナトリウム1.0質量%水溶液に対する溶解速度は、現像時の残渣抑制の点から、0.01μm/秒以上が好ましく、0.10μm/秒以上がより好ましく、0.20μm/秒以上がより好ましい。また、パターンのエッジ形状の点から、5.0μm/秒以下が好ましい。具体的な好ましい数値としては、例えば、1.8μm/秒、1.0μm/秒、0.7μm/秒等を挙げることができる。
1.0質量%炭酸ナトリウム水溶液に対する感光性層の単位時間あたりの溶解速度は、以下のように測定するものとする。
ガラス基板に形成した、溶媒を十分に除去した感光性層(膜厚1.0~10μmの範囲内)に対し、1.0質量%炭酸ナトリウム水溶液を用いて25℃で、感光性層が溶け切るまでシャワー現像を行う(但し、最長で2分までとする)。
感光性層の膜厚を、感光性層が溶け切るまでに要した時間で割り算することで求める。なお、2分で溶け切らない場合は、それまでの膜厚変化量から同様に計算する。
現像は、(株)いけうち製1/4MINJJX030PPのシャワーノズルを使用し、シャワーのスプレー圧は0.08MPaとする。上記条件の時、単位時間当たりのシャワー流量は1,800mL/minとする。 The visible light transmittance per 1.0 μm film thickness of the photosensitive layer is preferably 80% or more, more preferably 90% or more, and most preferably 95% or more.
As for the visible light transmittance, it is preferable that all of the average transmittance at a wavelength of 400 to 800 nm, the minimum transmittance at a wavelength of 400 to 800 nm, and the transmittance at a wavelength of 400 nm satisfy the above.
Preferable values of the visible light transmittance per 1.0 μm film thickness of the photosensitive layer are, for example, 87%, 92%, 98%, and the like.
The dissolution rate of the photosensitive layer in a 1.0% by mass aqueous solution of sodium carbonate is preferably 0.01 μm/second or more, more preferably 0.10 μm/second or more, and more preferably 0.20 μm/second from the viewpoint of suppressing residue during development. The above is more preferable. From the point of view of the edge shape of the pattern, it is preferably 5.0 μm/sec or less. Specific preferable numerical values include, for example, 1.8 μm/second, 1.0 μm/second, and 0.7 μm/second.
The dissolution rate per unit time of the photosensitive layer in a 1.0% by mass sodium carbonate aqueous solution is measured as follows.
A photosensitive layer formed on a glass substrate from which the solvent has been sufficiently removed (thickness within the range of 1.0 to 10 μm) is dissolved at 25 ° C. using a 1.0% by mass sodium carbonate aqueous solution. Perform shower development until cut (however, up to 2 minutes).
It is obtained by dividing the film thickness of the photosensitive layer by the time required for the photosensitive layer to melt completely. In addition, when it does not melt completely in 2 minutes, it calculates similarly from the film thickness change amount until then.
For development, a 1/4 MINJJX030PP shower nozzle manufactured by Ikeuchi Co., Ltd. is used, and the shower spray pressure is 0.08 MPa. Under the above conditions, the shower flow rate per unit time is 1,800 mL/min.
異物個数は以下のように測定するものとする。
感光性層の表面の法線方向から、感光性層の面上の任意の5か所の領域(1mm×1mm)を、光学顕微鏡を用いて目視にて観察して、各領域中の直径1.0μm以上の異物の数を測定して、それらを算術平均して異物の数として算出する。
具体的な好ましい数値としては、例えば、0個/mm2、1個/mm2、4個/mm2、8個/mm2等を挙げることができる。
現像時の凝集物発生抑止の点から、1.0質量%炭酸ナトリウムの30℃水溶液1.0リットルに1.0cm3の感光性層を溶解させて得られる溶液のヘイズは60%以下であることが好ましく、30%以下であることがより好ましく、10%以下であることが更に好ましく、1%以下であることが最も好ましい。
ヘイズは以下のように測定するものとする。
まず、1.0質量%の炭酸ナトリウム水溶液を準備し、液温を30℃に調整する。炭酸ナトリウム水溶液1.0Lに1.0cm3の感光性層を入れる。気泡を混入しないように注意しながら、30℃で4時間撹拌する。撹拌後、感光性樹脂層が溶解した溶液のヘイズを測定する。ヘイズは、ヘイズメーター(製品名「NDH4000」、日本電色工業社製)を用い、液体測定用ユニット及び光路長20mmの液体測定専用セルを用いて測定される。
具体的な好ましい数値としては、例えば、0.4%、1.0%、9%、24%等を挙げることができる。 From the viewpoint of pattern formability, the number of foreign substances having a diameter of 1.0 μm or more in the photosensitive layer is preferably 10/mm 2 or less, more preferably 5/mm 2 or less.
The number of foreign objects shall be measured as follows.
Any five regions (1 mm × 1 mm) on the surface of the photosensitive layer from the normal direction of the surface of the photosensitive layer are visually observed using an optical microscope, and a diameter of 1 in each region Measure the number of foreign matter of 0 μm or more, and calculate the number of foreign matter by arithmetically averaging them.
Specific preferable numerical values include, for example, 0/mm 2 , 1/mm 2 , 4/mm 2 , and 8/mm 2 .
From the viewpoint of suppressing the generation of aggregates during development, the haze of a solution obtained by dissolving 1.0 cm 3 of a photosensitive layer in 1.0 liter of a 30° C. aqueous solution of 1.0% by weight sodium carbonate is 60% or less. is preferably 30% or less, more preferably 10% or less, and most preferably 1% or less.
Haze shall be measured as follows.
First, a 1.0% by mass sodium carbonate aqueous solution is prepared and the liquid temperature is adjusted to 30°C. 1.0 cm 3 of photosensitive layer is placed in 1.0 L of sodium carbonate aqueous solution. Stir at 30° C. for 4 hours, taking care not to introduce air bubbles. After stirring, the haze of the solution in which the photosensitive resin layer is dissolved is measured. Haze is measured using a haze meter (product name “NDH4000”, manufactured by Nippon Denshoku Industries Co., Ltd.) using a liquid measurement unit and a liquid measurement dedicated cell with an optical path length of 20 mm.
Specific preferable numerical values include, for example, 0.4%, 1.0%, 9%, and 24%.
本発明の転写フィルムは、更に、感光性層からみて仮支持体とは反対側に、カバーフィルムを有していてもよい。
本発明の転写フィルムが後述の高屈折率層を備える場合には、カバーフィルムは、高屈折率層からみて仮支持体とは反対側(即ち、感光性層とは反対側)に配置されることが好ましい。この場合、転写フィルムは、例えば「仮支持体/感光性層/高屈折率層/カバーフィルム」の順で積層された積層体である。 << cover film >>
The transfer film of the present invention may further have a cover film on the side opposite to the temporary support when viewed from the photosensitive layer.
When the transfer film of the present invention includes a high refractive index layer described later, the cover film is arranged on the side opposite to the temporary support (that is, the side opposite to the photosensitive layer) when viewed from the high refractive index layer. is preferred. In this case, the transfer film is a laminate in which, for example, "temporary support/photosensitive layer/high refractive index layer/cover film" are laminated in this order.
また、転写時の欠陥抑制の点から、Raは、0.50μm未満が好ましく、0.40μm以下がより好ましく、0.30μm以下が更に好ましい。 The arithmetic mean roughness Ra of the surface of the cover film is preferably 0.01 µm or more, more preferably 0.02 µm or more, and even more preferably 0.03 µm or more. If Ra is within such a range, for example, when the transfer film is elongated, it is possible to improve the take-up property when the transfer film is taken up.
From the viewpoint of suppressing defects during transfer, Ra is preferably less than 0.50 μm, more preferably 0.40 μm or less, and even more preferably 0.30 μm or less.
カバーフィルムとしては、例えば、特開2006-259138号公報の段落0083~0087及び0093に記載のものを用いてもよい。 Cover films include, for example, polyethylene terephthalate films, polypropylene films, polystyrene films, and polycarbonate films.
As the cover film, for example, those described in paragraphs 0083 to 0087 and 0093 of JP-A-2006-259138 may be used.
転写フィルムは上述した以外のその他の層を有していてもよい。
その他の層としては、例えば高屈折率層が挙げられる。
また、仮支持体又はカバーフィルム上に高屈折率層を形成する場合、感光性層は、上記高屈折率層の上に形成されてもよい。 <<Other Layers>>
The transfer film may have other layers than those mentioned above.
Other layers include, for example, a high refractive index layer.
Moreover, when forming a high refractive index layer on a temporary support or a cover film, the photosensitive layer may be formed on the high refractive index layer.
高屈折率層は、感光性層に隣接して配置されることが好ましく、感光性層からみて仮支持体とは反対側に配置されることも好ましい。
高屈折率層は、波長550nmにおける屈折率が1.50以上である層であること以外は特に制限はない。
高屈折率層の上記屈折率は、1.55以上が好ましく、1.60以上がより好ましい。
高屈折率層の屈折率の上限は特に制限されないが、2.10以下が好ましく、1.85以下がより好ましく、1.78以下が更に好ましく、1.74以下が特に好ましい。
また、高屈折率層の屈折率は、感光性層の屈折率よりも高いことが好ましい。 <High refractive index layer>
The high refractive index layer is preferably arranged adjacent to the photosensitive layer, and is also preferably arranged on the opposite side of the temporary support from the photosensitive layer.
The high refractive index layer is not particularly limited except that it is a layer having a refractive index of 1.50 or more at a wavelength of 550 nm.
The refractive index of the high refractive index layer is preferably 1.55 or higher, more preferably 1.60 or higher.
Although the upper limit of the refractive index of the high refractive index layer is not particularly limited, it is preferably 2.10 or less, more preferably 1.85 or less, still more preferably 1.78 or less, and particularly preferably 1.74 or less.
Moreover, the refractive index of the high refractive index layer is preferably higher than the refractive index of the photosensitive layer.
高屈折率層が感光性を有する態様は、転写後において、基材上に転写された感光性層及び高屈折率層を、一度のフォトリソグラフィによってまとめてパターニングできるという利点を有する。
高屈折率層は、アルカリ可溶性(例えば、弱アルカリ水溶液に対する溶解性)を有することが好ましい。
また、高屈折率層は、透明層であることが好ましい。 The high refractive index layer may be photocurable (that is, photosensitive), thermosetting, or both photocurable and thermosetting. .
The embodiment in which the high refractive index layer is photosensitive has the advantage that after transfer, the photosensitive layer and the high refractive index layer transferred onto the base material can be patterned together by photolithography once.
The high refractive index layer preferably has alkali solubility (for example, solubility in a weakly alkaline aqueous solution).
Also, the high refractive index layer is preferably a transparent layer.
また、高屈折率層の膜厚は、20nm以上が好ましく、55nm以上がより好ましく、60nm以上が更に好ましく、70nm以上が特に好ましい。 The thickness of the high refractive index layer is preferably 500 nm or less, more preferably 110 nm or less, and even more preferably 100 nm or less.
The thickness of the high refractive index layer is preferably 20 nm or more, more preferably 55 nm or more, still more preferably 60 nm or more, and particularly preferably 70 nm or more.
例えば、透明電極パターン、高屈折率層、及び感光性層をこの順に積層した場合において、透明電極パターン側からみた時に、この透明電極パターンが視認されにくくなる。 After transfer, the high refractive index layer may form a laminate together with the transparent electrode pattern (preferably ITO pattern) and the photosensitive layer by being sandwiched between the transparent electrode pattern and the photosensitive layer. In this case, light reflection is further reduced by reducing the refractive index difference between the transparent electrode pattern and the high refractive index layer and the refractive index difference between the high refractive index layer and the photosensitive layer. This further improves the concealability of the transparent electrode pattern.
For example, when a transparent electrode pattern, a high refractive index layer, and a photosensitive layer are laminated in this order, the transparent electrode pattern becomes less visible when viewed from the transparent electrode pattern side.
透明電極パターンの屈折率が、例えばIn及びSnの酸化物(ITO)を用いて形成した場合のように1.8~2.0の範囲である場合は、高屈折率層の屈折率は、1.60以上が好ましい。この場合の高屈折率層の屈折率の上限は特に制限されないが、2.1以下が好ましく、1.85以下がより好ましく、1.78以下が更に好ましく、1.74以下が特に好ましい。
透明電極パターンの屈折率が、例えばIn及びZnの酸化物(IZO;Indium Zinc Oxide)を用いて形成した場合のように2.0を超える場合は、高屈折率層の屈折率は、1.70以上1.85以下が好ましい。 The refractive index of the high refractive index layer is preferably adjusted according to the refractive index of the transparent electrode pattern.
When the refractive index of the transparent electrode pattern is in the range of 1.8 to 2.0 as in the case of forming using oxides of In and Sn (ITO), the refractive index of the high refractive index layer is 1.60 or more is preferable. Although the upper limit of the refractive index of the high refractive index layer in this case is not particularly limited, it is preferably 2.1 or less, more preferably 1.85 or less, even more preferably 1.78 or less, and particularly preferably 1.74 or less.
When the refractive index of the transparent electrode pattern exceeds 2.0 as in the case of forming using an oxide of In and Zn (IZO; Indium Zinc Oxide), the refractive index of the high refractive index layer is 1.0. 70 or more and 1.85 or less are preferable.
粒子の平均一次粒子径は、電子顕微鏡を用いて任意の粒子200個の粒子径を測定し、測定結果を算術平均することにより算出される。なお、粒子の形状が球形でない場合には、最も長い辺を粒子径とする。
金属酸化物粒子としては、具体的には、酸化ジルコニウム粒子(ZrO2粒子)、Nb2O5粒子、酸化チタン粒子(TiO2粒子)、及び二酸化珪素粒子(SiO2粒子)、及びこれらの複合粒子よりなる群から選ばれる少なくとも1種が好ましい。
これらの中でも、金属酸化物粒子としては、例えば、高屈折率層の屈折率を1.6以上に調整しやすいという点から、酸化ジルコニウム粒子及び酸化チタン粒子よりなる群から選ばれる少なくとも1種がより好ましい。 The average primary particle size of the particles (metal oxide particles or metal particles) is, for example, preferably 1 to 200 nm, more preferably 3 to 80 nm, from the viewpoint of transparency.
The average primary particle diameter of particles is calculated by measuring the particle diameters of 200 arbitrary particles using an electron microscope and arithmetically averaging the measurement results. When the shape of the particles is not spherical, the longest side is taken as the particle diameter.
Specific examples of metal oxide particles include zirconium oxide particles ( ZrO2 particles), Nb2O5 particles, titanium oxide particles ( TiO2 particles), silicon dioxide particles ( SiO2 particles), and composites thereof. At least one selected from the group consisting of particles is preferred.
