WO2022180748A1 - Leakage amount estimation method, leakage amount estimation device, and leakage amount estimation system - Google Patents
Leakage amount estimation method, leakage amount estimation device, and leakage amount estimation system Download PDFInfo
- Publication number
- WO2022180748A1 WO2022180748A1 PCT/JP2021/007173 JP2021007173W WO2022180748A1 WO 2022180748 A1 WO2022180748 A1 WO 2022180748A1 JP 2021007173 W JP2021007173 W JP 2021007173W WO 2022180748 A1 WO2022180748 A1 WO 2022180748A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- leakage
- gas
- sound pressure
- leakage amount
- pressure
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 35
- 238000011088 calibration curve Methods 0.000 claims abstract description 79
- 238000001514 detection method Methods 0.000 claims abstract description 70
- 230000006870 function Effects 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 11
- 238000012886 linear function Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 56
- 239000012530 fluid Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/24—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
Definitions
- the present invention relates to a leakage amount estimation method, a leakage amount estimation device, and a leakage amount estimation system.
- Patent Literature 1 discloses a method in which an ultrasonic sensor detects ultrasonic waves generated when a gas leaks, and the amount of gas leakage is estimated based on the peak value obtained by a peak detector. .
- Patent Document 2 discloses a method of removing noise from the frequency components of the sound pressure generated from the leaking portion and estimating the amount of leakage from the obtained frequency components.
- the amount of leakage is estimated on the assumption that the sound pressure generated when leaking is linearly proportional to the amount of leakage. Therefore, the leakage amount cannot be estimated in a region where the generated sound pressure and the leakage amount are not linearly proportional. Specifically, in a region where the sound pressure level is low, there is a large divergence between the leakage amount estimated from the sound pressure and the actual leakage amount.
- An object of the present invention is to provide a leakage amount estimation method, a leakage amount estimation device, and a leakage amount estimation system that can appropriately estimate the amount of leakage regardless of the difference in sound pressure level.
- the present invention provides a parameter including a sound pressure of a sound wave generated by the leakage obtained when gas leaks from a leakage detection target, and a leakage amount of the gas.
- preparing a plurality of calibration curves showing the relationship of, detecting the parameter when gas leaks from the leakage detection object, and based on the detected parameter, any one of the prepared calibration curves A method of estimating a leakage amount, selecting one of the detected parameters and estimating the leakage amount from the selected calibration curve based on the sound pressure of the sound wave generated by the leakage from the detected parameters.
- the calibration curve may include a calibration curve represented by a linear function and a calibration curve represented by a nonlinear function.
- the calibration curve of the nonlinear function can be expressed by the following equation.
- the coefficient c is preferably 3.
- the parameter is the pressure of the gas in the leakage detection object when the gas leaks from the leakage detection object, and a plurality of pressure intervals are set in which the gas pressure in the leakage detection object is different;
- a calibration curve to be applied to each of the set pressure sections may be determined from the plurality of calibration curves.
- the gas pressure threshold P th for switching the calibration curve to be applied may be calculated based on the following equation.
- the parameter is a sound pressure of a sound wave when gas leaks from the leakage detection object, a plurality of sound pressure intervals having different sound pressures are set, and the set sound pressure intervals are obtained from the plurality of calibration curves. It is preferable to determine the calibration curve to be applied every time.
- the sound pressure generated at the preset pressure threshold value in the simulated leak detection object may be used.
- the present invention provides a parameter including sound pressure of sound wave of gas generated by the leakage, which is obtained when gas leaks from a leakage detection target, and a leak of the gas.
- a storage unit for storing a plurality of calibration curves showing the relationship between the gas and the amount of gas, a detection unit for detecting the parameter when the gas leaks from the leakage detection object, and one of the plurality of calibration curves from the parameter
- a leakage amount measuring device comprising: a selection unit for selecting either one; offer.
- the present invention provides a parameter including sound pressure of sound wave of gas generated by the leakage, which is obtained when gas leaks from a leakage detection target, and a leak of the gas.
- a storage unit for storing a plurality of calibration curves showing the relationship between the gas and the amount of gas, a detection unit for detecting the parameter when the gas leaks from the leakage detection object, and one of the plurality of calibration curves from the parameter
- a leakage measurement system comprising: a selection unit that selects either one; offer.
- the leakage amount can be appropriately estimated regardless of the difference in the sound pressure level of the sound waves emitted from the fluid leaking from the leakage detection target.
- FIG. 2 is a block diagram of the leakage amount estimation device of FIG. 1; The graph which shows the relationship between sound pressure and the amount of leakage.
- FIG. 3 is a flow chart showing a method of estimating the amount of leakage executed by the controller in FIG. 2;
- FIG. The block diagram of the leakage amount estimation apparatus which concerns on 2nd Embodiment. 6 is a flow chart showing a method of estimating the amount of leakage executed by the controller in FIG. 5;
- the schematic block diagram of the leak amount measuring system which concerns on other embodiment.
- FIG. 1 shows an example in which the leakage amount estimation device 1 according to the first embodiment is adopted for estimating the leakage amount Q of fluid (gas) from a pipe 2, which is an example of a leakage detection target ( , the state of gas leakage from the pipe 2 is indicated by a two-dot chain line.).
- the leakage amount estimation device 1 includes a detection unit 3, a storage unit 4, and a control unit 5, as shown in FIG.
- the detection unit 3 includes a sound pressure detection unit 6.
- a sound pressure detection unit 6 For example, as shown in FIG. It can be configured with a sound wave microphone 8 .
- the parabolic reflector 7 it is possible to improve the directivity and pinpoint the leakage point.
- the sound pressure level of the ultrasonic waves detected by the ultrasonic microphone 8 is calculated by a control unit, which will be described later.
- the storage unit 4 is a storage device such as a hard disk or SSD (Solid State Drive).
- the storage unit 4 stores in advance a plurality of calibration curves indicating the relationship between the sound pressure S of the sound wave generated when the gas leaks from the leakage detection object and the leakage amount Q, and the leakage amount Q is estimated based on these calibration curves. A control program or the like for doing so is stored.
- the calibration curve stored in advance in the storage unit 4 corresponds to compressible sonic flow, compressible subsonic flow, and incompressible subsonic flow according to the difference in flow velocity of the gas leaking from the leak detection object.
- compressible sonic flow in which the flow velocity v exceeds the speed of sound does not occur unless it passes through a tube with a special shape such as a Laval nozzle, so it is excluded here.
- sonic flow cannot be an incompressible flow in which the density ⁇ of the fluid is constant, only the compressible sonic flow in which the density ⁇ changes according to the change in the pressure P is considered.
- the sound pressure of sound waves emitted when gas leaks from a simulated leak detection object is measured in advance, and the velocity of the leaking gas is estimated.
- Two sound pressure intervals are set, and the calibration curve is selected depending on which sound pressure interval the detected sound pressure belongs to.
- Equation 2 is determined as follows. That is, when the flow velocity v of the leaking gas is low (M ⁇ 0.3), it is known that the acoustic dipole is dominant as a cause of sound generation (for example, turbulence engineering (aeroacoustics) foundation) (see http://aero.me.tut.ac.jp/Lectures/Turbulence/turb_sound.pdf)). It is also known that the sound pressure S generated by the acoustic dipole has the relationship S ⁇ v 3 , where ⁇ is the density of the fluid (for example, the basics of fluid noise (https://www.jstage.
- the leak amount Q has a relationship of Q ⁇ v. Therefore, the following relationship is established between the amount of leakage Q and the sound pressure S.
- Equation 2 is a case where the leaking fluid is flowing in an incompressible subsonic flow, so the coefficient c can be set to 3.
- FIG. 3 is a graph showing the relationship between the sound pressure S of sound waves and the amount of fluid leakage Q at the leak location.
- each point is actually measured data
- the solid line is a calibration curve showing the relationship calculated by (Equation 1) and (Equation 2).
- the control unit 5 includes a microcomputer having a CPU, ROM, RAM, etc. and various circuits.
- the control unit 5 reads the data detected by the sound pressure detection unit 6, and based on the read data, executes the control program read from the storage unit 4 using the RAM as a work area to perform leakage amount estimation processing.
- the control unit includes a selection unit 9 that functions by executing calibration curve selection processing, and an estimation unit 10 that functions by executing leakage amount estimation processing.
- the control unit 5 may be configured by hardware such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
- the sound pressure data of the leaking fluid (gas) detected by the sound pressure detection unit 6 is read (step S1).
- the detection by the sound pressure detection unit 6 is performed for a predetermined time (for example, about 30 seconds), and the maximum value detected by the peak hold at that time is used as the detection data. This is because the detected value varies depending on the state of leakage of the gas even during one detection, so that the maximum value that is determined to be the largest amount of leakage Q is selected.
- a sound pressure section identifying process is executed to identify a sound pressure section based on the read sound pressure data (step S2).
- the sound pressure section specifying process it is determined which sound pressure section set in advance the read sound pressure corresponds to.
- a calibration curve selection process for selecting a calibration curve to be used based on the specified sound pressure interval is executed (step S3: selection unit).
- the selected calibration curve is either the first calibration curve specified by (Equation 1) or the second calibration curve specified by (Equation 2).
