[go: up one dir, main page]

WO2022176259A1 - 光コネクタ用フェルール、光コネクタ、および光コネクタの製造方法 - Google Patents

光コネクタ用フェルール、光コネクタ、および光コネクタの製造方法 Download PDF

Info

Publication number
WO2022176259A1
WO2022176259A1 PCT/JP2021/037103 JP2021037103W WO2022176259A1 WO 2022176259 A1 WO2022176259 A1 WO 2022176259A1 JP 2021037103 W JP2021037103 W JP 2021037103W WO 2022176259 A1 WO2022176259 A1 WO 2022176259A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fiber holes
group
optical connector
holes
Prior art date
Application number
PCT/JP2021/037103
Other languages
English (en)
French (fr)
Inventor
陽文 木村
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2023500519A priority Critical patent/JP7540070B2/ja
Priority to US18/253,397 priority patent/US20240012207A1/en
Publication of WO2022176259A1 publication Critical patent/WO2022176259A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3838Means for centering or aligning the light guide within the ferrule using grooves for light guides
    • G02B6/3839Means for centering or aligning the light guide within the ferrule using grooves for light guides for a plurality of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type

Definitions

  • the present invention relates to an optical connector ferrule, an optical connector, and an optical connector manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2021-023589 filed in Japan on February 17, 2021, the content of which is incorporated herein.
  • Patent Document 1 discloses a ferrule for an optical connector having a plurality of fiber holes arranged two-dimensionally on the connection end face. A plurality of guide grooves extending rearward are provided at each rear end portion of the plurality of fiber holes in the insertion direction.
  • a plurality of guide grooves are formed stepwise, and each step has a constant dimension in the insertion direction.
  • the size of the ferrule in the insertion direction increases according to the number of rows of fiber holes, that is, the number of stages of guide grooves.
  • the present invention has been made in consideration of such circumstances, and it is an object of the present invention to suppress an increase in the size of a ferrule for an optical connector in the insertion direction even if the number of rows of fiber holes is increased.
  • an optical connector ferrule provides a main body having a plurality of fiber holes through which a plurality of optical fibers are inserted, and a connection end surface through which the plurality of fiber holes are opened. and the plurality of fiber holes are arranged in a first direction at a predetermined pitch on the connection end face, and the plurality of fiber holes in a second direction orthogonal to the first direction. and a plurality of second fiber holes arranged at positions different from the first fiber holes and arranged at the pitch in the first direction, wherein the plurality of second fiber holes are the plurality of first fiber holes.
  • the inside of the main body includes the A plurality of first guide grooves extending rearward from respective rear ends of the plurality of first fiber holes, and a plurality of second guide grooves extending rearward from respective rear ends of the plurality of second fiber holes.
  • a groove is formed, and the plurality of second guide grooves are longer in the insertion direction than the plurality of first guide grooves.
  • each of the plurality of optical fibers can be easily inserted into the second fiber hole by running along the second guide groove having a long dimension in the insertion direction.
  • the upper surfaces of the plurality of optical fibers (hereinafter referred to as second optical fibers) inserted through the second fiber holes form recesses.
  • the first fiber hole and the second fiber hole are in a so-called hexagonal packing arrangement, the bottom surface of another optical fiber (hereinafter referred to as the first optical fiber) is placed in the recess formed by the second optical fiber.
  • the first optical fiber By running along, the first optical fiber can be guided to the first guide groove located behind the first fiber hole. The first guide groove can then guide the first optical fiber to the first fiber hole.
  • the role of guiding the first optical fiber to the first fiber hole is played by the concave portion formed by the second optical fiber.
  • One optical fiber can be smoothly inserted through the first fiber hole. Further, compared to the case where the first guide groove and the second guide groove have the same dimension, the dimension in the insertion direction of the optical connector ferrule can be reduced.
  • the plurality of fiber holes are arranged at positions different from the plurality of first fiber holes and the plurality of second fiber holes in the second direction, and are arranged at the pitch in the first direction.
  • the plurality of second fiber holes are located between the plurality of first fiber holes and the plurality of third fiber holes in the second direction, and are located inside the body portion is formed with a plurality of third guide grooves extending rearward from respective rear end portions of the plurality of third fiber holes, wherein the plurality of third guide grooves are arranged more than the plurality of first guide grooves.
  • the dimension in the insertion direction may be long.
  • the upper surface of the main body has a window communicating with the internal space of the main body. may be formed.
  • An optical connector includes a plurality of optical fibers and any one of the optical connector ferrules described above, and the plurality of optical fibers each include a bare portion and a coating covering the bare portion. and a portion, and the outer diameter of the covering portion and the pitch may be substantially the same.
  • any one of the optical connector ferrules described above is prepared, and the plurality of second optical fibers are passed through the plurality of second guide grooves.
  • a plurality of first optical fibers are inserted into the holes, moved along the surface of the plurality of second optical fibers, and respectively inserted into the plurality of first fiber holes.
  • FIG. 1 is a perspective view of an optical connector according to a first embodiment
  • FIG. FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1, omitting an optical fiber
  • 1 is a perspective view of an optical fiber according to a first embodiment
  • FIG. 3 is a diagram showing how an optical fiber is inserted into the ferrule and boot of FIG. 2; FIG. It is the figure which showed the process following FIG. 4A.
  • FIG. 4C is a diagram showing a process following FIG. 4B
  • FIG. 4D is a cross-sectional view taken along IVD-IVD of FIG. 4C. It is the figure which looked at the ferrule in 2nd Embodiment from the connection end surface side.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 5; It is the figure which looked at the ferrule in 3rd Embodiment from the connection end surface side.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7;
  • FIG. 9 is a diagram showing how an optical fiber is inserted into the ferrule and boot of FIG. 8; It is the figure which showed the process following FIG. 9A.
  • FIG. 9B is a diagram showing a process following FIG. 9B;
  • FIG. 9C is a diagram showing a process following FIG. 9C;
  • the optical connector C includes an optical connector ferrule (hereinafter simply referred to as ferrule 1A), a plurality of optical fibers 20, a boot 30, and two guide pins 40.
  • ferrule 1A has a body portion 10.
  • FIG. 1 shows an optical connector ferrule (hereinafter simply referred to as ferrule 1A), a plurality of optical fibers 20, a boot 30, and two guide pins 40.
  • the ferrule 1A has a body portion 10.
  • FIG. 1A optical connector ferrule
  • the main body 10 has a plurality of fiber holes 11 through which the plurality of optical fibers 20 are inserted, and a connection end surface 10a through which the plurality of fiber holes 11 are opened.
  • the plurality of fiber holes 11 form a plurality (two in this embodiment) of hole groups.
  • each hole group may be referred to as "first hole group G1", “second hole group G2", etc. for ease of explanation.
  • Each hole group includes a plurality of fiber holes 11 arranged side by side at a predetermined pitch P in a predetermined direction.
  • guide grooves 12 are provided at the ends of the plurality of fiber holes 11 opposite to the connecting end face 10a.
  • the fiber holes included in the first hole group G1 and the second hole group G2 may be called the first fiber hole, the second fiber hole, and the like.
  • the guide groove 12 provided at the rear end of the first fiber hole may be called “first guide groove 12A”
  • the guide groove 12 provided at the rear end of the second fiber hole may be called “second guide groove 12B”.
  • the optical fibers 20 inserted through the first hole group G1 and the second hole group G2 are sometimes called “first fiber group F1" and "second fiber group F2", respectively.
  • the number of fiber holes included in each hole group can be changed as appropriate, and may be two or more.
  • the ferrule 1A may have a portion other than the main body portion 10.
  • the direction in which the optical fiber 20 is inserted through the fiber hole 11 is referred to as the insertion direction X.
  • the side of the connecting end face 10a (+X side) is called the forward or distal side, and the opposite side ( ⁇ X side) is called the rearward or proximal side.
  • the plurality of fiber holes 11 are two-dimensionally arranged in the first direction Y and the second direction Z on the connection end surface 10a.
  • the first direction Y is also the direction in which the plurality of fiber holes 11 are arranged in each fiber group.
  • One side in the first direction Y is called the +Y side, and the other side is also called the -Y side.
  • the second direction Z is a direction perpendicular to the first direction Y on the connection end face 10a.
  • the first hole group G1 side (+Z side) in the second direction Z is called upward, and the second hole group G2 side ( ⁇ Z side) is called downward.
  • a cross section perpendicular to the insertion direction X is called a "cross section.”
  • the insertion direction X is orthogonal to the first direction Y and the second direction Z. As shown in FIG. However, as long as the insertion direction X intersects the first direction Y and the second direction Z, it does not necessarily have to be orthogonal.
  • the optical fiber 20 has a bare portion 21 and a covering portion 22 that covers the bare portion 21 .
  • the bare portion 21 includes a core and clad (not shown).
  • the cladding has a lower refractive index than the core and covers the core. Therefore, light can be confined inside the core.
  • the material of the bare portion 21 may be glass or plastic.
  • the covering portion 22 is removed, and the bare portion 21 is exposed.