Among these, as the metal oxide particles, for example, at least one selected from the group consisting of zirconium oxide particles and titanium oxide particles from the viewpoint that the refractive index of the high refractive index layer can be easily adjusted to 1.6 or more. more preferred.
金属酸化物粒子として酸化チタンを用いる場合、酸化チタン粒子の含有量は、高屈折率層の全質量に対し、1~95質量%であることが好ましく、20~90質量%であることがより好ましく、40~85質量%であることが更に好ましい。 The content of the particles (metal oxide particles or metal particles) improves the concealability of the object to be hidden, such as the electrode pattern, and effectively improves the visibility of the object to be hidden. It is preferably 1 to 95% by mass, more preferably 20 to 90% by mass, and even more preferably 40 to 85% by mass, relative to the total mass.
When titanium oxide is used as the metal oxide particles, the content of the titanium oxide particles is preferably 1 to 95% by mass, more preferably 20 to 90% by mass, based on the total mass of the high refractive index layer. It is preferably 40 to 85% by mass, and more preferably 40 to 85% by mass.
この態様であると、高屈折率層の屈折率を1.50以上(より好ましくは1.55以上、特に好ましくは1.60以上)に調整し易い。 The high refractive index layer includes inorganic particles (metal oxide particles or metal particles) having a refractive index of 1.50 or more (more preferably 1.55 or more, still more preferably 1.60 or more), and a refractive index of 1.50 or more (more preferably 1.55 or more, still more preferably 1.60 or more), and a polymer having a refractive index of 1.50 or more (more preferably 1.55 or more, still more preferably 1.60 or more) It preferably contains one or more selected from the group consisting of toxic compounds.
In this aspect, it is easy to adjust the refractive index of the high refractive index layer to 1.50 or more (more preferably 1.55 or more, particularly preferably 1.60 or more).
高屈折率層の成分については、特開2014-108541号公報の段落0019~0040及び0144~0150に記載されている硬化性透明樹脂層の成分、特開2014-010814号公報の段落0024~0035及び0110~0112に記載されている透明層の成分、国際公開第2016/009980号の段落0034~段落0056に記載されているアンモニウム塩を有する組成物の成分、等を参照できる。 Also, the high refractive index layer preferably contains a binder polymer, a polymerizable monomer, and particles.
Regarding the components of the high refractive index layer, the components of the curable transparent resin layer described in paragraphs 0019 to 0040 and 0144 to 0150 of JP 2014-108541, paragraphs 0024 to 0035 of JP 2014-010814 and components of the transparent layer described in WO 2016/009980, components of compositions having ammonium salts described in paragraphs 0034 to 0056 of WO 2016/009980, and the like.
高屈折率層が金属酸化抑制剤を含む場合には、高屈折率層を基材(即ち、転写対象物)上に転写する際に、高屈折率層と直接接する部材(例えば、基材上に形成された導電性部材)を表面処理できる。この表面処理は、高屈折率層と直接接する部材に対し金属酸化抑制機能(保護性)を付与する。 Also, the high refractive index layer preferably contains a metal oxidation inhibitor.
When the high refractive index layer contains a metal oxidation inhibitor, when the high refractive index layer is transferred onto the substrate (i.e., the object to be transferred), a member that is in direct contact with the high refractive index layer (e.g., on the substrate) conductive member) can be surface-treated. This surface treatment imparts a metal oxidation suppressing function (protective property) to the member that is in direct contact with the high refractive index layer.
窒素原子を含む芳香環としては、イミダゾール環、トリアゾール環、テトラゾール環、チアゾール環、チアジアゾール環、又はこれらのいずれか1つと他の芳香環との縮合環が好ましく、イミダゾール環、トリアゾール環、テトラゾール環又はこれらのいずれか1つと他の芳香環との縮合環であることがより好ましい。
縮合環を形成する「他の芳香環」は、単素環でも複素環でもよいが、単素環が好ましく、ベンゼン環又はナフタレン環がより好ましく、ベンゼン環が更に好ましい。 The metal oxidation inhibitor is preferably a compound having an aromatic ring containing a nitrogen atom. A compound having an aromatic ring containing a nitrogen atom may have a substituent.
The aromatic ring containing a nitrogen atom is preferably an imidazole ring, a triazole ring, a tetrazole ring, a thiazole ring, a thiadiazole ring, or a condensed ring of any one of these and another aromatic ring, such as an imidazole ring, a triazole ring, and a tetrazole ring. Alternatively, any one of these is more preferably a condensed ring with another aromatic ring.
The "other aromatic ring" forming the condensed ring may be a monocyclic ring or a heterocyclic ring, but is preferably a monocyclic ring, more preferably a benzene ring or a naphthalene ring, and still more preferably a benzene ring.
金属酸化抑制剤としては市販品を用いてもよく、市販品としては、例えばベンゾトリアゾールを含む城北化学工業(株)製BT120を好ましく使用できる。 The metal oxidation inhibitor is preferably imidazole, benzimidazole, tetrazole, 5-amino-1H-tetrazole, mercaptothiadiazole or benzotriazole, more preferably imidazole, benzimidazole, 5-amino-1H-tetrazole or benzotriazole.
A commercial product may be used as the metal oxidation inhibitor, and as a commercial product, for example, BT120 manufactured by Johoku Chemical Industry Co., Ltd. containing benzotriazole can be preferably used.
高屈折率層が含み得るその他の成分としては、感光性層が含み得る得るその他の成分と同様の成分が挙げられる。
高屈折率層は、界面活性剤を含むことも好ましい。 The high refractive index layer may contain components other than the components described above.
Other components that the high refractive index layer may contain include the same components as other components that the photosensitive layer may contain.
The high refractive index layer also preferably contains a surfactant.
高屈折率層の形成方法としては、例えば、仮支持体上に形成された上述の感光性層上に、水系溶媒を含む態様の高屈折率層形成用組成物を塗布し、必要に応じ乾燥させることにより形成する方法が挙げられる。 The method for forming the high refractive index layer is not particularly limited.
As a method for forming the high refractive index layer, for example, a composition for forming a high refractive index layer containing an aqueous solvent is applied onto the above photosensitive layer formed on a temporary support, and dried if necessary. A method of forming by causing the
高屈折率層形成用組成物は、例えば、バインダーポリマー、重合性モノマー、粒子、及び水系溶媒を含む。
また、高屈折率層形成用組成物としては、国際公開第2016/009980号の段落0034~0056に記載されている、アンモニウム塩を有する組成物も好ましい。 The composition for forming a high refractive index layer may contain each component of the high refractive index layer described above.
The composition for forming a high refractive index layer contains, for example, a binder polymer, a polymerizable monomer, particles, and an aqueous solvent.
Further, as the composition for forming a high refractive index layer, compositions containing an ammonium salt described in paragraphs 0034 to 0056 of WO 2016/009980 are also preferable.
転写フィルムは、上述した層以外の他の層(以下、「他の層」ともいう。)を含んでいてもよい。他の層としては、例えば、中間層、及び熱可塑性樹脂層等が挙げられ、公知のものを適宜採用できる。 <Other layers>
The transfer film may include layers other than the layers described above (hereinafter also referred to as "other layers"). Other layers include, for example, an intermediate layer and a thermoplastic resin layer, and known layers can be used as appropriate.
転写フィルムの製造方法は、特に制限されず、公知の製造方法が適用できる。
転写フィルムの製造方法としては、仮支持体上に、本発明の感光性組成物により感光性層を形成する工程を含むことが好ましく、上記感光性層を形成する工程の後に、更に、上記感光性層上にカバーフィルムを配置する工程を含むことがより好ましい。
また、上記感光性層を形成する工程の後に、更に、高屈折率層形成用組成物を塗布及び乾燥することによって高屈折率層を形成する工程を含んでもよい。この場合、上記高屈折層を形成する工程の後に、更に、上記高屈折層にカバーフィルムを配置する工程を含むことがより好ましい。 <<Manufacturing method of transfer film>>
The production method of the transfer film is not particularly limited, and known production methods can be applied.
The method for producing the transfer film preferably includes a step of forming a photosensitive layer from the photosensitive composition of the present invention on the temporary support, and after the step of forming the photosensitive layer, the photosensitive More preferably, the step of placing a cover film over the adhesive layer is included.
Further, after the step of forming the photosensitive layer, a step of forming a high refractive index layer by applying and drying a composition for forming a high refractive index layer may be included. In this case, it is more preferable to further include a step of disposing a cover film on the high refractive layer after the step of forming the high refractive layer.
本発明に関するパターン形成方法(「本発明のパターン形成方法」ともいう)としては、本発明の感光性組成物を使用したパターン形成方法であれば特に制限されないが、本発明の感光性組成物を用いて、基材上に感光性層を形成する工程と、上記感光性層をパターン露光する工程と、露光された上記感光性層を現像(特に、アルカリ現像)する工程と、をこの順に含むことが好ましい。なお、上記現像が有機溶剤現像である場合、得られたパターンを更に露光する工程を含むことが好ましい。
なお、本発明の感光性組成物を用いて基材上に感光性層を形成するにあたっては、感光性組成物を用いて上述の転写フィルムを作製し、このような転写フィルムを用いて基材上に感光性層を形成する方法であってもよい。このような方法としては、具体的には、上述した転写フィルム中の感光性層の仮支持体側とは反対側の表面を基材に接触させて転写フィルムと基材とを貼り合わせ、転写フィルムにおける感光性層を上記基材上の感光性層とする方法が挙げられる。
本発明のパターン形成方法の具体的な実施形態としては、実施形態1及び実施形態2のパターン形成方法が挙げられる。
以下において、実施形態1及び実施形態2のパターン形成方法の各工程について詳述する。 [Pattern formation method]
The pattern forming method related to the present invention (also referred to as the "pattern forming method of the present invention") is not particularly limited as long as it is a pattern forming method using the photosensitive composition of the present invention. A step of forming a photosensitive layer on a base material, a step of pattern-exposing the photosensitive layer, and a step of developing (in particular, alkali development) the exposed photosensitive layer, in this order. is preferred. When the development is organic solvent development, it is preferable to include a step of further exposing the obtained pattern.
In addition, in forming a photosensitive layer on a substrate using the photosensitive composition of the present invention, the above-described transfer film is produced using the photosensitive composition, and such a transfer film is used to form the substrate. A method of forming a photosensitive layer thereon may also be used. Specifically, as such a method, the surface of the photosensitive layer in the above-described transfer film opposite to the temporary support side is brought into contact with the base material, and the transfer film and the base material are bonded together, and the transfer film is A method of using the photosensitive layer in (1) as a photosensitive layer on the base material.
Specific embodiments of the pattern forming method of the present invention include the pattern forming methods of the first and second embodiments.
Each step of the pattern forming method of Embodiments 1 and 2 will be described in detail below.
実施形態1のパターン形成方法は、工程X1~工程X3を有する。なお、下記工程X2は、露光により、感光性層中の化合物Aに由来する酸基の含有量を減少させる工程に該当する。但し、工程X3の現像液が有機溶剤系現像液である場合、工程X3の後に更に工程X4を有するのが好ましい。
工程X1:転写フィルム中の感光性層の仮支持体側とは反対側の表面を基材に接触させて、転写フィルムと基材とを貼り合わせる工程
工程X2:感光性層をパターン露光する工程
工程X3:感光性層を、現像液(例えばアルカリ現像液又は有機溶剤系現像液)を用いて現像する工程
工程X4:工程X3の現像工程の後に、更に、現像により形成されたパターンを露光する工程 [Pattern Forming Method of Embodiment 1]
The pattern formation method of Embodiment 1 has steps X1 to X3. The following step X2 corresponds to the step of reducing the content of acid groups derived from compound A in the photosensitive layer by exposure. However, when the developer in step X3 is an organic solvent-based developer, it is preferable to further include step X4 after step X3.
Step X1: The surface of the photosensitive layer in the transfer film opposite to the temporary support side is brought into contact with the substrate, and the transfer film and the substrate are bonded together Step X2: Pattern exposure of the photosensitive layer Step X3: A step of developing the photosensitive layer using a developer (e.g., an alkaline developer or an organic solvent-based developer). Step X4: After the development step of step X3, a step of exposing a pattern formed by development.
実施形態1のパターン形成方法は、上述した実施形態X-1-a1及び実施形態X-1-a2の感光性層を含む転写フィルムに適用されるのが好ましい。 When an alkaline developer is used as the developer in step X3, the photosensitive layer is preferably the photosensitive layer of Embodiments X-1-a1 and X-1-a2. When an organic solvent-based developer is used as the developer in step X3, the photosensitive layer is preferably the photosensitive material of Embodiment X-1-a1.
The patterning method of Embodiment 1 is preferably applied to transfer films comprising the photosensitive layers of Embodiments X-1-a1 and X-1-a2 described above.
実施形態1のパターン形成方法は、転写フィルム中の感光性層の仮支持体側とは反対側の表面を基材に接触させて、転写フィルムと基材とを貼り合わせる工程を有する。 <<Step X1>>
The pattern forming method of Embodiment 1 has a step of bringing the surface of the photosensitive layer in the transfer film opposite to the temporary support side into contact with the substrate, and bonding the transfer film and the substrate together.
基材としては特に制限されず、例えば、ガラス基板、シリコン基板、及び樹脂基板、並びに、導電層を有する基板が挙げられる。導電層を有する基板が含む基板としては、ガラス基板、シリコン基板、及び樹脂基板が挙げられる。
上記基材は、透明であることが好ましい。
上記基材の屈折率は、1.50~1.52であることが好ましい。
上記基材は、ガラス基板等の透光性基板で構成されていてもよく、例えば、コーニング社のゴリラガラスに代表される強化ガラス等も使用できる。また、上記基材に含まれる材料としては、特開2010-086684号公報、特開2010-152809号公報、及び特開2010-257492号公報に用いられている材料も好ましい。
上記基材が樹脂基板を含む場合、樹脂基板としては、光学的な歪みが小さい及び/又は透明度が高い樹脂フィルムを使用することがより好ましい。具体的な素材としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリカーボネート、トリアセチルセルロース、及びシクロオレフィンポリマー等が挙げられる。 <<Base material>>
The substrate is not particularly limited, and examples thereof include glass substrates, silicon substrates, resin substrates, and substrates having a conductive layer. Examples of substrates included in the substrate having a conductive layer include glass substrates, silicon substrates, and resin substrates.
The substrate is preferably transparent.
The refractive index of the substrate is preferably 1.50 to 1.52.
The substrate may be composed of a translucent substrate such as a glass substrate. For example, tempered glass such as Corning Gorilla Glass can be used. Materials used in JP-A-2010-086684, JP-A-2010-152809, and JP-A-2010-257492 are also preferable as the material contained in the base material.