- a leakage amount calculation process is executed to calculate the leakage amount Q according to the calibration curve selected in step S3 based on the sound pressure data detected by the sound pressure detection unit 6 (step S4: calculation unit).
- the leakage amount calculation process for example, if the first calibration curve is selected, the detected sound pressure S is substituted into (Equation 1) to calculate the leakage amount Q. Further, if the second calibration curve is selected, the detected sound pressure S is substituted into (Equation 2) to calculate the leakage amount Q.
- the leakage amount Q estimated as a result of a series of processing and the actual leakage amount Q It is possible to suppress the error from the leakage amount of In particular, since the leak amount Q can be accurately estimated at a minute leak stage where the sound pressure level is low, it is possible to repair the leak portion at an early stage.
- the second embodiment is different from the first embodiment in that the detection section 3 includes a pressure detection section 11 in addition to the sound pressure detection section 6 .
- the threshold value of the pressure of the gas in the pipe 2 is calculated as follows, and compared with the calculated threshold value of the pressure, the pressure of the gas in the leak detection target is determined to be any pressure. It is also different from the first embodiment in that the calibration curve is selected based on whether it belongs to the interval and the leakage amount Q is estimated.
- symbol is attached
- the pressure detection unit 11 is arranged inside the pipe 2 .
- a pressure sensor can be used for the pressure detection unit 11 .
- the pressure section can be set in consideration of the difference in the ratio of specific heats based on the difference in the absolute pressure outside the pipe and the type of gas.
- the absolute pressure P 0 outside the pipe is equal to the atmospheric pressure (101.325 kPa) and the leaking gas is air or nitrogen
- the calibration curve specified by (Equation 1) should be selected to estimate the leakage amount Q. Further, it can be seen that the flow satisfies Mach number M ⁇ 1 if the pressure P in the pipe 2 is less than about 90.4 kPa. Therefore, the calibration curve specified by (Equation 2) is selected, and the leak amount Q is estimated.
- the pressure data of the gas inside the pipe detected by the pressure detection unit is read (step S11). Then, the pressure section is specified based on the read pressure data (step S12). As described above, the pressure interval is specified from the value obtained by (Equation 3) based on the flow velocity, considering the difference in the specific heat ratio depending on the type of gas. Subsequently, a calibration curve selection process is executed to select a calibration curve to be used based on the specified pressure category (step S13).
- the calibration curves to be selected are two types, the first calibration curve specified by (Equation 1) and the second calibration curve specified by (Equation 2), as in the first embodiment.
- step S14 the sound pressure of the sound wave of the gas leaking from the leakage point detected by the sound pressure detection unit 6 is read (step S14), and the leakage amount Q is calculated according to the calibration curve selected in step S13 based on the sound pressure data.
- a leakage amount calculation process is executed (step S15: calculation unit). This leakage amount calculation process is the same as that of the first embodiment.
- the pressure interval is the value obtained by (Equation 3) based on the flow velocity v, considering the difference in the specific heat ratio ⁇ depending on the type of gas. can be set from Therefore, it is possible to more accurately estimate the gas leakage amount.
- the leakage amount Q is estimated based on two calibration curves, but it may be estimated using one calibration curve.
- the two calibration curves specified by (Equation 1) and (Equation 2) can be approximated to one calibration curve, and the calibration curve is selected according to the difference in sound pressure level no longer needed.
- the difference in the measurement environment was not considered, but it may be considered, for example, the following cases are conceivable.
- the distance between the leak location and the measurement position was not considered, but it is preferable to correct the estimated leak amount Q according to the difference in this distance.
- the sound pressure level generated by the leak attenuates with increasing distance from the leak location. Therefore, the amount of leakage Q is estimated by correcting the sound pressure level in consideration of this amount of attenuation.
- the sound pressure level can be corrected in consideration of attenuation due to geometric diffusion and attenuation due to atmospheric absorption.
- the amount of attenuation due to atmospheric absorption changes depending on the difference in temperature, humidity, and air pressure between the leak location and the measurement location (sound pressure detection unit 6), and also the frequency of the ultrasonic waves used for measurement. Therefore, these parameters may also be taken into consideration when correcting the sound pressure level. Similarly, the amount of attenuation may take into account reflections from floors, walls, and the like.
- the leak detection angle was not considered, but it is preferable to correct the estimated leak amount Q according to the difference in the detection angle. Specifically, even if the sound pressure level is the same, if the angle between the pointing direction of the detection unit 3 (ultrasonic microphone 8) and the ejection direction of the leak position is different, the detected sound pressure S can be estimated as The leakage amount Q of the gas is different from the actual leakage amount Q of the gas. Therefore, the error of the leakage amount Q can be reduced based on the angle formed by the jetting direction at the leak point and the orientation direction of the detection unit.
- the sound pressure S reached its maximum value when the angle formed by the pointing direction of the detection unit 3 with respect to the jetting direction of the leaking gas was 15° to 35° (optimally 20°). Therefore, it can be seen that the calibration curve should be created based on the sound pressure S detected at this angle. However, it is difficult to ascertain the jetting direction in the case of leakage due to cracks or corrosion in the pipe 2 . Therefore, it is preferable to change the angle at which the microphone is directed toward the leakage point and to read the sound pressure S at the angle at which the detected sound pressure S becomes maximum as the detection data.
- the detection unit 3 may be moved on the same circle or spherical surface centering on the leak point to detect the sound pressure of the sound wave emitted by the leaking gas. Further, the detection unit 3 may be associated with a device that measures the distance to the leak point, and perform attenuation correction based on the measured distance to estimate the maximum leak amount.
- the leakage amount estimation device 1 is configured to include all of the detection unit 3, the storage unit 4, and the control unit 5, but these may not necessarily be configured to be included in one device.
- the storage unit 4 may be provided on the server 14 side, and the leakage amount may be estimated by the control unit 5 on the client side.
- Each device may be composed of each member such as the detection unit 3 alone or may be configured by appropriately combining the members, and its usage pattern can be freely set.
- Leak amount estimation device 1 Leak amount estimation device 2 Pipe (leak detection object) 3 detection unit 4 storage unit 5 control unit 6 sound pressure detection unit 7 parabolic reflector 8 ultrasonic microphone 9 selection unit 10 estimation unit 11 pressure detection unit
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
A plurality of calibration curves are prepared that indicate a relationship between a parameter obtained when a gas leaks from a leakage detection object 2, the parameter including the sound pressure of sound waves generated accompanying the leakage, and the leakage amount of the gas. The parameter is detected when gas leaks from the leakage detection object 2. Any one of the prepared calibration curves is selected on the basis of the detected parameter. The leakage amount is estimated from the selected calibration curve on the basis of the detected sound pressure of sound waves generated accompanying the leakage.
Description
本発明は、漏洩量推定方法、漏洩量推定装置及び漏洩量推定システムに関するものである。
The present invention relates to a leakage amount estimation method, a leakage amount estimation device, and a leakage amount estimation system.
従来、配管等から漏出した流体の漏洩量を、漏洩時に発生する超音波の音圧から推定するようにした漏洩量推定方法が公知である(例えば、特許文献1、2参照)。
Conventionally, there is a well-known method for estimating the amount of leakage of fluid leaked from pipes, etc., based on the sound pressure of ultrasonic waves generated at the time of leakage (see Patent Documents 1 and 2, for example).
特許文献1には、漏洩する際に発生する超音波を超音波センサで検出し、ピーク検出器にて得られたピーク値に基づいてガス漏洩量を推定するようにした方法が開示されている。
Patent Literature 1 discloses a method in which an ultrasonic sensor detects ultrasonic waves generated when a gas leaks, and the amount of gas leakage is estimated based on the peak value obtained by a peak detector. .
特許文献2には、漏洩部から発生する音圧の周波数成分からノイズを除去し、得られた周波数成分から漏洩量を推定するようにした方法が開示されている。
Patent Document 2 discloses a method of removing noise from the frequency components of the sound pressure generated from the leaking portion and estimating the amount of leakage from the obtained frequency components.
しかしながら、前記いずれの特許文献に開示される方法であっても、漏洩する際に発生する音圧と、漏洩量が線形比例することを前提として漏洩量を推定するようにしている。このため、発生音圧と漏洩量が線形比例しない領域については、漏洩量を推定できない。具体的には、音圧レベルが低い領域では、音圧から推定した漏洩量と実際の漏洩量との間には大きな乖離がある。
However, in the methods disclosed in any of the above patent documents, the amount of leakage is estimated on the assumption that the sound pressure generated when leaking is linearly proportional to the amount of leakage. Therefore, the leakage amount cannot be estimated in a region where the generated sound pressure and the leakage amount are not linearly proportional. Specifically, in a region where the sound pressure level is low, there is a large divergence between the leakage amount estimated from the sound pressure and the actual leakage amount.
本発明では、音圧レベルの違いに拘わらず、適切に漏洩量を推定することができる漏洩量推定方法、漏洩量推定装置及び漏洩量推定システムを提供することを課題とする。
An object of the present invention is to provide a leakage amount estimation method, a leakage amount estimation device, and a leakage amount estimation system that can appropriately estimate the amount of leakage regardless of the difference in sound pressure level.