  • a plurality of optical fibers 20 inserted through the same group of holes may be connected to each other to form a ribbon core.
  • the optical connector C of the present embodiment may include a first ribbon fiber that is inserted through the first hole group G1 and a second ribbon fiber that is inserted through the second hole group G2. .
  • the main body portion 10 has a connection end surface 10a, a main body upper surface (upper surface) 10b, and a main body lower surface (lower surface) 10c.
  • a window 14 communicating with the internal space S of the main body portion 10 is formed in the main body upper surface 10b.
  • the window 14 is positioned closer to the first hole group G1 than to the second hole group G2.
  • the formation of the window 14 improves visibility when the optical fiber 20 is inserted through the fiber hole 11 .
  • the optical fiber 20 can be fixed to the ferrule 1A.
  • the window 14 may not be formed in the body portion 10 .
  • a plurality of fiber holes 11 and two guide pin holes 13 are opened in the connecting end face 10a.
  • a guide pin 40 is inserted through each guide pin hole 13 .
  • a boot insertion opening 15 into which a boot 30 is inserted is provided at the rear of the body portion 10 .
  • An abutment surface 15 a is provided at the tip of the inner surface of the boot insertion opening 15 .
  • the optical connector C in FIG. 1 is male and has a guide pin 40 , but the female optical connector C (not shown) does not have the guide pin 40 .
  • the two optical connectors C are aligned by inserting the guide pin 40 of the optical connector C on the male side into the guide pin hole 13 of the optical connector C on the female side.
  • a so-called “Hexagonal packing arrangement” is adopted for the two-dimensional arrangement of the plurality of fiber holes 11 .
  • the positions of the fiber holes 11 in the first direction Y are shifted by approximately half the pitch P between the first hole group G1 and the second hole group G2.
  • substantially half includes the case where the deviation amount of the fiber holes 11 in the first direction Y can be considered to be half the pitch P if manufacturing errors are eliminated.
  • the pitch P is substantially equal to the outer diameter R (see FIG. 4D) of the coated portion 22 of the optical fiber 20 .
  • the term “substantially equal” includes the case where the pitch P and the outer diameter R can be considered equal if manufacturing errors are eliminated.
  • the pitch P is preferably 200 ⁇ m.
  • the fiber hole 11 has a small diameter portion 11a and a large diameter portion 11b.
  • the small diameter portion 11a extends along the insertion direction X while opening at the connection end surface 10a.
  • the large diameter portion 11b communicates with the small diameter portion 11a and extends rearward from the rear end of the small diameter portion 11a.
  • the inner diameter of the small-diameter portion 11a is constant along the insertion direction X.
  • the inner surface of the front end portion of the large diameter portion 11b is tapered such that the inner diameter decreases toward the front.
  • the inner diameter at the front end of the large diameter portion 11b is equal to the inner diameter of the small diameter portion 11a, and the inner diameter at the rear end of the large diameter portion 11b is larger than the inner diameter of the small diameter portion 11a.
  • the guide groove 12 extends rearward from the rear end of the fiber hole 11 (large diameter portion 11b).
  • the guide groove 12 is arc-shaped (U-shaped) opening upward in a cross-sectional view.
  • the inner diameter at the front end of the guide groove 12 is equal to the inner diameter at the rear end of the large diameter portion 11b, and the guide groove 12 may have a tapered structure in which the inner diameter increases toward the rear.
  • the depth of the groove in the second direction Z may be smaller than the depth of the groove at the front end of the guide groove 12 .
  • the guide groove 12 may be V-shaped or the like that opens upward in a cross-sectional view.
  • the plurality of guide grooves 12 are formed stepwise.
  • the rear end of the first guide groove 12A is formed forward of the rear end of the second guide groove 12B.
  • all of the guide grooves 12 are exposed to the internal space S, making it easier for the operator to visually recognize them through the window 14 .
  • the dimension in the insertion direction X of the first guide groove 12A is set shorter than that of the second guide groove 12B.
  • the guide groove 12 serves to guide the optical fiber 20 inserted from behind into the fiber hole 11 .
  • the structures of the fiber holes 11 and the guide grooves 12 may be modified as appropriate.
  • the large diameter portion 11b may be removed and the guide groove 12 may be directly connected to the small diameter portion 11a.
  • the guide groove 12 may have a tapered structure in which the inner diameter increases toward the rear.
  • the boot 30 has a tubular shape extending along the insertion direction X.
  • the boot 30 is inserted into the body portion 10 so that the front surface of the boot 30 contacts the contact surface 15a.
  • the inside of the boot 30 communicates with the internal space S of the main body 10 and serves as an insertion port for the optical fiber 20 .
  • each process may be called a “first insertion process” and a “second insertion process”.
  • the first insertion process is a process of inserting the fiber group into the corresponding hole group mainly using the guide groove 12 . In this embodiment, this process is applied to the second fiber group F2. The first insertion process will be specifically described below with reference to FIGS. 4A and 4B.
  • each bare portion 21 of the second fiber group F2 into contact with the inner surface of the second guide groove 12B.
  • the plurality of optical fibers 20 may be moved simultaneously to abut on the inner surfaces of the second guide grooves 12B. .
  • each optical fiber 20 may be moved individually.
  • the operator can visually recognize each bare portion 21 and the second guide groove 12B through the window 14 .
  • the bare portion 21 moves along the inner surface of the second guide groove 12B and the inner surface of the large diameter portion 11b and is inserted into the small diameter portion 11a.
  • the second inserting process is a process of inserting the fiber group into the corresponding hole group using the concave portion 22a formed by the upper surface of the optical fiber 20 already inserted in the fiber hole 11 after the first inserting process. be. In this embodiment, this process is applied to the first fiber group F1.
  • the second insertion process will be specifically described below with reference to FIGS. 4B, 4C, and 4D.
  • a plurality of recesses 22a are formed in the upper part of the second fiber group F2 already inserted into the fiber holes 11 by the first insertion process.
  • Each concave portion 22a is formed by each upper surface of the coating portion 22 of two optical fibers 20 adjacent in the first direction Y.
  • the lower surface 22b of each coating portion 22 of the first fiber group F1 is fitted into each concave portion 22a of the second fiber group F2. In this state, the optical fiber 20 (first optical fiber) included in the first fiber group F1 is moved forward.
  • the first fiber group F1 is moved forward with respect to the second fiber group F2 while the first fiber group F1 and the second fiber group F2 are in a bale-stacked arrangement (see FIG. 4D).
  • the arrangement pitch P of each fiber hole 11 is approximately equal to the outer diameter R of the coating portion 22 of the optical fiber 20 . Therefore, when the second fiber group F2 has been passed through the second hole group G2, the first direction Y between each bare portion 21 of the first fiber group F1 and the first fiber hole does not need to use the guide groove 12. and a relative position in the second direction Z can be determined.
  • the optical fiber 20 (first optical fiber) of the first fiber group F1 moves forward by a predetermined amount, the first optical fiber reaches the inside of the first guide groove 12A. Thereafter, the bare portion 21 can be guided toward the small diameter portion 11a through the first guide groove 12A and the large diameter portion 11b. As described above, in the second threading process, the optical fiber 20 can be guided into the fiber hole 11 by the recess 22a. Therefore, even if the dimension in the insertion direction X of the first guide groove 12A is shorter than that of the second guide groove 12B, the first fiber group F1 can be smoothly inserted into the first hole group G1.
  • the protruding bare portion 21 is cut off.
  • the cutting of the bare portion 21 may be performed at the same time as the polishing of the connection end surface 10a. In this case, the position of the end surface of each bare portion 21 can be aligned with the position of the connection end surface 10a with high accuracy.
  • the ferrule 1A of the present embodiment includes a body portion 10 having a plurality of fiber holes 11 through which a plurality of optical fibers 20 are inserted, and a connection end face 10a through which the plurality of fiber holes 11 are opened.
  • first hole group G1 a plurality of first fiber holes (first hole group G1) arranged at a pitch P in the first direction Y on the connection end face 10a, and a second direction orthogonal to the first direction Y a plurality of second fiber holes (second hole group G2) arranged at positions different from the plurality of first fiber holes in Z and arranged at a pitch P in the first direction Y;
  • the fiber holes are arranged at positions shifted by about half the pitch P in the first direction Y with respect to the plurality of first fiber holes, and when the opposite side of the connection end face 10a in the insertion direction X of the plurality of fiber holes 11 is the rear side.
  • first guide grooves 12A extending rearward from the rear ends of the plurality of first fiber holes
  • a plurality of rear guide grooves 12A extending rearward from the rear ends of the plurality of second fiber holes.
  • the plurality of second guide grooves 12B are longer in the insertion direction X than the plurality of first guide grooves 12A.
  • the second fiber group F2 (the fiber group inserted into the hole group in the first insertion process) is made to follow the second guide groove 12B having a long dimension in the insertion direction X, It can be easily inserted into the second hole group G2.
  • the first fiber group F1 (the fiber group inserted into the hole group in the second insertion process) is guided to the vicinity of the first hole group G1 by the concave portion 22a formed in the upper part of the second fiber group F2. can be done. Therefore, even if the dimension of the first guide groove 12A in the insertion direction X is short, the first fiber group F1 can be smoothly inserted into the first hole group G1. Further, compared to the case where the dimensions of the first guide groove 12A and the second guide groove 12B are the same, the dimension of the ferrule 1A in the insertion direction X can be reduced.