When the substrate includes a resin substrate, it is more preferable to use a resin film with small optical distortion and/or high transparency as the resin substrate. Specific materials include polyethylene terephthalate (PET), polyethylene naphthalate, polycarbonate, triacetyl cellulose, cycloolefin polymer, and the like.
導電層としては、導電性及び細線形成性の点から、金属層(金属箔等)、導電性金属酸化物層、グラフェン層、カーボンナノチューブ層、及び導電ポリマー層からなる群より選ばれる1種以上の層が好ましく、金属層がより好ましく、銅層又は銀層が更に好ましい。
また、導電層を有する基板中の導電層は、1層であっても、2層以上であってもよい。
導電層を有する基板が、導電層を2層以上含む場合、各導電層は、互いに異なる材質の導電層であることが好ましい。
導電層の材料としては、金属単体及び導電性金属酸化物等が挙げられる。
金属単体としては、Al、Zn、Cu、Fe、Ni、Cr、Mo、Ag、及びAu等が挙げられる。
導電性金属酸化物としては、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、及びSiO2等が挙げられる。なお、「導電性」とは、体積抵抗率が1×106Ωcm未満であることをいい、体積抵抗率が1×104Ωcm未満が好ましい。 The conductive layer includes any conductive layer used for general circuit wiring or touch panel wiring.
As the conductive layer, one or more selected from the group consisting of a metal layer (metal foil, etc.), a conductive metal oxide layer, a graphene layer, a carbon nanotube layer, and a conductive polymer layer from the viewpoint of conductivity and fine line formation. is preferred, a metal layer is more preferred, and a copper or silver layer is even more preferred.
Further, the conductive layer in the substrate having the conductive layer may be one layer or two layers or more.
When a substrate having a conductive layer includes two or more conductive layers, each conductive layer is preferably made of a material different from each other.
Materials for the conductive layer include simple metals and conductive metal oxides.
Examples of simple metals include Al, Zn, Cu, Fe, Ni, Cr, Mo, Ag, and Au.
Conductive metal oxides include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and SiO 2 . The term “conductivity” refers to a volume resistivity of less than 1×10 6 Ωcm, preferably less than 1×10 4 Ωcm.
導電層としては、静電容量型タッチパネルに用いられる視認部のセンサーに相当する電極パターン又は周辺取り出し部の配線であることが好ましい。
また、導電層は、透明層であることが好ましい。 When there are two or more conductive layers in a substrate having conductive layers, at least one of the conductive layers preferably contains a conductive metal oxide.
The conductive layer is preferably an electrode pattern corresponding to the sensor of the visual recognition portion used in the capacitive touch panel or the wiring of the peripheral extracting portion.
Also, the conductive layer is preferably a transparent layer.
工程X1は、ロール等による加圧及び加熱による貼り合わせ工程であるのが好ましい。貼り合わせには、ラミネーター、真空ラミネーター、及びオートカットラミネーター等の公知のラミネーターを使用できる。
工程X1工程は、ロールツーロール方式により行われることが好ましく、このため、転写フィルムを貼り合わせる対象となる基材は、樹脂フィルム、又は導電性層を有する樹脂フィルムであるのが好ましい。
以下において、ロールツーロール方式について説明する。
ロールツーロール方式とは、基材として、巻き取り及び巻き出しが可能な基材を用い、本発明のパターン形成方法に含まれるいずれかの工程の前に、基材を巻き出す工程(「巻き出し工程」ともいう。)と、いずれかの工程の後に、基材を巻き取る工程(「巻き取り工程」ともいう。)と、を含み、少なくともいずれかの工程(好ましくは、全ての工程、又は加熱工程以外の全ての工程)を、基材を搬送しながら行う方式をいう。
巻き出し工程における巻き出し方法、及び巻き取り工程における巻取り方法としては、特に制限されず、ロールツーロール方式を適用する製造方法において、公知の方法を用いればよい。 <<Procedure of step X1>>
The step X1 is preferably a bonding step by pressing and heating with rolls or the like. A known laminator such as a laminator, a vacuum laminator, and an autocut laminator can be used for bonding.
The step X1 is preferably carried out by a roll-to-roll method, and therefore the base material to which the transfer film is attached is preferably a resin film or a resin film having a conductive layer.
The roll-to-roll method will be described below.
In the roll-to-roll method, a base material that can be wound and unwound is used as a base material, and the step of unwinding the base material ("winding (Also referred to as "unloading step"), and after any of the steps, a step of winding the base material (also referred to as "winding step"), at least any of the steps (preferably, all steps, or all the steps other than the heating step) while conveying the substrate.
The unwinding method in the unwinding step and the winding method in the winding step are not particularly limited, and known methods may be used in manufacturing methods to which a roll-to-roll system is applied.
実施形態1のパターン形成方法は、上記工程X1の後、感光性層をパターン露光する工程(工程X2)を含む。工程X2は、露光により、感光性層中の化合物Aに由来する酸基の含有量を減少させる工程に該当する。より具体的には、感光性層中の化合物β(好ましくは化合物B)中の特定構造S0(好ましくは特定構造S1)(要件V01の場合)及び化合物A中の特定構造S0(好ましくは特定構造S1)(要件W01の場合)を励起させる波長の光を用いて、感光性層をパターン露光することが好ましい。 <<Step X2>>
The pattern forming method of Embodiment 1 includes a step of pattern-exposing the photosensitive layer (step X2) after step X1. Step X2 corresponds to the step of reducing the content of acid groups derived from compound A in the photosensitive layer by exposure. More specifically, specific structure S0 (preferably specific structure S1) in compound β (preferably compound B) in the photosensitive layer (for requirement V01) and specific structure S0 in compound A (preferably specific structure It is preferred to patternwise expose the photosensitive layer with light of a wavelength that excites S1) (for requirement W01).
例えば、実施形態1のパターン形成方法を回路配線の製造に適用する場合、実施形態1のパターン形成方法により製造される回路配線を有する入力装置を備えた表示装置(例えばタッチパネル)の表示品質を高め、また、取り出し配線の占める面積をできるだけ小さくできる点から、パターンの少なくとも一部(特に、タッチパネルの電極パターン及び取り出し配線の部分に相当する部分)は100μm以下の細線であることが好ましく、70μm以下の細線であることがより好ましい。 In the exposure process, the detailed arrangement and specific size of the pattern are not particularly limited.
For example, when the pattern formation method of Embodiment 1 is applied to manufacture of circuit wiring, the display quality of a display device (for example, a touch panel) provided with an input device having circuit wiring manufactured by the pattern formation method of Embodiment 1 is improved. Also, from the point of view that the area occupied by the lead-out wiring can be made as small as possible, at least a part of the pattern (especially the part corresponding to the electrode pattern and the lead-out wiring of the touch panel) is preferably a thin wire of 100 μm or less, and 70 μm or less. is more preferable.
なお、後述する工程X3の前には、感光性層から仮支持体は剥離する。 In step X2, pattern exposure may be performed after peeling the temporary support from the photosensitive layer, and before peeling the temporary support, pattern exposure is performed through the temporary support, and then the temporary support is peeled. may In order to prevent contamination of the mask due to contact between the photosensitive layer and the mask and to avoid the influence of foreign matter adhering to the mask on the exposure, it is preferable to carry out pattern exposure without peeling off the temporary support. The pattern exposure may be exposure through a mask, or may be direct exposure using a laser or the like.
The temporary support is peeled off from the photosensitive layer before step X3, which will be described later.
実施形態1のパターン形成方法は、上記工程X2の後、パターン露光された感光性層を、現像液(特に、アルカリ現像液)を用いて現像する工程(工程X3)を含む。
工程X2を経た感光性層は、露光部の感光性層中の酸基の含有量が減少することにより、露光部と未露光部との間で現像液に対する溶解性の差(溶解コントラスト)が生じている。感光性層に溶解コントラストが形成されることで、工程X3においてパターンの形成が可能となる。なお、上記工程X3の現像液がアルカリ現像液である場合、上記工程X3を実施することで、未露光部が除去されてネガパターンが形成される。一方、上記工程X3の現像液が有機溶剤系現像液である場合、上記工程X3を実施することで露光部が除去されてポジパターンが形成される。得られたポジパターンに対しては、後述する工程X4により、化合物Aに由来する酸基の含有量を減少させる処理を実施する。 <<Process X3>>
The pattern forming method of Embodiment 1 includes a step (step X3) of developing the pattern-exposed photosensitive layer with a developer (especially an alkaline developer) after step X2.
In the photosensitive layer that has undergone step X2, the content of acid groups in the photosensitive layer in the exposed area is reduced, so that there is a difference in solubility (dissolution contrast) between the exposed area and the unexposed area in a developer. is occurring. Formation of the dissolution contrast in the photosensitive layer enables pattern formation in step X3. In addition, when the developer in the step X3 is an alkaline developer, the unexposed portion is removed by performing the step X3 to form a negative pattern. On the other hand, when the developer in the step X3 is an organic solvent-based developer, the exposed portion is removed by performing the step X3 to form a positive pattern. The resulting positive pattern is subjected to a treatment for reducing the content of acid groups derived from compound A in step X4, which will be described later.
アルカリ現像液としては、感光性樹脂層の未露光部を除去することができれば特に制限はなく、例えば、特開平5-072724号公報に記載の現像液等、公知の現像液を使用できる。
アルカリ現像液としては、例えば、pKa=7~13の化合物を0.05~5mol/L(リットル)の濃度で含むアルカリ水溶液系の現像液が好ましい。
また、アルカリ現像液は、更に、水溶性の有機溶剤及び界面活性剤等を含んでいてもよい。アルカリ現像液としては、例えば、国際公開第2015/093271号の段落0194に記載の現像液が好ましい。
アルカリ現像液における水の濃度は、50質量%以上が好ましく、60質量%以上がより好ましく、85質量%以上が更に好ましく、90質量%以上が特に好ましく、95質量%以上が最も好ましい。なお、上限値としては、例えば、100質量%未満である。 (Alkaline developer)
The alkaline developer is not particularly limited as long as it can remove the unexposed portion of the photosensitive resin layer.
As the alkaline developer, for example, an aqueous alkaline developer containing a compound having a pKa of 7 to 13 at a concentration of 0.05 to 5 mol/L (liter) is preferable.
Moreover, the alkaline developer may further contain a water-soluble organic solvent, a surfactant, and the like. As the alkaline developer, for example, the developer described in paragraph 0194 of International Publication No. 2015/093271 is preferable.
The concentration of water in the alkaline developer is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 85% by mass or more, particularly preferably 90% by mass or more, and most preferably 95% by mass or more. In addition, as an upper limit, it is less than 100 mass %, for example.
有機溶剤系現像液としては、感光性樹脂層の露光部を除去することができれば特に制限はなく、例えば、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤、及び炭化水素系溶剤等の有機溶剤を含む現像液を使用できる。
有機溶剤系現像液において、有機溶剤は、複数混合してもよいし、上記以外の有機溶剤又は水と混合し使用してもよい。但し、本発明の効果を十二分に奏するためには、有機溶剤系現像液全体としての含水率が10質量%未満であることが好ましく、実質的に水分を含有しないことがより好ましい。有機溶剤系現像液における有機溶剤(複数混合の場合は合計)の濃度は、50質量%以上が好ましく、60質量%以上がより好ましく、85質量%以上が更に好ましく、90質量%以上が特に好ましく、95質量%以上が最も好ましい。なお、上限値としては、例えば、100質量%以下である。 (Organic solvent-based developer)
The organic solvent-based developer is not particularly limited as long as it can remove the exposed portion of the photosensitive resin layer. A developer containing an organic solvent such as a hydrogen-based solvent can be used.
In the organic solvent-based developer, a plurality of organic solvents may be mixed, or an organic solvent other than the above or water may be mixed and used. However, in order to fully exhibit the effects of the present invention, the water content of the organic solvent-based developer as a whole is preferably less than 10% by mass, and more preferably substantially free of water. The concentration of the organic solvent (in the case of multiple mixtures, the total) in the organic solvent-based developer is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 85% by mass or more, and particularly preferably 90% by mass or more. , 95 mass % or more is most preferable. In addition, as an upper limit, it is 100 mass % or less, for example.
ポストベークは8.1~121.6kPaの環境下で行うことが好ましく、50.66kPa以上の環境下で行うことがより好ましい。一方、111.46kPa以下の環境下で行うことがより好ましく、101.3kPa以下の環境下で行うことが更に好ましい。
ポストベークの温度は、80~250℃が好ましく、110~170℃がより好ましく、130~150℃が更に好ましい。
ポストベークの時間は、1~60分が好ましく、2~50分がより好ましく、5~40分が更に好ましい。
ポストベークは、空気環境下で行っても、窒素置換環境下で行ってもよい。 The pattern forming method of Embodiment 1 may or may not further include a post-baking step of heat-treating the pattern including the photosensitive layer obtained by development.
Post-baking is preferably performed in an environment of 8.1 to 121.6 kPa, more preferably in an environment of 50.66 kPa or higher. On the other hand, it is more preferable to carry out under the environment of 111.46 kPa or less, and further preferably under the environment of 101.3 kPa or less.
The post-baking temperature is preferably 80 to 250.degree. C., more preferably 110 to 170.degree. C., even more preferably 130 to 150.degree.
The post-baking time is preferably 1 to 60 minutes, more preferably 2 to 50 minutes, even more preferably 5 to 40 minutes.
Post-baking may be performed in an air environment or in a nitrogen-substituted environment.
上記工程X3の現像液が有機溶剤系現像液である場合、得られたポジパターンに対して工程X4を実施する。工程X4は、工程X3で得られたポジパターンを露光し、化合物Aに由来する酸基の含有量を減少させる工程に該当する。より具体的には、感光性層中の化合物β(好ましくは化合物B)中の特定構造S0(好ましくは特定構造S1)(要件V01の場合)及び化合物A中の特定構造S0(好ましくは特定構造S1)(要件W01の場合)を励起させる波長の光を用いて、感光性層をパターン露光することが好ましい。 <<Process X4>>
When the developer used in the step X3 is an organic solvent-based developer, the positive pattern obtained is subjected to the step X4. Step X4 corresponds to the step of exposing the positive pattern obtained in step X3 to reduce the content of acid groups derived from compound A. More specifically, specific structure S0 (preferably specific structure S1) in compound β (preferably compound B) in the photosensitive layer (for requirement V01) and specific structure S0 in compound A (preferably specific structure It is preferred to patternwise expose the photosensitive layer with light of a wavelength that excites S1) (for requirement W01).