本発明は、前記課題を解決するための手段として、漏洩検出対象物から気体が漏洩するときに得られる、前記漏洩に伴って発生する音波の音圧を含むパラメータと、前記気体の漏洩量との関係を示す複数の検量線を準備し、前記漏洩検出対象物から気体が漏洩するときに前記パラメータを検出し、前記検出した前記パラメータに基づいて、前記準備した検量線のうちのいずれか1つを選択し、前記検出したパラメータのうち、前記漏洩に伴って発生する音波の音圧に基づいて、前記選択した検量線から漏洩量を推定する、漏洩量推定方法を提供する。
As a means for solving the above-mentioned problems, the present invention provides a parameter including a sound pressure of a sound wave generated by the leakage obtained when gas leaks from a leakage detection target, and a leakage amount of the gas. preparing a plurality of calibration curves showing the relationship of, detecting the parameter when gas leaks from the leakage detection object, and based on the detected parameter, any one of the prepared calibration curves A method of estimating a leakage amount, selecting one of the detected parameters and estimating the leakage amount from the selected calibration curve based on the sound pressure of the sound wave generated by the leakage from the detected parameters.
これによれば、漏洩検出対象物から気体が漏洩するときに得られるパラメータの違いに応じた適切な検量線を選択し、漏洩量を的確に推定することができる。
According to this, it is possible to select an appropriate calibration curve according to the difference in parameters obtained when gas leaks from the leakage detection target, and to accurately estimate the leakage amount.
前記検量線は、線形関数で表される検量線と、非線形関数で表される検量線を含んでいてもよい。
The calibration curve may include a calibration curve represented by a linear function and a calibration curve represented by a nonlinear function.
これによれば、非線形関数を導入することで、対象外であった発生音圧と漏洩量が線形比例しない領域で、音圧での漏洩量の推定が可能となる。
According to this, by introducing a nonlinear function, it is possible to estimate the amount of leakage with sound pressure in areas where the generated sound pressure and the amount of leakage are not linearly proportional.
前記非線形関数の検量線は次式で表すことができる。
The calibration curve of the nonlinear function can be expressed by the following equation.
The calibration curve of the nonlinear function can be expressed by the following equation.
前記係数cは3であるのが好ましい。
The coefficient c is preferably 3.
これによれば、漏洩する流体が非圧縮性亜音速流で流動している場合の漏洩量を推定することができる。
According to this, it is possible to estimate the amount of leakage when the leaking fluid is flowing in an incompressible subsonic flow.
前記パラメータは、前記漏洩検出対象物から気体が漏洩するときの前記漏洩検出対象物内の気体の圧力であり、前記漏洩検出対象物内の気体の圧力が相違する複数の圧力区間を設定し、前記複数の検量線から前記設定した圧力区間毎に適用する検量線を決定するようにすればよい。
wherein the parameter is the pressure of the gas in the leakage detection object when the gas leaks from the leakage detection object, and a plurality of pressure intervals are set in which the gas pressure in the leakage detection object is different; A calibration curve to be applied to each of the set pressure sections may be determined from the plurality of calibration curves.
適用する検量線を切り換える気体圧力の閾値Pthは、次式に基づいて算出すればよい。
The gas pressure threshold P th for switching the calibration curve to be applied may be calculated based on the following equation.
The gas pressure threshold P th for switching the calibration curve to be applied may be calculated based on the following equation.
前記検量線の数が2であるとき、前記数式で、M=1として適用する検量線を切り換える閾値を算出すればよい。
When the number of calibration curves is 2, the threshold for switching the calibration curve to be applied with M=1 can be calculated using the above formula.
前記パラメータは、前記漏洩検出対象物から気体が漏洩するときの音波の音圧であり、前記音圧が相違する複数の音圧区間を設定し、前記複数の検量線から前記設定した音圧区間毎に適用する検量線を決定するのが好ましい。
The parameter is a sound pressure of a sound wave when gas leaks from the leakage detection object, a plurality of sound pressure intervals having different sound pressures are set, and the set sound pressure intervals are obtained from the plurality of calibration curves. It is preferable to determine the calibration curve to be applied every time.
前記音圧区間の閾値は、模擬漏洩検出物において予め設定した圧力閾値で発生する音圧を使用すればよい。
For the threshold value of the sound pressure interval, the sound pressure generated at the preset pressure threshold value in the simulated leak detection object may be used.
決定した複数の検量線を1つの近似関数とするのが好ましい。
It is preferable to use the determined multiple calibration curves as one approximation function.
前記音波の音圧を、測定環境から予想される減衰量に基づいて補正するのが好ましい。
It is preferable to correct the sound pressure of the sound wave based on the amount of attenuation expected from the measurement environment.
前記音波の音圧を所定時間測定し、ピークホールドにより最大音圧又は最大漏洩量を検出するのが好ましい。
It is preferable to measure the sound pressure of the sound wave for a predetermined period of time and detect the maximum sound pressure or the maximum leakage amount by peak hold.
前記音波の音圧を複数方向から測定し、ピークホールドにより最大音圧又は最大漏洩量を検出するのが好ましい。
It is preferable to measure the sound pressure of the sound wave from multiple directions and detect the maximum sound pressure or maximum leak amount by peak hold.
本発明は、前記課題を解決するための手段として、漏洩検出対象物から気体が漏洩するときに得られる、前記漏洩に伴って発生する気体の音波の音圧を含むパラメータと、前記気体の漏洩量との関係を示す複数の検量線を記憶する記憶部と、前記漏洩検出対象物から気体が漏洩するときに前記パラメータを検出する検出部と、前記パラメータから、前記複数の検量線のうちのいずれかを選択する選択部と、前記検出した漏洩に伴って発生する気体の音波の音圧に基づいて、前記選択した検量線から漏洩量を推定する推定部と、を備える漏洩量測定装置を提供する。
As a means for solving the above-mentioned problems, the present invention provides a parameter including sound pressure of sound wave of gas generated by the leakage, which is obtained when gas leaks from a leakage detection target, and a leak of the gas. a storage unit for storing a plurality of calibration curves showing the relationship between the gas and the amount of gas, a detection unit for detecting the parameter when the gas leaks from the leakage detection object, and one of the plurality of calibration curves from the parameter A leakage amount measuring device comprising: a selection unit for selecting either one; offer.
本発明は、前記課題を解決するための手段として、漏洩検出対象物から気体が漏洩するときに得られる、前記漏洩に伴って発生する気体の音波の音圧を含むパラメータと、前記気体の漏洩量との関係を示す複数の検量線を記憶する記憶部と、前記漏洩検出対象物から気体が漏洩するときに前記パラメータを検出する検出部と、前記パラメータから、前記複数の検量線のうちのいずれかを選択する選択部と、前記検出した漏洩に伴って発生する気体の音波の音圧に基づいて、前記選択した検量線から漏洩量を推定する推定部と、を備える漏洩量測定システムを提供する。
As a means for solving the above-mentioned problems, the present invention provides a parameter including sound pressure of sound wave of gas generated by the leakage, which is obtained when gas leaks from a leakage detection target, and a leak of the gas. a storage unit for storing a plurality of calibration curves showing the relationship between the gas and the amount of gas, a detection unit for detecting the parameter when the gas leaks from the leakage detection object, and one of the plurality of calibration curves from the parameter A leakage measurement system comprising: a selection unit that selects either one; offer.
本発明によれば、漏洩検出対象物から漏洩する流体から発せられる音波の音圧レベルの違いに拘わらず、適切に漏洩量を推定することができる。
According to the present invention, the leakage amount can be appropriately estimated regardless of the difference in the sound pressure level of the sound waves emitted from the fluid leaking from the leakage detection target.
以下、本発明に係る実施形態を添付図面に従って説明する。なお、以下の説明は、本質的に例示に過ぎず、本発明、その適用物、あるいは、その用途を制限することを意図するものではない。また、図面は模式的なものであり、各寸法の比率等は現実のものとは相違している。
An embodiment of the present invention will be described below with reference to the accompanying drawings. It should be noted that the following description is essentially merely an example, and is not intended to limit the present invention, its applications, or its uses. Moreover, the drawings are schematic, and the ratio of each dimension is different from the actual one.
(第1実施形態)
図1は、第1実施形態に係る漏洩量推定装置1を漏洩検出対象物の一例である配管2からの流体(気体)の漏洩量Qを推定するために採用した例を示す(図1中、配管2からの気体の漏洩状態を2点鎖線で示す。)。 (First embodiment)
FIG. 1 shows an example in which the leakageamount estimation device 1 according to the first embodiment is adopted for estimating the leakage amount Q of fluid (gas) from a pipe 2, which is an example of a leakage detection target ( , the state of gas leakage from the pipe 2 is indicated by a two-dot chain line.).
図1は、第1実施形態に係る漏洩量推定装置1を漏洩検出対象物の一例である配管2からの流体(気体)の漏洩量Qを推定するために採用した例を示す(図1中、配管2からの気体の漏洩状態を2点鎖線で示す。)。 (First embodiment)
FIG. 1 shows an example in which the leakage
漏洩量推定装置1は、図2に示すように、検出部3、記憶部4及び制御部5を備える。
The leakage amount estimation device 1 includes a detection unit 3, a storage unit 4, and a control unit 5, as shown in FIG.
