WO2022181341A1 - 成膜方法および大気圧プラズマ成膜装置 - Google Patents
成膜方法および大気圧プラズマ成膜装置 Download PDFInfo
- Publication number
- WO2022181341A1 WO2022181341A1 PCT/JP2022/005145 JP2022005145W WO2022181341A1 WO 2022181341 A1 WO2022181341 A1 WO 2022181341A1 JP 2022005145 W JP2022005145 W JP 2022005145W WO 2022181341 A1 WO2022181341 A1 WO 2022181341A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- flow rate
- flow path
- substrate
- film
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/42—Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder or liquid
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4412—Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45502—Flow conditions in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45514—Mixing in close vicinity to the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45576—Coaxial inlets for each gas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45595—Atmospheric CVD gas inlets with no enclosed reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
- C23C16/5093—Coaxial electrodes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
- C23C16/545—Apparatus specially adapted for continuous coating for coating elongated substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
- H01J37/32449—Gas control, e.g. control of the gas flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32816—Pressure
- H01J37/32825—Working under atmospheric pressure or higher
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
- H05H1/4645—Radiofrequency discharges
- H05H1/466—Radiofrequency discharges using capacitive coupling means, e.g. electrodes
Definitions
- the present invention relates to a film forming method using atmospheric pressure plasma, and an atmospheric pressure plasma film forming apparatus for carrying out this film forming method.
- Atmospheric pressure plasma film formation in which plasma is generated under atmospheric pressure (near atmospheric pressure) to activate a source gas, thereby forming a film on a substrate with active species of the source gas. Since this atmospheric pressure plasma film formation is performed under atmospheric pressure, it does not require an expensive vacuum container such as a vacuum chamber, and has the advantage of reducing the cost of the apparatus. There is also the advantage that it is possible to process even substrates that are difficult to process under vacuum.
- a plasma generating gas such as an inert gas is introduced between electrodes to generate plasma, and the plasma activates a raw material gas containing a film forming material.
- the active species of the film-forming material obtained in this way are caused to adhere to the substrate to form a film.
- the raw material gas and the plasma generation gas are separately introduced, and the plasma generated between the electrode pair is applied to the electrodes.
- a method of forming a film by contacting and mixing with a source gas outside between pairs is generally used.
- this atmospheric pressure plasma system is also referred to as a "remote diffusion mixing system".
- the gas for plasma generation is usually introduced between the electrode pairs as the inner channel, and from the outer channel provided so as to sandwich the inner channel on the outside between the electrode pairs.
- the plasma and the raw material gas are mixed in the mixing portion between the electrode pair and the substrate.
- Patent Document 1 discloses an electrode pair, a voltage application means for applying a voltage between the electrodes, an inert gas supply means for supplying an inert gas between the electrodes, and a raw material gas supply means, and a substrate (the object to be deposited) is arranged downstream of the electrode pair in the flow direction of the inert gas, the substrate is arranged on the conductor, and the raw material gas is supplied to the outside of the electrode pair between the electrode pair and the substrate. Furthermore, an atmospheric pressure plasma deposition apparatus and method are described in which the electrode pairs are arranged perpendicular to the planar direction of the substrate, and an inert gas is supplied between the electrode pairs in parallel with the electrode pairs.
- the plasma and the raw material are mixed in the mixing section between the electrode pair and the substrate. It is preferable to contact the gas for a long enough time for the activation reaction of the raw material gas. That is, in atmospheric pressure plasma film formation of the remote diffusion mixing method, in order to improve the film formation speed, it is desirable to lengthen the residence time of the raw material gas in the mixing section and lengthen the mixing reaction time of the plasma and the raw material gas. preferable.
- Non-Patent Document 1 in the atmospheric pressure plasma film formation, when the decomposed raw material gas (active species) stays for a long time in the gas phase mixing section, the active species of the raw material gas aggregate. and form fine particles. When such fine particles adhere to the substrate, the flatness of the formed film is impaired, and the quality of the product deteriorates. Depending on the product to be manufactured, it is necessary to maintain the flatness of the film, for example, on the order of several nanometers in terms of arithmetic mean roughness Ra. Therefore, in this application, it is difficult to improve the deposition rate while maintaining flatness.
- An object of the present invention is to solve the problems of the prior art, and it is possible to form a high-quality film with high flatness at a high film-forming rate by means of atmospheric pressure plasma of the remote diffusion mixing method.
- An object of the present invention is to provide a film method and an atmospheric pressure plasma film forming apparatus.
- the present invention has the following configurations.
- a plasma-generating gas is introduced from an inner flow path passing between the electrode pair, and a first outer flow path and a second outer flow path are positioned outside between the electrode pair.
- a source gas is introduced from at least one of the flow paths and the film is formed on the substrate by atmospheric pressure plasma
- the gas flow rate between the outlet of the first outer flow path and the substrate is defined as the first gas flow rate
- the gas flow rate between the outlet of the second outer flow path and the substrate is defined as the second gas flow rate
- the first gas flow rate is and the flow rate of the second gas are made unequal to form a film on a substrate.
- the first gas flow rate and the second gas flow rate can be adjusted by making the shape of the surface of the electrode facing the substrate, which forms the electrode pair, different between the first outer flow channel side and the second outer flow channel side.
- an electrode pair ; a substrate holding means for holding the substrate; an inner channel that passes between the electrode pair and introduces gas between the electrode pair and the substrate holding means; a first outer flow channel and a second outer flow channel that introduce gas between the electrode pair and the substrate holding means through the outside between the electrode pair;
- the gas flow rate between the outlet of the first outer flow path and the substrate holding means is the first gas flow rate
- the gas flow rate between the outlet of the second outer flow path and the substrate holding means is the second gas flow rate
- flow control means for making the first gas flow rate and the second gas flow rate unequal.
- a high-flatness, high-quality film can be deposited at a high deposition rate by remote diffusion mixing method atmospheric pressure plasma.
- FIG. 1 is a diagram conceptually showing an example of the atmospheric pressure plasma film forming apparatus of the present invention, which implements an example of the film forming method of the present invention.
- FIG. 2 is a conceptual diagram for explaining the present invention.
- FIG. 3 is a conceptual diagram for explaining the conventional atmospheric pressure plasma film formation of the present invention.
- FIG. 4 is a graph for explaining the present invention.
- FIG. 5 is a graph showing measurement results of gas flow velocity in the example of the present invention.
- FIG. 6 is a graph showing results of examples of the present invention.
- FIG. 7 is an enlarged view of a part of FIG.
- FIG. 8 is a conceptual diagram for explaining remote diffusion mixing type atmospheric pressure plasma film formation.
- FIG. 1 conceptually shows an example of the atmospheric pressure plasma film forming apparatus of the present invention for carrying out an example of the film forming method of the present invention.
- the atmospheric pressure plasma film forming apparatus 10 shown in FIG. 1 is an apparatus for forming a film on the substrate Z by the atmospheric pressure plasma of the above remote diffusion mixing method (atmospheric pressure plasma CVD (Chemical Vapor Deposition)). Therefore, the atmospheric pressure plasma deposition apparatus 10 introduces the raw material gas and the plasma generation gas separately under atmospheric pressure (near atmospheric pressure), and the plasma generated between the electrode pair is generated between the electrode pair and the substrate Z A film is formed on the substrate Z by contacting and mixing with the raw material gas between. Specifically, as conceptually shown in FIG.
- a plasma generation gas PG is introduced between electrode pairs 100.
- a plasma is generated and introduced between the electrode pair 100 and the substrate Z.
- the raw material gas MG is introduced between the electrode pair and the substrate Z from an outer channel 102 provided outside between the electrode pair 100 .
- the plasma generated between the electrode pair is brought into contact with and mixed with the raw material gas between the electrode pair and the substrate Z to form a film on the substrate Z.
- the atmospheric pressure plasma film forming apparatus is also simply referred to as a film forming apparatus.
- the substrate Z on which a film is to be formed is not limited, and various known substrates on which film can be formed by remote diffusion mixing method atmospheric pressure plasma can be used.
- a resin film polymer film , plastic film
- a silicon substrate a resin film (polymer film , plastic film), and a silicon substrate.
- the film to be deposited on the substrate Z is not limited, and various known materials that can be deposited by remote diffusion mixing method atmospheric pressure plasma deposition can be used.
- gas barrier films such as silicon oxide, silicon oxynitride, silicon nitride and aluminum oxide, light reflection films and antireflection films such as silicon oxide, titanium oxide, zinc oxide, tin oxide and fluorine compounds, indium tin oxide, oxide
- transparent conductive films such as tin, indium oxide, zinc oxide, indium-cadmium oxide, cadmium-tin oxide, cadmium oxide and gallium oxide, and DLC (Diamond Like Carbon) films.