  • a window 14 that communicates with the internal space S of the main body portion 10 is formed in the main body upper surface 10b.
  • the optical connector C of this embodiment includes a plurality of optical fibers 20 and a ferrule 1A, and each of the plurality of optical fibers 20 has a bare portion 21 and a coating portion 22 covering the bare portion 21.
  • the outer diameter R and the pitch P of the covering portion 22 are substantially the same. According to this configuration, when guiding the first fiber group F1 using the concave portion 22a, positional deviation in the first direction Y and the second direction Z between the first hole group G1 and the first fiber group F1 is suppressed. can. Therefore, it is possible to more reliably guide the optical fiber 20 using the concave portion 22a.
  • the plurality of fiber holes 11 form three hole groups.
  • each hole group is called a first hole group G1, a second hole group G2, and a third hole group G3 in order from the top.
  • guide grooves 12 are also provided behind each fiber hole 11 of the third hole group G3.
  • the guide groove 12 provided behind the third hole group G3 may be called “third guide groove 12C”.
  • the fiber holes 11 included in the third hole group G3 may be called “third fiber holes”, and the optical fibers 20 inserted through the third hole group G3 may be called “third fiber group F3”.
  • the positions of the fiber holes 11 in the first direction Y are shifted by approximately half the pitch P between the third hole group G3 and the second hole group G2.
  • the position of each fiber hole 11 in the first direction Y is substantially the same between the third hole group G3 and the first hole group G1. Note that “substantially equal” also includes the case where the positions of the third hole group G3 and the first hole group G1 in the first direction Y can be regarded as equal if manufacturing errors are eliminated.
  • the dimension in the insertion direction X of the third guide groove 12C is set longer than that of the first guide groove 12A.
  • the dimension of the third guide groove 12C in the insertion direction X may be set equal to that of the second guide groove 12B.
  • a relationship of second guide groove 12B>first guide groove 12A is preferable.
  • the first insertion process is applied to the third fiber group F3.
  • the second insertion process is applied to the second fiber group F2 and the first fiber group F1.
  • the third fiber group F3 is inserted through the third hole group G3 by the first insertion process.
  • the third guide groove 12C guides each bare portion 21 of the third fiber group F3 to the large diameter portion 11b of the third hole group G3. After that, each bare portion 21 is inserted from the large diameter portion 11b to the small diameter portion 11a.
  • a second threading process threads the second fiber group F2 through the second hole group G2.
  • the second fiber group F2 is guided to the second guide groove 12B using each concave portion 22a formed in the upper portion of the third fiber group F3.
  • the second fiber group F2 is inserted through the small diameter portion 11a through the second guide groove 12B and the large diameter portion 11b.
  • the first fiber group F1 is inserted through the first hole group G1 by a second insertion process.
  • the first fiber group F1 is guided to the first guide groove 12A using each concave portion 22a formed in the upper portion of the second fiber group F2.
  • the first fiber group F1 is inserted through the small diameter portion 11a through the first guide groove 12A and the large diameter portion 11b.
  • Other procedures are the same as those of the first embodiment, and therefore are omitted.
  • the first fiber group F1 is inserted through the first hole group G1 in a state in which both the third fiber group F3 and the second fiber group F2 have been inserted through the corresponding hole groups.
  • the fluctuation and deflection of the second fiber group F2 are reduced. That is, the presence of the third fiber group F3 that has been inserted stabilizes the position and inclination of the concave portion 22a of the second fiber group F2, and allows the first fiber group F1 to pass through the first hole group G1.
  • the insertion process can be performed more reliably.
  • the length of the first guide groove 12A can be set shorter.
  • the third fiber group F3 may be affected by fluctuation or bending.
  • the plurality of fiber holes 11 are arranged in the second direction Z into a plurality of first fiber holes (first hole group G1) and a plurality of second fiber holes (second hole group G1).
  • group G2) has a plurality of third fiber holes (third hole group G3) arranged at a pitch P in the first direction Y, and has a plurality of second fiber holes (third hole group G3) in the second direction Z
  • the holes are located between the plurality of first fiber holes and the plurality of third fiber holes, and a plurality of fiber holes extending rearwardly from each rear end of the plurality of third fiber holes are provided inside the body portion 10 .
  • a third guide groove 12C is formed, and the dimension in the insertion direction X of the plurality of third guide grooves 12C is longer than that of the plurality of first guide grooves 12A.
  • the existence of the third fiber group F3 that has been inserted through the third hole group G3 can reduce the fluctuation and deflection of the second fiber group F2.
  • the position and inclination of the concave portion 22a of the second fiber group F2 can be stabilized, and the first fiber group F1 can be more reliably guided to the first hole group G1.
  • the length of the first guide groove 12A can be set even shorter.
  • the plurality of fiber holes 11 form 12 hole groups.
  • the three lowest hole groups among these hole groups are called the third hole group G3, the second hole group G2, and the first hole group G1, respectively, from the bottom.
  • the number of hole groups can be changed as appropriate, and may be 3 or more.
  • the dimension in the insertion direction X of the guide groove 12 formed at the rear end of the hole group above the first hole group G1 is shorter than the second guide groove 12B and the third guide groove 12C. set.
  • the dimension in the insertion direction X of the guide groove 12 formed at the rear end of the hole group above the first hole group G1 may be the same as the dimension of the first guide groove 12A of the first hole group G1.
  • the dimension in the insertion direction X of the third guide groove 12C is 0.5 mm
  • the dimension in the insertion direction X of the second guide groove 12B is 0.3 mm
  • the dimension in the insertion direction X of the other guide grooves 12 is 0.1 mm.
  • the boot 30 is inserted through the boot insertion opening 15 of the main body 10 .
  • the front surface of the boot 30 contacts the contact surface 15a.
  • an adhesive is injected into the internal space S of the main body 10 and applied to each guide groove 12 . Injection of the adhesive may be performed through window 14 or through boot insertion opening 15 .
  • the coated portions 22 of the tip portions of the plurality of optical fibers 20 are removed to expose the bare portions 21 .
  • each bare portion 21 of the third fiber group F3 is brought into contact with the inner surface of each third guide groove 12C.
  • the operator may visually check each bare portion 21 and each third guide groove 12 ⁇ /b>C through the window 14 while adjusting the relative positions of the two.
  • the third fiber group F3 is pushed forward.
  • each bare portion 21 is moved along the inner surface of each third guide groove 12C and the inner surface of the fiber hole 11 (third fiber hole) of the third hole group G3, toward the tip of the third fiber hole. be guided. That is, the third fiber group F3 is guided to the third hole group G3 by the first insertion process described above.
  • the tip of each bare portion 21 protrudes forward from the connection end surface 10a (see FIG. 9B).
  • the second fiber group F2 is inserted into the second hole group G2 by the second insertion process described above. That is, the second fiber group F2 is guided toward the second hole group G2 (second fiber hole) by the concave portion 22a of the third fiber group F3 and the second guide groove 12B. After that, the second fiber group F2 is pushed forward to complete the insertion into the second hole group G2 (FIG. 9C).
  • the first fiber group F1 is inserted into the first hole group G1 by the second insertion process described above. That is, the first fiber group F1 is guided toward the first fiber hole by the recess 22a of the second fiber group F2 and the first guide groove 12A. After that, the first fiber group F1 is pushed forward, and insertion into the first hole group G1 is completed (FIG. 9D). Thereafter, similarly, the fiber group above the first fiber group F1 is inserted into the hole group above the first hole group G1 by the second insertion process.
  • the adhesive is cured by heating. Thereby, the optical fiber 20 is fixed to the ferrule 1C. If the bare portion 21 protrudes from the connecting end face 10a, the protruding portion is cut off. Further, the connection end surface 10a is polished as necessary. Thus, the manufacture of the optical connector C is completed. Note that the injection and heat curing of the adhesive may be performed after inserting all the fiber groups into the ferrule 1C.
  • the dimension in the insertion direction X of the second guide groove 12B is larger than that of the first guide groove 12A. Therefore, the same effects as those of the first embodiment can be obtained.
  • the third guide groove 12C has a larger dimension in the insertion direction X than the first guide groove 12A. Therefore, the same effects as those of the second embodiment can be obtained.
  • a plurality of hole groups are provided above the first hole group G1. Therefore, more optical fibers 20 can be connected.
  • the guide groove 12 for inserting the optical fiber 20 into the hole group above the first hole group G1 can be set shorter than the third guide groove 12C and the second guide groove 12B.
  • the second hole group G2 or the third hole group G3 is positioned at the lowest position among the plurality of hole groups.
  • another hole group may be formed below the second hole group G2 or the third hole group G3.
  • the window 14 is also formed on the lower surface 10c of the main body, and the ferrule may be turned upside down in the vertical direction when inserting the optical fiber 20 into the other hole group. Then, the optical fiber 20 may be inserted through the fiber hole 11 while viewing the internal space S of the ferrule through the window 14 formed in the lower surface 10c of the main body.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