検出部3は音圧検出部6を含む。音圧検出部6は、例えば、図1に示すように、配管2から漏洩した気体から発生する超音波を収集するパラボラ反射板7と、パラボラ反射板7によって収集された超音波を検出する超音波マイク8とで構成することができる。パラボラ反射板7を使用することで、指向性を高くしてピンポイントで漏洩箇所を検出することが可能となる。なお、超音波マイク8で検出した超音波から後述する制御部でその音圧レベルが算出される。
The detection unit 3 includes a sound pressure detection unit 6. For example, as shown in FIG. It can be configured with a sound wave microphone 8 . By using the parabolic reflector 7, it is possible to improve the directivity and pinpoint the leakage point. The sound pressure level of the ultrasonic waves detected by the ultrasonic microphone 8 is calculated by a control unit, which will be described later.
記憶部4は、ハードディスク、SSD(Solid State Drive)などの記憶装置である。記憶部4には、予め漏洩検出対象物から気体が漏洩する際に発生する音波の音圧Sと漏洩量Qの関係を示す複数の検量線や、これら検量線に基づいて漏洩量Qを推定するための制御プログラム等が記憶されている。
The storage unit 4 is a storage device such as a hard disk or SSD (Solid State Drive). The storage unit 4 stores in advance a plurality of calibration curves indicating the relationship between the sound pressure S of the sound wave generated when the gas leaks from the leakage detection object and the leakage amount Q, and the leakage amount Q is estimated based on these calibration curves. A control program or the like for doing so is stored.
記憶部4に予め記憶されている検量線は、漏洩検出対象物から漏洩する気体の流速の違いに応じて、圧縮性音速流、圧縮性亜音速流、及び非圧縮性亜音速流に対応した3種類としている。流速vが音速を超える超音速流は、ラバール・ノズル等の特殊な形状をした管を通る場合でないと発生しないため、ここでは対象外としている。また、音速流では流体の密度ρが一定の非圧縮性流れとはなり得ないため、密度ρが圧力Pの変化に応じて変化する圧縮性音速流のみを対象としている。また、流れの全ての部分で音速(マッハ数M=1)よりも小さい亜音速流では、密度ρの変化が無視できる低速の流れ(マッハ数M<0.3)であれば、圧縮性流体であっても非圧縮性流れとして扱うことができる。そこで、亜音速流では、非圧縮性流れと圧縮性流れとに分けている。漏洩する気体の流れが、圧縮性音速流(M=1)であるのか、圧縮性亜音速流(0.3≦M<1)であるのか、あるいは、非圧縮性亜音速流(M<0.3)であるのかは、漏洩する気体から発せられる音波の音圧の違いによって判断する。ここでは、予め模擬漏洩検出物について気体が漏洩したときに発せられる音波の音圧を測定し、漏洩する気体の速度を推定し、漏洩する気体の流れが前記いずれの速度領域に属するのかで3つの音圧区間を設定し、検出された音圧がいずれの音圧区間に属しているのかで検量線を選択するようにしている。
The calibration curve stored in advance in the storage unit 4 corresponds to compressible sonic flow, compressible subsonic flow, and incompressible subsonic flow according to the difference in flow velocity of the gas leaking from the leak detection object. There are 3 types. A supersonic flow in which the flow velocity v exceeds the speed of sound does not occur unless it passes through a tube with a special shape such as a Laval nozzle, so it is excluded here. Also, since sonic flow cannot be an incompressible flow in which the density ρ of the fluid is constant, only the compressible sonic flow in which the density ρ changes according to the change in the pressure P is considered. In addition, in a subsonic flow where the speed of sound is smaller than the sonic speed (Mach number M = 1) in all parts of the flow, if the flow is a low-speed flow (Mach number M < 0.3) where the change in density ρ can be ignored, the compressible fluid can be treated as an incompressible flow. Therefore, subsonic flow is divided into incompressible flow and compressible flow. Whether the leaking gas flow is a compressible sonic flow (M = 1), a compressible subsonic flow (0.3 ≤ M < 1), or an incompressible subsonic flow (M < 0 .3) is determined by the difference in sound pressure of sound waves emitted from the leaking gas. Here, the sound pressure of sound waves emitted when gas leaks from a simulated leak detection object is measured in advance, and the velocity of the leaking gas is estimated. Two sound pressure intervals are set, and the calibration curve is selected depending on which sound pressure interval the detected sound pressure belongs to.
音圧が最も高い第1音圧区間となる圧縮性音速流(M=1)では、音圧をSとしたとき、気体の漏洩量Qは、従来同様、線形関数である(数1)に従って推定する。
In the compressible sonic flow (M = 1), which is the first sound pressure section with the highest sound pressure, when the sound pressure is S, the gas leakage amount Q is a linear function as in the conventional case (Equation 1). presume.
音圧が最も低い第2音圧区間である非圧縮性亜音速流(M<0.3)では、音圧をSとしたとき、流体の漏洩量Qは、非線形関数である(数2)に従って推定する。
In the incompressible subsonic flow (M<0.3), which is the second sound pressure section with the lowest sound pressure, when the sound pressure is S, the leakage amount Q of the fluid is a nonlinear function (Equation 2) estimated according to
In the incompressible subsonic flow (M<0.3), which is the second sound pressure section with the lowest sound pressure, when the sound pressure is S, the leakage amount Q of the fluid is a nonlinear function (Equation 2) estimated according to
(数2)は、以下のようにして決定している。すなわち、漏洩する気体の流速vが低速(M<0.3)であれば、音の発生要因として音響二極子が卓越していることが知られている(例えば、乱流工学(空力音響学の基礎)(http://aero.me.tut.ac.jp/Lectures/Turbulence/turb_sound.pdf)参照)。音響二極子により発生する音圧Sは、流体の密度をρとしたとき、S∝ρv3の関係が成立することも公知である(例えば、流体騒音の基礎(https://www.jstage.jst.go.jp/article/tsj1973/24/12/24_12_753/_pdf/-char/ja)参照)。そして、漏洩量Qには、Q∝ρvの関係がある。したがって、漏洩量Qと音圧Sとの間には、次の関係が成立する。
(Equation 2) is determined as follows. That is, when the flow velocity v of the leaking gas is low (M<0.3), it is known that the acoustic dipole is dominant as a cause of sound generation (for example, turbulence engineering (aeroacoustics) foundation) (see http://aero.me.tut.ac.jp/Lectures/Turbulence/turb_sound.pdf)). It is also known that the sound pressure S generated by the acoustic dipole has the relationship S∝ρv 3 , where ρ is the density of the fluid (for example, the basics of fluid noise (https://www.jstage. jst.go.jp/article/tsj1973/24/12/24_12_753/_pdf/-char/ja)). The leak amount Q has a relationship of Q∝ρv. Therefore, the following relationship is established between the amount of leakage Q and the sound pressure S.
(Equation 2) is determined as follows. That is, when the flow velocity v of the leaking gas is low (M<0.3), it is known that the acoustic dipole is dominant as a cause of sound generation (for example, turbulence engineering (aeroacoustics) foundation) (see http://aero.me.tut.ac.jp/Lectures/Turbulence/turb_sound.pdf)). It is also known that the sound pressure S generated by the acoustic dipole has the relationship S∝ρv 3 , where ρ is the density of the fluid (for example, the basics of fluid noise (https://www.jstage. jst.go.jp/article/tsj1973/24/12/24_12_753/_pdf/-char/ja)). The leak amount Q has a relationship of Q∝ρv. Therefore, the following relationship is established between the amount of leakage Q and the sound pressure S.
この関係に基づいて前記(数2)を導き出し、音圧Sから漏洩量Qを推定するようにしている。なお、(数2)は、漏洩する流体が非圧縮性亜音速流で流動している場合であるので、係数cは3とすることができる。
Based on this relationship, the above (Equation 2) is derived, and the leakage amount Q is estimated from the sound pressure S. Note that (Equation 2) is a case where the leaking fluid is flowing in an incompressible subsonic flow, so the coefficient c can be set to 3.
漏洩する気体の流速vがM≧0.3を満足するとき、音の発生要因として音響四極子が卓越し、発生する音圧Sは、S∝ρv4の関係が成立することが知られている。このため、音圧が中間の第3音圧区間である圧縮性亜音速流(0.3≦M<1)では、そのまま前記(数2)の関係が成立するとは言えない。しかしながら、圧縮性亜音速流では、実測データから、非圧縮性亜音速流で成立する関係に基づいて漏洩量Qを推定してもそれほど誤差が生じない点に着目し、ここでは非圧縮性亜音速流と同様に(数2)を使用している。
It is known that when the flow velocity v of the leaking gas satisfies M≧0.3, the acoustic quadrupole is predominant as a factor in generating sound, and the generated sound pressure S satisfies the relationship S∝ρv 4 . there is Therefore, in the compressible subsonic flow (0.3≦M<1), which is the third sound pressure section in which the sound pressure is intermediate, it cannot be said that the above relationship (Equation 2) holds as it is. However, in compressible subsonic flow, we focused on the fact that even if we estimate the leakage amount Q based on the relationship established in incompressible subsonic flow from actual measurement data, there is not much error. (Equation 2) is used in the same way as the sonic flow.