実施形態2のパターン形成方法は、工程Y1、工程Y2P、及び工程Y3をこの順で有し、更に、工程Y2Q(工程Y2Pにおいて露光された感光性層を、更に、露光する工程)を、工程Y2Pと工程Y3との間、又は工程Y3の後に有する。
工程Y1:転写フィルム中の感光性層の仮支持体側とは反対側の表面を基材に接触させて、転写フィルムと上記基材とを貼り合わせる工程
工程Y2P:感光性層を露光する工程
工程Y3:感光性層を現像する工程 [Pattern Forming Method of Embodiment 2]
The pattern forming method of Embodiment 2 has step Y1, step Y2P, and step Y3 in this order, and further includes step Y2Q (a step of further exposing the photosensitive layer exposed in step Y2P). Between Y2P and step Y3, or after step Y3.
Step Y1: The surface of the photosensitive layer in the transfer film opposite to the temporary support side is brought into contact with the substrate, and the transfer film and the substrate are bonded together Step Y2P: The step of exposing the photosensitive layer Step Y3: Step of developing the photosensitive layer
以下において、実施形態2のパターン形成方法について説明するが、工程Y1及び工程Y3については、工程X1及び工程X3とそれぞれ同様であり、説明を割愛する。
なお、工程Y3は、少なくとも工程Y2Pよりも後に実施されていればよく、工程Y2Pと工程Y2Qとの間に工程Y3が実施されていてもよい。
なお、実施形態2のパターン形成方法は、工程Y3の後、更に、現像して得られた感光性層を含むパターンを加熱処理するポストベーク工程を有していても、有していなくてもよい。ポストベーク工程については、上述した実施形態1のパターン形成方法が有していてもよいポストベーク工程と同様の方法により実施できる。工程Y2Pと工程Y2Qとの間に工程Y3が実施される場合、ポストベーク工程は、工程Y3の後に実施されていれば、工程Y2Qの前に実施されていてもよいし、工程Y2Qの後に実施されていてもよい。 As described above, the pattern forming method of Embodiment 2 corresponds to an aspect applicable when the photosensitive layer further contains a photopolymerization initiator and a polymerizable compound. Therefore, the patterning method of Embodiment 2 is preferably applied to a transfer film including the photosensitive layer of Embodiment X-1-a3 described above.
The pattern forming method of Embodiment 2 will be described below. Processes Y1 and Y3 are the same as the processes X1 and X3, respectively, and description thereof will be omitted.
Note that the step Y3 may be performed at least after the step Y2P, and the step Y3 may be performed between the steps Y2P and Y2Q.
The pattern forming method of Embodiment 2 may or may not have a post-baking step of heat-treating the pattern including the photosensitive layer obtained by development after step Y3. good. The post-baking process can be performed by the same method as the post-baking process that the pattern forming method of the first embodiment may have. When step Y3 is performed between step Y2P and step Y2Q, the post-baking step may be performed before step Y2Q or after step Y2Q as long as it is performed after step Y3. may have been
実施形態2のパターン形成方法は、工程Y1を経た感光性層を露光する工程(工程Y2P)と、露光された感光性層を、更に、露光する工程(工程Y2Q)とを含む。
露光処理(工程Y2P及び工程Y2Q)のうち一方は、主に、露光により化合物Aに由来する酸基の含有量を減少させるための露光であり、露光処理(工程Y2P及び工程Y2Q)のうち他方は、主に、光重合開始剤に基づく重合性化合物の重合反応を生起するための露光に該当する。また、露光処理(工程Y2P及び工程Y2Q)は、それぞれ、全面露光及びパターン露光のいずれであってもよいが、露光処理のうちのいずれかはパターン露光である。
例えば、工程Y2Pが露光により化合物Aに由来する酸基の含有量を減少させるためのパターン露光である場合、工程Y3で使用される現像液はアルカリ現像液であってもよく有機溶剤系現像液であってもよい。ただし、有機溶剤系現像液で現像をする場合、工程Y2Qは、通常、工程Y3の後に実施され、現像された感光性層(パターン)において、光重合開始剤に基づく重合性化合物の重合反応を生起されるとともに、化合物Aに由来する酸基(好ましくはカルボキシ基)の含有量が減少する。
また、例えば、工程Y2Pが光重合開始剤に基づく重合性化合物の重合反応を生起するためのパターン露光である場合、工程Y3で使用される現像液は通常アルカリ現像液である。この場合、工程Y2Qは、工程Y3の前後のいずれで実施されてもよく、工程Y3の前に実施される場合の工程Y2Qは、通常パターン露光である。 <<Process Y2P, Process Y2Q>>
The pattern forming method of Embodiment 2 includes a step of exposing the photosensitive layer that has passed through step Y1 (step Y2P), and a step of further exposing the exposed photosensitive layer (step Y2Q).
One of the exposure treatments (steps Y2P and Y2Q) is mainly exposure for reducing the content of acid groups derived from compound A by exposure, and the other of the exposure treatments (steps Y2P and Y2Q). mainly corresponds to exposure for causing a polymerization reaction of a polymerizable compound based on a photopolymerization initiator. Further, the exposure processing (steps Y2P and Y2Q) may be either full-surface exposure or pattern exposure, but one of the exposure processing is pattern exposure.
For example, when step Y2P is pattern exposure for reducing the content of acid groups derived from compound A by exposure, the developer used in step Y3 may be an alkaline developer or an organic solvent-based developer. may be However, when developing with an organic solvent-based developer, step Y2Q is usually performed after step Y3, and in the developed photosensitive layer (pattern), the polymerization reaction of the polymerizable compound based on the photopolymerization initiator. The content of acid groups (preferably carboxyl groups) derived from compound A decreases as the acid groups are generated.
Further, for example, when step Y2P is pattern exposure for causing a polymerization reaction of a polymerizable compound based on a photopolymerization initiator, the developer used in step Y3 is usually an alkaline developer. In this case, process Y2Q may be performed before or after process Y3, and process Y2Q performed before process Y3 is normal pattern exposure.
感光性層中の光重合開始剤に基づく重合性化合物の反応を生起させるための露光において、露光量としては、5~200mJ/cm2が好ましく、10~150mJ/cm2がより好ましい。 In exposure for reducing the content of acid groups derived from compound A in the photosensitive layer, the exposure amount is preferably 10 to 10,000 mJ/cm 2 , more preferably 50 to 3,000 mJ/cm 2 .
In the exposure for causing the reaction of the polymerizable compound based on the photopolymerization initiator in the photosensitive layer, the exposure amount is preferably 5-200 mJ/cm 2 , more preferably 10-150 mJ/cm 2 .
例えば、実施形態2のパターン形成方法を回路配線の製造に適用する場合、実施形態2のパターン形成方法により製造される回路配線を有する入力装置を備えた表示装置(例えばタッチパネル)の表示品質を高め、また、取り出し配線の占める面積をできるだけ小さくできる点から、パターンの少なくとも一部(特に、タッチパネルの電極パターン及び取り出し配線の部分に相当する部分)は100μm以下の細線であることが好ましく、70μm以下の細線であることがより好ましい。 In the exposure process, the detailed arrangement and specific size of the pattern are not particularly limited.
For example, when the pattern formation method of Embodiment 2 is applied to the manufacture of circuit wiring, the display quality of a display device (for example, a touch panel) provided with an input device having circuit wiring manufactured by the pattern formation method of Embodiment 2 is improved. Also, from the point of view that the area occupied by the lead-out wiring can be made as small as possible, at least a part of the pattern (especially the part corresponding to the electrode pattern and the lead-out wiring of the touch panel) is preferably a thin wire of 100 μm or less, and 70 μm or less. is more preferable.
実施形態2のパターン形成方法としては、工程Y1、工程Y2A、工程Y3、及び工程Y2Bをこの順に有しているのも好ましい。なお、工程Y2A及び工程Y2Bは、一方が、露光により化合物Aに由来する酸基の含有量を減少させるための露光工程であり、他方が、光重合開始剤に基づく重合性化合物の重合反応を生起するための露光工程であるのも好ましい。
工程Y1:転写フィルム中の感光性層の仮支持体側とは反対側の表面を基材に接触させて、転写フィルムと上記基材とを貼り合わせる工程
工程Y2A:感光性層をパターン露光する工程
工程Y3:感光性層を、アルカリ現像液を用いて現像して、パターンを形成する工程
工程Y2B:工程Y3で得られたパターンを露光する工程 <<Preferred embodiment>>
The pattern forming method of Embodiment 2 preferably includes process Y1, process Y2A, process Y3, and process Y2B in this order. In step Y2A and step Y2B, one is an exposure step for reducing the content of acid groups derived from compound A by exposure, and the other is a polymerization reaction of a polymerizable compound based on a photopolymerization initiator. It is also preferred that it is an exposure step for generating.
Step Y1: A step of bringing the surface of the photosensitive layer in the transfer film opposite to the temporary support side into contact with the substrate, and bonding the transfer film and the substrate together Step Y2A: Step of exposing the photosensitive layer in a pattern Step Y3: Step of developing the photosensitive layer with an alkaline developer to form a pattern Step Y2B: Step of exposing the pattern obtained in Step Y3
実施形態1及び実施形態2のパターン形成方法は、上述した以外の任意の工程(その他の工程)を含んでもよい。例えば、以下のような工程が挙げられるが、これらの工程に制限されない。 [Optional steps that the pattern forming methods of Embodiments 1 and 2 may have]
The pattern formation methods of Embodiments 1 and 2 may include arbitrary steps (other steps) other than those described above. Examples include, but are not limited to, the following steps.
上記パターン形成方法は、転写フィルムがカバーフィルムを有する場合、上記転写フィルムのカバーフィルムを剥離する工程(以下、「カバーフィルム剥離工程」ともいう。)を含むことが好ましい。カバーフィルムを剥離する方法は特に制限されず、公知の方法を適用できる。 <<Cover film peeling process>>
When the transfer film has a cover film, the pattern forming method preferably includes a step of peeling off the cover film of the transfer film (hereinafter also referred to as a “cover film peeling step”). A method for peeling off the cover film is not particularly limited, and a known method can be applied.
基板が導電層を有する基板である場合、上記パターン形成方法は、更に、導電層の可視光線反射率を低下させる処理をする工程を含んでいてもよい。なお、上記基板が複数の導電層を有する基板である場合、可視光線反射率を低下させる処理は、一部の導電層に対して実施してもよいし、全ての導電層に対して実施してもよい。
可視光線反射率を低下させる処理としては、酸化処理が挙げられる。例えば、銅を酸化処理して酸化銅とすることで、黒化することにより、導電層の可視光線反射率を低下させることができる。
可視光線反射率を低下させる処理の好ましい態様については、特開2014-150118号公報の段落0017~0025、並びに、特開2013-206315号公報の段落0041、段落0042、段落0048及び段落0058に記載があり、この公報の内容は本明細書に組み込まれる。 <<Step of reducing visible light reflectance>>
When the substrate is a substrate having a conductive layer, the patterning method may further include the step of treating the conductive layer to reduce the reflectance of visible light. Note that when the substrate has a plurality of conductive layers, the treatment for reducing the visible light reflectance may be performed on some of the conductive layers or may be performed on all the conductive layers. may
The treatment for reducing the visible light reflectance includes oxidation treatment. For example, the visible light reflectance of the conductive layer can be reduced by oxidizing copper to form copper oxide, thereby blackening the copper.
Preferred aspects of the treatment for reducing visible light reflectance are described in paragraphs 0017 to 0025 of JP-A-2014-150118, and paragraphs 0041, 0042, 0048 and 0058 of JP-A-2013-206315. and the contents of this publication are incorporated herein.
基板が導電層を有する基板である場合、上記パターン形成方法は、工程X3(又は工程X4)及び工程Y3により形成されたパターンをエッチングレジスト膜として、このエッチングレジスト膜が配置されていない領域における導電層をエッチング処理する工程(エッチング工程)を含むことが好ましい。
エッチング処理の方法としては、特開2010-152155号公報の段落0048~0054等に記載のウェットエッチングによる方法、及び公知のプラズマエッチング等のドライエッチングによる方法等を適用できる。 << Etching process >>
When the substrate is a substrate having a conductive layer, the pattern forming method uses the pattern formed in step X3 (or step X4) and step Y3 as an etching resist film to form a conductive layer in a region where the etching resist film is not disposed. It is preferable to include a step of etching the layer (etching step).
As the etching treatment method, a wet etching method described in paragraphs 0048 to 0054 of JP-A-2010-152155, etc., and a known dry etching method such as plasma etching can be applied.
酸性タイプのエッチング液としては、塩酸、硫酸、フッ酸、及びリン酸等の酸性成分単独の水溶液、並びに、酸性成分と塩化第二鉄、フッ化アンモニウム、又は過マンガン酸カリウム等の塩との混合水溶液等が例示される。酸性成分は、複数の酸性成分を組み合わせた成分を使用してもよい。
アルカリ性タイプのエッチング液としては、水酸化ナトリウム、水酸化カリウム、アンモニア、有機アミン、及びテトラメチルアンモニウムハイドロオキサイド等の有機アミンの塩等のアルカリ成分単独の水溶液、並びに、アルカリ成分と過マンガン酸カリウム等の塩との混合水溶液等が例示される。アルカリ成分は、複数のアルカリ成分を組み合わせた成分を使用してもよい。 For example, as an etching treatment method, there is a commonly used wet etching method in which the substrate is immersed in an etchant. As the etchant used for wet etching, an acidic type or alkaline type etchant may be appropriately selected according to the object to be etched.
Acid type etching solutions include aqueous solutions of acidic components alone such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid, and acidic component and salts such as ferric chloride, ammonium fluoride, or potassium permanganate. A mixed aqueous solution and the like are exemplified. As the acidic component, a component obtained by combining a plurality of acidic components may be used.
Alkaline etching solutions include aqueous solutions of alkali components alone, such as sodium hydroxide, potassium hydroxide, ammonia, organic amines, and salts of organic amines such as tetramethylammonium hydroxide, and alkali components and potassium permanganate. For example, a mixed aqueous solution with a salt such as As the alkaline component, a component obtained by combining a plurality of alkaline components may be used.
エッチング工程後、工程ラインの汚染を防ぐために、必要に応じて、エッチング処理された基板を洗浄する洗浄工程、及び洗浄された基板を乾燥する乾燥工程を行ってもよい。 Although the temperature of the etching solution is not particularly limited, it is preferably 45° C. or lower. In the method for producing circuit wiring of the present invention, the pattern formed in step X3 (or step X4) and step Y3 (or step Y2B), which is used as an etching resist film, is acidic and alkaline in a temperature range of 45 ° C. or less. It is preferable to exhibit particularly excellent resistance to the etchant. With the above structure, the etching resist film is prevented from peeling off during the etching process, and the portions where the etching resist film does not exist are selectively etched.