- the source gas is a gas containing a component that forms a film to be formed
- the plasma-generating gas is a gas for generating plasma.
- hydrocarbon gases such as methane gas and acetylene gas
- argon gas is exemplified as plasma generation gas.
- TEOS tetraethoxysilane
- nitrogen gas is exemplified as a plasma generation gas.
- a film forming apparatus 10 shown in FIG. 1 has a cylindrical electrode 12 , a film forming unit 14 , and an AC power supply 16 .
- the cylindrical electrode 12 and the film forming unit 14 are cross-sectional views, but hatching is omitted in order to simplify the drawing and clearly show the structure of the film forming apparatus 10.
- the position of each member is expressed as top and bottom and lateral (right and left) according to FIG. 1 for convenience.
- the vertical direction (vertical direction) and the horizontal direction (horizontal direction) do not necessarily match the actual usage of the film forming apparatus 10 .
- the cylindrical electrode 12 is a cylindrical electrode whose height direction (axial direction) is the direction perpendicular to the paper surface of FIG.
- the cylindrical electrode 12 is not limited, and various known cylindrical electrodes used for atmospheric pressure plasma film formation by so-called dielectric barrier discharge can be used.
- An example of the cylindrical electrode 12 is an electrode in which the surface of a cylinder made of a conductive material such as metal is covered with a dielectric such as quartz glass.
- the film forming unit 14 is a metal block-shaped member.
- the film forming unit 14 is provided with a flow path forming section 20 at the lower center in the horizontal direction.
- the flow path forming portion 20 is a cylindrical space having an inner diameter larger than the outer diameter of the cylindrical electrode 12 and whose height direction is the direction perpendicular to the plane of the paper.
- the lower end of the flow path forming section 20 opens from the lower end of the film forming unit 14 . That is, the film forming unit 14 has a slit-like discharge port 20a having a longitudinal direction perpendicular to the plane of the paper at the lower end of the center in the horizontal direction.
- a plasma generation gas supply path 24 is provided to penetrate from the upper end of the flow path forming section 20 to the upper surface of the film forming unit 14 .
- a plasma generating gas supply source (not shown) is connected to the plasma generating gas supply path 24 .
- the space between the cylindrical electrode 12 and the film forming unit 14 serves as an internal flow path for introducing the plasma generating gas.
- the space between the cylindrical electrode 12 and the inner wall surface of the flow path forming portion 20 serves as an internal flow path. Therefore, the plasma-generating gas is converted from the plasma-generating gas supply path 24 into plasma by dielectric barrier discharge while passing through the inner flow path between the cylindrical electrode 12 and the film-forming unit 14 . is introduced between the electrode pair and the substrate from the outlet 20a on the lower surface of the . That is, the outlet 20a is an outlet for the gas from the internal flow path.
- the film forming unit 14 is provided with a first source gas supply path 26 and a second source gas supply path 28 so as to sandwich the flow path forming portion 20 in the lateral direction. Both the first source gas supply path 26 and the second source gas supply path 28 are cylindrical spaces having a height direction perpendicular to the plane of the paper. A source gas supply source (not shown) is connected to both the first source gas supply path 26 and the second source gas supply path 28 .
- the film forming unit 14 is further provided with a first outer channel 30 and a second outer channel 32 .
- the first outer channel 30 communicates from the first source gas supply channel 26 to an outlet 30 a on the bottom surface of the film forming unit 14 .
- the outlet 30a is located to the left of the outlet 20a of the inner channel.
- the discharge port 30a is a slit-shaped opening having a longitudinal direction perpendicular to the plane of the paper.
- the second outer channel 32 communicates from the second source gas supply channel 28 to an outlet 32 a on the lower surface of the film forming unit 14 .
- the outlet 32a is located to the right of the outlet 20a of the inner channel.
- the discharge port 32a is a slit-shaped opening having a longitudinal direction perpendicular to the plane of the paper.
- the slit lengths of the discharge port 20a of the inner flow channel and the discharge port 30a of the first outer flow channel 30 and the discharge port 32a of the second outer flow channel 32 are all assumed to be used for film formation. It may be appropriately set according to the length of the substrate Z in the direction perpendicular to the plane of the drawing.
- first and second given to each member, and the first and second in the first gas flow rate and the second gas flow rate described later are given for convenience in order to distinguish each. It has no technical meaning. Therefore, the terms “first” and “second” are irrelevant to their respective positional relationships, actions, gas flow rates, upstream and downstream of gas flow, and the like.
- the outer channel (discharge port) for introducing the raw material gas is usually arranged so as to sandwich the inner channel (discharge port) in the substrate transport direction. be provided. Therefore, in the film forming apparatus 10, as a preferred mode, the discharge port 30a of the first outer flow channel 30 and the discharge port 32a of the second outer flow channel 32 are aligned with the discharge port 20a of the inner flow channel in the transport direction of the substrate Z. It is provided so as to sandwich.
- the outlet 20a of the inner channel, the outlet 30a of the first outer channel 30, and the outlet 32a of the second outer channel 32 preferably have their longitudinal direction perpendicular to the transport direction of the substrate Z. It has a slit shape.
- the relative movement between the electrode pair and the substrate Z may be performed by fixing the electrode pair and transporting the substrate Z as described above, or by fixing the substrate Z and moving the electrode pair. It may be carried out by transporting, or by moving both the electrode pair and the substrate Z.
- FIG. Although illustration is omitted, the film forming apparatus 10 in the illustrated example has means for transporting the substrate Z.
- the conveying means for the substrate Z is the substrate holding means in the film forming apparatus of the present invention.
- the transporting means for the substrate Z is a known substrate transporting means used in remote diffusion mixing type atmospheric pressure plasma film formation. In the present invention, film formation may be performed on the substrate Z in a state in which both the electrode pair and the substrate Z are stopped without relatively moving.
- the film forming method and film forming apparatus of the present invention are not limited to the configuration using a cylindrical electrode like the film forming apparatus 10 shown in FIG. That is, according to the present invention, if the first gas flow rate and the second gas flow rate are made unequal, as will be described later, various known remote diffusion mixing method atmospheric pressure plasma film formation can be used. As an example, as shown in the above-mentioned Patent Document 1, it has an inner flow path between two plate electrodes arranged in parallel, and has first and second outer flow paths located below the plate electrodes. Atmospheric pressure plasma deposition using a configuration, atmospheric pressure plasma deposition using a configuration as shown in FIG. 8, and the like are exemplified. Here, the flat plate electrode has corners.
- an AC power supply 16 is connected to the cylindrical electrode 12 .
- the cylindrical electrode 12 and the film forming unit 14 forming the electrode pair are grounded. Therefore, by applying an AC voltage to the cylindrical electrode 12, a dielectric barrier discharge is generated between the cylindrical electrode 12 and the film forming unit 14 (the inner wall surface of the flow path forming portion 20). This excites the plasma-generating gas flowing between the cylindrical electrode 12, which is the internal flow path, and the film forming unit 14, thereby generating plasma.
- the AC power supply 16 is a known high-frequency AC power supply used for remote diffusion mixing type atmospheric pressure plasma deposition.
- the frequency (plasma excitation voltage frequency) and output (plasma excitation power) of the AC power supply 16 are not limited, and the film to be formed, the raw material gas and the plasma generation gas, and the target It may be appropriately set according to the film forming speed and the like.
- a pulse power supply may be used instead of the AC power supply.
- the cylindrical electrode 12 and the film forming unit 14 form an electrode pair.
- the raw material gas is supplied to the first outer flow channel 30 and the second outer flow channel 32, and introduced between the electrode and the substrate Z through the outlet 30a and the outlet 32a.
- the plasma and the raw material gas are diffused and mixed between the electrode pair and the substrate Z, the raw material gas is activated, and film formation is performed on the substrate Z by the active species of the generated raw material gas.
- the region between the electrode pair and the substrate Z where the plasma and source gas are diffused and mixed is also simply referred to as the "mixing section".
- the gas flow rate between the discharge port 30a of the first outer flow path 30 and the substrate Z is the first gas flow rate
- the flow rate of the second outer flow path 32 is
- the film is formed on the substrate Z by making the first gas flow rate and the second gas flow rate unequal.
- the gas flow rate referred to here refers to the direction from the first outer flow channel 30 to the second outer flow channel 32 through an arbitrary cross section between the electrode pair and the substrate Z, or It is the gas flow rate flowing in the surface direction of the substrate Z toward the first outer flow path 30 .
- An example of the arbitrary cross section is the channel cross section below the exhaust port 32a perpendicular to the substrate Z and the plane of the paper.
- the gas introduction amount (flow rate) from the first outer flow path 30 to the mixing section and the gas introduction amount from the second outer flow path 32 to the mixing section are different.