図3は、漏洩箇所における音波の音圧Sと流体の漏洩量Qの関係を示すグラフである。グラフ中、各点が実測データであり、実線が(数1)及び(数2)により算出した関係を示す検量線である。流速vが音速流で、(数1)の線形関数を採用し、亜音速流で、(数2)の非線形関数を採用することで、実測データに近い関係を得ることができた。
FIG. 3 is a graph showing the relationship between the sound pressure S of sound waves and the amount of fluid leakage Q at the leak location. In the graph, each point is actually measured data, and the solid line is a calibration curve showing the relationship calculated by (Equation 1) and (Equation 2). By adopting the linear function of (Equation 1) when the flow velocity v is sonic and the nonlinear function of (Equation 2) when the flow velocity is subsonic, a relationship close to the actual measurement data can be obtained.
制御部5は、CPU、ROM、RAMなどを有するマイクロコンピュータや各種の回路を含む。制御部5は、音圧検出部6での検出データを読み込み、読み込んだデータに基づいて、記憶部4から読み込んだ制御プログラムを、RAMを作業領域として漏洩量推定処理を実行する。制御部は、検量線選択処理を実行することにより機能する選択部9と、漏洩量推定処理を実行することにより機能する推定部10とを備える。なお、制御部5は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等のハードウェアで構成してもよい。
The control unit 5 includes a microcomputer having a CPU, ROM, RAM, etc. and various circuits. The control unit 5 reads the data detected by the sound pressure detection unit 6, and based on the read data, executes the control program read from the storage unit 4 using the RAM as a work area to perform leakage amount estimation processing. The control unit includes a selection unit 9 that functions by executing calibration curve selection processing, and an estimation unit 10 that functions by executing leakage amount estimation processing. The control unit 5 may be configured by hardware such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
続いて、第1実施形態での漏洩量推定処理について、図4のフローチャートに従って説明する。
Next, the leakage amount estimation process in the first embodiment will be described according to the flowchart of FIG.
漏洩量推定処理では、まず、音圧検出部6で検出される、漏洩する流体(気体)の音圧データを読み込む(ステップS1)。この場合、音圧検出部6による検出は所定時間(例えば、約30秒間)行い、そのときにピークホールドにより検出される最大値を検出データとするのが好ましい。これは、1回の検出中であっても、気体の漏洩状態によって検出値がばらつくため、最も漏洩量Qが多いと判断される最大値を選択するためである。
In the leakage amount estimation process, first, the sound pressure data of the leaking fluid (gas) detected by the sound pressure detection unit 6 is read (step S1). In this case, it is preferable that the detection by the sound pressure detection unit 6 is performed for a predetermined time (for example, about 30 seconds), and the maximum value detected by the peak hold at that time is used as the detection data. This is because the detected value varies depending on the state of leakage of the gas even during one detection, so that the maximum value that is determined to be the largest amount of leakage Q is selected.
そして、読み込んだ音圧データに基づいて音圧区間を特定する音圧区間特定処理を実行する(ステップS2)。音圧区間特定処理では、読み込んだ音圧が予め設定しているいずれの音圧区間に該当するのかを判断する。
Then, a sound pressure section identifying process is executed to identify a sound pressure section based on the read sound pressure data (step S2). In the sound pressure section specifying process, it is determined which sound pressure section set in advance the read sound pressure corresponds to.
続いて、特定された音圧区間に基づいて使用する検量線を選択する検量線選択処理を実行する(ステップS3:選択部)。選択される検量線は、ここでは(数1)で特定される第1検量線、又は(数2)で特定される第2検量線のいずれか一方である。
Subsequently, a calibration curve selection process for selecting a calibration curve to be used based on the specified sound pressure interval is executed (step S3: selection unit). The selected calibration curve is either the first calibration curve specified by (Equation 1) or the second calibration curve specified by (Equation 2).
その後、音圧検出部6で検出された音圧データに基づいてステップS3で選択した検量線に従って漏洩量Qを算出する漏洩量算出処理を実行する(ステップS4:算出部)。漏洩量算出処理では、例えば、第1検量線が選択されていれば、検出された音圧Sを(数1)に代入して漏洩量Qを算出する。また、第2検量線が選択されていれば、検出された音圧Sを(数2)に代入して漏洩量Qを算出する。
After that, a leakage amount calculation process is executed to calculate the leakage amount Q according to the calibration curve selected in step S3 based on the sound pressure data detected by the sound pressure detection unit 6 (step S4: calculation unit). In the leakage amount calculation process, for example, if the first calibration curve is selected, the detected sound pressure S is substituted into (Equation 1) to calculate the leakage amount Q. Further, if the second calibration curve is selected, the detected sound pressure S is substituted into (Equation 2) to calculate the leakage amount Q.
このように、前記第1実施形態によれば、音圧Sの違いによって漏洩量Qの算出に使用する検量線を変更しているので、一連の処理の結果として推定される漏洩量Qと実際の漏洩量との誤差を抑えることができる。特に、音圧レベルが小さい微小リーク段階で、漏洩量Qを正確に推定することができるので、早期に漏洩箇所の修復等を行うことが可能となる。
As described above, according to the first embodiment, since the calibration curve used for calculating the leakage amount Q is changed depending on the difference in the sound pressure S, the leakage amount Q estimated as a result of a series of processing and the actual leakage amount Q It is possible to suppress the error from the leakage amount of In particular, since the leak amount Q can be accurately estimated at a minute leak stage where the sound pressure level is low, it is possible to repair the leak portion at an early stage.
(第2実施形態)
第2実施形態では、図5に示すように、前記第1実施形態とは、検出部3に音圧検出部6に加えて圧力検出部11を備える点で相違する。また、第2実施形態では、以下のようにして配管2内の気体の圧力の閾値を算出し、算出される圧力の閾値と比較して、漏洩検出対象物内の気体の圧力がいずれの圧力区間に属しているのかに基づいて検量線を選択し、漏洩量Qを推定するようにしている点でも、前記第1実施形態と相違する。なお、第1実施形態と同様な構成については同一符号を付してその説明を省略する。 (Second embodiment)
As shown in FIG. 5, the second embodiment is different from the first embodiment in that thedetection section 3 includes a pressure detection section 11 in addition to the sound pressure detection section 6 . Further, in the second embodiment, the threshold value of the pressure of the gas in the pipe 2 is calculated as follows, and compared with the calculated threshold value of the pressure, the pressure of the gas in the leak detection target is determined to be any pressure. It is also different from the first embodiment in that the calibration curve is selected based on whether it belongs to the interval and the leakage amount Q is estimated. In addition, the same code|symbol is attached|subjected about the structure similar to 1st Embodiment, and the description is abbreviate|omitted.
第2実施形態では、図5に示すように、前記第1実施形態とは、検出部3に音圧検出部6に加えて圧力検出部11を備える点で相違する。また、第2実施形態では、以下のようにして配管2内の気体の圧力の閾値を算出し、算出される圧力の閾値と比較して、漏洩検出対象物内の気体の圧力がいずれの圧力区間に属しているのかに基づいて検量線を選択し、漏洩量Qを推定するようにしている点でも、前記第1実施形態と相違する。なお、第1実施形態と同様な構成については同一符号を付してその説明を省略する。 (Second embodiment)
As shown in FIG. 5, the second embodiment is different from the first embodiment in that the
圧力検出部11は、配管2内に配置されている。圧力検出部11には、例えば、圧力センサを使用することができる。
The pressure detection unit 11 is arranged inside the pipe 2 . For example, a pressure sensor can be used for the pressure detection unit 11 .
配管2内の気体の絶対圧がP、配管外部の絶対圧(大気圧)がP0であるとき、漏洩部での流速v(M:マッハ数)は漏洩する気体の比熱比γを用いて次式で表される。
When the absolute pressure of the gas inside the pipe 2 is P and the absolute pressure outside the pipe (atmospheric pressure) is P 0 , the flow velocity v (M: Mach number) at the leaking part is given by using the specific heat ratio γ of the leaking gas: It is represented by the following formula.
そこで、(数3)から、(数1)と(数2)で特定される検量線を切り換える気体の絶対圧Pを算出する。そして、圧力値に基づいていずれの検量線を採用するのかの圧力区間を設定する。ここでは、漏洩部での気体の流速vがマッハ数M=1となるときの圧力値が、圧縮性音速流と圧縮性亜音速流の臨界値となる。これにより、臨界値よりも大きい第1圧力区間と第2圧力区間とに分けられ、圧力検出部7で検出される圧力値がいずれの圧力区間に属するのかを特定することができる。
Therefore, from (Equation 3), the absolute pressure P of the gas that switches the calibration curve specified by (Equation 1) and (Equation 2) is calculated. Then, based on the pressure value, a pressure interval is set to determine which calibration curve is to be used. Here, the pressure value when the flow velocity v of the gas at the leaking portion becomes Mach number M=1 is the critical value of the compressible sonic flow and the compressible subsonic flow. As a result, the pressure is divided into the first pressure section and the second pressure section, which are larger than the critical value, and it is possible to specify to which pressure section the pressure value detected by the pressure detection unit 7 belongs.