光コネクタ用フェルール(1A)は、複数の光ファイバが挿通される複数のファイバ孔(11)と、前記複数のファイバ孔(11)が開口する接続端面(10a)と、を有する本体部(10)を備え、前記複数のファイバ孔(11)は、前記接続端面(10a)で第1方向(Y)に所定のピッチ(P)で並べられた複数の第1ファイバ孔(G1)と、第2方向(Z)において前記複数の第1ファイバ孔(G1)とは異なる位置に配置され、前記第1方向(Y)に前記ピッチ(P)で並べられた複数の第2ファイバ孔(G2)と、を有し、前記本体部(10)の内部には、前記複数の第1ファイバ孔(G1)の後方の各端部から後方に向けて延びる複数の第1ガイド溝(12A)と、前記複数の第2ファイバ孔(G2)の後方の各端部から後方に向けて延びる複数の第2ガイド溝(12B)と、が形成され、前記複数の第2ガイド溝(12B)は前記複数の第1ガイド溝(12A)よりも前記挿通方向における寸法が長い。

Description

光コネクタ用フェルール、光コネクタ、および光コネクタの製造方法
 本発明は、光コネクタ用フェルール、光コネクタ、および光コネクタの製造方法に関する。
 本願は、2021年2月17日に日本に出願された特願2021-023589号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、接続端面上に2次元配列された複数のファイバ孔を有する光コネクタ用フェルールが開示されている。複数のファイバ孔の挿通方向後方の各端部には、後方に向けて延びる複数のガイド溝が設けられている。
日本国特開2001-318275号公報
 特許文献1のフェルールにおいて、複数のガイド溝は階段状に形成され、各段の挿通方向における寸法は一定である。この場合、ファイバ孔の列数、すなわちガイド溝の段数に応じて挿通方向におけるフェルールのサイズが大きくなる。
 本発明はこのような事情を考慮してなされ、ファイバ孔が多列化しても挿通方向における光コネクタ用フェルールのサイズが大きくなるのを抑制することを目的とする。
 上記課題を解決するために、本発明の一態様に係る光コネクタ用フェルールは、複数の光ファイバが挿通される複数のファイバ孔と、前記複数のファイバ孔が開口する接続端面と、を有する本体部を備え、前記複数のファイバ孔は、前記接続端面で第1方向に所定のピッチで並べられた複数の第1ファイバ孔と、前記第1方向に対して直交する第2方向において前記複数の第1ファイバ孔とは異なる位置に配置され、前記第1方向に前記ピッチで並べられた複数の第2ファイバ孔と、を有し、前記複数の第2ファイバ孔は前記複数の第1ファイバ孔に対して前記第1方向において前記ピッチの略半分ずれた位置に配置され、前記複数のファイバ孔の挿通方向において前記接続端面の反対側を後方とするとき、前記本体部の内部には、前記複数の第1ファイバ孔の後方の各端部から後方に向けて延びる複数の第1ガイド溝と、前記複数の第2ファイバ孔の後方の各端部から後方に向けて延びる複数の第2ガイド溝と、が形成され、前記複数の第2ガイド溝は前記複数の第1ガイド溝よりも前記挿通方向における寸法が長い。
 上記態様の光コネクタ用フェルールによれば、複数の光ファイバのそれぞれを、挿通方向における寸法が長い第2ガイド溝に沿わせることによって、第2ファイバ孔へと容易に挿通させることができる。このとき、第2ファイバ孔に挿通された複数の光ファイバ(以下、第2光ファイバという)の各上面は、凹部を形成する。第1ファイバ孔および第2ファイバ孔はいわゆる俵積み配置(Hexagonal packing arrangement)となっているため、第2光ファイバが形成する凹部に他の光ファイバ(以下、第1光ファイバという)の下面を沿わせることによって、第1光ファイバを、第1ファイバ孔の後方に位置する第1ガイド溝へと案内することができる。その後、第1ガイド溝によって第1光ファイバを第1ファイバ孔へと案内することができる。このように、第1光ファイバを第1ファイバ孔へとガイドする役割を、第2光ファイバにより形成される凹部に担わせることで、第1ガイド溝の挿通方向における寸法が短くても、第1光ファイバを第1ファイバ孔にスムーズに挿通できる。そして、第1ガイド溝と第2ガイド溝の寸法が等しい場合と比べて、光コネクタ用フェルールの挿通方向における寸法を小さく抑えることができる。
 ここで、前記複数のファイバ孔は、前記第2方向において前記複数の第1ファイバ孔および前記複数の第2ファイバ孔とは異なる位置に配置され、前記第1方向に前記ピッチで並べられた複数の第3ファイバ孔を有し、前記第2方向において、前記複数の第2ファイバ孔は前記複数の第1ファイバ孔と前記複数の第3ファイバ孔との間に位置し、前記本体部の内部には、前記複数の第3ファイバ孔の後方の各端部から後方に向けて延びる複数の第3ガイド溝が形成され、前記複数の第3ガイド溝は前記複数の第1ガイド溝よりも前記挿通方向における寸法が長くてもよい。
 また、前記第2方向における前記複数の第1ファイバ孔側を上方、前記複数の第2ファイバ孔側を下方とするとき、前記本体部の上面には、前記本体部の内部空間に連通する窓が形成されていてもよい。
 また、本発明の一態様に係る光コネクタは、複数の光ファイバと、上記いずれかの光コネクタ用フェルールと、を備え、前記複数の光ファイバはそれぞれ、ベア部と、前記ベア部を覆う被覆部と、を有し、前記被覆部の外径と前記ピッチとが略同じであってもよい。
 また、本発明の一態様に係る光コネクタの製造方法は、上記いずれかの光コネクタ用フェルールを用意し、前記複数の第2ガイド溝を通して、複数の第2光ファイバを前記複数の第2ファイバ孔に挿入し、前記複数の第2光ファイバの表面に沿って複数の第1光ファイバを移動させ、前記複数の第1ファイバ孔にそれぞれ挿入する。
 本発明の上記態様によれば、ファイバ孔が多列化しても挿通方向における光コネクタ用フェルールのサイズが大きくなるのを抑制することができる。
第1実施形態における光コネクタの斜視図である。 図1におけるII-II断面矢視図であって、光ファイバを省略した図である。 第1実施形態における光ファイバの斜視図である。 図2のフェルールおよびブーツに光ファイバが挿入される様子を示した図である。 図4Aに続く工程を示した図である。 図4Bに続く工程を示した図である。 図4CのIVD-IVD断面矢視図である。 第2実施形態におけるフェルールを接続端面側から見た図である。 図5におけるVI-VI断面矢視図である。 第3実施形態におけるフェルールを接続端面側から見た図である。 図7におけるVIII-VIII断面矢視図である。 図8のフェルールおよびブーツに光ファイバが挿入される様子を示した図である。 図9Aに続く工程を示した図である。 図9Bに続く工程を示した図である。 図9Cに続く工程を示した図である。
(第1実施形態)
 以下、第1実施形態の光コネクタ用フェルール、光コネクタ、および光コネクタの製造方法について図面に基づいて説明する。
 図1に示すように、光コネクタCは、光コネクタ用フェルール(以下、単にフェルール1Aという)と、複数の光ファイバ20と、ブーツ30と、2本のガイドピン40と、を備える。フェルール1Aは、本体部10を備える。
 本体部10は、複数の光ファイバ20が挿通される複数のファイバ孔11と、複数のファイバ孔11が開口する接続端面10aと、を有する。複数のファイバ孔11は、複数(本実施形態では2つ)の孔群を構成している。本明細書では、説明を容易とするために各孔群を「第1孔群G1」「第2孔群G2」等と呼ぶ場合がある。各孔群には、所定の方向に所定のピッチPで並べて配置された複数のファイバ孔11が含まれる。また、図2に示すように、複数のファイバ孔11の接続端面10aとは反対側の端部には、それぞれガイド溝12が設けられている。第1孔群G1、第2孔群G2に含まれるファイバ孔を、第1ファイバ孔、第2ファイバ孔、などと呼ぶ場合がある。加えて、第1ファイバ孔の後端に設けられるガイド溝12を「第1ガイド溝12A」、第2ファイバ孔の後端に設けられるガイド溝12を「第2ガイド溝12B」と呼ぶ場合がある。第1孔群G1、第2孔群G2に挿通される光ファイバ20をそれぞれ「第1ファイバ群F1」「第2ファイバ群F2」と呼ぶ場合がある。