- film formation is performed on the substrate Z by making the first gas flow rate and the second gas flow rate unequal.
- the raw material in order to improve the decomposability of the raw material gas and improve the film formation rate, the raw material It is preferable to lengthen the residence time of the gas to lengthen the mixing reaction time of the plasma and the raw material gas.
- the amount of gas introduced into the first outer flow path 30 and the amount of gas introduced into the second outer flow path 32 are made equal.
- the gas flow in the mixing portion between the electrode pair and the substrate Z can be suppressed.
- the residence time of the raw material gas in the mixing section can be lengthened, and the mixed reaction time of the plasma and the raw material gas can be lengthened.
- FIG. 4 shows the degree of reaction progress, the concentration of the decomposed raw material gas, that is, the active species (solid line), and the agglomerated particle diameter of the agglomerated active species ( dashed line).
- the concentration of the decomposed raw material gas that is, the active species increases.
- the concentration of the active species reaches a certain level, aggregation of the active species starts, and the diameter of the aggregated particles increases as the reaction progresses.
- the degree of reaction progress exceeds a certain point, the aggregated particle size due to aggregation of the active species exceeds the allowable particle size.
- the degree of reaction progress is conceptually the degree of progress of the reaction occurring between the raw material gas and the plasma, which is influenced by the residence time, temperature, activation energy, diffusion coefficient, etc. of the raw material gas in the mixing section. is a variable that represents
- the film formation rate is affected by the concentration of active species. Therefore, by increasing the degree of progress of the reaction to some extent, the concentration of the active species can be ensured and the deposition rate can be increased. On the other hand, as shown in FIG. 4, by suppressing the degree of progress of the reaction below a certain level, it is possible to suppress the aggregated particle size to the allowable particle size or less.
- the degree of progress of the reaction is affected by residence time, temperature, activation energy, diffusion coefficient, and the like of the raw material gas in the mixing section. Therefore, by controlling the residence time of the raw material gas in the mixing section, it is possible to control the progress of the reaction. Furthermore, by controlling the progress of the reaction, the concentration of the active species in the mixing section can be maintained near the maximum value to ensure a sufficient film formation rate, and the aggregate particle size can be suppressed to the allowable particle size or less.
- the present invention was made possible by obtaining such knowledge, and the first gas flow rate, which is the gas flow rate between the discharge port 30a of the first outer flow path 30 and the substrate Z, and the second outer flow rate
- the second gas flow rate which is the gas flow rate between the outlet 32a of the channel 32 and the substrate Z, is made unequal.
- the present invention controls the residence time of the raw material gas in the mixing section, that is, the degree of reaction progress, and achieves both securing of the reaction rate and suppression of agglomeration of active species, as shown in the compatible region shown in FIG. As a result, a high-quality film with high flatness can be deposited at a high deposition rate.
- the present invention controls the flow of the raw material gas in the mixing section in a low speed range by making the first gas flow rate and the second gas flow rate unequal. That is, in the present invention, by making the first gas flow rate and the second gas flow rate unequal, the flow rate of the raw material gas in the mixing section is brought to a state close to zero, and then the raw material gas is allowed to flow slightly. do.
- the residence time of the raw material gas in the mixing section that is, the mixing time of the raw material gas and the plasma is sufficiently ensured to improve the film formation rate, and the residence time of the raw material gas in the mixing section is required. It is possible to prevent the film from being excessively long, suppress the aggregation of active species, and form a flat film.
- the amount of gas introduced into the mixing section through the second outer flow path 32 is made larger than the amount of gas introduced into the mixing section through the first outer flow path 30 .
- a low-speed gas flow in the surface direction of the substrate Z from the outlet 32a of the second outer flow path 32 toward the outlet 30a of the first outer flow path 30 is caused.
- the first gas flow rate is made larger than the second gas flow rate.
- this controls the residence time of the raw material gas in the mixing section, thereby improving the film forming speed and suppressing the aggregation of the active species.
- the electrode pair and the substrate Z are generally moved relative to each other to form the film.
- the first gas it is sufficient if the flow rate and the second gas flow rate are unequal. That is, in the present invention, the first gas flow rate and the second gas flow rate are measured while the relative movement between the electrode pair and the substrate Z is stopped, and the first gas flow rate and the second gas flow rate are equalized. or unequal.
- the present invention is suitable for the case where the relative movement speed between the electrode pair and the substrate Z is low.
- the relative moving speed between the electrode pair and the substrate Z is preferably 1.0 m/min or less, more preferably 0.2 m/min or less.
- the present invention includes forming a film without moving the electrode pair and the substrate Z relative to each other. Therefore, the relative moving speed between the electrode pair and the substrate Z has no lower limit.
- the flow rate ratio A/B between flow rate A and flow rate B is limited. It is sufficient if it is greater than 1. That is, in the present invention, the optimum flow rate ratio A/B depends on the types of process gas and raw material gas, the concentration of each gas supplied to each flow path, the target film formation rate, the shape and configuration of the electrode, and the cylindrical It varies depending on the power and frequency of the AC voltage applied to the electrodes 12 . Therefore, the flow rate ratio A/B between the first gas flow rate and the second gas flow rate may be appropriately set according to these.
- the flow ratio A/B is preferably 1.0001-10000, more preferably 1.01-10. By setting the flow rate ratio A/B within this range, it is possible to suitably control the residence time of the raw material gas in the mixing section and form a film with higher flatness at a high film formation rate.
- the first gas flow rate and the second gas flow rate may not be measured between the outlet 32a of the second outer flow path 32 and the substrate Z in some cases.
- the first gas The flow rate and the second gas flow rate may be measured.
- the first outer channel 30 (discharge port 30a) and the second outer channel 32 (discharge port 32a) are provided so as to sandwich the outlet 20a) in the conveying direction.
- the first gas flow rate and the second gas flow rate may be measured at a position where the gas flow rate can be measured.
- the present invention sets the gas flow rate between the outlet 30a of the first outer channel 30 and the substrate Z to is the second gas flow rate, and the first gas flow rate and the second gas flow rate are made unequal. Therefore, the flow direction of the gas between the substrate Z and the electrode is substantially the direction from the outlet 30a to the outlet 32a, or the opposite direction. Therefore, if the gas flow rate is measured on the extension line in the direction in which the discharge port 30a and the discharge port 32a are spaced apart, it can be determined whether the first gas flow rate and the second gas flow rate are equal or unequal.
- the flow rate ratio of the gas flow rates measured on the extension line in the direction in which the discharge port 30a and the discharge port 32a are separated from each other is approximately equal to the flow rate ratio A/B between the first gas flow rate and the second gas flow rate.
- the gas flow rate is measured at the end of the film forming unit 14 in the horizontal direction, which is the extension of the direction in which the discharge port 30a and the discharge port 32a are spaced apart, good.
- the introduction of source gas from both the first outer flow path 30 and the second outer flow path 32 is not necessarily restricted. That is, the raw material gas may be introduced into only one of the first outer flow path 30 and the second outer flow path 32, and only the inert gas similar to the plasma generation gas may be introduced into the other. In this case, from the viewpoint of controllability of the gas flow of the raw material gas, etc., it is preferable to introduce the raw material gas from the outer passage where the amount of gas introduced is larger. However, it is preferable to introduce the raw material gas from both the first outer flow path 30 and the second outer flow path 32 in order to increase the deposition rate.
- the amount of gas introduced from the first outer flow path 30 to the mixing section and The flow rate of the first gas and the flow rate of the second gas are made unequal by making the amount of gas introduced into the mixing section different.
- the method of making the first gas flow rate and the second gas flow rate unequal that is, the flow rate control means in the film forming apparatus of the present invention is not limited to this, and various methods can be used. be.
- the amounts of gas introduced from the first outer flow path 30 and the second outer flow path 32 are equal, and the outlet 30a of the first outer flow path 30 and the outlet 32a of the second outer flow path 32 are A method of making the first gas flow rate and the second gas flow rate unequal is exemplified by using different areas.
- the illustrated example illustrates a method of making the first gas flow rate and the second gas flow rate unequal by making the widths of the slits different.
- the amount of gas introduced is uniform, and the width of the slit of the discharge port 32a is made smaller than that of the discharge port 30a.
- the flow velocity of the gas introduced from the discharge port 32a becomes faster than the flow velocity of the gas introduced from the discharge port 30a.
- a gas flow is formed in the surface direction of the substrate Z from the outlet 32a of the second outer flow path 32 toward the outlet 30a of the first outer flow path 30, and the second gas flow rate is , the first gas flow rate can be increased.