漏洩する気体が種類の異なるものであれば、(数3)の比熱比γの値が変化する。そして、(数3)から得られるPも変化する。したがって、いずれの検量線を採用するのかを判断するときの閾値圧力Pthも変化することになる。
If the leaking gas is of a different type, the value of the specific heat ratio γ in (Equation 3) will change. And P obtained from (Formula 3) also changes. Therefore, the threshold pressure P th when determining which calibration curve to adopt will also change.
また、配管外部の絶対圧P0が異なる場合も、(数3)から得られる配管2内の気体の絶対圧Pthも変化する。したがって、いずれの検量線を採用するのかを判断する閾値圧力Pthも変化することになる。
Also, when the absolute pressure P 0 outside the pipe is different, the absolute pressure P th of the gas inside the pipe 2 obtained from (Formula 3) also changes. Therefore, the threshold pressure P th for determining which calibration curve to adopt also changes.
このように、圧力区間は、配管外部の絶対圧や気体の種類の違いに基づく比熱比の違いを考慮して設定することができる。例えば、配管外部の絶対圧P0が大気圧(101.325kPa)に等しく、かつ漏洩する気体が空気や窒素である場合、比熱比γ=1.40であり、大気圧はP0=101.325kPaであるため、流速vの閾値であるマッハ数M=1を代入してP=191.8kPaを得ることができる。したがって、配管2内の圧力Pが大気圧P0よりも約90.4kPa高い圧力となれば、その流れはマッハ数M=1を満足することが分かる。そこで、(数1)で特定される検量線を選択し、漏洩量Qを推定すればよい。また、配管2内の圧力Pが約90.4kPa未満であれば、その流れはマッハ数M<1を満足することが分かる。そこで、(数2)で特定される検量線を選択し、漏洩量Qを推定する。
In this way, the pressure section can be set in consideration of the difference in the ratio of specific heats based on the difference in the absolute pressure outside the pipe and the type of gas. For example, when the absolute pressure P 0 outside the pipe is equal to the atmospheric pressure (101.325 kPa) and the leaking gas is air or nitrogen, the specific heat ratio γ=1.40 and the atmospheric pressure is P 0 =101. Since it is 325 kPa, P=191.8 kPa can be obtained by substituting the Mach number M=1, which is the threshold value of the flow velocity v. Therefore, if the pressure P in the pipe 2 is about 90.4 kPa higher than the atmospheric pressure P0, the flow satisfies the Mach number M=1. Therefore, the calibration curve specified by (Equation 1) should be selected to estimate the leakage amount Q. Further, it can be seen that the flow satisfies Mach number M<1 if the pressure P in the pipe 2 is less than about 90.4 kPa. Therefore, the calibration curve specified by (Equation 2) is selected, and the leak amount Q is estimated.
配管外部の絶対圧を実測し、漏洩気体の種類を調査して比熱比を特定することにより、検量線を切り替える閾値Pthを逐次計算して更新することもできるが、本実施形態では、最も漏洩が多いと予測される状況を、比熱比γ=1.40、P0=101.325kPaとして算出した閾値Pth=191.8kPa使用している。
It is also possible to sequentially calculate and update the threshold value P th for switching the calibration curve by actually measuring the absolute pressure outside the pipe, investigating the type of leaking gas, and specifying the specific heat ratio. A threshold value P th =191.8 kPa calculated with a ratio of specific heat γ=1.40 and P 0 =101.325 kPa is used for a situation in which a large amount of leakage is predicted.
第2実施形態での漏洩量推定処理について、図6に示すフローチャートに従って説明する。
The leakage amount estimation process in the second embodiment will be described according to the flowchart shown in FIG.
漏洩量推定処理では、まず、圧力検出部で検出された配管内の気体の圧力データを読み込む(ステップS11)。そして、読み込んだ圧力データに基づいて圧力区間を特定する(ステップS12)。圧力区間は、前述のように、気体の種別に応じた比熱比の違いを考慮し、流速に基づいて(数3)により得られた値から特定する。続いて、特定された圧力区分に基づいて使用する検量線を選択する検量線選択処理を実行する(ステップS13)。選択される検量線は、前記第1実施形態と同様、(数1)で特定される第1検量線と、(数2)で特定される第2検量線の2種類である。
In the leakage amount estimation process, first, the pressure data of the gas inside the pipe detected by the pressure detection unit is read (step S11). Then, the pressure section is specified based on the read pressure data (step S12). As described above, the pressure interval is specified from the value obtained by (Equation 3) based on the flow velocity, considering the difference in the specific heat ratio depending on the type of gas. Subsequently, a calibration curve selection process is executed to select a calibration curve to be used based on the specified pressure category (step S13). The calibration curves to be selected are two types, the first calibration curve specified by (Equation 1) and the second calibration curve specified by (Equation 2), as in the first embodiment.
また、音圧検出部6で検出された漏洩箇所から漏れ出る気体の音波の音圧を読み込み(ステップS14)、その音圧データに基づいてステップS13で選択した検量線に従って漏洩量Qを算出する漏洩量算出処理を実行する(ステップS15:算出部)。この漏洩量算出処理は、前記第1実施形態と同様である。
Further, the sound pressure of the sound wave of the gas leaking from the leakage point detected by the sound pressure detection unit 6 is read (step S14), and the leakage amount Q is calculated according to the calibration curve selected in step S13 based on the sound pressure data. A leakage amount calculation process is executed (step S15: calculation unit). This leakage amount calculation process is the same as that of the first embodiment.
このように、第2実施形態によれば、圧力区間は、前述のように、気体の種別に応じた比熱比γの違いを考慮し、流速vに基づいて(数3)により得られた値から設定することができる。したがって、より一層、気体の漏洩量を正確に推定することが可能となる。
Thus, according to the second embodiment, as described above, the pressure interval is the value obtained by (Equation 3) based on the flow velocity v, considering the difference in the specific heat ratio γ depending on the type of gas. can be set from Therefore, it is possible to more accurately estimate the gas leakage amount.
なお、本発明は、前記実施形態に記載された構成に限定されるものではなく、種々の変更が可能である。
It should be noted that the present invention is not limited to the configurations described in the above embodiments, and various modifications are possible.
前記実施形態では、2つの検量線に基づいて漏洩量Qを推定するようにしたが、1つの検量線で推定するようにしてもよい。具体的に、次式によれば、(数1)及び(数2)で特定される2つの検量線を1つの検量線に近似することができ、音圧レベルの違いによって検量線を選択する必要がなくなる。
In the above embodiment, the leakage amount Q is estimated based on two calibration curves, but it may be estimated using one calibration curve. Specifically, according to the following equation, the two calibration curves specified by (Equation 1) and (Equation 2) can be approximated to one calibration curve, and the calibration curve is selected according to the difference in sound pressure level no longer needed.
前記実施形態では、測定環境の違いについては考慮しなかったが、考慮するようにしてもよく、例えば、以下のような場合が考えられる。
In the above embodiment, the difference in the measurement environment was not considered, but it may be considered, for example, the following cases are conceivable.
前記実施形態では、漏洩箇所と測定位置(音圧検出部6)との間の距離については考慮しなかったが、この距離の違いに応じて推定される漏洩量Qを補正するのが好ましい。具体的に、漏洩により発生する音圧レベルは、漏洩箇所から離れるに従って減衰する。そこで、この減衰量を考慮して音圧レベルを補正することにより漏洩量Qを推定する。例えば、規格ISO-9613に基づいて、幾何拡散による減衰及び大気吸収による減衰を考慮して音圧レベルを補正することができる。
In the above embodiment, the distance between the leak location and the measurement position (sound pressure detection unit 6) was not considered, but it is preferable to correct the estimated leak amount Q according to the difference in this distance. Specifically, the sound pressure level generated by the leak attenuates with increasing distance from the leak location. Therefore, the amount of leakage Q is estimated by correcting the sound pressure level in consideration of this amount of attenuation. For example, based on the standard ISO-9613, the sound pressure level can be corrected in consideration of attenuation due to geometric diffusion and attenuation due to atmospheric absorption.
規格ISO-9613によると、大気吸収による減衰量は、漏洩箇所と測定位置(音圧検出部6)での温度、湿度、気圧の違い、又測定に使用する超音波の周波数によっても変化する。このため、これらのパラメータも考慮して音圧レベルを補正するようにしてもよい。また同様に、減衰量は、床、壁等での反射を考慮するようにしてもよい。
According to the standard ISO-9613, the amount of attenuation due to atmospheric absorption changes depending on the difference in temperature, humidity, and air pressure between the leak location and the measurement location (sound pressure detection unit 6), and also the frequency of the ultrasonic waves used for measurement. Therefore, these parameters may also be taken into consideration when correcting the sound pressure level. Similarly, the amount of attenuation may take into account reflections from floors, walls, and the like.