 なお、各孔群に含まれるファイバ孔の数は適宜変更可能であり、2以上であればよい。また、フェルール1Aは本体部10以外の部位を備えてもよい。
(方向定義)
 ここで本実施形態では、ファイバ孔11に光ファイバ20が挿通される方向を挿通方向Xという。挿通方向Xに沿って、接続端面10a側を(+X側)を前方または先端側といい、その反対側(-X側)を後方または基端側という。複数のファイバ孔11は、接続端面10aにおいて、第1方向Yおよび第2方向Zに二次元配列されている。第1方向Yは、各ファイバ群において複数のファイバ孔11が並べられた方向でもある。第1方向Yにおける一方側を+Y側といい、他方側を-Y側ともいう。第2方向Zは、接続端面10aにおいて第1方向Yと直交する方向である。第2方向Zにおける第1孔群G1側(+Z側)を上方といい、第2孔群G2側(-Z側)を下方という。挿通方向Xに垂直な断面を、「横断面」という。
 本実施形態においては、挿通方向Xが第1方向Yおよび第2方向Zに対して直交している。ただし、挿通方向Xは第1方向Yおよび第2方向Zに対して交差していれば、必ずしも直交していなくてもよい。
 図3に示すように、光ファイバ20は、ベア部21と、ベア部21を覆う被覆部22とを有する。ベア部21には、不図示のコアおよびクラッドが含まれる。クラッドは、コアよりも屈折率が小さく、コアを覆っている。このため、コアの内側に光を閉じ込めることができる。ベア部21の材質は、ガラスであってもよいし、プラスチックであってもよい。各光ファイバ20の前方の端部では、被覆部22が除去されており、ベア部21が露出している。同一の孔群に挿通される複数の光ファイバ20は、互いに連結されてテープ心線の状態となっていてもよい。例えば、本実施形態の光コネクタCは、第1孔群G1に挿通される第1のテープ心線と、第2孔群G2に挿通される第2のテープ心線と、を備えてもよい。
 図1に示すように、本体部10は、接続端面10aと、本体上面(上面)10bと、本体下面(下面)10cと、を有する。本体上面10bには、本体部10の内部空間Sに連通する窓14が形成されている。窓14は、第2孔群G2よりも第1孔群G1に近い位置にある。窓14が形成されていることで、光ファイバ20をファイバ孔11に挿通する際の視認性が良好になる。また、窓14を通して内部空間Sに接着剤を注入することで、光ファイバ20をフェルール1Aに固定することができる。ただし、本体部10に窓14が形成されていなくてもよい。接続端面10aには複数のファイバ孔11と2つのガイドピン孔13が開口している。各ガイドピン孔13にはガイドピン40が挿通される。また、本体部10の後方にはブーツ30が挿入されるブーツ挿入口15が設けられる。ブーツ挿入口15の内面先端部には当接面15aが設けられている。図1の光コネクタCはオス側でありガイドピン40を備えているが、メス側の光コネクタC(不図示)はガイドピン40を備えていない。オス側の光コネクタCのガイドピン40が、メス側の光コネクタCのガイドピン孔13に挿入されることで、2つの光コネクタCが位置合わせされる。
 本実施形態において、複数のファイバ孔11の二次元配列にはいわゆる「俵積み(Hexagonal packing arrangement)」配置が採用されている。具体的には、第1孔群G1と第2孔群G2とでは、第1方向Yにおける各ファイバ孔11の位置が、ピッチPの略半分ずれている。なお、「略半分」には、製造誤差を取り除けば、第1方向Yにおけるファイバ孔11のずれ量がピッチPの半分であるとみなせる場合も含む。ピッチPは、光ファイバ20の被覆部22の外径R(図4D参照)と略等しいことが望ましい。「略等しい」には、製造誤差を取り除けば、ピッチPと外径Rが等しいとみなせる場合も含む。例えば、光ファイバ20の被覆部22の外径Rが200μmである場合には、ピッチPは200μmであることが望ましい。
 図2に示すように、ファイバ孔11は、小径部11aと、大径部11bと、を有する。小径部11aは、接続端面10aに開口するとともに、挿通方向Xに沿って延びている。大径部11bは、小径部11aに連通し、小径部11aの後端から後方に延びている。小径部11aの内径は、挿通方向Xに沿って一定である。大径部11bの前端部における内面は、前方に向かうにしたがって内径が小さくなるテーパ状である。大径部11bの前端における内径は小径部11aの内径と等しく、大径部11bの後端における内径は小径部11aの内径よりも大きい。
 ガイド溝12は、ファイバ孔11(大径部11b)の後方の端部から、後方に向けて延びている。ガイド溝12は、横断面視において、上方に向けて開口する円弧状(U字状)である。ガイド溝12の前端における内径は大径部11bの後端における内径と等しく、ガイド溝12が後方に向かうに従って内径が大きくなるテーパ構造を有してもよい。ガイド溝12の後端では、第2方向Zの溝の深さがガイド溝12の前端の溝の深さよりも小さくなっていてもよい。なお、ガイド溝12は、横断面視において上方に向けて開口するV字状などであってもよい。
 複数のガイド溝12は階段状に形成されている。具体的には、第1ガイド溝12Aの後端は、第2ガイド溝12Bの後端よりも前側に形成される。これにより、全てのガイド溝12は内部空間Sに露出し、作業者によって窓14を通して視認されやすくなる。また、図2に示すように、第1ガイド溝12Aの挿通方向Xにおける寸法は第2ガイド溝12Bよりも短く設定される。
 ガイド溝12は、後方から挿入された光ファイバ20をファイバ孔11に案内する役割を果たす。なお、ファイバ孔11とガイド溝12の構造に適宜変更を加えてもよい。例えば、大径部11bを取り除き、小径部11aにガイド溝12が直接接続されていてもよい。ガイド溝12が、後方に向かうに従って内径が大きくなるテーパ構造を有してもよい。
 ブーツ30は、挿通方向Xに沿って延びる筒状である。ブーツ30は、ブーツ30の前面が当接面15aに当接するように、本体部10に挿入される。ブーツ30の内部は本体部10の内部空間Sに連通しており、光ファイバ20の挿入口としての役割を果たす。
 次に、以上のように構成された光コネクタCの製造方法の一例について説明する。
 本実施形態において、ファイバ群が対応する孔群に挿通される過程は2つ存在する。本明細書では、各過程を「第1挿通プロセス」「第2挿通プロセス」と呼ぶ場合がある。
 第1挿通プロセスは、主にガイド溝12を用いて、ファイバ群を対応する孔群へと挿通させる過程である。本実施形態においては、第2ファイバ群F2に対してこの過程が適用される。以下、第1挿通プロセスを図4Aおよび図4Bを用いて具体的に説明する。
 まず、作業者は第2ファイバ群F2の各ベア部21を第2ガイド溝12Bの内面に当接させる。第2ファイバ群F2の各光ファイバ20が連結されてテープ心線の状態となっている場合、複数の光ファイバ20を同時に移動させて各第2ガイド溝12Bの内面に当接させてもよい。あるいは、各光ファイバ20を個別に移動させてもよい。このとき、作業者は各ベア部21と第2ガイド溝12Bとを窓14を通して視認できる。この状態で光ファイバ20を前方に向けて押し込むと、ベア部21は第2ガイド溝12Bの内面および大径部11bの内面に沿って移動し、小径部11aに挿通される。
 第2挿通プロセスは、第1挿通プロセスの後で、ファイバ孔11に既に挿入されている光ファイバ20の上面が形成する凹部22aを用いて、ファイバ群を対応する孔群へと挿通させる過程である。本実施形態においては、第1ファイバ群F1に対してこの過程が適用される。以下、第2挿通プロセスを図4B、図4C、および図4Dを用いて具体的に説明する。