- an air supply that supplies gas to the opposite side of the first outer channel 30 (outlet 30a) or second outer channel 32 (outlet 32a) to the inner channel (outlet 20a)
- a method of making the flow rate of the first gas and the flow rate of the second gas unequal by providing means and supplying, for example, a film-like gas (curtain gas) from this air supply means is exemplified.
- a gas film forming means is provided on the opposite side of the second outer flow path 32 to the inner flow path to supply the curtain gas toward the substrate Z.
- This curtain gas blocks the flow of gas from the second outer flow path 32 toward the right side.
- a gas flow is formed in the surface direction of the substrate Z from the outlet 32a of the second outer flow path 32 toward the outlet 30a of the first outer flow path 30, and the second gas flow rate is , the first gas flow rate can be increased.
- an exhaust means is provided on the opposite side of the inner channel (discharge port 20a) of the first outer channel 30 (discharge port 30a) or the second outer channel 32 (discharge port 32a), and this A method of making the first gas flow rate and the second gas flow rate unequal is exemplified by exhausting the gas from the exhaust means.
- an exhaust means is provided on the side opposite to the inner channel of the first outer channel 30, and the gas is exhausted from here.
- a gas flow is formed in the surface direction of the substrate Z from the outlet 32a of the second outer flow path 32 toward the outlet 30a of the first outer flow path 30.
- the first gas flow rate can be made larger than the flow rate.
- the shape of the region of the electrode facing the substrate Z is different between the first outer flow path 30 side and the second outer flow path 32 side, so that the substrate Z and the electrode
- a method of generating a pressure distribution to make the first gas flow rate and the second gas flow rate unequal is exemplified.
- the distance between the film forming unit 14 and the substrate Z on the side of the first outer flow path 30 is narrowed relative to the distance between the substrate Z on the side of the second outer flow path 32. do.
- the pressure between the substrate Z and the substrate Z becomes higher on the side of the second outer flow path 32 than on the side of the first outer flow path 30, and similarly to FIG.
- a gas flow is formed in the surface direction of the substrate Z toward the outlet 30a of the first outer flow path 30, and the first gas flow rate can be made larger than the second gas flow rate.
- two or more of these methods may be used together to make the first gas flow rate and the second gas flow rate unequal. These methods can also be used in the configuration shown in Patent Document 1 and FIG.
- a DLC film was formed on the substrate Z using the film forming apparatus 10 shown in FIG.
- the substrate Z used a silicon substrate having a thickness of 0.8 mm.
- the distance between the lowest part of the cylindrical electrode 12 and the lower surface of the film forming unit 14 and the substrate Z was set to 2 mm.
- the cylindrical electrode 12 used was a stainless steel cylinder having a diameter of 17 mm and a height of 60 mm, the surface of which was covered with quartz glass having a thickness of 1.5 mm.
- the film forming unit 14 was made of stainless steel.
- a cylindrical flow path forming portion 20 was provided at the center of the film forming unit 14 in the horizontal direction so as to open downward. Furthermore, a plasma generating gas supply path 24 was formed so as to communicate with the flow path forming portion 20 .
- the cylindrical electrode 12 was inserted into the channel forming portion 20 so that the center of the cylinder coincided.
- the distance between the cylindrical electrode 12 and the film forming unit 14 (the inner wall surface of the flow path forming portion 20) was set to 1.5 mm. As described above, the space between the cylindrical electrode 12 and the film forming unit 14 serves as the inner channel. Further, the film formation unit 14 was formed with a first raw material gas supply path 26 and a first outer flow path 30 , and a second raw material gas supply path 28 and a second outer flow path 32 . The slit width of the outlet 30a of the first outer flow path 30 and the outlet 32a of the second outer flow path 32 was set to 0.5 mm. Also, in both outer flow paths, the area toward the outlet is at an angle of 18° (162°) with respect to the horizontal direction.
- An AC power source 16 with a frequency of 27.12 MHz was connected to the cylindrical electrode 12 . Also, the film forming unit 14 was grounded.
- a film was formed on the substrate Z using such a film forming apparatus 10 .
- a mixed gas containing 99.1 vol % of argon gas, 0.7 vol % of nitrogen gas, and 0.2 vol % of oxygen gas was supplied to the inner channel.
- the amount of the mixed gas introduced into the mixing section was 2.3 L (liter)/min.
- a mixed gas of 99 vol % argon gas and 1 vol % propane gas was supplied to the first outer flow channel 30 and the second outer flow channel 32 .
- the output of the AC power supply 16 was set to 600W.
- the film formation atmosphere was normal temperature and normal pressure. The film formation was performed with the substrate Z stationary (substrate transport speed 0 mm/sec).
- the amount of gas introduced from the first outer flow path 30 to the mixing section is fixed at 6.7 L/min, and the amount of gas introduced from the second outer flow path 32 to the mixing section is set at 6.7 L/min. , 6.8 L/min, 7.3 L/min, 8.0 L/min, 8.8 L/min, and 16.8 L/min.
- the amount of gas introduced from the second outer flow path 32 to the mixing section is fixed at 6.7 L/min, and the amount of gas introduced from the first outer flow path 30 to the mixing section is set at 0.67 L. /min and 0.067/min, film formation was performed.
- the introduction amount ratio of the gas introduction amount from the first outer flow path 30 and the gas introduction amount from the second outer flow path 32 is 1, 1.01, 1.1, 1.2, 1.3, 2.5, 10 and 100.
- the flow rate of the first gas between the outlet 30a of the first outer flow path 30 and the substrate Z and the flow rate of the first gas between the outlet 32a of the second outer flow path 32 and the substrate Z are The second gas flow rate between is unequal.
- the distance between the film forming unit 14 and the substrate Z is 2 mm.
- the length of the film forming unit 14 in the direction perpendicular to the paper surface is 60 mm. Therefore, the gas flow rates on the first outer flow path 30 side and the second outer flow path 32 side at an introduction amount ratio of 1.0 are 5.6 L/min.
- the gas flow rate on the first outer flow path 30 side is 5.6 L/min, and the gas flow rate on the second outer flow path 32 side is 5.5 L/min.
- the gas flow rate on the first outer flow path 30 side is 5.8 L/min, and the gas flow rate on the second outer flow path 32 side is 3.7 L/min.
- the gas flow rate on the side of the first outer flow path 30 is 6.8 L/min, and the gas flow rate on the side of the second outer flow path 32 is 4.7 L/min.
- the gas flow rate on the first outer flow path 30 side is 8.3 L/min, and the gas flow rate on the second outer flow path 32 side is 4.7 L/min.
- the gas flow rate on the first outer flow path 30 side is 16.2 L/min, and the gas flow rate on the second outer flow path 32 side is 4.2 L/min.
- the gas flow rate on the first outer flow path 30 side is 4.8 L/min, and the gas flow rate on the second outer flow path 32 side is 1.5 L/min.
- the gas flow rate on the first outer flow path 30 side is 4.0 L/min, and the gas flow rate on the second outer flow path 32 side is 1.8 L/min.