After the etching process, a cleaning process for cleaning the etched substrate and a drying process for drying the cleaned substrate may be performed as necessary in order to prevent contamination of the process line.
上記パターン形成方法は、両方の表面にそれぞれ複数の導電層を有する基板を用い、両方の表面に形成された導電層に対して逐次又は同時にパターン形成することも好ましい。
このような構成により、基板の一方の表面に第一の導電パターン、もう一方の表面に第二の導電パターンを形成できる。ロールツーロールで基材の両面から形成することも好ましい。 <<other embodiments>>
In the above pattern forming method, it is also preferable to use a substrate having a plurality of conductive layers on both surfaces and pattern the conductive layers formed on both surfaces sequentially or simultaneously.
With such a configuration, the first conductive pattern can be formed on one surface of the substrate and the second conductive pattern can be formed on the other surface. Forming from both sides of the substrate by roll-to-roll is also preferable.
上述した実施形態1及び実施形態2のパターン形成方法により形成されるパターンは、酸基の含有量が低減されているため、極性が低く、透湿性及び比誘電率が低い。
上記パターン中の酸基の含有量は、工程X1又は工程Y1で形成される感光性層中の酸基の含有量に対して、5モル%以上減少していることが好ましく、10モル%以上減少していることがより好ましく、20モル%以上減少していることが更により好ましく、31モル%以上減少していることが更に好ましく、40モル%以上減少していることが特に好ましく、51モル%以上減少していることが特により好ましく、71モル%以上減少していることが最も好ましい。なお、上限値としては特に制限されないが、例えば、100モル%以下である。
上記パターンの透湿度は、工程X1又は工程Y1で形成される感光性層の透湿度に対して、5%以上減少していることが好ましく、10%以上減少していることがより好ましく、20%以上減少していることが更に好ましい。なお、上限値としては特に制限されないが、例えば、100%以下である。
上記パターンの比誘電率は、工程X1又は工程Y1で形成される感光性層の比誘電率に対して、5%以上減少していることが好ましく、10%以上減少していることがより好ましく、15%以上減少していることが更に好ましい。なお、上限値としては特に制限されないが、例えば、100%以下である。 〔pattern〕
The patterns formed by the pattern forming methods of Embodiments 1 and 2 have a low acid group content, and thus have low polarity, low moisture permeability, and low relative permittivity.
The content of acid groups in the pattern is preferably reduced by 5 mol% or more, and preferably 10 mol% or more, relative to the content of acid groups in the photosensitive layer formed in step X1 or step Y1. It is more preferably reduced, even more preferably reduced by 20 mol% or more, still more preferably reduced by 31 mol% or more, and particularly preferably reduced by 40 mol% or more. A decrease of mol % or more is particularly preferred, and a decrease of 71 mol % or more is most preferred. Although the upper limit is not particularly limited, it is, for example, 100 mol % or less.
The moisture permeability of the pattern is preferably reduced by 5% or more, more preferably by 10% or more, relative to the moisture permeability of the photosensitive layer formed in step X1 or step Y1. % or more is more preferable. Although the upper limit is not particularly limited, it is, for example, 100% or less.
The dielectric constant of the pattern is preferably reduced by 5% or more, more preferably by 10% or more, relative to the dielectric constant of the photosensitive layer formed in step X1 or step Y1. , is more preferably reduced by 15% or more. Although the upper limit is not particularly limited, it is, for example, 100% or less.
具体的には、導電パターンを保護する保護膜(永久膜)としての用途、導電パターン間の層間絶縁膜としての用途、及び回路配線の製造の際のエッチングレジスト膜としての用途等が挙げられる。上記パターンは低透湿性に優れることから、なかでも、導電パターンを保護する保護膜(永久膜)又は導電パターン間の層間絶縁膜としての用途が好ましい。
なお、上記パターンは、例えば、タッチパネル内部に設けられた、視認部のセンサーに相当する電極パターン、周辺配線部分、及び取り出し配線部分の配線等の導電パターンを保護する保護膜(永久膜)又は導電パターン間の層間絶縁膜としての用途として使用できる。 The application of the pattern formed by the pattern forming method described above is not particularly limited, and can be used as various protective films or insulating films.
Specifically, it is used as a protective film (permanent film) for protecting conductive patterns, as an interlayer insulating film between conductive patterns, and as an etching resist film in the production of circuit wiring. Since the pattern is excellent in low moisture permeability, it is particularly preferably used as a protective film (permanent film) for protecting the conductive pattern or an interlayer insulating film between the conductive patterns.
The pattern is, for example, a protective film (permanent film) or a conductive film that protects conductive patterns such as electrode patterns corresponding to sensors in the visual recognition portion, peripheral wiring portions, and lead-out wiring portions provided inside the touch panel. It can be used as an interlayer insulating film between patterns.
本発明は回路配線の製造方法にも関する。
本発明に関する回路配線の製造方法(「本発明の回路配線の製造方法」ともいう)は、上述の感光性組成物を使用した回路配線の製造方法であれば特に制限されないが、なかでも、上述の転写フィルムを使用した回路配線の製造方法であるのが好ましい。
上述の転写フィルムを使用した回路配線の製造方法としては、上述した転写フィルム中の感光性層の仮支持体側とは反対側の表面を、導電層を有する基板中の導電層に接触させて、転写フィルムと導電層を有する基板とを貼り合わせる工程(貼り合わせ工程)と、貼り合わせた転写フィルムにおける感光性層をパターン露光する工程(第1の露光工程)と、露光された感光性層をアルカリ現像液を用いて現像して、パターン化されたエッチングレジスト膜を形成する工程(エッチングレジスト膜形成工程)と、エッチングレジスト膜が配置されていない領域における上記導電層をエッチング処理する工程(エッチング処理工程)と、をこの順に含むのが好ましい。また、上記エッチングレジスト膜形成工程は、第1の露光工程を経て得られた露光された感光性層をアルカリ現像液を用いて現像して、パターンを形成する工程(アルカリ現像工程)と、得られたパターンを露光してエッチングレジスト膜を形成する工程(第2の露光工程)とを含んで構成されているのが好ましい。
本発明の回路配線の製造方法において、貼り合わせ工程、第1の露光工程、アルカリ現像工程、及び第2の露光工程は、いずれも上述した実施形態2のパターン形成方法の工程Y1、工程Y2A、工程Y3、及び工程Y2Bと同様の手順により実施できる。エッチングレジスト膜形成工程を工程Y3と同様の方法により実施してもよい。また、本発明の回路配線の製造方法において使用される導電層を有する基板は、上述した工程X1で使用される導電層を有する基板と同様である。また、本発明の回路配線の製造方法は、上述の工程以外のその他の工程を有していてもよい。その他の工程としては、第1実施形態及び第2実施形態のパターン形成方法が有していてもよい任意の工程と同様のものが挙げられる。 [Method for producing circuit wiring]
The invention also relates to a method of manufacturing circuit traces.
The method for producing circuit wiring related to the present invention (also referred to as "the method for producing circuit wiring of the present invention") is not particularly limited as long as it is a method for producing circuit wiring using the photosensitive composition described above. It is preferable that it is a method for manufacturing circuit wiring using the transfer film of No.
As a method for producing circuit wiring using the transfer film described above, the surface of the photosensitive layer in the transfer film described above on the side opposite to the temporary support side is brought into contact with the conductive layer in the substrate having the conductive layer, A step of bonding a transfer film and a substrate having a conductive layer (bonding step), a step of pattern-exposing the photosensitive layer in the bonded transfer film (first exposure step), and exposing the exposed photosensitive layer to A step of forming a patterned etching resist film by developing with an alkaline developer (etching resist film forming step), and a step of etching the conductive layer in the region where the etching resist film is not arranged (etching treatment step) and , in this order. Further, the etching resist film forming step includes a step of developing the exposed photosensitive layer obtained through the first exposure step with an alkali developer to form a pattern (alkali development step); and a step of exposing the formed pattern to form an etching resist film (second exposure step).
In the circuit wiring manufacturing method of the present invention, the bonding step, the first exposure step, the alkali development step, and the second exposure step are all the steps Y1, Y2A, and Y2A of the pattern forming method of Embodiment 2 described above. It can be implemented by the same procedures as those of Step Y3 and Step Y2B. The etching resist film forming step may be performed by the same method as the step Y3. Moreover, the substrate having a conductive layer used in the method for manufacturing circuit wiring of the present invention is the same as the substrate having a conductive layer used in the step X1 described above. Moreover, the method for manufacturing the circuit wiring of the present invention may have other steps than the steps described above. Other steps include the same arbitrary steps that the pattern forming methods of the first and second embodiments may have.
エッチングレジスト膜として使用した膜は、形成された回路配線の保護膜(永久膜)としても使用できる。 In the circuit wiring manufacturing method of the present invention, four steps of the bonding step, the first exposure step, the development step, the second exposure step, and the etching step are set as one set and are repeated multiple times. It is also preferable to have
The film used as the etching resist film can also be used as a protective film (permanent film) for the formed circuit wiring.
本発明はタッチパネルの製造方法にも関する。
本発明に関するタッチパネルの製造方法(「本発明のタッチパネルの製造方法」ともいう)は、上述の感光性組成物を使用したタッチパネルの製造方法であれば特に制限されないが、なかでも、上述の転写フィルムを使用したタッチパネルの製造方法であるのが好ましい。
本発明のタッチパネルの製造方法としては、上述した転写フィルム中の感光性層の仮支持体側とは反対側の表面を、導電層(好ましくはパターン化された導電層であり、具体的には、タッチパネル電極パターン又は配線等の導電パターン)を有する基板中の導電層に接触させて、転写フィルムと導電層を有する基板とを貼り合わせる工程(貼り合わせ工程)と、貼り合わせた転写フィルムにおける感光性層をパターン露光する工程(第1の露光工程)と、露光された感光性層をアルカリ現像液を用いて現像して、上記導電層のパターン化された保護膜又は絶縁膜を形成する工程(保護膜又は絶縁膜形成工程)と、をこの順に含むのが好ましい。また、保護膜又は絶縁膜形成工程は、第1の露光工程を経て得られた露光された感光性層をアルカリ現像液を用いて現像して、パターンを形成する工程(アルカリ現像工程)と、得られたパターンを露光して導電層の保護膜又は絶縁膜を形成する工程(第2の露光工程)とを含んで構成されているのが好ましい。
保護膜は、導電層の表面を保護する膜としての機能を有する。また、絶縁膜は、導電層間の層間絶縁膜としての機能を有する。なお、導電層の絶縁膜を形成する場合、本発明のタッチパネルの製造方法は、更に、絶縁膜上に導電層(好ましくはパターン化された導電層であり、具体的には、タッチパネル電極パターン又は配線等の導電パターン)を形成する工程を有するのが好ましい。
本発明のタッチパネルの製造方法において、貼り合わせ工程、第1の露光工程、アルカリ現像工程、及び第2の露光工程は、いずれも上述した実施形態2のパターン形成方法の工程Y1、工程Y2A、工程Y3、及び工程Y2Bと同様の手順により実施できる。保護膜又は絶縁膜形成工程を、工程Y3と同様の手順により実施してもよい。また、本発明のタッチパネルの製造方法において使用される導電層を有する基板は、上述した工程X1で使用される導電層を有する基板と同様である。その他の工程としては、第1実施形態及び第2実施形態のパターン形成方法が有していてもよい任意の工程と同様のものが挙げられる。 [Manufacturing method of touch panel]
The present invention also relates to a method of manufacturing a touch panel.
The method for producing a touch panel according to the present invention (also referred to as "the method for producing a touch panel of the present invention") is not particularly limited as long as it is a method for producing a touch panel using the photosensitive composition described above. is preferably a method for manufacturing a touch panel using
As a method for producing a touch panel of the present invention, the surface of the photosensitive layer in the above-described transfer film opposite to the temporary support side is coated with a conductive layer (preferably a patterned conductive layer, specifically, A step of bonding a transfer film and a substrate having a conductive layer (bonding step) by contacting a conductive layer in a substrate having a conductive pattern such as a touch panel electrode pattern or wiring), and photosensitive in the bonded transfer film A step of pattern-exposing a layer (first exposure step), and a step of developing the exposed photosensitive layer with an alkaline developer to form a patterned protective film or insulating film of the conductive layer ( protective film or insulating film forming step) in this order. In addition, the protective film or insulating film forming step includes a step of developing the exposed photosensitive layer obtained through the first exposure step using an alkali developer to form a pattern (alkali development step); It is preferable to include a step of exposing the obtained pattern to form a protective film or an insulating film for the conductive layer (second exposure step).
The protective film functions as a film that protects the surface of the conductive layer. In addition, the insulating film functions as an interlayer insulating film between conductive layers. When forming an insulating film of a conductive layer, the touch panel manufacturing method of the present invention further includes a conductive layer (preferably a patterned conductive layer) on the insulating film, specifically, a touch panel electrode pattern or It is preferable to have a step of forming a conductive pattern such as wiring.
In the method for manufacturing a touch panel of the present invention, the bonding step, the first exposure step, the alkali development step, and the second exposure step are all the step Y1, step Y2A, and step Y1 of the pattern forming method of Embodiment 2 described above. It can be implemented by the same procedures as Y3 and step Y2B. The protective film or insulating film forming step may be performed by the same procedure as the step Y3. Further, the substrate having a conductive layer used in the method for manufacturing a touch panel of the present invention is the same as the substrate having a conductive layer used in step X1 described above. Other steps include the same arbitrary steps that the pattern forming methods of the first and second embodiments may have.
上記タッチパネルにおける検出方法としては、抵抗膜方式、静電容量方式、超音波方式、電磁誘導方式、及び光学方式等公知の方式いずれでもよい。なかでも、静電容量方式が好ましい。
タッチパネル型としては、いわゆる、インセル型(例えば、特表2012-517051号公報の図5、図6、図7、図8に記載のもの)、いわゆる、オンセル型(例えば、特開2013-168125号公報の図19に記載のもの、特開2012-089102号公報の図1及び図5に記載のもの)、OGS(One Glass Solution)型、TOL(Touch-on-Lens)型(例えば、特開2013-054727号公報の図2に記載のもの)、その他の構成(例えば、特開2013-164871号公報の図6に記載のもの)、及び各種アウトセル型(いわゆる、GG、G1・G2、GFF、GF2、GF1、G1F等)等が挙げられる。 The touch panel manufactured by the touch panel manufacturing method of the present invention preferably has a transparent substrate, electrodes, and a protective layer (protective film).
As a detection method for the touch panel, any of known methods such as a resistive film method, a capacitance method, an ultrasonic method, an electromagnetic induction method, and an optical method may be used. Among them, the capacitance method is preferable.