 図4Dに示すように、第1挿通プロセスによって既にファイバ孔11に挿通されている第2ファイバ群F2の上部には、複数の凹部22aが形成される。各凹部22aは、第1方向Yにおいて隣り合う2つの光ファイバ20の被覆部22の各上面によって形成されている。第1ファイバ群F1を第1孔群G1に挿通する際には、第1ファイバ群F1の各被覆部22の下面22bを、第2ファイバ群F2の各凹部22aに嵌め合わせる。この状態で、第1ファイバ群F1に含まれる光ファイバ20(第1光ファイバ)を前方に向かって移動させる。言い換えると、第1ファイバ群F1および第2ファイバ群F2が俵積み配置となった状態で、第1ファイバ群F1を第2ファイバ群F2に対して前方に移動させる(図4D参照)。ここで、各ファイバ孔11の配列ピッチPは光ファイバ20の被覆部22の外径Rと略等しい。このため、第2ファイバ群F2が第2孔群G2に挿通済みであるとき、ガイド溝12を使わなくとも、第1ファイバ群F1の各ベア部21と第1ファイバ孔との第1方向Yおよび第2方向Zにおける相対位置を定めることができる。
 第1ファイバ群F1の光ファイバ20(第1光ファイバ)が所定量前方に移動すると、第1光ファイバが第1ガイド溝12Aの内側に到達する。以降は、第1ガイド溝12Aおよび大径部11bを通して、ベア部21を小径部11aに向けてガイドすることができる。
 上記のように、第2挿通プロセスでは、凹部22aによって光ファイバ20をファイバ孔11に案内することができる。したがって、第1ガイド溝12Aの挿通方向Xにおける寸法が第2ガイド溝12Bより短くても、第1ファイバ群F1を第1孔群G1にスムーズに挿通できる。
 光ファイバ20をファイバ孔11に挿通した後、図4Cに示すようにベア部21が接続端面10aから突出している場合は、突出したベア部21を切除する。ベア部21の切除は、接続端面10aの研磨と同時に行ってもよい。この場合、各ベア部21の端面の位置を接続端面10aの位置に高精度に合わせることができる。
 以上説明したように、本実施形態のフェルール1Aは、複数の光ファイバ20が挿通される複数のファイバ孔11と、複数のファイバ孔11が開口する接続端面10aと、を有する本体部10を備え、複数のファイバ孔11は、接続端面10aで第1方向YにピッチPで並べられた複数の第1ファイバ孔(第1孔群G1)と、第1方向Yに対して直交する第2方向Zにおいて複数の第1ファイバ孔とは異なる位置に配置され、第1方向YにピッチPで並べられた複数の第2ファイバ孔(第2孔群G2)と、を有し、複数の第2ファイバ孔は複数の第1ファイバ孔に対して第1方向YにおいてピッチPの略半分ずれた位置に配置され、複数のファイバ孔11の挿通方向Xにおいて接続端面10aの反対側を後方とするとき、本体部10の内部には、複数の第1ファイバ孔の後方の各端部から後方に向けて延びる複数の第1ガイド溝12Aと、複数の第2ファイバ孔の後方の各端部から後方に向けて延びる複数の第2ガイド溝12Bと、が形成され、複数の第2ガイド溝12Bは複数の第1ガイド溝12Aよりも挿通方向Xにおける寸法が長い。
 このような構成を有するフェルール1Aは、第2ファイバ群F2(第1挿通プロセスで孔群に挿通されるファイバ群)を、挿通方向Xにおける寸法が長い第2ガイド溝12Bに沿わせることによって、第2孔群G2へと容易に挿通させることができる。また、第1ファイバ群F1(第2挿通プロセスで孔群に挿通されるファイバ群)を、第2ファイバ群F2の上部に形成された凹部22aによって、第1孔群G1の近くまでガイドすることができる。したがって、挿通方向Xにおける第1ガイド溝12Aの寸法が短くても、第1ファイバ群F1を第1孔群G1へとスムーズに挿通させることができる。そして、第1ガイド溝12Aと第2ガイド溝12Bの寸法が等しい場合と比べて、フェルール1Aの挿通方向Xにおける寸法を小さく抑えることができる。
 また、第2方向Zにおける第1孔群G1側を上方、第2孔群G2側を下方とするとき、本体上面10bには、本体部10の内部空間Sに連通する窓14が形成されている。この構成によれば、各光ファイバ20と各ガイド溝12との相対位置を、窓14を通して作業者が視認しやすくなるため、光ファイバ20の挿入性がより高まる。さらに、第2ファイバ群F2を第2孔群G2に挿通した後で第1ファイバ群F1を第1孔群G1に挿通する際、第2ファイバ群F2が視界を遮ることを抑制できる。これにより、光ファイバ20の挿入性をより高めることができる。
 また、本実施形態の光コネクタCは、複数の光ファイバ20と、フェルール1Aと、を備え、複数の光ファイバ20はそれぞれ、ベア部21と、ベア部21を覆う被覆部22と、を有し、被覆部22の外径RとピッチPとが略同じである。この構成によれば、凹部22aを用いて第1ファイバ群F1をガイドする際に、第1孔群G1と第1ファイバ群F1との第1方向Yおよび第2方向Zにおける位置のずれを抑制できる。したがって、凹部22aを用いた光ファイバ20の案内をより確実に行うことができる。
(第2実施形態)
 次に、本発明に係る第2実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図5および図6に示すように、本実施形態のフェルール1Bにおいて、複数のファイバ孔11は3つの孔群を構成している。本実施形態では、各孔群を上から順に第1孔群G1、第2孔群G2、第3孔群G3と呼ぶ。第1孔群G1および第2孔群G2と同様に、第3孔群G3の各ファイバ孔11の後方にも、ガイド溝12が設けられている。第3孔群G3の後方に設けられたガイド溝12を「第3ガイド溝12C」と呼ぶ場合がある。また、第3孔群G3に含まれるファイバ孔11を「第3ファイバ孔」、第3孔群G3に挿通される光ファイバ20を「第3ファイバ群F3」、と呼ぶ場合がある。
 図5に示すように、第3孔群G3と第2孔群G2とでは、第1方向Yにおける各ファイバ孔11の位置が、ピッチPの略半分ずれている。第3孔群G3と第1孔群G1とでは、第1方向Yにおける各ファイバ孔11の位置が略等しい。なお、「略等しい」には、製造誤差を取り除けば、第1方向Yにおける第3孔群G3および第1孔群G1の位置が等しいとみなせる場合も含む。
 図6に示すように、第3ガイド溝12Cの挿通方向Xにおける寸法は、第1ガイド溝12Aよりも長く設定される。例えば、第3ガイド溝12Cの挿通方向Xにおける寸法は、第2ガイド溝12Bと等しく設定されていてもよく、つまり、ガイド溝12の挿通方向Xにおけるそれぞれの寸法は、第3ガイド溝12C≧第2ガイド溝12B>第1ガイド溝12Aの関係が好ましい。
 次に、以上のように構成されたフェルール1Bの作用について説明する。
 本実施形態において、第3ファイバ群F3には第1挿通プロセスが適用される。一方、第2ファイバ群F2および第1ファイバ群F1には第2挿通プロセスが適用される。
 まず、第1挿通プロセスによって第3ファイバ群F3を第3孔群G3に挿通する。具体的には、第3ガイド溝12Cによって、第3ファイバ群F3の各ベア部21を、第3孔群G3の大径部11bにガイドする。その後、大径部11bから小径部11aへと各ベア部21を挿通させる。
 次に、第2挿通プロセスによって、第2ファイバ群F2を第2孔群G2に挿通する。具体的には、第3ファイバ群F3の上部に形成された各凹部22aを用いて、第2ファイバ群F2を第2ガイド溝12Bまでガイドする。その後、第2ガイド溝12Bおよび大径部11bを通じて、第2ファイバ群F2を小径部11aに挿通する。
 次に、第2挿通プロセスによって、第1ファイバ群F1を第1孔群G1に挿通する。具体的には、第2ファイバ群F2の上部に形成された各凹部22aを用いて、第1ファイバ群F1を第1ガイド溝12Aまでガイドする。その後、第1ガイド溝12Aおよび大径部11bを通じて、第1ファイバ群F1を小径部11aに挿通する。
 その他の手順は、第1実施形態と同様であるため省略する。