- the film formation rate and surface roughness Ra were measured for the films formed at each introduction amount ratio. The results are shown in FIG. FIG. 7 shows the result of enlarging the region where the gas introduction amount ratio is 1 to 1.3. Note that the film formation rate was standardized based on the example of the flow rate ratio of 1. Moreover, surface roughness Ra was measured according to JIS B 0601 2001 using an atomic force microscope. In FIGS. 6 and 7, the dashed line indicates the film formation rate, and the dashed line indicates the surface roughness Ra.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
この大気圧プラズマ成膜は、大気圧下であるので、真空チャンバ等の高価な真空容器が不要であり、装置コストを低減できるという利点がある。また、真空下での処理が困難な基板でも処理が可能であるという利点も有る。
ここで、大気圧プラズマ成膜では、電極に成膜材料が付着することを抑制するために、原料ガスとプラズマ生成用ガスとを別々に導入し、電極対の間で生成したプラズマを、電極対間の外部で原料ガスと接触、混合させて成膜する方式が、一般的である。以下、この大気圧プラズマの方式を『リモート拡散混合方式』ともいう。
例えば、特許文献1には、電極対と、電極間に電圧を印加する電圧印加手段と、電極間に不活性ガスを供給する不活性ガス供給手段と、原料ガス供給手段とを有し、基板(被成膜体)が電極対よりも不活性ガスの流動方向の下流に配置され、基板が導電体上に配置され、原料ガスが電極対と基板との間の電極対の外に供給され、さらに、電極対は、基板の平面方向に対して垂直に配置され、不活性ガスが電極対と平行に電極対間に供給される、大気圧プラズマ成膜装置および方法が記載されている。
すなわち、リモート拡散混合方式の大気圧プラズマ成膜では、成膜速度を向上するために、混合部における原料ガスの滞在時間を長くして、プラズマと原料ガスとの混合反応時間を長くするのが好ましい。
このような微粒子が基板に付着すると、成膜した膜の平坦性が損なわれて、製品の品質が低下してしまう。製造する製品によっては、膜の平坦性を例えば算術平均粗さRaで数nmオーダーで維持する必要がある。そのため、この用途では、平坦性を維持したまま成膜速度を向上することが困難である。
そのため、平坦性の高い高品質な膜を、高い生産性で成膜できるリモート拡散混合方式の大気圧プラズマ成膜を実現する手段の出現が望まれている。
[1] 電極対と基板との間に、電極対の間を通る内側流路からプラズマ生成用ガスを導入し、かつ、電極対の間の外側に位置する第1外側流路および第2外側流路の少なくとも一方から原料ガスを導入して、大気圧プラズマによって基板に成膜を行うに際し、
第1外側流路の出口と基板との間におけるガス流量を第1ガス流量、第2外側流路の出口と基板との間におけるガス流量を第2ガス流量とした際に、第1ガス流量と第2ガス流量とを、不均等にして、基板に成膜を行うことを特徴とする成膜方法。
[2] 第1ガス流量および第2ガス流量の、少なくとも流量が多い側に対応する外側流路から原料ガスを導入する、[1]に記載の成膜方法。
[3] 第1外側流路および第2外側流路の両方から原料ガスを導入する、[1]または[2]に記載の成膜方法。
[4] 第1外側流路からのガス導入量と、第2外側流路からのガス導入量とを、異なる導入量とすることにより、第1ガス流量と第2ガス流量とを不均等にする、[1]~[3]のいずれかに記載の成膜方法。
[5] 第1外側流路の出口と、第2外側流路の出口とを、異なる面積とすることにより、第1ガス流量と第2ガス流量とを不均等にする、[1]~[4]のいずれかに記載の成膜方法。
[6] 第1外側流路および第2外側流路の一方の内側流路と逆側に、給気手段を設け、給気手段から給気することにより、第1ガス流量と第2ガス流量とを不均等にする、[1]~[5]のいずれかに記載の成膜方法。
[7] 第1外側流路および第2外側流路の一方の内側流路と逆側に、排気手段を設け、この排気手段からガスを排気することにより、第1ガス流量と第2ガス流量とを不均等にする、[1]~[6]のいずれかに記載の成膜方法。
[8] 電極対を形成する電極の基板と対面する面の形状を、第1外側流路側と第2外側流路側とで異なる形状とすることにより、第1ガス流量と第2ガス流量とを不均等にする、[1]~[7]のいずれかに記載の成膜方法。
[9] 電極対と、
基板を保持する基板保持手段と、
電極対の間を通って、電極対と基板保持手段との間にガスを導入する、内側流路と、
電極対の間の外側を通って、電極対と基板保持手段との間にガスを導入する、第1外側流路および第2外側流路と、
第1外側流路の出口と基板保持手段との間におけるガス流量を第1ガス流量、第2外側流路の出口と基板保持手段との間におけるガス流量を第2ガス流量とした際に、第1ガス流量と第2ガス流量とを不均等にする、流量制御手段と、を有することを特徴とする大気圧プラズマ成膜装置。
本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
また、以下に示す図は、いずれも、本発明を説明するための概念的な図である。従って、構成部材の大きさ、長さおよび位置関係等は、必ずしも実際の物とは一致しない。
図1に示す大気圧プラズマ成膜装置10は、上述したリモート拡散混合方式の大気圧プラズマ(大気圧プラズマCVD(Chemical Vapor Deposition))によって、基板Zに成膜を行う装置である。従って、大気圧プラズマ成膜装置10は、大気圧下(大気圧近傍)において、原料ガスとプラズマ生成用ガスとを別々に導入し、電極対の間で生成したプラズマを、電極対と基板Zとの間で原料ガスと接触、混合させて、基板Zに成膜を行う。
具体的には、図8に一般的な構成の一例を概念的に示すように、リモート拡散混合方式の大気圧プラズマ成膜装置では、電極対100の間にプラズマ生成用ガスPGを導入してプラズマを生成して電極対100と基板Zとの間に導入する。また、電極対100の間の外側に設けた外側流路102から、電極対と基板Zとの間に原料ガスMGを導入する。これにより、電極対の間で生成したプラズマを、電極対と基板Zとの間で原料ガスと接触、混合させて、基板Zに成膜を行う。
以下の説明では、大気圧プラズマ成膜装置を、単に成膜装置ともいう。
一例として、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアミド、ポリ塩化ビニル、ポリカーボネート、ポリアクリロニトリル、ポリイミド、ポリアクリレートおよびポリメタクリレートなどの高分子材料からなる樹脂フィルム(高分子フィルム、プラスチックフィルム)、ならびに、シリコン基板等が例示される。
一例として、酸化ケイ素、酸窒化ケイ素、窒化ケイ素および酸化アルミニウム等のガスバリア膜、酸化ケイ素、酸化チタン、酸化亜鉛、酸化スズおよびフッ素化合物等の光反射膜や反射防止膜、インジウムスズ酸化物、酸化スズ、酸化インジウム、酸化亜鉛、インジウム・カドミウム酸化物、カドミウム・スズ酸化物、酸化カドミウムおよび酸化ガリウム等の透明導電膜、ならびに、DLC(Diamond Like Carbon)膜等が例示される。
一例として、DLC膜を成膜する際には、原料ガスとしてはメタンガスおよびアセチレンガスなどの炭化水素ガスが、プラズマ生成用ガスとしてはアルゴンガスが、それぞれ例示される。酸化ケイ素膜を成膜する際には、原料ガスとしてはTEOS(テトラエトキシシラン)ガスが、プラズマ生成用ガスとしては窒素ガスが、それぞれ例示される。
なお、図1において、円筒電極12および成膜ユニット14は、断面図であるが、図を簡潔にして成膜装置10の構成を明確に示すために、ハッチングは省略している。
また、以下の説明では、便宜的に、各部材の位置を、図1に応じて上および下、ならびに、横(右および左)のように表現する。しかしながら、この上下方向(天地方向)および横方向(水平方向)は、必ずしも、実際の成膜装置10の使用状態とは一致しない。
円筒電極12としては、一例として、金属等の導電性材料からなる円筒の表面を石英ガラス等の誘電体で覆った電極等が例示される。
成膜ユニット14は、横方向の中央下部に、流路形成部20が設けられる。流路形成部20は、紙面と直交する方向が高さ方向となる、円筒電極12の外径より大きな内径を有する円筒状の空間である。流路形成部20の下端は、成膜ユニット14の下端から開口している。すなわち、成膜ユニット14は、横方向の中央下端に、紙面と直交する方向に長手方向を有するスリット状の排出口20aを有する。
また、流路形成部20の上端から、成膜ユニット14の上面まで貫通して、プラズマ生成用ガス供給路24が設けられる。プラズマ生成用ガス供給路24には、図示を省略するプラズマ生成用ガスの供給源が接続される。
従って、プラズマ生成用ガスは、プラズマ生成用ガス供給路24から、円筒電極12と成膜ユニット14との間の内側流路を通過しつつ、誘電体バリア放電によってプラズマ化され、成膜ユニット14の下面の排出口20aから、電極対と基板との間に導入される。すなわち、排出口20aは、内部流路からのガスの排出口である。
第1原料ガス供給路26および第2原料ガス供給路28には、共に、図示を省略する原料ガスの供給源が接続される。
第1外側流路30は、第1原料ガス供給路26から、成膜ユニット14の下面の排出口30aまで連通する。排出口30aは、内側流路の排出口20aの左側に位置する。排出口30aは、紙面と直交する方向に長手方向を有するスリット状の開口である。
第2外側流路32は、第2原料ガス供給路28から、成膜ユニット14の下面の排出口32aまで連通する。排出口32aは、内側流路の排出口20aの右側に位置する。排出口32aは、紙面と直交する方向に長手方向を有するスリット状の開口である。