前記実施形態では、漏洩の検出角度については考慮しなかったが、この検出角度の違いに応じて推定される漏洩量Qを補正するのが好ましい。具体的に、音圧レベルが同一であっても、検出部3(超音波マイク8)の指向方向と漏洩位置の噴出方向との間の角度が相違すると、検出される音圧Sから推定される気体の漏洩量Qと実際の気体の漏洩量Qとは相違する。そこで、漏洩箇所での噴出方向を検出し、この噴出方向と検出部の指向方向とが成す角度に基づいて漏洩量Qの誤差を低減すればよい。漏洩する気体の噴出方向に対し、検出部3の指向方向が成す角度が15°から35°(最適には20°)となるようにして検出すると、音圧Sが最大値となった。このため、この角度で検出した音圧Sに基づいて検量線を作成すればよいことが分かる。但し、配管2の亀裂や腐食による漏洩では噴出方向を把握するのは難しい。そこで、漏洩箇所に対してマイクロホンを向ける角度を種々変更し、検出される音圧Sが最大となる角度での音圧Sを検出データとして読み込むようにするのが好ましい。例えば、検出部3を、漏洩箇所を中心する同一円又は球面上で移動させて漏洩する気体が発する音波の音圧を検出すればよい。また、検出部3は、漏洩箇所までの距離を測定する装置と連携させ、測定される距離による減衰補正を行うことにより最大漏洩量を推定するようにしてもよい。
In the above embodiment, the leak detection angle was not considered, but it is preferable to correct the estimated leak amount Q according to the difference in the detection angle. Specifically, even if the sound pressure level is the same, if the angle between the pointing direction of the detection unit 3 (ultrasonic microphone 8) and the ejection direction of the leak position is different, the detected sound pressure S can be estimated as The leakage amount Q of the gas is different from the actual leakage amount Q of the gas. Therefore, the error of the leakage amount Q can be reduced based on the angle formed by the jetting direction at the leak point and the orientation direction of the detection unit. The sound pressure S reached its maximum value when the angle formed by the pointing direction of the detection unit 3 with respect to the jetting direction of the leaking gas was 15° to 35° (optimally 20°). Therefore, it can be seen that the calibration curve should be created based on the sound pressure S detected at this angle. However, it is difficult to ascertain the jetting direction in the case of leakage due to cracks or corrosion in the pipe 2 . Therefore, it is preferable to change the angle at which the microphone is directed toward the leakage point and to read the sound pressure S at the angle at which the detected sound pressure S becomes maximum as the detection data. For example, the detection unit 3 may be moved on the same circle or spherical surface centering on the leak point to detect the sound pressure of the sound wave emitted by the leaking gas. Further, the detection unit 3 may be associated with a device that measures the distance to the leak point, and perform attenuation correction based on the measured distance to estimate the maximum leak amount.
前記実施形態では、漏洩量推定装置1が、検出部3、記憶部4及び制御部5を全て備える構成としたが、これらは必ずしも1つの機器が備える構成としなくてもよく、インターネット等により接続された異なる機器で構成するようにしてもよい。例えば、図7に示すように、検出部3及び通信部12を備えた第1機器13をドローン等で現場に送り、得られたデータをサーバ14側の制御部5で把握して漏洩量を推定するようにしてもよい。また、記憶部4をサーバ14側に設け、クライアント側の制御部5で漏洩量を推定するようにしてもよい。各機器は、前記検出部3等の各部材を単独で構成しても、適宜組み合わせた構成としてもよく、その使用形態は自由に設定することができる。
In the above-described embodiment, the leakage amount estimation device 1 is configured to include all of the detection unit 3, the storage unit 4, and the control unit 5, but these may not necessarily be configured to be included in one device. may be configured with different devices that are For example, as shown in FIG. 7, the first device 13 equipped with the detection unit 3 and the communication unit 12 is sent to the site by a drone or the like, and the obtained data is grasped by the control unit 5 on the server 14 side to determine the amount of leakage. You may make it estimate. Alternatively, the storage unit 4 may be provided on the server 14 side, and the leakage amount may be estimated by the control unit 5 on the client side. Each device may be composed of each member such as the detection unit 3 alone or may be configured by appropriately combining the members, and its usage pattern can be freely set.
1 漏洩量推定装置
2 配管(漏洩検出対象物)
3 検出部
4 記憶部
5 制御部
6 音圧検出部
7 パラボラ反射板
8 超音波マイク
9 選択部
10 推定部
11 圧力検出部 1 Leakamount estimation device 2 Pipe (leak detection object)
3detection unit 4 storage unit 5 control unit 6 sound pressure detection unit 7 parabolic reflector 8 ultrasonic microphone 9 selection unit 10 estimation unit 11 pressure detection unit
2 配管(漏洩検出対象物)
3 検出部
4 記憶部
5 制御部
6 音圧検出部
7 パラボラ反射板
8 超音波マイク
9 選択部
10 推定部
11 圧力検出部 1 Leak
3
Claims (15)
- 漏洩検出対象物から気体が漏洩するときに得られる、前記漏洩に伴って発生する気体の音波の音圧を含むパラメータと、前記気体の漏洩量との関係を示す複数の検量線を準備し、
前記漏洩検出対象物から気体が漏洩するときに前記パラメータを検出し、
前記検出した前記パラメータに基づいて、前記準備した検量線のうちのいずれか1つを選択し、
前記検出したパラメータのうち、漏洩に伴って発生する気体の音波の音圧に基づいて、前記選択した検量線から漏洩量を推定する、漏洩量推定方法。 Preparing a plurality of calibration curves showing the relationship between the parameters including the sound pressure of the sound wave of the gas generated in association with the leakage, which is obtained when the gas leaks from the leakage detection target, and the leakage amount of the gas,
detecting the parameter when gas leaks from the leakage detection object;
selecting any one of the prepared calibration curves based on the detected parameter;
A leakage amount estimation method for estimating the leakage amount from the selected calibration curve based on the sound pressure of gas sound waves generated by leakage among the detected parameters. - 前記複数の検量線は、線形関数で表される検量線と、非線形関数で表される検量線を含む、請求項1に記載の漏洩量推定方法。 The leakage amount estimation method according to claim 1, wherein the plurality of calibration curves include a calibration curve represented by a linear function and a calibration curve represented by a nonlinear function.
- 前記係数cは3である、請求項3に記載の漏洩量推定方法。 The leakage amount estimation method according to claim 3, wherein the coefficient c is 3.
- 前記パラメータは、前記漏洩検出対象物から気体が漏洩するときの前記漏洩検出対象物内の気体の圧力であり、
前記漏洩検出対象物内の気体の圧力が相違する複数の圧力区間を設定し、
前記複数の検量線から前記設定した圧力区間毎に適用する検量線を決定する、請求項1から4のいずれか1項に記載の漏洩量推定方法。 the parameter is the pressure of the gas in the leak detection target when the gas leaks from the leak detection target;
setting a plurality of pressure intervals in which the gas pressure in the leakage detection target is different;
The leakage amount estimation method according to any one of claims 1 to 4, wherein a calibration curve to be applied to each of the set pressure sections is determined from the plurality of calibration curves. - 前記検量線の数が2であるとき、前記数式で、M=1として適用する検量線を切り換える閾値を算出する、請求項6に記載の漏洩量推定方法。 The leakage amount estimation method according to claim 6, wherein when the number of the calibration curves is 2, the threshold for switching the calibration curve to be applied is calculated with M=1 in the formula.
- 前記パラメータは、前記漏洩検出対象物から気体が漏洩するときの音波の音圧であり、
前記音圧が相違する複数の音圧区間を設定し、
前記複数の検量線から前記設定した音圧区間毎に適用する検量線を決定する、請求項1から4のいずれか1項に記載の漏洩量推定方法。 the parameter is the sound pressure of sound waves when gas leaks from the leakage detection target;
setting a plurality of sound pressure intervals with different sound pressures;
The leakage amount estimation method according to any one of claims 1 to 4, wherein a calibration curve to be applied to each of the set sound pressure intervals is determined from the plurality of calibration curves. - 前記音圧区間の閾値は、模擬漏洩検出物において予め設定した圧力閾値で発生する音圧を使用する、請求項8に記載の漏洩量推定方法。 The leakage amount estimation method according to claim 8, wherein the threshold value of the sound pressure interval uses a sound pressure generated at a preset pressure threshold value in the simulated leak detection object.
- 決定した複数の検量線を1つの近似関数とする、請求項1から9のいずれか1項に記載の漏洩量推定方法。 The leakage amount estimation method according to any one of claims 1 to 9, wherein a plurality of determined calibration curves are used as one approximation function.
- 前記音波の音圧を、測定環境から予想される減衰量に基づいて補正する、請求項1から10のいずれか1項に記載の漏洩量推定方法。 The leakage amount estimation method according to any one of claims 1 to 10, wherein the sound pressure of the sound wave is corrected based on the amount of attenuation expected from the measurement environment.
- 前記音波の音圧を所定時間測定し、ピークホールドにより最大音圧又は最大漏洩量を検出する、請求項1から11のいずれか1項に記載の漏洩量推定方法。 The leakage amount estimation method according to any one of claims 1 to 11, wherein the sound pressure of the sound wave is measured for a predetermined period of time, and the maximum sound pressure or the maximum leakage amount is detected by peak hold.
- 前記音波の音圧を複数方向から測定し、ピークホールドにより最大音圧又は最大漏洩量を検出する、請求項1から12のいずれか1項に記載の漏洩量推定方法。 The leakage amount estimation method according to any one of claims 1 to 12, wherein the sound pressure of the sound wave is measured from a plurality of directions, and the maximum sound pressure or the maximum leakage amount is detected by peak hold.