 本実施形態の場合、第3ファイバ群F3および第2ファイバ群F2がともに対応する孔群へと挿通済みの状態で、第1ファイバ群F1を第1孔群G1へと挿通する。この場合、第2ファイバ群F2のみが孔群に挿通済みの場合と比較して、第2ファイバ群F2のふらつきやたわみが軽減される。つまり、挿通済みの第3ファイバ群F3の存在により、第2ファイバ群F2の凹部22aの位置と傾きを安定させることができ、第1ファイバ群F1を第1孔群G1へと挿通させる第2挿通プロセスをより確実に行うことができる。また、第2ファイバ群F2の凹部22aによるガイド機能が安定するため、第1ガイド溝12Aの長さをより短く設定することが可能となる。第2ファイバ群F2を第2孔群G2に挿通する際には、第3ファイバ群F3のふらつきやたわみの影響を受ける可能性がある。この点に対しては、第2ファイバ群F2をガイドする第2ガイド溝12Bを、第1ガイド溝12Aよりも長くすることで、第2ファイバ群F2の挿入性を確保することができる。
 以上説明したように、本実施形態のフェルール1Bにおいて、複数のファイバ孔11は、第2方向Zにおいて複数の第1ファイバ孔(第1孔群G1)および複数の第2ファイバ孔(第2孔群G2)とは異なる位置に配置され、第1方向YにピッチPで並べられた複数の第3ファイバ孔(第3孔群G3)を有し、第2方向Zにおいて、複数の第2ファイバ孔は複数の第1ファイバ孔と複数の第3ファイバ孔との間に位置し、本体部10の内部には、複数の第3ファイバ孔の後方の各端部から後方に向けて延びる複数の第3ガイド溝12Cが形成され、複数の第3ガイド溝12Cは複数の第1ガイド溝12Aよりも挿通方向Xにおける寸法が長い。
 この構成によれば、第3孔群G3に挿通済みの第3ファイバ群F3の存在により、第2ファイバ群F2のふらつきやたわみを軽減させることができる。これにより、第2ファイバ群F2の凹部22aの位置と傾きを安定させることができ、第1ファイバ群F1を第1孔群G1へとより確実に案内することができる。また、第2ファイバ群F2の凹部22aによるガイド機能が安定するため、第1ガイド溝12Aの長さをさらに短く設定することができる。
(第3実施形態)
 次に、本発明に係る第3実施形態について説明するが、第1、第2実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図7および図8に示すように、本実施形態のフェルール1Cにおいて、複数のファイバ孔11は12の孔群を構成している。本実施形態では、これらの孔群のうち最も下に位置する3つの孔群について、下から順にそれぞれ第3孔群G3、第2孔群G2、第1孔群G1と呼ぶ。
 なお、孔群の数は適宜変更可能であり、3以上であればよい。
 図8に示すように、第1孔群G1よりも上方の孔群の後端に形成されるガイド溝12の挿通方向Xにおける寸法は、第2ガイド溝12Bおよび第3ガイド溝12Cよりも短く設定される。第1孔群G1よりも上方の孔群の後端に形成されるガイド溝12の挿通方向Xにおける寸法は、第1孔群G1の第1ガイド溝12Aの寸法と同等であってもよい。例えば、第3ガイド溝12Cの挿通方向Xにおける寸法は0.5mm、第2ガイド溝12Bの挿通方向Xにおける寸法は0.3mm、それ以外のガイド溝12の挿通方向Xにおける寸法は0.1mmであってもよい。
 次に、本実施形態の光コネクタCの製造方法について説明する。
 まず、本体部10のブーツ挿入口15から、ブーツ30が挿入される。このとき、ブーツ30の前面は当接面15aに当接する。
 次に、本体部10の内部空間Sに接着剤が注入され、各ガイド溝12に接着剤が塗布される。接着剤の注入は、窓14を通じて行われてもよいし、ブーツ挿入口15を通じて行われてもよい。
 次に、複数の光ファイバ20の先端部の被覆部22が除去され、ベア部21が露出される。
 次に、図9Aに示すように、第3ファイバ群F3の各ベア部21が、各第3ガイド溝12Cの内面に当接される。このとき、作業者は窓14を通して各ベア部21と各第3ガイド溝12Cとを視認しながら、両者の相対位置の調整を行ってもよい。
 次に、第3ファイバ群F3が前方に向けて押し出される。このとき、各ベア部21は各第3ガイド溝12Cの内面および第3孔群G3のファイバ孔11(第3ファイバ孔)の内面に沿って移動させられ、第3ファイバ孔の先端へ向けて案内される。すなわち、先述の第1挿通プロセスによって、第3ファイバ群F3は第3孔群G3に案内される。第3ファイバ群F3の前方への押し出しが継続されると、各ベア部21の先端部が接続端面10aより前方に突出する(図9B参照)。
 次に、先述の第2挿通プロセスによって、第2ファイバ群F2の第2孔群G2への挿通が行われる。すなわち、第3ファイバ群F3の凹部22aおよび第2ガイド溝12Bによって、第2ファイバ群F2が第2孔群G2(第2ファイバ孔)に向けてガイドされる。その後、第2ファイバ群F2が前方に押し出され、第2孔群G2への挿通が完了する(図9C)。
 次に、先述の第2挿通プロセスによって、第1ファイバ群F1の第1孔群G1への挿通が行われる。すなわち、第2ファイバ群F2の凹部22aおよび第1ガイド溝12Aによって、第1ファイバ群F1が第1ファイバ孔に向けてガイドされる。その後、第1ファイバ群F1が前方に押し出され、第1孔群G1への挿通が完了する(図9D)。
 以降は同様にして、第1ファイバ群F1よりも上方のファイバ群が、第2挿通プロセスによって、第1孔群G1よりも上方の孔群へと挿通される。
 すべての光ファイバ20がフェルール1Cに挿通されたのち、接着剤が加熱硬化される。これにより、光ファイバ20がフェルール1Cに固定される。ベア部21が接続端面10aから突出している場合は、突出している部分を切除する。また、必要に応じて、接続端面10aの研磨を行う。以上により、光コネクタCの製造が完了する。
 なお、接着剤の注入および加熱硬化は、すべてのファイバ群をフェルール1Cに挿通した後で行われてもよい。
 以上説明したように、本実施形態のフェルール1Cにおいても、第2ガイド溝12Bは第1ガイド溝12Aよりも挿通方向Xにおける寸法が大きい。このため、第1実施形態と同様の作用効果が得られる。
 また、第3ガイド溝12Cは第1ガイド溝12Aよりも挿通方向Xにおける寸法が大きい。このため、第2実施形態と同様の作用効果が得られる。
 さらに、本実施形態では第1孔群G1よりも上方に複数の孔群が設けられている。このため、より多くの光ファイバ20を接続可能とすることができる。さらに、第1孔群G1よりも上方の孔群に光ファイバ20を挿入するためのガイド溝12は、第3ガイド溝12Cおよび第2ガイド溝12Bと比較して短く設定できる。したがって、各段のガイド溝12の寸法が互いに等しい場合と比べて、複数のファイバ孔11が第2方向Zにおいて多列化しても、フェルール1Cの挿通方向Xにおける寸法が大きくなることを抑制できる。
 なお、本発明の技術的範囲は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、前記実施形態においては第2孔群G2もしくは第3孔群G3が、複数の孔群のうち最も下方に位置していた。しかしながら、第2孔群G2または第3孔群G3より下方に他の孔群が形成されていてもよい。この場合、本体下面10cにも窓14を形成するとともに、当該他の孔群に光ファイバ20を挿通させる際には、フェルールを鉛直方向において上下反転させてもよい。そして、本体下面10cに形成された窓14を通して、フェルールの内部空間Sを視認しながら、光ファイバ20をファイバ孔11に挿通してもよい。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
 1A、1B、1C…フェルール(光コネクタ用フェルール) 10…本体部 10a…接続端面 10b…本体上面(上面) 10c…本体下面(下面) 11…ファイバ孔 12…ガイド溝 12A…第1ガイド溝 12B…第2ガイド溝 12C…第3ガイド溝 14…窓 20…光ファイバ 21…ベア部 22…被覆部 G1…第1孔群 G2…第2孔群 G3…第3孔群 F1…第1ファイバ群 F2…第2ファイバ群 F3…第3ファイバ群 S…内部空間 P…ピッチ R…外径