As the touch panel type, the so-called in-cell type (for example, those described in FIGS. 5, 6, 7, and 8 of JP-A-2012-517051), the so-called on-cell type (for example, JP-A-2013-168125 19 of the publication, those described in FIGS. 1 and 5 of JP-A-2012-089102), OGS (One Glass Solution) type, TOL (Touch-on-Lens) type (for example, JP-A 2013-054727), other configurations (for example, those described in FIG. 6 of JP-A-2013-164871), and various out-cell types (so-called GG, G1 G2, GFF , GF2, GF1, G1F, etc.).
後段部にて示す第2表の組成及び配合となるように各成分を混合攪拌することにより、感光性組成物を調製した。なお、第2表中の重合体の含有量(質量部)の数値は、固形分の量(溶剤以外)を意図する。 [Preparation of photosensitive composition]
A photosensitive composition was prepared by mixing and stirring each component so as to obtain the composition and formulation shown in Table 2 shown in the latter part. In addition, the numerical value of the content (parts by mass) of the polymer in Table 2 intends the amount of solid content (other than the solvent).
以下において、第2表中で使用される各種成分について示す。 [Components of the photosensitive composition]
The various components used in Table 2 are shown below.
酸基を有する化合物(重合体1~9)は、合成したものを使用した。
以下、重合体8の合成方法を一例として示す。他の重合体については、仕込むモノマーの種類と量とを変更して同様に合成した。 <Compound having an acid group>
Synthesized compounds (polymers 1 to 9) having an acid group were used.
A method for synthesizing polymer 8 is shown below as an example. Other polymers were synthesized in the same manner by changing the type and amount of charged monomers.
プロピレングリコールモノメチルエーテル77.2gをフラスコに仕込み窒素気流下90℃に加熱した。この液にジシクロペンタニルメタクリレート(昭和電工マテリアル社製)89.8g、アクリル酸28.3gをプロピレングリコールモノメチルエーテル30gに溶解させた溶液、及び、重合開始剤V-601(富士フイルム和光純薬社製)5.5gをプロピレングリコールモノメチルエーテル30gに溶解させた溶液を同時に2時間かけて滴下した。滴下終了後1時間90℃で反応させた後、V-601を0.7g添加した。その後更に3時間反応させた。その後プロピレングリコールモノメチルエーテルアセテート60.4g、プロピレングリコールモノメチルエーテル26.4gで希釈した。空気気流下、反応液を100℃に昇温し、テトラエチルアンモニウムブロミド0.47g、p-メトキシフェノール0.23gを添加した。これにグリシジルメタクリレート(日油社製ブレンマーG)14.0gを20分かけて滴下した。これを100℃で7時間反応させ、重合体8の溶液を得た。得られた溶液の固形分濃度は36.3質量%であった。GPCにおける標準ポリスチレン換算の重量平均分子量は15000、分散度は2.2、ポリマーの酸価は125mgKOH/gであった。ガスクロマトグラフィーを用いて測定した残存モノマー量はいずれのモノマーにおいてもポリマー固形分に対し0.1質量%未満であった。
なお、各ポリマーは溶液に含まれる状態で合成しているが、感光性組成物の成分としてポリマーを使用する際は、溶液中に含まれていた固形分(ポリマー)のみを感光性組成物の成分として添加している。例えば、実施例1、2の転写フィルムに使用される感光性組成物中には、溶液の100質量部ではなく、重合体1そのものの100質量部が含まれている。 - Method for synthesizing polymer 8 (DCPMA/AA/AA-GMA copolymer [composition ratio (mass ratio): 68/16/16, weight average molecular weight (Mw): 15000]);
A flask was charged with 77.2 g of propylene glycol monomethyl ether and heated to 90° C. under a nitrogen stream. Dicyclopentanyl methacrylate (manufactured by Showa Denko Materials Co., Ltd.) 89.8 g of this liquid, a solution obtained by dissolving 28.3 g of acrylic acid in 30 g of propylene glycol monomethyl ether, and a polymerization initiator V-601 (FUJIFILM Wako Pure Chemical Industries, Ltd. At the same time, a solution of 5.5 g of propylene glycol monomethyl ether dissolved in 30 g of propylene glycol monomethyl ether was added dropwise over 2 hours. After completion of the dropwise addition, the mixture was allowed to react at 90° C. for 1 hour, and then 0.7 g of V-601 was added. After that, the reaction was further continued for 3 hours. After that, it was diluted with 60.4 g of propylene glycol monomethyl ether acetate and 26.4 g of propylene glycol monomethyl ether. The reaction solution was heated to 100° C. under an air stream, and 0.47 g of tetraethylammonium bromide and 0.23 g of p-methoxyphenol were added. To this, 14.0 g of glycidyl methacrylate (Blenmer G manufactured by NOF Corporation) was added dropwise over 20 minutes. This was reacted at 100° C. for 7 hours to obtain a polymer 8 solution. The solid content concentration of the obtained solution was 36.3% by mass. The weight average molecular weight in terms of standard polystyrene in GPC was 15000, the degree of dispersion was 2.2, and the acid value of the polymer was 125 mgKOH/g. The amount of residual monomer measured using gas chromatography was less than 0.1% by mass based on the polymer solid content for any monomer.
In addition, each polymer is synthesized in a state contained in a solution, but when using a polymer as a component of a photosensitive composition, only the solid content (polymer) contained in the solution is added to the photosensitive composition. added as an ingredient. For example, the photosensitive compositions used in the transfer films of Examples 1 and 2 contained 100 parts by weight of Polymer 1 itself, not 100 parts by weight of the solution.
・重合体2:CHMA/MAA/MMA/MAA-GMAの共重合体〔組成比(質量比):55.1/14.5/1.3/29.1、重量平均分子量(Mw):27,000〕
・重合体3:IBMA/MAAの共重合体〔組成比(質量比):80/20、重量平均分子量(Mw):12000〕
・重合体4:DCPMA/MAAの共重合体〔組成比(質量比):80/20、重量平均分子量(Mw):30000〕
・重合体5:DCPMA/AAの共重合体〔組成比(質量比):83/17、重量平均分子量(Mw):20000〕
・重合体6:IBMA/IBA/AAの共重合体〔組成比(質量比):20/63/17、重量平均分子量(Mw):33000〕
・重合体7:DCPMA/AA/AA-GMAの共重合体〔組成比(質量比):74/16/10、重量平均分子量(Mw):24000〕
・重合体8:DCPMA/AA/AA-GMAの共重合体〔組成比(質量比):68/16/16、重量平均分子量(Mw):15000〕
・重合体9:DCPMA/AA/AA-GMAの共重合体〔組成比(質量比):52/16/32、重量平均分子量(Mw):16000〕 Polymer 1: St/MAA/MMA/MAA-GMA copolymer [composition ratio (mass ratio): St/MAA/MMA/MAA-GMA = 47.7/19/1.3/32, weight average Molecular weight (Mw): 18,000]
Polymer 2: CHMA/MAA/MMA/MAA-GMA copolymer [composition ratio (mass ratio): 55.1/14.5/1.3/29.1, weight average molecular weight (Mw): 27 , 000]
- Polymer 3: IBMA/MAA copolymer [composition ratio (mass ratio): 80/20, weight average molecular weight (Mw): 12000]
- Polymer 4: DCPMA/MAA copolymer [composition ratio (mass ratio): 80/20, weight average molecular weight (Mw): 30000]
- Polymer 5: DCPMA/AA copolymer [composition ratio (mass ratio): 83/17, weight average molecular weight (Mw): 20000]
Polymer 6: IBMA/IBA/AA copolymer [composition ratio (mass ratio): 20/63/17, weight average molecular weight (Mw): 33000]
Polymer 7: DCPMA/AA/AA-GMA copolymer [composition ratio (mass ratio): 74/16/10, weight average molecular weight (Mw): 24000]
Polymer 8: DCPMA/AA/AA-GMA copolymer [composition ratio (mass ratio): 68/16/16, weight average molecular weight (Mw): 15000]
Polymer 9: DCPMA/AA/AA-GMA copolymer [composition ratio (mass ratio): 52/16/32, weight average molecular weight (Mw): 16000]
・St:スチレンに基づく繰り返し単位
・MAA:メタクリル酸に基づく繰り返し単位
・MMA:メタクリル酸メチルに基づく繰り返し単位
・MAA-GMA:メタクリル酸に基づく繰り返し単位のカルボキシ基に、グリシジルメタクリレートを反応させてなる繰り返し単位
・CHMA:シクロヘキシルメタクリレートに基づく繰り返し単位
・DCPMA:ジシクロペンタニルメタクリレートに基づく繰り返し単位
・AA:アクリル酸に基づく繰り返し単位
・AA-GMA:アクリル酸に基づく繰り返し単位のカルボキシ基に、グリシジルメタクリレートを反応させてなる繰り返し単位
・IBMA:イソボロニルメタクリレートに基づく繰り返し単位
・IBA:イソボロニルアクリレートに基づく繰り返し単位 The abbreviations in the above polymers are shown below.
・St: repeating unit based on styrene ・MAA: repeating unit based on methacrylic acid ・MMA: repeating unit based on methyl methacrylate ・MAA-GMA: obtained by reacting the carboxy group of the repeating unit based on methacrylic acid with glycidyl methacrylate Repeating unit CHMA: Repeating unit based on cyclohexyl methacrylate DCPMA: Repeating unit based on dicyclopentanyl methacrylate AA: Repeating unit based on acrylic acid AA-GMA: Glycidyl methacrylate is added to the carboxy group of the repeating unit based on acrylic acid Repeating unit obtained by reacting IBMA: Repeating unit based on isobornyl methacrylate IBA: Repeating unit based on isobornyl acrylate
・1-Meイソキノリン(富士フイルム和光純薬製)
・2,4-ジメチルキノリン(富士フイルム和光純薬製) <Compound β>
・ 1-Me isoquinoline (manufactured by Fujifilm Wako Pure Chemical Industries)
・2,4-dimethylquinoline (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.)
・TMPTA:トリメチロールプロパントリアクリレート(新中村化学社製A-TMPT)
・DTMPTA:ジトリメチロールプロパンテトラアクリレート(日本化薬社製KAYARAD T-1420(T))
・DPHA:ジペンエリスリトールヘキサアクリレート(新中村化学社製A-DPH)
・A-NOD-N:1,9-ノナンジオールジアクリレート(新中村化学社製A-NOD-N) <Polymerizable compound>
・ TMPTA: trimethylolpropane triacrylate (A-TMPT manufactured by Shin-Nakamura Chemical Co., Ltd.)
・ DTMPTA: ditrimethylolpropane tetraacrylate (KAYARAD T-1420 (T) manufactured by Nippon Kayaku Co., Ltd.)
・ DPHA: Dipenerythritol hexaacrylate (A-DPH manufactured by Shin-Nakamura Chemical Co., Ltd.)
・ A-NOD-N: 1,9-nonanediol diacrylate (A-NOD-N manufactured by Shin-Nakamura Chemical Co., Ltd.)
・Irg379:Omnirad 379(IGM Resins B.V.社製、アルキルフェノン系化合物)
・Oxe02:Irgacure OXE02(BASF社製、オキシムエステル化合物)アセトニトリル中における波長365nmの光に対するモル吸光係数2700(cm・mol/L)-1
・Api307:(1-(ビフェニル-4-イル)-2-メチル-2-モルホリノプロパン-1-オン(Shenzhen UV-ChemTech LTD社製) <Initiator>
- Irg379: Omnirad 379 (manufactured by IGM Resins B.V., alkylphenone compound)
・Oxe02: Irgacure OXE02 (manufactured by BASF, oxime ester compound) Molar extinction coefficient for light with a wavelength of 365 nm in acetonitrile 2700 (cm mol / L) -1
· Api307: (1-(biphenyl-4-yl)-2-methyl-2-morpholinopropan-1-one (manufactured by Shenzhen UV-ChemTech LTD)
・F551A:メガファックF551(DIC社製) <Surfactant>
・F551A: Megaface F551 (manufactured by DIC)
・MEK:メチルエチルケトン
・PGMEA:プロピレングリコールモノメチルエーテルアセテート
・MFG:プロピレングリコールモノメチルエーテル <Solvent>
・MEK: Methyl ethyl ketone ・PGMEA: Propylene glycol monomethyl ether acetate ・MFG: Propylene glycol monomethyl ether
〔試験サンプル(試料X)の準備〕
ガラス基板(コーニング社製「イーグルXG」)の上に、調製した感光性組成物をスピンコートした後、ホットプレートを使用して80℃で2分間乾燥させて、膜厚2μmの膜(感光性層)を得た。次いで、得られた膜(感光性層)の上面からポリエチレンテレフタレートフィルム(PETフィルム。東レ製「16KS40」)を圧着することにより、ガラス基板、感光性層、及び、PETフィルムがこの順に積層した積層体を作製した。なお、圧着条件は、ラミネート温度:25℃、圧力:0.6Pa、線圧3N/cm、搬送速度4m/分とした。次いで、積層体中の感光性層に対して、超高圧水銀ランプを有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株))を用いてPETフィルム越しに波長365nmでの積算露光量が80mJ/cm2となるように露光した。露光後、積層体を25℃50%RHの環境下に30分間放置し、その後、PETフィルムを剥がした。次いで、PETフィルムの剥離により露出した感光性層に対して、高圧水銀ランプを有する紫外線照射コンベア装置(アイグラフィックス(株))を用いて波長365nmでの積算露光量が1000mJ/cm2となるように露光した。そして、ガラス基板上の露光後感光性層を削り取り、100mgの粉末状の試験サンプル(以下、試料X)を準備した。なお、削り取った露光後感光性層が粉末状でない場合、粉砕して使用した。 [Various measurements]
[Preparation of test sample (sample X)]
After spin-coating the prepared photosensitive composition onto a glass substrate (“Eagle XG” manufactured by Corning), it was dried at 80 ° C. for 2 minutes using a hot plate to form a film with a thickness of 2 μm (photosensitive layer) was obtained. Next, a polyethylene terephthalate film (PET film, Toray "16KS40") is pressed from the upper surface of the obtained film (photosensitive layer) to form a laminate in which the glass substrate, the photosensitive layer, and the PET film are laminated in this order. made the body. The pressure bonding conditions were laminating temperature: 25° C., pressure: 0.6 Pa, linear pressure: 3 N/cm, and conveying speed: 4 m/min. Then, the photosensitive layer in the laminate is exposed through a PET film using a proximity exposure machine (Hitachi High-Tech Electronic Engineering Co., Ltd.) having an ultra-high pressure mercury lamp at a wavelength of 365 nm. The exposure was made to be cm 2 . After exposure, the laminate was allowed to stand in an environment of 25° C. and 50% RH for 30 minutes, after which the PET film was peeled off. Next, the photosensitive layer exposed by peeling off the PET film is exposed to an ultraviolet irradiation conveyor device (I-Graphics Co., Ltd.) having a high-pressure mercury lamp, and the integrated exposure amount at a wavelength of 365 nm becomes 1000 mJ/cm 2 . exposed as Then, the post-exposure photosensitive layer on the glass substrate was scraped off to prepare a 100 mg powdery test sample (hereinafter referred to as sample X). When the scraped post-exposure photosensitive layer was not powdery, it was pulverized before use.