- 漏洩検出対象物から気体が漏洩するときに得られる、前記漏洩に伴って発生する気体の音波の音圧を含むパラメータと、前記気体の漏洩量との関係を示す複数の検量線を記憶する記憶部と、
前記漏洩検出対象物から気体が漏洩するときに前記パラメータを検出する検出部と、
前記パラメータから、前記複数の検量線のうちのいずれかを選択する選択部と、
前記検出した漏洩に伴って発生する気体の音波の音圧に基づいて、前記選択した検量線から漏洩量を推定する推定部と、
を備える漏洩量測定装置。 A memory for storing a plurality of calibration curves indicating the relationship between a parameter obtained when gas leaks from a leak detection object and including the sound pressure of sound waves of the gas generated along with the leak, and the leak amount of the gas. Department and
a detection unit that detects the parameter when gas leaks from the leakage detection target;
a selection unit that selects one of the plurality of calibration curves from the parameters;
an estimating unit for estimating the amount of leakage from the selected calibration curve based on the sound pressure of the gas sound wave generated by the detected leakage;
A leakage measurement device comprising: - 漏洩検出対象物から気体が漏洩するときに得られる、前記漏洩に伴って発生する気体の音波の音圧を含むパラメータと、前記気体の漏洩量との関係を示す複数の検量線を記憶する記憶部と、
前記漏洩検出対象物から気体が漏洩するときに前記パラメータを検出する検出部と、
前記パラメータから、前記複数の検量線のうちのいずれかを選択する選択部と、
前記検出した、前記漏洩に伴って発生する気体の音波の音圧に基づいて、前記選択した検量線から漏洩量を推定する推定部と、
を備える漏洩量測定システム。 A memory for storing a plurality of calibration curves indicating the relationship between a parameter obtained when gas leaks from a leak detection object and including the sound pressure of sound waves of the gas generated along with the leak, and the leak amount of the gas. Department and
a detection unit that detects the parameter when gas leaks from the leakage detection target;
a selection unit that selects one of the plurality of calibration curves from the parameters;
an estimating unit for estimating the amount of leakage from the selected calibration curve based on the detected sound pressure of the gas sound wave generated by the leakage;
Leakage measurement system.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021570182A JP7075549B1 (en) | 2021-02-25 | 2021-02-25 | Leakage amount estimation method, leak amount estimation device and leak amount estimation system |
PCT/JP2021/007173 WO2022180748A1 (en) | 2021-02-25 | 2021-02-25 | Leakage amount estimation method, leakage amount estimation device, and leakage amount estimation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/007173 WO2022180748A1 (en) | 2021-02-25 | 2021-02-25 | Leakage amount estimation method, leakage amount estimation device, and leakage amount estimation system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022180748A1 true WO2022180748A1 (en) | 2022-09-01 |
Family
ID=81746674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/007173 WO2022180748A1 (en) | 2021-02-25 | 2021-02-25 | Leakage amount estimation method, leakage amount estimation device, and leakage amount estimation system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7075549B1 (en) |
WO (1) | WO2022180748A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117168719A (en) * | 2023-09-05 | 2023-12-05 | 嘉兴德鑫电子科技有限公司 | Method and system for detecting air tightness leakage of terminal block for new energy automobile |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4201092A (en) * | 1977-09-06 | 1980-05-06 | Electric Power Research Institute, Inc. | Method of detecting and monitoring a leak caused by a through wall crack in a high pressure fluid system |
JPH07253376A (en) * | 1994-03-15 | 1995-10-03 | Tlv Co Ltd | Leakage-amount measuring apparatus |
US6247353B1 (en) * | 1998-05-04 | 2001-06-19 | Csi Technology, Inc. | Digital ultrasonic monitoring system and method |
JP2002122506A (en) * | 2000-10-13 | 2002-04-26 | Tlv Co Ltd | Ultrasonic leak quantity measuring device |
US20150276540A1 (en) * | 2014-03-26 | 2015-10-01 | General Monitors, Inc. | Ultrasonic gas leak detectors and testing methods |
KR20180014998A (en) * | 2016-08-02 | 2018-02-12 | 주식회사 포스코 | Leak rate measuring appratus |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5136876A (en) * | 1987-01-16 | 1992-08-11 | The Dow Chemical Company | Apparatus and process for determining fluid leak rates |
JP4317563B2 (en) * | 2006-12-12 | 2009-08-19 | 株式会社大阪チタニウムテクノロジーズ | Gas leak rate measurement method and gas piping maintenance method |
JP4832538B2 (en) * | 2009-02-26 | 2011-12-07 | 株式会社テイエルブイ | Discharge flow rate measurement method |
JP2014149208A (en) * | 2013-01-31 | 2014-08-21 | Mitsubishi Heavy Ind Ltd | Leak detector and leak detection method |
MY185588A (en) * | 2014-10-07 | 2021-05-24 | Tlv Co Ltd | Fluid leakage data management apparatus and management system |
-
2021
- 2021-02-25 JP JP2021570182A patent/JP7075549B1/en active Active
- 2021-02-25 WO PCT/JP2021/007173 patent/WO2022180748A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4201092A (en) * | 1977-09-06 | 1980-05-06 | Electric Power Research Institute, Inc. | Method of detecting and monitoring a leak caused by a through wall crack in a high pressure fluid system |
JPH07253376A (en) * | 1994-03-15 | 1995-10-03 | Tlv Co Ltd | Leakage-amount measuring apparatus |
US6247353B1 (en) * | 1998-05-04 | 2001-06-19 | Csi Technology, Inc. | Digital ultrasonic monitoring system and method |
JP2002122506A (en) * | 2000-10-13 | 2002-04-26 | Tlv Co Ltd | Ultrasonic leak quantity measuring device |
US20150276540A1 (en) * | 2014-03-26 | 2015-10-01 | General Monitors, Inc. | Ultrasonic gas leak detectors and testing methods |
KR20180014998A (en) * | 2016-08-02 | 2018-02-12 | 주식회사 포스코 | Leak rate measuring appratus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117168719A (en) * | 2023-09-05 | 2023-12-05 | 嘉兴德鑫电子科技有限公司 | Method and system for detecting air tightness leakage of terminal block for new energy automobile |
CN117168719B (en) * | 2023-09-05 | 2024-04-05 | 嘉兴德鑫电子科技有限公司 | A method and system for detecting airtightness leakage of terminal blocks for new energy vehicles |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022180748A1 (en) | 2022-09-01 |
JP7075549B1 (en) | 2022-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104501938B (en) | A kind of method that underwater sound source low frequency radiation acoustical power is measured in the rectangle reverberation tank being placed in air | |
JP5942085B2 (en) | Flow rate correction coefficient setting method and flow rate measuring apparatus using the same | |
JP2007529009A (en) | Method and system for calculating the travel time of an ultrasonic pulse | |
WO2022180748A1 (en) | Leakage amount estimation method, leakage amount estimation device, and leakage amount estimation system | |
KR102038689B1 (en) | Apparatus for sensing leakage of pipe using distance-difference frequency analysis and method thereof | |
WO2015141129A1 (en) | Speed-of-sound calculation device, speed-of-sound calculation method, and speed-of-sound calculation program | |
JP7078060B2 (en) | Analytical instrument and diagnostic system | |
JP2020038218A5 (en) | Processing equipment, inspection systems, processing methods, programs, and storage media | |
JP6364742B2 (en) | Structure diagnosis apparatus, structure diagnosis method, and program | |
US20210341350A1 (en) | Method for generating an exciter signal and for acoustic measuring in technical hollow spaces | |
KR20200040553A (en) | Defect diagnostics apparatus and method using acoustic emission sensor | |
JP7096928B1 (en) | Leakage amount estimation method, leak amount estimation device and leak amount estimation system | |
JP5265327B2 (en) | Method and system for calculating acoustic impedance | |
JP7150648B2 (en) | Ultrasonic flaw detection device, ultrasonic flaw detection method, and ultrasonic flaw detection program | |
JP6411287B2 (en) | Acoustic performance estimation method, acoustic performance estimation apparatus, and acoustic performance estimation program | |
CN116973442A (en) | Method and system for detecting defects of composite pipeline | |
JP4904099B2 (en) | Pulse signal propagation time measurement device and ultrasonic flow measurement device | |
KR102265747B1 (en) | Detection system including sensors and method of operation thereof | |
JP5436918B2 (en) | Active feedback control device, method, and program | |
KR102008805B1 (en) | Apparatus and method for detecting defects in pipeline | |
Zhang et al. | The investigation of the method for measuring the low-frequency radiated sound power in a reverberation tank | |
US20230175909A1 (en) | Systems and methods for non-invasive determination of properties of pressure vessels | |
JP2013231679A (en) | Temperature measurement device and temperature measurement method | |
EP4484913A1 (en) | A method of determining a location of a failure event in a pressurised fluid duct | |
JP7147305B2 (en) | PIPING DIAGNOSTIC METHOD, PIPING DIAGNOSTIC DEVICE, AND PIPING DIAGNOSTIC SYSTEM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021570182 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21927850 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21927850 Country of ref document: EP Kind code of ref document: A1 |