Claims (5)

  1.  複数の光ファイバが挿通される複数のファイバ孔と、前記複数のファイバ孔が開口する接続端面と、を有する本体部を備え、
     前記複数のファイバ孔は、
      前記接続端面で第1方向に所定のピッチで並べられた複数の第1ファイバ孔と、
      前記第1方向に対して直交する第2方向において前記複数の第1ファイバ孔とは異なる位置に配置され、前記第1方向に前記ピッチで並べられた複数の第2ファイバ孔と、を有し、
     前記複数の第2ファイバ孔は前記複数の第1ファイバ孔に対して前記第1方向において前記ピッチの略半分ずれた位置に配置され、
     前記複数のファイバ孔の挿通方向において前記接続端面の反対側を後方とするとき、前記本体部の内部には、
      前記複数の第1ファイバ孔の後方の各端部から後方に向けて延びる複数の第1ガイド溝と、
      前記複数の第2ファイバ孔の後方の各端部から後方に向けて延びる複数の第2ガイド溝と、が形成され、
     前記複数の第2ガイド溝は前記複数の第1ガイド溝よりも前記挿通方向における寸法が長い、光コネクタ用フェルール。
  2.  前記複数のファイバ孔は、前記第2方向において前記複数の第1ファイバ孔および前記複数の第2ファイバ孔とは異なる位置に配置され、前記第1方向に前記ピッチで並べられた複数の第3ファイバ孔を有し、
     前記第2方向において、前記複数の第2ファイバ孔は前記複数の第1ファイバ孔と前記複数の第3ファイバ孔との間に位置し、
     前記本体部の内部には、前記複数の第3ファイバ孔の後方の各端部から後方に向けて延びる複数の第3ガイド溝が形成され、
     前記複数の第3ガイド溝は前記複数の第1ガイド溝よりも前記挿通方向における寸法が長い、請求項1に記載の光コネクタ用フェルール。
  3.  前記第2方向における前記複数の第1ファイバ孔側を上方、前記複数の第2ファイバ孔側を下方とするとき、前記本体部の上面には、前記本体部の内部空間に連通する窓が形成されている、請求項1または2に記載の光コネクタ用フェルール。
  4.  複数の光ファイバと、
     請求項1から3のいずれか1項に記載の光コネクタ用フェルールと、を備え、
     前記複数の光ファイバはそれぞれ、ベア部と、前記ベア部を覆う被覆部と、を有し、
     前記被覆部の外径と前記ピッチとが略同じである、光コネクタ。
  5.  請求項1から3のいずれか1項に記載の光コネクタ用フェルールを用意し、
     前記複数の第2ガイド溝を通して、複数の第2光ファイバを前記複数の第2ファイバ孔に挿入し、
     前記複数の第2光ファイバの表面に沿って複数の第1光ファイバを移動させ、前記複数の第1ファイバ孔にそれぞれ挿入する、光コネクタの製造方法。
PCT/JP2021/037103 2021-02-17 2021-10-07 光コネクタ用フェルール、光コネクタ、および光コネクタの製造方法 WO2022176259A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023500519A JP7540070B2 (ja) 2021-02-17 2021-10-07 光コネクタ用フェルール、光コネクタ、および光コネクタの製造方法
US18/253,397 US20240012207A1 (en) 2021-02-17 2021-10-07 Ferrule for optical connector, optical connector, and method for manufacturing optical connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021023589 2021-02-17
JP2021-023589 2021-02-17

Publications (1)

Publication Number Publication Date
WO2022176259A1 true WO2022176259A1 (ja) 2022-08-25

Family

ID=82931262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037103 WO2022176259A1 (ja) 2021-02-17 2021-10-07 光コネクタ用フェルール、光コネクタ、および光コネクタの製造方法

Country Status (3)

Country Link
US (1) US20240012207A1 (ja)
JP (1) JP7540070B2 (ja)
WO (1) WO2022176259A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292547A (ja) * 1996-04-23 1997-11-11 Fujikura Ltd 光コネクタとその製造方法
US5815621A (en) * 1996-05-23 1998-09-29 Sumitomo Electric Industries, Ltd. Optical fiber connector ferrule with die and method of manufacturing same
US6604866B1 (en) * 2002-03-04 2003-08-12 Xanoptix, Inc. Optical fiber ferrule
JP2011013635A (ja) * 2009-07-06 2011-01-20 Fujikura Ltd フェルール、多心光コネクタの製造方法及びブーツ
JP2013171208A (ja) * 2012-02-21 2013-09-02 Fujitsu Ltd 光コネクタ、光接続構造、及び光コネクタの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029089A (ja) 2001-05-10 2003-01-29 Furukawa Electric Co Ltd:The 光ファイバ挿入工具
JP2003029087A (ja) 2001-05-10 2003-01-29 Furukawa Electric Co Ltd:The 多心多段フェルール
US6910808B2 (en) * 2002-02-14 2005-06-28 The Furukawa Electric Co., Ltd. Optical connector ferrule for supporting an optical fiber tape conductor, optical connector, method for assembling an optical connector and optical fiber inserting jig
JP2005309009A (ja) 2004-04-20 2005-11-04 Furukawa Electric Co Ltd:The 多心多段光コネクタ用フェルール及びこれを用いた多心多段光コネクタ。
JP5075562B2 (ja) * 2007-10-05 2012-11-21 株式会社フジクラ 多心光コネクタおよびその組み立て方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292547A (ja) * 1996-04-23 1997-11-11 Fujikura Ltd 光コネクタとその製造方法
US5815621A (en) * 1996-05-23 1998-09-29 Sumitomo Electric Industries, Ltd. Optical fiber connector ferrule with die and method of manufacturing same
US6604866B1 (en) * 2002-03-04 2003-08-12 Xanoptix, Inc. Optical fiber ferrule
JP2011013635A (ja) * 2009-07-06 2011-01-20 Fujikura Ltd フェルール、多心光コネクタの製造方法及びブーツ
JP2013171208A (ja) * 2012-02-21 2013-09-02 Fujitsu Ltd 光コネクタ、光接続構造、及び光コネクタの製造方法

Also Published As

Publication number Publication date
US20240012207A1 (en) 2024-01-11
JP7540070B2 (ja) 2024-08-26
JPWO2022176259A1 (ja) 2022-08-25

Similar Documents

Publication Publication Date Title
JP4293284B2 (ja) 光コネクタフェルール、光コネクタ、光部品及び光配線システム
US20120033920A1 (en) Optical fiber ferrule
WO2011087077A1 (ja) 光コネクタおよび光コネクタ用フェルール
JPWO2018055930A1 (ja) 光コネクタフェルール及び光コネクタ
WO2022176259A1 (ja) 光コネクタ用フェルール、光コネクタ、および光コネクタの製造方法
JP4053368B2 (ja) 光コネクタ用ブーツおよび光コネクタ
JP5075562B2 (ja) 多心光コネクタおよびその組み立て方法
JP2009193030A (ja) 光ファイバ付き光フェルール
JP4491721B2 (ja) 光コネクタ用フェルール
US20220120978A1 (en) Ferrule and optical connector
WO2022158019A1 (ja) ブーツ、フェルール構造体及びフェルール付きファイバの製造方法
WO2022158018A1 (ja) フェルール及びフェルール構造体
JP2002196189A (ja) 光コネクタ
US20220373743A1 (en) Optical fiber pitch conversion jig, optical connector, pitch conversion cord, optical conversion box, and pitch conversion method for optical fibers
JP4026261B2 (ja) 光コネクタフェルールおよび光コネクタ
WO2021065224A1 (ja) フェルール、光コネクタ及び光コネクタの製造方法
WO2022113418A1 (ja) 光コネクタ用フェルールおよび光コネクタ
JP2006163210A (ja) 光ファイバ位置決め方法及び光接続部品
US20240061183A1 (en) Pitch conversion ferrule boot
JP7710781B1 (ja) フェルール
US12345929B2 (en) Ferrule for optical connector
JP5291062B2 (ja) 光コネクタの製造方法
JP2022110860A (ja) フェルール、光コネクタ及び光接続構造
JP2022176529A (ja) フェルール、光コネクタ、及びフェルールの製造方法
WO2024147241A1 (ja) 光コネクタフェルール、光コネクタ、及び光結合構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500519

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18253397

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926688

Country of ref document: EP

Kind code of ref document: A1