(1)試料Xを5~6mg使用し、以下の条件にて温度変調示差走査熱量測定を行った。
装置:ティー・エイ・インスツルメント社製DSC2500(試料の封入にTzeroアルミパンを使用した)
測定条件:窒素雰囲気下、温度範囲-70~200℃(5℃/分)、温度変調条件±1℃/分(N=2)))
(2)次いで、リバーシングヒートフロー(Rev. Heat Flow)においてベースラインがシフトする温度(中点)をガラス転移温度(n2の平均値)とした。測定結果を第2表に示す。 [Measurement of glass transition temperature of photosensitive layer after exposure]
(1) Using 5 to 6 mg of sample X, temperature modulated differential scanning calorimetry was performed under the following conditions.
Apparatus: DSC2500 manufactured by TA Instruments Co., Ltd. (Tzero aluminum pan was used to enclose the sample)
Measurement conditions: nitrogen atmosphere, temperature range -70 to 200°C (5°C/min), temperature modulation condition ±1°C/min (N = 2)))
(2) Next, the temperature (midpoint) at which the baseline shifts in the reversing heat flow (Rev. Heat Flow) was defined as the glass transition temperature (average value of n2). Table 2 shows the measurement results.
(1)試料Xを23℃50%RHの実験室内で11~12mg秤量した(a[mg])。
(2)150℃に加熱した加熱追出装置の炉内に投入し、カールフィッシャー水分計を用いて水分量測定を15分間行った(装置:カールフィッシャー水分計は平沼産業社製「AQ-2100」、加熱追出装置は平沼産業社製「EV-2000」を使用した)。
(3)測定された水分量から、23℃50%RHにおける含水率x[質量%]を次式で求めた。
(水分量/a)×100=x[質量%]
(4)試料Xを23℃50%RHの実験室内で11~12mg秤量した(b[mg])。
(5)試料Xを40℃90%RHの恒温恒湿槽に24時間保管した。
(6)上記恒温高湿槽から出した直後、すぐに150℃に加熱した加熱追出装置の炉内に投入し、カールフィッシャー水分計を用いて水分量測定を15分間行った(装置:カールフィッシャー水分計は平沼産業社製「AQ-2100」、加熱追出装置は平沼産業社製「EV-2000」を使用した)。
(7)測定された水分量から、40℃90%RHにおける(見かけの)含水率y[質量%]を次式で求めた。
(水分量/b)×100=y[質量%]
(8)上記x、yの値を用いて、40℃90%RHにおける含水率を次式で求めた。
{水分量/(乾燥質量+水分量)}×100[質量%]=[(b×y/100)/{b×(100-x)/100+b×y/100}]×100[質量%]={y/(100-x+y)}×100[質量%]
(9)上述の(1)~(8)の測定を5回行いその算術平均を含水率とした。測定結果を第2表に示す。 [Measurement of moisture content of post-exposure photosensitive layer at 40° C. and 90% RH]
(1) 11 to 12 mg of sample X was weighed in a laboratory at 23° C. and 50% RH (a [mg]).
(2) It was put into the furnace of a heating and expelling device heated to 150 ° C., and the water content was measured for 15 minutes using a Karl Fischer moisture meter (device: Karl Fischer moisture meter manufactured by Hiranuma Sangyo "AQ-2100" ”, and “EV-2000” manufactured by Hiranuma Sangyo Co., Ltd. was used as a heating and expelling device).
(3) From the measured water content, the water content x [mass %] at 23°C and 50% RH was determined by the following formula.
(Moisture content/a) x 100 = x [% by mass]
(4) 11 to 12 mg of sample X was weighed in a laboratory at 23°C and 50% RH (b [mg]).
(5) Sample X was stored in a constant temperature and humidity chamber at 40° C. and 90% RH for 24 hours.
(6) Immediately after taking out from the constant temperature and high humidity chamber, it was immediately put into the furnace of a heating and expelling device heated to 150 ° C., and the water content was measured for 15 minutes using a Karl Fischer moisture meter (device: Karl) A Fischer moisture meter "AQ-2100" manufactured by Hiranuma Sangyo Co., Ltd., and a heating and expelling device "EV-2000" manufactured by Hiranuma Sangyo Co., Ltd. were used).
(7) From the measured water content, the (apparent) water content y [mass %] at 40°C and 90% RH was determined by the following formula.
(Moisture content/b) x 100 = y [% by mass]
(8) Using the above values of x and y, the moisture content at 40° C. and 90% RH was determined by the following equation.
{Moisture content / (dry mass + moisture content)} × 100 [mass%] = [(b × y / 100) / {b × (100-x) / 100 + b × y / 100}] × 100 [mass%] = {y / (100-x + y)} × 100 [mass%]
(9) The above measurements (1) to (8) were performed five times, and the arithmetic average was taken as the moisture content. Table 2 shows the measurement results.
厚み16μmのPETフィルム(東レ製、16KS40(16QS62))(仮支持体)の上に、スリット状ノズルを用いて、各実施例又は比較例の感光性組成物を、乾燥後の厚みが第2表に記載の膜厚となるように調整して塗布し、100℃で2分間乾燥させ、感光性層を形成した。
得られた感光性層上に、厚み16μmのPETフィルム(東レ製、16KS40(16QS62))(カバーフィルム)を圧着し、各実施例及び比較例の転写フィルムを作製した。 [Production of transfer film]
On a 16 μm thick PET film (manufactured by Toray Industries, 16KS40 (16QS62)) (temporary support), the photosensitive composition of each example or comparative example was applied using a slit-shaped nozzle, and the thickness after drying was the second. The film was adjusted to the thickness shown in the table, coated, and dried at 100° C. for 2 minutes to form a photosensitive layer.
A 16 μm-thick PET film (16KS40 (16QS62) manufactured by Toray Industries, Inc.) (cover film) was press-bonded onto the obtained photosensitive layer to prepare a transfer film of each example and comparative example.
<試験サンプルの作製>
(1)作製した転写フィルムのカバーフィルムを剥離し、感光性層を露出させた。
次いで、銅基材(銅箔が積層されたPETフィルム(ジオマテック社製))上に、銅箔と露出した感光性層とが接触するように転写フィルムをラミネートした。ラミネート条件は、ラミネート温度:100℃、線厚:3N/cm、搬送速度:1m/分とした。
(2)上記感光性層に対して、超高圧水銀ランプを有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株))を用いて仮支持体であるPETフィルム越しに波長365nmでの積算露光量が80mJ/cm2となるように露光した。
(3)露光後、25℃50%RHの環境下に30分間放置し、その後、仮支持体であるPETフィルムを剥がした。
(4)次いで、仮支持体であるPETフィルムの剥離により露出した感光性層に対して、高圧水銀ランプを有する紫外線照射コンベア装置(アイグラフィックス(株))を用いて波長365nmでの積算露光量が1000mJ/cm2となるように露光した。
(5)そして、上記露光後の感光性層を有する銅基材を試験サンプルとして使用し、後述の腐食試験を実施した。 [Evaluation: Corrosion test]
<Preparation of test sample>
(1) The cover film of the prepared transfer film was peeled off to expose the photosensitive layer.
Next, a transfer film was laminated on a copper substrate (copper foil-laminated PET film (manufactured by Geomatec)) such that the copper foil and the exposed photosensitive layer were in contact with each other. Lamination conditions were as follows: lamination temperature: 100° C., line thickness: 3 N/cm, conveying speed: 1 m/min.
(2) Accumulated exposure at a wavelength of 365 nm to the photosensitive layer through a PET film as a temporary support using a proximity type exposure machine (Hitachi High-Tech Electronic Engineering Co., Ltd.) having an ultra-high pressure mercury lamp. was 80 mJ/cm 2 .
(3) After exposure, the substrate was allowed to stand in an environment of 25° C. and 50% RH for 30 minutes, after which the PET film as a temporary support was peeled off.
(4) Then, the photosensitive layer exposed by peeling the PET film as a temporary support is subjected to integrated exposure at a wavelength of 365 nm using an ultraviolet irradiation conveyor device (Igraphics Co., Ltd.) having a high-pressure mercury lamp. Exposure was performed so that the dose was 1000 mJ/cm 2 .
(5) Then, the copper base material having the photosensitive layer after exposure was used as a test sample, and a corrosion test described later was carried out.
試験サンプルを83℃87%RHの環境下に置き、所定時間経過した際の銅の色の変化を目視で観察した。結果を第2表に示す。
(評価基準)
「A」:1000時間経過時点で銅が変色しない。
「B」:800h経過時点で銅が変色せず、1000h経過時点で銅が変色する。
「C」:800h経過時点で銅が変色する。 <Corrosion test>
The test sample was placed in an environment of 83° C. and 87% RH, and the color change of the copper was visually observed after a predetermined period of time. The results are shown in Table 2.
(Evaluation criteria)
"A": Copper does not discolor after 1000 hours.
"B": Copper does not discolor after 800 hours, and discolors after 1000 hours.
"C": Copper discolors after 800 hours.
また、例えば、実施例1及び実施例2の対比、並びに、実施例3及び実施例4の対比から、実施例の感光性組成物によれば、感光性組成物により形成される感光性層の膜厚に依存せず、湿熱環境下での腐食防止性に優れるパターンを形成できることが分かる。
また、実施例1~12の対比から、感光性組成物が要件A1及び要件A2を満たし、且つ、要件A1におけるガラス転移温度が100℃以上であり、且つ、要件A2におけるガラス転移温度が120℃以下である場合、湿熱環境下での腐食防止性に優れるパターンを形成できることが分かる。 From the results in Table 2, it is clear that the post-exposure photosensitive layers obtained from the photosensitive compositions of the examples are excellent in anticorrosion properties in a moist and heat environment. Therefore, according to the photosensitive compositions of the examples, it is clear that a pattern having excellent corrosion resistance in a moist and hot environment can be formed. In addition, it is clear that the transfer film provided with the photosensitive layer formed from the photosensitive composition of the Examples can also form a pattern excellent in corrosion resistance under a moist and hot environment.
Further, for example, from the comparison of Examples 1 and 2 and the comparison of Examples 3 and 4, according to the photosensitive compositions of Examples, the photosensitive layer formed by the photosensitive composition It can be seen that a pattern can be formed that is excellent in corrosion prevention in a moist and hot environment without depending on the film thickness.
Further, from the comparison of Examples 1 to 12, the photosensitive composition satisfies requirements A1 and A2, and the glass transition temperature in requirement A1 is 100 ° C. or higher, and the glass transition temperature in requirement A2 is 120 ° C. It can be seen that a pattern having excellent corrosion resistance in a moist and hot environment can be formed when the following conditions are satisfied.
上述の実施例1~12の感光性組成物を使用して、以下の手順によりパターン形成を行った。
(1)作製した転写フィルムのカバーフィルムを剥離し、感光性層を露出させた。
次いで、銅基材(銅箔が積層されたPETフィルム(ジオマテック社製))上に、銅箔と露出した感光性層とが接触するように転写フィルムをラミネートした。ラミネート条件は、ラミネート温度:100℃、線厚:3N/cm、搬送速度:1m/分とした。
(2)上記感光性層に対して、超高圧水銀ランプを有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株))を用いて、ラインアンドスペースパターン(ラインサイズ=150μm、ライン:スペース=1:1)を有する露光マスク面と仮支持体の面との間の距離を125μmに設定して、仮支持体であるPETフィルム越しに365nmでの積算露光量が80mJ/cm2となるようにパターン露光した。
(3)露光後、25℃50%RHの環境下に30分間放置し、その後、仮支持体であるPETフィルムを剥がした。
(4)露光後の感光性層に対して、現像液としての炭酸ナトリウム1質量%水溶液(液温:30℃)を用いて45秒間現像した。現像後、純水にて15秒リンスし、エアを吹きかけて水分を除去し、パターンを得た。
(5)次いで、高圧水銀ランプを有する紫外線照射コンベア装置(アイグラフィックス(株))を用いて365nmでの積算露光量が1000mJ/cm2となるようにパターンを全面露光した。 [Example 13]
Using the photosensitive compositions of Examples 1 to 12 described above, pattern formation was performed according to the following procedure.
(1) The cover film of the prepared transfer film was peeled off to expose the photosensitive layer.
Next, a transfer film was laminated on a copper substrate (copper foil-laminated PET film (manufactured by Geomatec)) such that the copper foil and the exposed photosensitive layer were in contact with each other. Lamination conditions were as follows: lamination temperature: 100° C., line thickness: 3 N/cm, conveying speed: 1 m/min.
(2) A line-and-space pattern (line size = 150 µm, line: space = 1) was applied to the photosensitive layer using a proximity type exposure machine (Hitachi High-Tech Electronic Engineering Co., Ltd.) having an ultra-high pressure mercury lamp. : The distance between the exposure mask surface having 1) and the surface of the temporary support is set to 125 μm, and the integrated exposure amount at 365 nm through the PET film as the temporary support is 80 mJ / cm 2 Pattern exposure.
(3) After exposure, the substrate was allowed to stand in an environment of 25° C. and 50% RH for 30 minutes, after which the PET film as a temporary support was peeled off.
(4) The exposed photosensitive layer was developed for 45 seconds using a 1% by mass sodium carbonate aqueous solution (liquid temperature: 30° C.) as a developer. After development, the film was rinsed with pure water for 15 seconds and air was blown to remove water, thereby obtaining a pattern.
(5) Next, the entire pattern was exposed using an ultraviolet irradiation conveyor device (I-Graphics Co., Ltd.) having a high-pressure mercury lamp so that the integrated exposure amount at 365 nm was 1000 mJ/cm 2 .
14:感光性層
16:カバーフィルム
100:転写フィルム 12: Temporary support 14: Photosensitive layer 16: Cover film 100: Transfer film
Claims (19)
- 以下に示す要件A1及び要件B1をいずれも満たす、感光性組成物。
要件A1:下記手順Xにより得られる露光後感光性層のガラス転移温度が、65℃以上である。
要件B1:下記手順Xにより得られる露光後感光性層の40℃90%RHでの含水率が、2.0質量%未満である。
手順X:ガラス基板と、前記感光性組成物から形成される感光性層と、樹脂フィルムとをこの順に有する積層体を得る。次いで、前記積層体のガラス基板側とは反対側から前記積層体中の前記感光性層に対して、超高圧水銀ランプを用いて波長365nmでの積算露光量が80mJ/cm2となるように露光する。露光後、前記積層体を25℃50%RHの環境下に30分間放置した後、前記樹脂フィルムを剥がす。次いで、前記樹脂フィルムを剥離した面側から前記感光性層に対して、高圧水銀ランプを用いて波長365nmでの積算露光量が1000mJ/cm2となるように前記感光性層を再度露光し、露光後感光性層を得る。 A photosensitive composition that satisfies both requirement A1 and requirement B1 shown below.