上述した内側流路の排出口20a、ならびに、第1外側流路30の排出口30aおよび第2外側流路32の排出口32aのスリットの長さは、いずれも、成膜を行うことを想定する基板Zの紙面と直交する方向の長さに応じて、適宜、設定すればよい。
従って、第1および第2という言葉と、それぞれの位置関係、作用、ガス流量、ガスの流れの上下流等とは、無関係である。
ここで、リモート拡散混合方式の大気圧プラズマ成膜では、通常、原料ガスを導入するための外側流路(排出口)は、基板の搬送方向に、内側流路(排出口)を挟むように設けられる。
従って、成膜装置10においては、好ましい態様として、第1外側流路30の排出口30aおよび第2外側流路32の排出口32aは、基板Zの搬送方向に内側流路の排出口20aを挟むように設けられる。また、内側流路の排出口20a、第1外側流路30の排出口30aおよび第2外側流路32の排出口32aは、好ましい態様として、基板Zの搬送方向と直交する方向に長手方向を有するスリット状である。
図示は省略するが、図示例の成膜装置10は、基板Zの搬送手段を有する。基板Zの搬送手段は、本発明の成膜装置における基板保持手段である。基板Zの搬送手段は、リモート拡散混合方式の大気圧プラズマ成膜で用いられる、公知の基板搬送手段である。
なお、本発明においては、電極対と基板Zとを相対的に移動しないで、両者を停止した状態で、基板Zに成膜を行ってもよい。
すなわち、本発明は、後述するように第1ガス流量と第2ガス流量とを不均等にすれば、公知の各種のリモート拡散混合方式の大気圧プラズマ成膜が利用可能である。一例として、上述した特許文献1に示されるような、平行に配置した2枚の平板電極の間を内側流路とし、かつ、平板電極の下部に位置する第1および第2外側流路を有する構成を用いる大気圧プラズマ成膜、および、図8に示すような構成を用いる大気圧プラズマ成膜等が例示される。
ここで、平板電極は、角部を有する。そのため、電極と基板とを近付けると、異常放電を生じてしまう可能性がある。これに対して、円筒電極は、角部を有さないので、電極と基板とを近付けても、異常放電を生じる可能性が極めて低い。この点を考慮すると、本発明においては、平板電極よりも、図示例の成膜装置10のような円筒電極12を用いるのが好ましい。
従って、円筒電極12に交流電圧を印加することで、円筒電極12と成膜ユニット14(流路形成部20の内壁面)との間で誘電体バリア放電が生じる。これにより、内部流路である円筒電極12と成膜ユニット14との間を流れるプラズマ生成用ガスが励起され、プラズマが生成される。
本発明において、交流電源16の周波数(プラズマ励起電圧の周波数)、および、出力(プラズマ励起電力)には、制限はなく、成膜する膜、原料ガスおよびプラズマ生成用ガス、ならびに、目的とする成膜速度等に応じて、適宜、設定すればよい。
なお、本発明においては、交流電源に替えて、パルス電源を用いてもよい。
平行して、第1外側流路30および第2外側流路32に原料ガスを供給し、排出口30aおよび排出口32aから、電極と基板Zとの間に、原料ガスを導入する。
これにより、電極対と基板Zとの間で、プラズマと原料ガスとを拡散して混合し、原料ガスを活性化して、生成した原料ガスの活性種によって基板Zに成膜を行う。以下の説明では、電極対と基板Zとの間における、プラズマと原料ガスとが拡散、混合される領域を、単に『混合部』ともいう。
なお、此処でいうガス流量とは、電極対と基板Zの間において、任意の断面を通る、第1外側流路30から第2外側流路32に向かう、または、第2外側流路32から第1外側流路30に向かう、基板Zの面方向に流れるガス流量である。任意の断面としては、一例として、基材Zおよび紙面に垂直な排気口32a下部の流路断面が例示される。
図示例においては、一例として、第1外側流路30から混合部へのガス導入量(流量)と、第2外側流路32から混合部へのガス導入量とを、異なる量とすることにより、第1ガス流量と第2ガス流量とを、不均等にして、基板Zに成膜を行う。
本発明においては、このような構成を有することにより、原料ガスの活性種が凝集して微粒子が生成されることを抑制して、平坦性が高い膜を、高い成膜速度で成膜することを可能にしている。
例えば、第1外側流路30へのガス導入量と第2外側流路32へのガス導入量とを均等にする。これにより、図3に概念的に示すように、電極対と基板Zとの間の混合部におけるガスの流れを抑制することができる。その結果、混合部における原料ガスの滞在時間を長くして、プラズマと原料ガスとの混合反応時間を長くできる。
その反面、大気圧プラズマによる成膜では、気相である混合部において、分解した原料ガス(活性種)が長時間滞在すると、原料ガスの活性種が凝集して微粒子を形成してしまう。このような微粒子が基板に付着すると、成膜した膜の平坦性が損なわれ、品質が低下してしまう。
本発明者らの検討によれば、図4に示すように、混合部における反応が進行すると、分解した原料ガスすなわち活性種の濃度が高くなる。また、図4に示すように、活性種が、ある程度の濃度になると、活性種の凝集が開始され、反応の進行と共に凝集粒子径は大きくなる。その結果、反応進行度が、ある点を超えると、活性種の凝集による凝集粒子径が許容粒子径を超える。
なお、反応進行度とは、混合部における原料ガスの滞在時間、温度、活性化エネルギー、および、拡散係数等に影響される、原料ガスとプラズマとの間に生じる反応の進行度合いを概念的に表す変数である。
一方で、図4に示されるように、反応進行度を、ある程度以下に抑えることで、凝集粒子径を許容粒子径以下に抑制できる。
従って、混合部における原料ガスの滞在時間を制御することで、反応進行度を制御できる。さらに、反応進行度を制御することで、混合部における活性種の濃度を最大値付近に維持して十分な成膜速度を確保し、かつ、凝集粒子径を許容粒子径以下に抑制できる。
本発明は、このような知見を得ることで成し得たものであり、第1外側流路30の排出口30aと基板Zとの間のガス流量である第1ガス流量と、第2外側流路32の排出口32aと基板Zとの間のガス流量である第2ガス流量とを、不均等にする。本発明は、これにより、混合部における原料ガスの滞在時間すなわち反応進行度を制御して、図4に示す両立可能領域のように、反応速度の確保と、活性種の凝集の抑制とを両立して、平坦性が高い高品位な膜を、高い成膜速度で成膜することを可能にしている。
言い換えれば、本発明は、第1ガス流量と第2ガス流量とを不均等にすることにより、混合部における原料ガスの流れを低速域で制御する。すなわち、本発明は、第1ガス流量と第2ガス流量とを不均等にすることにより、混合部おける原料ガスの流速をゼロに近い状態として、その上で、若干、原料ガスを流すようにする。
本発明は、これにより、混合部での原料ガスの滞在時間すなわち原料ガスとプラズマとの混合時間を十分に確保して成膜速度を向上すると共に、混合部での原料ガスの滞在時間が必要以上に長くなることを防止して、活性種の凝集の抑制し、平坦な膜を成膜することを可能にしている。
図示例の成膜装置10では、これにより、混合部での原料ガスの滞在時間を制御して、成膜速度の向上と、活性種の凝集の抑制とを両立している。
しかしながら、本発明においては、電極対と基板Zとを相対的に移動して成膜を行う場合であっても、電極対と基板Zとの相対的な移動を停止した状態において、第1ガス流量と第2ガス流量とが不均等であればよい。すなわち、本発明においては、電極対と基板Zとの相対的な移動を停止した状態において、第1ガス流量と第2ガス流量とを測定し、第1ガス流量と第2ガス流量とが均等か不均等かを判断する。
なお、上述のように、本発明は、電極対と基板Zとを相対的に移動しないで成膜することを含む。従って、電極対と基板Zとの相対的な移動速度には、下限は無い。
すなわち、本発明において、最適な流量比A/Bは、プロセスガスおよび原料ガスの種類、各流路に供給する各ガスの濃度、目的とする成膜速度、電極の形状および構成、ならびに、円筒電極12に印加する交流電圧の電力および周波数等によって異なる。
従って、第1ガス流量と第2ガス流量との流量比A/Bは、これらに応じて、適宜、設定すればよい。
流量比A/Bを、この範囲とすることにより、混合部における原料ガスの滞在時間を好適に制御して、より平坦性の高い膜を、高い成膜速度で成膜できる。
このような場合は、第1外側流路30の排出口30aと、第2外側流路32の排出口32aとが離間する方向の延長線上の、ガス流量が測定可能な位置で、第1ガス流量および第2ガス流量を測定すればよい。
例えば、上述のように基板Zを搬送しつつ成膜を行う場合には、第1外側流路30(排出口30a)および第2外側流路32(排出口32a)は、内側流路(排出口20a)を搬送方向に挟んで設けられる。従って、基板Zを第1外側流路30から第2外側流路32に向かって搬送する場合には、基板Zの搬送方向における排出口30aの上流側、および、排出口32aの下流側の、ガス流量が測定可能な位置で、第1ガス流量および第2ガス流量を測定すればよい。
そのため、基板Zと電極との間におけるガスの流れ方向は、ほぼ、排出口30aから排出口32aに向かう方向、または、その逆方向となる。
従って、排出口30aと排出口32aとが離間する方向の延長線上で、ガス流量を測定すれば、第1ガス流量と第2ガス流量とが均等か不均等かは、判別できる。また、排出口30aと排出口32aとが離間する方向の延長線上で測定したガス流量の流量比は、ほぼ、第1ガス流量と第2ガス流量との流量比A/Bと同等になる。
例えば、図示例の成膜装置10であれば、排出口30aと排出口32aとが離間する方向の延長線上である、成膜ユニット14の横方向の端部において、ガスの流量を測定すればよい。
すなわち、原料ガスの導入は、第1外側流路30および第2外側流路32の一方のみとし、他方は、例えばプラズマ生成用ガスと同様の不活性ガスのみを導入してもよい。この際においては、原料ガスのガス流の制御性等の点で、原料ガスは、ガスの導入量が多い方の外側流路から導入するのが好ましい。
しかしながら、成膜速度を高くできる等の点で、原料ガスは、第1外側流路30および第2外側流路32の両方から導入するのが好ましい。
しかしながら、本発明において、第1ガス流量と第2ガス流量とを不均等にする方法、すなわち本発明の成膜装置における流量制御手段は、これに制限はされず、各種の方法が利用可能である。
例えば、ガス導入量は均等として、排出口32aのスリットの幅を、排出口30aよりも小さくする。これにより、排出口32aから導入されるガスの流速は、排出口30aから導入されるガスの流速よりも、速くなる。その結果、図2と同様に、第2外側流路32の排出口32aから第1外側流路30の排出口30aに向かう、基板Zの面方向のガスの流れが形成され、第2ガス流量よりも、第1ガス流量を大きくできる。