Requirement A1: The glass transition temperature of the post-exposure photosensitive layer obtained by the following procedure X is 65° C. or higher.
Requirement B1: The moisture content at 40° C. and 90% RH of the post-exposure photosensitive layer obtained by the following procedure X is less than 2.0% by mass.
Procedure X: A laminate having a glass substrate, a photosensitive layer formed from the photosensitive composition, and a resin film in this order is obtained. Next, from the side opposite to the glass substrate side of the laminate, an ultra-high pressure mercury lamp was used to expose the photosensitive layer in the laminate so that the integrated exposure amount at a wavelength of 365 nm was 80 mJ/cm 2 . expose. After exposure, the laminate is left in an environment of 25° C. and 50% RH for 30 minutes, and then the resin film is peeled off. Next, the photosensitive layer is exposed again from the side where the resin film is peeled off using a high-pressure mercury lamp so that the integrated exposure amount at a wavelength of 365 nm is 1000 mJ/cm 2 , After exposure a photosensitive layer is obtained. - 更に、以下の要件A2を満たす、請求項1に記載の感光性組成物。
要件A2:前記手順Xにより得られる露光後感光性層のガラス転移温度が、165℃以下である。 2. The photosensitive composition of claim 1, further satisfying requirement A2 below.
Requirement A2: The post-exposure photosensitive layer obtained by the procedure X has a glass transition temperature of 165° C. or lower. - 前記要件A2における前記ガラス転移温度が、120℃以下である、請求項2に記載の感光性組成物。 The photosensitive composition according to claim 2, wherein the glass transition temperature in the requirement A2 is 120°C or lower.
- 前記要件A1における前記ガラス転移温度が、85℃以上である、請求項1~3のいずれか1項に記載の感光性組成物。 The photosensitive composition according to any one of claims 1 to 3, wherein the glass transition temperature in the requirement A1 is 85°C or higher.
- 更に、以下の要件B2を満たす、請求項1~4のいずれか1項に記載の感光性組成物。
要件B2:前記手順Xにより得られる露光後感光性層の40℃90%RHでの含水率が、0質量%より大きい。 A photosensitive composition according to any one of claims 1 to 4, further satisfying requirement B2 below.
Requirement B2: The post-exposure photosensitive layer obtained by procedure X has a moisture content at 40° C. and 90% RH of greater than 0% by mass. - 前記要件B2における前記含水率が、0.5質量%以上である、請求項5に記載の感光性組成物。 The photosensitive composition according to claim 5, wherein the water content in the requirement B2 is 0.5% by mass or more.
- 前記要件A1における前記ガラス転移温度が、100℃以上である、請求項1~6のいずれか1項に記載の感光性組成物。 The photosensitive composition according to any one of claims 1 to 6, wherein the glass transition temperature in the requirement A1 is 100°C or higher.
- 前記感光性組成物は、酸基を有する化合物Aを含み、
活性光線又は放射線の照射によって前記感光性組成物中の前記酸基の含有量が減少する、請求項1~7のいずれか1項に記載の感光性組成物。 The photosensitive composition contains a compound A having an acid group,
8. The photosensitive composition according to any one of claims 1 to 7, wherein the content of said acid groups in said photosensitive composition is reduced by irradiation with actinic rays or radiation. - 前記感光性組成物が、下記要件(V01)及び下記要件(W01)のいずれかを満たす、請求項1~8のいずれか1項に記載の感光性組成物。
要件(V01)
前記感光性組成物が、酸基を有する化合物Aと、露光により前記化合物Aが含む前記酸基の量を減少させる構造を有する化合物βと、を含む。
要件(W01)
前記感光性組成物が、酸基を有する化合物Aを含み、且つ、前記化合物Aは、更に、露光により前記酸基の量を減少させる構造を含む。 The photosensitive composition according to any one of claims 1 to 8, wherein the photosensitive composition satisfies either the following requirements (V01) or the following requirements (W01).
Requirements (V01)
The photosensitive composition contains a compound A having an acid group, and a compound β having a structure that reduces the amount of the acid group contained in the compound A upon exposure to light.
Requirement (W01)
The photosensitive composition contains a compound A having an acid group, and the compound A further contains a structure that reduces the amount of the acid group upon exposure. - 前記要件(V01)において、前記化合物βが、光励起状態において、前記化合物Aが含む前記酸基から電子を受容できる構造を有する化合物Bであり、
前記要件(W01)において、前記構造が、光励起状態において前記酸基から電子を受容できる構造である、請求項9に記載の感光性組成物。 In the requirement (V01), the compound β is a compound B having a structure capable of accepting electrons from the acid group contained in the compound A in a photoexcited state,
10. The photosensitive composition according to claim 9, wherein in the requirement (W01), the structure is a structure capable of accepting electrons from the acid group in a photoexcited state. - 前記要件(V01)を満たし、且つ、前記化合物βが、光励起状態において、前記化合物Aが含む前記酸基から電子を受容できる構造を有する化合物Bであり、
前記感光性組成物中、前記化合物Bが含む前記電子を受容できる構造の合計数が、前記化合物Aが含む酸基の合計数に対して、1モル%以上である、請求項9又は10に記載の感光性組成物。 A compound B that satisfies the requirement (V01) and has a structure in which the compound β is capable of accepting electrons from the acid group contained in the compound A in a photoexcited state;
11. The method according to claim 9 or 10, wherein the total number of the structures capable of accepting electrons contained in the compound B in the photosensitive composition is 1 mol % or more with respect to the total number of acid groups contained in the compound A. A photosensitive composition as described. - 前記化合物Aが、酸基を有するポリマーを含む、請求項1~11のいずれか1項に記載の感光性組成物。 The photosensitive composition according to any one of claims 1 to 11, wherein the compound A contains a polymer having an acid group.
- 前記ポリマーが、重合性基を有する、請求項12に記載の感光性組成物。 The photosensitive composition according to claim 12, wherein the polymer has a polymerizable group.
- 前記感光性組成物が、更に、重合性化合物を含む、請求項1~13のいずれか1項に記載の感光性組成物。 The photosensitive composition according to any one of claims 1 to 13, wherein the photosensitive composition further contains a polymerizable compound.
- 前記感光性組成物が、更に、光重合開始剤を含む、請求項1~14のいずれか1項に記載の感光性組成物。 The photosensitive composition according to any one of claims 1 to 14, further comprising a photopolymerization initiator.
- 仮支持体と、請求項1~15のいずれか1項に記載の感光性組成物から形成された感光性層と、を有する転写フィルム。 A transfer film having a temporary support and a photosensitive layer formed from the photosensitive composition according to any one of claims 1 to 15.
- 請求項16に記載の転写フィルム中の前記感光性層の前記仮支持体側とは反対側の表面を基材に接触させて、前記転写フィルムと前記基材とを貼り合わせる工程と、
前記感光性層をパターン状に露光する工程と、
露光された前記感光性層をアルカリ現像液を用いて現像して、パターンを形成する工程と、をこの順に含む、パターン形成方法。 A step of bonding the transfer film and the substrate together by bringing the surface of the photosensitive layer in the transfer film according to claim 16 on the side opposite to the temporary support side into contact with the substrate;
patternwise exposing the photosensitive layer;
A pattern forming method comprising, in this order, the step of developing the exposed photosensitive layer with an alkaline developer to form a pattern. - 請求項16に記載の転写フィルム中の前記感光性層の前記仮支持体側とは反対側の表面を、導電層を有する基板中の前記導電層に接触させて、前記転写フィルムと前記導電層を有する基板とを貼り合わせる工程と、
前記感光性層をパターン状に露光する工程と、
露光された前記感光性層をアルカリ現像液を用いて現像して、パターン化されたエッチングレジスト膜を形成する工程と、
前記エッチングレジスト膜が配置されていない領域における前記導電層をエッチング処理する工程と、をこの順に含む、回路配線の製造方法。 The surface of the photosensitive layer in the transfer film according to claim 16 opposite to the temporary support side is brought into contact with the conductive layer in the substrate having a conductive layer to separate the transfer film and the conductive layer. A step of bonding a substrate having
patternwise exposing the photosensitive layer;
developing the exposed photosensitive layer with an alkaline developer to form a patterned etching resist film;
and a step of etching the conductive layer in a region where the etching resist film is not disposed, in this order. - 請求項16に記載の転写フィルム中の前記感光性層の前記仮支持体側とは反対側の表面を、導電層を有する基板中の前記導電層に接触させて、前記転写フィルムと前記導電層を有する基板とを貼り合わせる工程と、
前記感光性層をパターン状に露光する工程と、
露光された前記感光性層をアルカリ現像液を用いて現像して、前記導電層のパターン化された保護膜又は絶縁膜を形成する工程と、をこの順に含む、タッチパネルの製造方法。 The surface of the photosensitive layer in the transfer film according to claim 16 opposite to the temporary support side is brought into contact with the conductive layer in the substrate having a conductive layer to separate the transfer film and the conductive layer. A step of bonding a substrate having
patternwise exposing the photosensitive layer;
and developing the exposed photosensitive layer with an alkaline developer to form a patterned protective film or insulating film of the conductive layer, in this order.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023502327A JPWO2022181431A1 (en) | 2021-02-26 | 2022-02-17 | |
CN202280014728.2A CN116888535A (en) | 2021-02-26 | 2022-02-17 | Photosensitive composition, transfer film, pattern forming method, circuit wiring manufacturing method, and touch panel manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-030620 | 2021-02-26 | ||
JP2021030620 | 2021-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022181431A1 true WO2022181431A1 (en) | 2022-09-01 |
Family
ID=83049330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/006314 WO2022181431A1 (en) | 2021-02-26 | 2022-02-17 | Photosensitive composition, transfer film, pattern formation method, production method for circuit wiring, and production method for touch panel |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2022181431A1 (en) |
CN (1) | CN116888535A (en) |
WO (1) | WO2022181431A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010282067A (en) * | 2009-06-05 | 2010-12-16 | Hitachi Chem Co Ltd | Photosensitive resin composition and photosensitive element using the same |
JP2011164304A (en) * | 2010-02-08 | 2011-08-25 | Taiyo Holdings Co Ltd | Photocurable resin composition, dry film and cured product of the same, and printed wiring board using the same |
JP2013061556A (en) * | 2011-09-14 | 2013-04-04 | Asahi Kasei E-Materials Corp | Photosensitive resin composition |
WO2015002071A1 (en) * | 2013-07-04 | 2015-01-08 | 味の素株式会社 | Photosensitive resin composition |
-
2022
- 2022-02-17 JP JP2023502327A patent/JPWO2022181431A1/ja active Pending
- 2022-02-17 CN CN202280014728.2A patent/CN116888535A/en active Pending
- 2022-02-17 WO PCT/JP2022/006314 patent/WO2022181431A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010282067A (en) * | 2009-06-05 | 2010-12-16 | Hitachi Chem Co Ltd | Photosensitive resin composition and photosensitive element using the same |
JP2011164304A (en) * | 2010-02-08 | 2011-08-25 | Taiyo Holdings Co Ltd | Photocurable resin composition, dry film and cured product of the same, and printed wiring board using the same |
JP2013061556A (en) * | 2011-09-14 | 2013-04-04 | Asahi Kasei E-Materials Corp | Photosensitive resin composition |
WO2015002071A1 (en) * | 2013-07-04 | 2015-01-08 | 味の素株式会社 | Photosensitive resin composition |
Also Published As
Publication number | Publication date |
---|---|
CN116888535A (en) | 2023-10-13 |
JPWO2022181431A1 (en) | 2022-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW202024150A (en) | Method for producing substrate with pattern, method for producing circuit substrate and method for producing touch panel | |
JP2024109820A (en) | Transfer film, photosensitive material, pattern forming method, circuit board manufacturing method, touch panel manufacturing method | |
JP7407272B2 (en) | Photosensitive materials, transfer films, circuit wiring manufacturing methods, touch panel manufacturing methods, pattern forming methods | |
WO2022181431A1 (en) | Photosensitive composition, transfer film, pattern formation method, production method for circuit wiring, and production method for touch panel | |
JP2023031733A (en) | Photosensitive composition, patterning method, method for producing circuit wiring, method for producing touch panel, and transfer film | |
WO2022196537A1 (en) | Laminate and method for manufacturing same | |
WO2022181415A1 (en) | Transfer film, pattern formation method, method for manufacturing circuit wiring, and method for manufacturing touch panel | |
JP7514305B2 (en) | Method for manufacturing transfer film and laminate | |
JP7607654B2 (en) | Transfer film, method for producing laminate, and blocked isocyanate compound | |
WO2023032707A1 (en) | Protective film, and laminate | |
WO2022196615A1 (en) | Transfer film and photosensitive composition | |
JP7213981B2 (en) | Transfer film, method for producing laminate, and method for producing touch panel | |
KR102789994B1 (en) | Transfer film, photosensitive composition | |
WO2023032656A1 (en) | Photosensitive composition, transfer film, method for forming patterns, method for manufacturing circuit wiring, and method for manufacturing touch panel | |
WO2023033065A1 (en) | Transfer film, method for producing transfer film, pattern forming method, method for producing circuit wiring line, and method for producing touch panel | |
WO2022044879A1 (en) | Transfer film, laminate manufacturing method, and circuit wiring manufacturing method | |
WO2022209307A1 (en) | Multilayer body and method for producing multilayer body | |
JP7360476B2 (en) | Transfer film and laminate manufacturing method | |
WO2023090253A1 (en) | Laminate, method for producing same, and electronic device | |
WO2022138576A1 (en) | Photosensitive transfer material, method for producing resin pattern, method for producing circuit wiring line, method for producing electronic device, and method for producing multilayer body | |
WO2021246251A1 (en) | Transfer film and method for producing multilayer body | |
CN117751328A (en) | Protective film and laminate | |
JP2024075592A (en) | Transfer film, method for producing laminate, touch sensor, and method for producing printed circuit board | |
JP2023076241A (en) | Photosensitive composition, laminate, patterning method, and patterned laminate | |
TW202307026A (en) | Transfer film, method for manufacturing laminate having a conductive pattern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22759470 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280014728.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023502327 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22759470 Country of ref document: EP Kind code of ref document: A1 |