例えば、成膜ユニット14において、第2外側流路32の内側流路とは逆側に、ガス膜形成手段を設け、基板Zに向かうカーテンガスを供給する。このカーテンガスにより、第2外側流路32から右側に向かうガスの流れが遮蔽される。その結果、図2と同様に、第2外側流路32の排出口32aから第1外側流路30の排出口30aに向かう、基板Zの面方向のガスの流れが形成され、第2ガス流量よりも、第1ガス流量を大きくできる。
例えば、成膜ユニット14において、第1外側流路30の内側流路とは逆側に、排気手段を設け、此処からガスを排気する。これにより、図2と同様に、第2外側流路32の排出口32aから第1外側流路30の排出口30aに向かう、基板Zの面方向へのガスの流れが形成され、第2ガス流量よりも、第1ガス流量を大きくできる。
例えば、成膜ユニット14において、第1外側流路30側の成膜ユニット14と基板Zとの間の距離に対して、第2外側流路32側の基材Zとの間の距離を狭くする。これにより、基板Zとの間の圧力が、第1外側流路30側よりも、第2外側流路32側が高くなり、図2と同様に、第2外側流路32の排出口32aから第1外側流路30の排出口30aに向かう、基板Zの面方向へのガスの流れが形成され、第2ガス流量よりも、第1ガス流量を大きくできる。
また、これらの方法は、特許文献1および図8に示す構成でも利用可能である。
但し、本発明は、以下の実施例に限定はされない。
図1に示す成膜装置10を用いて、基板ZにDLC膜を成膜した。
基板Zは、厚さ0.8mmのシリコン基板を用いた。
円筒電極12は、直径17mm、高さ60mmのステンレス製の円筒の表面を、厚さ1.5mmの石英ガラスで覆ったものを用いた。
成膜ユニット14はステンレス製とした。成膜ユニット14の横方向の中心に、下方が開口するように円筒状の流路形成部20を設けた。さらに、流路形成部20に連通するようにプラズマ生成用ガス供給路24を形成した。
流路形成部20には、円筒の中心を一致して、円筒電極12を挿入した。円筒電極12と成膜ユニット14(流路形成部20内壁面)との距離は、1.5mmとした。円筒電極12と成膜ユニット14との間が内側流路となるのは、上述のとおりである。
さらに、成膜ユニット14に、第1原料ガス供給路26および第1外側流路30と、第2原料ガス供給路28および第2外側流路32とを形成した。第1外側流路30の排出口30aおよび第2外側流路32の排出口32aのスリット幅は、0.5mmとした。また、両外側流路において、排出口に向かう領域は、水平方向に対して18°(162°)の角度とした。
また、成膜ユニット14は接地した。
内側流路には、アルゴンガス99.1vol%、窒素ガス0.7vol%、酸素ガスが0.2vol%の混合ガスを供給した。混合部への混合ガスの導入量は、2.3L(リットル)/minとした。
一方、第1外側流路30および第2外側流路32には、アルゴンガス99vol%、プロパンガス1vol%の混合ガスを供給した。
交流電源16の出力は、600Wとした。
成膜雰囲気は、常温、常圧とした。
なお、成膜は、基板Zを静止した状態で行った(基板搬送速度0mm/sec)。
従って、第1外側流路30からのガス導入量と、第2外側流路32からのガス導入量との導入量比(第2外側流路/第1外側流路の導入量比)は、1、1.01、1.1、1.2、1.3、2.5、10、および、100である。
結果を図5に示す。
なお、図5において、流速は、代表的なデータとして、導入量比が1、1.1、1.2、および、1.3のみを具体的に示す。
図5に示されるように、導入量比が1以外の例では、第1外側流路30側の外側と第2外側流路32側の外側とでは、大きな流速の差がある。従って、導入量比が1以外の例では、第1外側流路30の排出口30aと基板Zとの間の第1ガス流量と、第2外側流路32の排出口32aと基板Zとの間の第2ガス流量とは、不均等である。
具体的には、上述のように、本例において、成膜ユニット14と基板Zとの距離は、2mmである。また、成膜ユニット14の紙面と直交する方向の長さは60mmである。
従って、導入量比1.0における第1外側流路30側および第2外側流路32側のガス流量は5.6L/minである。
導入量比1.01における第1外側流路30側のガス流量は5.6L/min、第2外側流路32側のガス流量は5.5L/minである。
導入量比1.1における第1外側流路30側のガス流量は5.8L/min、第2外側流路32側のガス流量は3.7L/minである。
導入量比1.2における第1外側流路30側のガス流量は6.8L/min、第2外側流路32側のガス流量は4.7L/minである。
導入量比1.3における第1外側流路30側のガス流量は8.3L/min、第2外側流路32側のガス流量は4.7L/minである。
導入量比2.5における第1外側流路30側のガス流量は16.2L/min、第2外側流路32側のガス流量は4.2L/minである。
導入量比10における第1外側流路30側のガス流量は4.8L/min、第2外側流路32側のガス流量は1.5L/minである。さらに、
導入量比100における第1外側流路30側のガス流量は4.0L/min、第2外側流路32側のガス流量は1.8L/minである。
なお、成膜速度は、流量比1の例を基準に規格化した。
また、表面粗さRaは、原子間力顕微鏡を用い、JIS B 0601 2001に準拠して測定した。
図6および図7では、破線が成膜速度で、一点鎖線が表面粗さRaを示す。
本例では、第2外側流路/第1外側流路の導入量比を1.1とすることにより、混合部における原料ガスの滞在時間が最も長く、最も成膜速度が高くなると考えられる導入量比1と同等の成膜速度を維持しつつ、表面粗さRaを1.5nm程度にできる。
以上の結果より、本発明の効果は明らかである。
12 円筒電極
14 成膜ユニット
16 交流電源
20 流路形成部
20a,30a,32a 排出口
24 プラズマ生成用ガス供給路
26 第1原料ガス供給路
28 第2原料ガス供給路
30 第1外側流路
32 第2外側流路
100 電極対
102 外部電極
PG プラズマ生成用ガス
MG 原料ガス
Claims (9)
- 電極対と基板との間に、前記電極対の間を通る内側流路からプラズマ生成用ガスを導入し、かつ、前記電極対の間の外側に位置する第1外側流路および第2外側流路の少なくとも一方から原料ガスを導入して、大気圧プラズマによって前記基板に成膜を行うに際し、
前記第1外側流路の出口と前記基板との間におけるガス流量を第1ガス流量、前記第2外側流路の出口と前記基板との間におけるガス流量を第2ガス流量とした際に、前記第1ガス流量と前記第2ガス流量とを、不均等にして、前記基板に成膜を行うことを特徴とする成膜方法。 - 前記第1ガス流量および前記第2ガス流量の、少なくとも流量が多い側に対応する外側流路から前記原料ガスを導入する、請求項1に記載の成膜方法。
- 前記第1外側流路および前記第2外側流路の両方から前記原料ガスを導入する、請求項1または2に記載の成膜方法。
- 前記第1外側流路からのガス導入量と、前記第2外側流路からのガス導入量とを、異なる導入量とすることにより、前記第1ガス流量と前記第2ガス流量とを不均等にする、請求項1~3のいずれか1項に記載の成膜方法。
- 前記第1外側流路の出口と、前記第2外側流路の出口とを、異なる面積とすることにより、前記第1ガス流量と前記第2ガス流量とを不均等にする、請求項1~4のいずれか1項に記載の成膜方法。
- 前記第1外側流路および前記第2外側流路の一方の前記内側流路と逆側に、給気手段を設け、前記給気手段から給気することにより、前記第1ガス流量と前記第2ガス流量とを不均等にする、請求項1~5のいずれか1項に記載の成膜方法。
- 前記第1外側流路および前記第2外側流路の一方の前記内側流路と逆側に、排気手段を設け、この排気手段からガスを排気することにより、前記第1ガス流量と前記第2ガス流量とを不均等にする、請求項1~6のいずれか1項に記載の成膜方法。
- 前記電極対を形成する電極の前記基板と対面する面の形状を、前記第1外側流路側と前記第2外側流路側とで異なる形状とすることにより、前記第1ガス流量と前記第2ガス流量とを不均等にする、請求項1~7のいずれか1項に記載の成膜方法。
- 電極対と、
基板を保持する基板保持手段と、
前記電極対の間を通って、前記電極対と前記基板保持手段との間にガスを導入する、内側流路と、
前記電極対の間の外側を通って、前記電極対と前記基板保持手段との間にガスを導入する、第1外側流路および第2外側流路と、
前記第1外側流路の出口と前記基板保持手段との間におけるガス流量を第1ガス流量、前記第2外側流路の出口と前記基板保持手段との間におけるガス流量を第2ガス流量とした際に、前記第1ガス流量と前記第2ガス流量とを不均等にする、流量制御手段と、を有することを特徴とする大気圧プラズマ成膜装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22759380.3A EP4299789A4 (en) | 2021-02-26 | 2022-02-09 | FILM FORMING METHOD AND ATMOSPHERIC PRESSURE PLASMA FILM FORMING APPARATUS |
JP2023502272A JPWO2022181341A1 (ja) | 2021-02-26 | 2022-02-09 | |
US18/451,862 US20230399748A1 (en) | 2021-02-26 | 2023-08-18 | Film forming method and atmospheric plasma film forming apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021030695 | 2021-02-26 | ||
JP2021-030695 | 2021-02-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/451,862 Continuation US20230399748A1 (en) | 2021-02-26 | 2023-08-18 | Film forming method and atmospheric plasma film forming apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022181341A1 true WO2022181341A1 (ja) | 2022-09-01 |
Family
ID=83049136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/005145 WO2022181341A1 (ja) | 2021-02-26 | 2022-02-09 | 成膜方法および大気圧プラズマ成膜装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230399748A1 (ja) |
EP (1) | EP4299789A4 (ja) |
JP (1) | JPWO2022181341A1 (ja) |
WO (1) | WO2022181341A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005243905A (ja) * | 2004-02-26 | 2005-09-08 | Kansai Tlo Kk | プラズマ処理方法およびプラズマ処理装置 |
JP2007059306A (ja) * | 2005-08-26 | 2007-03-08 | Matsushita Electric Ind Co Ltd | プラズマ処理方法および装置 |
JP2007323812A (ja) * | 2006-05-30 | 2007-12-13 | Matsushita Electric Ind Co Ltd | 大気圧プラズマ発生方法及び装置 |
JP2009506496A (ja) | 2005-08-26 | 2009-02-12 | フジフィルム マニュファクチャリング ユーロプ ビー.ブイ. | 放電プラズマを発生させ制御するための方法及び構成 |
JP2014053136A (ja) * | 2012-09-06 | 2014-03-20 | Mitsubishi Electric Corp | 大気圧プラズマ処理装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060040067A1 (en) * | 2004-08-23 | 2006-02-23 | Thomas Culp | Discharge-enhanced atmospheric pressure chemical vapor deposition |
TW200816880A (en) * | 2006-05-30 | 2008-04-01 | Matsushita Electric Ind Co Ltd | Atmospheric pressure plasma generating method, plasma processing method and component mounting method using same, and device using these methods |
JP5134343B2 (ja) * | 2007-11-20 | 2013-01-30 | 株式会社神戸製鋼所 | 薄膜形成装置及び薄膜形成方法 |
US20100255216A1 (en) * | 2007-11-29 | 2010-10-07 | Haley Jr Robert P | Process and apparatus for atmospheric pressure plasma enhanced chemical vapor deposition coating of a substrate |
JP5638631B2 (ja) * | 2011-01-25 | 2014-12-10 | 三菱電機株式会社 | 大気圧プラズマ処理装置および大気圧プラズマ処理方法 |
EP2960358A1 (en) * | 2014-06-25 | 2015-12-30 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Plasma source and surface treatment method |
EP3588533A1 (en) * | 2018-06-21 | 2020-01-01 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Plasma source and method of operating the same |
-
2022
- 2022-02-09 EP EP22759380.3A patent/EP4299789A4/en active Pending
- 2022-02-09 JP JP2023502272A patent/JPWO2022181341A1/ja active Pending
- 2022-02-09 WO PCT/JP2022/005145 patent/WO2022181341A1/ja active Application Filing
-
2023
- 2023-08-18 US US18/451,862 patent/US20230399748A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005243905A (ja) * | 2004-02-26 | 2005-09-08 | Kansai Tlo Kk | プラズマ処理方法およびプラズマ処理装置 |
JP2007059306A (ja) * | 2005-08-26 | 2007-03-08 | Matsushita Electric Ind Co Ltd | プラズマ処理方法および装置 |
JP2009506496A (ja) | 2005-08-26 | 2009-02-12 | フジフィルム マニュファクチャリング ユーロプ ビー.ブイ. | 放電プラズマを発生させ制御するための方法及び構成 |
JP2007323812A (ja) * | 2006-05-30 | 2007-12-13 | Matsushita Electric Ind Co Ltd | 大気圧プラズマ発生方法及び装置 |
JP2014053136A (ja) * | 2012-09-06 | 2014-03-20 | Mitsubishi Electric Corp | 大気圧プラズマ処理装置 |
Non-Patent Citations (2)
Title |
---|
See also references of EP4299789A4 |
YUTAKA HAYASHIMANABU SHIMADA, J. AEROSOL RES, vol. 21, no. 3, 2006, pages 209 |
Also Published As
Publication number | Publication date |
---|---|
EP4299789A4 (en) | 2024-08-21 |
EP4299789A1 (en) | 2024-01-03 |
US20230399748A1 (en) | 2023-12-14 |
JPWO2022181341A1 (ja) | 2022-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10312055B2 (en) | Method of depositing film by PEALD using negative bias | |
JP3725100B2 (ja) | 成膜方法 | |
EP2039801B1 (en) | Method for forming thin film | |
EP1536462A1 (en) | Oxide film forming method and oxide film forming apparatus | |
EP2274961A1 (en) | Plasma enhanced chemical vapor deposition of barrier coatings | |
JP2003049272A (ja) | 大気圧プラズマ処理装置、大気圧プラズマ処理方法及び大気圧プラズマ処理装置用の電極システム | |
JP2009280873A (ja) | ガスバリアフィルムの製造方法 | |
WO2009104443A1 (ja) | 薄膜形成方法及び薄膜積層体 | |
KR20180134320A (ko) | 성막 장치 | |
JP5780154B2 (ja) | 薄膜を有する基材の製造方法 | |
TW202109704A (zh) | 噴氣頭結構及使用其之電漿處理裝置 | |
WO2022181341A1 (ja) | 成膜方法および大気圧プラズマ成膜装置 | |
JP2011006788A (ja) | 成膜方法、成膜装置、およびガスバリアフィルムの製造方法 | |
JP2003049273A (ja) | プラズマcvd装置及びプラズマcvdによる成膜方法 | |
JP4231250B2 (ja) | プラズマcvd装置 | |
JP4546675B2 (ja) | 多段型の放電プラズマ処理方法及び装置 | |
US12123093B2 (en) | Film forming device | |
JP4783409B2 (ja) | プラズマcvd装置 | |
TWI242605B (en) | Apparatus and method for forming a thin film | |
JP2023114607A (ja) | 大気圧プラズマ処理方法および大気圧プラズマ処理装置 | |
KR102020211B1 (ko) | 탄소 및/또는 보론를 포함하는 비정질 실리콘막의 형성 방법 | |
WO2024176666A1 (ja) | プラズマcvd装置 | |
US20050263071A1 (en) | Apparatus and system for manufacturing a semiconductor | |
JP4598428B2 (ja) | アモルファスシリコン又はポリシリコンの成膜方法 | |
JP2004006511A (ja) | プラズマ処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22759380 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023502272 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022759380 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022759380 Country of ref document: EP Effective date: 20230926 |